The University of Zambia Department of Mathematics and Statistics MAT 3110 - Engineering Mathematics II

Tutorial Sheet 11 - Surface Integrals

October, 2024

- 1. Find a parametrization of the following surfaces. (There are many correct ways to do this)
 - (a) The paraboloid $z = x^2 + y^2, z \le 4$.
 - (b) The paraboloid $z = 9 x^2 y^2$, $z \ge 0$.
 - (c) The first-octant portion of the cone $z = \frac{\sqrt{x^2+y^2}}{2}$ between z = 0 and z = 3.
 - (d) The cap cut from the sphere $x^2 + y^2 + z^2 = 9$ by the cone $z = \sqrt{x^2 + y^2}$.
 - (e) The portion of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant between the xy-plane and the cone $z = \sqrt{x^2 + y^2}$.
 - (f) The portion of the sphere $x^2 + y^2 + z^2 = 3$ between the plane $z = \frac{\sqrt{3}}{2}$ and $z = \frac{-\sqrt{3}}{2}$.
 - (g) The upper portion cut from the sphere $x^2 + y^2 + z^2 = 8$ by the plane z = -2.
 - (h) The surfac cut from the parabolic cylinder $z = 4 y^2$ by the planes x = 0, x = 2, and z = 0.
 - (i) The surface cut from the parabolic cylinder $y = x^2$ by the planes z = 0, z = 3, and y = 2.
 - (j) The portion of the cylinder $y^2 + z^2 = 9$ between the planes x = 0 and x = 3.
 - (k) The portion of the cylinder $x^2 + z^2 = 4$ above the xy-plane between the planes y = -2 and y = 2.
 - (l) The portion of the plane x + y + z = 1.
 - i. inside the cylinder $x^2 + y^2 = 9$
 - ii. inside the cylinder $y^2 + z^2 = 9$
 - (m) The portion of the plane x y + 2z = 2
 - i. inside the cylinder $x^2 + z^2 = 3$
 - ii. inside the cylinder $y^2 + z^2 = 2$
 - (n) The portion of the cylinder $(x-2)^2 + z^2 = 4$ between the planes y = 0 and y = 3
 - (o) The portion of the cylinder $y^2 + (z-5)^2 = 25$ between the planes x = 0 and x = 10
- 2. Use a parametrization to express the area of each of the following surfaces as a double integral. The evaluate the integral. (There are many correct ways to set up the integrals).
 - (a) The portion of the plane y + 2z = 2 inside the cylinder $x^2 + y^2 = 1$
 - (b) The portion of the plane z = -x inside the cylinder $x^2 + y^2 = 4$
 - (c) The portion of the cone $z = 2\sqrt{x^2 + y^2}$ between the planes z = 2 and z = 6

- (d) The portion of the cone $z = \frac{\sqrt{x^2 + y^2}}{3}$ between the planes z = 1 and $z = \frac{4}{3}$
- (e) The portion of the cylinder $x^2 + y^2 = 1$ between the planes z = 1 and z = -4
- (f) The portion of the cylinder $x^2 + z^2 = 10$ between the planes y = -1 and y = 1
- (g) The cap cut from the paraboloid $z = 2 x^2 y^2$ by the cone $z = \sqrt{x^2 + y^2}$
- (h) The portion of the paraboloid $z = x^2 + y^2$ between the planes z = 1 and z = 4
- (i) The lower portion cut from the sphere $x^2 + y^2 + z^2 = 2$ by the cone $z = \sqrt{x^2 + y^2}$
- (j) The portion of the sphere $x^2 + y^2 + z^2 = 4$ between the planes z = -1 and $z = \sqrt{3}$
- 3. Use a parametrization to find the flux

$$\int \int_{S} \vec{\mathbf{F}} \cdot \mathrm{d}\vec{S}$$

across the surface in the given direction.

- (a) $\vec{F} = z^2 \mathbf{i} + x \mathbf{j} 3z \mathbf{k}$ outward (normal away from the *x*-axis) through the surface cut from the parabolic cylinder $z = 4 y^2$ by the planes x = 0, x = 1, and z = 0.
- (b) $\vec{F} = x^2 \mathbf{i} xz \mathbf{k}$ outward (normal away from the *yz*-plane) through the surface cut from the parabolic cylinder $y = x^2$, $-1 \le x \le 1$, by the planes z = 0 and z = 2.
- (c) $\vec{F} = z \mathbf{k}$ across the portion of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant in the direction away from the origin.
- (d) $\vec{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ across the sphere $x^2 + y^2 + z^2 = 1$ in the direction away from the origin.
- (e) $\vec{F} = 2xy \mathbf{i} + 2yz \mathbf{j} + 2xz \mathbf{k}$ upward across the portion of the plane x + y + z = 2 that lies above the square $0 \le x \le 1, 0 \le y \le 1$ in the *xy*-plane.
- (f) $\vec{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ outward through the portion of the cylinder $x^2 + y^2 = 1$ cut by the planes z = 0 and z = 1.
- (g) $\vec{F} = xy \mathbf{i} z \mathbf{k}$ outward (normal away from the z-axis) through the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$.
- (h) $\vec{F} = y^2 \mathbf{i} + xz \mathbf{j} \mathbf{k}$ outward (normal away from the z-axis) through the cone $z = 2\sqrt{x^2 + y^2}, 0 \le z \le 2$.
- (i) $\vec{F} = -x \mathbf{i} y \mathbf{j} + z^2 \mathbf{k}$ outward (normal away from the z-axis) through the portion of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 2.
- (j) $\vec{F} = 4x \mathbf{i} + 4y \mathbf{j} + 2 \mathbf{k}$ outward (normal away from the z-axis) through the surface cut from the botton of the paraboloid $z = x^2 + y^2$ by the plane z = 1.

End of Tutorial Sheet