The University of Zambia School of Natural Sciences

Department of Mathematics & Statistics 2021/2022 Academic Year Final Examinations

MAT 4119 - Engineering Mathematics III

Time allowed: Three (3) hours

Instructions:

- Indicate your computer number on all answer booklets.
- There are seven (7) questions in this examination. Attempt any five (5) questions. All questions carry equal marks.
- The use of non-programmable calculators is allowed.
- Full credit will only be given when all necessary work is shown.

This question paper consists of 5 pages.

* 1. (a) Define each of the following errors:

(b) Estimate $\left(\frac{1}{25}\right)^{\frac{1}{5}}$ to 2 significant figures using the Taylor series

$$x^{\sqrt{x}} = 1 + (x-1) + \frac{1}{2}(x-1)^2 + \frac{1}{8}(x-1)^3 + \frac{1}{24}(x-1)^4 - \frac{1}{128}(x-1)^5 + \dots$$
 and taking 0.525306 as the true value. [7]

(c) The data below shows the results of a tensile test of a steel specimen, where y is elongation in thousands of inches that resulted when the tensile force was x thousands of pounds:

. [\boldsymbol{x}	0.8	1.6	3.1	4.4	6.3
	y	2.8	4.9	6.5	8.1	8.8

Fit an exponential function to the data.

[9]

Turn Over/...

Full marks: 100

₹ 2. (a) Given the function

$$f(x) = x^5 + 4x + 2,$$

(i) show that f has a root in the interval [-1, 0].

[2]

- (ii) Determine the number of iterations necessary to approximate the root of f by bisection method with accuracy within 10^{-5} in the interval [-1,0].
- (b) An engineer needs $4800 \, m^3$, $5810 \, m^3$ and $5690 \, m^3$ of sand, fine gravel and coarse gravel, respectively, at a construction site. There are three sources where these materials can be obtained and the composition of the material from these sources is given below: χ_3

,	ilai iloin	2011	17	^ 3
١	Source	%Sand	$\%Fine\ Gravel$	%Coarse Gravel
1	1	52	30	18
1	, .		50	30
	2	20	50	
	3	25	20	55
	3	20 25	20	55

(i) Form a system of linear equations for this problem.

[1]

- (ii) Solve the system in part (i) by performing three iterations of the Gauss-Seidel method to determine the number of cubic metres that must be hauled from each source in order to meet the engineer's [6] needs, starting with $X^{(0)} = (0, 0, 0)^t$.
- (c) Given that

$$\cosh \left(\sqrt{x}\right) = 1 + \frac{x^2}{8} + \frac{x^4}{384} + \dots,$$

the Maclaurin polynomial

$$P_4(x) = 1 + \frac{x^2}{8} + \frac{x^4}{384}$$

can be used to approximate

$$\int_0^1 \cosh \left(\sqrt{x}\right) \, dx.$$

Find an upper bound of the error involved in making such an approximation.

[7]

3. (a) The equation

$$3^x \cos x - \frac{1}{2} = 0$$

can be written in the form x = g(x), where $g(x) = \arccos\left(\frac{3^{-x}}{2}\right)$.

- (i) Show that g(x) converges to a unique fixed-point in the interval $[0, \frac{\pi}{2}].$
- (ii) Starting with $p_0 = 1.5$, perform two iterations to approximate the solution to the equation. [2]
- (b) Given that $f(z) = e^z$, where z = x + iy, $x, y \in \mathbb{R}$, is defined on

$$S=\{z\in\mathbb{C}:-1\leq x\leq 1,\,0\leq y\leq\pi\},$$

(i) find the image of f.

[4]

(ii) Hence sketch the image of f.

[2]

(c) Determine an upper bound of the error involved in using the difference formula to differentiate

$$f(x) = \sin\left(\sqrt{x}\right)$$

at $x_0 = 2.1$ with h = 0.05.

