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Preface

This fifth edition of ‘Higher Engineering Math-
ematics’ covers essential mathematical material
suitable for students studying Degrees, Founda-
tion Degrees, Higher National Certificate and
Diploma courses in Engineering disciplines.

In this edition the material has been re-ordered
into the following twelve convenient categories:
number and algebra, geometry and trigonometry,
graphs, vector geometry, complex numbers, matri-
ces and determinants, differential calculus, integral
calculus, differential equations, statistics and proba-
bility, Laplace transforms and Fourier series. New
material has been added on inequalities, differ-
entiation of parametric equations, the t = tan θ/2
substitution and homogeneous first order differen-
tial equations. Another new feature is that a free
Internet download is available to lecturers of a sam-
ple of solutions (over 1000) of the further problems
contained in the book.

The primary aim of the material in this text is
to provide the fundamental analytical and underpin-
ning knowledge and techniques needed to success-
fully complete scientific and engineering principles
modules of Degree, Foundation Degree and Higher
National Engineering programmes. The material has
been designed to enable students to use techniques
learned for the analysis, modelling and solution of
realistic engineering problems at Degree and Higher
National level. It also aims to provide some of
the more advanced knowledge required for those
wishing to pursue careers in mechanical engineer-
ing, aeronautical engineering, electronics, commu-
nications engineering, systems engineering and all
variants of control engineering.

In Higher Engineering Mathematics 5th Edi-
tion, theory is introduced in each chapter by a full
outline of essential definitions, formulae, laws, pro-
cedures etc. The theory is kept to a minimum, for
problem solving is extensively used to establish and
exemplify the theory. It is intended that readers will
gain real understanding through seeing problems
solved and then through solving similar problems
themselves.

Access to software packages such as Maple, Math-
ematica and Derive, or a graphics calculator, will
enhance understanding of some of the topics in
this text.

Each topic considered in the text is presented in a
way that assumes in the reader only the knowledge
attained in BTEC National Certificate/Diploma in
an Engineering discipline and Advanced GNVQ in
Engineering/Manufacture.

‘Higher Engineering Mathematics’ provides a
follow-up to ‘Engineering Mathematics’.

This textbook contains some 1000 worked prob-
lems, followed by over 1750 further problems
(with answers), arranged within 250 Exercises.
Some 460 line diagrams further enhance under-
standing.

A sample of worked solutions to over 1000 of
the further problems has been prepared and can be
accessed by lecturers free via the Internet (see
below).

At the end of the text, a list of Essential Formulae
is included for convenience of reference.

At intervals throughout the text are some 19
Assignments to check understanding. For example,
Assignment 1 covers the material in chapters 1 to 5,
Assignment 2 covers the material in chapters 6 to
8, Assignment 3 covers the material in chapters 9 to
11, and so on. An Instructor’s Manual, containing
full solutions to the Assignments, is available free to
lecturers adopting this text (see below).

‘Learning by example’is at the heart of ‘Higher
Engineering Mathematics 5th Edition’.

JOHN BIRD
Royal Naval School of Marine Engineering, HMS

Sultan,
formerly University of Portsmouth
and Highbury College, Portsmouth

Free web downloads

Extra material available on the Internet
It is recognised that the level of understand-
ing of algebra on entry to higher courses is
often inadequate. Since algebra provides the
basis of so much of higher engineering studies,
it is a situation that often needs urgent atten-
tion. Lack of space has prevented the inclusion
of more basic algebra topics in this textbook;
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it is for this reason that some algebra topics –
solution of simple, simultaneous and quadratic
equations and transposition of formulae have
been made available to all via the Internet. Also
included is a Remedial Algebra Assignment to
test understanding.

To access the Algebra material visit: http://
books.elsevier.com/companions/0750681527

Sample of Worked Solutions to Exercises
Within the text are some 1750 further problems
arranged within 250 Exercises. A sample of
over 1000 worked solutions has been prepared
and is available for lecturers only at http://www.
textbooks.elsevier.com

Instructor’s manual
This provides full worked solutions and mark
scheme for all 19 Assignments in this book,

together with solutions to the Remedial Alge-
bra Assignment mentioned above. The material
is available to lecturers only and is available at
http://www.textbooks.elsevier.com

To access the lecturer material on the text-
book website please go to http://www.textbooks.
elsevier.com and search for the book and click on
the ‘manual’ link. If you do not have an account
on textbooks.elsevier.com already, you will need
to register and request access to the book’s sub-
ject area. If you already have an account on
textbooks, but do not have access to the right
subject area, please follow the ‘request access’
link at the top of the subject area homepage.
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Syllabus guidance

This textbook is written for undergraduate engineering degree and foundation degree courses;
however, it is also most appropriate for HNC/D studies and three syllabuses are covered.
The appropriate chapters for these three syllabuses are shown in the table below.

Chapter Analytical Further Engineering
Methods Analytical Mathematics
for Methods for
Engineers Engineers

1. Algebra ×
2. Inequalities
3. Partial fractions ×
4. Logarithms and exponential functions ×
5. Hyperbolic functions ×
6. Arithmetic and geometric progressions ×
7. The binomial series ×
8. Maclaurin’s series ×
9. Solving equations by iterative methods ×

10. Computer numbering systems ×
11. Boolean algebra and logic circuits ×
12. Introduction to trigonometry ×
13. Cartesian and polar co-ordinates ×
14. The circle and its properties ×
15. Trigonometric waveforms ×
16. Trigonometric identities and equations ×
17. The relationship between trigonometric and hyperbolic functions ×
18. Compound angles ×
19. Functions and their curves ×
20. Irregular areas, volumes and mean value of waveforms ×
21. Vectors, phasors and the combination of waveforms ×
22. Scalar and vector products ×
23. Complex numbers ×
24. De Moivre’s theorem ×
25. The theory of matrices and determinants ×
26. The solution of simultaneous equations by matrices ×

and determinants
27. Methods of differentiation ×
28. Some applications of differentiation ×
29. Differentiation of parametric equations
30. Differentiation of implicit functions ×
31. Logarithmic differentiation ×
32. Differentiation of hyperbolic functions ×
33. Differentiation of inverse trigonometric and hyperbolic functions ×
34. Partial differentiation ×

(Continued)
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Chapter Analytical Further Engineering
Methods Analytical Mathematics
for Methods for
Engineers Engineers

35. Total differential, rates of change and small changes ×
36. Maxima, minima and saddle points for functions of two variables ×
37. Standard integration ×
38. Some applications of integration ×
39. Integration using algebraic substitutions ×
40. Integration using trigonometric and hyperbolic substitutions ×
41. Integration using partial fractions ×
42. The t = tan θ/2 substitution
43. Integration by parts ×
44. Reduction formulae ×
45. Numerical integration ×
46. Solution of first order differential equations by ×

separation of variables
47. Homogeneous first order differential equations
48. Linear first order differential equations ×
49. Numerical methods for first order differential equations × ×
50. Second order differential equations of the ×

form a
d2y

dx2
+ b

dy

dx
+ cy = 0

51. Second order differential equations of the ×
form a

d2y

dx2
+ b

dy

dx
+ cy = f (x)

52. Power series methods of solving ordinary ×
differential equations

53. An introduction to partial differential equations ×
54. Presentation of statistical data ×
55. Measures of central tendency and dispersion ×
56. Probability ×
57. The binomial and Poisson distributions ×
58. The normal distribution ×
59. Linear correlation ×
60. Linear regression ×
61. Sampling and estimation theories ×
62. Significance testing ×
63. Chi-square and distribution-free tests ×
64. Introduction to Laplace transforms ×
65. Properties of Laplace transforms ×
66. Inverse Laplace transforms ×
67. Solution of differential equations using Laplace transforms ×
68. The solution of simultaneous differential equations using ×

Laplace transforms
69. Fourier series for periodic functions of period 2π ×
70. Fourier series for non-periodic functions over range 2π ×
71. Even and odd functions and half-range Fourier series ×
72. Fourier series over any range ×
73. A numerical method of harmonic analysis ×
74. The complex or exponential form of a Fourier series ×
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A

1

Algebra

1.1 Introduction

In this chapter, polynomial division and the fac-
tor and remainder theorems are explained (in Sec-
tions 1.4 to 1.6). However, before this, some essential
algebra revision on basic laws and equations is
included.

For further Algebra revision, go to website:
http://books.elsevier.com/companions/0750681527

1.2 Revision of basic laws

(a) Basic operations and laws of indices

The laws of indices are:

(i) am × an = am+n (ii)
am

an
= am−n

(iii) (am)n = am×n (iv) a
m
n = n

√
am

(v) a−n = 1

an
(vi) a0 = 1

Problem 1. Evaluate 4a2bc3 − 2ac when
a = 2, b = 1

2 and c = 1 1
2

4a2bc3 − 2ac = 4(2)2
(

1

2

)(
3

2

)3

− 2(2)

(
3

2

)

= 4 × 2 × 2 × 3 × 3 × 3

2 × 2 × 2 × 2
− 12

2
= 27 − 6 = 21

Problem 2. Multiply 3x + 2y by x − y.

3x + 2y
x − y

Multiply by x → 3x2 + 2xy
Multiply by −y → − 3xy − 2y2

Adding gives: 3x2 − xy − 2y2

Alternatively,

(3x + 2y)(x − y) = 3x2 − 3xy + 2xy − 2y2

= 3x2 − xy − 2y2

Problem 3. Simplify
a3b2c4

abc−2 and evaluate

when a = 3, b = 1
8 and c = 2.

a3b2c4

abc−2 = a3−1b2−1c4−(−2) = a2bc6

When a = 3, b = 1
8 and c = 2,

a2bc6 = (3)2 ( 1
8

)
(2)6 = (9)

( 1
8

)
(64) = 72

Problem 4. Simplify
x2y3 + xy2

xy

x2y3 + xy2

xy
= x2y3

xy
+ xy2

xy

= x2−1y3−1 + x1−1y2−1

= xy2 + y or y(xy + 1)

Problem 5. Simplify
(x2√y)(

√
x 3
√

y2)

(x5y3)
1
2

(x2√y)(
√

x 3
√

y2)

(x5y3)
1
2

= x2y
1
2 x

1
2 y

2
3

x
5
2 y

3
2

= x2+ 1
2 − 5

2 y
1
2 + 2

3 − 3
2

= x0y− 1
3

= y− 1
3 or

1

y
1
3

or
1
3
√

y
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Now try the following exercise.

Exercise 1 Revision of basic operations and
laws of indices

1. Evaluate 2ab + 3bc − abc when a = 2,
b = −2 and c = 4. [−16]

2. Find the value of 5pq2r3 when p = 2
5 ,

q = −2 and r = −1. [−8]

3. From 4x − 3y + 2z subtract x + 2y − 3z.
[3x − 5y + 5z]

4. Multiply 2a − 5b + c by 3a + b.
[6a2 − 13ab + 3ac − 5b2 + bc]

5. Simplify (x2y3z)(x3yz2) and evaluate when
x = 1

2 , y = 2 and z = 3. [x5y4z3, 13 1
2 ]

6. Evaluate (a
3
2 bc−3)(a

1
2 b− 1

2 c) when a = 3,
b = 4 and c = 2. [±4 1

2 ]

7. Simplify
a2b + a3b

a2b2

[
1 + a

b

]

8. Simplify
(a3b

1
2 c− 1

2 )(ab)
1
3

(
√

a3
√

b c)[

a
11
6 b

1
3 c− 3

2 or
6
√

a11 3
√

b√
c3

]

(b) Brackets, factorization and precedence

Problem 6. Simplify

a2 − (2a − ab) − a(3b + a).

a2 − (2a − ab) − a(3b + a)

= a2 − 2a + ab − 3ab − a2

= −2a − 2ab or −2a(1 + b)

Problem 7. Remove the brackets and simplify
the expression:

2a − [3{2(4a − b) − 5(a + 2b)} + 4a].

Removing the innermost brackets gives:

2a − [3{8a − 2b − 5a − 10b} + 4a]

Collecting together similar terms gives:

2a − [3{3a − 12b} + 4a]

Removing the ‘curly’ brackets gives:

2a − [9a − 36b + 4a]

Collecting together similar terms gives:

2a − [13a − 36b]

Removing the square brackets gives:

2a − 13a + 36b = −11a + 36b or
36b − 11a

Problem 8. Factorize (a) xy − 3xz
(b) 4a2 + 16ab3 (c) 3a2b − 6ab2 + 15ab.

(a) xy − 3xz = x(y − 3z)

(b) 4a2 + 16ab3 = 4a(a + 4b3)
(c) 3a2b − 6ab2 + 15ab = 3ab(a − 2b + 5)

Problem 9. Simplify 3c+2c×4c+c÷5c−8c.

The order of precedence is division, multiplication,
addition and subtraction (sometimes remembered by
BODMAS). Hence

3c + 2c × 4c + c ÷ 5c − 8c

= 3c + 2c × 4c +
( c

5c

)
− 8c

= 3c + 8c2 + 1

5
− 8c

= 8c2 − 5c + 1
5

or c(8c − 5) + 1
5

Problem 10. Simplify
(2a − 3) ÷ 4a + 5 × 6 − 3a.

(2a − 3) ÷ 4a + 5 × 6 − 3a

= 2a − 3

4a
+ 5 × 6 − 3a

= 2a − 3

4a
+ 30 − 3a

= 2a

4a
− 3

4a
+ 30 − 3a

= 1

2
− 3

4a
+ 30 − 3a = 30

1
2

− 3
4a

− 3a
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ANow try the following exercise.

Exercise 2 Further problems on brackets,
factorization and precedence

1. Simplify 2(p + 3q − r) − 4(r − q + 2p) + p.
[−5p + 10q − 6r]

2. Expand and simplify (x + y)(x − 2y).
[x2 − xy − 2y2]

3. Remove the brackets and simplify:

24p − [2{3(5p − q) − 2(p + 2q)} + 3q].
[11q − 2p]

4. Factorize 21a2b2 − 28ab [7ab(3ab − 4)].

5. Factorize 2xy2 + 6x2y + 8x3y.
[2xy(y + 3x + 4x2)]

6. Simplify 2y + 4 ÷ 6y + 3 × 4 − 5y.[
2

3y
− 3y + 12

]

7. Simplify 3 ÷ y + 2 ÷ y − 1.

[
5

y
− 1

]

8. Simplify a2 − 3ab × 2a ÷ 6b + ab. [ab]

1.3 Revision of equations

(a) Simple equations

Problem 11. Solve 4 − 3x = 2x − 11.

Since 4 − 3x = 2x − 11 then 4 + 11 = 2x + 3x

i.e. 15 = 5x from which, x = 15

5
= 3

Problem 12. Solve

4(2a − 3) − 2(a − 4) = 3(a − 3) − 1.

Removing the brackets gives:
8a − 12 − 2a + 8 = 3a − 9 − 1

Rearranging gives:

8a − 2a − 3a = −9 − 1 + 12 − 8
i.e. 3a = −6

and a = −6

3
= −2

Problem 13. Solve
3

x − 2
= 4

3x + 4
.

By ‘cross-multiplying’: 3(3x + 4) = 4(x − 2)

Removing brackets gives: 9x + 12 = 4x − 8

Rearranging gives: 9x − 4x = −8 − 12

i.e. 5x = −20

and x = −20

5
= −4

Problem 14. Solve

(√
t + 3√

t

)

= 2.

√
t

(√
t + 3√

t

)

= 2
√

t

i.e.
√

t + 3 = 2
√

t

and 3 = 2
√

t − √
t

i.e. 3 = √
t

and 9 = t

(b) Transposition of formulae

Problem 15. Transpose the formula

v = u + f t

m
to make f the subject.

u + f t

m
= v from which,

f t

m
= v − u

and m

(
f t

m

)

= m(v − u)

i.e. f t = m(v − u)

and f = m
t

(v − u)

Problem 16. The impedance of an a.c. circuit
is given by Z = √

R2 + X2. Make the reactance
X the subject.
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√
R2 + X2 = Z and squaring both sides gives

R2 + X2 = Z2, from which,

X2 = Z2 − R2 and reactance X = √
Z2 − R2

Problem 17. Given that
D

d
=
√(

f + p

f − p

)

,

express p in terms of D, d and f .

Rearranging gives:

√(
f + p

f − p

)

= D

d

Squaring both sides gives:
f + p

f − p
= D2

d2

‘Cross-multiplying’ gives:

d2( f + p) = D2( f − p)

Removing brackets gives:

d2f + d2p = D2f − D2p

Rearranging gives: d2p + D2p = D2f − d2f

Factorizing gives: p(d2 + D2) = f (D2 − d2)

and p = f (D2 − d2)
(d2 + D2)

Now try the following exercise.

Exercise 3 Further problems on simple
equations and transposition of formulae

In problems 1 to 4 solve the equations

1. 3x − 2 − 5x = 2x − 4
[ 1

2

]

2. 8 + 4(x − 1) − 5(x − 3) = 2(5 − 2x)
[−3]

3.
1

3a − 2
+ 1

5a + 3
= 0

[− 1
8

]

4.
3
√

t

1 − √
t

= −6 [4]

5. Transpose y = 3(F − f )

L
for f .

[

f = 3F − yL

3
or f = F − yL

3

]

6. Make l the subject of t = 2π

√
1

g [

l = t2g

4π2

]

7. Transpose m = µL

L + rCR
for L.
[

L = mrCR

µ − m

]

8. Make r the subject of the formula

x

y
= 1 + r2

1 − r2

[

r =
√(

x − y

x + y

)]

(c) Simultaneous equations

Problem 18. Solve the simultaneous
equations:

7x − 2y = 26 (1)

6x + 5y = 29 (2)

5 × equation (1) gives:

35x − 10y = 130 (3)

2 × equation (2) gives:

12x + 10y = 58 (4)

equation (3) + equation (4) gives:

47x + 0 = 188

from which, x = 188

47
= 4

Substituting x = 4 in equation (1) gives:

28 − 2y = 26

from which, 28 − 26 = 2y and y = 1

Problem 19. Solve

x

8
+ 5

2
= y (1)

11 + y

3
= 3x (2)

8 × equation (1) gives: x + 20 = 8y (3)

3 × equation (2) gives: 33 + y = 9x (4)

i.e. x − 8y = −20 (5)
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and 9x − y = 33 (6)

8 × equation (6) gives: 72x − 8y = 264 (7)

Equation (7) − equation (5) gives:

71x = 284

from which, x = 284

71
= 4

Substituting x = 4 in equation (5) gives:

4 − 8y = −20

from which, 4 + 20 = 8y and y = 3

(d) Quadratic equations

Problem 20. Solve the following equations by
factorization:

(a) 3x2 − 11x − 4 = 0

(b) 4x2 + 8x + 3 = 0

(a) The factors of 3x2 are 3x and x and these are
placed in brackets thus:
(3x )(x )
The factors of −4 are +1 and −4 or −1 and +4,
or −2 and +2. Remembering that the product
of the two inner terms added to the product of
the two outer terms must equal −11x, the only
combination to give this is +1 and −4, i.e.,

3x2 − 11x − 4 = (3x + 1)(x − 4)

Thus (3x + 1)(x − 4) = 0 hence

either (3x + 1) = 0 i.e. x = − 1
3

or (x − 4) = 0 i.e. x = 4

(b) 4x2 + 8x + 3 = (2x + 3)(2x + 1)

Thus (2x + 3)(2x + 1) = 0 hence

either (2x + 3) = 0 i.e. x = − 3
2

or (2x + 1) = 0 i.e. x = − 1
2

Problem 21. The roots of a quadratic equation
are 1

3 and −2. Determine the equation in x.

If 1
3 and −2 are the roots of a quadratic equation

then,

(x − 1
3 )(x + 2) = 0

i.e. x2 + 2x − 1
3 x − 2

3 = 0

i.e. x2 + 5
3 x − 2

3 = 0

or 3x2 + 5x − 2 = 0

Problem 22. Solve 4x2 + 7x + 2 = 0 giving
the answer correct to 2 decimal places.

From the quadratic formula if ax2 +bx+c = 0 then,

x = −b ± √
b2 − 4ac

2a

Hence if 4x2 + 7x + 2 = 0

then x = −7 ±√72 − 4(4)(2)

2(4)

= −7 ± √
17

8

= −7 ± 4.123

8

= −7 + 4.123

8
or

−7 − 4.123

8
i.e. x = −0.36 or −1.39

Now try the following exercise.

Exercise 4 Further problems on simultan-
eous and quadratic equations

In problems 1 to 3, solve the simultaneous
equations

1. 8x − 3y = 51
3x + 4y = 14 [x = 6, y = −1]

2. 5a = 1 − 3b
2b + a + 4 = 0 [a = 2, b = −3]

3.
x

5
+ 2y

3
= 49

15

3x

7
− y

2
+ 5

7
= 0 [x = 3, y = 4]

4. Solve the following quadratic equations by
factorization:
(a) x2 + 4x − 32 = 0
(b) 8x2 + 2x − 15 = 0

[(a) 4, −8 (b) 5
4 , − 3

2 ]
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5. Determine the quadratic equation in x whose
roots are 2 and −5.

[x2 + 3x − 10 = 0]

6. Solve the following quadratic equations, cor-
rect to 3 decimal places:
(a) 2x2 + 5x − 4 = 0

(b) 4t2 − 11t + 3 = 0 [
(a) 0.637, −3.137
(b) 2.443, 0.307

]

1.4 Polynomial division

Before looking at long division in algebra let us
revise long division with numbers (we may have
forgotten, since calculators do the job for us!)

For example,
208

16
is achieved as follows:

13
16
)

208
16

48
48
—
· ·
—

(1) 16 divided into 2 won’t go
(2) 16 divided into 20 goes 1
(3) Put 1 above the zero
(4) Multiply 16 by 1 giving 16
(5) Subtract 16 from 20 giving 4
(6) Bring down the 8
(7) 16 divided into 48 goes 3 times
(8) Put the 3 above the 8
(9) 3 × 16 = 48

(10) 48 − 48 = 0

Hence
208

16
= 13 exactly

Similarly,
172

15
is laid out as follows:

11
15
)

172
15

22
15
—

7
—

Hence
172

15
= 11 remainder 7 or 11 + 7

15
= 11

7
15

Below are some examples of division in algebra,
which in some respects, is similar to long division
with numbers.
(Note that a polynomial is an expression of the
form

f (x) = a + bx + cx2 + dx3 + · · ·
and polynomial division is sometimes required
when resolving into partial fractions—see
Chapter 3)

Problem 23. Divide 2x2 + x − 3 by x − 1.

2x2 + x − 3 is called the dividend and x − 1 the
divisor. The usual layout is shown below with the
dividend and divisor both arranged in descending
powers of the symbols.

2x + 3
x − 1

)
2x2 + x − 3
2x2 − 2x

3x − 3
3x − 3
———· ·
———

Dividing the first term of the dividend by the first

term of the divisor, i.e.
2x2

x
gives 2x, which is put

above the first term of the dividend as shown. The
divisor is then multiplied by 2x, i.e. 2x(x − 1) =
2x2 − 2x, which is placed under the dividend as
shown. Subtracting gives 3x − 3. The process is
then repeated, i.e. the first term of the divisor,
x, is divided into 3x, giving +3, which is placed
above the dividend as shown. Then 3(x − 1) = 3x − 3
which is placed under the 3x − 3. The remain-
der, on subtraction, is zero, which completes the
process.

Thus (2x2 + x − 3) ÷ (x − 1) = (2x + 3)

[A check can be made on this answer by multiplying
(2x + 3) by (x − 1) which equals 2x2 + x − 3]

Problem 24. Divide 3x3 + x2 + 3x + 5 by
x + 1.
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(1) (4) (7)
3x2 − 2x + 5

x + 1
)

3x3 + x2 + 3x + 5
3x3 + 3x2

− 2x2 + 3x + 5
− 2x2 − 2x
————–

5x + 5
5x + 5
———

· ·
———

(1) x into 3x3 goes 3x2. Put 3x2 above 3x3

(2) 3x2(x + 1) = 3x3 + 3x2

(3) Subtract
(4) x into −2x2 goes −2x. Put −2x above the

dividend
(5) −2x(x + 1) = −2x2 − 2x
(6) Subtract
(7) x into 5x goes 5. Put 5 above the dividend
(8) 5(x + 1) = 5x + 5
(9) Subtract

Thus

3x3 + x2 + 3x + 5

x + 1
= 3x2 − 2x + 5

Problem 25. Simplify
x3 + y3

x + y

(1) (4) (7)
x2 − xy + y2

x + y
)

x3 + 0 + 0 + y3

x3 + x2y

− x2y + y3

− x2y − xy2
————

xy2 + y3

xy2 + y3
———

· ·
———

(1) x into x3 goes x2. Put x2 above x3 of dividend
(2) x2(x + y) = x3 + x2y
(3) Subtract
(4) x into −x2y goes −xy. Put −xy above dividend

(5) −xy(x + y) = −x2y − xy2

(6) Subtract
(7) x into xy2 goes y2. Put y2 above dividend
(8) y2(x + y) = xy2 + y3

(9) Subtract

Thus

x3 + y3

x + y
= x2 − xy + y2

The zero’s shown in the dividend are not normally
shown, but are included to clarify the subtraction
process and to keep similar terms in their respective
columns.

Problem 26. Divide (x2 + 3x − 2) by (x − 2).

x + 5
x − 2

)
x2 + 3x − 2
x2 − 2x

5x − 2
5x − 10
———

8
———

Hence

x2 + 3x − 2

x − 2
= x + 5 + 8

x − 2

Problem 27. Divide 4a3 − 6a2b + 5b3 by
2a − b.

2a2 − 2ab − b2

2a − b
)

4a3 − 6a2b + 5b3

4a3 − 2a2b

−4a2b + 5b3

−4a2b + 2ab2
————−2ab2 + 5b3

−2ab2 + b3
—————–

4b3
—————–

Thus

4a3 − 6a2b + 5b3

2a − b

= 2a2 − 2ab − b2 + 4b3

2a − b
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Now try the following exercise.

Exercise 5 Further problems on polynomial
division

1. Divide (2x2 + xy − y2) by (x + y).
[2x − y]

2. Divide (3x2 + 5x − 2) by (x + 2).
[3x − 1]

3. Determine (10x2 + 11x − 6) ÷ (2x + 3).
[5x − 2]

4. Find
14x2 − 19x − 3

2x − 3
. [7x + 1]

5. Divide (x3 + 3x2y + 3xy2 + y3) by (x + y).
[x2 + 2xy + y2]

6. Find (5x2 − x + 4) ÷ (x − 1).[

5x + 4 + 8

x − 1

]

7. Divide (3x3 + 2x2 − 5x + 4) by (x + 2).[

3x2 − 4x + 3 − 2

x + 2

]

8. Determine (5x4 + 3x3 − 2x + 1)/(x − 3).[

5x3 + 18x2 + 54x + 160 + 481

x − 3

]

1.5 The factor theorem

There is a simple relationship between the factors of
a quadratic expression and the roots of the equation
obtained by equating the expression to zero.
For example, consider the quadratic equation
x2 + 2x − 8 = 0.
To solve this we may factorize the quadratic expres-
sion x2 + 2x − 8 giving (x − 2)(x + 4).
Hence (x − 2)(x + 4) = 0.
Then, if the product of two numbers is zero, one or
both of those numbers must equal zero. Therefore,

either (x − 2) = 0, from which, x = 2
or (x + 4) = 0, from which, x = −4

It is clear then that a factor of (x − 2) indicates a
root of +2, while a factor of (x + 4) indicates a root
of −4.

In general, we can therefore say that:

a factor of (x − a) corresponds to a
root of x = a

In practice, we always deduce the roots of a simple
quadratic equation from the factors of the quadratic
expression, as in the above example. However, we
could reverse this process. If, by trial and error, we
could determine that x = 2 is a root of the equation
x2 +2x −8 = 0 we could deduce at once that (x −2)
is a factor of the expression x2 +2x−8. We wouldn’t
normally solve quadratic equations this way — but
suppose we have to factorize a cubic expression (i.e.
one in which the highest power of the variable is
3). A cubic equation might have three simple linear
factors and the difficulty of discovering all these fac-
tors by trial and error would be considerable. It is to
deal with this kind of case that we use the factor
theorem. This is just a generalized version of what
we established above for the quadratic expression.
The factor theorem provides a method of factorizing
any polynomial, f (x), which has simple factors.

A statement of the factor theorem says:

‘if x = a is a root of the equation
f (x) = 0, then (x − a) is a factor of f (x)’

The following worked problems show the use of the
factor theorem.

Problem 28. Factorize x3 − 7x − 6 and use it
to solve the cubic equation x3 − 7x − 6 = 0.

Let f (x) = x3 − 7x − 6

If x = 1, then f (1) = 13 − 7(1) − 6 = −12

If x = 2, then f (2) = 23 − 7(2) − 6 = −12

If x = 3, then f (3) = 33 − 7(3) − 6 = 0

If f (3) = 0, then (x−3) is a factor — from the factor
theorem.
We have a choice now. We can divide x3 − 7x − 6 by
(x − 3) or we could continue our ‘trial and error’
by substituting further values for x in the given
expression — and hope to arrive at f (x) = 0.
Let us do both ways. Firstly, dividing out gives:

x2 + 3x + 2
x − 3

)
x3 − 0 − 7x − 6
x3 − 3x2

3x2 − 7x − 6
3x2 − 9x
————

2x − 6
2x − 6
———
· ·

———
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Hence

x3 − 7x − 6

x − 3
= x2 + 3x + 2

i.e. x3 − 7x − 6 = (x − 3)(x2 + 3x + 2)
x2 + 3x + 2 factorizes ‘on sight’ as (x + 1)(x + 2).
Therefore

x3 − 7x − 6 = (x − 3)(x + 1)(x + 2)

A second method is to continue to substitute values
of x into f (x).

Our expression for f (3) was 33 − 7(3) − 6. We
can see that if we continue with positive values of x
the first term will predominate such that f (x) will not
be zero.

Therefore let us try some negative values for
x. Therefore f (−1) = (−1)3 − 7(−1) − 6 = 0;
hence (x + 1) is a factor (as shown above). Also
f (−2) = (−2)3 − 7(−2) − 6 = 0; hence (x + 2) is
a factor (also as shown above).

To solve x3 − 7x − 6 = 0, we substitute the
factors, i.e.,

(x − 3)(x + 1)(x + 2) = 0

from which, x = 3, x = −1 and x = −2.
Note that the values of x, i.e. 3, −1 and −2, are

all factors of the constant term, i.e. the 6. This can
give us a clue as to what values of x we should
consider.

Problem 29. Solve the cubic equation
x3 − 2x2 − 5x + 6 = 0 by using the factor
theorem.

Let f (x) = x3 − 2x2 − 5x + 6 and let us substitute
simple values of x like 1, 2, 3, −1, −2, and so on.

f (1) = 13 − 2(1)2 − 5(1) + 6 = 0,
hence (x − 1) is a factor

f (2) = 23 − 2(2)2 − 5(2) + 6 �= 0

f (3) = 33 − 2(3)2 − 5(3) + 6 = 0,
hence (x − 3) is a factor

f (−1) = (−1)3 − 2(−1)2 − 5(−1) + 6 �= 0

f (−2) = (−2)3 − 2(−2)2 − 5(−2) + 6 = 0,
hence (x + 2) is a factor

Hence x3 − 2x2 − 5x + 6 = (x − 1)(x − 3)(x + 2)

Therefore if x3 − 2x2 − 5x + 6 = 0
then (x − 1)(x − 3)(x + 2) = 0

from which, x = 1, x = 3 and x = −2

Alternatively, having obtained one factor, i.e.
(x − 1) we could divide this into (x3 − 2x2 − 5x + 6)
as follows:

x2 − x − 6
x − 1

)
x3 − 2x2 − 5x + 6
x3 − x2

− x2 − 5x + 6
− x2 + x
————–− 6x + 6

− 6x + 6
———–

· ·
———–

Hence x3 − 2x2 − 5x + 6

= (x − 1)(x2 − x − 6)

= (x − 1)(x − 3)(x + 2)

Summarizing, the factor theorem provides us with
a method of factorizing simple expressions, and an
alternative, in certain circumstances, to polynomial
division.

Now try the following exercise.

Exercise 6 Further problems on the factor
theorem

Use the factor theorem to factorize the expres-
sions given in problems 1 to 4.

1. x2 + 2x − 3 [(x − 1)(x + 3)]
2. x3 + x2 − 4x − 4

[(x + 1)(x + 2)(x − 2)]

3. 2x3 + 5x2 − 4x − 7
[(x + 1)(2x2 + 3x − 7)]

4. 2x3 − x2 − 16x + 15
[(x − 1)(x + 3)(2x − 5)]

5. Use the factor theorem to factorize
x3 + 4x2 + x − 6 and hence solve the cubic
equation x3 + 4x2 + x − 6 = 0.

[
x3 + 4x2 + x − 6

= (x − 1)(x + 3)(x + 2)
x = 1, x = −3 and x = −2

]

6. Solve the equation x3 − 2x2 − x + 2 = 0.
[x = 1, x = 2 and x = −1]
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1.6 The remainder theorem

Dividing a general quadratic expression
(ax2 + bx + c) by (x − p), where p is any whole
number, by long division (see section 1.3) gives:

ax + (b + ap)
x − p

)
ax2 + bx + c
ax2 − apx

(b + ap)x + c
(b + ap)x − (b + ap)p
—————————

c + (b + ap)p
—————————

The remainder, c + (b + ap)p = c + bp + ap2 or
ap2 + bp + c. This is, in fact, what the remainder
theorem states, i.e.,

‘if (ax2 + bx + c) is divided by (x − p),
the remainder will be ap2 + bp + c’

If, in the dividend (ax2 + bx + c), we substitute p
for x we get the remainder ap2 + bp + c.

For example, when (3x2 − 4x + 5) is divided by
(x − 2) the remainder is ap2 + bp + c (where a = 3,
b = −4, c = 5 and p = 2),
i.e. the remainder is

3(2)2 + (−4)(2) + 5 = 12 − 8 + 5 = 9

We can check this by dividing (3x2 − 4x + 5) by
(x − 2) by long division:

3x + 2
x − 2

)
3x2 − 4x + 5
3x2 − 6x

2x + 5
2x − 4
———

9
———

Similarly, when (4x2 −7x +9) is divided by (x + 3),
the remainder is ap2+bp+c, (where a = 4, b = −7,
c = 9 and p = −3) i.e. the remainder is
4(−3)2 + (−7)(−3) + 9 = 36 + 21 + 9 = 66.

Also, when (x2 + 3x − 2) is divided by (x − 1),
the remainder is 1(1)2 + 3(1) − 2 = 2.

It is not particularly useful, on its own, to know
the remainder of an algebraic division. However, if
the remainder should be zero then (x − p) is a fac-
tor. This is very useful therefore when factorizing
expressions.

For example, when (2x2 + x − 3) is divided by
(x − 1), the remainder is 2(1)2 + 1(1) − 3 = 0,
which means that (x −1) is a factor of (2x2 + x −3).

In this case the other factor is (2x + 3), i.e.,

(2x2 + x − 3) = (x − 1)(2x − 3)

The remainder theorem may also be stated for a
cubic equation as:

‘if (ax3 + bx2 + cx + d) is divided by
(x − p), the remainder will be

ap3 + bp2 + cp + d’

As before, the remainder may be obtained by substi-
tuting p for x in the dividend.

For example, when (3x3 + 2x2 − x + 4) is divided
by (x − 1), the remainder is ap3 + bp2 + cp + d
(where a = 3, b = 2, c = −1, d = 4 and p = 1),
i.e. the remainder is 3(1)3 + 2(1)2 + (−1)(1) + 4 =
3 + 2 − 1 + 4 = 8.

Similarly, when (x3 −7x−6) is divided by (x−3),
the remainder is 1(3)3 +0(3)2 −7(3)−6 = 0, which
means that (x − 3) is a factor of (x3 − 7x − 6).

Here are some more examples on the remainder
theorem.

Problem 30. Without dividing out, find the
remainder when 2x2 − 3x + 4 is divided by
(x − 2).

By the remainder theorem, the remainder is given
by ap2 + bp + c, where a = 2, b = −3, c = 4 and
p = 2.
Hence the remainder is:

2(2)2 + (−3)(2) + 4 = 8 − 6 + 4 = 6

Problem 31. Use the remainder theorem to
determine the remainder when
(3x3 − 2x2 + x − 5) is divided by (x + 2).

By the remainder theorem, the remainder is given by
ap3 + bp2 + cp + d, where a = 3, b = −2, c = 1,
d = −5 and p = −2.
Hence the remainder is:

3(−2)3 + (−2)(−2)2 + (1)(−2) + (−5)

= −24 − 8 − 2 − 5

= −39
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Problem 32. Determine the remainder when
(x3 − 2x2 − 5x + 6) is divided by (a) (x − 1) and
(b) (x+2). Hence factorize the cubic expression.

(a) When (x3 − 2x2 − 5x + 6) is divided by (x − 1),
the remainder is given by ap3 + bp2 + cp + d,
where a = 1, b = −2, c = −5, d = 6 and p = 1,

i.e. the remainder = (1)(1)3 + (−2)(1)2

+ (−5)(1) + 6
= 1 − 2 − 5 + 6 = 0

Hence (x − 1) is a factor of (x3 − 2x2 − 5x + 6).

(b) When (x3 − 2x2 − 5x + 6) is divided by (x + 2),
the remainder is given by

(1)(−2)3 + (−2)(−2)2 + (−5)(−2) + 6
= −8 − 8 + 10 + 6 = 0

Hence (x+2) is also a factor of (x3−2x2−5x+6).
Therefore (x−1)(x+2)(x ) = x3−2x2−5x+6.
To determine the third factor (shown blank) we
could

(i) divide (x3 − 2x2 − 5x + 6) by
(x − 1)(x + 2).

or (ii) use the factor theorem where f (x) =
x3 − 2x2 − 5x + 6 and hoping to choose
a value of x which makes f (x) = 0.

or (iii) use the remainder theorem, again hoping
to choose a factor (x − p) which makes
the remainder zero.

(i) Dividing (x3 − 2x2 − 5x + 6) by
(x2 + x − 2) gives:

x − 3
x2 + x − 2

)
x3 − 2x2 − 5x + 6
x3 + x2 − 2x
——————−3x2 − 3x + 6

−3x2 − 3x + 6
——————–· · ·
——————–

Thus (x3 − 2x2 − 5x + 6)
= (x − 1)(x + 2)(x − 3)

(ii) Using the factor theorem, we let

f (x) = x3 − 2x2 − 5x + 6

Then f (3) = 33 − 2(3)2 − 5(3) + 6
= 27 − 18 − 15 + 6 = 0

Hence (x − 3) is a factor.

(iii) Using the remainder theorem, when
(x3−2x2−5x+6) is divided by (x−3), the
remainder is given by ap3 +bp2 +cp+d,
where a = 1, b = −2, c = −5, d = 6
and p = 3.
Hence the remainder is:

1(3)3 + (−2)(3)2 + (−5)(3) + 6
= 27 − 18 − 15 + 6 = 0

Hence (x − 3) is a factor.

Thus (x3 − 2x2 − 5x + 6)
= (x − 1)(x + 2)(x − 3)

Now try the following exercise.

Exercise 7 Further problems on the remain-
der theorem

1. Find the remainder when 3x2 − 4x + 2 is
divided by
(a) (x − 2) (b) (x + 1) [(a) 6 (b) 9]

2. Determine the remainder when
x3 − 6x2 + x − 5 is divided by
(a) (x + 2) (b) (x − 3)

[(a) −39 (b) −29]

3. Use the remainder theorem to find the factors
of x3 − 6x2 + 11x − 6.

[(x − 1)(x − 2)(x − 3)]

4. Determine the factors of x3 + 7x2 + 14x + 8
and hence solve the cubic equation
x3 + 7x2 + 14x + 8 = 0.

[x = −1, x = −2 and x = −4]

5. Determine the value of ‘a’ if (x+2) is a factor
of (x3 − ax2 + 7x + 10).

[a = −3]

6. Using the remainder theorem, solve the
equation 2x3 − x2 − 7x + 6 = 0.

[x = 1, x = −2 and x = 1.5]
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2

Inequalities

2.1 Introduction to inequalities

An inequality is any expression involving one of the
symbols <, >, ≤ or ≥

p < q means p is less than q
p > q means p is greater than q
p ≤ q means p is less than or equal to q
p ≥ q means p is greater than or equal to q

Some simple rules

(i) When a quantity is added or subtracted to
both sides of an inequality, the inequality still
remains.

For example, if p < 3

then p + 2 < 3 + 2 (adding 2 to both
sides)

and p − 2 < 3 − 2 (subtracting 2
from both sides)

(ii) When multiplying or dividing both sides of
an inequality by a positive quantity, say 5, the
inequality remains the same. For example,

if p > 4 then 5p > 20 and
p

5
>

4

5
(iii) When multiplying or dividing both sides of an

inequality by a negative quantity, say −3, the
inequality is reversed. For example,

if p > 1 then −3p < −3 and
p

−3
<

1

−3
(Note > has changed to < in each example.)

To solve an inequality means finding all the values
of the variable for which the inequality is true.
Knowledge of simple equations and quadratic equa-
tions are needed in this chapter.

2.2 Simple inequalities

The solution of some simple inequalities, using only
the rules given in section 2.1, is demonstrated in the
following worked problems.

Problem 1. Solve the following inequalities:

(a) 3 + x > 7 (b) 3t < 6

(c) z − 2 ≥ 5 (d)
p

3
≤ 2

(a) Subtracting 3 from both sides of the inequality:
3 + x > 7 gives:

3 + x − 3 > 7 − 3, i.e. x > 4

Hence, all values of x greater than 4 satisfy the
inequality.

(b) Dividing both sides of the inequality: 3t < 6 by
3 gives:

3t

3
<

6

3
, i.e. t < 2

Hence, all values of t less than 2 satisfy the
inequality.

(c) Adding 2 to both sides of the inequality z − 2 ≥ 5
gives:

z − 2 + 2 ≥ 5 + 2, i.e. z ≥ 7

Hence, all values of z greater than or equal to
7 satisfy the inequality.

(d) Multiplying both sides of the inequality
p

3
≤ 2

by 3 gives:

(3)
p

3
≤ (3)2, i.e. p ≤ 6

Hence, all values of p less than or equal to 6
satisfy the inequality.

Problem 2. Solve the inequality: 4x+1 >x+5

Subtracting 1 from both sides of the inequality:
4x + 1 > x + 5 gives:

4x > x + 4

Subtracting x from both sides of the inequality:
4x > x + 4 gives:

3x > 4
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Dividing both sides of the inequality: 3x > 4 by 3
gives:

x >
4
3

Hence all values of x greater than
4

3
satisfy the

inequality:

4x + 1 > x + 5

Problem 3. Solve the inequality: 3 − 4t ≤ 8 + t

Subtracting 3 from both sides of the inequality:
3 − 4t ≤ 8 + t gives:

−4t ≤ 5 + t

Subtracting t from both sides of the inequality:
−4t ≤ 5 + t gives:

−5t ≤ 5

Dividing both sides of the inequality −5t ≤ 5 by −5
gives:

t ≥ −1 (remembering to reverse the
inequality)

Hence, all values of t greater than or equal to −1
satisfy the inequality.

Now try the following exercise.

Exercise 8 Further problems on simple
inequalities

Solve the following inequalities:

1. (a) 3t > 6 (b) 2x < 10

[(a) t > 2 (b) x < 5]

2. (a)
x

2
> 1.5 (b) x + 2 ≥ 5

[(a) x > 3 (b) x ≥ 3]

3. (a) 4t − 1 ≤ 3 (b) 5 − x ≥ −1
[(a) t ≤ 1 (b) x ≤ 6]

4. (a)
7 − 2k

4
≤ 1 (b) 3z + 2 > z + 3

[

(a) k ≥ 3

2
(b) z >

1

2

]

5. (a) 5 − 2y ≤ 9 + y (b) 1 − 6x ≤ 5 + 2x[

(a) y ≥ −4

3
(b) x ≥ −1

2

]

2.3 Inequalities involving a modulus

The modulus of a number is the size of the num-
ber, regardless of sign. Vertical lines enclosing the
number denote a modulus.
For example, | 4 | = 4 and | −4 | = 4 (the modulus of
a number is never negative),
The inequality: | t | < 1 means that all numbers
whose actual size, regardless of sign, is less than
1, i.e. any value between −1 and +1.
Thus | t | < 1 means −1< t < 1.
Similarly, | x | > 3 means all numbers whose actual
size, regardless of sign, is greater than 3, i.e. any
value greater than 3 and any value less than −3.
Thus | x | > 3 means x > 3 and x < −3.
Inequalities involving a modulus are demonstrated
in the following worked problems.

Problem 4. Solve the following inequality:
| 3x + 1 | < 4

Since | 3x + 1 | < 4 then −4 < 3x + 1 < 4

Now −4 < 3x + 1 becomes −5 < 3x,

i.e. −5
3

< x and 3x + 1 < 4 becomes 3x < 3,

i.e. x < 1

Hence, these two results together become−5
3

< x <1

and mean that the inequality | 3x + 1 | < 4 is satisfied

for any value of x greater than −5

3
but less than 1.

Problem 5. Solve the inequality: | 1 + 2t | ≤ 5

Since | 1 + 2t | ≤ 5 then −5 ≤ 1 + 2t ≤ 5

Now −5 ≤ 1 + 2t becomes −6 ≤ 2t, i.e. −3 ≤ t

and 1 + 2t ≤ 5 becomes 2t ≤ 4 i.e. t ≤ 2

Hence, these two results together become:−3 ≤ t ≤ 2

Problem 6. Solve the inequality: | 3z − 4 | > 2
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| 3z − 4 | > 2 means 3z − 4 > 2 and 3z − 4 < −2,
i.e. 3z > 6 and 3z < 2,
i.e. the inequality: | 3z − 4 | > 2 is satisfied when

z > 2 and z <
2
3

Now try the following exercise.

Exercise 9 Further problems on inequalities
involving a modulus

Solve the following inequalities:

1. | t + 1 | < 4 [−5 < t < 3]

2. | y + 3 | ≤ 2 [−5 ≤ y ≤ −1]

3. | 2x − 1 | < 4

[

−3

2
< x <

5

2

]

4. | 3t − 5 | > 4 [t > 3 and t <
1

3

]

5. | 1 − k | ≥ 3 [k ≥ 4 and k ≤ −2]

2.4 Inequalities involving quotients

If
p

q
> 0 then

p

q
must be a positive value.

For
p

q
to be positive, either p is positive and q is

positive or p is negative and q is negative.

i.e.
+
+ = + and

−
− = +

If
p

q
< 0 then

p

q
must be a negative value.

For
p

q
to be negative, either p is positive and q is

negative or p is negative and q is positive.

i.e.
+
− = − and

−
+ = −

This reasoning is used when solving inequalities
involving quotients, as demonstrated in the follow-
ing worked problems.

Problem 7. Solve the inequality:
t + 1

3t − 6
> 0

Since
t + 1

3t − 6
> 0 then

t + 1

3t − 6
must be positive.

For
t + 1

3t − 6
to be positive,

either (i) t + 1 > 0 and 3t − 6 > 0
or (ii) t + 1 < 0 and 3t − 6 < 0

(i) If t + 1 > 0 then t > −1 and if 3t − 6 > 0 then
3t > 6 and t > 2
Both of the inequalities t > −1 and t > 2 are
only true when t > 2,

i.e. the fraction
t + 1

3t − 6
is positive when t > 2

(ii) If t + 1 < 0 then t < −1 and if 3t − 6 < 0 then
3t < 6 and t < 2
Both of the inequalities t < −1 and t < 2 are
only true when t < −1,

i.e. the fraction
t + 1

3t − 6
is positive when t < −1

Summarizing,
t + 1

3t − 6
> 0 when t > 2 or t <−1

Problem 8. Solve the inequality:
2x + 3

x + 2
≤ 1

Since
2x + 3

x + 2
≤ 1 then

2x + 3

x + 2
− 1 ≤ 0

i.e.
2x + 3

x + 2
− x + 2

x + 2
≤ 0,

i.e.
2x + 3 − (x + 2)

x + 2
≤ 0 or

x + 1

x + 2
≤ 0

For
x + 1

x + 2
to be negative or zero,

either (i) x + 1 ≤ 0 and x + 2 > 0
or (ii) x + 1 ≥ 0 and x + 2 < 0

(i) If x + 1 ≤ 0 then x ≤ −1 and if x + 2 > 0 then
x > −2
(Note that > is used for the denominator, not ≥;
a zero denominator gives a value for the fraction
which is impossible to evaluate.)

