The University of Zambia Department of Mathematics and Statistics MAT 3110 - Engineering Mathematics II

Tutorial Sheet 5 - Double Integrals

August, 2024

1. Sketch the region of integration and evaluate the integral.

(a)
$$\int_{0}^{1} \int_{0}^{2} (4 - y^{2}) \, dy dx$$
 (b)
$$\int_{0}^{3} \int_{-2}^{0} (x^{2}y - 2xy) \, dy dx$$
 (f)
$$\int_{\pi}^{2\pi} \int_{0}^{\pi} (\sin x + \cos y) \, dx dy$$
 (g)
$$\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} \, dx dy$$
 (h)
$$\int_{1}^{2} \int_{y}^{y^{2}} \, dx dy$$
 (i)
$$\int_{0}^{1} \int_{0}^{y^{2}} 3y^{3} e^{xy} \, dy dx$$
 (j)
$$\int_{0}^{1} \int_{0}^{2} (4 - y^{2}) \, dy dx$$

- 2. Perform a double integral over the given function f over the given region
 - (a) $f(x,y) = \frac{x}{y}$ over the region in the first quadrant bounded by the lines y = x, y = 2x, x = 1 and x = 2.
 - (b) $f(x,y) = \frac{1}{xy}$ over the square $1 \le x \le 2, 1 \le y \le 2$.
 - (c) $f(x,y) = x^2 + y^2$ over the triangular region with vertices (0,0), (1,0) and (0,1).
 - (d) $f(x,y) = y \cos(xy)$ over the rectangle $0 \le x \le \pi$, $0 \le y \le 1$.
 - (e) $f(x,y) = y \sqrt{x}$ over the triangular region cut from the first quadrant of the xy-plane by the line x + y = 1.
 - (f) $f(x,y) = e^x \ln y$ over the region in the first quadrant of the xy-plane that lies above the curve $x = \ln y$ from y = 1 and y = 2.
- 3. Sketch the region of integration and write an equivalent double integral with the order of integration reversed.

(a)
$$\int_{0}^{1} \int_{2}^{4-2x} dy dx$$
 (b)
$$\int_{0}^{2} \int_{y-2}^{0} dx dy$$
 (c)
$$\int_{0}^{1} \int_{y}^{4-2x} dy dx$$
 (d)
$$\int_{0}^{1} \int_{1-x}^{1-x^{2}} dy dx$$
 (e)
$$\int_{0}^{1} \int_{0}^{e^{x}} dy dx$$
 (f)
$$\int_{0}^{\ln 2} \int_{e^{y}}^{2} dx dy$$
 (g)
$$\int_{0}^{\frac{3}{2}} \int_{0}^{9-4x^{2}} 16x dy dx$$
 (h)
$$\int_{0}^{2} \int_{0}^{4-y^{2}} y dx dy$$
 (i)
$$\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} 3y dx dy$$
 (j)
$$\int_{0}^{2} \int_{-\sqrt{1-y^{2}}}^{\sqrt{4-x^{2}}} 6x dy dx$$

- 4. Sketch the region of integration, determine the order of integration, and evaluate the integral.
 - (a) $\int_0^{\pi} \int_x^{\pi} \frac{\sin y}{y} \, dy dx$ (b) (c) $\int_0^2 \int_x^2 2y^2 \sin(xy) \, dy dx$ (f) (f)
 - (d) $\int_{0}^{2} \int_{x}^{4-x^{2}} \frac{2y}{4-y} \, dy dx$ (e) $\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{xe^{2y}}{4-y} \, dy dx$ $\int_{0}^{2\sqrt{\ln 3}} \int_{\frac{y}{2}}^{\sqrt{\ln 3}} e^{x^{2}} \, dy dx$ (h)
 - (g) $\int_0^{\frac{1}{16}} \int_{y^{\frac{1}{4}}}^{\frac{1}{2}} \cos(16\pi x^5) \, dx dy$ $\int_0^8 \int_{\sqrt[3]{x}}^2 \frac{1}{y^4 + 1} \, dx dy$
- 5. Evaluate $\int \int_{R} (y-2x^2) dA$ where R is the region inside |x|+|y|=1
- 6. Evaluate $\int \int_R xy \, dA$ where R is the region bounded by the lines y = x, y = 2x, and x + y = 2.
- 7. Find the volume of the region that lies under $z = x^2 + y^2$ and above the triangle enclosed by the lines y = x, x = 0, and x + y = 2 in the xy-plane.
- 8. Find the volume of the solid that is bounded above by $z = x^2$ and below by the region enclosed by $y = 2 x^2$ and the line y = x in the xy-plane.
- 9. Find the volume of the solid whose base is the region in the xy-plane that is bounded by $y = 4 x^2$ and the line y = 3x, while the top of the solid is bounded by the plane z = x + 4.
- 10. Find the volume of the solid of the solid in the first octant bounded by the coordinate planes, $x^2 + y^2 = 4$, and z + y = 3.
- 11. Find the volume of the solid in the first octant bounded by the coordinate planes, x = 3, and $z = 4 y^2$.
- 12. Find the volume of the solid cut from the first octant by the surface $z = 4 x^2 y^2$.
- 13. Find the volume of the wedge cut from the first octant by $z = 12 3y^2$ and the plane x + y = 2.
- 14. Find the volume of the solid cut from the square column $|x| + |y| \le 1$ by z = 0 and 3x + z = 3.
- 15. Find the volume of the solid that is bounded on the front and back by the planes x=2 and x=1, on the sides by $y=\pm \frac{1}{x}$, and above and below by z=x+1 and z=0.
- 16. Find the volume of the solid that is bounded on the front and back by $x = \pm \frac{\pi}{3}$, on the sides by $y = \pm \sec x$, above by $z = 1 + y^2$, and below by the xy-plane.

——— End of Tutorial Sheet ———