The University of Zambia Department of Mathematics and Statistics MAT 3110 - Engineering Mathematics II

Tutorial Sheet 9 - Triple Integrals in Spherical Coordinates Sept, 2024

1. Evaluate the following spherical coordinate integrals.

(a)
$$\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{2\sin\phi} \rho^{2}\sin\phi \, d\rho \, d\phi \, d\theta$$

(b) $\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{2} (\rho\cos\phi) \, \rho^{2}\sin\phi \, d\rho \, d\phi \, d\theta$
(c) $\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\frac{1-\cos\phi}{2}} \rho^{2}\sin\phi \, d\rho \, d\phi \, d\theta$
(d) $\int_{0}^{\frac{3\pi}{2}} \int_{0}^{\pi} \int_{0}^{1} 5\rho^{3}\sin^{3}\phi \, d\rho \, d\phi \, d\theta$
(e) $\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{3}} \int_{\sec\phi}^{2} 3\rho^{2}\sin\phi \, d\rho \, d\phi \, d\theta$
(f) $\int_{0}^{2\pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sec\phi} (\rho\cos\phi) \, \rho^{2}\sin\phi \, d\rho \, d\phi \, d\theta$

2. Evaluate the following spherical coordinate integrals.

(a)
$$\int_{0}^{2} \int_{-\pi}^{0} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \rho^{3} \sin(2\phi) \, d\phi \, d\theta \, d\rho$$
 (b) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \int_{\csc\phi}^{2\csc\phi} \int_{0}^{2\pi} \rho^{2} \sin\phi \, d\theta \, d\rho \, d\phi$
(c) $\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\frac{\pi}{4}} 12\rho \sin^{3}\phi \, d\phi \, d\theta \, d\rho$ (d) $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{\csc\phi}^{2} 5\rho^{4} \sin^{3}\phi \, d\rho \, d\theta \, d\phi$

- 3. Let D be the region bounded below by the cone $z = \sqrt{x^2 + y^2}$ and above by the plane z = 1. Set up the triple integrals in spherical coordinates that give the volume of D using the following orders of integration.
 - (a) $d\rho d\phi d\theta$ (b) $d\phi d\rho d\theta$
- 4. In each of the following, find the spherical coordinate limits for the integral that calculates the volume of the given solid and then evaluate the integral.
 - (a) The solid between the sphere $\rho = \cos \phi$ and the hemisphere $\rho = 2, z \ge 0$.
 - (b) The solid bounded below by the sphere $rho = 2\cos\phi$ and above by the cone $z = \sqrt{x^2 + y^2}$.
 - (c) The solid bounded below by the xy-plane, on the sides by the sphere rho = 2, and above by the cone $\phi = \frac{\pi}{3}$.
- 5. Let D be region in the first octant that is bounded below by the cone $\phi = \frac{\pi}{4}$ and above by the sphere $\rho = 3$. Express the volume of D as an triple integral in
 - (a) cylindrical coordinates
 - (b) spherical coordinates

Find the volume of the region D.

In the following problems, decide which coordinates systems is appropriate to use to find the volumes of the the following solids.

- 6. The solid that is between the sphere $\rho = 2$ and the cones $\phi = \frac{\pi}{3}$ and $\phi = \frac{2\pi}{3}$.
- 7. The solid that is between the sphere $\rho = 3$ and the half planes $\theta = 0$ and $\theta = \frac{\pi}{6}$.
- 8. The solid that is the smaller region of the regions bounded by the sphere $\rho = 2$ and the plane z = 1.
- 9. The solid bound below by the plane z = 0, laterally by the cylinder $x^2 + y^2 = 1$, and above by the paraboloid $z = x^2 + y^2$.
- 10. The solid bounded below by the paraboloid $z = x^2 + y^2$, laterally by the cylinder $x^2 + y^2 = 1$, and above by the paraboloid $z = x^2 + y^2 + 1$.
- 11. The solid that is bounded laterally by cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 2$, bounded below by the cone $z = -\sqrt{x^2 + y^2}$, and bounded above by the cone $z = \sqrt{x^2 + y^2}$.
- 12. The solid that lies inside the sphere $x^2 + y^2 + z^2 = 2$ and outside the cylinder $x^2 + y^2 = 1$.
- 13. The solid enclosed by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and x + y + z = 4.
- 14. The solid that is bounded above by the paraboloid $z = 5 x^2 y^2$, and below by the paraboloid $z = 4x^2 + 4y^2$.
- 15. The solid that is bounded above by the paraboloid $z = 9 x^2 y^2$, below by the xy-plane, and lying outside the cylinder $x^2 + y^2 = 1$.
- 16. The solid that is inside the cylinder $x^2 + y^2 = 1$ and inside the sphere $x^2 + y^2 + z^2 = 4$.
- 17. The solid bounded above by the sphere $x^2 + y^2 + z^2 = 2$ and below by the paraboloid $z = x^2 + y^2$.

End of Tutorial Sheet