Hence, the inequality
x + 1

x + 2
≤ 0 is true when x is

greater than −2 and less than or equal to −1,
which may be written as −2 < x ≤ −1

(ii) If x + 1 ≥ 0 then x ≥ −1 and if x + 2 < 0 then
x < −2
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It is not possible to satisfy both x ≥ −1 and
x < −2 thus no values of x satisfies (ii).

Summarizing,
2x + 3

x + 2
≤ 1 when −2 < x ≤ −1

Now try the following exercise.

Exercise 10 Further problems on inequali-
ties involving quotients

Solve the following inequalities:

1.
x + 4

6 − 2x
≥ 0 [−4 ≤ x < 3]

2.
2t + 4

t − 5
> 1 [t > 5 or t < −9]

3.
3z − 4

z + 5
≤ 2 [−5 < z ≤ 14]

4.
2 − x

x + 3
≥ 4 [−3 < x ≤ −2]

2.5 Inequalities involving square
functions

The following two general rules apply when inequal-
ities involve square functions:

(i) if x2 > k then x >
√

k or x < −√
k (1)

(ii) if x2 < k then −√
k < x <

√
k (2)

These rules are demonstrated in the following
worked problems.

Problem 9. Solve the inequality: t2 > 9

Since t2 > 9 then t2 − 9 > 0, i.e. (t + 3)(t − 3) > 0 by
factorizing
For (t + 3)(t − 3) to be positive,

either (i) (t + 3) > 0 and (t − 3) > 0
or (ii) (t + 3) < 0 and (t − 3) < 0

(i) If (t + 3) > 0 then t > −3 and if (t − 3) > 0 then
t > 3
Both of these are true only when t > 3

(ii) If (t + 3) < 0 then t < −3 and if (t − 3) < 0 then
t < 3
Both of these are true only when t < −3

Summarizing, t2 > 9 when t > 3 or t < −3

This demonstrates the general rule:

if x2 > k then x >
√

k or x < −√
k (1)

Problem 10. Solve the inequality: x2 > 4

From the general rule stated above in equation (1):

if x2 > 4 then x >
√

4 or x < −√
4

i.e. the inequality: x2 > 4 is satisfied when x > 2 or
x < −2

Problem 11. Solve the inequality:
(2z + 1)2 > 9

From equation (1), if (2z + 1)2 > 9 then

2z + 1 >
√

9 or 2z + 1 < −√
9

i.e. 2z + 1 > 3 or 2z + 1 < −3

i.e. 2z > 2 or 2z < −4,

i.e. z > 1 or z < −2

Problem 12. Solve the inequality: t2 < 9

Since t2 < 9 then t2 − 9 < 0, i.e. (t + 3)(t − 3) < 0 by
factorizing. For (t + 3)(t − 3) to be negative,

either (i) (t + 3) > 0 and (t − 3) < 0
or (ii) (t + 3) < 0 and (t − 3) > 0

(i) If (t + 3) > 0 then t > −3 and if (t − 3) < 0 then
t < 3
Hence (i) is satisfied when t > −3 and t < 3
which may be written as: −3 < t < 3

(ii) If (t + 3) < 0 then t < −3 and if (t − 3) > 0 then
t > 3
It is not possible to satisfy both t <−3 and t > 3,
thus no values of t satisfies (ii).

Summarizing, t2 < 9 when −3 < t < 3 which means
that all values of t between −3 and +3 will satisfy
the inequality.
This demonstrates the general rule:

if x2 < k then −√
k< x <

√
k (2)

Problem 13. Solve the inequality: x2 < 4
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From the general rule stated above in equation (2):
if x2 < 4 then −√

4 < x <
√

4
i.e. the inequality: x2 < 4 is satisfied when:

−2 < x < 2

Problem 14. Solve the inequality:
(y − 3)2 ≤ 16

From equation (2), −√
16 ≤ (y − 3) ≤ √

16

i.e. −4 ≤ (y − 3) ≤ 4

from which, 3 − 4 ≤ y ≤ 4 + 3,

i.e. −1 ≤ y ≤ 7

Now try the following exercise.

Exercise 11 Further problems on inequali-
ties involving square functions

Solve the following inequalities:

1. z2 > 16 [z > 4 or z < −4]

2. z2 < 16 [−4 < z < 4]

3. 2x2 ≥ 6 [x ≥ √
3 or x ≤ −√

3]

4. 3k2 − 2 ≤ 10 [−2 ≤ k ≤ 2]

5. (t − 1)2 ≤ 36 [−5 ≤ t ≤ 7]

6. (t − 1)2 ≥ 36 [t ≥ 7 or t ≤ −5]

7. 7 − 3y2 ≤ −5 [y ≥ 2 or y ≤ −2]

8. (4k + 5)2 > 9

[

k > −1

2
or k < −2

]

2.6 Quadratic inequalities

Inequalities involving quadratic expressions are
solved using either factorization or ‘completing the
square’. For example,

x2 − 2x − 3 is factorized as (x + 1)(x − 3)
and 6x2 + 7x − 5 is factorized as (2x − 1)(3x + 5)
If a quadratic expression does not factorize, then
the technique of ‘completing the square’ is used. In
general, the procedure for x2 + bx + c is:

x2 + bx + c ≡
(

x + b

2

)2

+ c −
(

b

2

)2

For example, x2 + 4x − 7 does not factorize; com-
pleting the square gives:

x2 + 4x − 7 ≡ (x + 2)2 − 7 − 22 ≡ (x + 2)2 − 11

Similarly,

x2 − 6x − 5 ≡ (x − 3)2 − 5 − 32 ≡ (x − 3)2 − 14

Solving quadratic inequalities is demonstrated in the
following worked problems.

Problem 15. Solve the inequality:
x2 + 2x − 3 > 0

Since x2 + 2x − 3 > 0 then (x − 1)(x + 3) > 0 by
factorizing. For the product (x − 1)(x + 3) to be
positive,

either (i) (x − 1) > 0 and (x + 3) > 0
or (ii) (x − 1) < 0 and (x + 3) < 0

(i) Since (x − 1) > 0 then x > 1 and since (x + 3) > 0
then x > − 3
Both of these inequalities are satisfied only when
x > 1

(ii) Since (x − 1) < 0 then x < 1 and since (x + 3) < 0
then x < −3
Both of these inequalities are satisfied only when
x < −3

Summarizing, x2 + 2x − 3 > 0 is satisfied when
either x > 1 or x < −3

Problem 16. Solve the inequality:
t2 − 2t − 8 < 0

Since t2 − 2t − 8 < 0 then (t − 4)(t + 2) < 0 by
factorizing.
For the product (t − 4)(t + 2) to be negative,

either (i) (t − 4) > 0 and (t + 2) < 0
or (ii) (t − 4) < 0 and (t + 2) > 0

(i) Since (t − 4) > 0 then t > 4 and since (t + 2) < 0
then t < −2
It is not possible to satisfy both t > 4 and t < −2,
thus no values of t satisfies the inequality (i)

(ii) Since (t − 4) < 0 then t < 4 and since (t + 2) > 0
then t > −2
Hence, (ii) is satisfied when −2 < t < 4
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Summarizing, t2 − 2t − 8 < 0 is satisfied when
−2 < t < 4

Problem 17. Solve the inequality:
x2 + 6x + 3 < 0

x2 + 6x + 3 does not factorize; completing the
square gives:

x2 + 6x + 3 ≡ (x + 3)2 + 3 − 32

≡ (x + 3)2 − 6

The inequality thus becomes: (x + 3)2 − 6 < 0 or
(x + 3)2 < 6

From equation (2), −√
6 < (x + 3) <

√
6

from which, (−√
6 − 3) < x < (

√
6 − 3)

Hence, x2 + 6x + 3 < 0 is satisfied when
−5.45 < x < −0.55 correct to 2 decimal places.

Problem 18. Solve the inequality:
y2 − 8y − 10 ≥ 0

y2 − 8y − 10 does not factorize; completing the
square gives:

y2 − 8y − 10 ≡ (y − 4)2 − 10 − 42

≡ (y − 4)2 − 26

The inequality thus becomes: (y − 4)2 − 26 ≥ 0 or
(y − 4)2 ≥ 26

From equation (1), (y − 4) ≥ √
26 or (y − 4) ≤ −√

26

from which, y ≥ 4 + √
26 or y ≤ 4 − √

26

Hence, y2 − 8y − 10 ≥ 0 is satisfied when y ≥ 9.10
or y ≤ −1.10 correct to 2 decimal places.

Now try the following exercise.

Exercise 12 Further problems on quadratic
inequalities

Solve the following inequalities:

1. x2 − x − 6 > 0 [x > 3 or x < −2]

2. t2 + 2t − 8 ≤ 0 [−4 ≤ t ≤ 2]

3. 2x2 + 3x − 2 < 0

[

−2 < x <
1

2

]

4. y2 − y − 20 ≥ 0 [y ≥ 5 or y ≤ −4]

5. z2 + 4z + 4 ≤ 4 [−4 ≤ z ≤ 0]

6. x2 + 6x + 6 ≤ 0

[(−√
3 − 3) ≤ x ≤ (

√
3 − 3)]

7. t2 − 4t − 7 ≥ 0

[t ≥ (
√

11 + 2) or t ≤ (2 − √
11)]

8. k2 + k − 3 ≥ 0
[

k ≥
(√

13

4
− 1

2

)

or k ≤
(

−
√

13

4
− 1

2

)]
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Partial fractions

3.1 Introduction to partial fractions

By algebraic addition,

1

x − 2
+ 3

x + 1
= (x + 1) + 3(x − 2)

(x − 2)(x + 1)

= 4x − 5

x2 − x − 2

The reverse process of moving from
4x − 5

x2 − x − 2

to
1

x − 2
+ 3

x + 1
is called resolving into partial

fractions.
In order to resolve an algebraic expression into

partial fractions:

(i) the denominator must factorize (in the above
example, x2 − x − 2 factorizes as (x − 2)
(x + 1)), and

(ii) the numerator must be at least one degree less
than the denominator (in the above example
(4x − 5) is of degree 1 since the highest powered
x term is x1 and (x2 − x − 2) is of degree 2).

When the degree of the numerator is equal to or
higher than the degree of the denominator, the
numerator must be divided by the denominator until
the remainder is of less degree than the denominator
(see Problems 3 and 4).

There are basically three types of partial fraction
and the form of partial fraction used is summarized

Table 3.1

Type Denominator containing Expression Form of partial fraction

1 Linear factors
f (x)

(x + a)(x − b)(x + c)

A

(x + a)
+ B

(x − b)
+ C

(x + c)
(see Problems 1 to 4)

2 Repeated linear factors
f (x)

(x + a)3

A

(x + a)
+ B

(x + a)2 + C

(x + a)3
(see Problems 5 to 7)

3 Quadratic factors
f (x)

(ax2 + bx + c)(x + d)

Ax + B

(ax2 + bx + c)
+ C

(x + d)
(see Problems 8 and 9)

in Table 3.1, where f (x) is assumed to be of less
degree than the relevant denominator and A, B and
C are constants to be determined.

(In the latter type in Table 3.1, ax2 + bx + c is
a quadratic expression which does not factorize
without containing surds or imaginary terms.)

Resolving an algebraic expression into partial
fractions is used as a preliminary to integrating cer-
tain functions (see Chapter 41) and in determining
inverse Laplace transforms (see Chapter 66).

3.2 Worked problems on partial
fractions with linear factors

Problem 1. Resolve
11 − 3x

x2 + 2x − 3
into partial

fractions.

The denominator factorizes as (x − 1) (x + 3) and
the numerator is of less degree than the denomina-

tor. Thus
11 − 3x

x2 + 2x − 3
may be resolved into partial

fractions.

Let
11 − 3x

x2 + 2x − 3
≡ 11 − 3x

(x − 1)(x + 3)

≡ A

(x − 1)
+ B

(x + 3)
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where A and B are constants to be determined,

i.e.
11 − 3x

(x − 1)(x + 3)
≡ A(x + 3) + B(x − 1)

(x − 1)(x + 3)
,

by algebraic addition.
Since the denominators are the same on each side

of the identity then the numerators are equal to each
other.

Thus, 11 − 3x ≡ A(x + 3) + B(x − 1)

To determine constants A and B, values of x are
chosen to make the term in A or B equal to zero.

When x = 1, then

11 − 3(1) ≡ A(1 + 3) + B(0)
i.e. 8 = 4A
i.e. A = 2

When x = − 3, then

11 − 3(−3) ≡ A(0) + B(−3 − 1)
i.e. 20 = −4B
i.e. B = −5

Thus
11 − 3x

x2 + 2x − 3
≡ 2

(x − 1)
+ −5

(x + 3)

≡ 2
(x − 1)

− 5
(x + 3)

[

Check:
2

(x − 1)
− 5

(x + 3)
= 2(x + 3) − 5(x − 1)

(x − 1)(x + 3)

= 11 − 3x

x2 + 2x − 3

]

Problem 2. Convert
2x2 − 9x − 35

(x + 1)(x − 2)(x + 3)
into the sum of three partial fractions.

Let
2x2 − 9x − 35

(x + 1)(x − 2)(x + 3)

≡ A

(x + 1)
+ B

(x − 2)
+ C

(x + 3)

≡

(
A(x − 2)(x + 3) + B(x + 1)(x + 3)

+ C(x + 1)(x − 2)

)

(x + 1)(x − 2)(x + 3)

by algebraic addition.

Equating the numerators gives:

2x2 − 9x − 35 ≡ A(x − 2)(x + 3)

+ B(x + 1)(x + 3) + C(x + 1)(x − 2)

Let x = − 1. Then

2(−1)2 − 9(−1) − 35 ≡ A(−3)(2)

+ B(0)(2) + C(0)(−3)

i.e. −24 = −6A

i.e. A = −24

−6
= 4

Let x = 2. Then

2(2)2 − 9(2) − 35 ≡ A(0)(5) + B(3)(5) + C(3)(0)

i.e. −45 = 15B

i.e. B = −45

15
= −3

Let x = − 3. Then

2(−3)2 − 9(−3) − 35 ≡ A(−5)(0) + B(−2)(0)

+ C(−2)(−5)

i.e. 10 = 10C

i.e. C = 1

Thus
2x2 − 9x − 35

(x + 1)(x − 2)(x + 3)

≡ 4
(x + 1)

− 3
(x − 2)

+ 1
(x + 3)

Problem 3. Resolve
x2 + 1

x2 − 3x + 2
into partial

fractions.

The denominator is of the same degree as the
numerator. Thus dividing out gives:

1
x2 − 3x + 2

)
x2 + 1
x2 − 3x + 2
—————

3x − 1
———

For more on polynomial division, see Section 1.4,
page 6.
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Hence
x2 + 1

x2 − 3x + 2
≡ 1 + 3x − 1

x2 − 3x + 2

≡ 1 + 3x − 1

(x − 1)(x − 2)

Let
3x − 1

(x − 1)(x − 2)
≡ A

(x − 1)
+ B

(x − 2)

≡ A(x − 2) + B(x − 1)

(x − 1)(x − 2)

Equating numerators gives:

3x − 1 ≡ A(x − 2) + B(x − 1)

Let x = 1. Then 2 = −A

i.e. A = −2

Let x = 2. Then 5 = B

Hence
3x − 1

(x − 1)(x − 2)
≡ −2

(x − 1)
+ 5

(x − 2)

Thus
x2 + 1

x2 − 3x + 2
≡ 1− 2

(x−1)
+ 5

(x−2)

Problem 4. Express
x3 − 2x2 − 4x − 4

x2 + x − 2
in

partial fractions.

The numerator is of higher degree than the denom-
inator. Thus dividing out gives:

x − 3
x2 + x − 2

)
x3 − 2x2 − 4x − 4
x3 + x2 − 2x
——————− 3x2 − 2x − 4

− 3x2 − 3x + 6
———————

x − 10

Thus
x3 − 2x2 − 4x − 4

x2 + x − 2
≡ x − 3 + x − 10

x2 + x − 2

≡ x − 3 + x − 10

(x + 2)(x − 1)

Let
x − 10

(x + 2)(x − 1)
≡ A

(x + 2)
+ B

(x − 1)

≡ A(x − 1) + B(x + 2)

(x + 2)(x − 1)

Equating the numerators gives:

x − 10 ≡ A(x − 1) + B(x + 2)
Let x = −2. Then −12 = −3A
i.e. A = 4
Let x = 1. Then −9 = 3B
i.e. B = −3

Hence
x − 10

(x + 2)(x − 1)
≡ 4

(x + 2)
− 3

(x − 1)

Thus
x3 − 2x2 − 4x − 4

x2 + x − 2

≡ x − 3 + 4
(x + 2)

− 3
(x − 1)

Now try the following exercise.

Exercise 13 Further problems on partial
fractions with linear factors

Resolve the following into partial fractions.

1.
12

x2 − 9

[
2

(x − 3)
− 2

(x + 3)

]

2.
4(x − 4)

x2 − 2x − 3

[
5

(x + 1)
− 1

(x − 3)

]

3.
x2 − 3x + 6

x(x − 2)(x − 1)
[

3

x
+ 2

(x − 2)
− 4

(x − 1)

]

4.
3(2x2 − 8x − 1)

(x + 4)(x + 1)(2x − 1)
[

7

(x + 4)
− 3

(x + 1)
− 2

(2x − 1)

]

5.
x2 + 9x + 8

x2 + x − 6

[

1 + 2

(x + 3)
+ 6

(x − 2)

]

6.
x2 − x − 14

x2 − 2x − 3

[

1 − 2

(x − 3)
+ 3

(x + 1)

]

7.
3x3 − 2x2 − 16x + 20

(x − 2)(x + 2)
[

3x − 2 + 1

(x − 2)
− 5

(x + 2)

]
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3.3 Worked problems on partial

fractions with repeated linear
factors

Problem 5. Resolve
2x + 3

(x − 2)2 into partial

fractions.

The denominator contains a repeated linear factor,
(x − 2)2.

Let
2x + 3

(x − 2)2 ≡ A

(x − 2)
+ B

(x − 2)2

≡ A(x − 2) + B

(x − 2)2

Equating the numerators gives:

2x + 3 ≡ A(x − 2) + B

Let x = 2. Then 7 = A(0) + B

i.e. B = 7

2x + 3 ≡ A(x − 2) + B ≡ Ax − 2A + B

Since an identity is true for all values of the
unknown, the coefficients of similar terms may be
equated.

Hence, equating the coefficients of x gives: 2 = A.

[Also, as a check, equating the constant terms gives:

3 = −2A + B

When A = 2 and B = 7,

R.H.S. = −2(2) + 7 = 3 = L.H.S.]

Hence
2x + 3

(x − 2)2 ≡ 2
(x − 2)

+ 7
(x − 2)2

Problem 6. Express
5x2 − 2x − 19

(x + 3)(x − 1)2 as the

sum of three partial fractions.

The denominator is a combination of a linear factor
and a repeated linear factor.

Let
5x2 − 2x − 19

(x + 3)(x − 1)2

≡ A

(x + 3)
+ B

(x − 1)
+ C

(x − 1)2

≡ A(x − 1)2 + B(x + 3)(x − 1) + C(x + 3)

(x + 3)(x − 1)2

by algebraic addition.
Equating the numerators gives:

5x2 − 2x − 19 ≡ A(x − 1)2 + B(x + 3)(x − 1)

+ C(x + 3) (1)

Let x = −3. Then

5(−3)2 − 2(−3) − 19 ≡ A(−4)2 + B(0)(−4)
+C(0)

i.e. 32 = 16A
i.e. A = 2

Let x = 1. Then

5(1)2 − 2(1) − 19 ≡ A(0)2 + B(4)(0) + C(4)
i.e. −16 = 4C
i.e. C = −4

Without expanding the RHS of equation (1) it can
be seen that equating the coefficients of x2 gives:
5 = A + B, and since A = 2, B = 3.
[Check: Identity (1) may be expressed as:

5x2 − 2x − 19 ≡ A(x2 − 2x + 1)

+ B(x2 + 2x − 3) + C(x + 3)

i.e. 5x2 − 2x − 19 ≡ Ax2 − 2Ax + A + Bx2 + 2Bx

− 3B + Cx + 3C

Equating the x term coefficients gives:

−2 ≡ −2A + 2B + C

When A = 2, B = 3 and C = −4 then

−2A + 2B + C = −2(2) + 2(3) − 4
= −2 = LHS

Equating the constant term gives:

−19 ≡ A − 3B + 3C

RHS = 2 − 3(3) + 3(−4) = 2 − 9 − 12
= −19 = LHS]
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Hence
5x2 − 2x − 19

(x + 3)(x − 1)2

≡ 2
(x + 3)

+ 3
(x − 1)

− 4

(x − 1)2

Problem 7. Resolve
3x2 + 16x + 15

(x + 3)3 into

partial fractions.

Let
3x2 + 16x + 15

(x + 3)3

≡ A

(x + 3)
+ B

(x + 3)2 + C

(x + 3)3

≡ A(x + 3)2 + B(x + 3) + C

(x + 3)3

Equating the numerators gives:

3x2 + 16x + 15 ≡ A(x + 3)2 + B(x + 3) + C (1)

Let x = −3. Then

3(−3)2 + 16(−3) + 15 ≡ A(0)2 + B(0) + C
i.e. −6 = C

Identity (1) may be expanded as:

3x2 + 16x + 15 ≡ A(x2 + 6x + 9)
+ B(x + 3) + C

i.e. 3x2 + 16x + 15 ≡ Ax2 + 6Ax + 9A
+ Bx + 3B + C

Equating the coefficients of x2 terms gives: 3 = A
Equating the coefficients of x terms gives:

16 = 6A + B
Since A = 3, B = −2

[Check: equating the constant terms gives:

15 = 9A + 3B + C

When A = 3, B = −2 and C = −6,

9A + 3B + C = 9(3) + 3(−2) + (−6)
= 27 − 6 − 6 = 15 = LHS]

Thus
3x2 + 16x + 15

(x + 3)3

≡ 3
(x + 3)

− 2
(x + 3)2 − 6

(x + 3)3

Now try the following exercise.

Exercise 14 Further problems on partial
fractions with repeated linear factors

1.
4x − 3

(x + 1)2

[
4

(x + 1)
− 7

(x + 1)2

]

2.
x2 + 7x + 3

x2(x + 3)

[
1

x2 + 2

x
− 1

(x + 3)

]

3.
5x2 − 30x + 44

(x − 2)3

[
5

(x − 2)
− 10

(x − 2)2 + 4

(x − 2)3

]

4.
18 + 21x − x2

(x − 5)(x + 2)2

[
2

(x − 5)
− 3

(x + 2)
+ 4

(x + 2)2

]

3.4 Worked problems on partial
fractions with quadratic factors

Problem 8. Express
7x2 + 5x + 13

(x2 + 2)(x + 1)
in partial

fractions.

The denominator is a combination of a quadratic
factor, (x2 + 2), which does not factorize without
introducing imaginary surd terms, and a linear factor,
(x + 1). Let,

7x2 + 5x + 13

(x2 + 2)(x + 1)
≡ Ax + B

(x2 + 2)
+ C

(x + 1)

≡ (Ax + B)(x + 1) + C(x2 + 2)

(x2 + 2)(x + 1)

Equating numerators gives:

7x2 + 5x + 13 ≡ (Ax + B)(x + 1) + C(x2 + 2) (1)

Let x = −1. Then

7(−1)2 + 5(−1) + 13 ≡ (Ax + B)(0) + C(1 + 2)
i.e. 15 = 3C
i.e. C = 5
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Identity (1) may be expanded as:

7x2 + 5x + 13 ≡ Ax2 + Ax + Bx + B + Cx2 + 2C

Equating the coefficients of x2 terms gives:

7 = A + C, and since C = 5, A = 2

Equating the coefficients of x terms gives:

5 = A + B, and since A = 2, B = 3

[Check: equating the constant terms gives:

13 = B + 2C

When B = 3 and C = 5,

B + 2C = 3 + 10 = 13 = LHS]

Hence
7x2 + 5x + 13
(x2 + 2)(x + 1)

≡ 2x + 3
(x2 + 2)

+ 5
(x + 1)

Problem 9. Resolve
3 + 6x + 4x2 − 2x3

x2(x2 + 3)
into

partial fractions.

Terms such as x2 may be treated as (x + 0)2, i.e. they
are repeated linear factors.

Let
3 + 6x + 4x2 − 2x3

x2(x2 + 3)
≡ A

x
+ B

x2 + Cx + D

(x2 + 3)

≡ Ax(x2 + 3) + B(x2 + 3) + (Cx + D)x2

x2(x2 + 3)

Equating the numerators gives:

3 + 6x + 4x2 − 2x3 ≡ Ax(x2 + 3) + B(x2 + 3)

+ (Cx + D)x2

≡ Ax3 + 3Ax + Bx2 + 3B
+ Cx3 + Dx2

Let x = 0. Then 3 = 3B

i.e. B = 1

Equating the coefficients of x3 terms gives:

−2 = A + C (1)

Equating the coefficients of x2 terms gives:

4 = B + D
Since B = 1, D = 3

Equating the coefficients of x terms gives:

6 = 3A

i.e. A = 2

From equation (1), since A = 2, C = −4

Hence
3 + 6x + 4x2 − 2x3

x2(x2 + 3)
≡ 2

x
+ 1

x2 + −4x + 3

x2 + 3

≡ 2
x

+ 1
x2 + 3 − 4x

x2 + 3

Now try the following exercise.

Exercise 15 Further problems on partial
fractions with quadratic factors

1.
x2 − x − 13

(x2 + 7)(x − 2)

[
2x + 3

(x2 + 7)
− 1

(x − 2)

]

2.
6x − 5

(x − 4)(x2 + 3)

[
1

(x − 4)
+ 2 − x

(x2 + 3)

]

3.
15 + 5x + 5x2 − 4x3

x2(x2 + 5)

[
1

x
+ 3

x2 + 2 − 5x

(x2 + 5)

]

4.
x3 + 4x2 + 20x − 7

(x − 1)2(x2 + 8)
[

3

(x − 1)
+ 2

(x − 1)2 + 1 − 2x

(x2 + 8)

]

5. When solving the differential equation
d2θ

dt2 − 6
dθ

dt
− 10θ = 20 − e2t by Laplace

transforms, for given boundary conditions,
the following expression for L{θ} results:

L{θ} =
4s3 − 39

2
s2 + 42s − 40

s(s − 2)(s2 − 6s + 10)

Show that the expression can be resolved into
partial fractions to give:

L{θ} = 2

s
− 1

2(s − 2)
+ 5s − 3

2(s2 − 6s + 10)
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Logarithms and exponential functions

4.1 Introduction to logarithms

With the use of calculators firmly established, loga-
rithmic tables are now rarely used for calculation.
However, the theory of logarithms is important, for
there are several scientific and engineering laws that
involve the rules of logarithms.

If a number y can be written in the form ax, then
the index x is called the ‘logarithm of y to the base
of a’,

i.e. if y = ax then x = loga y

Thus, since 1000 = 103, then 3 = log10 1000.
Check this using the ‘log’ button on your

calculator.

(a) Logarithms having a base of 10 are called com-
mon logarithms and log10 is usually abbrevi-
ated to lg. The following values may be checked
by using a calculator:

lg 17.9 = 1.2528 . . ., lg 462.7 = 2.6652 . . . and
lg 0.0173 = − 1.7619 . . .

(b) Logarithms having a base of e (where ‘e’ is a
mathematical constant approximately equal to
2.7183) are called hyperbolic, Napierian or
natural logarithms, and loge is usually abbrevi-
ated to ln. The following values may be checked
by using a calculator:

ln 3.15 = 1.1474 . . ., ln 362.7 = 5.8935 . . . and
ln 0.156 = −1.8578 . . ..

4.2 Laws of logarithms

There are three laws of logarithms, which apply to
any base:

(i) To multiply two numbers:

log (A × B) = log A + log B

The following may be checked by using a
calculator:

lg 10 = 1, also lg 5 + lg 2

= 0.69897 . . . + 0.301029 . . . = 1

Hence lg (5 × 2) = lg 10 = lg 5 + lg 2

(ii) To divide two numbers:

log
(

A
B

)

= log A − log B

The following may be checked using a
calculator:

ln

(
5

2

)

= ln 2.5 = 0.91629 . . .

Also ln 5 − ln 2 = 1.60943 . . . − 0.69314 . . .

= 0.91629 . . .

Hence ln

(
5

2

)

= ln 5 − ln 2

(iii) To raise a number to a power:

lg An = n log A

The following may be checked using a
calculator:

lg 52 = lg 25 = 1.39794 . . .

Also 2 lg 5 = 2 × 0.69897 . . .

= 1.39794 . . .

Hence lg 52 = 2 lg 5

Problem 1. Evaluate (a) log3 9 (b) log10 10
(c) log16 8.

(a) Let x = log3 9 then 3x = 9 from the definition
of a logarithm, i.e. 3x = 32, from which x = 2
Hence log3 9 = 2
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(b) Let x = log10 10 then 10x = 10 from the defin-
ition of a logarithm, i.e. 10x = 101, from which
x = 1
Hence log10 10 = 1 (which may be checked by
a calculator)

(c) Let x = log168 then 16x = 8, from the defini-
tion of a logarithm, i.e. (24)x = 23, i.e. 24x = 23

from the laws of indices, from which, 4x = 3 and
x = 3

4
Hence log16 8 = 3

4

Problem 2. Evaluate (a) lg 0.001 (b) ln e

(c) log3
1

81
.

(a) Let x = lg 0.001 = log10 0.001 then 10x = 0.001,
i.e. 10x = 10−3, from which x = − 3
Hence lg 0.001 = −3 (which may be checked
by a calculator)

(b) Let x = ln e = loge e then ex = e, i.e. ex = e1

from which x = 1. Hence ln e = 1 (which may
be checked by a calculator)

(c) Let x = log3
1

81
then 3x = 1

81
= 1

34 = 3−4, from

which x = − 4

Hence log3
1

81
= −4

Problem 3. Solve the following equations:
(a) lg x = 3 (b) log2 x = 3 (c) log5 x = −2.

(a) If lg x = 3 then log10 x = 3 and x = 103, i.e.
x = 1000

(b) If log2 x = 3 then x = 23 = 8

(c) If log5 x = −2 then x = 5−2 = 1

52 = 1
25

Problem 4. Write (a) log 30 (b) log 450 in
terms of log 2, log 3 and log 5 to any base.

(a) log 30 = log (2 × 15) = log (2 × 3 × 5)

= log 2 + log 3 + log 5,

by the first law of logarithms

(b) log 450 = log (2 × 225) = log (2 × 3 × 75)

= log (2 × 3 × 3 × 25)

= log (2 × 32 × 52)

= log 2 + log 32 + log 52,

by the first law of logarithms

i.e. log 450 = log 2 + 2 log 3 + 2 log 5,

by the third law of logarithms

Problem 5. Write log

(
8 × 4

√
5

81

)

in terms of

log 2, log 3 and log 5 to any base.

log

(
8 × 4

√
5

81

)

= log 8 + log 4
√

5 − log 81,
by the first and second
laws of logarithms

= log 23 + log 5
1
4 − log 34,

by the laws of indices,
i.e.

log

(
8 × 4

√
5

81

)

= 3 log 2 + 1
4 log 5 − 4 log 3,

by the third law of logarithms

Problem 6. Evaluate

log 25 − log 125 + 1
2 log 625

3 log 5
.

log 25 − log 125 + 1
2 log 625

3 log 5

= log 52 − log 53 + 1
2 log 54

3 log 5

= 2 log 5 − 3 log 5 + 4
2 log 5

3 log 5

= 1 log 5

3 log 5
= 1

3

Problem 7. Solve the equation:
log (x − 1) + log (x + 1) = 2 log (x + 2).
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log (x − 1) + log (x + 1) = log (x − 1)(x + 1),

from the first law of
logarithms

= log (x2 − 1)

2 log (x + 2) = log (x + 2)2

= log (x2 + 4x + 4)

Hence if log (x2 − 1) = log (x2 + 4x + 4)

then x2 − 1 = x2 + 4x + 4

i.e. −1 = 4x + 4

i.e. −5 = 4x

i.e. x = − 5
4 or −1 1

4

Now try the following exercise.

Exercise 16 Further problems on the laws
of logarithms

In Problems 1 to 8, evaluate the given
expression:

1. log10 10000 [4] 2. log2 16 [4]

3. log5 125 [3] 4. log2
1
8 [−3]

5. log8 2

[
1

3

]

6. lg 100 [2]

7. log4 8

[

1
1

2

]

8. ln e2 [2]

In Problems 9 to 14 solve the equations:

9. log10 x = 4 [10000]

10. log3 x = 2 [9]

11. log4 x = −2
1

2

[

± 1

32

]

12. lg x = −2 [0.01]

13. log8 x = −4

3

[
1

16

]

14. ln x = 3 [e3]

In Problems 15 to 17 write the given expressions
in terms of log 2, log 3 and log 5 to any base:

15. log 60 [2 log 2 + log 3 + log 5]

16. log

(
16 × 4

√
5

27

)

[
4 log 2 + 1

4 log 5 − 3 log 3
]

17. log

(
125 × 4

√
16

4
√

813

)

[log 2 − 3 log 3 + 3 log 5]

Simplify the expressions given in Problems 18
and 19:

18. log 27 − log 9 + log 81 [5 log 3]

19. log 64 + log 32 − log 128 [4 log 2]

20. Evaluate

1

2
log 16 − 1

3
log 8

log 4

[
1

2

]

Solve the equations given in Problems 21
and 22:

21. log x4 − log x3 = log 5x − log 2x
[

x = 2
1

2

]

22. log 2t3 − log t = log 16 + log t
[t = 8]

4.3 Indicial equations

The laws of logarithms may be used to solve cer-
tain equations involving powers—called indicial
equations. For example, to solve, say, 3x = 27, log-
arithms to a base of 10 are taken of both sides,
i.e. log10 3x = log10 27
and x log10 3 = log10 27,

by the third law of logarithms
Rearranging gives

x = log10 27

log10 3
= 1.43136 . . .

0.4771 . . .
= 3

which may be readily checked
(

Note,

(
log 8

log 2

)

is not equal to lg

(
8

2

))
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Problem 8. Solve the equation 2x = 3, correct
to 4 significant figures.

Taking logarithms to base 10 of both sides of 2x = 3
gives:

log10 2x = log10 3

i.e. x log10 2 = log10 3
Rearranging gives:

x = log10 3

log10 2
= 0.47712125 . . .

0.30102999 . . .

= 1.585, correct to 4 significant figures

Problem 9. Solve the equation 2x+1 = 32x−5

correct to 2 decimal places.

Taking logarithms to base 10 of both sides gives:

log10 2x+1 = log10 32x−5

i.e. (x + 1) log10 2 = (2x − 5) log10 3

x log10 2 + log10 2 = 2x log10 3 − 5 log10 3

x(0.3010) + (0.3010) = 2x(0.4771) − 5(0.4771)

i.e. 0.3010x + 0.3010 = 0.9542x − 2.3855

Hence
2.3855 + 0.3010 = 0.9542x − 0.3010x

2.6865 = 0.6532x

from which x = 2.6865

0.6532
= 4.11, correct to

2 decimal places

Problem 10. Solve the equation x3.2 = 41.15,
correct to 4 significant figures.

Taking logarithms to base 10 of both sides gives:

log10 x3.2 = log10 41.15

3.2 log10 x = log10 41.15

Hence log10 x = log10 41.15

3.2
= 0.50449

Thus x = antilog 0.50449 = 100.50449 = 3.195 cor-
rect to 4 significant figures.

Now try the following exercise.

Exercise 17 Indicial equations

Solve the following indicial equations for x, each
correct to 4 significant figures:

1. 3x = 6.4 [1.690]

2. 2x = 9 [3.170]

3. 2x−1 = 32x−1 [0.2696]

4. x1.5 = 14.91 [6.058]

5. 25.28 = 4.2x [2.251]

6. 42x−1 = 5x+2 [3.959]

7. x−0.25 = 0.792 [2.542]

8. 0.027x = 3.26 [−0.3272]

9. The decibel gain n of an amplifier is given by:

n = 10 log10

(
P2

P1

)

where P1 is the power input and P2 is the

power output. Find the power gain
P2

P1
when

n = 25 decibels.
[316.2]

4.4 Graphs of logarithmic functions

A graph of y = log10 x is shown in Fig. 4.1 and a
graph of y = loge x is shown in Fig. 4.2. Both are
seen to be of similar shape; in fact, the same general
shape occurs for a logarithm to any base.

Figure 4.1
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Figure 4.2

In general, with a logarithm to any base a, it is noted
that:

(i) loga1 = 0
Let loga = x, then ax = 1 from the definition of
the logarithm.
If ax = 1 then x = 0 from the laws of indices.
Hence loga1 = 0. In the above graphs it is seen
that log101 = 0 and loge 1 = 0

(ii) logaa = 1
Let loga a = x then ax = a from the definition of
a logarithm.
If ax = a then x = 1.
Hence loga a = 1. (Check with a calculator that
log10 10 = 1 and loge e = 1)

(iii) loga0 → −∞
Let loga 0 = x then ax = 0 from the definition of
a logarithm.
If ax = 0, and a is a positive real number,
then x must approach minus infinity. (For
example, check with a calculator, 2−2 = 0.25,
2−20 = 9.54 × 10−7, 2−200 = 6.22 × 10−61, and
so on)
Hence loga 0 → −∞

4.5 The exponential function

An exponential function is one which contains ex, e
being a constant called the exponent and having an
approximate value of 2.7183. The exponent arises
from the natural laws of growth and decay and is
used as a base for natural or Napierian logarithms.
The value of ex may be determined by using:

(a) a calculator, or
(b) the power series for ex (see Section 4.6), or
(c) tables of exponential functions.

The most common method of evaluating an expo-
nential function is by using a scientific notation
calculator, this now having replaced the use of
tables. Most scientific notation calculators contain
an ex function which enables all practical values of ex

and e−x to be determined, correct to 8 or 9 significant
figures. For example,

e1 = 2.7182818 e2.4 = 11.023176

e−1.618 = 0.19829489 correct to 8 significant
figures

In practical situations the degree of accuracy given
by a calculator is often far greater than is appropriate.
The accepted convention is that the final result is
stated to one significant figure greater than the least
significant measured value. Use your calculator to
check the following values:

e0.12 = 1.1275, correct to 5 significant figures

e−0.431 = 0.6499, correct to 4 decimal places

e9.32 = 11159, correct to 5 significant figures

Problem 11. Use a calculator to determine the
following, each correct to 4 significant figures:

(a) 3.72 e0.18 (b) 53.2 e−1.4 (c)
5

122
e7.

(a) 3.72 e0.18 = (3.72)(1.197217 . . . ) = 4.454,
correct to 4 significant figures

(b) 53.2 e−1.4 = (53.2)(0.246596 . . . ) = 13.12,
correct to 4 significant figures

(c)
5

122
e7 = 5

122
(1096.6331 . . . ) = 44.94,

correct to 4 significant figures

Problem 12. Evaluate the following correct to
4 decimal places, using a calculator:

(a) 0.0256(e5.21 − e2.49)

(b) 5

(
e0.25 − e−0.25

e0.25 + e−0.25

)

(a) 0.0256(e5.21 − e2.49)
= 0.0256(183.094058 . . . − 12.0612761 . . . )
= 4.3784, correct to 4 decimal places
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(b) 5

(
e0.25 − e−0.25

e0.25 + e−0.25

)

= 5

(
1.28402541 . . . − 0.77880078 . . .

1.28402541 . . . + 0.77880078 . . .

)

= 5

(
0.5052246 . . .

2.0628261 . . .

)

= 1.2246, correct to 4 decimal places

Problem 13. The instantaneous voltage v in
a capacitive circuit is related to time t by

the equation v = V e
−t
CR where V , C and R

are constants. Determine v, correct to 4 sig-
nificant figures, when t = 30 × 10−3 seconds,
C = 10 × 10−6 farads, R = 47 × 103 ohms and
V = 200V.

v = V e
−t
CR = 200 e

(−30×10−3)
(10×10−6×47×103)

Using a calculator,

v = 200 e−0.0638297... = 200(0.9381646 . . . )

= 187.6 V

Now try the following exercise.

Exercise 18 Further problems on evaluat-
ing exponential functions

1. Evaluate, correct to 5 significant figures:

(a) 3.5 e2.8 (b) −6

5
e−1.5 (c) 2.16 e5.7

⎡

⎣
(a) 57.556
(b) −0.26776
(c) 645.55

⎤

⎦

In Problems 2 and 3, evaluate correct to 5
decimal places.

2. (a)
1

7
e3.4629 (b) 8.52 e−1.2651

(c)
5 e2.6921

3 e1.1171
⎡

⎣
(a) 4.55848
(b) 2.40444
(c) 8.05124

⎤

⎦

3. (a)
5.6823

e−2.1347 (b)
e2.1127 − e−2.1127

2

(c)
4(e−1.7295 − 1)

e3.6817 [
(a) 48.04106
(b) 4.07482
(c) −0.08286

]

4. The length of a bar, l, at a temperature θ

is given by l = l0 eαθ , where l0 and α are
constants. Evaluate l, correct to 4 signifi-
cant figures, when l0 = 2.587, θ = 321.7 and
α = 1.771 × 10−4. [2.739]

4.6 The power series for ex

The value of ex can be calculated to any required
degree of accuracy since it is defined in terms of the
following power series:

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

(where 3! = 3 × 2 × 1 and is called ‘factorial 3’)
The series is valid for all values of x.

The series is said to converge, i.e. if all the terms
are added, an actual value for ex (where x is a real
number) is obtained. The more terms that are taken,
the closer will be the value of ex to its actual value.
The value of the exponent e, correct to say 4 decimal
places, may be determined by substituting x = 1 in
the power series of equation (1). Thus,

e1 = 1 + 1 + (1)2

2! + (1)3

3! + (1)4

4! + (1)5

5!

+ (1)6

6! + (1)7

7! + (1)8

8! + · · ·
= 1 + 1 + 0.5 + 0.16667 + 0.04167

+ 0.00833 + 0.00139 + 0.00020

+ 0.00002 + · · ·
i.e. e = 2.71828 = 2.7183,

correct to 4 decimal places

The value of e0.05, correct to say 8 significant figures,
is found by substituting x = 0.05 in the power series
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for ex. Thus

e0.05 = 1 + 0.05 + (0.05)2

2! + (0.05)3

3!

+ (0.05)4

4! + (0.05)5

5! + · · ·
= 1 + 0.05 + 0.00125 + 0.000020833

+ 0.000000260 + 0.000000003

and by adding,

e0.05 = 1.0512711, correct to 8 significant figures

In this example, successive terms in the series grow
smaller very rapidly and it is relatively easy to deter-
mine the value of e0.05 to a high degree of accuracy.
However, when x is nearer to unity or larger than
unity, a very large number of terms are required for
an accurate result.
If in the series of equation (1), x is replaced by −x,
then,

e−x = 1 + (−x) + (−x)2

2! + (−x)3

3! + · · ·

i.e. e−x = 1 − x + x2

2! − x3

3! + · · ·

In a similar manner the power series for ex may be
used to evaluate any exponential function of the form
a ekx, where a and k are constants. In the series of
equation (1), let x be replaced by kx. Then,

a ekx = a

{

1 + (kx) + (kx)2

2! + (kx)3

3! + · · ·
}

Thus 5 e2x = 5

{

1 + (2x) + (2x)2

2! + (2x)3

3! + · · ·
}

= 5

{

1 + 2x + 4x2

2
+ 8x3

6
+ · · ·

}

i.e. 5 e2x = 5

{

1 + 2x + 2x2 + 4

3
x3 + · · ·

}

Problem 14. Determine the value of 5 e0.5, cor-
rect to 5 significant figures by using the power
series for ex.

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

Hence e0.5 = 1 + 0.5 + (0.5)2

(2)(1)
+ (0.5)3

(3)(2)(1)

+ (0.5)4

(4)(3)(2)(1)
+ (0.5)5

(5)(4)(3)(2)(1)

+ (0.5)6

(6)(5)(4)(3)(2)(1)

= 1 + 0.5 + 0.125 + 0.020833

+ 0.0026042 + 0.0002604

+ 0.0000217

i.e. e0.5 = 1.64872,
correct to 6 significant figures

Hence 5e0.5 = 5(1.64872) = 8.2436,
correct to 5 significant figures

Problem 15. Expand ex(x2 − 1) as far as the
term in x5.

The power series for ex is,

ex = 1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · ·

Hence ex(x2 − 1)

=
(

1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · ·
)

(x2 − 1)

=
(

x2 + x3 + x4

2! + x5

3! + · · ·
)

−
(

1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · ·
)

Grouping like terms gives:

ex(x2 − 1)

= −1 − x +
(

x2 − x2

2!
)

+
(

x3 − x3

3!
)

+
(

x4

2! − x4

4!
)

+
(

x5

3! − x5

5!

)

+ · · ·

= − 1 − x + 1
2

x2 + 5
6

x3 + 11
24

x4 + 19
120

x5

when expanded as far as the term in x5.
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Now try the following exercise.

Exercise 19 Further problems on the power
series for ex

1. Evaluate 5.6 e−1, correct to 4 decimal places,
using the power series for ex. [2.0601]

2. Use the power series for ex to determine, cor-
rect to 4 significant figures, (a) e2 (b) e−0.3

and check your result by using a calculator.

[(a) 7.389 (b) 0.7408]

3. Expand (1 − 2x) e2x as far as the term in x4.
[

1 − 2x2 − 8x3

3
− 2x4

]

4. Expand (2 ex2
)(x

1
2 ) to six terms.

⎡

⎢
⎢
⎣

2x
1
2 + 2x

5
2 + x

9
2 + 1

3
x

13
2

+ 1

12
x

17
2 + 1

60
x

21
2

⎤

⎥
⎥
⎦

4.7 Graphs of exponential functions

Values of ex and e−x obtained from a calculator,
correct to 2 decimal places, over a range x = −3
to x = 3, are shown in the following table.

x −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0

ex 0.05 0.08 0.14 0.22 0.37 0.61 1.00

e−x 20.09 12.18 7.39 4.48 2.72 1.65 1.00

x 0.5 1.0 1.5 2.0 2.5 3.0

ex 1.65 2.72 4.48 7.39 12.18 20.09

e−x 0.61 0.37 0.22 0.14 0.08 0.05

Figure 4.3 shows graphs of y = ex and y = e−x

Problem 16. Plot a graph of y = 2 e0.3x over a
range of x = − 2 to x = 3. Hence determine the
value of y when x = 2.2 and the value of x when
y = 1.6.

Figure 4.3

Figure 4.4

A table of values is drawn up as shown below.

x −3 −2 −1 0 1 2 3

0.3x −0.9 −0.6 −0.3 0 0.3 0.6 0.9

e0.3x 0.407 0.549 0.741 1.000 1.350 1.822 2.460

2 e0.3x 0.81 1.10 1.48 2.00 2.70 3.64 4.92

A graph of y = 2 e0.3x is shown plotted in Fig. 4.4.
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From the graph, when x = 2.2, y = 3.87 and when
y = 1.6, x = −0.74.

Problem 17. Plot a graph of y = 1
3 e−2x over

the range x = −1.5 to x = 1.5. Determine from
the graph the value of y when x = −1.2 and the
value of x when y = 1.4.

A table of values is drawn up as shown below.

x −1.5 −1.0 −0.5 0 0.5 1.0 1.5

−2x 3 2 1 0 −1 −2 −3

e−2x 20.086 7.389 2.718 1.00 0.368 0.135 0.050

1

3
e−2x 6.70 2.46 0.91 0.33 0.12 0.05 0.02

A graph of 1
3 e−2x is shown in Fig. 4.5.