[7]

4. (a) A rod subject to an axial load will be deformed, resulting in a stress-strain curve, where stress, s, is in kips per square inch $(10^3 \, lb/in^2)$ and strain, e, is dimensionless. The table below shows values of e and s:

e	0.02	0.05	0.10	0.15
S	40.0	37.5	43.0	52.0

Use Lagrange interpolating polynomial to estimate s when e = 0.12. [7]

(b) Starting with $X^{(0)} = (x_0, y_0)^t = (0, 0)^t$, carry out a single iteration of the Newton's method to solve the following system of non-linear equations:

$$x + y - \arcsin x = 0$$

$$y + \arccos y = x$$
 [6]

(c) Use the Runge-Kutta method of order four with h = 0.1 to solve the Initial-Value Problem (IVP)

$$y' = ty^{\frac{1}{3}}, \quad 1 \le t \le 5, \quad y(1) = 1$$

at t = 1.1.

[7]

Turn Over/...

5. (a) Show that

$$S(x) = \begin{cases} 1+x, & x \in [0,3] \\ 4+(x-3)+(x-3)^3, & x \in [3,4]. \end{cases}$$

is a clamped cubic spline that can be fitted to the data points (0,1), (3,4) and (4,6).

(b) The vapour pressure of water from temperatures of $40^{\circ}C$ to $72^{\circ}C$ is given in the table below:

$T(^{o}C)$	P(mmHg)		
40	55.3		
48	83.7		
56	123.8		
64	179.2		
72	254.5		

The slope of the vapour pressure curve at a specified temperature gives an estimate of the evaporation rate. Find the most accurate estimation of the evaporation rate at $T = 72^{\circ}C$. [4]

(c) (i) Evaluate the integral

$$\int_C |z|^2 \, dz,$$

where C is a straight line from z = 4 to z = 3i.

[5]

(ii) Evaluate the integral

$$\oint_C \frac{e^{-z}}{z^{2n+1}} dz, \quad n \ge 1, \quad n \in \mathbb{N},$$

where C is a directed contour |z| = 1.

[4]

6. (a) Show that the Initial-Value Problem (IVP)

$$\frac{dy}{dt} = ty^{\frac{1}{3}}, \quad y(1) = 1$$

is well-posed on $D = \{(t, y) : 1 \le t \le 5, 1 \le y \le 27\}.$ [4]

(b) Solve the IVP in part (a) using Taylor's method of order two at t = 1.2 with h = 0.1. [5]

Turn Over/...

(c) (i) Given that z = x + iy, $x, y \in \mathbb{R}$, show that

$$f(z) = \frac{x+1}{(x+1)^2 + y^2} - \frac{y}{(x+1)^2 + y^2} i$$

is analytic everywhere on \mathbb{C} except at z = -1. [7]

(ii) Show that
$$f'(z) = \frac{-1}{(z+1)^2}$$
. [4]

7. (a) (i) By sketching $x^2 - y^2 = 2$ and $y - \sqrt{2x} = 0$ on the same coordinate system, show that there is a root of the equation

$$\sqrt{x^2 - 2} - \sqrt{2x} = 0$$

in the interval [2,3].

[2]

- (ii) Starting with $p_0 = 3$, perform two iterations using Newton-Raphson method to approximate the root. [6]
- (b) Taylor's theorem can be used to express the three-point midpoint formula as

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(x_0) - \frac{h^4}{120} f^{(5)}(x_0) - \dots$$

Find an approximation of order $\mathcal{O}(h^4)$ for f'(1.2) with h=0.1 when

$$f(x) = x^{\sqrt{2^x}} \ln\left(\sqrt{2^{3x}}\right).$$
 [8]

(c) The total mass, M, entering and leaving a reactor over a specified time period is given by

 $M = \int_{t_1}^{t_2} Qc \ dt,$

where Q (m^3/min) is the flow rate, $c(mg/m^3)$ is the concentration and t_1 and t_2 is the initial and final time, respectively. If the flow rate is constant, i.e. $Q = 4 m^3/min$, find the total mass based on the following measurements:

[4]

END OF EXAMINATION!