- 1 Given that $f(x) = 4\cos x$ and $g(x) = e^x$,
 - (a) Sketch the graphs $y = 4\cos x$ and $y = e^x$ on the same coordinate system. Hence, state the number of solutions to the equation

$$f(x) = 4e^{-x}\cos x - 1 = 0$$

in the interval $[-2\pi, \pi]$. [6]

- (b) Show that one zero of f(x) = 0 lies on the interval [0.5, 1]. [4]
- (c) Use bisection method to perform five iterations to approximate the root of f(x) = 0 in the interval [0.5, 1].

- 2 Given the function $f(x) = 2\sin x 2^{\frac{x}{4}} 1$
 - (a) Use the Newton-Raphson method to find the solution accurate to within 10^{-4} for the equation f(x) = 0, using the initial point $x_0 = -5$. [5]
 - (b) Use the Secant method to find the solution accurate to within 10^{-4} for the equation f(x) = 0, using the initial point $x_0 = -5$. [5]
 - (c) Comment by comparing the rate of convergence for the two methods.[2]

- 3 The fixed-point iteration method is to be applied for approximating a root of the non-linear equation $f(x) = x^4 x 10 = 0$.
 - (a) How many solutions of the non-linear equation f(x) = 0 are there in the interval $[1, \infty)$? Are they simple
 - (b) Find an interval [1, b] that contains the smallest positive solution of the nonlinear equation f(x) = 0.
 - (c) Estimate the zero of f(x) = 0 using fixed point iteration method by computing 5 iterations in each case for g(x) = x when;

(i)
$$g(x) = x^4 - 10$$

(ii)
$$g(x) = \frac{x^4 - x - 10}{2x^6 + 5} + x$$
 [5]