THE UNIVERSITY OF ZAMBIA SCHOOL OF NATURAL SCIENCES DEPARTMENT OF MATHEMATICS & STATISTICS MAT 2110-Engineering Mathematics I

Tutorial Sheet 6

1. Find the domain and range of each of the following functions:

(a)
$$f(x,y) = \ln |36 - 4x^2 + 9y^2|$$

(b) $f(x,y) = \frac{1}{\sqrt{16 - x^2 - y^2}}$
(c) $g(x,y) = \frac{\sqrt{y - x^2}}{1 - x^2}$
(d) $h(x,y) = \sin^{-1}(y - x)$

2. Evaluate each of the following limits:

(a)
$$\lim_{\substack{(x,y)\to(4,3)\\x\neq y+1}} \frac{\sqrt{x} - \sqrt{y} + 1}{x - y - 1}$$
 (b)
$$\lim_{(x,y,z)\to(\pi,0,3)} z e^{-2y} \cos(2x)$$

(c)
$$\lim_{(x,y)\to(0,0)} -\frac{x}{\sqrt{x^2 + y^2}}$$
 (d)
$$\lim_{(x,y)\to(0,0)} \ln\left(\frac{3x^2 - x^2y^2 + 3y^2}{x^2 + y^2}\right)$$

3. Determine the continuity of each of the following:

(a)
$$f(x,y) = \begin{cases} \ln\left(\frac{3x^2 - x^2y^2 + 3y^2}{x^2 + y^2}\right), & (x,y) \neq (0,0) \\ & \text{at } (0,0) \\ \ln 3, & (x,y) = (0,0) \end{cases}$$

(b)
$$g(x,y) = \frac{x+y}{2+\cos x}$$
 on \mathbb{R}^2
(c) $f(x,y) = \frac{1}{x^2+z^2-1}$ at (-1,1,1)

(d)
$$h(x,y) = \begin{cases} \frac{xy}{|xy|}, & (x,y) \neq (0,0) \\ & & \text{at } (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

4. Find the indicated partial derivatives in each of the following:

(a)
$$f(x, y) = x^{y}$$
: $f_{x}(-2, 2), \frac{\partial^{2} f}{\partial x \partial y}$
(b) $f(x, y, z) = \sinh(xy - z^{2}): \frac{\partial f}{\partial y}, \frac{\partial^{3} f}{\partial x \partial z^{2}}$
(c) $W(P, V, \delta, v, g) = PV + \frac{V \delta v^{2}}{2g}: \frac{\partial W}{\partial V}$

5. If resistors of R_1 , R_2 , and R_3 ohms are connected in parallel to make an R-ohms resistor, the value of R can be found from the equation

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.$$

Find the value of $\frac{\partial R}{\partial R_2}$ when $R_1 = 30$, $R_2 = 45$, and $R_3 = 90$ ohms.

- 6. Each of the following equations defines z as a function of the independent variables x and y. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$:
 - (a) $xz + y \ln x = x^2 4$ (b) $x^2 + y^2 + z^2 + \sin(xyz) = 1$

7. Find $\frac{dw}{dt}$, $\frac{\partial w}{\partial t}$, $\frac{\partial w}{\partial s}$, $\frac{\partial w}{\partial r}$, and $\frac{\partial w}{\partial u}$ in each of the following:

(a)
$$w = z - \sin(xy)$$
, where $x = t$, $y = \ln t$, and $z = e^{t-1}$

- (b) $w = \ln(x^2 + y^2 + z^2)$, where x = t + s, y = ts, and $z = \ln(\frac{t}{s})$
- (c) $w = \frac{1}{16}x^4y + \arctan y$, where $x = t^2 + s + u^3$ and $y = tr^3 + s^2 5u$
- 8. If z = f(x, y), where x = t + s and y = t s. Show that

$$\frac{\partial^2 z}{\partial t \partial s} = \frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2}.$$

- 9. Given that $z = f(x, y) = x^2y 3y$, find Δz and dz if x changes from 4 to 3.99 and y changes from 3 to 3.02.
- 10. The power *P* dissipated in a resistor is given by $P = \frac{E^2}{R}$. If E = 200 volts and R = 8 ohms, find the change in *P* resulting from a drop of 5 volts in *E* and an increase of 0.2 ohms in *R*.
- 11. Find equations for the tangent plane and normal line at the point P on the given surface:

(a)
$$x^2 + 2xy - y^2 + z^2 = 7$$
, $P(1, -1, 3)$

(b)
$$z = \ln (x^2 + y^2)$$
, $P(1, 0, 0)$

(c)
$$\cos(\pi x) - x^2 y + e^{xz} + yz - 4 = 0$$
, $P(0, 1, 2)$

12. Determine the nature of the critical points of each of the following:

(a)
$$f(x, y) = x^3 - 3xy + y^3 - 2$$

(b) $f(x, y) = \sin x \cos y$, $0 \le x \le 2\pi$, $0 \le y \le 2\pi$
(c) $h(x, y) = x^4 - 4x^2 + y^4 - 4y^2$
(d) $g(x, y) = 1 - x^2y^2$

13. In each of the following, use the method of Lagrange multipliers to find

- (a) the extreme values of the function $f(x, y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$
- (b) the maximum and minimum of f(x, y, z) = xyz if (x, y, z) lies on the ellipsoid $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$
- (c) the extreme values of $f(x, y, z) = xy + z^2$ on the circle in which the plane y x = 0 intersects the sphere $x^2 + y^2 + z^2 = 4$
- (d) the point closest to the origin on the curve of intersection of the plane 2y + 4z = 5 and the cone $z^2 = 4x^2 + 4y^2$.