Figure 4.5

From the graph, when x = −1.2, y = 3.67 and
when y = 1.4, x = −0.72.

Problem 18. The decay of voltage, v volts,
across a capacitor at time t seconds is given by

v = 250 e
−t
3 . Draw a graph showing the natural

decay curve over the first 6 seconds. From the
graph, find (a) the voltage after 3.4 s, and (b) the
time when the voltage is 150V.

A table of values is drawn up as shown below.

t 0 1 2 3

e
−t
3 1.00 0.7165 0.5134 0.3679

v = 250 e
−t
3 250.0 179.1 128.4 91.97

t 4 5 6

e
−t
3 0.2636 0.1889 0.1353

v = 250 e
−t
3 65.90 47.22 33.83

The natural decay curve of v = 250 e
−t
3 is shown in

Fig. 4.6.

Figure 4.6

From the graph:

(a) when time t = 3.4 s, voltage v = 80 V and
(b) when voltage v = 150 V, time t = 1.5 s.

Now try the following exercise.

Exercise 20 Further problems on exponen-
tial graphs

1. Plot a graph of y = 3 e0.2x over the range
x = −3 to x = 3. Hence determine the value
of y when x = 1.4 and the value of x when
y = 4.5. [3.95, 2.05]

2. Plot a graph of y = 1
2 e−1.5x over a range

x = −1.5 to x = 1.5 and hence determine the
value of y when x = −0.8 and the value of x
when y = 3.5. [1.65, −1.30]
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3. In a chemical reaction the amount of start-

ing material C cm3 left after t minutes is
given by C = 40 e−0.006t . Plot a graph of C
against t and determine (a) the concentration
C after 1 hour, and (b) the time taken for the
concentration to decrease by half.

[(a) 28 cm3 (b) 116 min]

4. The rate at which a body cools is given by
θ = 250 e−0.05t where the excess of tempera-
ture of a body above its surroundings at time
t minutes is θ◦C. Plot a graph showing the
natural decay curve for the first hour of cool-
ing. Hence determine (a) the temperature
after 25 minutes, and (b) the time when the
temperature is 195◦C.

[(a) 70◦C (b) 5 min]

4.8 Napierian logarithms

Logarithms having a base of e are called hyper-
bolic, Napierian or natural logarithms and the
Napierian logarithm of x is written as loge x, or more
commonly, ln x.

The value of a Napierian logarithm may be
determined by using:

(a) a calculator, or
(b) a relationship between common and Napierian

logarithms, or
(c) Napierian logarithm tables

The most common method of evaluating a Napierian
logarithm is by a scientific notation calculator, this
now having replaced the use of four-figure tables,
and also the relationship between common and
Napierian logarithms,

loge y = 2.3026 log10 y

Most scientific notation calculators contain a ‘ln x’
function which displays the value of the Napierian
logarithm of a number when the appropriate key is
pressed.

Using a calculator,

ln 4.692 = 1.5458589 …

= 1.5459, correct to 4 decimal places

and ln 35.78 = 3.57738907 …

= 3.5774, correct to 4 decimal places

Use your calculator to check the following values:

ln 1.732 = 0.54928, correct to 5 significant figures
ln 1 = 0
ln 0.52 = −0.6539, correct to 4 decimal places

ln e3 = 3, ln e1 = 1

From the last two examples we can conclude that

loge ex = x

This is useful when solving equations involving
exponential functions. For example, to solve e3x = 8,
take Napierian logarithms of both sides, which
gives:

ln e3x = ln 8

i.e. 3x = ln 8

from which x = 1
3 ln 8 = 0.6931, correct to

4 decimal places

Problem 19. Use a calculator to evaluate the
following, each correct to 5 significant figures:

(a)
1

4
ln 4.7291 (b)

ln 7.8693

7.8693

(c)
5.29 ln 24.07

e−0.1762

(a)
1

4
ln 4.7291 = 1

4
(1.5537349 . . . )

= 0.38843,
correct to 5 significant figures

(b)
ln 7.8693

7.8693
= 2.06296911 . . .

7.8693
= 0.26215,

correct to 5 significant figures

(c)
5.29 ln 24.07

e−0.1762 = 5.29(3.18096625 . . . )

0.83845027 . . .
= 20.070,

correct to 5 significant figures

Problem 20. Evaluate the following:

(a)
ln e2.5

lg 100.5
(b)

4 e2.23 lg 2.23

ln 2.23
(correct to 3
decimal places)
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(a)
ln e2.5

lg 100.5
= 2.5

0.5
= 5

(b)
4 e2.23 lg 2.23

ln 2.23

= 4(9.29986607 . . . )(0.34830486 . . . )

0.80200158 . . .

= 16.156, correct to 3 decimal places

Problem 21. Solve the equation 7 = 4 e−3x to
find x, correct to 4 significant figures.

Rearranging 7 = 4 e−3x gives:
7

4
= e−3x

Taking the reciprocal of both sides gives:

4

7
= 1

e−3x
= e3x

Taking Napierian logarithms of both sides gives:

ln

(
4

7

)

= ln(e3x)

Since loge eα = α, then ln

(
4

7

)

= 3x.

Hence

x = 1

3
ln

(
4

7

)

= 1

3
( − 0.55962)

= −0.1865, correct to 4 significant figures

Problem 22. Given 20 = 60(1 − e
−t
2 ) deter-

mine the value of t, correct to 3 significant
figures.

Rearranging 20 = 60(1 − e
−t
2 ) gives:

20

60
= 1 − e

−t
2

and

e
−t
2 = 1 − 20

60
= 2

3

Taking the reciprocal of both sides gives:

e
t
2 = 3

2

Taking Napierian logarithms of both sides gives:

ln e
t
2 = ln

3

2
i.e.

t

2
= ln

3

2

from which, t = 2 ln
3

2
= 0.811, correct to 3 signifi-

cant figures

Problem 23. Solve the equation

3.72 = ln

(
5.14

x

)

to find x.

From the definition of a logarithm, since

3.72 = ln

(
5.14

x

)

then e3.72 = 5.14

x

Rearranging gives:

x = 5.14

e3.72 = 5.14 e−3.72

i.e. x = 0.1246, correct to 4 significant figures

Now try the following exercise.

Exercise 21 Further problems on evaluat-
ing Napierian logarithms

1. Evaluate, correct to 4 decimal places

(a) ln 1.73 (b) ln 541.3 (c) ln 0.09412
[(a) 0.5481 (b) 6.2940 (c) −2.3632]

2. Evaluate, correct to 5 significant figures.

(a)
2.946 ln e1.76

lg 101.41 (b)
5 e−0.1629

2 ln 0.00165

(c)
ln 4.8629 − ln 2.4711

5.173
[(a) 3.6773 (b) −0.33154 (c) 0.13087]

In Problems 3 to 7 solve the given equations,
each correct to 4 significant figures.

3. 1.5 = 4 e2t [−0.4904]

4. 7.83 = 2.91 e−1.7x [−0.5822]

5. 16 = 24(1 − e
−t
2 ) [2.197]

6. 5.17 = ln
( x

4.64

)
[816.2]

7. 3.72 ln

(
1.59

x

)

= 2.43 [0.8274]
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8. The work done in an isothermal expansion of

a gas from pressure p1 to p2 is given by:

w = w0 ln

(
p1

p2

)

If the initial pressure p1 = 7.0 kPa, calculate
the final pressure p2 if w = 3 w0

[p2 = 348.5 Pa]

4.9 Laws of growth and decay

The laws of exponential growth and decay are of the
form y = A e−kx and y = A(1 − e−kx), where A and k
are constants.When plotted, the form of each of these
equations is as shown in Fig. 4.7. The laws occur
frequently in engineering and science and examples
of quantities related by a natural law include:

A

y

0 x

y = A(1−e−kx)

(b)

0 x
(a)

A

y

y = Ae−kx

Figure 4.7

(i) Linear expansion l = l0 eαθ

(ii) Change in electrical resistance
with temperature Rθ = R0 eαθ

(iii) Tension in belts T1 = T0 eµθ

(iv) Newton’s law of cooling θ = θ0 e−kt

(v) Biological growth y = y0 ekt

(vi) Discharge of a capacitor q = Q e−t/CR

(vii) Atmospheric pressure p = p0 e−h/c

(viii) Radioactive decay N = N0 e−λt

(ix) Decay of current in an
inductive circuit i = I e−Rt/L

(x) Growth of current in a
capacitive circuit i = I(1 − e−t/CR)

Problem 24. The resistance R of an elec-
trical conductor at temperature θ◦C is given
by R = R0 eαθ , where α is a constant and
R0 = 5 × 103 ohms. Determine the value of
α, correct to 4 significant figures, when
R = 6 × 103 ohms and θ = 1500◦C. Also, find
the temperature, correct to the nearest degree,
when the resistance R is 5.4 × 103 ohms.

Transposing R = R0 eαθ gives
R

R0
= eαθ .

Taking Napierian logarithms of both sides gives:

ln
R

R0
= ln eαθ = αθ

Hence α = 1

θ
ln

R

R0
= 1

1500
ln

(
6 × 103

5 × 103

)

= 1

1500
(0.1823215 . . . )

= 1.215477 · · · × 10−4

Hence α = 1.215 × 10−4,
correct to 4 significant figures

From above, ln
R

R0
= αθ

hence θ = 1

α
ln

R

R0

When R = 5.4 × 103, α = 1.215477 . . . × 10−4 and
R0 = 5 × 103

θ = 1

1.215477 . . . × 10−4 ln

(
5.4 × 103

5 × 103

)

= 104

1.215477 . . .
(7.696104 . . . × 10−2)

= 633◦C, correct to the nearest degree
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Problem 25. In an experiment involving
Newton’s law of cooling, the temperature θ(◦C)
is given by θ = θ0 e−kt . Find the value of
constant k when θ0 = 56.6◦C, θ = 16.5◦C and
t = 83.0 seconds.

Transposing θ = θ0 e−kt gives
θ

θ0
= e−kt

from which
θ0

θ
= 1

e−kt
= ekt

Taking Napierian logarithms of both sides gives:

ln
θ0

θ
= kt

from which,

k = 1

t
ln

θ0

θ
= 1

83.0
ln

(
56.6

16.5

)

= 1

83.0
(1.2326486 . . . )

Hence k = 1.485 × 10−2

Problem 26. The current i amperes flow-
ing in a capacitor at time t seconds is given

by i = 8.0(1 − e
−t
CR ), where the circuit resist-

ance R is 25 × 103 ohms and capacitance C is
16 × 10−6 farads. Determine (a) the current i
after 0.5 seconds and (b) the time, to the near-
est millisecond, for the current to reach 6.0A.
Sketch the graph of current against time.

(a) Current i = 8.0(1 − e
−t
CR )

= 8.0[1 − e
−0.5

(16 × 10−6)(25 × 103) ] = 8.0(1 − e−1.25)

= 8.0(1 − 0.2865047 . . . ) = 8.0(0.7134952 . . . )

= 5.71 amperes

(b) Transposing i = 8.0(1 − e
−t
CR )

gives
i

8.0
= 1 − e

−t
CR

from which, e
−t
CR = 1 − i

8.0
= 8.0 − i

8.0

Taking the reciprocal of both sides gives:

e
t

CR = 8.0

8.0 − i
Taking Napierian logarithms of both sides gives:

t

CR
= ln

(
8.0

8.0 − i

)

Hence

t = CR ln

(
8.0

8.0 − i

)

= (16 × 10−6)(25 × 103) ln

(
8.0

8.0 − 6.0

)

when i = 6.0 amperes,

i.e. t = 400

103 ln

(
8.0

2.0

)

= 0.4 ln 4.0

= 0.4(1.3862943 . . . ) = 0.5545 s

= 555 ms, to the nearest millisecond

A graph of current against time is shown in
Fig. 4.8.

0.5 1.0 t (s)
0.555

i = 8.0 (1−e−t/CR)

8

6

4

2

0

5.71

i  (A)

1.5

Figure 4.8

Problem 27. The temperature θ2 of a winding
which is being heated electrically at time t is

given by: θ2 = θ1(1 − e
−t
τ ) where θ1 is the tem-

perature (in degrees Celsius) at time t = 0 and τ
is a constant. Calculate,

(a) θ1, correct to the nearest degree, when θ2 is
50◦C, t is 30 s and τ is 60 s

(b) the time t, correct to 1 decimal place, for θ2
to be half the value of θ1.
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(a) Transposing the formula to make θ1 the subject
gives:

θ1 = θ2

(1 − e
−t
T )

= 50

1 − e
−30
60

= 50

1 − e−0.5
= 50

0.393469 . . .

i.e. θ1 = 127◦C, correct to the nearest degree

(b) Transposing to make t the subject of the formula
gives:

θ2

θ1
= 1 − e

−t
τ

from which, e
−t
τ = 1 − θ2

θ1

Hence − t

τ
= ln

(

1 − θ2

θ1

)

i.e. t = −τ ln

(

1 − θ2

θ1

)

Since θ2 = 1

2
θ1

t = −60 ln

(

1 − 1

2

)

= −60 ln 0.5 = 41.59 s

Hence the time for the temperature θ2 to be one
half of the value of θ1 is 41.6 s, correct to 1 decimal
place

Now try the following exercise.

Exercise 22 Further problems on the laws
of growth and decay

1. The pressure p pascals at height h metres

above ground level is given by p = p0 e
−h
C ,

where p0 is the pressure at ground level
and C is a constant. Find pressure p when
p0 = 1.012 × 105 Pa, height h = 1420 m, and
C = 71500. [99210]

2. The voltage drop, v volts, across an induc-
tor L henrys at time t seconds is given

by v = 200 e
−Rt

L , where R = 150 � and
L = 12.5 × 10−3 H. Determine (a) the volt-
age when t = 160 × 10−6 s, and (b) the time
for the voltage to reach 85V.

[(a) 29.32 volts (b) 71.31 × 10−6 s]

3. The length l metres of a metal bar at tem-
perature t◦C is given by l = l0 eαt , where
l0 and α are constants. Determine (a) the
value of α when l = 1.993 m, l0 = 1.894 m
and t = 250◦C, and (b) the value of l0 when
l = 2.416, t = 310◦C and α = 1.682 × 10−4.

[(a) 2.038 × 10−4 (b) 2.293 m]

4. A belt is in contact with a pulley for a sec-
tor of θ = 1.12 radians and the coefficient
of friction between these two surfaces is
µ = 0.26. Determine the tension on the taut
side of the belt, T newtons, when tension
on the slack side T0 = 22.7 newtons, given
that these quantities are related by the law
T = T0 eµθ . Determine also the value of θ
when T = 28.0 newtons.

[30.4 N, 0.807 rad]

5. The instantaneous current i at time t is

given by: i = 10 e
−t
CR when a capacitor

is being charged. The capacitance C is
7 × 10−6 farads and the resistance R is
0.3 × 106 ohms. Determine:

(a) the instantaneous current when t is
2.5 seconds, and

(b) the time for the instantaneous current to
fall to 5 amperes

Sketch a curve of current against time from
t = 0 to t = 6 seconds.

[(a) 3.04A (b) 1.46 s]

6. The amount of product x (in mol/cm3)
found in a chemical reaction starting
with 2.5 mol/cm3 of reactant is given by
x = 2.5(1 − e−4t) where t is the time, in min-
utes, to form product x. Plot a graph at
30 second intervals up to 2.5 minutes and
determine x after 1 minute. [2.45 mol/cm3]

7. The current i flowing in a capacitor at time t
is given by:

i = 12.5(1 − e
−t
CR )

where resistance R is 30 kilohms and the
capacitance C is 20 micro-farads. Determine:

(a) the current flowing after 0.5 seconds, and

(b) the time for the current to reach
10 amperes [(a) 7.07A (b) 0.966 s]
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4.10 Reduction of exponential laws to
linear form

Frequently, the relationship between two variables,
say x and y, is not a linear one, i.e. when x is
plotted against y a curve results. In such cases the
non-linear equation may be modified to the linear
form, y = mx + c, so that the constants, and thus the
law relating the variables can be determined. This
technique is called ‘determination of law’.

Graph paper is available where the scale markings
along the horizontal and vertical axes are propor-
tional to the logarithms of the numbers. Such graph
paper is called log-log graph paper.

A logarithmic scale is shown in Fig. 4.9 where
the distance between, say 1 and 2, is proportional
to lg 2 − lg 1, i.e. 0.3010 of the total distance from
1 to 10. Similarly, the distance between 7 and 8 is
proportional to lg 8 − lg 7, i.e. 0.05799 of the total
distance from 1 to 10. Thus the distance between
markings progressively decreases as the numbers
increase from 1 to 10.

Figure 4.9

With log-log graph paper the scale markings are
from 1 to 9, and this pattern can be repeated several
times. The number of times the pattern of markings
is repeated on an axis signifies the number of cycles.
When the vertical axis has, say, 3 sets of values from
1 to 9, and the horizontal axis has, say, 2 sets of values
from 1 to 9, then this log-log graph paper is called
‘log 3 cycle × 2 cycle’. Many different arrangements
are available ranging from ‘log 1 cycle × 1 cycle’
through to ‘log 5 cycle × 5 cycle’.

To depict a set of values, say, from 0.4 to 161, on
an axis of log-log graph paper, 4 cycles are required,
from 0.1 to 1, 1 to 10, 10 to 100 and 100 to 1000.

Graphs of the form y = a ekx

Taking logarithms to a base of e of both sides of
y = a ekx gives:

ln y = ln(a ekx) = ln a + ln ekx = ln a + kx ln e

i.e. ln y = kx + ln a (since ln e = 1)

which compares with Y = mX + c
Thus, by plotting ln y vertically against x hor-

izontally, a straight line results, i.e. the equation
y = a ekx is reduced to linear form. In this case, graph

paper having a linear horizontal scale and a log-
arithmic vertical scale may be used. This type of
graph paper is called log-linear graph paper, and is
specified by the number of cycles on the logarithmic
scale.

Problem 28. The data given below is believed
to be related by a law of the form y = a ekx, where
a and b are constants. Verify that the law is true
and determine approximate values of a and b.
Also determine the value of y when x is 3.8 and
the value of x when y is 85.
x −1.2 0.38 1.2 2.5 3.4 4.2 5.3
y 9.3 22.2 34.8 71.2 117 181 332

Since y = a ekx then ln y = kx + ln a (from above),
which is of the form Y = mX + c, showing that to
produce a straight line graph ln y is plotted vertically
against x horizontally. The value of y ranges from
9.3 to 332 hence ‘log 3 cycle × linear’graph paper is
used. The plotted co-ordinates are shown in Fig. 4.10
and since a straight line passes through the points the
law y = a ekx is verified.

−2 −1 0 1 2 3 4 5 6 x
1

10

100

1000

y

y = aekx

A

B
C

Figure 4.10
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Gradient of straight line,

k = AB

BC
= ln 100 − ln 10

3.12 − (−1.08)
= 2.3026

4.20

= 0.55, correct to 2 significant figures
Since ln y = kx + ln a, when x = 0, ln y = ln a, i.e.
y = a
The vertical axis intercept value at x = 0 is 18, hence
a = 18
The law of the graph is thus y = 18 e0.55x

When x is 3.8, y = 18 e0.55(3.8) = 18 e2.09

= 18(8.0849) = 146

When y is 85, 85 = 18 e0.55x

Hence, e0.55x = 85

18
= 4.7222

and 0.55x = ln 4.7222 = 1.5523

Hence x = 1.5523

0.55
= 2.82

Problem 29. The voltage, v volts, across an
inductor is believed to be related to time, t ms, by

the law v = V e
t
T , where V and T are constants.

Experimental results obtained are:

v volts 883 347 90 55.5 18.6 5.2
t ms 10.4 21.6 37.8 43.6 56.7 72.0

Show that the law relating voltage and time is
as stated and determine the approximate values
of V and T . Find also the value of voltage after
25 ms and the time when the voltage is 30.0V.

Since v = V e
t
T then ln v = 1

T t + ln V which is of the
form Y = mX + c.

Using ‘log 3 cycle× linear’graph paper, the points
are plotted as shown in Fig. 4.11.

Since the points are joined by a straight line the

law v = V e
t
T is verified.

Gradient of straight line,

1

T
= AB

BC

= ln 100 − ln 10

36.5 − 64.2

0 10 20 30 40 50 60 70 80

Time, t ms

1

10

100

1000

V
ol

ta
ge

, v
 v

ol
ts

(36.5, 100)

t
Tv = Ve

B

A

C

Figure 4.11

= 2.3026

−27.7

Hence T = −27.7

2.3026
= −12.0, correct to 3 significant figures

Since the straight line does not cross the verti-
cal axis at t = 0 in Fig. 4.11, the value of V is
determined by selecting any point, say A, having
co-ordinates (36.5,100) and substituting these values

into v = V e
t
T .

Thus 100 = V e
36.5

−12.0

i.e. V = 100

e
−36.5
12.0

= 2090 volts,

correct to 3 significant figures

Hence the law of the graph is v = 2090 e
−t

12.0 .

When time t = 25 ms,

voltage v = 2090 e
−25
12.0 = 260 V
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When the voltage is 30.0 volts, 30.0 = 2090 e
−t

12.0 ,

hence e
−t

12.0 = 30.0

2090

and e
t

12.0 = 2090

30.0
= 69.67

Taking Napierian logarithms gives:

t

12.0
= ln 69.67 = 4.2438

from which, time t = (12.0)(4.2438) = 50.9 ms

Now try the following exercise.

Exercise 23 Further problems on reducing
exponential laws to linear form

1. Atmospheric pressure p is measured at vary-
ing altitudes h and the results are as shown
below:

Altitude, h m pressure, p cm

500 73.39
1500 68.42
3000 61.60
5000 53.56
8000 43.41

Show that the quantities are related by the
law p = a ekh, where a and k are constants.
Determine the values of a and k and state
the law. Find also the atmospheric pressure
at 10 000 m.

[
a = 76, k = −7 × 10−5,

p = 76 e−7×10−5h, 37.74 cm

]

2. At particular times, t minutes, measurements
are made of the temperature, θ◦C, of a cooling
liquid and the following results are obtained:

Temperature θ◦C Time t minutes

92.2 10
55.9 20
33.9 30
20.6 40
12.5 50

Prove that the quantities follow a law of the
form θ = θ0 ekt , where θ0 and k are constants,
and determine the approximate value of θ0
and k.

[θ0 = 152, k = − 0.05]
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5

Hyperbolic functions

5.1 Introduction to hyperbolic
functions

Functions which are associated with the geom-
etry of the conic section called a hyperbola are
called hyperbolic functions. Applications of hyper-
bolic functions include transmission line theory and
catenary problems. By definition:

(i) Hyperbolic sine of x,

sinh x = ex − e−x

2
(1)

‘sinh x’ is often abbreviated to ‘sh x’ and is
pronounced as ‘shine x’

(ii) Hyperbolic cosine of x,

cosh x = ex + e−x

2
(2)

‘cosh x’ is often abbreviated to ‘ch x’ and is
pronounced as ‘kosh x’

(iii) Hyperbolic tangent of x,

tanh x = sinh x
cosh x

= ex − e−x

ex + e−x (3)

‘tanh x’ is often abbreviated to ‘th x’ and is
pronounced as ‘than x’

(iv) Hyperbolic cosecant of x,

cosech x = 1
sinh x

= 2
ex − e−x (4)

‘cosech x’ is pronounced as ‘coshec x’

(v) Hyperbolic secant of x,

sech x = 1
cosh x

= 2
ex + e−x (5)

‘sech x’ is pronounced as ‘shec x’

(vi) Hyperbolic cotangent of x,

coth x = 1
tanh x

= ex+ e−x

ex − e−x (6)

‘coth x’ is pronounced as ‘koth x’

Some properties of hyperbolic functions

Replacing x by 0 in equation (1) gives:

sinh 0 = e0 − e−0

2
= 1 − 1

2
= 0

Replacing x by 0 in equation (2) gives:

cosh 0 = e0 + e−0

2
= 1 + 1

2
= 1

If a function of x, f (−x) = −f (x), then f (x) is
called an odd function of x. Replacing x by −x in
equation (1) gives:

sinh(−x) = e−x − e−(−x)

2
= e−x − ex

2

= −
(

ex − e−x

2

)

= −sinh x

Replacing x by −x in equation (3) gives:

tanh(−x) = e−x − e−(−x)

e−x + e−(−x) = e−x − ex

e−x + ex

= −
(

ex − e−x

ex + e−x

)

= −tanh x

Hence sinh x and tanh x are both odd functions

(see Section 5.2), as also are cosech x

(

= 1

sinh x

)

and coth x

(

= 1

tanh x

)

If a function of x, f (−x) = f (x), then f (x) is called
an even function of x. Replacing x by −x in
equation (2) gives:

cosh(−x) = e−x + e−(−x)

2
= e−x + ex

2
= cosh x

Hence cosh x is an even function (see Section 5.2),

as also is sech x

(

= 1

cosh x

)
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Hyperbolic functions may be evaluated easiest
using a calculator. Many scientific notation calcul-
ators actually possess sinh and cosh functions; how-
ever, if a calculator does not contain these functions,
then the definitions given above may be used. (Tables
of hyperbolic functions are available, but are now
rarely used)

Problem 1. Evaluate sinh 5.4, correct to 4
significant figures.

sinh 5.4 = 1
2 (e5.4 − e−5.4)

= 1
2 (221.406416 . . . − 0.00451658 . . .)

= 1
2 (221.401899 . . .)

= 110.7, correct to 4 significant figures

Problem 2. Determine the value of cosh 1.86,
correct to 3 decimal places.

cosh 1.86 = 1
2 (e1.86 + e−1.86)

= 1
2 (6.42373677 . . . + 0.1556726 . . .)

= 1
2 (6.5794093 . . .) = 3.289704 . . .

= 3.290, correct to 3 decimal places

Problem 3. Evaluate, correct to 4 significant
figures,
(a) th 0.52 (b) cosech 1.4
(c) sech 0.86 (d) coth 0.38

(a) th 0.52 = sh 0.52

ch 0.52
=

1
2 (e0.52 − e−0.52)
1
2 (e0.52 + e−0.52)

= e0.52 − e−0.52

e0.52 + e−0.52

= (1.6820276 . . . − 0.59452054 . . .)

(1.6820276 . . . + 0.59452054 . . .)

= 1.0875070 . . .

2.27654814 . . .

= 0.4777

(b) cosech 1.4 = 1

sinh 1.4
= 1

1
2 (e1.4 − e−1.4)

= 2

(4.05519996 . . . − 0.24659696 . . .)

= 2

3.808603
= 0.5251

(c) sech 0.86 = 1

cosh 0.86
= 1

1
2 (e0.86 + e−0.86)

= 2

(2.36316069 . . . + 0.42316208 . . .)

= 2

2.78632277 . . .
= 0.7178

(d) coth 0.38 = 1

th 0.38
= ch 0.38

sh 0.38

=
1
2 (e0.38 + e−0.38)
1
2 (e0.38 − e−0.38)

= 1.46228458 . . . + 0.68386140 . . .

1.46228458 . . . − 0.68386140 . . .

= 2.1461459 . . .

0.7784231 . . .
= 2.757

Now try the following exercise.

Exercise 24 Further problems on evaluat-
ing hyperbolic functions

In Problems 1 to 6, evaluate correct to 4 signifi-
cant figures.

1. (a) sh 0.64 (b) sh 2.182

[(a) 0.6846 (b) 4.376]

2. (a) ch 0.72 (b) ch 2.4625

[(a) 1.271 (b) 5.910]

3. (a) th 0.65 (b) th 1.81

[(a) 0.5717 (b) 0.9478]

4. (a) cosech 0.543 (b) cosech 3.12

[(a) 1.754 (b) 0.08849]

5. (a) sech 0.39 (b) sech 2.367

[(a) 0.9285 (b) 0.1859]

6. (a) coth 0.444 (b) coth 1.843

[(a) 2.398 (b) 1.051]
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7. A telegraph wire hangs so that its shape is

described by y = 50 ch
x

50
. Evaluate, correct

to 4 significant figures, the value of y when
x = 25. [56.38]

8. The length l of a heavy cable hanging under
gravity is given by l = 2c sh (L/2c). Find the
value of l when c = 40 and L = 30.

[30.71]

9. V2 = 0.55L tanh (6.3 d/L) is a formula for
velocity V of waves over the bottom of shal-
low water, where d is the depth and L is the
wavelength. If d = 8.0 and L = 96, calculate
the value of V . [5.042]

5.2 Graphs of hyperbolic functions

A graph of y = sinh x may be plotted using calculator
values of hyperbolic functions. The curve is shown
in Fig. 5.1. Since the graph is symmetrical about
the origin, sinh x is an odd function (as stated in
Section 5.1).

0 1 2 3 −1−2−3 
−2

−4

−6

−8

2

4

6

8

10

−10

x

y

y = sinh x

Figure 5.1

A graph of y = cosh x may be plotted using cal-
culator values of hyperbolic functions. The curve is
shown in Fig. 5.2. Since the graph is symmetrical
about the y-axis, cosh x is an even function (as stated
in Section 5.1). The shape of y = cosh x is that of a
heavy rope or chain hanging freely under gravity and
is called a catenary. Examples include transmission
lines, a telegraph wire or a fisherman’s line, and is
used in the design of roofs and arches. Graphs of
y = tanh x, y = cosech x, y = sech x and y = coth x
are deduced in Problems 4 and 5.

1 2 3−1−2−3 0

2

4

6

8

10

x

y

y = cosh x

Figure 5.2

Problem 4. Sketch graphs of (a) y = tanh x
and (b) y = coth x for values of x between
−3 and 3.

A table of values is drawn up as shown below

x −3 −2 −1

sh x −10.02 −3.63 −1.18

ch x 10.07 3.76 1.54

y = th x = sh x

ch x
−0.995 −0.97 −0.77

y = coth x = ch x

sh x
−1.005 −1.04 −1.31

x 0 1 2 3

sh x 0 1.18 3.63 10.02

ch x 1 1.54 3.76 10.07

y = th x = sh x

ch x
0 0.77 0.97 0.995

y = coth x = ch x

sh x
± ∞ 1.31 1.04 1.005

(a) A graph of y = tanh x is shown in Fig. 5.3(a)
(b) A graph of y = coth x is shown in Fig. 5.3(b)

Both graphs are symmetrical about the origin thus
tanh x and coth x are odd functions.

Problem 5. Sketch graphs of (a) y = cosech x
and (b) y = sech x from x = −4 to x = 4, and,
from the graphs, determine whether they are odd
or even functions.
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0 1 2 3−1−2−3

1

y = tanh x

x

y

1 2 3−1−2−3 0

y = coth x

y = coth x

2

3

y

x

−1

−2

−3

(a)

(b)

1

−1

Figure 5.3

A table of values is drawn up as shown below

x −4 −3 −2 −1

sh x −27.29 −10.02 −3.63 −1.18

cosech x = 1

sh x
−0.04 −0.10 −0.28 −0.85

ch x 27.31 10.07 3.76 1.54

sech x = 1

ch x
0.04 0.10 0.27 0.65

x 0 1 2 3 4

sh x 0 1.18 3.63 10.02 27.29

cosech x = 1

sh x
±∞ 0.85 0.28 0.10 0.04

ch x 1 1.54 3.76 10.07 27.31

sech x = 1

ch x
1 0.65 0.27 0.10 0.04

(a) A graph of y = cosech x is shown in Fig. 5.4(a).
The graph is symmetrical about the origin and is
thus an odd function.

(b) A graph of y = sech x is shown in Fig. 5.4(b).
The graph is symmetrical about the y-axis and
is thus an even function.

0 1 2 3−1

−3
1

2

3

−1

−2

−3

y = cosech x

y = cosech x

x

1 2 30−1−2−3

1

y

x

y = sech x

(a)

(b)

−2

y

Figure 5.4

5.3 Hyperbolic identities

For every trigonometric identity there is a corres-
ponding hyperbolic identity. Hyperbolic identities
may be proved by either

(i) replacing sh x by
ex − e−x

2
and ch x by

ex + e−x

2
, or

(ii) by using Osborne’s rule, which states: ‘the
six trigonometric ratios used in trigonomet-
rical identities relating general angles may be
replaced by their corresponding hyperbolic
functions, but the sign of any direct or implied
product of two sines must be changed’.

For example, since cos2 x + sin2 x = 1 then, by
Osborne’s rule, ch2 x − sh2 x = 1, i.e. the trigonomet-
ric functions have been changed to their correspond-
ing hyperbolic functions and since sin2 x is a product
of two sines the sign is changed from + to −.
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Table 5.1 shows some trigonometric identities and
their corresponding hyperbolic identities.

Problem 6. Prove the hyperbolic identities
(a) ch2 x − sh2 x = 1 (b) 1 − th2 x = sech2 x
(c) coth2 x − 1 = cosech2 x.

(a) ch x + sh x =
(

ex + e−x

2

)

+
(

ex − e−x

2

)

= ex

ch x − sh x =
(

ex + e−x

2

)

−
(

ex − e−x

2

)

= e−x

(ch x + sh x)(ch x − sh x) = (ex)(e−x) = e0 = 1

i.e. ch2x − sh2x = 1 (1)

(b) Dividing each term in equation (1) by ch2 x
gives:

ch2 x

ch2 x
− sh2 x

ch2 x
= 1

ch2 x
,

i.e. 1 − th2 x = sech2 x

(c) Dividing each term in equation (1) by sh2x
gives:

ch2 x

sh2 x
− sh2 x

sh2 x
= 1

sh2 x

i.e. coth2 x − 1 = cosech2 x

Table 5.1

Trigonometric identity Corresponding hyperbolic identity

cos2 x + sin2 x = 1 ch2 x − sh2 x = 1
1 + tan2 x = sec2 x 1 − th2 x = sech2 x
cot2 x + 1 = cosec2 x coth2 x − 1 = cosech2 x

Compound angle formulae
sin (A ± B) = sin A cos B ± cos A sin B sh (A ± B) = sh A ch B ± ch A sh B
cos (A ± B) = cos A cos B ∓ sin A sin B ch (A ± B) = ch A ch B ± sh A sh B

tan (A ± B) = tan A ± tan B

1 ∓ tan A tan B
th (A ± B) = th A ± th B

1 ± th A th B

Double angles
sin 2x = 2 sin x cos x sh 2x = 2 sh x ch x
cos 2x = cos2 x − sin2 x ch 2x = ch2 x + sh2 x

= 2 cos2 x − 1 = 2 ch2 x − 1
= 1 − 2 sin2 x = 1 + 2sh2 x

tan 2x = 2 tan x

1 − tan2 x
th 2x = 2 th x

1 + th2 x

Problem 7. Prove, using Osborne’s rule
(a) ch 2A = ch2 A + sh2 A
(b) 1 − th2 x = sech2 x.

(a) From trigonometric ratios,

cos 2A = cos2 A − sin2 A (1)

Osborne’s rule states that trigonometric ratios
may be replaced by their corresponding hyper-
bolic functions but the sign of any product
of two sines has to be changed. In this case,
sin2 A = ( sin A)( sin A), i.e. a product of two
sines, thus the sign of the corresponding hyper-
bolic function, sh2A, is changed from + to −.
Hence, from (1), ch 2A = ch2 A + sh2 A

(b) From trigonometric ratios,

1 + tan2 x = sec2 x (2)

and tan2 x = sin2 x

cos2 x
= ( sin x)( sin x)

cos2 x

i.e. a product of two sines.

Hence, in equation (2), the trigonometric ratios
are changed to their equivalent hyperbolic func-
tion and the sign of th2x changed + to −, i.e.
1 − th2 x = sech2 x

Problem 8. Prove that 1 + 2 sh2 x = ch 2x.
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Left hand side (L.H.S.)

= 1 + 2 sh2 x = 1 + 2

(
ex − e−x

2

)2

= 1 + 2

(
e2x − 2exe−x + e−2x

4

)

= 1 + e2x − 2 + e−2x

2

= 1 +
(

e2x + e−2x

2

)

− 2

2

= e2x + e−2x

2
= ch 2x = R.H.S.

Problem 9. Show that th2 x + sech2 x = 1.

L.H.S. = th2 x + sech2 x = sh2 x

ch2 x
+ 1

ch2 x

= sh2 x + 1

ch2 x

Since ch2 x − sh2 x = 1 then 1 + sh2 x = ch2 x

Thus
sh2 x + 1

ch2 x
= ch2 x

ch2 x
= 1 = R.H.S.

Problem 10. Given Aex+Be−x ≡ 4ch x − 5 sh x,
determine the values of A and B.

Aex + Be−x ≡ 4 ch x − 5 sh x

= 4

(
ex + e−x

2

)

− 5

(
ex − e−x

2

)

= 2ex + 2e−x − 5

2
ex + 5

2
e−x

= −1

2
ex + 9

2
e−x

Equating coefficients gives: A = − 1
2 and B = 4 1

2

Problem 11. If 4ex − 3e−x ≡ Psh x + Qch x,
determine the values of P and Q.

4ex − 3e−x ≡ P sh x + Q ch x

= P

(
ex − e−x

2

)

+ Q

(
ex + e−x

2

)

= P

2
ex − P

2
e−x + Q

2
ex + Q

2
e−x

=
(

P + Q

2

)

ex +
(

Q − P

2

)

e−x

Equating coefficients gives:

4 = P + Q

2
and −3 = Q − P

2

i.e. P + Q = 8 (1)

−P + Q = −6 (2)

Adding equations (1) and (2) gives: 2Q = 2, i.e.
Q = 1

Substituting in equation (1) gives: P = 7.

Now try the following exercise.

Exercise 25 Further problems on hyper-
bolic identities

In Problems 1 to 4, prove the given identities.

1. (a) ch (P − Q) ≡ ch P ch Q − sh P sh Q
(b) ch 2x ≡ ch2 x + sh2 x

2. (a) coth x ≡ 2 cosech 2x + th x
(b) ch 2θ − 1 ≡ 2 sh2 θ

3. (a) th (A − B) ≡ th A − th B

1 − th A th B

(b) sh 2A ≡ 2 sh A ch A

4. (a) sh (A + B) ≡ sh A ch B + ch A sh B

(b)
sh2 x + ch2 x − 1

2ch2 x coth2 x
≡ tanh4 x

5. Given Pex − Qe−x ≡ 6 ch x − 2 sh x, find P
and Q [P = 2, Q = −4]

6. If 5ex − 4e−x ≡ A sh x + B ch x, find A and B.
[A = 9, B = 1]
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A5.4 Solving equations involving
hyperbolic functions

Equations of the form a ch x + b sh x = c, where a,
b and c are constants may be solved either by:

(a) plotting graphs of y = a ch x + b sh x and y = c
and noting the points of intersection, or more
accurately,

(b) by adopting the following procedure:

(i) Change sh x to

(
ex − e−x

2

)

and ch x to
(

ex + e−x

2

)

(ii) Rearrange the equation into the form
pex + qe−x + r = 0, where p, q and r are
constants.

(iii) Multiply each term by ex, which produces
an equation of the form p(ex)2 + rex+ q = 0
(since (e−x)(ex) = e0 = 1)

(iv) Solve the quadratic equation
p(ex)2 + rex + q = 0 for ex by factorising
or by using the quadratic formula.

(v) Given ex = a constant (obtained by solv-
ing the equation in (iv)), take Napierian
logarithms of both sides to give
x = ln (constant)

This procedure is demonstrated in Problems 12 to
14 following.

Problem 12. Solve the equation sh x = 3, cor-
rect to 4 significant figures.

Following the above procedure:

(i) sh x =
(

ex − e−x

2

)

= 3

(ii) ex − e−x = 6, i.e. ex − e−x − 6 = 0

(iii) (ex)2 − (e−x)(ex) − 6ex = 0,

i.e. (ex)2 − 6ex − 1 = 0

(iv) ex = −(−6) ±√[(−6)2 − 4(1)(−1)]

2(1)

= 6 ± √
40

2
= 6 ± 6.3246

2

Hence ex = 6.1623 or −0.1623

(v) x = ln 6.1623 or x = ln(−0.1623) which has
no solution since it is not possible in real
terms to find the logarithm of a negative num-
ber. Hence x = ln 6.1623 = 1.818, correct to 4
significant figures.

Problem 13. Solve the equation

2.6 ch x + 5.1 sh x = 8.73,

correct to 4 decimal places.

Following the above procedure:

(i) 2.6 ch x + 5.1 sh x = 8.73

i.e. 2.6

(
ex + e−x

2

)

+ 5.1

(
ex − e−x

2

)

= 8.73

(ii) 1.3ex + 1.3e−x + 2.55ex − 2.55e−x = 8.73

i.e. 3.85ex − 1.25e−x − 8.73 = 0

(iii) 3.85(ex)2 − 8.73ex − 1.25 = 0
(iv) ex

= −(−8.73) ±√[(−8.73)2 − 4(3.85)(−1.25)]

2(3.85)

= 8.73 ± √
95.463

7.70
= 8.73 ± 9.7705

7.70
Hence ex = 2.4027 or ex = −0.1351

(v) x = ln 2.4027 or x = ln(−0.1351) which has no
real solution.
Hence x = 0.8766, correct to 4 decimal places.

Problem 14. A chain hangs in the form given

by y = 40 ch
x

40
. Determine, correct to 4 signifi-

cant figures, (a) the value of y when x is 25 and
(b) the value of x when y = 54.30.

(a) y = 40 ch
x

40
, and when x = 25,

y = 40 ch
25

40
= 40 ch 0.625

= 40

(
e0.625 + e−0.625

2

)

= 20(1.8682 + 0.5353) = 48.07
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(b) When y = 54.30, 54.30 = 40 ch
x

40
, from which

ch
x

40
= 54.30

40
= 1.3575

Following the above procedure:

(i)
e

x
40 + e

−x
40

2
= 1.3575

(ii) e
x

40 + e
−x
40 = 2.715, i.e. e

x
40 +e

−x
40 − 2.715 = 0

(iii) (e
x

40 )2 + 1 − 2.715e
x

40 = 0

i.e. (e
x

40 )2 − 2.715e
x

40 + 1 = 0

(iv) e
x

40 = −(−2.715) ±√[(−2.715)2 − 4(1)(1)]

2(1)

= 2.715 ± √
(3.3712)

2
= 2.715 ± 1.8361

2
Hence e

x
40 = 2.2756 or 0.43945

(v)
x

40
= ln 2.2756 or

x

40
= ln(0.43945)

Hence
x

40
= 0.8222 or

x

40
= −0.8222

Hence x = 40(0.8222) or x = 40(−0.8222);

i.e. x = ±32.89, correct to 4 significant figures.

Now try the following exercise.

Exercise 26 Further problems on hyper-
bolic equations

In Problems 1 to 5 solve the given equations
correct to 4 decimal places.

1. sh x = 1 [0.8814]

2. 2 ch x = 3 [±0.9624]

3. 3.5 sh x + 2.5 ch x = 0 [−0.8959]

4. 2 sh x + 3 ch x = 5 [0.6389 or −2.2484]

5. 4 th x − 1 = 0 [0.2554]

6. A chain hangs so that its shape is of the form
y = 56 ch (x/56). Determine, correct to 4 sig-
nificant figures, (a) the value of y when x is
35, and (b) the value of x when y is 62.35.[

(a) 67.30
(b) 26.42

]

5.5 Series expansions for cosh x and
sinh x

By definition,

ex = 1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · ·
from Chapter 4.
Replacing x by −x gives:

e−x = 1 − x + x2

2! − x3

3! + x4

4! − x5

5! + · · · .

cosh x = 1

2
(ex + e−x)

= 1

2

[(

1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · ·
)

+
(

1 − x + x2

2! − x3

3! + x4

4! − x5

5! + · · ·
)]

= 1

2

[(

2 + 2x2

2! + 2x4

4! + · · ·
)]

i.e. cosh x = 1 + x2

2! + x4

4! + · · · (which is valid for

all values of x). cosh x is an even function and
contains only even powers of x in its expansion

sinh x = 1

2
(ex − e−x)

= 1

2

[(

1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · ·
)

−
(

1 − x + x2

2! − x3

3! + x4

4! − x5

5! + · · ·
)]

= 1

2

[

2x + 2x3

3! + 2x5

5! + · · ·
]

i.e. sinh x = x + x3

3! + x5

5! + · · · (which is valid for

all values of x). sinh x is an odd function and contains
only odd powers of x in its series expansion

Problem 15. Using the series expansion for
ch x evaluate ch 1 correct to 4 decimal place.

ch x = 1 + x2

2! + x4

4! + · · · from above
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Let x = 1,

then ch 1 = 1 + 12

2 × 1
+ 14

4 × 3 × 2 × 1

+ 16

6 × 5 × 4 × 3 × 2 × 1
+ · · ·

= 1 + 0.5 + 0.04167 + 0.001389 + · · ·

i.e. ch 1 = 1.5431, correct to 4 decimal places,
which may be checked by using a calculator.

Problem 16. Determine, correct to 3 deci-
mal places, the value of sh 3 using the series
expansion for sh x.

sh x = x + x3

3! + x5

5! + · · · from above

Let x = 3, then

sh 3 = 3 + 33

3! + 35

5! + 37

7! + 39

9! + 311

11! + · · ·
= 3 + 4.5 + 2.025 + 0.43393 + 0.05424

+ 0.00444 + · · ·

i.e. sh 3 = 10.018, correct to 3 decimal places.

Problem 17. Determine the power series for

2 ch

(
θ

2

)

− sh 2θ as far as the term in θ5.

In the series expansion for ch x, let x = θ

2
then:

2 ch

(
θ

2

)

= 2

[

1 + (θ/2)2

2! + (θ/2)4

4! + · · ·
]

= 2 + θ2

4
+ θ4

192
+ · · ·

In the series expansion for sh x, let x = 2θ, then:

sh 2θ = 2θ + (2θ)3

3! + (2θ)5

5! + · · ·

= 2θ + 4

3
θ3 + 4

15
θ5 + · · ·

Hence

ch

(
θ

2

)

− sh 2θ =
(

2 + θ2

4
+ θ4

192
+ · · ·

)

−
(

2θ + 4

3
θ3 + 4

15
θ5 + · · ·

)

= 2 − 2θ + θ2

4
− 4

3
θ3 + θ4

192

− 4
15

θ5 + · · · as far the

term in θ5

Now try the following exercise.

Exercise 27 Further problems on series
expansions for cosh x and sinh x

1. Use the series expansion for ch x to evalu-
ate, correct to 4 decimal places: (a) ch 1.5
(b) ch 0.8 [(a) 2.3524 (b) 1.3374]

2. Use the series expansion for sh x to evaluate,
correct to 4 decimal places: (a) sh 0.5 (b) sh 2

[(a) 0.5211 (b) 3.6269]

3. Expand the following as a power series as far
as the term in x5: (a) sh 3x (b) ch 2x

⎡

⎢
⎣

(a) 3x + 9

2
x3 + 81

40
x5

(b) 1 + 2x2 + 2

3
x4

⎤

⎥
⎦

In Problems 4 and 5, prove the given identities,
the series being taken as far as the term in θ5 only.

4. sh 2θ − sh θ ≡ θ + 7

6
θ3 + 31

120
θ5

5. 2 sh
θ

2
− ch

θ

2
≡ − 1 + θ − θ2

8
+ θ3

24
− θ4

384

+ θ5

1920
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Assignment 1

This assignment covers the material contained
in Chapters 1 to 5.

The marks for each question are shown in
brackets at the end of each question.

