Midterm 1, Math 244, Spring 2017

Last name, first name, ID number : Score: /30

1. (5 points) Evaluate the double integral [[,zycosydA over the region R: —1 <z <1, 0 <y <.
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2. (6 points) Find the volume of the solid whose base is the region in the zy-plane that is bounded by the parabola
y = 4 — 22 and the line y = 3z, while the top is bounded by the plane z = x + 4.

Solution: the volume V is given by
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3. (5 points) Sketch the region bounded by the curves y = Inz, y = 2Inz and the lines x = 1 and « = e. Then express
the region’s area as a double integral and evaluate the integral.

Solution:
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4. (6 points) Find the volume of the noncircular right cylinder whose base lies inside the cardioid » = 1 + cosf and
outside the circle » = 1 and top lies in the plane z = .



Hint: You can use the following antiderivatives
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Solution: Since the base of the cylindar is symmetric about the x—axis, its volume V' is given by
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5. (5 points) Find the average value of the function f(x,y,z) = 22 + 9 over the cube in the first octant bounded by the
planes =2, y =2 and z = 2.

Solution: the volume of the cube is 23 = 8. Moreover, the triple integral of the f over the cube is
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Therefore, the average value of f over the cube is given by
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6. (6 points) Find the mass of the solid bounded by the planes z + z =1, z — 2 = —1, y = 0 and the surface y = /2.
The density is 0(x,y, z) = 2y + 5.
Reminder: If §(z, y, z) is the density of an object occupying a region D in space, the mass of the object is fffD o(x,y, z)dV.
Hint: Integrate in the order dydzdzx.



Solution: Since the solid is symmetric about the yz—plane and the density only depends on y, its mass M is
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