Homework 1, Math 244, Spring 2017

Last name, first name, ID number : Score:

1. (5 points) Evaluate the double integral ffR xyexysz on theregion R:0<z <2 0<y<1.
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Solution:

2. (5 points) Find the volume V' of the solid cut from the square column |z| + |y| < 1 by the planes z = 0 and
3r + 2z = 3.
Solution: The region of integration R can be written R = R; U Ry where

_ 0<y<1 B -1<y<0
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Since the solid is symmetric about the xz-plane, we have
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3. (5 points) The integral ffl fyy2+2 dxdy gives the area of a region in the zy-plane. Sketch the region, label each
bounding curve with its equation and give the coordinates of the points where the curves intersect. Then find
the area A of the region.

Solution:
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Figure 1: Region of integration
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4. (5 points) The region enclosed by the the lemniscate 72 = 2 cos 26 is the base of a solid right cylinder whose top
is bounded by by the sphere z = v/2 — r2. Find the cylinder’s volume V.

Solution: The region of integration is depicted in the figure below:
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Figure 2: The region enclosed by the the lemniscate 72 = 2 cos 26.

Since the region of integration is symmetric about the origin and about the xz-axis, we have
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5. (5 points) Find the volume V of the region cut from the cylinder 22 + y? = 4 by the plane z = 0 and the plane
T+ z=3.

Solution: The region of integration R can be written

—2<zxrx<2
R= V4 -2 <y<V4-—2?
0<2<3—nx.

Hence the volume V is given by
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The second integral is the integral of an odd function over the interval [—2, 2] (centered at 0) so it equals 0. To
calculate the first integral, we can use the trigonometric substitution x = 2 sin u, which leads to
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Remark we can also use the cylindrical coordinates (r, 0, z) which lead to a simpler integral. Indeed, we have
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6. (5 points) Find the center of mass and moment of inertia about the z-axis of the thin plate bounded by the
curves x = 32 and x = 2y — y? if the density at the point (z,y) is 6(z,y) = y + 1.

Solution: The thin plate is depicted in the figure below:
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Figure 3: Thin plate bounded by = = 3% and = = 2y — y2.

Therefore, the mass of the thin plate is

and the first moments are given by
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and

so the coordinates of ther center of mass are (Vy (% %) The moment of inertia about the z-axis is