1. Factorise x3 + 4x2 + x − 6 using the factor the-
orem. Hence solve the equation

x3 + 4x2 + x − 6 = 0 (5)

2. Use the remainder theorem to find the remainder
when 2x3 + x2 − 7x − 6 is divided by

(a) (x − 2) (b) (x + 1)

Hence factorise the cubic expression (7)

3. Simplify
6x2 + 7x − 5

2x − 1
by dividing out (4)

4. Solve the following inequalities:

(a) 2 − 5x ≤ 9 + 2x (b) |3 + 2t| ≤ 6

(c)
x − 1

3x + 5
> 0 (d) (3t + 2)2 > 16

(e) 2x2 − x − 3 < 0 (14)

5. Resolve the following into partial fractions

(a)
x − 11

x2 − x − 2
(b)

3 − x

(x2 + 3)(x + 3)

(c)
x3 − 6x + 9

x2 + x − 2
(24)

6. Evaluate, correct to 3 decimal places,

5 e−0.982

3 ln 0.0173
(2)

7. Solve the following equations, each correct to 4
significant figures:

(a) ln x = 2.40 (b) 3x−1 = 5x−2

(c) 5 = 8(1 − e− x
2 ) (10)

8. The pressure p at height h above ground level
is given by: p = p0e−kh where p0 is the pressure
at ground level and k is a constant. When p0 is
101 kilopascals and the pressure at a height of
1500 m is 100 kilopascals, determine the value
of k. Sketch a graph of p against h (p the ver-
tical axis and h the horizontal axis) for values
of height from zero to 12 000 m when p0 is 101
kilopascals

(10)

9. Evaluate correct to 4 significant figures:

(a) sinh 2.47 (b) tanh 0.6439
(c) sech 1.385 (d) cosech 0.874 (6)

10. The increase in resistance of strip conductors due
to eddy currents at power frequencies is given
by:

λ = αt

2

[
sinh αt + sin αt

cosh αt − cos αt

]

Calculate λ, correct to 5 significant figures, when
α = 1.08 and t = 1 (5)

11. If A ch x − B sh x ≡ 4ex − 3e−x determine the
values of A and B. (6)

12. Solve the following equation:

3.52 ch x + 8.42 sh x = 5.32

correct to 4 decimal places (7)
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6

Arithmetic and geometric progressions

6.1 Arithmetic progressions

When a sequence has a constant difference between
successive terms it is called an arithmetic progres-
sion (often abbreviated to AP).
Examples include:

(i) 1, 4, 7, 10, 13, . . . where the common differ-
ence is 3 and

(ii) a, a + d, a + 2d, a + 3d, . . . where the common
difference is d.

If the first term of an AP is ‘a’ and the common
difference is ‘d’ then

the n’th term is: a + (n − 1)d

In example (i) above, the 7th term is given by 1 +
(7 − 1)3 = 19, which may be readily checked.

The sum S of an AP can be obtained by multi-
plying the average of all the terms by the number of
terms.

The average of all the terms = a + l

2
, where ‘a’

is the first term and l is the last term, i.e. l = a +
(n − 1)d, for n terms.

Hence the sum of n terms,

Sn = n

(
a + l

2

)

= n

2
{a + [a + (n − 1)d]}

i.e. Sn = n
2

[2a + (n − 1)d]

For example, the sum of the first 7 terms of the series
1, 4, 7, 10, 13, . . . is given by

S7 = 7

2
[2(1) + (7 − 1)3], since a = 1 and d = 3

= 7

2
[2 + 18] = 7

2
[20] = 70

6.2 Worked problems on arithmetic
progressions

Problem 1. Determine (a) the ninth, and (b) the
sixteenth term of the series 2, 7, 12, 17, . . .

2, 7, 12, 17, . . . is an arithmetic progression with a
common difference, d, of 5.

(a) The n’th term of an AP is given by a + (n − 1)d
Since the first term a = 2, d = 5 and n = 9
then the 9th term is:
2 + (9 − 1)5 = 2 + (8)(5) = 2 + 40 = 42

(b) The 16th term is:
2 + (16 − 1)5 = 2 + (15)(5) = 2 + 75 = 77.

Problem 2. The 6th term of an AP is 17 and
the 13th term is 38. Determine the 19th term.

The n’th term of an AP is a + (n − 1)d

The 6th term is: a + 5d = 17 (1)

The 13th term is: a + 12d = 38 (2)

Equation (2) − equation (1) gives: 7d = 21, from

which, d = 21

7
= 3.

Substituting in equation (1) gives: a + 15 = 17, from
which, a = 2.

Hence the 19th term is:
a + (n − 1)d = 2 + (19 − 1)3 = 2 + (18)(3) =
2 + 54 = 56.

Problem 3. Determine the number of the term
whose value is 22 in the series 2 1

2 , 4, 5 1
2 , 7, . . .

2 1
2 , 4, 5 1

2 , 7, . . . is an AP where a = 2 1
2 and

d = 1 1
2 .
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Hence if the n’th term is 22 then: a + (n − 1)d = 22
i.e. 2 1

2 + (n − 1)
(
1 1

2

) = 22
(n − 1)

(
1 1

2

) = 22 − 2 1
2 = 19 1

2 .

n − 1 = 19 1
2

1 1
2

= 13 and n = 13 + 1 = 14

i.e. the 14th term of the AP is 22.

Problem 4. Find the sum of the first 12 terms
of the series 5, 9, 13, 17, . . .

5, 9, 13, 17, . . . is an AP where a = 5 and d = 4.
The sum of n terms of an AP,

Sn = n

2
[2a + (n − 1)d]

Hence the sum of the first 12 terms,

S12 = 12

2
[2(5) + (12 − 1)4]

= 6[10 + 44] = 6(54) = 324

Problem 5. Find the sum of the first 21 terms
of the series 3.5, 4.1, 4.7, 5.3, . . .

3.5, 4.1, 4.7, 5.3, . . . is an AP where a = 3.5 and
d = 0.6.

The sum of the first 21 terms,

S21 = 21

2
[2a + (n − 1)d]

= 21

2
[2(3.5) + (21 − 1)0.6] = 21

2
[7 + 12]

= 21

2
(19) = 399

2
= 199.5

Now try the following exercise.

Exercise 28 Further problems on arith-
metic progressions

1. Find the 11th term of the series 8, 14, 20,
26, . . . [68]

2. Find the 17th term of the series 11, 10.7, 10.4,
10.1, . . . [6.2]

3. The seventh term of a series is 29 and the
eleventh term is 54. Determine the sixteenth
term. [85.25]

4. Find the 15th term of an arithmetic progres-
sion of which the first term is 2.5 and the tenth
term is 16. [23.5]

5. Determine the number of the term which is
29 in the series 7, 9.2, 11.4, 13.6, . . .

[11]

6. Find the sum of the first 11 terms of the series
4, 7, 10, 13, . . . [209]

7. Determine the sum of the series 6.5, 8.0, 9.5,
11.0, . . ., 32 [346.5]

6.3 Further worked problems on
arithmetic progressions

Problem 6. The sum of 7 terms of an AP is 35
and the common difference is 1.2. Determine the
first term of the series.

n = 7, d = 1.2 and S7 = 35
Since the sum of n terms of an AP is given by

Sn = n

2
[2a + (n − 1)d], then

35 = 7

2
[2a + (7 − 1)1.2] = 7

2
[2a + 7.2]

Hence
35 × 2

7
= 2a + 7.2

10 = 2a + 7.2

Thus 2a = 10 − 7.2 = 2.8,

from which a = 2.8

2
= 1.4

i.e. the first term, a = 1.4

Problem 7. Three numbers are in arithmetic
progression. Their sum is 15 and their product
is 80. Determine the three numbers.

Let the three numbers be (a − d), a and (a + d)

Then (a − d) + a + (a + d) = 15, i.e. 3a = 15, from
which, a = 5

Also, a(a − d)(a + d) = 80, i.e. a(a2 − d2) = 80

Since a = 5, 5(52 − d2) = 80

125 − 5d2 = 80
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125 − 80 = 5d2

45 = 5d2

from which, d2 = 45

5
= 9. Hence d = √

9 = ±3.

The three numbers are thus (5 − 3), 5 and (5 + 3),
i.e. 2, 5 and 8.

Problem 8. Find the sum of all the numbers
between 0 and 207 which are exactly divisible
by 3.

The series 3, 6, 9, 12, . . . , 207 is an AP whose first
term a = 3 and common difference d = 3

The last term is a + (n − 1)d = 207

i.e. 3 + (n − 1)3 = 207,

from which (n − 1) = 207 − 3

3
= 68

Hence n = 68 + 1 = 69

The sum of all 69 terms is given by

S69 = n

2
[2a + (n − 1)d]

= 69

2
[2(3) + (69 − 1)3]

= 69

2
[6 + 204] = 69

2
(210) = 7245

Problem 9. The first, twelfth and last term of
an arithmetic progression are 4, 31 1

2 , and 376 1
2

respectively. Determine (a) the number of terms
in the series, (b) the sum of all the terms and
(c) the ‘80’th term.

(a) Let theAP be a, a + d, a + 2d, . . . , a + (n − 1)d,
where a = 4

The 12th term is: a + (12 − 1)d = 31 1
2

i.e. 4 + 11d = 31 1
2 ,

from which, 11d = 31 1
2 − 4 = 27 1

2

Hence d = 27 1
2

11
= 2 1

2

The last term is a + (n − 1)d

i.e. 4 + (n − 1)
(
2 1

2

) = 376 1
2

(n − 1) = 376 1
2 − 4

2 1
2

= 372 1
2

2 1
2

= 149

Hence the number of terms in the series,
n = 149 + 1 = 150

(b) Sum of all the terms,

S150 = n

2
[2a + (n − 1)d]

= 150

2

[

2(4) + (150 − 1)

(

2
1

2

)]

= 75

[

8 + (149)

(

2
1

2

)]

= 85[8 + 372.5]

= 75(380.5) = 28537
1
2

(c) The 80th term is:

a + (n − 1)d = 4 + (80 − 1)
(
2 1

2

)

= 4 + (79)
(
2 1

2

)

= 4 + 197.5 = 201 1
2

Now try the following exercise.

Exercise 29 Further problems on arith-
metic progressions

1. The sum of 15 terms of an arithmetic progres-
sion is 202.5 and the common difference is 2.
Find the first term of the series. [−0.5]

2. Three numbers are in arithmetic progression.
Their sum is 9 and their product is 20.25.
Determine the three numbers. [1.5, 3, 4.5]

3. Find the sum of all the numbers between 5
and 250 which are exactly divisible by 4.

[7808]

4. Find the number of terms of the series 5, 8,
11, . . . of which the sum is 1025. [25]
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5. Insert four terms between 5 and 22.5 to form
an arithmetic progression.

[8.5, 12, 15.5, 19]

6. The first, tenth and last terms of an arithmetic
progression are 9, 40.5, and 425.5 respect-
ively. Find (a) the number of terms, (b) the
sum of all the terms and (c) the 70th term.

[(a) 120 (b) 26070 (c) 250.5]

7. On commencing employment a man is paid
a salary of £7200 per annum and receives
annual increments of £350. Determine his
salary in the 9th year and calculate the total
he will have received in the first 12 years.

[£10 000, £109 500]

8. An oil company bores a hole 80 m deep. Esti-
mate the cost of boring if the cost is £30
for drilling the first metre with an increase
in cost of £2 per metre for each succeeding
metre. [£8720]

6.4 Geometric progressions

When a sequence has a constant ratio between suc-
cessive terms it is called a geometric progression
(often abbreviated to GP). The constant is called the
common ratio, r.
Examples include

(i) 1, 2, 4, 8, . . . where the common ratio is 2 and

(ii) a, ar, ar2, ar3, . . . where the common ratio is r.

If the first term of a GP is ‘a’ and the common ratio
is r, then

the n’th term is: arn−1

which can be readily checked from the above
examples.

For example, the 8th term of the GP 1, 2, 4, 8, . . . is
(1)(2)7 = 128, since a = 1 and r = 2.

Let a GP be a, ar, ar2, ar3, . . ., arn−1

then the sum of n terms,

Sn = a + ar + ar2 + ar3 + · · · + arn−1 · · · (1)

Multiplying throughout by r gives:

rSn = ar + ar2 + ar3 + ar4

+ · · · + arn−1 + arn + · · · (2)

Subtracting equation (2) from equation (1) gives:

Sn − rSn = a − arn

i.e. Sn(1 − r) = a(1 − rn)

Thus the sum of n terms, Sn = a(1 − rn)
(1 − r)

which

is valid when r < 1.
Subtracting equation (1) from equation (2) gives

Sn = a(r n − 1)
(r − 1)

which is valid when r > 1.

For example, the sum of the first 8 terms of the GP

1, 2, 4, 8, 16, . . . is given by S8 = 1(28 − 1)

(2 − 1)
, since

a = 1 and r = 2

i.e. S8 = 1(256 − 1)

1
= 255

When the common ratio r of a GP is less than unity,

the sum of n terms, Sn = a(1 − rn)

(1 − r)
, which may be

written as Sn = a

(1 − r)
− arn

(1 − r)
.

Since r < 1, rn becomes less as n increases, i.e.
rn → 0 as n → ∞.

Hence
arn

(1 − r)
→ 0 as n → ∞. Thus Sn → a

(1 − r)
as n → ∞.
The quantity

a

(1 − r)
is called the sum to infinity,

S∞, and is the limiting value of the sum of an infinite
number of terms,

i.e. S∞ = a
(1 − r)

which is valid when −1 < r < 1.

For example, the sum to infinity of the GP
1 + 1

2 + 1
4 + · · · is

S∞ = 1

1 − 1
2

, since a = 1 and r = 1
2 , i.e. S∞ = 2.
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6.5 Worked problems on geometric

progressions

Problem 10. Determine the tenth term of the
series 3, 6, 12, 24, . . .

3, 6, 12, 24, . . . is a geometric progression with a
common ratio r of 2. The n’th term of a GP is arn−1,
where a is the first term. Hence the 10th term is:
(3)(2)10−1 = (3)(2)9 = 3(512) = 1536.

Problem 11. Find the sum of the first 7 terms
of the series, 1

2 , 1 1
2 , 4 1

2 , 13 1
2 , . . .

1
2 , 1 1

2 , 4 1
2 , 13 1

2 , . . . is a GP with a common ratio
r = 3

The sum of n terms, Sn = a(rn − 1)

(r − 1)

Hence S7 =
1
2 (37 − 1)

(3 − 1)
=

1
2 (2187 − 1)

2
= 546

1
2

Problem 12. The first term of a geometric pro-
gression is 12 and the fifth term is 55. Determine
the 8’th term and the 11’th term.

The 5th term is given by ar4 = 55, where the first
term a = 12

Hence r4 = 55

a
= 55

12

and r = 4

√(
55

12

)

= 1.4631719 . . .

The 8th term is ar7 = (12)(1.4631719 . . . )7 = 172.3
The 11th term is ar10 = (12)(1.4631719 . . . )10

= 539.7

Problem 13. Which term of the series 2187,
729, 243, . . . is 1

9 ?

2187, 729, 243, . . . is a GP with a common ratio
r = 1

3 and first term a = 2187

The n’th term of a GP is given by: arn−1

Hence
1

9
= (2187)

( 1
3

)n−1

from which

(
1

3

)n−1

= 1

(9)(2187)
= 1

3237

= 1

39 =
(

1

3

)9

Thus (n − 1) = 9, from which, n = 9 + 1 = 10
i.e. 1

9 is the 10th term of the GP

Problem 14. Find the sum of the first 9 terms
of the series 72.0, 57.6, 46.08, . . .

The common ratio, r = ar

a
= 57.6

72.0
= 0.8

(

also
ar2

ar
= 46.08

57.6
= 0.8

)

The sum of 9 terms,

S9 = a(1 − rn)

(1 − r)
= 72.0(1 − 0.89)

(1 − 0.8)

= 72.0(1 − 0.1342)

0.2
= 311.7

Problem 15. Find the sum to infinity of the
series 3, 1, 1

3 , . . .

3, 1, 1
3 , . . . is a GP of common ratio, r = 1

3
The sum to infinity,

S∞ = a

1 − r
= 3

1 − 1
3

= 3
2
3

= 9

2
= 4

1
2

Now try the following exercise.

Exercise 30 Further problems on geometric
progressions

1. Find the 10th term of the series 5, 10, 20,
40, . . . [2560]

2. Determine the sum of the first 7 terms of the
series 1

4 , 3
4 , 2 1

4 , 6 3
4 , . . . [273.25]

3. The first term of a geometric progression is
4 and the 6th term is 128. Determine the 8th
and 11th terms. [512, 4096]
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4. Find the sum of the first 7 terms of the series
2, 5, 12 1

2 , . . . (correct to 4 significant figures)
[812.5]

5. Determine the sum to infinity of the series 4,
2, 1, . . . [8]

6. Find the sum to infinity of the series 2 1
2 , −1 1

4 ,
5
8 , . . .

[
1 2

3

]

6.6 Further worked problems on
geometric progressions

Problem 16. In a geometric progression the
sixth term is 8 times the third term and the sum
of the seventh and eighth terms is 192. Deter-
mine (a) the common ratio, (b) the first term,
and (c) the sum of the fifth to eleventh terms,
inclusive.

(a) Let the GP be a, ar, ar2, ar3, . . . , arn−1

The 3rd term = ar2 and the sixth term = ar5

The 6th term is 8 times the 3rd.
Hence ar5 = 8ar2 from which, r3 = 8, r = 3

√
8

i.e. the common ratio r = 2.

(b) The sum of the 7th and 8th terms is 192. Hence
ar6 + ar7 = 192.

Since r = 2, then 64a + 128a = 192
192a = 192,

from which, a, the first term, = 1.

(c) The sum of the 5th to 11th terms (inclusive) is
given by:

S11 − S4 = a(r11 − 1)

(r − 1)
− a(r4 − 1)

(r − 1)

= 1(211 − 1)

(2 − 1)
− 1(24 − 1)

(2 − 1)

= (211 − 1) − (24 − 1)

= 211 − 24 = 2048 − 16 = 2032

Problem 17. A hire tool firm finds that their net
return from hiring tools is decreasing by 10% per
annum. If their net gain on a certain tool this year
is £400, find the possible total of all future profits
from this tool (assuming the tool lasts for ever).

The net gain forms a series:

£400 + £400 × 0.9 + £400 × 0.92 + · · · ,

which is a GP with a = 400 and r = 0.9.
The sum to infinity,

S∞ = a

(1 − r)
= 400

(1 − 0.9)

= £4000 = total future profits

Problem 18. If £100 is invested at compound
interest of 8% per annum, determine (a) the value
after 10 years, (b) the time, correct to the nearest
year, it takes to reach more than £300.

(a) Let the GP be a, ar, ar2, . . ., arn

The first term a = £100
The common ratio r = 1.08
Hence the second term is

ar = (100) (1.08) = £108,

which is the value after 1 year,
the third term is

ar2 = (100) (1.08)2 = £116.64,

which is the value after 2 years, and so on.
Thus the value after 10 years

= ar10 = (100) (1.08)10 = £215.89

(b) When £300 has been reached, 300 = arn

i.e. 300 = 100(1.08)n

and 3 = (1.08)n

Taking logarithms to base 10 of both sides gives:

lg 3 = lg (1.08)n = n lg(1.08),

by the laws of logarithms

from which, n = lg 3

lg 1.08
= 14.3

Hence it will take 15 years to reach more than
£300.

Problem 19. A drilling machine is to have
6 speeds ranging from 50 rev/min to 750 rev/
min. If the speeds form a geometric progres-
sion determine their values, each correct to the
nearest whole number.
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Let the GP of n terms be given by a, ar, ar2, . . .,
arn−1.
The first term a = 50 rev/min
The 6th term is given by ar6−1, which is 750 rev/min,

i.e., ar5 = 750

from which r5 = 750

a
= 750

50
= 15

Thus the common ratio, r = 5
√

15 = 1.7188

The first term is a = 50 rev/min

the second term is ar = (50) (1.7188) = 85.94,

the third term is ar2 = (50) (1.7188)2 = 147.71,

the fourth term is ar3 = (50) (1.7188)3 = 253.89,

the fifth term is ar4 = (50) (1.7188)4 = 436.39,

the sixth term is ar5 = (50) (1.7188)5 = 750.06

Hence, correct to the nearest whole number, the
6 speeds of the drilling machine are 50, 86, 148,
254, 436 and 750 rev/min.

Now try the following exercise.

Exercise 31 Further problems on geometric
progressions

1. In a geometric progression the 5th term is
9 times the 3rd term and the sum of the 6th and
7th terms is 1944. Determine (a) the common
ratio, (b) the first term and (c) the sum of the
4th to 10th terms inclusive.

[(a) 3 (b) 2 (c) 59022]

2. Which term of the series 3, 9, 27, . . . is
59049? [10th]

3. The value of a lathe originally valued at
£3000 depreciates 15% per annum. Calculate
its value after 4 years. The machine is sold
when its value is less than £550. After how
many years is the lathe sold?

[£1566, 11 years]

4. If the population of Great Britain is 55 million
and is decreasing at 2.4% per annum, what
will be the population in 5 years time?

[48.71 M]

5. 100 g of a radioactive substance disintegrates
at a rate of 3% per annum. How much of the
substance is left after 11 years? [71.53 g]

6. If £250 is invested at compound interest of
6% per annum determine (a) the value after
15 years, (b) the time, correct to the nearest
year, it takes to reach £750.

[(a) £599.14 (b) 19 years]

7. A drilling machine is to have 8 speeds ran-
ging from 100 rev/min to 1000 rev/min. If the
speeds form a geometric progression deter-
mine their values, each correct to the nearest
whole number.

[100, 139, 193, 268, 373, 518,
720, 1000 rev/min]
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7

The binomial series

7.1 Pascal’s triangle

A binomial expression is one which contains two
terms connected by a plus or minus sign. Thus
(p + q), (a+x)2, (2x +y)3 are examples of binomial
expressions. Expanding (a + x)n for integer values
of n from 0 to 6 gives the results as shown at the
bottom of the page.

From these results the following patterns emerge:

(i) ‘a’decreases in power moving from left to right.
(ii) ‘x’ increases in power moving from left to right.

(iii) The coefficients of each term of the expansions
are symmetrical about the middle coefficient
when n is even and symmetrical about the two
middle coefficients when n is odd.

(iv) The coefficients are shown separately in
Table 7.1 and this arrangement is known as
Pascal’s triangle. A coefficient of a term may
be obtained by adding the two adjacent coeffi-
cients immediately above in the previous row.
This is shown by the triangles in Table 7.1,
where, for example, 1 + 3 = 4, 10 + 5 = 15,
and so on.

(v) Pascal’s triangle method is used for expansions
of the form (a + x)n for integer values of n less
than about 8.

Problem 1. Use the Pascal’s triangle method
to determine the expansion of (a + x)7.

From Table 7.1, the row of Pascal’s triangle corres-
ponding to (a+x)6 is as shown in (1) below. Adding
adjacent coefficients gives the coefficients of (a+x)7

(a + x)0 = 1
(a + x)1 = a + x a + x
(a + x)2 = (a + x)(a + x) = a2 + 2ax + x2

(a + x)3 = (a + x)2(a + x) = a3 + 3a2x + 3ax2 + x3

(a + x)4 = (a + x)3(a + x) = a4 + 4a3x + 6a2x2 + 4ax3 + x4

(a + x)5 = (a + x)4(a + x) = a5 + 5a4x + 10a3x2 + 10a2x3 + 5ax4 + x5

(a + x)6 = (a + x)5(a + x) = a6 + 6a5x + 15a4x2 + 20a3x3 + 15a2x4 + 6ax5 + x6

Table 7.1

as shown in (2) below.

The first and last terms of the expansion of (a + x)7

are a7 and x7 respectively. The powers of ‘a’decrease
and the powers of ‘x’ increase moving from left to
right.
Hence

(a + x)7 = a7 + 7a6x + 21a5x2 + 35a4x3

+ 35a3x4 + 21a2x5 + 7ax6 + x7

Problem 2. Determine, using Pascal’s triangle
method, the expansion of (2p − 3q)5.

Comparing (2p − 3q)5 with (a + x)5 shows that
a = 2p and x = −3q.
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Using Pascal’s triangle method:

(a + x)5 = a5 + 5a4x + 10a3x2 + 10a2x3 + · · ·
Hence

(2p − 3q)5 = (2p)5 + 5(2p)4(−3q)

+ 10(2p)3(−3q)2

+ 10(2p)2(−3q)3

+ 5(2p)(−3q)4 + (−3q)5

i.e. (2p − 3q)5 = 32p5− 240p4q + 720p3q2

− 1080p2q3 + 810pq4 − 243q5

Now try the following exercise.

Exercise 32 Further problems on Pascal’s
triangle

1. Use Pascal’s triangle to expand (x − y)7

[
x7 − 7x6y + 21x5y2 − 35x4y3

+ 35x3y4 − 21x2y5 + 7xy6 − y7

]

2. Expand (2a + 3b)5 using Pascal’s triangle
[

32a5 + 240a4b + 720a3b2

+ 1080a2b3 + 810ab4 + 243b5

]

7.2 The binomial series

The binomial series or binomial theorem is a
formula for raising a binomial expression to any
power without lengthy multiplication. The general
binomial expansion of (a + x)n is given by:

(a + x)n = an + nan−1x + n(n − 1)

2! an−2x2

+ n(n − 1)(n − 2)

3! an−3x3

+ · · ·

where 3! denotes 3×2×1 and is termed ‘factorial 3’.
With the binomial theorem n may be a fraction, a
decimal fraction or a positive or negative integer.
When n is a positive integer, the series is finite, i.e.,
it comes to an end; when n is a negative integer, or a
fraction, the series is infinite.
In the general expansion of (a + x)n it is noted that

the 4th term is:
n(n − 1)(n − 2)

3! an−3x3. The number

3 is very evident in this expression.

For any term in a binomial expansion, say the
r’th term, (r − 1) is very evident. It may therefore
be reasoned that the r’th term of the expansion
(a + x)n is:

n(n − 1)(n − 2) . . . to (r − 1) terms
(r − 1)! an−(r−1)xr−1

If a = 1 in the binomial expansion of (a + x)n then:

(1 + x)n = 1 + nx + n(n − 1)
2! x2

+ n(n − 1)(n − 2)
3! x3 + · · ·

which is valid for −1 < x < 1.
When x is small compared with 1 then:

(1 + x)n ≈ 1 + nx

7.3 Worked problems on the binomial
series

Problem 3. Use the binomial series to deter-
mine the expansion of (2 + x)7.

The binomial expansion is given by:

(a + x)n = an + nan−1x + n(n − 1)

2! an−2x2

+ n(n − 1)(n − 2)

3! an−3x3 + · · ·

When a = 2 and n = 7:

(2 + x)7 = 27 + 7(2)6x + (7)(6)

(2)(1)
(2)5x2

+ (7)(6)(5)

(3)(2)(1)
(2)4x3 + (7)(6)(5)(4)

(4)(3)(2)(1)
(2)3x4

+ (7)(6)(5)(4)(3)

(5)(4)(3)(2)(1)
(2)2x5

+ (7)(6)(5)(4)(3)(2)

(6)(5)(4)(3)(2)(1)
(2)x6

+ (7)(6)(5)(4)(3)(2)(1)

(7)(6)(5)(4)(3)(2)(1)
x7

i.e. (2 + x)7= 128 + 448x + 672x2 + 560x3

+ 280x4 + 84x5 + 14x6 + x7
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Problem 4. Expand

(

c − 1

c

)5

using the bino-

mial series.

(

c − 1

c

)5

= c5 + 5c4
(

−1

c

)

+ (5)(4)

(2)(1)
c3
(

−1

c

)2

+ (5)(4)(3)

(3)(2)(1)
c2
(

−1

c

)3

+ (5)(4)(3)(2)

(4)(3)(2)(1)
c

(

−1

c

)4

+ (5)(4)(3)(2)(1)

(5)(4)(3)(2)(1)

(

−1

c

)5

i.e.

(

c − 1
c

)5

= c5 − 5c3 + 10c − 10
c

+ 5
c3 − 1

c5

Problem 5. Without fully expanding (3 + x)7,
determine the fifth term.

The r’th term of the expansion (a + x)n is given by:

n(n − 1)(n − 2) . . . to (r − 1) terms

(r − 1)! an−(r−1)xr−1

Substituting n = 7, a = 3 and r − 1 = 5 − 1 = 4
gives:

(7)(6)(5)(4)

(4)(3)(2)(1)
(3)7−4x4

i.e. the fifth term of (3 + x)7 = 35(3)3x4 = 945x4

Problem 6. Find the middle term of(

2p − 1

2q

)10

In the expansion of (a + x)10 there are 10 + 1, i.e. 11
terms. Hence the middle term is the sixth. Using the
general expression for the r’th term where a = 2p,

x = − 1

2q
, n = 10 and r − 1 = 5 gives:

(10)(9)(8)(7)(6)

(5)(4)(3)(2)(1)
(2p)10–5

(

− 1

2q

)5

= 252(32p5)

(

− 1

32q5

)

Hence the middle term of

(

2p − 1

2q

)10

is −252
p5

q5

Problem 7. Evaluate (1.002)9 using the bino-
mial theorem correct to (a) 3 decimal places and
(b) 7 significant figures.

(1 + x)n = 1 + nx + n(n − 1)

2! x2

+ n(n − 1)(n − 2)

3! x3 + · · ·

(1.002)9 = (1 + 0.002)9

Substituting x = 0.002 and n = 9 in the general
expansion for (1 + x)n gives:

(1 + 0.002)9 = 1 + 9(0.002) + (9)(8)

(2)(1)
(0.002)2

+ (9)(8)(7)

(3)(2)(1)
(0.002)3 + · · ·

= 1 + 0.018 + 0.000144

+ 0.000000672 + · · ·
= 1.018144672 . . .

Hence (1.002)9 = 1.018, correct to 3 decimal
places

= 1.018145, correct to
7 significant figures

Problem 8. Evaluate (0.97)6 correct to 4 sig-
nificant figures using the binomial expansion.

(0.97)6 is written as (1 − 0.03)6

Using the expansion of (1 + x)n where n = 6 and
x = −0.03 gives:

(1 − 0.03)6 = 1 + 6(−0.03) + (6)(5)

(2)(1)
(−0.03)2

+ (6)(5)(4)

(3)(2)(1)
(−0.03)3

+ (6)(5)(4)(3)

(4)(3)(2)(1)
(−0.03)4 + · · ·

= 1 − 0.18 + 0.0135 − 0.00054

+ 0.00001215 − · · ·
≈ 0.83297215
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i.e. (0.97)6 = 0.8330, correct to 4 significant

figures

Problem 9. Determine the value of (3.039)4,
correct to 6 significant figures using the binomial
theorem.

(3.039)4 may be written in the form (1 + x)n as:

(3.039)4 = (3 + 0.039)4

=
[

3

(

1 + 0.039

3

)]4

= 34(1 + 0.013)4

(1 + 0.013)4 = 1 + 4(0.013)

+ (4)(3)

(2)(1)
(0.013)2

+ (4)(3)(2)

(3)(2)(1)
(0.013)3 + · · ·

= 1 + 0.052 + 0.001014

+ 0.000008788 + · · ·
= 1.0530228

correct to 8 significant figures

Hence (3.039)4 = 34(1.0530228)
= 85.2948, correct to

6 significant figures

Now try the following exercise.

Exercise 33 Further problems on the bino-
mial series

1. Use the binomial theorem to expand
(a + 2x)4.

[
a4 + 8a3x + 24a2x2

+ 32ax3 + 16x4

]

2. Use the binomial theorem to expand
(2 − x)6.

[
64 − 192x + 240x2 − 160x3

+ 60x4 − 12x5 + x6

]

3. Expand (2x − 3y)4

[
16x4 − 96x3y + 216x2y2

− 216xy3 + 81y4

]

4. Determine the expansion of

(

2x + 2

x

)5

.

⎡

⎢
⎣

32x5 + 160x3 + 320x + 320

x

+ 160

x3 + 32

x5

⎤

⎥
⎦

5. Expand (p + 2q)11 as far as the fifth term.
[

p11 + 22p10q + 220p9q2

+ 1320p8q3 + 5280p7q4

]

6. Determine the sixth term of
(

3p + q

3

)13
.

[34749 p8q5]

7. Determine the middle term of (2a − 5b)8.

[700000 a4b4]

8. Use the binomial theorem to determine,
correct to 4 decimal places:
(a) (1.003)8 (b) (1.042)7

[(a) 1.0243 (b) 1.3337]

9. Use the binomial theorem to determine,
correct to 5 significant figures:
(a) (0.98)7 (b) (2.01)9

[(a) 0.86813 (b) 535.51]

10. Evaluate (4.044)6 correct to 3 decimal
places.

[4373.880]

7.4 Further worked problems on the
binomial series

Problem 10.

(a) Expand
1

(1 + 2x)3 in ascending powers

of x as far as the term in x3, using the
binomial series.

(b) State the limits of x for which the expan-
sion is valid.

(a) Using the binomial expansion of (1 + x)n, where
n = −3 and x is replaced by 2x gives:

1

(1 + 2x)3 = (1 + 2x)−3
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= 1 + (−3)(2x) + (−3)(−4)

2! (2x)2

+ (−3)(−4)(−5)

3! (2x)3 + · · ·
= 1 − 6x + 24x2 − 80x3 + · · ·

(b) The expansion is valid provided |2x| < 1,

i.e. |x| < 1
2

or − 1
2

< x <
1
2

Problem 11.

(a) Expand
1

(4 − x)2 in ascending powers of x

as far as the term in x3, using the binomial
theorem.

(b) What are the limits of x for which the
expansion in (a) is true?

(a)
1

(4 − x)2 = 1
[
4
(

1 − x

4

)]2 = 1

42
(

1 − x

4

)2

= 1

16

(
1 − x

4

)−2

Using the expansion of (1 + x)n

1

(4 − x)2 = 1

16

(
1 − x

4

)−2

= 1

16

[

1 + (−2)
(
−x

4

)

+ (−2)(−3)

2!
(
−x

4

)2

+ (−2)(−3)(−4)

3!
(
−x

4

)3 + · · ·
]

= 1
16

(

1 + x
2

+ 3x2

16
+ x3

16
+ · · ·

)

(b) The expansion in (a) is true provided
∣
∣
∣
x

4

∣
∣
∣ < 1,

i.e. |x| < 4 or −4 < x < 4

Problem 12. Use the binomial theorem to
expand

√
4 + x in ascending powers of x to

four terms. Give the limits of x for which the
expansion is valid.

√
4 + x =

√[
4
(

1 + x

4

)]

= √
4

√(
1 + x

4

)
= 2

(
1 + x

4

) 1
2

Using the expansion of (1 + x)n,

2
(

1 + x

4

) 1
2

= 2

[

1 +
(

1

2

)(x

4

)
+ (1/2)(−1/2)

2!
(x

4

)2

+ (1/2)(−1/2)(−3/2)

3!
(x

4

)3 + · · ·
]

= 2

(

1 + x

8
− x2

128
+ x3

1024
− · · ·

)

= 2 + x
4

− x2

64
+ x3

512
− · · ·

This is valid when
∣
∣
∣
x

4

∣
∣
∣<1,

i.e. |x| < 4 or −4 < x < 4

Problem 13. Expand
1√

(1 − 2t)
in ascending

powers of t as far as the term in t3.

State the limits of t for which the expression is
valid.

1√
(1 − 2t)

= (1 − 2t)−
1
2

= 1 +
(

−1

2

)

(−2t) + (−1/2)(−3/2)

2! (−2t)2

+ (−1/2)(−3/2)(−5/2)

3! (−2t)3 + · · · ,

using the expansion for (1 + x)n

= 1 + t + 3
2

t2 + 5
2

t3 + · · ·

The expression is valid when |2t| < 1,

i.e. |t| < 1
2

or −1
2

< t <
1
2
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AProblem 14. Simplify
3
√

(1 − 3x)
√

(1 + x)
(

1 + x

2

)3

given that powers of x above the first may be
neglected.

3
√

(1 − 3x)
√

(1 + x)
(

1 + x

2

)3

= (1 − 3x)
1
3 (1 + x)

1
2
(

1 + x

2

)−3

≈
[

1 +
(

1

3

)

(−3x)

][

1 +
(

1

2

)

(x)

][
1 + (−3)

(x

2

)]

when expanded by the binomial theorem as far as
the x term only,

= (1 − x)
(

1 + x

2

)(

1 − 3x

2

)

=
(

1 − x + x

2
− 3x

2

)
when powers of x higher
than unity are neglected

= (1 − 2x)

Problem 15. Express

√
(1 + 2x)

3
√

(1 − 3x)
as a power

series as far as the term in x2. State the range of
values of x for which the series is convergent.

√
(1 + 2x)

3
√

(1 − 3x)
= (1 + 2x)

1
2 (1 − 3x)−

1
3

(1 + 2x)
1
2 = 1 +

(
1

2

)

(2x)

+ (1/2)(−1/2)

2! (2x)2 + · · ·

= 1 + x − x2

2
+ · · · which is valid for

|2x| < 1, i.e. |x| <
1

2

(1 − 3x)−
1
3 = 1 + (−1/3)(−3x)

+ (−1/3)(−4/3)

2! (−3x)2 + · · ·

= 1 + x + 2x2 + · · · which is valid for

|3x| < 1, i.e. |x| <
1

3

Hence
√

(1 + 2x)
3
√

(1 − 3x)
= (1 + 2x)

1
2 (1 − 3x)−

1
3

=
(

1 + x − x2

2
+ · · ·

)

(1 + x + 2x2 + · · · )

= 1 + x + 2x2 + x + x2 − x2

2
,

neglecting terms of higher power than 2,

= 1 + 2x + 5
2

x2

The series is convergent if −1
3

< x <
1
3

Now try the following exercise.

Exercise 34 Further problems on the bino-
mial series

In problems 1 to 5 expand in ascending powers
of x as far as the term in x3, using the binomial
theorem. State in each case the limits of x for
which the series is valid.

1.
1

(1 − x)

[1 + x + x2 + x3 + · · · , |x| < 1]

2.
1

(1 + x)2

[1 − 2x + 3x2 − 4x3 + · · · , |x| < 1]

3.
1

(2 + x)3

⎡

⎣
1

8

(

1 − 3x

2
+ 3x2

2
− 5x3

4
+ · · ·

)

|x| < 2

⎤

⎦

4.
√

2 + x
⎡

⎣
√

2

(

1 + x

4
− x2

32
+ x3

128
− · · ·

)

|x| < 2

⎤

⎦
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5.
1√

1 + 3x
⎡

⎢
⎢
⎣

(

1 − 3

2
x + 27

8
x2 − 135

16
x3 + · · ·

)

|x| <
1

3

⎤

⎥
⎥
⎦

6. Expand (2 + 3x)−6 to three terms. For what
values of x is the expansion valid?

⎡

⎢
⎢
⎣

1

64

(

1 − 9x + 189

4
x2
)

|x| <
2

3

⎤

⎥
⎥
⎦

7. When x is very small show that:

(a)
1

(1 − x)2
√

(1 − x)
≈ 1 + 5

2
x

(b)
(1 − 2x)

(1 − 3x)4 ≈ 1 + 10x

(c)

√
1 + 5x

3
√

1 − 2x
≈ 1 + 19

6
x

8. If x is very small such that x2 and higher pow-
ers may be neglected, determine the power

series for

√
x + 4 3

√
8 − x

5
√

(1 + x)3
[

4 − 31

15
x

]

9. Express the following as power series in
ascending powers of x as far as the term in
x2. State in each case the range of x for which
the series is valid.

(a)

√(
1 − x

1 + x

)

(b)
(1 + x) 3

√
(1 − 3x)2

√
(1 + x2)

⎡

⎢
⎢
⎣

(a) 1 − x + 1

2
x2, |x| < 1

(b) 1 − x − 7

2
x2, |x| <

1

3

⎤

⎥
⎥
⎦

7.5 Practical problems involving the
binomial theorem

Binomial expansions may be used for numerical
approximations, for calculations with small vari-
ations and in probability theory (see Chapter 57).

Problem 16. The radius of a cylinder is
reduced by 4% and its height is increased by 2%.
Determine the approximate percentage change
in (a) its volume and (b) its curved surface area,
(neglecting the products of small quantities).

Volume of cylinder = πr2h.
Let r and h be the original values of radius and
height.
The new values are 0.96r or (1 − 0.04)r and 1.02h
or (1 + 0.02)h.

(a) New volume = π[(1 − 0.04)r]2[(1 + 0.02)h]

= πr2h(1 − 0.04)2(1 + 0.02)

Now (1 − 0.04)2 = 1 − 2(0.04) + (0.04)2

= (1 − 0.08),
neglecting powers of small terms.

Hence new volume

≈ πr2h(1 − 0.08)(1 + 0.02)

≈ πr2h(1 − 0.08 + 0.02), neglecting
products of small terms

≈ πr2h(1 − 0.06) or 0.94πr2h, i.e. 94%
of the original volume

Hence the volume is reduced by approxi-
mately 6%.

(b) Curved surface area of cylinder = 2πrh.
New surface area

= 2π[(1 − 0.04)r][(1 + 0.02)h]

= 2πrh(1 − 0.04)(1 + 0.02)

≈ 2πrh(1 − 0.04 + 0.02), neglecting

products of small terms

≈ 2πrh(1 − 0.02) or 0.98(2πrh),

i.e. 98% of the original surface area

Hence the curved surface area is reduced by
approximately 2%.

Problem 17. The second moment of area of

a rectangle through its centroid is given by
bl3

12
.

Determine the approximate change in the second
moment of area if b is increased by 3.5% and
l is reduced by 2.5%.
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New values of b and l are (1 + 0.035)b and
(1 − 0.025)l respectively.
New second moment of area

= 1

12
[(1 + 0.035)b][(1 − 0.025)l]3

= bl3

12
(1 + 0.035)(1 − 0.025)3

≈ bl3

12
(1 + 0.035)(1 − 0.075), neglecting

powers of small terms

≈ bl3

12
(1 + 0.035 − 0.075), neglecting

products of small terms

≈ bl3

12
(1 − 0.040) or (0.96)

bl3

12
, i.e. 96%

of the original second moment of area

Hence the second moment of area is reduced by
approximately 4%.

Problem 18. The resonant frequency of a

vibrating shaft is given by: f = 1

2π

√
k

I
, where

k is the stiffness and I is the inertia of the
shaft. Use the binomial theorem to determine
the approximate percentage error in determin-
ing the frequency using the measured values of
k and I when the measured value of k is 4%
too large and the measured value of I is 2% too
small.

Let f , k and I be the true values of frequency, stiffness
and inertia respectively. Since the measured value of
stiffness, k1, is 4% too large, then

k1 = 104

100
k = (1 + 0.04)k

The measured value of inertia, I1, is 2% too small,
hence

I1 = 98

100
I = (1 − 0.02)I

The measured value of frequency,

f1 = 1

2π

√
k1

I1
= 1

2π
k

1
2
1 I

− 1
2

1

= 1

2π
[(1 + 0.04)k]

1
2 [(1 − 0.02)I]−

1
2

= 1

2π
(1 + 0.04)

1
2 k

1
2 (1 − 0.02)−

1
2 I− 1

2

= 1

2π
k

1
2 I− 1

2 (1 + 0.04)
1
2 (1 − 0.02)−

1
2

i.e. f1 = f (1 + 0.04)
1
2 (1 − 0.02)−

1
2

≈ f

[

1 +
(

1

2

)

(0.04)

] [

1 +
(

−1

2

)

(−0.02)

]

≈ f (1 + 0.02)(1 + 0.01)

Neglecting the products of small terms,

f1 ≈ (1 + 0.02 + 0.01)f ≈ 1.03f

Thus the percentage error in f based on the
measured values of k and I is approximately
[(1.03)(100) − 100], i.e. 3% too large.

Now try the following exercise.

Exercise 35 Further practical problems
involving the binomial theorem

1. Pressure p and volume v are related by
pv3 = c, where c is a constant. Determine the
approximate percentage change in c when p
is increased by 3% and v decreased by 1.2%.

[0.6% decrease]

2. Kinetic energy is given by 1
2 mv2. Deter-

mine the approximate change in the kinetic
energy when mass m is increased by 2.5%
and the velocity v is reduced by 3%.

[3.5% decrease]

3. An error of +1.5% was made when meas-
uring the radius of a sphere. Ignoring the
products of small quantities determine the
approximate error in calculating (a) the vol-
ume, and (b) the surface area.

[
(a) 4.5% increase

(b) 3.0% increase

]

4. The power developed by an engine is given
by I = k PLAN, where k is a constant. Deter-
mine the approximate percentage change in
the power when P and A are each increased
by 2.5% and L and N are each decreased by
1.4%. [2.2% increase]
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5. The radius of a cone is increased by 2.7%
and its height reduced by 0.9%. Determine
the approximate percentage change in its
volume, neglecting the products of small
terms. [4.5% increase]

6. The electric field strength H due to a magnet
of length 2l and moment M at a point on its
axis distance x from the centre is given by

H = M

2l

{
1

(x − l)2 − 1

(x + l)2

}

Show that if l is very small compared with

x, then H ≈ 2M

x3 .

7. The shear stress τ in a shaft of diameter

D under a torque T is given by: τ = kT

πD3 .

Determine the approximate percentage error
in calculating τ if T is measured 3% too
small and D 1.5% too large.

[7.5% decrease]

8. The energy W stored in a flywheel is given
by: W = kr5N2, where k is a constant, r
is the radius and N the number of revolu-
tions. Determine the approximate percent-
age change in W when r is increased by
1.3% and N is decreased by 2%.

[2.5% increase]

9. In a series electrical circuit containing
inductance L and capacitance C the resonant

frequency is given by: fr = 1

2π
√

LC
. If the

values of L and C used in the calculation are
2.6% too large and 0.8% too small respect-
ively, determine the approximate percentage
error in the frequency.

[0.9% too small]

10. The viscosity η of a liquid is given by:

η = kr4

νl
, where k is a constant. If there is

an error in r of +2%, in ν of +4% and l of
−3%, what is the resultant error in η?

[+7%]

11. A magnetic pole, distance x from the plane
of a coil of radius r, and on the axis of the
coil, is subject to a force F when a cur-
rent flows in the coil. The force is given

by: F = kx
√

(r2 + x2)5
, where k is a constant.

Use the binomial theorem to show that when
x is small compared to r, then

F ≈ kx

r5
− 5kx3

2r7

12. The flow of water through a pipe is given by:

G =
√

(3d)5H

L
. If d decreases by 2% and H

by 1%, use the binomial theorem to estimate
the decrease in G. [5.5%]
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8

Maclaurin’s series

8.1 Introduction

Some mathematical functions may be represented as
power series, containing terms in ascending powers
of the variable. For example,

ex = 1 + x + x2

2! + x3

3! + · · ·

sin x = x − x3

3! + x5

5! − x7

7! + · · ·

and cosh x = 1 + x2

2! + x4

4! + · · ·
(as introduced in Chapter 5)

Using a series, called Maclaurin’s series, mixed
functions containing, say, algebraic, trigonometric
and exponential functions, may be expressed solely
as algebraic functions, and differentiation and inte-
gration can often be more readily performed.

8.2 Derivation of Maclaurin’s theorem

Let the power series for f (x) be

f (x) = a0 + a1x + a2x2 + a3x3 + a4x4

+ a5x5 + · · · (1)

where a0, a1, a2, . . . are constants.

When x = 0, f (0) = a0.
Differentiating equation (1) with respect to x gives:

f ′(x) = a1 + 2a2x + 3a3x2 + 4a4x3

+ 5a5x4 + · · · (2)

When x = 0, f ′(0) = a1.
Differentiating equation (2) with respect to x gives:

f ′′(x) = 2a2 + (3)(2)a3x + (4)(3)a4x2

+ (5)(4)a5x3 + · · · (3)

When x = 0, f ′′(0) = 2a2 = 2!a2, i.e. a2 = f ′′(0)
2!

Differentiating equation (3) with respect to x gives:

f ′′′(x) = (3)(2)a3 + (4)(3)(2)a4x

+ (5)(4)(3)a5x2 + · · · (4)

When x = 0, f ′′′(0) = (3)(2)a3 = 3!a3, i.e. a3 = f ′′′(0)
3!

Continuing the same procedure gives a4 = f iv(0)
4! ,

a5 = f v(0)
5! , and so on.

Substituting for a0, a1, a2, . . . in equation (1) gives:

f (x) = f (0) + f ′(0)x + f ′′(0)

2! x2

+ f ′′′(0)

3! x3 + · · ·

i.e.
f (x) = f (0) + xf ′(0) + x2

2! f ′′(0)

+ x3

3! f ′′′(0) + · · ·
(5)

Equation (5) is a mathematical statement called
Maclaurin’s theorem or Maclaurin’s series.

