MAT2110 – Engineering Mathematics I

Course Content

1. Analytic Geometry

Conic sections: Translation of coordinates; rotations of axes about the origin; Parameterisation of curves; Polar equations for conics; tangents and normals to conic sections.

2. Differential Calculus

Higher order derivatives; application of derivatives; optimisation problems.

3. Integration

Methods of integration; applications of integration to areas between two curves, volumes of solids of revolution, length of an arc, surface area, centres of mass and moments of inertia.

4. Infinite Series

Infinite sequences; infinite series; convergence; comparison, ratio, nth root and integral tests; interval of convergence; power series; Maclaurin's series; convergence of Taylor series and error estimation; .

5. Vectors in Three Dimensional Space

Three dimensional Cartesian coordinate system; Lines and planes in space; vector valued functions of a single variable; plane curves; space curves; differentiation of vector functions.

6. Functions of Several Variables

Limits and continuity; partial derivatives; geometric implications of first and second order derivatives; tangent planes and normal lines to a surface; chain rules; total differentials; increment of a function of real variables and applications to error estimation; maxima and minima for a function of several variables; Lagrange multipliers.

7. Ordinary Differential Equations

First order differential equations; solution by separation of variables; exact equations; first order linear differential equations; second order linear differential equations; Homogeneous equations with constant coefficients; non-homogeneous linear

differential equations; method of variation of parameters ; higher order linear differential equations with constant coefficients; applications.

8. Matrices and Linear Systems of Equations

Consistent system of equations; elementary row operations; solutions of systems of linear equations.

9. Vector Spaces

Linear independence; linear combination and span; basis and dimension; rank of a matrix; eigenvalues and eigenvectors.

Mode of delivery: 4 lectures and 1 tutorial per week.

Assessment

1.	Continuous Assessment	30%
	1.1 Assignments/Quizzes	10%
	1.2 Tests	20%
2.	Final Examination	70%
	Total	100%

Prescribed Readings

1. Goodman, A.W., (1980) Analytic Geometry and the Calculus. 4th Ed. Prentice Hall ISBN: 0 023 44960 4

2. Finney R. L and Thomas G. B., (1995).Calculus and Analytic Geometry, 9th Ed. Addison Wesley. ISBN: 0 201 53174 9

Recommended Readings

- 1. Grossman S. T, (1996) Multivariable Calculus, Linear Algebra and Differential Equations, 3rd Ed. 1996. Academic Press. ISBN: 0 030 03038 3
- 2. Kreyszig E, John Advanced Engineering Mathematics, 10th Edition, Wiley and Sons. ISBN: 0 470 45836 5