8.3 Conditions of Maclaurin’s series

Maclaurin’s series may be used to represent any
function, say f (x), as a power series provided that
at x = 0 the following three conditions are met:

(a) f (0) �= ∞
For example, for the function f (x) = cos x,
f (0) = cos 0 = 1, thus cos x meets the condition.
However, if f (x) = ln x, f (0) = ln 0 = −∞,
thus ln x does not meet this condition.

(b) f ′(0), f ′′(0), f ′′′(0), . . . �= ∞
For example, for the function f (x) = cos x,
f ′(0) = −sin 0 = 0, f ′′(0) = −cos 0 = −1, and so
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on; thus cos x meets this condition. However,
if f (x) = ln x, f ′(0) = 1

0 = ∞, thus ln x does not
meet this condition.

(c) The resultant Maclaurin’s series must be
convergent
In general, this means that the values of the
terms, or groups of terms, must get progres-
sively smaller and the sum of the terms must
reach a limiting value.

For example, the series 1 + 1
2 + 1

4 + 1
8 + · · · is

convergent since the value of the terms is getting
smaller and the sum of the terms is approaching
a limiting value of 2.

8.4 Worked problems on Maclaurin’s
series

Problem 1. Determine the first four terms of
the power series for cos x.

The values of f (0), f ′(0), f ′′(0), . . . in the
Maclaurin’s series are obtained as follows:

f (x) = cos x f (0) = cos 0 = 1

f ′(x) = −sin x f ′(0) = −sin 0 = 0

f ′′(x) = −cos x f ′′(0) = −cos 0 = −1

f ′′′(x) = sin x f ′′′(0) = sin 0 = 0

f iv(x) = cos x f iv(0) = cos 0 = 1

f v(x) = −sin x f v(0) = −sin 0 = 0

f vi(x) = −cos x f vi(0) = −cos 0 = −1

Substituting these values into equation (5) gives:

f (x) = cos x = 1 + x(0) + x2

2! (−1) + x3

3! (0)

+ x4

4! (1) + x5

5! (0) + x6

6! (−1) + · · ·

i.e. cos x = 1 − x2

2! + x4

4! − x6

6! + · · ·

Problem 2. Determine the power series for
cos 2θ.

Replacing x with 2θ in the series obtained in Prob-
lem 1 gives:

cos 2θ = 1 − (2θ)2

2! + (2θ)4

4! − (2θ)6

6! + · · ·

= 1 − 4θ2

2
+ 16θ4

24
− 64θ6

720
+ · · ·

i.e. cos 2θ = 1 − 2θ2 + 2
3
θ4 − 4

45
θ6 + · · ·

Problem 3. Determine the power series for
tan x as far as the term in x3.

f (x) = tan x
f (0) = tan 0 = 0

f ′(x) = sec2 x

f ′(0) = sec2 0 = 1

cos2 0
= 1

f ′′(x) = (2 sec x)( sec x tan x)

= 2 sec2 x tan x

f ′′(0) = 2 sec2 0 tan 0 = 0

f ′′′(x) = (2 sec2 x)( sec2 x)

+ (tan x)(4 sec x sec x tan x),
by the product rule,

= 2 sec4 x + 4 sec2 x tan2 x

f ′′′(0) = 2 sec4 0 + 4 sec2 0 tan2 0 = 2

Substituting these values into equation (5) gives:

f (x) = tan x = 0 + (x)(1) + x2

2! (0) + x3

3! (2)

i.e. tan x = x + 1
3

x3

Problem 4. Expand ln(1 + x) to five terms.

f (x) = ln(1 + x) f (0) = ln(1 + 0) = 0

f ′(x) = 1

(1 + x)
f ′(0) = 1

1 + 0
= 1

f ′′(x) = −1

(1 + x)2 f ′′(0) = −1

(1 + 0)2 = −1

f ′′′(x) = 2

(1 + x)3 f ′′′(0) = 2

(1 + 0)3 = 2
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f iv(x) = −6

(1 + x)4 f iv(0) = −6

(1 + 0)4 = −6

f v(x) = 24

(1 + x)5
f v(0) = 24

(1 + 0)5
= 24

Substituting these values into equation (5) gives:

f (x) = ln(1 + x) = 0 + x(1) + x2

2! (−1)

+ x3

3! (2) + x4

4! (−6) + x5

5! (24)

i.e. ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ x5

5
− · · ·

Problem 5. Expand ln(1 − x) to five terms.

Replacing x by −x in the series for ln(1 + x) in
Problem 4 gives:

ln(1 − x) = (−x) − (−x)2

2
+ (−x)3

3

− ( − x)4

4
+ (−x)5

5
− · · ·

i.e. ln(1 − x) = −x − x2

2
− x3

3
− x4

4
− x5

5
− · · ·

Problem 6. Determine the power series for

ln

(
1 + x

1 − x

)

.

ln

(
1 + x

1 − x

)

= ln(1 + x) − ln(1 − x) by the laws of

logarithms, and from Problems 4 and 5,

ln

(
1 + x

1 − x

)

=
(

x − x2

2
+ x3

3
− x4

4
+ x5

5
− · · ·

)

−
(

−x − x2

2
− x3

3
− x4

4
− x5

5
− · · ·

)

= 2x + 2

3
x3 + 2

5
x5 + · · ·

i.e. ln
(

1 + x
1 − x

)

= 2
(

x + x3

3
+ x5

5
+ · · ·

)

Problem 7. Use Maclaurin’s series to find the
expansion of (2 + x)4.

f (x) = (2 + x)4 f (0) = 24 = 16

f ′(x) = 4(2 + x)3 f ′(0) = 4(2)3 = 32

f ′′(x) = 12(2 + x)2 f ′′(0) = 12(2)2 = 48

f ′′′(x) = 24(2 + x)1 f ′′′(0) = 24(2) = 48

f iv(x) = 24 f iv(0) = 24

Substituting in equation (5) gives:

(2 + x)4

= f (0) + xf ′(0) + x2

2! f ′′(0) + x3

3! f ′′′(0) + x4

4! f iv(0)

= 16 + (x)(32) + x2

2! (48) + x3

3! (48) + x4

4! (24)

= 16 + 32x + 24x2 + 8x3 + x4

(This expression could have been obtained by apply-
ing the binomial theorem.)

Problem 8. Expand e
x
2 as far as the term in x4.

f (x) = e
x
2 f (0) = e0 = 1

f ′(x) = 1

2
e

x
2 f ′(0) = 1

2
e0 = 1

2

f ′′(x) = 1

4
e

x
2 f ′′(0) = 1

4
e0 = 1

4

f ′′′(x) = 1

8
e

x
2 f ′′′(0) = 1

8
e0 = 1

8

f iv(x) = 1

16
e

x
2 f iv(0) = 1

16
e0 = 1

16

Substituting in equation (5) gives:

e
x
2 = f (0) + xf ′(0) + x2

2! f ′′(0)

+ x3

3! f ′′′(0) + x4

4! f iv(0) + · · ·

= 1 + (x)

(
1

2

)

+ x2

2!
(

1

4

)

+ x3

3!
(

1

8

)

+ x4

4!
(

1

16

)

+ · · ·

i.e. e
x
2 = 1 + 1

2
x + 1

8
x2 + 1

48
x3+ 1

384
x4 + · · ·
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Problem 9. Develop a series for sinh x using
Maclaurin’s series.

f (x) = sinh x f (0) = sinh 0 = e0 − e−0

2
= 0

f ′(x) = cosh x f ′(0) = cosh 0 = e0 + e−0

2
= 1

f ′′(x) = sinh x f ′′(0) = sinh 0 = 0

f ′′′(x) = cosh x f ′′′(0) = cosh 0 = 1

f iv(x) = sinh x f iv(0) = sinh 0 = 0

f v(x) = cosh x f v(0) = cosh 0 = 1

Substituting in equation (5) gives:

sinh x = f (0) + xf ′(0) + x2

2! f ′′(0) + x3

3! f ′′′(0)

+ x4

4! f iv(0) + x5

5! f v(0) + · · ·

= 0 + (x)(1) + x2

2! (0) + x3

3! (1) + x4

4! (0)

+ x5

5! (1) + · · ·

i.e. sinh x = x + x3

3! + x5

5! + · · ·
(as obtained in Section 5.5)

Problem 10. Produce a power series for
cos2 2x as far as the term in x6.

From double angle formulae, cos 2A = 2 cos2 A − 1
(see Chapter 18).

from which, cos2 A = 1

2
(1 + cos 2A)

and cos2 2x = 1

2
(1 + cos 4x)

From Problem 1,

cos x = 1 − x2

2! + x4

4! − x6

6! + · · ·

hence cos 4x = 1 − (4x)2

2! + (4x)4

4! − (4x)6

6! + · · ·

= 1 − 8x2 + 32

3
x4 − 256

45
x6 + · · ·

Thus cos2 2x = 1

2
(1 + cos 4x)

= 1

2

(

1 + 1 − 8x2 + 32

3
x4 − 256

45
x6 + · · ·

)

i.e. cos2 2x = 1− 4x2 + 16
3

x4 − 128
45

x6 + · · ·

Now try the following exercise.

Exercise 36 Further problems on
Maclaurin’s series

1. Determine the first four terms of the power
series for sin 2x using Maclaurin’s series.

⎡

⎢
⎣

sin 2x = 2x − 4

3
x3 + 4

15
x5

− 8

315
x7 + · · ·

⎤

⎥
⎦

2. Use Maclaurin’s series to produce a power
series for cosh 3x as far as the term in x6.

[

1 + 9

2
x2 + 27

8
x4 + 81

80
x6
]

3. Use Maclaurin’s theorem to determine the
first three terms of the power series for

ln(1 + ex).

[

ln 2 + x

2
+ x2

8

]

4. Determine the power series for cos 4t as far
as the term in t6.

[

1 − 8t2 + 32

3
t4 − 256

45
t6
]

5. Expand e
3
2 x in a power series as far as the

term in x3.

[

1 + 3

2
x + 9

8
x2 + 9

16
x3
]

6. Develop, as far as the term in x4, the power

series for sec 2x.

[

1 + 2x2 + 10

3
x4
]

7. Expand e2θ cos 3θ as far as the term in θ2

using Maclaurin’s series.

[

1 + 2θ − 5

2
θ2
]

8. Determine the first three terms of the series
for sin2 x by applying Maclaurin’s theorem.

[

x2 − 1

3
x4 + 2

45
x6 · · ·

]
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9. Use Maclaurin’s series to determine the

expansion of (3 + 2t)4.
[
81 + 216t + 216t2 + 96t3 + 16t4

]

8.5 Numerical integration using
Maclaurin’s series

The value of many integrals cannot be determined
using the various analytical methods. In Chapter
45, the trapezoidal, mid-ordinate and Simpson’s
rules are used to numerically evaluate such inte-
grals. Another method of finding the approximate
value of a definite integral is to express the func-
tion as a power series using Maclaurin’s series, and
then integrating each algebraic term in turn. This is
demonstrated in the following worked problems.

Problem 11. Evaluate
∫ 0.4

0.1 2 esin θ dθ, correct
to 3 significant figures.

A power series for esin θ is firstly obtained using
Maclaurin’s series.

f (θ) = esin θ f (0) = esin 0 = e0 = 1

f ′(θ) = cos θ esin θ f ′(0)=cos 0 esin 0 = (1)e0 =1

f ′′(θ) = (cos θ)(cos θ esin θ) + (esin θ)(−sin θ),
by the product rule,

= esin θ(cos2 θ − sin θ);

f ′′(0) = e0(cos2 0 − sin 0) = 1

f ′′′(θ) = (esin θ)[(2 cos θ(−sin θ) − cos θ)]

+ (cos2 θ − sin θ)(cos θ esin θ)

= esin θ cos θ[−2 sin θ − 1 + cos2 θ − sin θ]

f ′′′(0) = e0 cos 0[(0 − 1 + 1 − 0)] = 0

Hence from equation (5):

esin θ = f (0) + θf ′(0) + θ2

2! f ′′(0) + θ3

3! f ′′′(0) + · · ·

= 1 + θ + θ2

2
+ 0

Thus
∫ 0.4

0.1
2 esin θ dθ =

∫ 0.4

0.1
2

(

1 + θ + θ2

2

)

dθ

=
∫ 0.4

0.1
(2 + 2θ + θ2)dθ

=
[

2θ + 2θ2

2
+ θ3

3

]0.4

0.1

=
(

0.8 + (0.4)2 + (0.4)3

3

)

−
(

0.2 + (0.1)2 + (0.1)3

3

)

= 0.98133 − 0.21033
= 0.771, correct to 3 significant figures

Problem 12. Evaluate
∫ 1

0

sin θ

θ
dθ using

Maclaurin’s series, correct to 3 significant
figures.

Let f (θ) = sin θ f (0) = 0

f ′(θ) = cos θ f ′(0) = 1

f ′′(θ) = −sin θ f ′′(0) = 0

f ′′′(θ) = −cos θ f ′′′(0) = −1

f iv(θ) = sin θ f iv(0) = 0

f v(θ) = cos θ f v(0) = 1

Hence from equation (5):

sin θ = f (0) + θf ′(0) + θ2

2! f ′′(0) + θ3

3! f ′′′(0)

+ θ4

4! f iv(0) + θ5

5! f v(0) + · · ·

= 0 + θ(1) + θ2

2! (0) + θ3

3! (−1)

+ θ4

4! (0) + θ5

5! (1) + · · ·

i.e. sin θ = θ − θ3

3! + θ5

5! − · · ·
Hence

∫ 1

0

sin θ

θ
dθ =

∫ 1

0

(

θ − θ3

3! + θ5

5! − θ7

7! + · · ·
)

θ
dθ

=
∫ 1

0

(

1 − θ2

6
+ θ4

120
− θ6

5040
+ · · ·

)

dθ
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=
[

θ − θ3

18
+ θ5

600
− θ7

7(5040)
+ · · ·

]1

0

= 1 − 1

18
+ 1

600
− 1

7(5040)
+ · · ·

= 0.946, correct to 3 significant figures

Problem 13. Evaluate
∫ 0.4

0 x ln(1+x) dx using
Maclaurin’s theorem, correct to 3 decimal
places.

From Problem 4,

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ x5

5
− · · ·

Hence
∫ 0.4

0
x ln(1 + x)dx

=
∫ 0.4

0
x

(

x − x2

2
+ x3

3
− x4

4
+ x5

5
− · · ·

)

dx

=
∫ 0.4

0

(

x2 − x3

2
+ x4

3
− x5

4
+ x6

5
− · · ·

)

dx

=
[

x3

3
− x4

8
+ x5

15
− x6

24
+ x7

35
− · · ·

]0.4

0

=
(

(0.4)3

3
− (0.4)4

8
+ (0.4)5

15
− (0.4)6

24

+ (0.4)7

35
− · · ·

)

− (0)

= 0.02133 − 0.0032 + 0.0006827 − · · ·
= 0.019, correct to 3 decimal places

Now try the following exercise.

Exercise 37 Further problems on numerical
integration using Maclaurin’s series

1. Evaluate
∫ 0.6

0.2 3esin θ dθ, correct to 3 decimal
places, using Maclaurin’s series. [1.784]

2. Use Maclaurin’s theorem to expand cos 2θ
and hence evaluate, correct to 2 decimal

places,
∫ 1

0

cos 2θ

θ
1
3

dθ. [0.88]

3. Determine the value of
∫ 1

0

√
θ cos θ dθ, cor-

rect to 2 significant figures, using Maclaurin’s
series. [0.53]

4. Use Maclaurin’s theorem to expand√
x ln(x + 1) as a power series. Hence

evaluate, correct to 3 decimal places,∫ 0.5
0

√
x ln(x + 1) dx. [0.061]

8.6 Limiting values

It is sometimes necessary to find limits of the form

lim
x→a

{
f (x)

g(x)

}

, where f (a) = 0 and g(a) = 0.

For example,

lim
x→1

{
x2 + 3x − 4

x2 − 7x + 6

}

= 1 + 3 − 4

1 − 7 + 6
= 0

0

and 0
0 is generally referred to as indeterminate.

For certain limits a knowledge of series can some-
times help.

For example,

lim
x→0

{
tan x − x

x3

}

≡ lim
x→0

⎧
⎪⎨

⎪⎩

x + 1

3
x3 + · · · − x

x3

⎫
⎪⎬

⎪⎭
from Problem 3

= lim
x→0

⎧
⎪⎨

⎪⎩

1

3
x3 + · · ·

x3

⎫
⎪⎬

⎪⎭
= lim

x→0

{
1

3

}

= 1
3

Similarly,

lim
x→0

{
sinh x

x

}

≡ lim
x→0

⎧
⎪⎪⎨

⎪⎪⎩

x + x3

3! + x5

5! +
x

⎫
⎪⎪⎬

⎪⎪⎭
from Problem 9

= lim
x→0

{

1 + x2

3! + x4

5! + · · ·
}

= 1

However, a knowledge of series does not help with

examples such as lim
x→1

{
x2 + 3x − 4

x2 − 7x + 6

}
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L’Hopital’s rule will enable us to determine such
limits when the differential coefficients of the numer-
ator and denominator can be found.
L’Hopital’s rule states:

lim
x→a

{
f (x)
g(x)

}

= lim
x→a

{
f ′(x)
g′(x)

}

provided g′(a) �= 0

It can happen that lim
x→a

{
f ′(x)

g′(x)

}

is still
0

0
; if so, the

numerator and denominator are differentiated again
(and again) until a non-zero value is obtained for the
denominator.

The following worked problems demonstrate how
L’Hopital’s rule is used. Refer to Chapter 27 for
methods of differentiation.

Problem 14. Determine lim
x→1

{
x2 + 3x − 4

x2 − 7x + 6

}

The first step is to substitute x = 1 into both numer-
ator and denominator. In this case we obtain 0

0 . It is
only when we obtain such a result that we then use
L’Hopital’s rule. Hence applying L’Hopital’s rule,

lim
x→1

{
x2 + 3x − 4

x2 − 7x + 6

}

= lim
x→1

{
2x + 3

2x − 7

}

i.e. both numerator and
denominator have
been differentiated

= 5

−5
= −1

Problem 15. Determine lim
x→0

{
sin x − x

x2

}

Substituting x = 0 gives

lim
x→0

{
sin x − x

x2

}

= sin 0 − 0

0
= 0

0

Applying L’Hopital’s rule gives

lim
x→0

{
sin x − x

x2

}

= lim
x→0

{
cos x − 1

2x

}

Substituting x = 0 gives

cos 0 − 1

0
= 1 − 1

0
= 0

0
again

Applying L’Hopital’s rule again gives

lim
x→0

{
cos x − 1

2x

}

= lim
x→0

{−sin x

2

}

= 0

Problem 16. Determine lim
x→0

{
x − sin x

x − tan x

}

Substituting x = 0 gives

lim
x→0

{
x − sin x

x − tan x

}

= 0 − sin 0

0 − tan 0
= 0

0

Applying L’Hopital’s rule gives

lim
x→0

{
x − sin x

x − tan x

}

= lim
x→0

{
1 − cos x

1 − sec2 x

}

Substituting x = 0 gives

lim
x→0

{
1 − cos x

1 − sec2 x

}

= 1 − cos 0

1 − sec2 0
= 1 − 1

1 − 1
= 0

0
again

Applying L’Hopital’s rule gives

lim
x→0

{
1 − cos x

1 − sec2 x

}

= lim
x→0

{
sin x

(−2 sec x)(sec x tan x)

}

= lim
x→0

{
sin x

−2 sec2 x tan x

}

Substituting x = 0 gives

sin 0

−2 sec2 0 tan 0
= 0

0
again

Applying L’Hopital’s rule gives

lim
x→0

{
sin x

−2 sec2 x tan x

}

= lim
x→0

⎧
⎪⎪⎨

⎪⎪⎩

cos x

(−2 sec2 x)(sec2 x)
+ (tan x)(−4 sec2 x tan x)

⎫
⎪⎪⎬

⎪⎪⎭

using the product rule

Substituting x = 0 gives

cos 0

−2 sec4 0 − 4 sec2 0 tan2 0
= 1

−2 − 0

= −1

2
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Hence lim
x→0

{
x − sin x

x − tan x

}

= −1
2

Now try the following exercise.

Exercise 38 Further problems on limiting
values

Determine the following limiting values

1. lim
x→1

{
x3 − 2x + 1

2x3 + 3x − 5

} [
1

9

]

2. lim
x→0

{
sin x

x

}

[1]

3. lim
x→0

{
ln(1 + x)

x

}

[1]

4. lim
x→0

{
x2 − sin 3x

3x + x2

}

[−1]

5. lim
θ→0

{
sin θ − θ cos θ

θ3

} [
1

3

]

6. lim
t→1

{
ln t

t2 − 1

} [
1

2

]

7. lim
x→0

{
sinh x − sin x

x3

} [
1

3

]

8. lim
θ→ π

2

{
sin θ − 1

ln sin θ

}

[1]

9. lim
t→0

{
sec t − 1

t sin t

} [
1

2

]
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Number and Algebra

Assignment 2

This assignment covers the material contained
in Chapters 6 to 8.

The marks for each question are shown in
brackets at the end of each question.

1. Determine the 20th term of the series 15.6, 15,
14.4, 13.8, ... (3)

2. The sum of 13 terms of an arithmetic progres-
sion is 286 and the common difference is 3.
Determine the first term of the series. (4)

3. An engineer earns £21000 per annum and receives
annual increments of £600. Determine the salary
in the 9th year and calculate the total earnings in
the first 11 years. (5)

4. Determine the 11th term of the series 1.5, 3, 6,
12, . . . (2)

5. Find the sum of the first eight terms of the series
1, 2.5, 6.25, . . . , correct to 1 decimal place. (4)

6. Determine the sum to infinity of the series
5, 1, 1

5 , . . . (3)

7. A machine is to have seven speeds ranging from
25 rev/min to 500 rev/min. If the speeds form
a geometric progression, determine their value,
each correct to the nearest whole number. (8)

8. Use the binomial series to expand (2a − 3b)6

(7)

9. Determine the middle term of

(

3x − 1

3y

)18

(6)

10. Expand the following in ascending powers of t
as far as the term in t3

(a)
1

1 + t
(b)

1√
(1 − 3t)

For each case, state the limits for which the
expansion is valid. (12)

11. When x is very small show that:

1

(1 + x)2
√

(1 − x)
≈ 1 − 3

2
x (5)

12. The modulus of rigidity G is given by G = R4θ

L
where R is the radius, θ the angle of twist and
L the length. Find the approximate percentage
error in G when R is measured 1.5% too large,
θ is measured 3% too small and L is measured
1% too small. (7)

13. Use Maclaurin’s series to determine a power
series for e2x cos 3x as far as the term in x2.

(10)

14. Show, using Maclaurin’s series, that the first four
terms of the power series for cosh 2x is given by:

cosh 2x = 1 + 2x2 + 2

3
x4 + 4

45
x6 (11)

15. Expand the function x2 ln(1 + sin x) using
Maclaurin’s series and hence evaluate:
∫ 1

2

0
x2 ln(1 + sin x) dx correct to 2 significant

figures. (13)
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9

Solving equations by iterative methods

9.1 Introduction to iterative methods

Many equations can only be solved graphically or
by methods of successive approximations to the
roots, called iterative methods. Three methods of
successive approximations are (i) bisection method,
introduced in Section 9.2, (ii) an algebraic method,
introduction in Section 9.3, and (iii) by using the
Newton-Raphson formula, given in Section 9.4.

Each successive approximation method relies on
a reasonably good first estimate of the value of
a root being made. One way of determining this
is to sketch a graph of the function, say y = f (x),
and determine the approximate values of roots from
the points where the graph cuts the x-axis. Another
way is by using a functional notation method. This
method uses the property that the value of the graph
of f (x) = 0 changes sign for values of x just before
and just after the value of a root. For example, one
root of the equation x2 − x − 6 = 0 is x = 3. Using
functional notation:

f (x) = x2 − x − 6

f (2) = 22 − 2 − 6 = −4

f (4) = 42 − 4 − 6 = +6

f(x)

8

4

0−2 2 4 x

−4

−6

f (x) = x2−x−6

Figure 9.1

It can be seen from these results that the value of f (x)
changes from −4 at f (2) to +6 at f (4), indicating
that a root lies between 2 and 4. This is shown more
clearly in Fig. 9.1.

9.2 The bisection method

As shown above, by using functional notation it is
possible to determine the vicinity of a root of an
equation by the occurrence of a change of sign,
i.e. if x1 and x2 are such that f (x1) and f (x2) have
opposite signs, there is at least one root of the
equation f (x) = 0 in the interval between x1 and
x2 (provided f (x) is a continuous function). In the
method of bisection the mid-point of the inter-

val, i.e. x3 = x1 + x2

2
, is taken, and from the sign

of f (x3) it can be deduced whether a root lies in the
half interval to the left or right of x3. Whichever half
interval is indicated, its mid-point is then taken and
the procedure repeated. The method often requires
many iterations and is therefore slow, but never fails
to eventually produce the root. The procedure stops
when two successive value of x are equal—to the
required degree of accuracy.

The method of bisection is demonstrated in Prob-
lems 1 to 3 following.

Problem 1. Use the method of bisection to find
the positive root of the equation
5x2 + 11x − 17 = 0 correct to 3 significant
figures.

Let f (x) = 5x2 + 11x − 17
then, using functional notation:

f (0) = −17

f (1) = 5(1)2 + 11(1) − 17 = −1

f (2) = 5(2)2 + 11(2) − 17 = +25

Since there is a change of sign from negative
to positive there must be a root of the equation
between x = 1 and x = 2. This is shown graphically
in Fig. 9.2.
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−3 −2 −1 1 2

20

f (x)

f (x) = 5x2+11x−17

10

−10

−17
−20

0

Figure 9.2

The method of bisection suggests that the root is

at
1 + 2

2
= 1.5, i.e. the interval between 1 and 2 has

been bisected.

Hence

f (1.5) = 5(1.5)2 + 11(1.5) − 17

= +10.75

Since f (1) is negative, f (1.5) is positive, and f (2) is
also positive, a root of the equation must lie between
x = 1 and x = 1.5, since a sign change has occurred
between f (1) and f (1.5).

Bisecting this interval gives
1 + 1.5

2
i.e. 1.25 as the

next root.

Hence

f (1.25) = 5(1.25)2 + 11x − 17

= +4.5625

Since f (1) is negative and f (1.25) is positive, a root
lies between x = 1 and x = 1.25.

Bisecting this interval gives
1 + 1.25

2
i.e. 1.125

Hence

f (1.125) = 5(1.125)2 + 11(1.125) − 17

= +1.703125

Since f (1) is negative and f (1.125) is positive, a root
lies between x = 1 and x = 1.125.

Bisecting this interval gives
1 + 1.125

2
i.e. 1.0625.

Hence

f (1.0625) = 5(1.0625)2 + 11(1.0625) − 17

= +0.33203125

Since f (1) is negative and f (1.0625) is positive, a
root lies between x = 1 and x = 1.0625.

Bisecting this interval gives
1 + 1.0625

2
i.e.

1.03125.

Hence

f (1.03125) = 5(1.03125)2 + 11(1.03125) − 17

= −0.338867 . . .

Since f (1.03125) is negative and f (1.0625) is posi-
tive, a root lies between x = 1.03125 and x = 1.0625.

Bisecting this interval gives

1.03125 + 1.0625

2
i.e. 1.046875

Hence

f (1.046875) = 5(1.046875)2 + 11(1.046875) − 17

= −0.0046386 . . .

Since f (1.046875) is negative and f (1.0625) is
positive, a root lies between x = 1.046875 and
x = 1.0625.

Bisecting this interval gives

1.046875 + 1.0625

2
i.e. 1.0546875

The last three values obtained for the root are
1.03125, 1.046875 and 1.0546875. The last two val-
ues are both 1.05, correct to 3 significant figure. We
therefore stop the iterations here.

Thus, correct to 3 significant figures, the positive
root of 5x2 + 11x − 17 = 0 is 1.05

Problem 2. Use the bisection method to deter-
mine the positive root of the equation x + 3 = ex,
correct to 3 decimal places.

Let f (x) = x + 3 − ex

then, using functional notation:

f (0) = 0 + 3 − e0 = +2
f (1) = 1 + 3 − e1 = +1.2817 . . .

f (2) = 2 + 3 − e2 = −2.3890 . . .
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Since f (1) is positive and f (2) is negative, a root
lies between x = 1 and x = 2. A sketch of f (x) =
x + 3 − ex, i.e. x + 3 = ex is shown in Fig. 9.3.

f (x)

4

−2 

f (x) = ex

f (x) = x+3

3

2

0 

1

−1 1 2 x 

Figure 9.3

Bisecting the interval between x = 1 and x = 2 gives
1 + 2

2
i.e. 1.5.

Hence

f (1.5) = 1.5 + 3 − e1.5

= +0.01831 . . .

Since f (1.5) is positive and f (2) is negative, a root
lies between x = 1.5 and x = 2.

Bisecting this interval gives
1.5 + 2

2
i.e. 1.75.

Hence

f (1.75) = 1.75 + 3 − e1.75

= −1.00460 . . .

Since f (1.75) is negative and f (1.5) is positive, a root
lies between x = 1.75 and x = 1.5.

Bisecting this interval gives
1.75 + 1.5

2
i.e. 1.625.

Hence

f (1.625) = 1.625 + 3 − e1.625

= −0.45341 . . .

Since f (1.625) is negative and f (1.5) is positive, a
root lies between x = 1.625 and x = 1.5.

Bisecting this interval gives
1.625 + 1.5

2
i.e. 1.5625.

Hence

f (1.5625) = 1.5625 + 3 − e1.5625

= −0.20823 . . .

Since f (1.5625) is negative and f (1.5) is positive, a
root lies between x = 1.5625 and x = 1.5.

Bisecting this interval gives

1.5625 + 1.5

2
i.e. 1.53125

Hence

f (1.53125) = 1.53125 + 3 − e1.53125

= −0.09270 . . .

Since f (1.53125) is negative and f (1.5) is positive,
a root lies between x = 1.53125 and x = 1.5.

Bisecting this interval gives

1.53125 + 1.5

2
i.e. 1.515625

Hence

f (1.515625) = 1.515625 + 3 − e1.515625

= −0.03664 . . .

Since f (1.515625) is negative and f (1.5) is positive,
a root lies between x = 1.515625 and x = 1.5.

Bisecting this interval gives

1.515625 + 1.5

2
i.e. 1.5078125

Hence

f (1.5078125) = 1.5078125 + 3 − e1.5078125

= −0.009026 . . .

Since f (1.5078125) is negative and f (1.5) is positive,
a root lies between x = 1.5078125 and x = 1.5.

Bisecting this interval gives

1.5078125 + 1.5

2
i.e. 1.50390625

Hence

f (1.50390625) = 1.50390625 + 3 − e1.50390625

= +0.004676 . . .

Since f (1.50390625) is positive and f (1.5078125)
is negative, a root lies between x = 1.50390625 and
x = 1.5078125.
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Bisecting this interval gives

1.50390625 + 1.5078125

2
i.e. 1.505859375

Hence

f (1.505859375) = 1.505859375 + 3 − e1.505859375

= −0.0021666 . . .

Since f (1.50589375) is negative and f (1.50390625)
is positive, a root lies between x = 1.50589375 and
x = 1.50390625.

Bisecting this interval gives

1.505859375 + 1.50390625

2
i.e. 1.504882813

Hence

f (1.504882813) = 1.504882813 + 3 − e1.504882813

= +0.001256 . . .

Since f (1.504882813) is positive and
f (1.505859375) is negative,

a root lies between x = 1.504882813 and x =
1.505859375.

Bisecting this interval gives

1.504882813 + 1.50589375

2
i.e. 1.505388282

The last two values of x are 1.504882813 and
1.505388282, i.e. both are equal to 1.505, correct
to 3 decimal places.

Hence the root of x + 3 = ex is x = 1.505, correct
to 3 decimal places.

The above is a lengthy procedure and it is proba-
bly easier to present the data in a table as shown in
the table.

Problem 3. Solve, correct to 2 decimal places,
the equation 2 ln x + x = 2 using the method of
bisection.

Let f (x) = 2 ln x + x − 2
f (0.1) = 2 ln (0.1) + 0.1 − 2 = −6.5051 . . .

(Note that ln 0 is infinite that
is why x = 0 was not chosen)

x1 x2 x3 = x1 + x2

2
f (x3)

0 +2

1 +1.2817. . .

2 −2.3890. . .

1 2 1.5 +0.0183. . .

1.5 2 1.75 −1.0046. . .

1.5 1.75 1.625 −0.4534. . .

1.5 1.625 1.5625 −0.2082. . .

1.5 1.5625 1.53125 −0.0927. . .

1.5 1.53125 1.515625 −0.0366. . .

1.5 1.515625 1.5078125 −0.0090. . .

1.5 1.5078125 1.50390625 +0.0046. . .

1.50390625 1.5078125 1.505859375 −0.0021. . .

1.50390625 1.505859375 1.504882813 +0.0012. . .

1.504882813 1.505859375 1.505388282

f (1) = 2 ln 1 + 1 − 2 = −1
f (2) = 2 ln 2 + 2 − 2 = +1.3862 . . .

A change of sign indicates a root lies between x = 1
and x = 2.

Since 2 ln x + x = 2 then 2 ln x = −x + 2; sketches
of 2 ln x and −x + 2 are shown in Fig. 9.4.

f (x)

2

1 2 x

−2

f (x) = −x + 2

f (x) = 2 lnx

0

Figure 9.4
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As shown in Problem 2, a table of values is
produced to reduce space.

x1 x2 x3 = x1 + x2

2
f (x3)

0.1 −6.6051 . . .

1 −1

2 +1.3862 . . .

1 2 1.5 +0.3109 . . .

1 1.5 1.25 −0.3037 . . .

1.25 1.5 1.375 +0.0119 . . .

1.25 1.375 1.3125 −0.1436 . . .

1.3125 1.375 1.34375 −0.0653 . . .

1.34375 1.375 1.359375 −0.0265 . . .

1.359375 1.375 1.3671875 −0.0073 . . .

1.3671875 1.375 1.37109375 +0.0023 . . .

The last two values of x3 are both equal to 1.37 when
expressed to 2 decimal places. We therefore stop the
iterations.

Hence, the solution of 2 ln x + x = 2 is x = 1.37,
correct to 2 decimal places.

Now try the following exercise.

Exercise 39 Further problems on the
bisection method

Use the method of bisection to solve the follow-
ing equations to the accuracy stated.

1. Find the positive root of the equation
x2 + 3x − 5 = 0, correct to 3 significant fig-
ures, using the method of bisection. [1.19]

2. Using the bisection method solve ex − x = 2,
correct to 4 significant figures. [1.146]

3. Determine the positive root of x2 = 4 cos x,
correct to 2 decimal places using the method
of bisection. [1.20]

4. Solve x − 2 − ln x = 0 for the root near to 3,
correct to 3 decimal places using the bisection
method. [3.146]

5. Solve, correct to 4 significant figures,
x − 2 sin2 x = 0 using the bisection method.

[1.849]

9.3 An algebraic method of successive
approximations

This method can be used to solve equations of the
form:

a + bx + cx2 + dx3 + · · · = 0,

where a, b, c, d, . . . are constants.
Procedure:

First approximation

(a) Using a graphical or the functional notation
method (see Section 9.1) determine an approxi-
mate value of the root required, say x1.

Second approximation

(b) Let the true value of the root be (x1 + δ1).

(c) Determine x2 the approximate value of (x1 + δ1)
by determining the value of f (x1 + δ1) = 0, but
neglecting terms containing products of δ1.

Third approximation

(d) Let the true value of the root be (x2 + δ2).

(e) Determine x3, the approximate value of (x2 + δ2)
by determining the value of f (x2 + δ2) = 0, but
neglecting terms containing products of δ2.

(f) The fourth and higher approximations are
obtained in a similar way.

Using the techniques given in paragraphs (b) to (f),
it is possible to continue getting values nearer and
nearer to the required root. The procedure is repeated
until the value of the required root does not change
on two consecutive approximations, when expressed
to the required degree of accuracy.

Problem 4. Use an algebraic method of suc-
cessive approximations to determine the value
of the negative root of the quadratic equation:
4x2 − 6x − 7 = 0 correct to 3 significant figures.
Check the value of the root by using the quadratic
formula.

A first estimate of the values of the roots is made by
using the functional notation method

f (x) = 4x2 − 6x − 7

f (0) = 4(0)2 − 6(0) − 7 = −7

f (−1) = 4(−1)2 − 6(−1) − 7 = 3
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These results show that the negative root lies between
0 and −1, since the value of f (x) changes sign
between f (0) and f (−1) (see Section 9.1). The pro-
cedure given above for the root lying between 0 and
−1 is followed.

First approximation

(a) Let a first approximation be such that it divides
the interval 0 to −1 in the ratio of −7 to 3, i.e.
let x1 = −0.7.

Second approximation

(b) Let the true value of the root, x2, be (x1 + δ1).

(c) Let f (x1 + δ1) = 0, then, since x1 = −0.7,

4(−0.7 + δ1)2 − 6(−0.7 + δ1) − 7 = 0

Hence, 4[(−0.7)2 + (2)(−0.7)(δ1) + δ2
1]

− (6)(−0.7) − 6 δ1 − 7 = 0

Neglecting terms containing products of δ1
gives:

1.96 − 5.6 δ1 + 4.2 − 6 δ1 − 7 ≈ 0

i.e. −5.6 δ1 − 6 δ1 = −1.96 − 4.2 + 7

i.e. δ1 ≈ −1.96 − 4.2 + 7

−5.6 − 6

≈ 0.84

−11.6

≈ −0.0724

Thus, x2, a second approximation to the root is
[−0.7 + (−0.0724)],
i.e. x2 = −0.7724, correct to 4 significant fig-
ures. (Since the question asked for 3 significant
figure accuracy, it is usual to work to one figure
greater than this).

The procedure given in (b) and (c) is now
repeated for x2 = −0.7724.

Third approximation

(d) Let the true value of the root, x3, be (x2 + δ2).

(e) Let f (x2 + δ2) = 0, then, since x2 = −0.7724,

4(−0.7724 + δ2)2 − 6(−0.7724 + δ2) − 7 = 0

4[(−0.7724)2 + (2)(−0.7724)(δ2) + δ2
2]

− (6)(−0.7724) − 6 δ2 − 7 = 0

Neglecting terms containing products of δ2
gives:

2.3864 − 6.1792 δ2 + 4.6344 − 6 δ2 − 7 ≈ 0

i.e. δ2 ≈ −2.3864 − 4.6344 + 7

−6.1792 − 6

≈ −0.0208

−12.1792

≈ +0.001708

Thus x3, the third approximation to the root is
(−0.7724 + 0.001708),
i.e. x3 = −0.7707, correct to 4 significant figures
(or −0.771 correct to 3 significant figures).

Fourth approximation

(f) The procedure given for the second and third
approximations is now repeated for

x3 = −0.7707

Let the true value of the root, x4, be (x3 + δ3).

Let f (x3 + δ3) = 0, then since x3 = −0.7707,

4(−0.7707 + δ3)2 − 6(−0.7707

+ δ3) − 7 = 0

4[(−0.7707)2 + (2)(−0.7707) δ3 + δ2
3]

− 6(−0.7707) − 6 δ3 − 7 = 0

Neglecting terms containing products of δ3
gives:

2.3759 − 6.1656 δ3 + 4.6242 − 6 δ3 − 7 ≈ 0

i.e. δ3 ≈ −2.3759 − 4.6242 + 7

−6.1656 − 6

≈ −0.0001

−12.156

≈ +0.00000822

Thus, x4, the fourth approximation to the root is
(−0.7707 + 0.00000822), i.e. x4 = −0.7707,
correct to 4 significant figures, and −0.771,
correct to 3 significant figures.

Since the values of the roots are the same on two
consecutive approximations, when stated to the
required degree of accuracy, then the negative
root of 4x2 − 6x − 7 = 0 is −0.771, correct to 3
significant figures.
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[Checking, using the quadratic formula:

x = −(−6) ±√[(−6)2 − (4)(4)(−7)]

(2)(4)

= 6 ± 12.166

8
= −0.771 and 2.27,

correct to 3 significant figures]

[Note on accuracy and errors. Depending on the
accuracy of evaluating the f (x + δ) terms, one or two
iterations (i.e. successive approximations) might be
saved. However, it is not usual to work to more than
about 4 significant figures accuracy in this type of
calculation. If a small error is made in calculations,
the only likely effect is to increase the number of
iterations.]

Problem 5. Determine the value of the
smallest positive root of the equation
3x3 − 10x2 + 4x + 7 = 0, correct to 3 significant
figures, using an algebraic method of successive
approximations.

The functional notation method is used to find the
value of the first approximation.

f (x) = 3x3 − 10x2 + 4x + 7

f (0) = 3(0)3 − 10(0)2 + 4(0) + 7 = 7

f (1) = 3(1)3 − 10(1)2 + 4(1) + 7 = 4

f (2) = 3(2)3 − 10(2)2 + 4(2) + 7 = −1

Following the above procedure:

First approximation

(a) Let the first approximation be such that it divides
the interval 1 to 2 in the ratio of 4 to −1, i.e. let
x1 be 1.8.

Second approximation

(b) Let the true value of the root, x2, be (x1 + δ1).

(c) Let f (x1 + δ1) = 0, then since x1 = 1.8,

3(1.8 + δ1)3 − 10(1.8 + δ1)2

+ 4(1.8 + δ1) + 7 = 0

Neglecting terms containing products of δ1 and
using the binomial series gives:

3[1.83 + 3(1.8)2 δ1] − 10[1.82 + (2)(1.8) δ1]
+ 4(1.8 + δ1) + 7 ≈ 0

3(5.832 + 9.720 δ1) − 32.4 − 36 δ1

+ 7.2 + 4 δ1 + 7 ≈ 0

17.496 + 29.16 δ1 − 32.4 − 36 δ1

+ 7.2 + 4 δ1 + 7 ≈ 0

δ1 ≈ −17.496 + 32.4 − 7.2 − 7

29.16 − 36 + 4

≈ −0.704

2.84
≈ −0.2479

Thus x2 ≈ 1.8 − 0.2479 = 1.5521

Third approximation

(d) Let the true value of the root, x3, be (x2 + δ2).

(e) Let f (x2 + δ2) = 0, then since x2 = 1.5521,

3(1.5521 + δ2)3 − 10(1.5521 + δ2)2

+ 4(1.5521 + δ2) + 7 = 0

Neglecting terms containing products of δ2
gives:

11.217 + 21.681 δ2 − 24.090 − 31.042 δ2

+ 6.2084 + 4 δ2 + 7 ≈ 0

δ2 ≈ −11.217 + 24.090 − 6.2084 − 7

21.681 − 31.042 + 4

≈ −0.3354

−5.361

≈ 0.06256

Thus x3 ≈ 1.5521 + 0.06256 ≈ 1.6147

(f) Values of x4 and x5 are found in a similar way.

f (x3 + δ3) = 3(1.6147 + δ3)3 − 10(1.6147

+ δ3)2 + 4(1.6147 + δ3) + 7 = 0

giving δ3 ≈ 0.003175 and x4 ≈ 1.618, i.e. 1.62
correct to 3 significant figures

f (x4 + δ4) = 3(1.618 + δ4)3 − 10(1.618

+ δ4)2 + 4(1.618 + δ4) + 7 = 0

giving δ4 ≈ 0.0000417, and x5 ≈ 1.62, correct
to 3 significant figures.
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Since x4 and x5 are the same when expressed
to the required degree of accuracy, then the
required root is 1.62, correct to 3 significant
figures.

Now try the following exercise.

Exercise 40 Further problems on solving
equations by an algebraic method of succes-
sive approximations

Use an algebraic method of successive approx-
imation to solve the following equations to the
accuracy stated.

1. 3x2 + 5x − 17 = 0, correct to 3 significant
figures. [−3.36, 1.69]

2. x3 − 2x + 14 = 0, correct to 3 decimal places.
[−2.686]

3. x4 − 3x3 + 7x − 5.5 = 0, correct to 3 signifi-
cant figures. [−1.53, 1.68]

4. x4 + 12x3 − 13 = 0, correct to 4 significant
figures. [−12.01, 1.000]

9.4 The Newton-Raphson method

The Newton-Raphson formula, often just referred to
as Newton’s method, may be stated as follows:

If r1 is the approximate value of a real root of the
equation f (x) = 0, then a closer approximation
to the root r2 is given by:

r2 = r1 − f (r1)

f ′(r1)

The advantages of Newton’s method over the alge-
braic method of successive approximations is that it
can be used for any type of mathematical equation
(i.e. ones containing trigonometric, exponential, log-
arithmic, hyperbolic and algebraic functions), and it
is usually easier to apply than the algebraic method.

Problem 6. Use Newton’s method to deter-
mine the positive root of the quadratic equa-
tion 5x2 + 11x − 17 = 0, correct to 3 significant
figures.
Check the value of the root by using the quadratic
formula.

The functional notation method is used to determine
the first approximation to the root.

f (x) = 5x2 + 11x − 17

f (0) = 5(0)2 + 11(0) − 17 = −17

f (1) = 5(1)2 + 11(1) − 17 = −1

f (2) = 5(2)2 + 11(2) − 17 = 25

This shows that the value of the root is close to x = 1.

Let the first approximation to the root, r1, be 1.

Newton’s formula states that a closer approximation,

r2 = r1 − f (r1)

f ′(r1)
f (x) = 5x2 + 11x − 17,

thus, f (r1) = 5(r1)2 + 11(r1) − 17

= 5(1)2 + 11(1) − 17 = −1

f ′(x) is the differential coefficient of f (x),

i.e. f ′(x) = 10x + 11.

Thus f ′(r1) = 10(r1) + 11

= 10(1) + 11 = 21

By Newton’s formula, a better approximation to the
root is:

r2 = 1 − −1

21
= 1 − (−0.048) = 1.05,

correct to 3 significant figures.

A still better approximation to the root, r3, is
given by:

r3 = r2 − f (r2)

f ′(r2)

= 1.05 − [5(1.05)2 + 11(1.05) − 17]

[10(1.05) + 11]

= 1.05 − 0.0625

21.5

= 1.05 − 0.003 = 1.047,

i.e. 1.05, correct to 3 significant figures.

Since the values of r2 and r3 are the same when
expressed to the required degree of accuracy, the
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required root is 1.05, correct to 3 significant figures.
Checking, using the quadratic equation formula,

x = −11 ± √
[121 − 4(5)(−17)]

(2)(5)

= −11 ± 21.47

10
The positive root is 1.047, i.e. 1.05, correct to 3
significant figures (This root was determined in
Problem 1 using the bisection method; Newton’s
method is clearly quicker).

Problem 7. Taking the first approximation
as 2, determine the root of the equation
x2 − 3 sin x + 2 ln(x + 1) = 3.5, correct to 3 sig-
nificant figures, by using Newton’s method.

Newton’s formula states that r2 = r1 − f (r1)

f ′(r1)
, where

r1 is a first approximation to the root and r2 is a better
approximation to the root.

Since f (x) = x2 − 3 sin x + 2 ln(x + 1) − 3.5

f (r1) = f (2) = 22 − 3 sin 2 + 2 ln 3 − 3.5,

where sin2 means the sine of 2 radians

= 4 − 2.7279 + 2.1972 − 3.5

= −0.0307

f ′(x) = 2x − 3 cos x + 2

x + 1

f ′(r1) = f ′(2) = 2(2) − 3 cos 2 + 2

3
= 4 + 1.2484 + 0.6667

= 5.9151

Hence, r2 = r1 − f (r1)

f ′(r1)

= 2 − −0.0307

5.9151
= 2.005 or 2.01, correct to

3 significant figures.

A still better approximation to the root, r3, is
given by:

r3 = r2 − f (r2)

f ′(r2)

= 2.005 − [(2.005)2 − 3 sin 2.005 + 2 ln 3.005 − 3.5]
[

2(2.005) − 3 cos 2.005 + 2

2.005 + 1

]

= 2.005 − (−0.00104)

5.9376
= 2.005 + 0.000175

i.e. r3 = 2.01, correct to 3 significant figures.

Since the values of r2 and r3 are the same when
expressed to the required degree of accuracy, then the
required root is 2.01, correct to 3 significant figures.

Problem 8. Use Newton’s method to find the
positive root of:

(x + 4)3 − e1.92x + 5 cos
x

3
= 9,

correct to 3 significant figures.

The functional notational method is used to deter-
mine the approximate value of the root.

f (x) = (x + 4)3 − e1.92x + 5 cos
x

3
− 9

f (0) = (0 + 4)3 − e0 + 5 cos 0 − 9 = 59

f (1) = 53 − e1.92 + 5 cos
1

3
− 9 ≈ 114

f (2) = 63 − e3.84 + 5 cos
2

3
− 9 ≈ 164

f (3) = 73 − e5.76 + 5 cos 1 − 9 ≈ 19

f (4) = 83 − e7.68 + 5 cos
4

3
− 9 ≈ −1660

From these results, let a first approximation to the
root be r1 = 3.
Newton’s formula states that a better approximation
to the root,

r2 = r1 − f (r1)

f ′(r1)

f (r1) = f (3) = 73 − e5.76 + 5 cos 1 − 9

= 19.35

f ′(x) = 3(x + 4)2 − 1.92e1.92x − 5

3
sin

x

3

f ′(r1) = f ′(3) = 3(7)2 − 1.92e5.76 − 5

3
sin 1

= −463.7
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Thus, r2 = 3 − 19.35

−463.7
= 3 + 0.042

= 3.042 = 3.04,

correct to 3 significant figure

Similarly, r3 = 3.042 − f (3.042)

f ′(3.042)

= 3.042 − (−1.146)

(−513.1)

= 3.042 − 0.0022 = 3.0398 = 3.04,

correct to 3 significant figure.

Since r2 and r3 are the same when expressed to the
required degree of accuracy, then the required root
is 3.04, correct to 3 significant figures.

Now try the following exercise.

Exercise 41 Further problems on Newton’s
method

In Problems 1 to 7, use Newton’s method to
solve the equations given to the accuracy stated.

1. x2 − 2x − 13 = 0, correct to 3 decimal
places. [−2.742, 4.742]

2. 3x3 − 10x = 14, correct to 4 significant
figures. [2.313]

3. x4 − 3x3 + 7x = 12, correct to 3 decimal
places. [−1.721, 2.648]

4. 3x4 − 4x3 + 7x − 12 = 0, correct to 3 deci-
mal places. [−1.386, 1.491]

5. 3 ln x + 4x = 5, correct to 3 decimal places.
[1.147]

6. x3 = 5 cos 2x, correct to 3 significant fig-
ures. [−1.693, −0.846, 0.744]

7. 300e−2θ + θ

2
= 6, correct to 3 significant

figures. [2.05]

8. Solve the equations in Problems 1 to 5,
Exercise 39, page 80 and Problems 1 to
4, Exercise 40, page 83 using Newton’s
method.

9. A Fourier analysis of the instantaneous
value of a waveform can be represented by:

y =
(

t + π

4

)
+ sin t + 1

8
sin 3t

Use Newton’s method to determine the
value of t near to 0.04, correct to 4 decimal
places, when the amplitude, y, is 0.880.

[0.0399]

10. A damped oscillation of a system is given
by the equation:

y = −7.4e0.5t sin 3t.

Determine the value of t near to 4.2, correct
to 3 significant figures, when the magnitude
y of the oscillation is zero. [4.19]

11. The critical speeds of oscillation, λ, of a
loaded beam are given by the equation:

λ3 − 3.250λ2 + λ − 0.063 = 0

Determine the value of λ which is approx-
imately equal to 3.0 by Newton’s method,
correct to 4 decimal places. [2.9143]



Ch10-H8152.tex 23/6/2006 15: 6 Page 86

Number and Algebra

10

Computer numbering systems

10.1 Binary numbers

The system of numbers in everyday use is the denary
or decimal system of numbers, using the digits
0 to 9. It has ten different digits (0, 1, 2, 3, 4,
5, 6, 7, 8 and 9) and is said to have a radix or
base of 10.

The binary system of numbers has a radix of 2
and uses only the digits 0 and 1.

10.2 Conversion of binary to denary

The denary number 234.5 is equivalent to

2 × 102 + 3 × 101 + 4 × 100 + 5 × 10−1

i.e. is the sum of terms comprising: (a digit) multi-
plied by (the base raised to some power).

In the binary system of numbers, the base is 2, so
1101.1 is equivalent to:

1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 + 1 × 2−1

Thus the denary number equivalent to the binary
number 1101.1 is 8 + 4 + 0 + 1 + 1

2 , that is 13.5 i.e.
1101.12 = 13.510, the suffixes 2 and 10 denoting
binary and denary systems of numbers respectively.

Problem 1. Convert 110112 to a denary
number.

From above: 110112 = 1 × 24 + 1 × 23 + 0 × 22

+ 1 × 21 + 1 × 20

= 16 + 8 + 0 + 2 + 1

= 2710

Problem 2. Convert 0.10112 to a denary
fraction.

0.10112 = 1 × 2−1 + 0 × 2−2 + 1 × 2−3 + 1 × 2−4

= 1 × 1

2
+ 0 × 1

22 + 1 × 1

23 + 1 × 1

24

= 1

2
+ 1

8
+ 1

16
= 0.5 + 0.125 + 0.0625

= 0.687510

Problem 3. Convert 101.01012 to a denary
number.

101.01012 = 1 × 22 + 0 × 21 + 1 × 20 + 0 × 2−1

+ 1 × 2−2 + 0 × 2−3 + 1 × 2−4

= 4 + 0 + 1 + 0 + 0.25 + 0 + 0.0625

= 5.312510

Now try the following exercise.

Exercise 42 Further problems on conver-
sion of binary to denary numbers

In Problems 1 to 4, convert the binary numbers
given to denary numbers.

1. (a) 110 (b) 1011 (c) 1110 (d) 1001
[(a) 610 (b) 1110 (c) 1410 (d) 910]

2. (a) 10101 (b) 11001 (c) 101101 (d) 110011
[(a) 2110 (b) 2510 (c) 4510 (d) 5110]

3. (a) 0.1101 (b) 0.11001 (c) 0.00111
(d) 0.01011

[
(a) 0.812510 (b) 0.7812510

(c) 0.2187510 (d) 0.3437510

]

4. (a) 11010.11 (b) 10111.011 (c) 110101.0111
(d) 11010101.10111

[
(a) 26.7510 (b) 23.37510

(c) 53.437510 (d) 213.7187510

]
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10.3 Conversion of denary to binary

An integer denary number can be converted to a cor-
responding binary number by repeatedly dividing by
2 and noting the remainder at each stage, as shown
below for 3910.

  1    0    0    1    1    1  

(most significant bit)                (least significant bit)

2   39        Remainder
2   19        1

2     9        1
2     4        1
2     2        0
2     1        0

0        1

The result is obtained by writing the top digit of
the remainder as the least significant bit, (a bit is a
binary digit and the least significant bit is the one
on the right). The bottom bit of the remainder is the
most significant bit, i.e. the bit on the left.

Thus 3910 = 1001112

The fractional part of a denary number can be con-
verted to a binary number by repeatedly multiplying
by 2, as shown below for the fraction 0.625.

1.   250

0.   500

1.   000

0.625 × 2 =

0.250 × 2 =

0.500 × 2 =

(most significant bit)                   (least significant bit).1    0    1

For fractions, the most significant bit of the result is
the top bit obtained from the integer part of multi-
plication by 2. The least significant bit of the result
is the bottom bit obtained from the integer part of
multiplication by 2.

Thus 0.62510 = 0.1012

Problem 4. Convert 4710 to a binary number.

From above, repeatedly dividing by 2 and noting the
remainder gives:

1

1
0
1
1
1
1

0 1 1 1 1

2    47     Remainder
2    23
2    11
2      5
2      2
2      1 

 0

Thus 4710 = 1011112

Problem 5. Convert 0.4062510 to a binary
number.

From above, repeatedly multiplying by 2 gives:

1.   0

. 0 1 1 0 1

1.   25

0.   5

1.   625

0.   8125

0.625     × 2 =

0.25       × 2 =

0.5         × 2 =

0.8125   × 2 =

0.40625 × 2 =

i.e. 0.4062510 = 0.011012

Problem 6. Convert 58.312510 to a binary
number.

The integer part is repeatedly divided by 2, giving:

1 1 1 0 1 0

2  58     Remainder
2  29          0
2  14          1
2    7          0
2    3          1
2    1          1  

0           1

The fractional part is repeatedly multiplied by 2
giving:

1.0

0.25     × 2 =
0.5       × 2 =

. 0 1 0 1

0.5

0.625   × 2 = 1.25

0.3125 × 2 = 0.625

Thus 58.312510 = 111010.01012
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Now try the following exercise.

Exercise 43 Further problems on conver-
sion of denary to binary numbers

In Problems 1 to 4, convert the denary numbers
given to binary numbers.

1. (a) 5 (b) 15 (c) 19 (d) 29
[

(a) 1012 (b) 11112

(c) 100112 (d) 111012

]

2. (a) 31 (b) 42 (c) 57 (d) 63
[

(a) 111112 (b) 1010102

(c) 1110012 (d) 1111112

]

3. (a) 0.25 (b) 0.21875 (c) 0.28125
(d) 0.59375

[
(a) 0.012 (b) 0.001112

(c) 0.010012 (d) 0.100112

]

4. (a) 47.40625 (b) 30.8125 (c) 53.90625
(d) 61.65625

⎡

⎢
⎢
⎢
⎣

(a) 101111.011012

(b) 11110.11012

(c) 110101.111012

(d) 111101.101012

⎤

⎥
⎥
⎥
⎦

10.4 Conversion of denary to binary
via octal

For denary integers containing several digits, repeat-
edly dividing by 2 can be a lengthy process. In this
case, it is usually easier to convert a denary number
to a binary number via the octal system of numbers.
This system has a radix of 8, using the digits 0, 1, 2,
3, 4, 5, 6 and 7. The denary number equivalent to the
octal number 43178 is:

4 × 83 + 3 × 82 + 1 × 81 + 7 × 80

i.e. 4 × 512 + 3 × 64 + 1 × 8 + 7 × 1 or 225510

An integer denary number can be converted to a cor-
responding octal number by repeatedly dividing by
8 and noting the remainder at each stage, as shown
below for 49310.

7      5      5

8    61        5
8      7        5 

0        7

8  493        Remainder

Thus 49310 = 7558

The fractional part of a denary number can be con-
verted to an octal number by repeatedly multiplying
by 8, as shown below for the fraction 0.437510

4  .  0

0.4375 × 8 =

0.5       × 8 =

. 3     4

3  .  5

For fractions, the most significant bit is the top inte-
ger obtained by multiplication of the denary fraction
by 8, thus,

0.437510 = 0.348

The natural binary code for digits 0 to 7 is shown
in Table 10.1, and an octal number can be converted
to a binary number by writing down the three bits
corresponding to the octal digit.

Table 10.1

Octal digit Natural
binary number

0 000

1 001
2 010
3 011
4 100
5 101
6 110

7 111

Thus 4378 = 100 011 1112

and 26.358 = 010 110.011 1012

The ‘0’on the extreme left does not signify anything,
thus 26.358 = 10 110.011 1012

Conversion of denary to binary via octal is demon-
strated in the following worked problems.

Problem 7. Convert 371410 to a binary num-
ber, via octal.
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Dividing repeatedly by 8, and noting the remainder
gives:

7      2       0      2

 8  3714        Remainder

 8    464             2
 8      58             0
 8        7             2  

0              7

From Table 10.1, 72028 = 111 010 000 0102

i.e. 371410 = 111 010 000 0102

Problem 8. Convert 0.5937510 to a binary
number, via octal.

Multiplying repeatedly by 8, and noting the integer
values, gives:

6.00

0.59375 × 8 =
0.75       × 8 =

. 4     6

4.75

Thus 0.5937510 = 0.468

From Table 10.1, 0.468 = 0.100 1102

i.e. 0.5937510 = 0.100 112

Problem 9. Convert 5613.9062510 to a binary
number, via octal.

The integer part is repeatedly divided by 8, noting
the remainder, giving:

1      2      7      5      5  

8   5613       Remainder
8     701            5
8       87            5
8       10            7
8         1            2  

 0            1

This octal number is converted to a binary number,
(see Table 10.1).

127558 = 001 010 111 101 1012

i.e. 561310 = 1 010 111 101 1012

The fractional part is repeatedly multiplied by 8, and
noting the integer part, giving:

2.00

0.90625 × 8 =
0.25       × 8 =

.7      2

7.25

This octal fraction is converted to a binary number,
(see Table 10.1).

0.728 = 0.111 0102

i.e. 0.9062510 = 0.111 012

Thus, 5613.9062510 = 1 010 111 101 101.111 012

Problem 10. Convert 11 110 011.100 012 to a
denary number via octal.

Grouping the binary number in three’s from the
binary point gives: 011 110 011.100 0102

Using Table 10.1 to convert this binary number to
an octal number gives 363.428 and 363.428

= 3 × 82 + 6 × 81 + 3 × 80 + 4 × 8−1 + 2 × 8−2

= 192 + 48 + 3 + 0.5 + 0.03125

= 243.5312510

Now try the following exercise.

Exercise 44 Further problems on conver-
sion between denary and binary numbers via
octal

In Problems 1 to 3, convert the denary numbers
given to binary numbers, via octal.

1. (a) 343 (b) 572 (c) 1265
[

(a) 1010101112 (b) 10001111002
(c) 100111100012

]

2. (a) 0.46875 (b) 0.6875 (c) 0.71875
[

(a) 0.011112 (b) 0.10112
(c) 0.101112

]

3. (a) 247.09375 (b) 514.4375 (c) 1716.78125
[

(a) 11110111.000112
(b) 1000000010.01112
(c) 11010110100.110012

]
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4. Convert the binary numbers given to denary
numbers via octal.
(a) 111.011 1 (b) 101 001.01
(c) 1 110 011 011 010.001 1

[
(a) 7.437510 (b) 41.2510

(c) 7386.187510

]

10.5 Hexadecimal numbers

The complexity of computers requires higher order
numbering systems such as octal (base 8) and hexa-
decimal (base 16) which are merely extensions of the
binary system. A hexadecimal numbering system
has a radix of 16 and uses the following 16 distinct
digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F

‘A’ corresponds to 10 in the denary system, B to 11,
C to 12, and so on.

To convert from hexadecimal to decimal:

For example

1A16 = 1 × 161 + A × 160

= 1 × 161 + 10 × 1

= 16 + 10 = 26

i.e. 1A16 = 2610

Similarly, 2E16 = 2 × 161 + E × 160

= 2 × 161 + 14 × 160

= 32 + 14 = 4610

and 1BF16 = 1 × 162 + B × 161 + F × 160

= 1 × 162 + 11 × 161 + 15 × 160

= 256 + 176 + 15 = 44710

Table 10.2 compares decimal, binary, octal
and hexadecimal numbers and shows, for example,
that 2310 = 101112 = 278 = 1716

Problem 11. Convert the following hexadec-
imal numbers into their decimal equivalents:
(a) 7A16 (b) 3F16

Table 10.2

Decimal Binary Octal Hexadecimal

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14
21 10101 25 15
22 10110 26 16
23 10111 27 17
24 11000 30 18
25 11001 31 19
26 11010 32 1A
27 11011 33 1B
28 11100 34 1C
29 11101 35 1D
30 11110 36 1E
31 11111 37 1F
32 100000 40 20

(a) 7A16 = 7 × 161 + A × 160 = 7 × 16 + 10 × 1

= 112 + 10 = 122

Thus 7A16 = 12210

(b) 3F16 = 3 × 161 + F × 160 = 3 × 16 + 15 × 1
= 48 + 15 = 63

Thus 3F16 = 6310

Problem 12. Convert the following hexadec-
imal numbers into their decimal equivalents:
(a) C916 (b) BD16

(a) C916 = C × 161 + 9 × 160 = 12 × 16 + 9 × 1
= 192 + 9 = 201

Thus C916 = 20110
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(b) BD16 = B × 161 + D × 160

= 11 × 16 + 13 × 1 = 176 + 13 = 189

Thus BD16 = 18910

Problem 13. Convert 1A4E16 into a denary
number.

1A4E16 = 1 × 163 + A × 162 + 4 × 161 + E × 160

= 1 × 163 + 10 × 162 + 4 × 161

+ 14 × 160

= 1 × 4096 + 10 × 256 + 4 × 16 + 14 × 1
= 4096 + 2560 + 64 + 14 = 6734

Thus 1A4E16 = 673410

To convert from decimal to hexadecimal

This is achieved by repeatedly dividing by 16 and
noting the remainder at each stage, as shown below
for 2610.

26

1 10

0 1

A16

116

most significant bit  1  A  

Remainder

least significant bit 

16

16

Hence 2610 = 1A16

Similarly, for 44710

44716

15

11

F16

B16

1 F  

Remainder

27

1

0

16

16

1 116

B 

Thus 44710 = 1BF16

Problem 14. Convert the following decimal
numbers into their hexadecimal equivalents:
(a) 3710 (b) 10810

3716

16 2

0

5 = 516

2 = 216

most significant bit  

2 5  

Remainder

least significant bit 

(a)

Hence 3710 = 2516

Remainder16 108

16 6 12 = C16

0 6 = 616

6 C

(b)

Hence 10810 = 6C16

Problem 15. Convert the following decimal
numbers into their hexadecimal equivalents:
(a) 16210 (b) 23910

Remainder16 162

16 10 2 = 216

0 10 = A16

A 2

(a)

Hence 16210 = A216

Remainder16 239

16 14 15 = F16

0 14 = E16

E F

(b)

Hence 23910 = EF16

To convert from binary to hexadecimal:

The binary bits are arranged in groups of four, start-
ing from right to left, and a hexadecimal symbol
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is assigned to each group. For example, the binary
number 1110011110101001 is initially grouped in

fours as:
1110︸︷︷︸

E

0111︸︷︷︸
7

1010︸︷︷︸
A

1001︸︷︷︸
9

and a hexadeci-

mal symbol assigned to each group as above from
Table 10.2.

Hence 11100111101010012 = E7A916

To convert from hexadecimal to binary:

The above procedure is reversed, thus, for example,

6CF316 = 0110 1100 1111 0011
from Table 10.2

i.e. 6CF316 = 1101100111100112

Problem 16. Convert the following binary
numbers into their hexadecimal equivalents:
(a) 110101102 (b) 11001112

(a) Grouping bits in fours from the right gives:
1101︸︷︷︸

D

0110︸︷︷︸
6

and assigning hexadecimal symbols

to each group gives as above from Table 10.2.

Thus, 110101102 = D616

(b) Grouping bits in fours from the right gives:
0110︸︷︷︸

6

0111︸︷︷︸
7

and assigning hexadecimal symbols

to each group gives as above from Table 10.2.

Thus, 11001112 = 6716

Problem 17. Convert the following binary
numbers into their hexadecimal equivalents:
(a) 110011112 (b) 1100111102

(a) Grouping bits in fours from the right gives:
1100︸︷︷︸

C

1111︸︷︷︸
F

and assigning hexadecimal symbols

to each group gives as above from Table 10.2.

Thus, 110011112 = CF16

(b) Grouping bits in fours from the right gives:
0001︸︷︷︸

1

1001︸︷︷︸
9

1110︸︷︷︸
E

and assigning hexadecimal

symbols to each group gives as above from
Table 10.2.

Thus, 1100111102 = 19E16

Problem 18. Convert the following hexadec-
imal numbers into their binary equivalents:
(a) 3F16 (b) A616

(a) Spacing out hexadecimal digits gives:
3︷︸︸︷

0011

F︷︸︸︷
1111

and converting each into binary

gives as above from Table 10.2.

Thus, 3F16 = 1111112

(b) Spacing out hexadecimal digits gives:
A︷︸︸︷

1010

6︷︸︸︷
0110

and converting each into binary

gives as above from Table 10.2.

Thus, A616 = 101001102

Problem 19. Convert the following hexadec-
imal numbers into their binary equivalents:
(a) 7B16 (b) 17D16

(a) Spacing out hexadecimal digits gives:
7︷︸︸︷

0111

B︷︸︸︷
1011

and converting each into binary

gives as above from Table 10.2.

Thus, 7B16 = 11110112

(b) Spacing out hexadecimal digits gives:
1︷︸︸︷

0001

7︷︸︸︷
0111

D︷︸︸︷
1101

and converting each into

binary gives as above from Table 10.2.

Thus, 17D16 = 1011111012

Now try the following exercise.

Exercise 45 Further problems on hexadec-
imal numbers

In Problems 1 to 4, convert the given hexa-
decimal numbers into their decimal equivalents.

1. E716 [23110] 2. 2C16 [4410]

3. 9816 [15210] 4. 2F116 [75310]

In Problems 5 to 8, convert the given decimal
numbers into their hexadecimal equivalents.
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5. 5410 [3616] 6. 20010 [C816]

7. 9110 [5B16] 8. 23810 [EE16]

In Problems 9 to 12, convert the given binary
numbers into their hexadecimal equivalents.

9. 110101112 [D716]

10. 111010102 [EA16]

11. 100010112 [8B16]

12. 101001012 [A516]

In Problems 13 to 16, convert the given hexa-
decimal numbers into their binary equivalents.

13. 3716 [1101112]

14. ED16 [111011012]

15. 9F16 [100111112]

16. A2116 [1010001000012]
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11

Boolean algebra and logic circuits

11.1 Boolean algebra and switching
circuits

A two-state device is one whose basic elements can
only have one of two conditions. Thus, two-way
switches, which can either be on or off, and the binary
numbering system, having the digits 0 and 1 only,
are two-state devices. In Boolean algebra, if A rep-
resents one state, then A, called ‘not-A’, represents
the second state.

The or-function

In Boolean algebra, the or-function for two elements
A and B is written as A + B, and is defined as ‘A, or
B, or both A and B’. The equivalent electrical circuit
for a two-input or-function is given by two switches
connected in parallel. With reference to Fig. 11.1(a),
the lamp will be on when A is on, when B is on,
or when both A and B are on. In the table shown in
Fig. 11.1(b), all the possible switch combinations are
shown in columns 1 and 2, in which a 0 represents a
switch being off and a 1 represents the switch being
on, these columns being called the inputs. Column 3
is called the output and a 0 represents the lamp being
off and a 1 represents the lamp being on. Such a table
is called a truth table.

Figure 11.1

The and-function

In Boolean algebra, the and-function for two ele-
ments A and B is written as A · B and is defined as

‘both A and B’. The equivalent electrical circuit for
a two-input and-function is given by two switches
connected in series. With reference to Fig. 11.2(a)
the lamp will be on only when both A and B are
on. The truth table for a two-input and-function is
shown in Fig. 11.2(b).

Figure 11.2

The not-function

In Boolean algebra, the not-function for element A
is written as A, and is defined as ‘the opposite to A’.
Thus if A means switch A is on, A means that switch
A is off. The truth table for the not-function is shown
in Table 11.1

Table 11.1

Input Output
A Z = A

0 1
1 0

In the above, the Boolean expressions, equiv-
alent switching circuits and truth tables for the
three functions used in Boolean algebra are given
for a two-input system. A system may have more
than two inputs and the Boolean expression for a
three-input or-function having elements A, B and C
is A + B + C. Similarly, a three-input and-function
is written as A · B · C. The equivalent electrical
circuits and truth tables for three-input or and
and-functions are shown in Figs 11.3(a) and (b)
respectively.
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Figure 11.3

Figure 11.4

To achieve a given output, it is often neces-
sary to use combinations of switches connected
both in series and in parallel. If the output from a
switching circuit is given by the Boolean expression
Z = A · B + A · B, the truth table is as shown in

Fig. 11.4(a). In this table, columns 1 and 2 give all
the possible combinations of A and B. Column 3 cor-
responds to A · B and column 4 to A · B, i.e. a 1 output
is obtained when A = 0 and when B = 0. Column 5
is the or-function applied to columns 3 and 4 giv-
ing an output of Z = A · B + A · B. The corresponding
switching circuit is shown in Fig. 11.4(b) in which
A and B are connected in series to give A · B, A and
B are connected in series to give A · B, and A · B and
A · B are connected in parallel to give A · B + A · B.
The circuit symbols used are such that A means the
switch is on when A is 1, A means the switch is on
when A is 0, and so on.

Problem 1. Derive the Boolean expression and
construct a truth table for the switching circuit
shown in Fig. 11.5.

Figure 11.5

The switches between 1 and 2 in Fig. 11.5 are in
series and have a Boolean expression of B · A. The
parallel circuit 1 to 2 and 3 to 4 have a Boolean
expression of (B · A + B). The parallel circuit can be
treated as a single switching unit, giving the equiv-
alent of switches 5 to 6, 6 to 7 and 7 to 8 in series.
Thus the output is given by:

Z = A · (B · A + B) · B

The truth table is as shown in Table 11.2. Columns 1
and 2 give all the possible combinations of switches
A and B. Column 3 is the and-function applied to
columns 1 and 2, giving B · A. Column 4 is B, i.e., the
opposite to column 2. Column 5 is the or-function
applied to columns 3 and 4. Column 6 is A, i.e. the
opposite to column 1. The output is column 7 and is
obtained by applying the and-function to columns
4, 5 and 6.

Table 11.2

1 2 3 4 5 6 7
A B B · A B B · A + B A Z = A · (B · A + B) · B

0 0 0 1 1 1 1
0 1 0 0 0 1 0
1 0 0 1 1 0 0
1 1 1 0 1 0 0
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Problem 2. Derive the Boolean expression and
construct a truth table for the switching circuit
shown in Fig. 11.6.

Figure 11.6

The parallel circuit 1 to 2 and 3 to 4 gives (A + B) and
this is equivalent to a single switching unit between
7 and 2. The parallel circuit 5 to 6 and 7 to 2 gives
C+ (A + B) and this is equivalent to a single switch-
ing unit between 8 and 2. The series circuit 9 to 8
and 8 to 2 gives the output

Z = B · [C + (A + B)]

The truth table is shown in Table 11.3. Columns 1,
2 and 3 give all the possible combinations of A, B
and C. Column 4 is B and is the opposite to column
2. Column 5 is the or-function applied to columns 1
and 4, giving (A + B). Column 6 is the or-function
applied to columns 3 and 5 giving C + (A + B). The
output is given in column 7 and is obtained by apply-
ing the and-function to columns 2 and 6, giving
Z = B · [C + (A + B)].

Table 11.3

1 2 3 4 5 6 7

A B C B A + B C + (A + B) Z = B · [C + (A + B)]

0 0 0 1 1 1 0

0 0 1 1 1 1 0

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 1 1 1 0

1 0 1 1 1 1 0

1 1 0 0 1 1 1

1 1 1 0 1 1 1

Problem 3. Construct a switching circuit to
meet the requirements of the Boolean expres-
sion: Z = A · C + A · B + A · B · C Construct the
truth table for this circuit.

The three terms joined by or-functions, (+), indicate
three parallel branches,

having: branch 1 A and C in series

branch 2 A and B in series

and branch 3 A and B and C in series

Figure 11.7

Hence the required switching circuit is as shown in
Fig. 11.7. The corresponding truth table is shown in
Table 11.4.

Table 11.4

1 2 3 4 5 6 7 8 9

A B C C A · C A A · B A · B · C Z = A · C + A · B
+ A · B · C

0 0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 0 0
0 1 0 1 0 1 1 1 1
0 1 1 0 0 1 1 0 1
1 0 0 1 1 0 0 0 1
1 0 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 1
1 1 1 0 0 0 0 0 0

Column 4 is C, i.e. the opposite to column 3

Column 5 is A · C, obtained by applying the and-
function to columns 1 and 4
Column 6 is A, the opposite to column 1

Column 7 is A · B, obtained by applying the and-
function to columns 2 and 6
Column 8 is A · B · C, obtained by applying the
and-function to columns 4 and 7
Column 9 is the output, obtained by applying the
or-function to columns 5, 7 and 8
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Problem 4. Derive the Boolean expression and
construct the switching circuit for the truth table
given in Table 11.5.

Table 11.5

A B C Z

1 0 0 0 1
2 0 0 1 0
3 0 1 0 1
4 0 1 1 1
5 1 0 0 0
6 1 0 1 1
7 1 1 0 0
8 1 1 1 0

Examination of the truth table shown in Table 11.5
shows that there is a 1 output in the Z-column in
rows 1, 3, 4 and 6. Thus, the Boolean expression and
switching circuit should be such that a 1 output is
obtained for row 1 or row 3 or row 4 or row 6. In row
1, A is 0 and B is 0 and C is 0 and this corresponds
to the Boolean expression A · B · C. In row 3, A is 0
and B is 1 and C is 0, i.e. the Boolean expression
in A · B · C. Similarly in rows 4 and 6, the Boolean
expressions are A · B · C and A · B · C respectively.
Hence the Boolean expression is:

Z = A · B · C + A · B · C
+ A · B · C + A · B · C

The corresponding switching circuit is shown in
Fig. 11.8. The four terms are joined by or-functions,
(+), and are represented by four parallel circuits.
Each term has three elements joined by an and-
function, and is represented by three elements
connected in series.

Figure 11.8

Now try the following exercise.

Exercise 46 Further problems on Boolean
algebra and switching circuits

In Problems 1 to 4, determine the Boolean
expressions and construct truth tables for the
switching circuits given.

1. The circuit shown in Fig. 11.9[
C · (A · B + A · B);

see Table 11.6, col. 4

]

Figure 11.9

Table 11.6

1 2 3 4 5
A B C C · (A · B + A · B) C · (A · B + A)

0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 0 1
1 1 0 0 0
1 1 1 1 0

6 7
A · B(B · C + B · C C · [B · C · A

+ A · B) + A · (B + C)]

0 0
0 0
0 0
0 1
0 0
0 0
1 0
0 1

2. The circuit shown in Fig. 11.10
[

C · (A · B + A);
see Table 11.6, col. 5

]
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Figure 11.10

3. The circuit shown in Fig. 11.11
[

A · B · (B · C + B · C + A · B);
see Table 11.6, col. 6

]

Figure 11.11

4. The circuit shown in Fig. 11.12
[

C · [B · C · A + A · (B + C)],
see Table 11.6, col. 7

]

Figure 11.12

In Problems 5 to 7, construct switching cir-
cuits to meet the requirements of the Boolean
expressions given.

5. A · C + A · B · C + A · B
[See Fig. 11.13]

Figure 11.13

6. A · B · C · (A + B + C)
[See Fig. 11.14]

Figure 11.14

7. A · (A · B · C + B · (A + C))
[See Fig. 11.15]

Figure 11.15

In Problems 8 to 10, derive the Boolean expres-
sions and construct the switching circuits for the
truth table stated.

8. Table 11.7, column 4

[A · B · C + A · B · C; See Fig. 11.16]

Table 11.7

1 2 3 4 5 6
A B C

0 0 0 0 1 1
0 0 1 1 0 0
0 1 0 0 0 1
0 1 1 0 1 0
1 0 0 0 1 1
1 0 1 0 0 1
1 1 0 1 0 0
1 1 1 0 0 0

Figure 11.16

9. Table 11.7, column 5

[
A · B · C + A · B · C + A · B · C;
see Fig. 11.17

]
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Figure 11.17

10. Table 11.7, column 6
[

A · B · C + A · B · C + A · B · C

+ A · B · C; see Fig. 11.18

]

Figure 11.18

11.2 Simplifying Boolean expressions

A Boolean expression may be used to describe a
complex switching circuit or logic system. If the
Boolean expression can be simplified, then the num-
ber of switches or logic elements can be reduced
resulting in a saving in cost. Three principal ways of
simplifying Boolean expressions are:

(a) by using the laws and rules of Boolean algebra
(see Section 11.3),

(b) by applying de Morgan’s laws (see Section 11.4),
and

(c) by using Karnaugh maps (see Section 11.5).

11.3 Laws and rules of Boolean
algebra

A summary of the principal laws and rules of
Boolean algebra are given in Table 11.8. The way in
which these laws and rules may be used to simplify
Boolean expressions is shown in Problems 5 to 10.

Table 11.8

Ref. Name Rule or law

1 Commutative laws A + B = B + A
2 A · B = B · A
3 Associative laws (A + B) + C = A + (B + C)
4 (A · B) · C = A · (B · C)

5 Distributive laws A · (B + C) = A · B + A · C
6 A + (B · C)

= (A + B) · (A + C)

7 Sum rules A + 0 = A
8 A + 1 = 1
9 A + A = A

10 A + A = 1

11 Product A · 0 = 0
12 rules A · 1 = A
13 A · A = A
14 A · A = 0

15 Absorption A + A · B = A
16 rules A · (A + B) = A
17 A + A · B = A + B

Problem 5. Simplify the Boolean expression:
P · Q + P · Q + P · Q

With reference to Table 11.8: Reference

P · Q + P · Q + P · Q
= P · (Q + Q) + P · Q 5
= P · 1 + P · Q 10
= P + P · Q 12

Problem 6. Simplify
(P + P · Q) · (Q + Q · P)

With reference to Table 11.8: Reference

(P + P · Q) · (Q + Q · P)
= P · (Q + Q · P)

+ P · Q · (Q + Q · P) 5
= P · Q + P · Q · P + P · Q · Q

+ P · Q · Q · P 5
= P · Q + P · Q + P · Q

+ P · Q · Q · P 13
= P · Q + P · Q + P · Q + 0 14
= P · Q + P · Q + P · Q 7
= P · (Q + Q) + P · Q 5
= P · 1 + P · Q 10
= P + P · Q 12
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Problem 7. Simplify

F · G · H + F · G · H + F · G · H

With reference to Table 11.8: Reference

F · G · H + F · G · H + F · G · H
= F · G · (H + H) + F · G · H 5
= F · G · 1 + F · G · H 10
= F · G + F · G · H 12
= G · (F + F · H) 5

Problem 8. Simplify

F · G · H + F · G · H + F · G · H + F · G · H

With reference to Table 11.8: Reference

F · G · H + F · G · H + F· G · H + F · G · H
= G · H · (F + F) + G · H · (F + F) 5
= G · H · 1 + G · H · 1 10
= G · H + G · H 12
= H · (G + G) 5
= H · 1 = H 10 and 12

Problem 9. Simplify

A · C + A · (B + C) + A · B · (C + B)

using the rules of Boolean algebra.

With reference to Table 11.8: Reference

A · C + A · (B + C) + A · B · (C + B)
= A · C + A · B + A · C + A · B · C

+ A · B · B 5
= A · C + A · B + A · C + A · B · C

+ A · 0 14
= A · C + A · B + A · C + A · B · C 11
= A · (C + B · C) + A · B + A · C 5
= A · (C + B) + A · B + A · C 17
= A · C + A · B + A · B + A · C 5
= A · C + B · (A + A) + A · C 5
= A · C + B · 1 + A · C 10
= A · C + B + A · C 12

Problem 10. Simplify the expression

P · Q · R + P · Q · (P + R) + Q · R · (Q + P),

using the rules of Boolean algebra.

With reference to Table 11.8: Reference

P · Q · R + P · Q · (P + R) + Q · R · (Q + P)
= P · Q · R + P · Q · P + P · Q · R

+ Q · R · Q + Q · R · P 5
= P · Q · R + 0 · Q + P · Q · R + 0 · R

+ P · Q · R 14
= P · Q · R + P · Q · R + P · Q · R 7 and 11
= P · Q · R + P · Q · R 9
= P · R · (Q + Q) 5
= P · R · 1 10
= P · R 12

Now try the following exercise.

Exercise 47 Further problems on the laws
and the rules of Boolean algebra

Use the laws and rules of Boolean algebra
given in Table 11.8 to simplify the following
expressions:

1. P · Q + P · Q [P]

2. P · Q + P · Q + P · Q [P + P · Q]

3. F · G + F · G + G · (F + F) [G]

4. F · G + F · (G + G) + F · G [F]

5. (P + P · Q) · (Q + Q · P) [P · Q]

6. F · G · H + F · G · H + F · G · H
[H · (F + FG]

7. F · G · H + F · G · H + F · G · H
[F · G · H + G · H]

8. P · Q · R + P · Q · R + P · Q · R

[Q · R + P · Q · R]

9. F · G · H + F · G · H + F · G · H + F · G · H
[G]

10. F · G · H + F · G · H + F · G · H + F · G · H
[F · H + G · H]

11. R · (P · Q + P · Q) + R · (P · Q + P · Q)
[P · R + P · R]

12. R · (P · Q+P · Q+P·Q) + P · (Q · R + Q · R)
[P + Q · R]
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11.4 De Morgan’s laws

De Morgan’s laws may be used to simplify not-
functions having two or more elements. The laws
state that:

A + B= A · B and A · B= A + B

and may be verified by using a truth table (see
Problem 11). The application of de Morgan’s laws
in simplifying Boolean expressions is shown in
Problems 12 and 13.

Problem 11. Verify that A + B = A · B

A Boolean expression may be verified by using a
truth table. In Table 11.9, columns 1 and 2 give all
the possible arrangements of the inputs A and B. Col-
umn 3 is the or-function applied to columns 1 and 2
and column 4 is the not-function applied to column
3. Columns 5 and 6 are the not-function applied to
columns 1 and 2 respectively and column 7 is the
and-function applied to columns 5 and 6.

Table 11.9

1 2 3 4 5 6 7

A B A + B A + B A B A · B

0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

Since columns 4 and 7 have the same pattern of 0’s
and 1’s this verifies that A + B = A · B.

Problem 12. Simplify the Boolean expression

(A · B) + (A + B) by using de Morgan’s laws and
the rules of Boolean algebra.

Applying de Morgan’s law to the first term gives:

A · B = A + B = A + B since A = A

Applying de Morgan’s law to the second term gives:

A + B = A · B = A · B

Thus, (A · B) + (A + B) = (A + B) + A · B

Removing the bracket and reordering gives:
A + A · B + B

But, by rule 15, Table 11.8, A + A · B = A. It follows
that: A + A · B = A
Thus: (A · B) + (A + B) = A + B

Problem 13. Simplify the Boolean expression

(A · B + C) · (A + B · C) by using de Morgan’s
laws and the rules of Boolean algebra.

Applying de Morgan’s laws to the first term gives:

A · B + C = A · B · C = (A + B) · C

= (A + B) · C = A · C + B · C

Applying de Morgan’s law to the second term gives:

A + B · C = A + (B + C) = A + (B + C)

Thus (A · B + C) · (A + B · C)

= (A · C + B · C) · (A + B + C)

= A · A · C + A · B · C + A · C · C
+ A · B · C + B · B · C + B · C · C

But from Table 11.8, A · A = A and C · C = B · B = 0
Hence the Boolean expression becomes:

A · C + A · B · C + A · B · C
= A · C(1 + B + B)

= A · C(1 + B)

= A · C

Thus: (A · B + C) · (A + B · C) = A · C

Now try the following exercise.

Exercise 48 Further problems on simpli-
fying Boolean expressions using de Morgan’s
laws

Use de Morgan’s laws and the rules of Boolean
algebra given in Table 11.8 to simplify the
following expressions.

1. (A · B) · (A · B) [A · B]

2. (A + B · C) + (A · B + C) [A + B + C]

3. (A · B + B · C) · A · B [A · B + A · B · C]

4. (A · B + B · C) + (A · B) [1]

5. (P · Q + P · R) · (P · Q · R) [P · (Q + R)]
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11.5 Karnaugh maps

(i) Two-variable Karnaugh maps

A truth table for a two-variable expression is shown
in Table 11.10(a), the ‘1’ in the third row output
showing that Z = A · B. Each of the four possible
Boolean expressions associated with a two-variable
function can be depicted as shown in Table 11.10(b)
in which one cell is allocated to each row of
the truth table. A matrix similar to that shown in
Table 11.10(b) can be used to depict Z = A · B, by
putting a 1 in the cell corresponding to A · B and
0’s in the remaining cells. This method of depict-
ing a Boolean expression is called a two-variable
Karnaugh map, and is shown in Table 11.10(c).

Table 11.10

Inputs
Output Boolean

A B Z expression

0 0 0 A · B
0 1 0 A · B
1 0 1 A · B
1 1 0 A · B

(a)

(b) (c)

A.BA.B1(B)

A.BA.B0(B)

(A)(A)
10A

B

001

100

10
A

B

To simplify a two-variable Boolean expression,
the Boolean expression is depicted on a Karnaugh
map, as outlined above. Any cells on the map having
either a common vertical side or a common horizon-
tal side are grouped together to form a couple. (This
is a coupling together of cells, not just combining
two together). The simplified Boolean expression for
a couple is given by those variables common to all
cells in the couple. See Problem 14.

(ii) Three-variable Karnaugh maps

A truth table for a three-variable expression is shown
in Table 11.11(a), the 1’s in the output column
showing that:

Z = A · B · C + A · B · C + A · B · C

Each of the eight possible Boolean expressions asso-
ciated with a three-variable function can be depicted
as shown in Table 11.11(b) in which one cell is
allocated to each row of the truth table. A matrix
similar to that shown in Table 11.11(b) can be used
to depict: Z = A · B · C + A · B · C + A · B · C, by
putting 1’s in the cells corresponding to the Boolean
terms on the right of the Boolean equation and
0’s in the remaining cells. This method of depict-
ing a three-variable Boolean expression is called
a three-variable Karnaugh map, and is shown in
Table 11.11(c).

Table 11.11

Inputs
Output Boolean

A B C Z expression

0 0 0 0 A · B · C
0 0 1 1 A · B · C
0 1 0 0 A · B · C
0 1 1 1 A · B · C
1 0 0 0 A · B · C
1 0 1 0 A · B · C
1 1 0 1 A · B · C
1 1 1 0 A · B · C

(a)

(b)

(c)

1(C) A.B.C A.B.C A.B.C A.B.C

0(C) A.B.C A.B.C A.B.C A.B.C

(A.B) (A.B) (A.B) (A.B)
10110100A.B

C

1 1 1 0 0

0 0 0 1 0

00 01 11 10
A.B

C

To simplify a three-variable Boolean expression,
the Boolean expression is depicted on a Karnaugh
map as outlined above. Any cells on the map having
common edges either vertically or horizontally are
grouped together to form couples of four cells or
two cells. During coupling the horizontal lines at the
top and bottom of the cells are taken as a common
edge, as are the vertical lines on the left and right
of the cells. The simplified Boolean expression for
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a couple is given by those variables common to all
cells in the couple. See Problems 15 to 17.

(iii) Four-variable Karnaugh maps

A truth table for a four-variable expression is shown
in Table 11.12(a), the 1’s in the output column
showing that:

Z = A · B · C · D + A · B · C · D
+ A · B · C · D + A · B · C · D

Each of the sixteen possible Boolean expressions
associated with a four-variable function can be
depicted as shown in Table 11.12(b), in which one
cell is allocated to each row of the truth table. A
matrix similar to that shown in Table 11.12(b) can
be used to depict

Z = A · B · C · D + A · B · C · D
+ A · B · C · D + A · B · C · D

by putting 1’s in the cells corresponding to the
Boolean terms on the right of the Boolean equa-
tion and 0’s in the remaining cells. This method
of depicting a four-variable expression is called
a four-variable Karnaugh map, and is shown in
Table 11.12(c).

To simplify a four-variable Boolean expression,
the Boolean expression is depicted on a Karnaugh
map as outlined above. Any cells on the map hav-
ing common edges either vertically or horizontally
are grouped together to form couples of eight cells,
four cells or two cells. During coupling, the hori-
zontal lines at the top and bottom of the cells may
be considered to be common edges, as are the ver-
tical lines on the left and the right of the cells. The
simplified Boolean expression for a couple is given
by those variables common to all cells in the couple.
See Problems 18 and 19.

Summary of procedure when simplifying a Boolean
expression using a Karnaugh map

(a) Draw a four, eight or sixteen-cell matrix,
depending on whether there are two, three or
four variables.

(b) Mark in the Boolean expression by putting 1’s
in the appropriate cells.

(c) Form couples of 8, 4 or 2 cells having common
edges, forming the largest groups of cells possi-
ble. (Note that a cell containing a 1 may be used
more than once when forming a couple. Also
note that each cell containing a 1 must be used
at least once).

Table 11.12

Inputs
Output Boolean

A B C D Z expression

0 0 0 0 0 A · B · C · D
0 0 0 1 0 A · B · C · D
0 0 1 0 1 A · B · C · D
0 0 1 1 0 A · B · C · D
0 1 0 0 0 A · B · C · D
0 1 0 1 0 A · B · C · D
0 1 1 0 1 A · B · C · D
0 1 1 1 0 A · B · C · D
1 0 0 0 0 A · B · C · D
1 0 0 1 0 A · B · C · D
1 0 1 0 1 A · B · C · D
1 0 1 1 0 A · B · C · D
1 1 0 0 0 A · B · C · D
1 1 0 1 0 A · B · C · D
1 1 1 0 1 A · B · C · D
1 1 1 1 0 A · B · C · D

(a)

A.B 00
(A.B)

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

A.B.C.D

01
(A.B)

11
(A.B)

10
(A.B)C.D

00
(C.D)

01
(C.D)

11
(C.D)

10
(C.D)

(b)

C.D
0.0

0.1

1.1

1.0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

A.B
0.0 0.1 1.1 1.0

(c)

(d) The Boolean expression for the couple is given
by the variables which are common to all cells
in the couple.

Problem 14. Use the Karnaugh map tech-
niques to simplify the expression P · Q + P · Q

Using the above procedure:

(a) The two-variable matrix is drawn and is shown
in Table 11.13.
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Table 11.13

1 1 0

0 1 0

0 1
P

Q

(b) The term P · Q is marked with a 1 in the top left-
hand cell, corresponding to P = 0 and Q = 0;
P · Q is marked with a 1 in the bottom left-hand
cell corresponding to P = 0 and Q = 1.

(c) The two cells containing 1’s have a common hor-
izontal edge and thus a vertical couple, can be
formed.

(d) The variable common to both cells in the couple
is P = 0, i.e. P thus

P · Q + P · Q = P

Problem 15. Simplify the expression

X · Y · Z + X · Y · Z + X · Y · Z + X · Y · Z
by using Karnaugh map techniques.

Using the above procedure:

(a) A three-variable matrix is drawn and is shown
in Table 11.14.

Table 11.14

X.Y
0.0 0.1 1.1 1.0

00

1 1

1

0

1

0

0

1

Z

(b) The 1’s on the matrix correspond to the expres-
sion given, i.e. for X · Y · Z , X = 0, Y = 1 and
Z = 0 and hence corresponds to the cell in the
two row and second column, and so on.

(c) Two couples can be formed as shown. The cou-
ple in the bottom row may be formed since the
vertical lines on the left and right of the cells are
taken as a common edge.

(d) The variables common to the couple in the top
row are Y = 1 and Z = 0, that is, Y · Z and the

variables common to the couple in the bottom
row are Y = 0, Z = 1, that is, Y · Z. Hence:

X · Y · Z + X · Y · Z + X · Y · Z
+ X · Y · Z = Y · Z + Y · Z

Problem 16. Use a Karnaugh map technique

to simplify the expression (A · B) · (A + B).

Using the procedure, a two-variable matrix is drawn
and is shown in Table 11.15.

Table 11.15

B
A

0

0

1 1

1 1 2

1

A · B corresponds to the bottom left-hand cell and

(A · B) must therefore be all cells except this one,
marked with a 1 in Table 11.15. (A + B) corresponds
to all the cells except the top right-hand cell marked

with a 2 in Table 11.15. Hence (A + B) must corre-
spond to the cell marked with a 2. The expression

(A · B) · (A + B) corresponds to the cell having both
1 and 2 in it, i.e.,

(A · B) · (A + B) = A · B

Problem 17. Simplify (P + Q · R)+(P · Q + R)
using a Karnaugh map technique.

The term (P + Q · R) corresponds to the cells
marked 1 on the matrix in Table 11.16(a), hence
(P + Q · R) corresponds to the cells marked 2. Sim-
ilarly, (P · Q + R) corresponds to the cells marked

3 in Table 11.16(a), hence (P · Q + R) corresponds

to the cells marked 4. The expression (P + Q · R) +
(P · Q + R) corresponds to cells marked with either
a 2 or with a 4 and is shown in Table 11.16(b) by
X’s. These cells may be coupled as shown. The vari-
ables common to the group of four cells is P = 0,
i.e., P, and those common to the group of two cells
are Q = 0, R = 1, i.e. Q · R
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Thus: (P + Q · R) + (P · Q + R) = P + Q · R

Table 11.16

(a) (b)

4
1

4
2

3
1

4
11

3
2

3
2

3
1

3
10

0.0 0.1 1.1 1.0R
P.Q

1

0 X X

X X X

0.0 0.1 1.1 1.0
R

P.Q

Problem 18. Use Karnaugh map techniques
to simplify the expression: A · B · C · D + A · B ·
C · D + A · B · C · D + A · B · C · D + A · B · C · D.

Using the procedure, a four-variable matrix is drawn
and is shown in Table 11.17. The 1’s marked on the
matrix correspond to the expression given. Two cou-
ples can be formed as shown. The four-cell couple
has B = 1, C = 1, i.e. B · C as the common variables
to all four cells and the two-cell couple has A · B · D
as the common variables to both cells. Hence, the
expression simplifies to:

B · C + A · B · D i.e. B · (C + A · D)

Table 11.17

1.0

1.1

0.1

0.0

C.D

A.B
0.0 0.1 1.1 1.0

1

11

11

Problem 19. Simplify the expression
A · B · C · D + A · B · C · D + A · B · C · D
+ A · B · C · D + A · B · C · D by using Karnaugh
map techniques.

The Karnaugh map for the expression is shown in
Table 11.18. Since the top and bottom horizontal
lines are common edges and the vertical lines on
the left and right of the cells are common, then the
four corner cells form a couple, B · D (the cells can

be considered as if they are stretched to completely
cover a sphere, as far as common edges are con-
cerned). The cell A · B · C · D cannot be coupled with
any other. Hence the expression simplifies to

B · D + A · B · C · D

Table 11.18

A.B0.0 0.1 1.1 1.0

1 1
C.D

0.0

0.1

1.1

1.0 1 1

1

Now try the following exercise.

Exercise 49 Further problems on simpli-
fying Boolean expressions using Karnaugh
maps

In Problems 1 to 12 use Karnaugh map tech-
niques to simplify the expressions given.

1. X · Y + X · Y [Y ]

2. X · Y + X · Y + X · Y [X + Y ]

3. (P · Q) · (P · Q) [P · Q]

4. A · C + A · (B + C) + A · B · (C + B)
[A · C + B + A · C]

5. P · Q · R + P · Q · R + P · Q · R
[R · (P + Q]

6. P · Q · R + P · Q · R + P · Q · R + P · Q · R
[P · (Q + R) + P · Q · R]

7. A · B · C · D + A · B · C · D + A · B · C · D
[A · C · (B + D)]

8. A · B · C · D + A · B · C · D + A · B · C · D
[B · C · (A + D]

9. A · B · C · D + A · B · C · D + A · B · C · D +
A · B · C · D + A · B · C · D

[D · (A + B · C)]
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10. A · B · C · D + A · B · C · D + A · B · C · D +
A · B · C · D + A · B · C · D

[A · D + A · B · C · D]

11. A · B · C · D + A · B · C · D + A · B · C · D +
A · B · C · D + A · B · C · D + A · B · C · D +
A · B · C · D

[A · C + A · C · D + B · D · (A + C)]

11.6 Logic circuits

In practice, logic gates are used to perform the and,
or and not-functions introduced in Section 11.1.
Logic gates can be made from switches, magnetic
devices or fluidic devices, but most logic gates in use
are electronic devices. Various logic gates are avail-
able. For example, the Boolean expression (A · B · C)
can be produced using a three-input, and-gate and
(C + D) by using a two-input or-gate. The principal
gates in common use are introduced below. The term
‘gate’ is used in the same sense as a normal gate, the
open state being indicated by a binary ‘1’ and the
closed state by a binary ‘0’. A gate will only open
when the requirements of the gate are met and, for
example, there will only be a ‘1’ output on a two-
input and-gate when both the inputs to the gate are
at a ‘1’ state.

The and-gate

The different symbols used for a three-input, and-
gate are shown in Fig. 11.19(a) and the truth table
is shown in Fig. 11.19(b). This shows that there will
only be a ‘1’ output when A is 1 and B is 1 and C is
1, written as:

Z = A · B · C

The or-gate

The different symbols used for a three-input or-gate
are shown in Fig. 11.20(a) and the truth table is
shown in Fig. 11.20(b). This shows that there will
be a ‘1’ output when A is 1, or B is 1, or C is 1, or
any combination of A, B or C is 1, written as:

Z = A + B + C

The invert-gate or not-gate

The different symbols used for an invert-gate are
shown in Fig. 11.21(a) and the truth table is shown
in Fig. 11.21(b). This shows that a ‘0’ input gives a

Figure 11.19

Figure 11.20
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‘1’ output and vice versa, i.e. it is an ‘opposite to’
function. The invert of A is written A and is called
‘not-A’.

Figure 11.21

The nand-gate

The different symbols used for a nand-gate are
shown in Fig. 11.22(a) and the truth table is shown in
Fig. 11.22(b). This gate is equivalent to an and-gate
and an invert-gate in series (not-and = nand) and the
output is written as:

Z = A · B · C

The nor-gate

The different symbols used for a nor-gate are shown
in Fig. 11.23(a) and the truth table is shown in
Fig. 11.23(b). This gate is equivalent to an or-gate
and an invert-gate in series, (not-or = nor), and the
output is written as:

Z = A + B + C

Combinational logic networks

In most logic circuits, more than one gate is needed
to give the required output. Except for the invert-
gate, logic gates generally have two, three or four
inputs and are confined to one function only. Thus,
for example, a two-input, or-gate or a four-input
and-gate can be used when designing a logic circuit.
The way in which logic gates are used to generate a
given output is shown in Problems 20 to 23.

Problem 20. Devise a logic system to meet the
requirements of: Z = A · B + C

Figure 11.22

Figure 11.23
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With reference to Fig. 11.24 an invert-gate, shown as
(1), gives B. The and-gate, shown as (2), has inputs
of A and B, giving A · B. The or-gate, shown as (3),
has inputs of A · B and C, giving:

Z = A · B + C

Figure 11.24

Problem 21. Devise a logic system to meet the
requirements of (P + Q) · (R + S).

The logic system is shown in Fig. 11.25. The
given expression shows that two invert-functions
are needed to give Q and R and these are shown
as gates (1) and (2). Two or-gates, shown as (3) and
(4), give (P + Q) and (R + S) respectively. Finally,
an and-gate, shown as (5), gives the required output,

Z = (P + Q) · (R + S)

Figure 11.25

Problem 22. Devise a logic circuit to meet the
requirements of the output given in Table 11.19,
using as few gates as possible.

Table 11.19

Inputs
Output

A B C Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

The ‘1’ outputs in rows 6, 7 and 8 of Table 11.19
show that the Boolean expression is:

Z = A · B · C + A · B · C + A · B · C

The logic circuit for this expression can be built
using three, 3-input and-gates and one, 3-input or-
gate, together with two invert-gates. However, the
number of gates required can be reduced by using
the techniques introduced in Sections 11.3 to 11.5,
resulting in the cost of the circuit being reduced.Any
of the techniques can be used, and in this case, the
rules of Boolean algebra (see Table 11.8) are used.

Z = A · B · C + A · B · C + A · B · C

= A · [B · C + B · C + B · C]

= A · [B · C + B(C + C)] = A · [B · C + B]

= A · [B + B · C] = A · [B + C]

The logic circuit to give this simplified expression is
shown in Fig. 11.26.

Figure 11.26

Problem 23. Simplify the expression:

Z = P · Q · R · S + P · Q · R · S + P · Q · R · S

+ P · Q · R · S + P · Q · R · S

and devise a logic circuit to give this output.

The given expression is simplified using the
Karnaugh map techniques introduced in Sec-
tion 11.5. Two couples are formed as shown in
Fig. 11.27(a) and the simplified expression becomes:

Z = Q · R · S + P · R

i.e Z = R · (P + Q · S)

The logic circuit to produce this expression is shown
in Fig. 11.27(b).
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Figure 11.27

Now try the following exercise.

Exercise 50 Further problems on logic
circuits

In Problems 1 to 4, devise logic systems to meet
the requirements of the Boolean expressions
given.

1. Z = A + B · C
[See Fig. 11.28(a)]

2. Z = A · B + B · C
[See Fig. 11.28(b)]

3. Z = A · B · C + A · B · C
[See Fig. 11.28(c)]

4. Z = (A + B) · (C + D)
[See Fig. 11.28(d)]

Figure 11.28

Figure 11.28 Continued

In Problems 5 to 7, simplify the expression given
in the truth table and devise a logic circuit to meet
the requirements stated.

5. Column 4 of Table 11.20
[Z1 = A · B + C, see Fig. 11.29(a)]

6. Column 5 of Table 11.20
[Z2 = A · B + B · C, see Fig. 11.29(b)]

Table 11.20

1 2 3 4 5 6
A B C Z1 Z2 Z3

0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 0 1
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 1 1

Figure 11.29
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7. Column 6 of Table 11.20
[Z3 = A · C + B, see Fig. 11.29(c)]

In Problems 8 to 12, simplify the Boolean
expressions given and devise logic circuits
to give the requirements of the simplified
expressions.

8. P · Q + P · Q + P · Q

[P + Q, see Fig. 11.30(a)]

9. P · Q · R + P · Q · R + P · Q · R

[R · (P + Q), see Fig. 11.30(b)]

10. P · Q · R + P · Q · R + P · Q · R

[Q · (P + R), see Fig. 11.30(c)]

Figure 11.30

Figure 11.31

11. A · B · C · D + A · B · C · D + A · B · C · D +
A · B · C · D + A · B · C · D

[D · (A · C + B), see Fig. 11.31(a)]

12. (P · Q · R) · (P + Q · R)

[P · (Q + R) see Fig. 11.31(b)]

11.7 Universal logic gates

The function of any of the five logic gates in common
use can be obtained by using either nand-gates or
nor-gates and when used in this manner, the gate
selected in called a universal gate. The way in which
a universal nand-gate is used to produce the invert,
and, or and nor-functions is shown in Problem 24.
The way in which a universal nor-gate is used to
produce the invert, or, and and nand-functions is
shown in Problem 25.

Problem 24. Show how invert, and, or and
nor-functions can be produced using nand-
gates only.

A single input to a nand-gate gives the invert-
function, as shown in Fig. 11.32(a). When two
nand-gates are connected, as shown in Fig. 11.32(b),
the output from the first gate is A · B · C and this is
inverted by the second gate, giving

Z = A · B · C = A · B · C i.e. the and-function is pro-
duced. When A, B and C are the inputs to a

nand-gate, the output is A · B · C.

By de Morgan’s law, A · B · C = A + B + C =
A + B + C, i.e. a nand-gate is used to produce the or-
function. The logic circuit is shown in Fig. 11.32(c).
If the output from the logic circuit in Fig. 11.32(c)
is inverted by adding an additional nand-gate, the
output becomes the invert of an or-function, i.e. the
nor-function, as shown in Fig. 11.32(d).

Problem 25. Show how invert, or, and and
nand-functions can be produced by using nor-
gates only.

A single input to a nor-gate gives the invert-
function, as shown in Fig. 11.33(a). When two
nor-gates are connected, as shown in Fig. 11.33(b),
the output from the first gate is A + B + C
and this is inverted by the second gate, giving

Z = A + B + C = A + B + C, i.e. the or-function is
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A

Figure 11.32

produced. Inputs of A, B, and C to a nor-gate give

an output of A + B + C.

By de Morgan’s law, A + B + C = A · B · C =
A · B · C, i.e. the nor-gate can be used to produce
the and-function. The logic circuit is shown in
Fig. 11.33(c). When the output of the logic circuit,
shown in Fig. 11.33(c), is inverted by adding an addi-
tional nor-gate, the output then becomes the invert
of an or-function, i.e. the nor-function as shown in
Fig. 11.33(d).

Problem 26. Design a logic circuit, using
nand-gates having not more than three inputs, to
meet the requirements of the Boolean expression

Z = A + B + C + D

When designing logic circuits, it is often easier
to start at the output of the circuit. The given
expression shows there are four variables joined

Figure 11.33

by or-functions. From the principles introduced in
Problem 24, if a four-input nand-gate is used to

give the expression given, the inputs are A, B, C and

D that is A, B, C and D. However, the problem states
that three-inputs are not to be exceeded so two of the
variables are joined, i.e. the inputs to the three-input
nand-gate, shown as gate (1) in Fig. 11.34, is A, B, C
and D. From Problem 24, the and-function is gener-
ated by using two nand-gates connected in series, as
shown by gates (2) and (3) in Fig. 11.34. The logic
circuit required to produce the given expression is as
shown in Fig. 11.34.

Figure 11.34
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Problem 27. Use nor-gates only to design a
logic circuit to meet the requirements of the
expression: Z = D · (A + B + C)

It is usual in logic circuit design to start the design
at the output. From Problem 25, the and-function
between D and the terms in the bracket can be
produced by using inputs of D and A + B + C to
a nor-gate, i.e. by de Morgan’s law, inputs of D
and A · B · C. Again, with reference to Problem 25,
inputs of A · B and C to a nor-gate give an output

of A + B + C, which by de Morgan’s law is A · B · C.
The logic circuit to produce the required expression
is as shown in Fig. 11.35.

Figure 11.35

Problem 28. An alarm indicator in a grinding
mill complex should be activated if (a) the power
supply to all mills is off and (b) the hopper feed-
ing the mills is less than 10% full, and (c) if
less than two of the three grinding mills are
in action. Devise a logic system to meet these
requirements.

Let variable A represent the power supply on to all
the mills, then A represents the power supply off.
Let B represent the hopper feeding the mills being
more than 10% full, then B represents the hopper
being less than 10% full. Let C, D and E repre-
sent the three mills respectively being in action, then
C, D and E represent the three mills respectively not
being in action. The required expression to activate
the alarm is:

Z = A · B · (C + D + E)

There are three variables joined by and-functions
in the output, indicating that a three-input and-gate
is required, having inputs of A, B and (C + D + E).
The term (C + D + E) is produce by a three-
input nand-gate. When variables C, D and E

are the inputs to a nand-gate, the output is
C · D · E which, by de Morgan’s law is C + D + E.
Hence the required logic circuit is as shown in
Fig. 11.36.

Figure 11.36

Now try the following exercise.

Exercise 51 Further problems on universal
logic gates

In Problems 1 to 3, use nand-gates only to devise
the logic systems stated.

1. Z = A + B · C [See Fig. 11.37(a)]

2. Z = A · B + B · C [See Fig. 11.37(b)]

3. Z = A · B · C + A · B · C
[See Fig. 11.37(c)]

Figure 11.37
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A
In Problems 4 to 6, use nor-gates only to devise
the logic systems stated.

4. Z = (A + B) · (C + D)
[see Fig. 11.38(a)]

5. Z = A · B + B · C + C · D
[see Fig. 11.38(b)]

6. Z = P · Q + P · (Q + R)
[see Fig. 11.38(c)]

Figure 11.38

7. In a chemical process, three of the
transducers used are P, Q and R, giving out-
put signals of either 0 or 1. Devise a logic
system to give a 1 output when:

(a) P and Q and R all have 0 outputs, or when:

(b) P is 0 and (Q is 1 or R is 0)
[P · (Q + R), see Fig. 11.39(a)]

8. Lift doors should close, (Z), if:

(a) the master switch, (A), is on and either

(b) a call, (B), is received from any other
floor, or

(c) the doors, (C), have been open for more
than 10 seconds, or

(d) the selector push within the lift (D), is
pressed for another floor.

Figure 11.39

Devise a logic circuit to meet these
requirements.

[
Z = A · (B + C + D),

see Fig. 11.39(b)

]

9. A water tank feeds three separate processes.
When any two of the processes are in opera-
tion at the same time, a signal is required
to start a pump to maintain the head of
water in the tank. Devise a logic circuit using
nor-gates only to give the required signal.

[
Z = A · (B + C) + B · C,

see Fig. 11.39(c)

]

10. A logic signal is required to give an indica-
tion when:

(a) the supply to an oven is on, and
(b) the temperature of the oven exceeds

210◦C, or
(c) the temperature of the oven is less than

190◦C

Devise a logic circuit using nand-gates only
to meet these requirements.

[Z = A · (B + C), see Fig. 11.39(d)]
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Assignment 3

This assignment covers the material contained
in Chapters 9 and 11.

The marks for each question are shown in
brackets at the end of each question.

1. Use the method of bisection to evaluate the root
of the equation: x3 + 5x = 11 in the range x = 1
to x = 2, correct to 3 significant figures. (12)

2. Repeat question 1 using an algebraic method of
successive approximations. (16)

3. The solution to a differential equation associated
with the path taken by a projectile for which the
resistance to motion is proportional to the velocity
is given by:

y = 2.5(ex − e−x) + x − 25

Use Newton’s method to determine the value of
x, correct to 2 decimal places, for which the value
of y is zero. (11)

4. Convert the following binary numbers to decimal
form:
(a) 1101 (b) 101101.0101 (5)

5. Convert the following decimal number to binary
form:
(a) 27 (b) 44.1875 (9)

6. Convert the following denary numbers to binary,
via octal:
(a) 479 (b) 185.2890625 (9)

7. Convert
(a) 5F16 into its decimal equivalent
(b) 13210 into its hexadecimal equivalent
(c) 1101010112 into its hexadecimal equivalent

(8)

8. Use the laws and rules of Boolean algebra to
simplify the following expressions:

(a) B · (A + B
) + A · B

(b) A · B · C + A · B · C + A · B · C +A · B ·C (9)

9. Simplify the Boolean expression

A · B + A · B · C using de Morgan’s laws. (5)

10. Use a Karnaugh map to simplify the Boolean
expression:

A · B · C + A · B · C + A · B · C + A · B · C (8)

11. A clean room has two entrances, each having
two doors, as shown in Fig. A3.1. A warning bell
must sound if both doors A and B or doors C and
D are open at the same time. Write down the
Boolean expression depicting this occurrence,
and devise a logic network to operate the bell
using NAND-gates only. (8)

C D

A B

Dust-free
area

Figure A3.1
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12

Introduction to trigonometry

12.1 Trigonometry

Trigonometry is the branch of mathematics which
deals with the measurement of sides and angles
of triangles, and their relationship with each other.
There are many applications in engineering where a
knowledge of trigonometry is needed.

12.2 The theorem of Pythagoras

With reference to Fig. 12.1, the side opposite the
right angle (i.e. side b) is called the hypotenuse.
The theorem of Pythagoras states:

‘In any right-angled triangle, the square on the
hypotenuse is equal to the sum of the squares on
the other two sides.’
Hence b2 = a2 + c2

Figure 12.1

Problem 1. In Fig. 12.2, find the length of EF.

Figure 12.2

By Pythagoras’ theorem:

e2 = d2 + f 2

Hence 132 = d2 + 52

169 = d2 + 25
d2 = 169 − 25 = 144

Thus d = √
144 = 12 cm

i.e. EF = 12 cm

Problem 2. Two aircraft leave an airfield at the
same time. One travels due north at an aver-
age speed of 300 km/h and the other due west
at an average speed of 220 km/h. Calculate their
distance apart after 4 hours.

After 4 hours, the first aircraft has travelled
4 × 300 = 1200 km, due north, and the second air-
craft has travelled 4 × 220 = 880 km due west, as
shown in Fig. 12.3. Distance apart after 4 hours = BC.

Figure 12.3

From Pythagoras’ theorem:

BC2 = 12002 + 8802 = 1 440 000 + 774 400

and BC = √(2 214 400)

Hence distance apart after 4 hours = 1488 km.

Now try the following exercise.

Exercise 52 Further problems on the the-
orem of Pythagoras

1. In a triangle CDE, D = 90◦, CD = 14.83 mm
and CE = 28.31 mm. Determine the length of
DE. [24.11 mm]

2. Triangle PQR is isosceles, Q being a right
angle. If the hypotenuse is 38.47 cm find
(a) the lengths of sides PQ and QR, and
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(b) the value of ∠QPR.
[(a) 27.20 cm each (b) 45◦]

3. A man cycles 24 km due south and then 20 km
due east. Another man, starting at the same
time as the first man, cycles 32 km due east
and then 7 km due south. Find the distance
between the two men. [20.81 km]

4. A ladder 3.5 m long is placed against a per-
pendicular wall with its foot 1.0 m from the
wall. How far up the wall (to the nearest centi-
metre) does the ladder reach? If the foot of the
ladder is now moved 30 cm further away from
the wall, how far does the top of the ladder
fall? [3.35 m, 10 cm]

5. Two ships leave a port at the same time. One
travels due west at 18.4 km/h and the other
due south at 27.6 km/h. Calculate how far
apart the two ships are after 4 hours.

[132.7 km]

12.3 Trigonometric ratios of acute
angles

(a) With reference to the right-angled triangle
shown in Fig. 12.4:

(i) sine θ = opposite side

hypotenuse

i.e. sin θ = b
c

(ii) cosine θ = adjacent side

hypotenuse

i.e. cos θ = a
c

(iii) tangent θ = opposite side

adjacent side

i.e. tan θ = b
a

(iv) secant θ = hypotenuse

adjacent side

i.e. sec θ = c
a

(v) cosecant θ = hypotenuse

opposite side

i.e. cosec θ = c
b

(vi) cotangent θ = adjacent side

opposite side

i.e. cot θ = a
b

Figure 12.4

(b) From above,

(i)
sin θ

cos θ
=

b

c
a

c

= b

a
= tan θ,

i.e. tan θ = sin θ

cos θ

(ii)
cos θ

sin θ
=

a

c
b

c

= a

b
= cot θ,

i.e. cot θ = cos θ

sin θ

(iii) sec θ = 1
cos θ

(iv) cosec θ = 1
sin θ

(Note ‘s’ and ‘c’ go together)

(v) cot θ = 1
tan θ

Secants, cosecants and cotangents are called the
reciprocal ratios.

Problem 3. If cos X = 9

41
determine the value

of the other five trigonometry ratios.

Fig. 12.5 shows a right-angled triangle XYZ .

Since cos X = 9

41
, then XY = 9 units and

XZ = 41 units.
Using Pythagoras’ theorem: 412 = 92 + YZ2 from
which YZ =√(412 − 92) = 40 units.
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Figure 12.5

Thus

sin X = 40
41

, tan X = 40
9

= 4
4
9

,

cosec X = 41
40

= 1
1

40
,

sec X = 41
9

= 4
5
9

and cot X = 9
40

Problem 4. If sin θ = 0.625 and cos θ = 0.500
determine, without using trigonometric tables
or calculators, the values of cosec θ, sec θ, tan θ
and cot θ.

cosec θ = 1

sin θ
= 1

0.625
= 1.60

sec θ = 1

cos θ
= 1

0.500
= 2.00

tan θ = sin θ

cos θ
= 0.625

0.500
= 1.25

cot θ = cos θ

sin θ
= 0.500

0.625
= 0.80

Problem 5. Point A lies at co-ordinate (2, 3)
and point B at (8, 7). Determine (a) the dis-
tance AB, (b) the gradient of the straight line AB,
and (c) the angle AB makes with the horizontal.

(a) Points A and B are shown in Fig. 12.6(a).

In Fig. 12.6(b), the horizontal and vertical lines
AC and BC are constructed.

Since ABC is a right-angled triangle, and
AC = (8 − 2) = 6 and BC = (7 − 3) = 4, then by
Pythagoras’ theorem

AB2 = AC2 + BC2 = 62 + 42

and AB =
√

(62 + 42) = √
52 = 7.211,

correct to 3 decimal places

Figure 12.6

(b) The gradient of AB is given by tan A,

i.e. gradient = tan A = BC

AC
= 4

6
= 2

3
(c) The angle AB makes with the horizontal is

given by tan−1 2
3 = 33.69◦.

Now try the following exercise.

Exercise 53 Further problems on trigono-
metric ratios of acute

1. In triangle ABC shown in Fig. 12.7, find
sin A, cos A, tan A, sin B, cos B and tan B.

[
sin A = 3

5 , cos A = 4
5 , tan A = 3

4

sin B = 4
5 , cos B = 3

5 , tan B = 4
3

]

2. If cos A = 15

17
find sin A and tan A, in fraction

form.

[

sin A = 8

17
, tan A = 8

15

]
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Figure 12.7

3. For the right-angled triangle shown in
Fig. 12.8, find:

(a) sin α (b) cos θ (c) tan θ[

(a)
15

17
(b)

15

17
(c)

8

15

]

Figure 12.8

4. Point P lies at co-ordinate (−3, 1) and point
Q at (5, −4). Determine

(a) the distance PQ
(b) the gradient of the straight line PQ and
(c) the angle PQ makes with the horizontal

[(a) 9.434 (b) −0.625 (c) 32◦]

12.4 Solution of right-angled triangles

To ‘solve a right-angled triangle’ means ‘to find the
unknown sides and angles’. This is achieved by using
(i) the theorem of Pythagoras, and/or (ii) trigono-
metric ratios. This is demonstrated in the following
problems.

Problem 6. In triangle PQR shown in Fig. 12.9,
find the lengths of PQ and PR.

Figure 12.9

tan 38◦ = PQ

QR
= PQ

7.5

hence PQ = 7.5 tan 38◦ = 7.5(0.7813)

= 5.860 cm

cos 38◦ = QR

PR
= 7.5

PR

hence PR = 7.5

cos 38◦ = 7.5

0.7880
= 9.518 cm

[Check: Using Pythagoras’ theorem

(7.5)2 + (5.860)2 = 90.59 = (9.518)2]

Problem 7. Solve the triangle ABC shown in
Fig. 12.10.

Figure 12.10

To ‘solve triangle ABC’ means ‘to find the length
AC and angles B and C’

sin C = 35

37
= 0.94595

hence ∠C = sin−1 0.94595 = 71.08◦ = 71◦5′.
∠B = 180◦− 90◦− 71◦5′ = 18◦55′ (since angles in
a triangle add up to 180◦)

sin B = AC

37
hence AC = 37 sin 18◦55′ = 37(0.3242)

= 12.0 mm

or, using Pythagoras’ theorem, 372 = 352 + AC2,
from which, AC =√(372 − 352) = 12.0 mm.

Problem 8. Solve triangle XYZ given
∠X = 90◦, ∠Y = 23◦17′ and YZ = 20.0 mm.
Determine also its area.

It is always advisable to make a reasonably accurate
sketch so as to visualize the expected magnitudes of
unknown sides and angles. Such a sketch is shown
in Fig. 12.11.

∠Z = 180◦ − 90◦ − 23◦17′ = 66◦43′

sin 23◦17′ = XZ

20.0
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hence XZ = 20.0 sin 23◦17′

= 20.0(0.3953) = 7.906 mm

cos 23◦17′ = XY

20.0
hence XY = 20.0 cos 23◦17′

= 20.0(0.9186) = 18.37 mm

[Check: Using Pythagoras’ theorem

(18.37)2+ (7.906)2 = 400.0 = (20.0)2]

Area of triangle XYZ

= 1
2 (base) (perpendicular height)

= 1
2 (XY )(XZ) = 1

2 (18.37)(7.906)

= 72.62 mm2

Now try the following exercise.

Exercise 54 Further problems on the solu-
tion of right-angled triangles

1. Solve triangle ABC in Fig. 12.12(i).[
BC = 3.50 cm, AB = 6.10 cm,

∠B = 55◦
]

Figure 12.12

2. Solve triangle DEF in Fig. 12.12(ii)
[FE = 5 cm, ∠E = 53◦8′, ∠F = 36◦52′]

3. Solve triangle GHI in Fig. 12.12(iii)[
GH = 9.841 mm, GI = 11.32 mm,

∠H = 49◦
]

4. Solve the triangle JKL in Fig. 12.13(i) and

find its area

[
KL = 5.43 cm, JL = 8.62 cm,
∠J = 39◦, area = 18.19 cm2

]

5. Solve the triangle MNO in Fig. 12.13(ii) and
find its area[

MN = 28.86 mm, NO = 13.82 mm,
∠O = 64◦25′, area = 199.4 mm2

]

Figure 12.13

6. Solve the triangle PQR in Fig. 12.13(iii) and
find its area[

PR = 7.934 m, ∠Q = 65◦3′,
∠R = 24◦57′, area = 14.64 m2

]

7. A ladder rests against the top of the perpen-
dicular wall of a building and makes an angle
of 73◦ with the ground. If the foot of the lad-
der is 2 m from the wall, calculate the height
of the building. [6.54 m]

12.5 Angles of elevation and depression

(a) If, in Fig. 12.14, BC represents horizontal
ground and AB a vertical flagpole, then the
angle of elevation of the top of the flagpole,
A, from the point C is the angle that the imagi-
nary straight line AC must be raised (or elevated)
from the horizontal CB, i.e. angle θ.

Figure 12.14

(b) If, in Fig. 12.15, PQ represents a vertical cliff
and R a ship at sea, then the angle of depression
of the ship from point P is the angle through
which the imaginary straight line PR must be
lowered (or depressed) from the horizontal to
the ship, i.e. angle φ.

Figure 12.15
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(Note, ∠PRQ is also φ—alternate angles
between parallel lines.)

Problem 9. An electricity pylon stands on hori-
zontal ground. At a point 80 m from the base of
the pylon, the angle of elevation of the top of the
pylon is 23◦. Calculate the height of the pylon
to the nearest metre.

Figure 12.16 shows the pylon AB and the angle of
elevation of A from point C is 23◦

tan 23◦ = AB

BC
= AB

80

Hence height of pylon AB

= 80 tan 23◦ = 80(0.4245) = 33.96 m
= 34 m to the nearest metre

Figure 12.16

Problem 10. A surveyor measures the angle of
elevation of the top of a perpendicular build-
ing as 19◦. He moves 120 m nearer the building
and finds the angle of elevation is now 47◦.
Determine the height of the building.

The building PQ and the angles of elevation are
shown in Fig. 12.17.

In triangle PQS,

tan 19◦ = h

x + 120

hence h = tan 19◦(x + 120),

i.e. h = 0.3443(x + 120) (1)

Figure 12.17

In triangle PQR, tan 47◦= h

x

hence h = tan 47◦(x), i.e. h = 1.0724x (2)

Equating equations (1) and (2) gives:

0.3443(x + 120) = 1.0724x
0.3443x + (0.3443)(120) = 1.0724x

(0.3443)(120) = (1.0724 − 0.3443)x
41.316 = 0.7281x

x = 41.316

0.7281
= 56.74 m

From equation (2), height of building,

h = 1.0724x = 1.0724(56.74) = 60.85 m.

Problem 11. The angle of depression of a ship
viewed at a particular instant from the top of a
75 m vertical cliff is 30◦. Find the distance of the
ship from the base of the cliff at this instant. The
ship is sailing away from the cliff at constant
speed and 1 minute later its angle of depression
from the top of the cliff is 20◦. Determine the
speed of the ship in km/h.

Figure 12.18 shows the cliff AB, the initial position
of the ship at C and the final position at D. Since the
angle of depression is initially 30◦ then ∠ACB = 30◦
(alternate angles between parallel lines).

tan 30◦ = AB

BC
= 75

BC

hence BC = 75

tan 30◦ = 75

0.5774
= 129.9 m

= initial position of ship from
base of cliff

Figure 12.18

In triangle ABD,

tan 20◦ = AB

BD
= 75

BC + CD

= 75

129.9 + x
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Hence 129.9 + x = 75

tan 20◦ = 75

0.3640
= 206.0 m

from which x = 206.0 − 129.9 = 76.1 m

Thus the ship sails 76.1 m in 1 minute, i.e. 60 s, hence
speed of ship

= distance

time
= 76.1

60
m/s

= 76.1 × 60 × 60

60 × 1000
km/h = 4.57 km/h

Now try the following exercise.

Exercise 55 Further problems on angles of
elevation and depression

1. If the angle of elevation of the top of a vertical
30 m high aerial is 32◦, how far is it to the
aerial? [48 m]

2. From the top of a vertical cliff 80.0 m high
the angles of depression of two buoys lying
due west of the cliff are 23◦ and 15◦, respec-
tively. How far are the buoys apart?

[110.1 m]

3. From a point on horizontal ground a surveyor
measures the angle of elevation of the top of
a flagpole as 18◦40′. He moves 50 m nearer
to the flagpole and measures the angle of ele-
vation as 26◦22′. Determine the height of the
flagpole. [53.0 m]

4. A flagpole stands on the edge of the top of a
building. At a point 200 m from the building
the angles of elevation of the top and bot-
tom of the pole are 32◦ and 30◦ respectively.
Calculate the height of the flagpole.

[9.50 m]

5. From a ship at sea, the angles of elevation of
the top and bottom of a vertical lighthouse
standing on the edge of a vertical cliff are
31◦ and 26◦, respectively. If the lighthouse is
25.0 m high, calculate the height of the cliff.

[107.8 m]

6. From a window 4.2 m above horizontal
ground the angle of depression of the foot
of a building across the road is 24◦ and the
angle of elevation of the top of the building is
34◦. Determine, correct to the nearest centi-
metre, the width of the road and the height of
the building. [9.43 m, 10.56 m]

7. The elevation of a tower from two points, one
due east of the tower and the other due west of
it are 20◦ and 24◦, respectively, and the two
points of observation are 300 m apart. Find
the height of the tower to the nearest metre.

[60 m]

12.6 Evaluating trigonometric ratios

Four-figure tables are available which gives sines,
cosines, and tangents, for angles between 0◦ and
90◦. However, the easiest method of evaluating
trigonometric functions of any angle is by using a
calculator.

The following values, correct to 4 decimal places,
may be checked:

sine 18◦= 0.3090, cosine 56◦= 0.5592
sine 172◦= 0.1392 cosine 115◦= −0.4226,
sine 241.63◦= −0.8799, cosine 331.78◦= 0.8811

tangent 29◦= 0.5543,
tangent 178◦= −0.0349
tangent 296.42◦= −2.0127

To evaluate, say, sine 42◦23′ using a calculator means

finding sine 42
23◦

60
since there are 60 minutes in

1 degree.

23

60
= 0.3833̇ thus 42◦23′ = 42.383̇◦

Thus sine 42◦23′ = sine 42.383̇◦ = 0.6741, correct
to 4 decimal places.

Similarly, cosine 72◦38′ = cosine 72
38◦

60
= 0.2985,

correct to 4 decimal places.
Most calculators contain only sine, cosine and tan-

gent functions. Thus to evaluate secants, cosecants
and cotangents, reciprocals need to be used. The fol-
lowing values, correct to 4 decimal places, may be
checked:

secant 32◦ = 1

cos 32◦ = 1.1792

cosecant 75◦ = 1

sin 75◦ = 1.0353

cotangent 41◦ = 1

tan 41◦ = 1.1504

secant 215.12◦ = 1

cos 215.12◦ = −1.2226
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cosecant 321.62◦ = 1

sin 321.62◦ = −1.6106

cotangent 263.59◦ = 1

tan 263.59◦ = 0.1123

Problem 12. Evaluate correct to 4 decimal
places:
(a) sine 168◦14′ (b) cosine 271.41◦
(c) tangent 98◦4′

(a) sine 168◦14′ = sine 168
14◦

60
= 0.2039

(b) cosine 271.41◦= 0.0246

(c) tangent 98◦4′ = tan 98
4◦

60
= −7.0558

Problem 13. Evaluate, correct to 4 decimal
places: (a) secant 161◦ (b) secant 302◦29′

(a) sec 161◦ = 1

cos 161◦ = −1.0576

(b) sec 302◦29′ = 1

cos 302◦29′ = 1

cos 302
29◦

60= 1.8620

Problem 14. Evaluate, correct to 4 significant
figures:
(a) cosecant 279.16◦ (b) cosecant 49◦7′

(a) cosec 279.16◦ = 1

sin 279.16◦ = −1.013

(b) cosec 49◦7′ = 1

sin 49◦7′ = 1

sin 49
7◦

60= 1.323

Problem 15. Evaluate, correct to 4 decimal
places:
(a) cotangent 17.49◦ (b) cotangent 163◦52′

(a) cot 17.49◦ = 1

tan 17.49◦ = 3.1735

(b) cot 163◦52′ = 1

tan 163◦52′ = 1

tan 163
52◦

60
= −3.4570

Problem 16. Evaluate, correct to 4 significant
figures:

(a) sin 1.481 (b) cos (3π/5) (c) tan 2.93

(a) sin 1.481 means the sine of 1.481 radians. Hence
a calculator needs to be on the radian function.
Hence sin 1.481 = 0.9960.

(b) cos (3π/5) = cos 1.884955 · · · =−0.3090.
(c) tan 2.93 = −0.2148.

Problem 17. Evaluate, correct to 4 decimal
places:

(a) secant 5.37 (b) cosecant π/4
(c) cotangent π/24

(a) Again, with no degrees sign, it is assumed that
5.37 means 5.37 radians.

Hence sec 5.37 = 1

cos 5.37
= 1.6361

(b) cosec (π/4) = 1

sin (π/4)
= 1

sin 0.785398 . . .

= 1.4142

(c) cot (5π/24) = 1

tan (5π/24)
= 1

tan 0.654498 . . .

= 1.3032

Problem 18. Determine the acute angles:

(a) sec−1 2.3164 (b) cosec −11.1784
(c) cot−1 2.1273

(a) sec−1 2.3164 = cos−1
(

1

2.3164

)

= cos−1 0.4317 . . .

= 64.42◦ or 64◦25′

or 1.124 radians

(b) cosec−11.1784 = sin−1
(

1

1.1784

)

= sin−1 0.8486 . . .

= 58.06◦ or 58◦4′

or 1.013 radians
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(c) cot−1 2.1273 = tan−1
(

1

2.1273

)

= tan−1 0.4700 . . .

= 25.18◦ or 25◦11′

or 0.439 radians

Problem 19. Evaluate the following expres-
sion, correct to 4 significant figures:

4 sec 32◦10′ − 2 cot 15◦19′

3 cosec 63◦8′ tan 14◦57′

By calculator:

sec 32◦10′ = 1.1813, cot 15◦19′ = 3.6512

cosec 63◦8′ = 1.1210, tan 14◦57′ = 0.2670

Hence
4 sec 32◦10′ − 2 cot 15◦19′

3 cosec 63◦8′ tan 14◦57′

= 4(1.1813) − 2(3.6512)

3(1.1210)(0.2670)

= 4.7252 − 7.3024

0.8979

= −2.5772

0.8979
= −2.870,

correct to 4 significant figures

Problem 20. Evaluate correct to 4 decimal
places:

(a) sec (−115◦) (b) cosec (−95◦47′)

(a) Positive angles are considered by convention
to be anticlockwise and negative angles as
clockwise.
Hence −115◦ is actually the same as 245◦ (i.e.
360◦− 115◦)

Hence sec (−115◦) = sec 245◦ = 1

cos 245◦
= −2.3662

(b) cosec (−95◦47′) = 1

sin

(

−95
47◦

60

) = −1.0051

Now try the following exercise.

Exercise 56 Further problems on evaluat-
ing trigonometric ratios

In Problems 1 to 8, evaluate correct to 4 decimal
places:

1. (a) sine 27◦ (b) sine 172.41◦
(c) sine 302◦52′

[
(a) 0.4540 (b) 0.1321
(c) −0.8399

]

2. (a) cosine 124◦ (b) cosine 21.46◦
(c) cosine 284◦10′

[
(a) −0.5592 (b) 0.9307
(c) 0.2447

]

3. (a) tangent 145◦ (b) tangent 310.59◦
(c) tangent 49◦16′

[
(a) −0.7002 (b) −1.1671
(c) 1.1612

]

4. (a) secant 73◦ (b) secant 286.45◦
(c) secant 155◦41′

[
(a) 3.4203 (b) 3.5313
(c) −1.0974

]

5. (a) cosecant 213◦ (b) cosecant 15.62◦
(c) cosecant 311◦50′

[
(a) −1.8361 (b) 3.7139
(c) −1.3421

]

6. (a) cotangent 71◦ (b) cotangent 151.62◦
(c) cotangent 321◦23′

[
(a) 0.3443 (b) −1.8510
(c) −1.2519

]

7. (a) sine
2π

3
(b) cos 1.681 (c) tan 3.672
[

(a) 0.8660 (b) −0.1010
(c) 0.5865

]

8. (a) sec
π

8
(b) cosec 2.961 (c) cot 2.612

[
(a) 1.0824 (b) 5.5675
(c) −1.7083

]

In Problems 9 to 14, determine the acute angle
in degrees (correct to 2 decimal places), degrees
and minutes, and in radians (correct to 3 decimal
places).
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9. sin−1 0.2341

[
13.54◦, 13◦32′,
0.236 rad

]

10. cos−1 0.8271

[
34.20◦, 34◦12′,
0.597 rad

]

11. tan−1 0.8106

[
39.03◦, 39◦2′,
0.681 rad

]

12. sec−1 1.6214

[
51.92◦, 51◦55′,
0.906 rad

]

13. cosec−12.4891

[
23.69◦, 23◦41′,
0.413 rad

]

14. cot−1 1.9614

[
27.01◦, 27◦1′,
0.471 rad

]

In Problems 15 to 18, evaluate correct to 4
significant figures.

15. 4 cos 56◦19′ − 3 sin 21◦57′ [1.097]

16.
11.5 tan 49◦11′ − sin 90◦

3 cos 45◦ [5.805]

17.
5 sin 86◦3′

3 tan 14◦29′ − 2 cos 31◦9′ [−5.325]

18.
6.4 cosec 29◦5′ − sec 81◦

2 cot 12◦ [0.7199]

19. Determine the acute angle, in degrees and
minutes, correct to the nearest minute, given

by sin−1
(

4.32 sin 42◦16′

7.86

)

[21◦42′]
20. If tan x = 1.5276, determine sec x, cosec x,

and cot x. (Assume x is an acute angle)
[1.8258, 1.1952, 0.6546]

In Problems 21 to 23 evaluate correct to 4
significant figures

21.
(sin 34◦27′)(cos 69◦2′)

(2 tan 53◦39′)
[0.07448]

22. 3 cot 14◦15′ sec 23◦9′ [12.85]

23.
cosec 27◦19′ + sec 45◦29′

1 − cosec 27◦19′ sec 45◦29′ [−1.710]

24. Evaluate correct to 4 decimal places:
(a) sine (−125◦) (b) tan (−241◦)
(c) cos (−49◦15′)

[
(a) −0.8192 (b) −1.8040
(c) 0.6528

]

25. Evaluate correct to 5 significant figures:
(a) cosec (−143◦) (b) cot (−252◦)
(c) sec (−67◦22′)[

(a) −1.6616 (b) −0.32492
(c) 2.5985

]

12.7 Sine and cosine rules

To ‘solve a triangle’ means ‘to find the values of
unknown sides and angles’. If a triangle is right
angled, trigonometric ratios and the theorem of
Pythagoras may be used for its solution, as shown
in Section 12.4. However, for a non-right-angled
triangle, trigonometric ratios and Pythagoras’ the-
orem cannot be used. Instead, two rules, called the
sine rule and the cosine rule, are used.

Sine rule

With reference to triangle ABC of Fig. 12.19, the
sine rule states:

a

sin A
= b

sin B
= c

sin C

Figure 12.19

The rule may be used only when:

(i) 1 side and any 2 angles are initially given, or
(ii) 2 sides and an angle (not the included angle) are

initially given.

Cosine rule

With reference to triangle ABC of Fig. 12.19, the
cosine rule states:
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a2 = b2 + c2 − 2bc cos A
or b2 = a2 + c2 − 2ac cos B
or c2 = a2 + b2 − 2ab cos C

The rule may be used only when:

(i) 2 sides and the included angle are initially given,
or

(ii) 3 sides are initially given.

12.8 Area of any triangle

The area of any triangle such as ABC of Fig. 12.19
is given by:

(i) 1
2 × base × perpendicular height, or

(ii) 1
2 ab sin C or 1

2 ac sin B or 1
2 bc sin A, or

(iii)
√

[s(s − a)(s − b)(s − c)], where

s = a + b + c

2

12.9 Worked problems on the solution
of triangles and finding their
areas

Problem 21. In a triangle XYZ , ∠X = 51◦,
∠Y= 67◦ and YZ = 15.2 cm. Solve the triangle
and find its area.

The triangle XYZ is shown in Fig. 12.20. Since
the angles in a triangle add up to 180◦, then
Z = 180◦− 51◦− 67◦ = 62◦. Applying the sine rule:

15.2

sin 51◦ = y

sin 67◦ = z

sin 62◦

Using
15.2

sin 51◦ = y

sin 67◦ and transposing gives:

y = 15.2 sin 67◦

sin 51◦ = 18.00 cm = XZ

Using
15.2

sin 51◦ = z

sin 62◦ and transposing gives:

z = 15.2 sin 62◦

sin 51◦ = 17.27 cm = XY

Figure 12.20

Area of triangle XYZ = 1
2 xy sin Z

= 1
2 (15.2)(18.00) sin 62◦ = 120.8 cm2 (or area

= 1
2 xz sin Y = 1

2 (15.2)(17.27) sin 67◦ = 120.8 cm2).
It is always worth checking with triangle problems

that the longest side is opposite the largest angle, and
vice-versa. In this problem, Y is the largest angle and
XZ is the longest of the three sides.

Problem 22. Solve the triangle PQR and
find its area given that QR = 36.5 mm, PR =
29.6 mm and ∠Q = 36◦.

Triangle PQR is shown in Fig. 12.21.

Figure 12.21

Applying the sine rule:

29.6

sin 36◦ = 36.5

sin P

from which,

sin P = 36.5 sin 36◦

29.6
= 0.7248

Hence P = sin−1 0.7248 = 46◦27′ or 133◦33′.
When P = 46◦27′ and Q = 36◦ then
R = 180◦− 46◦27′− 36◦ = 97◦33′.
When P = 133◦33′ and Q = 36◦ then
R = 180◦ − 133◦33′− 36◦ = 10◦27′.

Thus, in this problem, there are two separate sets
of results and both are feasible solutions. Such a
situation is called the ambiguous case.
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Case 1. P = 46◦27′, Q = 36◦, R = 97◦33′,
p = 36.5 mm and q = 29.6 mm.
From the sine rule:

r

sin 97◦33′ = 29.6

sin 36◦

from which,

r = 29.6 sin 97◦33′

sin 36◦ = 49.92 mm

Area = 1
2 pq sin R = 1

2 (36.5)(29.6) sin 97◦33′

= 535.5 mm2

Case 2. P = 133◦33′, Q = 36◦, R = 10◦27′,
p = 36.5 mm and q = 29.6 mm.
From the sine rule:

r

sin 10◦27′ = 29.6

sin 36◦

from which,

r = 29.6 sin 10◦27′

sin 36◦ = 9.134 mm

Area = 1
2 pq sin R = 1

2 (36.5)(29.6) sin 10◦27′

= 97.98 mm2.

Triangle PQR for case 2 is shown in Fig. 12.22.

Figure 12.22

Now try the following exercise.

Exercise 57 Further problems on solving
triangles and finding their areas

In Problems 1 and 2, use the sine rule to solve
the triangles ABC and find their areas.

1. A = 29◦, B = 68◦, b = 27 mm.[
C = 83◦, a = 14.1 mm,
c = 28.9 mm, area = 189 mm2

]

2. B = 71◦26′, C = 56◦32′, b = 8.60 cm.[
A = 52◦2′, c = 7.568 cm,
a = 7.152 cm, area = 25.65 cm2

]

In Problems 3 and 4, use the sine rule to solve
the triangles DEF and find their areas.

3. d = 17 cm, f = 22 cm, F = 26◦.[
D = 19◦48′, E = 134◦12′,
e = 36.0 cm, area = 134 cm2

]

4. d = 32.6 mm, e = 25.4 mm, D = 104◦22′.[
E = 49◦0′, F = 26◦38′,
f = 15.09 mm, area = 185.6 mm2

]

In Problems 5 and 6, use the sine rule to solve
the triangles JKL and find their areas.

5. j = 3.85 cm, k = 3.23 cm, K = 36◦.⎡

⎢
⎣

J = 44◦29′, L = 99◦31′,
l = 5.420 cm, area = 6.132 cm2 or
J = 135◦31′, L = 8◦29′,
l = 0.811 cm, area = 0.916 cm2

⎤

⎥
⎦

6. k = 46 mm, l = 36 mm, L = 35◦.⎡

⎢
⎣

K = 47◦8′, J = 97◦52′,
j = 62.2 mm, area = 820.2 mm2 or
K = 132◦52′, J = 12◦8′,
j = 13.19 mm, area = 174.0 mm2

⎤

⎥
⎦

12.10 Further worked problems on
solving triangles and finding
their areas

Problem 23. Solve triangle DEF and find its
area given that EF = 35.0 mm, DE = 25.0 mm
and ∠E = 64◦.

Triangle DEF is shown in Fig. 12.23.

Figure 12.23

Applying the cosine rule:

e2 = d2 + f 2 − 2d f cos E

i.e. e2 = (35.0)2 + (25.0)2

−[2(35.0)(25.0) cos 64◦]
= 1225 + 625 − 767.1 = 1083

from which, e = √
1083 = 32.91 mm
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Applying the sine rule:

32.91

sin 64◦ = 25.0

sin F

from which, sin F = 25.0 sin 64◦

32.91
= 0.6828

Thus ∠F = sin−1 0.6828
= 43◦4′ or 136◦56′

F = 136◦56′ is not possible in this case since
136◦56′ + 64◦ is greater than 180◦. Thus only
F = 43◦4′ is valid

∠D = 180◦ − 64◦ − 43◦4′ = 72◦56′

Area of triangle DEF = 1
2 d f sin E

= 1
2 (35.0)(25.0) sin 64◦ = 393.2 mm2.

Problem 24. A triangle ABC has sides a =
9.0 cm, b = 7.5 cm and c = 6.5 cm. Determine
its three angles and its area.

Triangle ABC is shown in Fig. 12.24. It is usual first
to calculate the largest angle to determine whether
the triangle is acute or obtuse. In this case the largest
angle is A (i.e. opposite the longest side).
Applying the cosine rule:

a2 = b2 + c2 − 2bc cos A

from which, 2bc cos A = b2 + c2 − a2

and cos A = b2 + c2 − a2

2bc
= 7.52 + 6.52 − 9.02

2(7.5)(6.5)
= 0.1795

Figure 12.24

Hence A = cos−1 0.1795 = 79◦40′ (or 280◦20′,
which is obviously impossible). The triangle is thus
acute angled since cos A is positive. (If cos A had
been negative, angle A would be obtuse, i.e. lie
between 90◦ and 180◦).

Applying the sine rule:

9.0

sin 79◦40′ = 7.5

sin B

from which,

sin B = 7.5 sin 79◦40′

9.0
= 0.8198

Hence B = sin−1 0.8198 = 55◦4′

and C = 180◦ − 79◦40′ − 55◦4′ = 45◦16′

Area = √[s(s − a)(s − b)(s − c)],

where s = a + b + c

2
= 9.0 + 7.5 + 6.5

2
= 11.5 cm

Hence area

= √[11.5(11.5 − 9.0)(11.5 − 7.5)(11.5 − 6.5)]

= √[11.5(2.5)(4.0)(5.0)] = 23.98 cm2

Alternatively, area = 1
2 ab sin C

= 1
2 (9.0)(7.5) sin 45◦16′ = 23.98 cm2.

Now try the following exercise.

Exercise 58 Further problems on solving
triangles and finding their areas

In Problems 1 and 2, use the cosine and sine
rules to solve the triangles PQR and find their
areas.

1. q = 12 cm, r = 16 cm, P = 54◦
[

p = 13.2 cm, Q = 47◦21′,
R = 78◦39′, area = 77.7 cm2

]

2. q = 3.25 m, r = 4.42 m, P = 105◦
[

p = 6.127 m, Q = 30◦50′,
R = 44◦10′, area = 6.938 m2

]

In problems 3 and 4, use the cosine and sine
rules to solve the triangles XYZ and find their
areas.

3. x = 10.0 cm, y = 8.0 cm, z = 7.0 cm
[

X = 83◦20′, Y = 52◦37′,
Z = 44◦3′, area = 27.8 cm2

]
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4. x = 21 mm, y = 34 mm, z = 42 mm
[

Z = 29◦46′, Y = 53◦30′,
Z = 96◦44′, area = 355 mm2

]

12.11 Practical situations involving
trigonometry

There are a number of practical situations where
the use of trigonometry is needed to find unknown
sides and angles of triangles. This is demonstrated
in Problems 25 to 30.

Problem 25. A room 8.0 m wide has a span
roof which slopes at 33◦ on one side and 40◦
on the other. Find the length of the roof slopes,
correct to the nearest centimetre.

A section of the roof is shown in Fig. 12.25.

Figure 12.25

Angle at ridge, B = 180◦− 33◦− 40◦ = 107◦
From the sine rule:

8.0

sin 107◦ = a

sin 33◦

from which,

a = 8.0 sin 33◦

sin 107◦ = 4.556 m

Also from the sine rule:

8.0

sin 107◦ = c

sin 40◦

from which,

c = 8.0 sin 40◦

sin 107◦ = 5.377 m

Hence the roof slopes are 4.56 m and 5.38 m,
correct to the nearest centimetre.

Problem 26. Two voltage phasors are shown in
Fig. 12.26. If V1 = 40V and V2 = 100V deter-
mine the value of their resultant (i.e. length OA)
and the angle the resultant makes with V1.

Figure 12.26

Angle OBA = 180◦ − 45◦ = 135◦

Applying the cosine rule:

OA2 = V2
1 + V2

2 − 2V1V2 cos OBA

= 402 + 1002 − {2(40)(100) cos 135◦}
= 1600 + 10000 − {−5657}
= 1600 + 10000 + 5657 = 17257

The resultant

OA = √(17257) = 131.4V

Applying the sine rule:

131.4

sin 135◦ = 100

sin AOB

from which, sin AOB = 100 sin 135◦

131.4
= 0.5381

Hence angle AOB = sin−1 0.5381 = 32◦33′ (or
147◦27′, which is impossible in this case).

Hence the resultant voltage is 131.4 volts at 32◦33′
to V1.

Problem 27. In Fig. 12.27, PR represents the
inclined jib of a crane and is 10.0 long. PQ is
4.0 m long. Determine the inclination of the jib
to the vertical and the length of tie QR
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Figure 12.27

Applying the sine rule:

PR

sin 120◦ = PQ

sin R

from which,

sin R = PQ sin 120◦

PR
= (4.0) sin 120◦

10.0
= 0.3464

Hence ∠R = sin−1 0.3464 = 20◦16′ (or 159◦44′,
which is impossible in this case).
∠P = 180◦ − 120◦ − 20◦16′ = 39◦44′, which is the
inclination of the jib to the vertical.

Applying the sine rule:

10.0

sin 120◦ = QR

sin 39◦44′

from which, length of tie,

QR = 10.0 sin 39◦44′

sin 120◦ = 7.38 m

Now try the following exercise.

Exercise 59 Further problems on practical
situations involving trigonometry

1. A ship P sails at a steady speed of 45 km/h in
a direction of W 32◦ N (i.e. a bearing of 302◦)
from a port. At the same time another ship Q
leaves the port at a steady speed of 35 km/h
in a direction N 15◦ E (i.e. a bearing of 015◦).
Determine their distance apart after 4 hours.

[193 km]

2. Two sides of a triangular plot of land are
52.0 m and 34.0 m, respectively. If the area of

the plot is 620 m2 find (a) the length of fen-
cing required to enclose the plot and (b) the
angles of the triangular plot.

[(a) 122.6 m (b) 94◦49′, 40◦39′, 44◦32′]

3. A jib crane is shown in Fig. 12.28. If the tie
rod PR is 8.0 long and PQ is 4.5 m long deter-
mine (a) the length of jib RQ and (b) the angle
between the jib and the tie rod.

[(a) 11.4 m (b) 17◦33′]

Figure 12.28

4. A building site is in the form of a quadri-
lateral as shown in Fig. 12.29, and its area
is 1510 m2. Determine the length of the
perimeter of the site. [163.4 m]

Figure 12.29

5. Determine the length of members BF and EB
in the roof truss shown in Fig. 12.30.

[BF = 3.9 m, EB = 4.0 m]
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Figure 12.30

6. A laboratory 9.0 m wide has a span roof which
slopes at 36◦ on one side and 44◦ on the other.
Determine the lengths of the roof slopes.

[6.35 m, 5.37 m]

12.12 Further practical situations
involving trigonometry

Problem 28. A vertical aerial stands on hori-
zontal ground. A surveyor positioned due east
of the aerial measures the elevation of the top as
48◦. He moves due south 30.0 m and measures
the elevation as 44◦. Determine the height of the
aerial.

In Fig. 12.31, DC represents the aerial, A is the initial
position of the surveyor and B his final position.

From triangle ACD, tan 48◦ = DC

AC
,

from which AC = DC

tan 48◦

Similarly, from triangle BCD,

BC = DC

tan 44◦

For triangle ABC, using Pythagoras’ theorem:

BC2 = AB2 + AC2

(
DC

tan 44◦

)2

= (30.0)2 +
(

DC

tan 48◦

)2

DC2
(

1

tan2 44◦ − 1

tan2 48◦

)

= 30.02

DC2(1.072323 − 0.810727) = 30.02

DC2 = 30.02

0.261596
= 3440.4

Figure 12.31

Hence, height of aerial,

DC = √
3440.4 = 58.65 m

Problem 29. A crank mechanism of a petrol
engine is shown in Fig. 12.32.Arm OA is 10.0 cm
long and rotates clockwise about O. The con-
necting rod AB is 30.0 cm long and end B is
constrained to move horizontally.

Figure 12.32

(a) For the position shown in Fig. 12.32 deter-
mine the angle between the connecting rod
AB and the horizontal and the length of OB.

(b) How far does B move when angle AOB
changes from 50◦ to 120◦?

(a) Applying the sine rule:

AB

sin 50◦ = AO

sin B
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B

from which,

sin B = AO sin 50◦

AB
= 10.0 sin 50◦

30.0
= 0.2553

Hence B = sin−1 0.2553 = 14◦47′ (or 165◦13′,
which is impossible in this case).

Hence the connecting rod AB makes an angle
of 14◦47′ with the horizontal.

Angle OAB = 180◦ − 50◦ − 14◦47′ = 115◦13′.
Applying the sine rule:

30.0

sin 50◦ = OB

sin 115◦13′
from which,

OB = 30.0 sin 115◦13′

sin 50◦ = 35.43 cm

(b) Figure 12.33 shows the initial and final pos-
itions of the crank mechanism. In triangle OA′B′,
applying the sine rule:

30.0

sin 120◦ = 10.0

sin A′B′O
from which,

sin A′B′O = 10.0 sin 120◦

30.0
= 0.2887

Figure 12.33

Hence A′B′O = sin−1 0.2887 = 16◦47′ (or 163◦13′
which is impossible in this case).
Angle OA′B′ = 180◦ − 120◦ − 16◦47′ = 43◦13′.
Applying the sine rule:

30.0

sin 120◦ = OB′

sin 43◦13′

from which,

OB′ = 30.0 sin 43◦13′

sin 120◦ = 23.72 cm

Since OB = 35.43 cm and OB′ = 23.72 cm then
BB′ = 35.43 − 23.72 = 11.71 cm.

Hence B moves 11.71 cm when angle AOB
changes from 50◦ to 120◦.

Problem 30. The area of a field is in the form
of a quadrilateral ABCD as shown in Fig. 12.34.
Determine its area.

Figure 12.34

A diagonal drawn from B to D divides the quadrilat-
eral into two triangles.

Area of quadrilateral ABCD

= area of triangle ABD + area of triangle BCD

= 1
2 (39.8)(21.4) sin 114◦ + 1

2 (42.5)(62.3) sin 56◦

= 389.04 + 1097.5 = 1487 m2

Now try the following exercise.

Exercise 60 Further problems on practical
situations involving trigonometry

1. PQ and QR are the phasors representing the
alternating currents in two branches of a cir-
cuit. Phasor PQ is 20.0A and is horizontal.
Phasor QR (which is joined to the end of PQ
to form triangle PQR) is 14.0A and is at an
angle of 35◦ to the horizontal. Determine the
resultant phasor PR and the angle it makes
with phasor PQ. [32.48A, 14◦19′]

2. Three forces acting on a fixed point are repre-
sented by the sides of a triangle of dimensions
7.2 cm, 9.6 cm and 11.0 cm. Determine the
angles between the lines of action and the
three forces. [80◦25′, 59◦23′, 40◦12′]
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3. Calculate, correct to 3 significant figures, the
co-ordinates x and y to locate the hole centre
at P shown in Fig. 12.35.

[x = 69.3 mm, y = 142 mm]

P

y

x

116°

100 mm

140°

Figure 12.35

4. An idler gear, 30 mm in diameter, has to be
fitted between a 70 mm diameter driving gear
and a 90 mm diameter driven gear as shown
in Fig. 12.36. Determine the value of angle θ
between the center lines. [130◦]

99.78 mm 30 mm dia

90 mm dia

70 mm dia

�

Figure 12.36

5. A reciprocating engine mechanism is shown
in Fig. 12.37. The crank AB is 12.0 cm long
and the connecting rod BC is 32.0 cm long.
For the position shown determine the length
of AC and the angle between the crank and
the connecting rod. [40.25 cm, 126◦3′]

Figure 12.37

6. From Fig. 12.37, determine how far C moves,
correct to the nearest millimetre when angle
CAB changes from 40◦ to 160◦, B moving in
an anticlockwise direction. [19.8 cm]

7. A surveyor, standing W 25◦ S of a tower mea-
sures the angle of elevation of the top of the
tower as 46◦30′. From a position E 23◦ S from
the tower the elevation of the top is 37◦15′.
Determine the height of the tower if the dis-
tance between the two observations is 75 m.

[36.2 m]

8. An aeroplane is sighted due east from a radar
station at an elevation of 40◦ and a height
of 8000 m and later at an elevation of 35◦
and height 5500 m in a direction E 70◦ S.
If it is descending uniformly, find the angle
of descent. Determine also the speed of the
aeroplane in km/h if the time between the
two observations is 45 s.

[13◦57′, 829.9 km/h]
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13

Cartesian and polar co-ordinates

13.1 Introduction

There are two ways in which the position of a point
in a plane can be represented. These are

(a) by Cartesian co-ordinates, i.e. (x, y), and

(b) by polar co-ordinates, i.e. (r, θ), where r is a
‘radius’ from a fixed point and θ is an angle from
a fixed point.

13.2 Changing from Cartesian into
polar co-ordinates

In Fig. 13.1, if lengths x and y are known, then the
length of r can be obtained from Pythagoras’ theo-
rem (see Chapter 12) since OPQ is a right-angled
triangle. Hence r2 = (x2 + y2)

from which, r =
√

x2 + y2

Figure 13.1

From trigonometric ratios (see Chapter 12),

tan θ = y

x

from which θ = tan−1 y
x

r =√x2 + y2 and θ = tan−1 y

x
are the two for-

mulae we need to change from Cartesian to polar
co-ordinates. The angle θ, which may be expressed
in degrees or radians, must always be measured from
the positive x-axis, i.e. measured from the line OQ
in Fig. 13.1. It is suggested that when changing from
Cartesian to polar co-ordinates a diagram should
always be sketched.

Problem 1. Change the Cartesian co-ordinates
(3, 4) into polar co-ordinates.

A diagram representing the point (3, 4) is shown in
Fig. 13.2.

Figure 13.2

From Pythagoras’ theorem, r = √
32 + 42 = 5 (note

that −5 has no meaning in this context). By trigono-
metric ratios, θ = tan−1 4

3 = 53.13◦ or 0.927 rad.

[note that 53.13◦ = 53.13 × (π/180) rad = 0.927 rad]

Hence (3, 4) in Cartesian co-ordinates corres-
ponds to (5, 53.13◦) or (5, 0.927 rad) in polar
co-ordinates.

Problem 2. Express in polar co-ordinates the
position (−4, 3).

A diagram representing the point using the Cartesian
co-ordinates (−4, 3) is shown in Fig. 13.3.
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Figure 13.3

From Pythagoras’ theorem, r = √
42 + 32 = 5.

By trigonometric ratios, α = tan−1 3
4 = 36.87◦ or

0.644 rad.
Hence θ = 180◦ − 36.87◦ = 143.13◦ or
θ = π − 0.644 = 2.498 rad.
Hence the position of point P in polar co-ordinate
form is (5, 143.13◦) or (5, 2.498 rad).

Problem 3. Express (−5, −12) in polar
co-ordinates.

A sketch showing the position (−5, −12) is shown
in Fig. 13.4.

r =
√

52 + 122 = 13

and α = tan−1 12

5
= 67.38◦ or 1.176 rad

Hence θ = 180◦ + 67.38◦ = 247.38◦ or

θ = π + 1.176 = 4.318 rad

Figure 13.4

Thus (−5, −12) in Cartesian co-ordinates corres-
ponds to (13, 247.38◦) or (13, 4.318 rad) in polar
co-ordinates.

Problem 4. Express (2, −5) in polar
co-ordinates.

A sketch showing the position (2, −5) is shown in
Fig. 13.5.

r =
√

22 + 52 = √
29 = 5.385 correct to

3 decimal places

α = tan−1 5

2
= 68.20◦ or 1.190 rad

Hence θ = 360◦ − 68.20◦ = 291.80◦ or

θ = 2π − 1.190 = 5.093 rad

Figure 13.5

Thus (2, −5) in Cartesian co-ordinates corres-
ponds to (5.385, 291.80◦) or (5.385, 5.093 rad) in
polar co-ordinates.

Now try the following exercise.

Exercise 61 Further problems on changing
from Cartesian into polar co-ordinates

In Problems 1 to 8, express the given Carte-
sian co-ordinates as polar co-ordinates, correct
to 2 decimal places, in both degrees and in
radians.

1. (3, 5) [(5.83, 59.04◦) or (5.83, 1.03 rad)]

2. (6.18, 2.35)

[
(6.61, 20.82◦) or
(6.61, 0.36 rad)

]

3. (−2, 4)

[
(4.47, 116.57◦) or
(4.47, 2.03 rad)

]
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4. (−5.4, 3.7)

[
(6.55, 145.58◦) or
(6.55, 2.54 rad)

]

5. (−7, −3)

[
(7.62, 203.20◦) or
(7.62, 3.55 rad)

]

6. (−2.4, −3.6)

[
(4.33, 236.31◦) or
(4.33, 4.12 rad)

]

7. (5, −3)

[
(5.83, 329.04◦) or
(5.83, 5.74 rad)

]

8. (9.6, −12.4)

[
(15.68, 307.75◦) or
(15.68, 5.37 rad)

]

13.3 Changing from polar into
Cartesian co-ordinates

From the right-angled triangle OPQ in Fig. 13.6.

cos θ = x

r
and sin θ = y

r
, from

trigonometric ratios

Hence x = r cos θ and y = r sin θ

Figure 13.6

If lengths r and angle θ are known then x = r cos θ
and y = r sin θ are the two formulae we need to
change from polar to Cartesian co-ordinates.

Problem 5. Change (4, 32◦) into Cartesian
co-ordinates.

A sketch showing the position (4, 32◦) is shown in
Fig. 13.7.

Now x = r cos θ = 4 cos 32◦ = 3.39
and y = r sin θ = 4 sin 32◦ = 2.12

Figure 13.7

Hence (4, 32◦) in polar co-ordinates corresponds
to (3.39, 2.12) in Cartesian co-ordinates.

Problem 6. Express (6, 137◦) in Cartesian
co-ordinates.

A sketch showing the position (6, 137◦) is shown in
Fig. 13.8.

x = r cos θ = 6 cos 137◦ = −4.388

which corresponds to length OA in Fig. 13.8.

y = r sin θ = 6 sin 137◦ = 4.092

which corresponds to length AB in Fig. 13.8.

Figure 13.8

Thus (6, 137◦) in polar co-ordinates corresponds
to (−4.388, 4.092) in Cartesian co-ordinates.

(Note that when changing from polar to Cartesian
co-ordinates it is not quite so essential to draw
a sketch. Use of x = r cos θ and y = r sin θ auto-
matically produces the correct signs.)

Problem 7. Express (4.5, 5.16 rad) in Cartesian
co-ordinates.

A sketch showing the position (4.5, 5.16 rad) is
shown in Fig. 13.9.

x = r cos θ = 4.5 cos 5.16 = 1.948
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Figure 13.9

which corresponds to length OA in Fig. 13.9.

y = r sin θ = 4.5 sin 5.16 = −4.057

which corresponds to length AB in Fig. 13.9.

Thus (1.948, −4.057) in Cartesian co-ordinates
corresponds to (4.5, 5.16 rad) in polar
co-ordinates.

13.4 Use of R → P and P → R
functions on calculators

Another name for Cartesian co-ordinates is rect-
angular co-ordinates. Many scientific notation cal-
culators possess R → P and P → R functions. The
R is the first letter of the word rectangular and the P is
the first letter of the word polar. Check the operation
manual for your particular calculator to determine
how to use these two functions. They make changing
from Cartesian to polar co-ordinates, and vice-versa,
so much quicker and easier.

Now try the following exercise.

Exercise 62 Further problems on changing
polar into Cartesian co-ordinates

In Problems 1 to 8, express the given polar co-
ordinates as Cartesian co-ordinates, correct to
3 decimal places.

1. (5, 75◦) [(1.294, 4.830)]

2. (4.4, 1.12 rad) [(1.917, 3.960)]

3. (7, 140◦) [(−5.362, 4.500)]

4. (3.6, 2.5 rad) [(−2.884, 2.154)]

5. (10.8, 210◦) [(−9.353, −5.400)]

6. (4, 4 rad) [(−2.615, −3.207)]
7. (1.5, 300◦) [(0.750, −1.299)]

8. (6, 5.5 rad) [(4.252, −4.233)]

9. Figure 13.10 shows 5 equally spaced holes
on an 80 mm pitch circle diameter. Calculate
their co-ordinates relative to axes 0x and 0y
in (a) polar form, (b) Cartesian form.

Calculate also the shortest distance between
the centres of two adjacent holes.

xO

y

Figure 13.10

[(a) 40∠18◦, 40∠90◦, 40∠162◦,
40∠234◦, 40∠306◦,

(b) (38.04 + j12.36), (0 + j40),
(−38.04 + j12.36),
(−23.51 − j32.36), (23.51 − j32.36)

47.02 mm]
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14

The circle and its properties

14.1 Introduction

A circle is a plain figure enclosed by a curved line,
every point on which is equidistant from a point
within, called the centre.

14.2 Properties of circles

(i) The distance from the centre to the curve is
called the radius, r, of the circle (see OP in
Fig. 14.1).

Figure 14.1

(ii) The boundary of a circle is called the circum-
ference, c.

(iii) Any straight line passing through the centre
and touching the circumference at each end is
called the diameter, d (see QR in Fig. 14.1).
Thus d = 2r.

(iv) The ratio
circumference

diameter
= a constant for any

circle.
This constant is denoted by the Greek let-
ter π (pronounced ‘pie’), where π = 3.14159,
correct to 5 decimal places.
Hence c/d = π or c = πd or c = 2πr.

(v) A semicircle is one half of the whole circle.
(vi) A quadrant is one quarter of a whole circle.

(vii) A tangent to a circle is a straight line which
meets the circle in one point only and does not
cut the circle when produced. AC in Fig. 14.1
is a tangent to the circle since it touches the
curve at point B only. If radius OB is drawn,
then angle ABO is a right angle.

(viii) A sector of a circle is the part of a circle
between radii (for example, the portion OXY
of Fig. 14.2 is a sector). If a sector is less than a
semicircle it is called a minor sector, if greater
than a semicircle it is called a major sector.

Figure 14.2

(ix) A chord of a circle is any straight line which
divides the circle into two parts and is termin-
ated at each end by the circumference. ST , in
Fig. 14.2 is a chord.

(x) A segment is the name given to the parts into
which a circle is divided by a chord. If the
segment is less than a semicircle it is called a
minor segment (see shaded area in Fig. 14.2).
If the segment is greater than a semicircle it
is called a major segment (see the unshaded
area in Fig. 14.2).

(xi) An arc is a portion of the circumference of a
circle. The distance SRT in Fig. 14.2 is called
a minor arc and the distance SX YT is called
a major arc.

(xii) The angle at the centre of a circle, sub-
tended by an arc, is double the angle at the
circumference subtended by the same arc.
With reference to Fig. 14.3, Angle AOC =
2 × angle ABC.

(xiii) The angle in a semicircle is a right angle (see
angle BQP in Fig. 14.3).

Figure 14.3
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Problem 1. If the diameter of a circle is 75 mm,
find its circumference.

Circumference, c = π × diameter = πd
= π(75) = 235.6 mm.

Problem 2. In Fig. 14.4, AB is a tangent to
the circle at B. If the circle radius is 40 mm and
AB = 150 mm, calculate the length AO.

Figure 14.4

A tangent to a circle is at right angles to a radius
drawn from the point of contact, i.e. ABO = 90◦.
Hence, using Pythagoras’ theorem:

AO2 = AB2 + OB2

AO =
√

(AB2 + OB2) =
√

[(150)2 + (40)2]

= 155.2 mm

Now try the following exercise.

Exercise 63 Further problems on properties
of circles

1. If the radius of a circle is 41.3 mm, calculate
the circumference of the circle.

[259.5 mm]

2. Find the diameter of a circle whose perimeter
is 149.8 cm. [47.68 cm]

3. A crank mechanism is shown in Fig. 14.5,
where XY is a tangent to the circle at point X.
If the circle radius OX is 10 cm and length
OY is 40 cm, determine the length of the
connecting rod XY.

YO 40 cm

X

Figure 14.5 [38.73 cm]

14.3 Arc length and area of a sector

One radian is defined as the angle subtended at the
centre of a circle by an arc equal in length to the
radius. With reference to Fig. 14.6, for arc length s,

θ radians = s/r or arc length, s = rθ (1)

where θ is in radians.

Figure 14.6

When s = whole circumference (= 2πr) then
θ = s/r = 2πr/r = 2π.

i.e. 2π rad = 360◦ or π rad = 180◦

Thus 1 rad = 180◦/π = 57.30◦, correct to 2 decimal
places.

Since π rad = 180◦, then π/2 = 90◦, π/3 = 60◦,
π/4 = 45◦, and so on.

Area of a sector = θ

360
(πr2)

when θ is in degrees

= θ

2π
(πr2) = 1

2
r2θ (2)

when θ is in radians

Problem 3. Convert to radians: (a) 125◦
(b) 69◦47′.

(a) Since 180◦ = π rad then 1◦ = π/180 rad,
therefore

125◦ = 125
( π

180

)c = 2.182 rad

(Note that c means ‘circular measure’ and indi-
cates radian measure.)

(b) 69◦47′ = 69
47◦

60
= 69.783◦

69.783◦ = 69.783
( π

180

)c = 1.218 rad

Problem 4. Convert to degrees and minutes:
(a) 0.749 rad (b) 3π/4 rad.
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(a) Since π rad = 180◦ then 1 rad = 180◦/π,
therefore

0.749 = 0.749

(
180

π

)◦
= 42.915◦

0.915◦ = (0.915×60)′ = 55′, correct to the near-
est minute, hence

0.749 rad = 42◦55′

(b) Since 1 rad =
(

180

π

)◦
then

3π

4
rad = 3π

4

(
180

π

)◦
= 3

4
(180)◦ = 135◦.

Problem 5. Express in radians, in terms of π,
(a) 150◦ (b) 270◦ (c) 37.5◦.

Since 180◦ = π rad then 1◦ = 180/π, hence

(a) 150◦ = 150
( π

180

)
rad = 5π

6
rad

(b) 270◦ = 270
( π

180

)
rad = 3π

2
rad

(c) 37.5◦ = 37.5
( π

180

)
rad = 75π

360
rad = 5π

24
rad

Now try the following exercise.

Exercise 64 Further problems on radians
and degrees

1. Convert to radians in terms of π: (a) 30◦

(b) 75◦ (c) 225◦.

[

(a)
π

6
(b)

5π

12
(c)

5π

4

]

2. Convert to radians: (a) 48◦ (b) 84◦51′
(c) 232◦15′.

[(a) 0.838 (b) 1.481 (c) 4.054]

3. Convert to degrees: (a)
5π

6
rad (b)

4π

9
rad

(c)
7π

12
rad. [(a) 150◦ (b) 80◦ (c) 105◦]

4. Convert to degrees and minutes:
(a) 0.0125 rad (b) 2.69 rad (c) 7.241 rad.

[(a) 0◦43′ (b) 154◦8′ (c) 414◦53′]

14.4 Worked problems on arc length
and sector of a circle

Problem 6. Find the length of arc of a circle of
radius 5.5 cm when the angle subtended at the
centre is 1.20 rad.

From equation (1), length of arc, s = rθ, where θ is
in radians, hence

s = (5.5)(1.20) = 6.60 cm

Problem 7. Determine the diameter and cir-
cumference of a circle if an arc of length 4.75 cm
subtends an angle of 0.91 rad.

Since s = rθ then r = s

θ
= 4.75

0.91
= 5.22 cm

Diameter = 2 × radius = 2 × 5.22 = 10.44 cm
Circumference, c = πd = π(10.44) = 32.80 cm

Problem 8. If an angle of 125◦ is subtended
by an arc of a circle of radius 8.4 cm, find the
length of (a) the minor arc, and (b) the major
arc, correct to 3 significant figures.

(a) Since 180◦ = π rad then 1◦ =
( π

180

)
rad and

125◦ = 125
( π

180

)
rad.

Length of minor arc,

s = rθ = (8.4)(125)
( π

180

)
= 18.3 cm,

correct to 3 significant figures.
(b) Length of major arc

= (circumference − minor arc)
= 2π(8.4) − 18.3 = 34.5 cm,

correct to 3 significant figures.

(Alternatively, major arc = rθ
= 8.4(360 − 125)(π/180) = 34.5 cm.)

Problem 9. Determine the angle, in degrees
and minutes, subtended at the centre of a cir-
cle of diameter 42 mm by an arc of length
36 mm. Calculate also the area of the minor
sector formed.
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Since length of arc, s = rθ then θ = s/r

Radius, r = diameter

2
= 42

2
= 21 mm

hence θ = s

r
= 36

21
= 1.7143 rad

1.7143 rad = 1.7143 × (180/π)◦ = 98.22◦ = 98◦13′
= angle subtended at centre of circle.
From equation (2), area of sector

= 1
2 r2θ = 1

2 (21)2(1.7143) = 378 mm2.

Problem 10. A football stadium floodlight can
spread its illumination over an angle of 45◦ to a
distance of 55 m. Determine the maximum area
that is floodlit.

Floodlit area = area of sector

= 1

2
r2θ = 1

2
(55)2

(
45 × π

180

)
,

from equation (2)

= 1188 m2

Problem 11. An automatic garden spray pro-
duces a spray to a distance of 1.8 m and revolves
through an angle α which may be varied. If the
desired spray catchment area is to be 2.5 m2, to
what should angle α be set, correct to the nearest
degree.

Area of sector = 1
2 r2θ, hence 2.5 = 1

2 (1.8)2α

from which, α = 2.5 × 2

1.82 = 1.5432 rad

1.5432 rad =
(

1.5432 × 180

π

◦)
= 88.42◦

Hence angle α = 88◦, correct to the nearest degree.

Now try the following exercise.

Exercise 65 Further problems on arc
length and sector of a circle

1. Find the length of an arc of a circle of radius
8.32 cm when the angle subtended at the cen-
tre is 2.14 rad. Calculate also the area of the
minor sector formed.

[17.80 cm, 74.07 cm2]

2. If the angle subtended at the centre of
a circle of diameter 82 mm is 1.46 rad,

find the lengths of the (a) minor arc
(b) major arc.

[(a) 59.86 mm (b) 197.8 mm]

3. A pendulum of length 1.5 m swings
through an angle of 10◦ in a single swing.
Find, in centimetres, the length of the arc
traced by the pendulum bob. [26.2 cm]

4. Determine the length of the radius and cir-
cumference of a circle if an arc length of
32.6 cm subtends an angle of 3.76 rad.

[8.67 cm, 54.48 cm]

5. Determine the angle of lap, in degrees and
minutes, if 180 mm of a belt drive are in
contact with a pulley of diameter 250 mm.

[82◦30′]

6. Determine the number of complete revo-
lutions a motorcycle wheel will make in
travelling 2 km, if the wheel’s diameter is
85.1 cm. [748]

7. The floodlights at a sports ground spread its
illumination over an angle of 40◦ to a distance
of 48 m. Determine (a) the angle in radians,
and (b) the maximum area that is floodlit.

[(a) 0.698 rad (b) 804.1 m2]

8. Determine (a) the shaded area in Fig. 14.7
(b) the percentage of the whole sector that
the area of the shaded portion represents.

[(a) 396 mm2 (b) 42.24%]

0.75 rad

12 mm

50 mm

Figure 14.7

14.5 The equation of a circle

The simplest equation of a circle, centre at the origin,
radius r, is given by:

x2 + y2 = r2
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For example, Fig. 14.8 shows a circle x2 + y2 = 9.
More generally, the equation of a circle, centre (a, b),
radius r, is given by:

(x − a)2 + (y − b)2 = r2 (1)

Figure 14.9 shows a circle (x − 2)2 + (y − 3)2 = 4.
The general equation of a circle is:

x2 + y2 + 2ex + 2 f y + c = 0 (2)

Figure 14.8

Figure 14.9

Multiplying out the bracketed terms in equation (1)
gives:

x2 − 2ax + a2 + y2 − 2by + b2 = r2

Comparing this with equation (2) gives:

2e = −2a, i.e. a = −2e
2

and 2f = −2b, i.e. b = −2f
2

and c = a2 + b2 − r2,

i.e., r = √
(a2 + b2 − c)

Thus, for example, the equation

x2 + y2 − 4x − 6y + 9 = 0

represents a circle with centre a = −(−4
2

)
,

b = −(−6
2

)
, i.e., at (2, 3) and radius

r =√(22 + 32 − 9) = 2.
Hence x2 + y2 − 4x − 6y + 9 = 0 is the circle

shown in Fig. 14.9 (which may be checked by
multiplying out the brackets in the equation

(x − 2)2 + (y − 3)2 = 4

Problem 12. Determine (a) the radius, and
(b) the co-ordinates of the centre of the circle
given by the equation: x2+y2+8x − 2y + 8 = 0.

x2 + y2 + 8x − 2y + 8 = 0 is of the form shown in
equation (2),

where a = −( 8
2

) = −4, b = −(−2
2

) = 1

and r =
√

[(−4)2 + (1)2 − 8] = √
9 = 3

Hence x2 + y2 + 8x − 2y + 8 = 0 represents a
circle centre (−4, 1) and radius 3, as shown in
Fig. 14.10.

Alternatively, x2 + y2 + 8x − 2y + 8 = 0 may be
rearranged as:

(x + 4)2 + (y − 1)2 − 9 = 0

i.e. (x + 4)2 + (y − 1)2 = 32

which represents a circle, centre (−4, 1) and
radius 3, as stated above.

Figure 14.10
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Problem 13. Sketch the circle given by the
equation: x2 + y2 − 4x + 6y − 3 = 0.

The equation of a circle, centre (a, b), radius r is
given by:

(x − a)2 + (y − b)2 = r2

The general equation of a circle is

x2 + y2 + 2ex + 2fy + c = 0.

From above a = −2e

2
, b = −2f

2
and

r =√(a2 + b2 − c).

Hence if x2 + y2 − 4x + 6y − 3 = 0

then a = − (−4
2

) = 2, b = − ( 6
2

) = −3

and r = √[(2)2 + (−3)2 − (−3)]

= √
16 = 4

Thus the circle has centre (2, −3) and radius 4, as
shown in Fig. 14.11.

Alternatively, x2 + y2 − 4x + 6y − 3 = 0 may be
rearranged as:

(x − 2)2 + (y + 3)2 − 3 − 13 = 0

i.e. (x − 2)2 + (y + 3)2 = 42

which represents a circle, centre (2, −3) and
radius 4, as stated above.

6 x420−2−4

4

2

−2

−3

−4

−8

r = 4

y

Figure 14.11

Now try the following exercise.

Exercise 66 Further problems on the equa-
tion of a circle

1. Determine the radius and the co-ordinates of
the centre of the circle given by the equation
x2 + y2 + 6x − 2y − 26 = 0.

[6, (−3, 1)]
2. Sketch the circle given by the equation

x2 + y2 − 6x + 4y − 3 = 0.
[Centre at (3, −2), radius 4]

3. Sketch the curve x2 + (y − 1)2 − 25 = 0.
[Circle, centre (0, 1), radius 5]

4. Sketch the curve x = 6
√[

1 − (y/6)2
]
.

[Circle, centre (0, 0), radius 6]

14.6 Linear and angular velocity

Linear velocity

Linear velocity v is defined as the rate of change
of linear displacement s with respect to time t. For
motion in a straight line:

linear velocity = change of displacement

change of time

i.e. v = s
t

(1)

The unit of linear velocity is metres per second (m/s).

Angular velocity

The speed of revolution of a wheel or a shaft is
usually measured in revolutions per minute or revo-
lutions per second but these units do not form part
of a coherent system of units. The basis in SI units
is the angle turned through in one second.

Angular velocity is defined as the rate of change of
angular displacement θ, with respect to time t. For an
object rotating about a fixed axis at a constant speed:

angular velocity = angle turned through

time taken

i.e. ω = θ

t
(2)
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The unit of angular velocity is radians per second
(rad/s). An object rotating at a constant speed of
n revolutions per second subtends an angle of 2πn
radians in one second, i.e., its angular velocity ω is
given by:

ω = 2πn rad/s (3)

From equation (1) on page 138, s = rθ and from
equation (2) on page 142, θ = ωt

hence s = r(ωt)

from which
s

t
= ωr

However, from equation (1) v = s

t

hence v = ωr (4)

Equation (4) gives the relationship between linear
velocity v and angular velocity ω.

Problem 14. A wheel of diameter 540 mm is

rotating at
1500

π
rev/min. Calculate the angular

velocity of the wheel and the linear velocity of
a point on the rim of the wheel.

From equation (3), angular velocity ω = 2πn where
n is the speed of revolution in rev/s. Since in this case

n = 1500

π
rev/min = 1500

60π
= rev/s, then

angular velocity ω = 2π

(
1500

60π

)

= 50 rad/s

The linear velocity of a point on the rim, v = ωr,
where r is the radius of the wheel, i.e.
540

2
mm = 0.54

2
m = 0.27 m.

Thus linear velocity v = ωr = (50)(0.27)
= 13.5 m/s

Problem 15. A car is travelling at 64.8 km/h
and has wheels of diameter 600 mm.

(a) Find the angular velocity of the wheels in
both rad/s and rev/min.

(b) If the speed remains constant for 1.44 km,
determine the number of revolutions made
by the wheel, assuming no slipping occurs.

(a) Linear velocity v = 64.8 km/h

= 64.8
km

h
× 1000

m

km
× 1

3600

h

s
= 18 m/s.

The radius of a wheel = 600

2
= 300 mm

= 0.3 m.

From equation (5), v = ωr, from which,

angular velocity ω = v

r
= 18

0.3
= 60 rad/s

From equation (4), angular velocity, ω = 2πn,
where n is in rev/s.

Hence angular speed n = ω

2π
= 60

2π
rev/s

= 60 × 60

2π
rev/min

= 573 rev/min

(b) From equation (1), since v = s/t then the time
taken to travel 1.44 km, i.e., 1440 m at a constant
speed of 18 m/s is given by:

time t = s

v
= 1440 m

18 m/s
= 80 s

Since a wheel is rotating at 573 rev/min, then in
80/60 minutes it makes

573 rev/min × 80

60
min = 764 revolutions

Now try the following exercise.

Exercise 67 Further problems on linear and
angular velocity

1. A pulley driving a belt has a diameter of
300 mm and is turning at 2700/π revolu-
tions per minute. Find the angular velocity
of the pulley and the linear velocity of the
belt assuming that no slip occurs.

[ω = 90 rad/s, v = 13.5 m/s]

2. A bicycle is travelling at 36 km/h and the
diameter of the wheels of the bicycle is
500 mm. Determine the linear velocity of a
point on the rim of one of the wheels of
the bicycle, and the angular velocity of the
wheels.

[v = 10 m/s, ω = 40 rad/s]

3. A train is travelling at 108 km/h and has
wheels of diameter 800 mm.
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(a) Determine the angular velocity of the
wheels in both rad/s and rev/min.

(b) If the speed remains constant for 2.70 km,
determine the number of revolutions
made by a wheel, assuming no slipping
occurs. [

(a) 75 rad/s, 716.2 rev/min
(b) 1074 revs

]

14.7 Centripetal force

When an object moves in a circular path at constant
speed, its direction of motion is continually changing
and hence its velocity (which depends on both mag-
nitude and direction) is also continually changing.
Since acceleration is the (change in velocity)/(time
taken), the object has an acceleration. Let the object
be moving with a constant angular velocity of ω and a
tangential velocity of magnitude v and let the change
of velocity for a small change of angle of θ (=ωt)
be V in Fig. 14.12. Then v2 − v1 = V . The vector
diagram is shown in Fig. 14.12(b) and since the mag-
nitudes of v1 and v2 are the same, i.e. v, the vector
diagram is an isosceles triangle.

Figure 14.12

Bisecting the angle between v2 and v1 gives:

sin
θ

2
= V/2

v2
= V

2v

i.e. V = 2v sin
θ

2
(1)

Since θ = ωt then

t = θ

ω
(2)

Dividing equation (1) by equation (2) gives:

V

t
= 2v sin (θ/2)

(θ/ω)
= vω sin (θ/2)

(θ/2)

For small angles
sin (θ/2)

(θ/2)
≈ 1,

hence
V

t
= change of velocity

change of time
= acceleration a = vω

However, ω = v

r
(from Section 14.6)

thus vω = v · v

r
= v2

r

i.e. the acceleration a is
v2

r
and is towards the cen-

tre of the circle of motion (along V ). It is called the
centripetal acceleration. If the mass of the rotating
object is m, then by Newton’s second law, the cen-

tripetal force is
mv2

r
and its direction is towards the

centre of the circle of motion.

Problem 16. A vehicle of mass 750 kg travels
around a bend of radius 150 m, at 50.4 km/h.
Determine the centripetal force acting on the
vehicle.

The centripetal force is given by
mv2

r
and its

direction is towards the centre of the circle.

Mass m = 750 kg, v = 50.4 km/h

= 50.4 × 1000

60 × 60
m/s

= 14 m/s

and radius r = 150 m,

thus centripetal force = 750(14)2

150
= 980 N.
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Problem 17. An object is suspended by a
thread 250 mm long and both object and thread
move in a horizontal circle with a constant angu-
lar velocity of 2.0 rad/s. If the tension in the
thread is 12.5 N, determine the mass of the
object.

Centripetal force (i.e. tension in thread),

F = mv2

r
= 12.5 N

Angular velocity ω = 2.0 rad/s and
radius r = 250 mm = 0.25 m.

Since linear velocity v = ωr, v = (2.0)(0.25)
= 0.5 m/s.

Since F = mv2

r
, then mass m = Fr

v2 ,

i.e. mass of object, m = (12.5)(0.25)

0.52 = 12.5 kg

Problem 18. An aircraft is turning at constant
altitude, the turn following the arc of a circle of
radius 1.5 km. If the maximum allowable accel-
eration of the aircraft is 2.5 g, determine the
maximum speed of the turn in km/h. Take g as
9.8 m/s2.

The acceleration of an object turning in a circle is
v2

r
. Thus, to determine the maximum speed of turn,

v2

r
= 2.5 g, from which,

velocity, v = √(2.5gr) = √(2.5)(9.8)(1500)

= √
36750 = 191.7 m/s

and 191.7 m/s = 191.7×60 × 60

1000
km/h = 690 km/h

Now try the following exercise.

Exercise 68 Further problems on cen-
tripetal force

1. Calculate the tension in a string when it is
used to whirl a stone of mass 200 g round
in a horizontal circle of radius 90 cm with a
constant speed of 3 m/s. [2 N]

2. Calculate the centripetal force acting on a
vehicle of mass 1 tonne when travelling
around a bend of radius 125 m at 40 km/h.
If this force should not exceed 750 N, deter-
mine the reduction in speed of the vehicle to
meet this requirement.

[988 N, 5.14 km/h]

3. A speed-boat negotiates an S-bend consist-
ing of two circular arcs of radii 100 m and
150 m. If the speed of the boat is constant
at 34 km/h, determine the change in acceler-
ation when leaving one arc and entering the
other. [1.49 m/s2]
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Assignment 4

This assignment covers the material contained
in Chapters 12 to 14.

The marks for each question are shown in
brackets at the end of each question.

1. A 2.0 m long ladder is placed against a perpen-
dicular pylon with its foot 52 cm from the pylon.
(a) Find how far up the pylon (correct to the near-
est mm) the ladder reaches. (b) If the foot of the
ladder is moved 10 cm towards the pylon how
far does the top of the ladder rise?

(7)

2. Evaluate correct to 4 significant figures:
(a) cos 124◦13′ (b) cot 72.68◦ (4)

3. From a point on horizontal ground a surveyor
measures the angle of elevation of a church spire
as 15◦. He moves 30 m nearer to the church and
measures the angle of elevation as 20◦. Calculate
the height of the spire. (9)

4. If secant θ = 2.4613 determine the acute
angle θ (4)

5. Evaluate, correct to 3 significant figures:

3.5 cosec 31◦17′ − cot (−12◦)

3 sec 79◦41′ (5)

6. A man leaves a point walking at 6.5 km/h in
a direction E 20◦ N (i.e. a bearing of 70◦). A
cyclist leaves the same point at the same time
in a direction E 40◦ S (i.e. a bearing of 130◦)
travelling at a constant speed. Find the average
speed of the cyclist if the walker and cyclist are
80 km apart after 5 hours. (8)

7. A crank mechanism shown in Fig. A4.1 com-
prises arm OP, of length 0.90 m, which rotates
anti-clockwise about the fixed point O, and con-
necting rod PQ of length 4.20 m. End Q moves
horizontally in a straight line OR.

P

O Q
R

Figure A4.1

(a) If ∠POR is initially zero, how far does end
Q travel in 1

4 revolution
(b) If ∠POR is initially 40◦ find the angle

between the connecting rod and the horizon-
tal and the length OQ

(c) Find the distance Q moves (correct to the
nearest cm) when ∠POR changes from 40◦
to 140◦ (16)

8. Change the following Cartesian co-ordinates
into polar co-ordinates, correct to 2 decimal
places, in both degrees and in radians:
(a) (−2.3, 5.4) (b) (7.6, −9.2) (10)

9. Change the following polar co-ordinates into
Cartesian co-ordinates, correct to 3 decimal
places: (a) (6.5, 132◦) (b) (3, 3 rad) (6)

10. (a) Convert 2.154 radians into degrees and
minutes.

(b) Change 71◦17′ into radians (4)

11. 140 mm of a belt drive is in contact with a pul-
ley of diameter 180 mm which is turning at 300
revolutions per minute. Determine (a) the angle
of lap, (b) the angular velocity of the pulley, and
(c) the linear velocity of the belt assuming that
no slipping occurs. (9)

12. Figure A4.2 shows a cross-section through a
circular water container where the shaded area
represents the water in the container. Determine:
(a) the depth, h, (b) the area of the shaded
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h

60° 
12 cm 12 cm

Figure A4.2

portion, and (c) the area of the unshaded
area. (11)

13. Determine, (a) the co-ordinates of the centre of
the circle, and (b) the radius, given the equation

x2 + y2 − 2x + 6y + 6 = 0 (7)
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Trigonometric waveforms

15.1 Graphs of trigonometric functions

By drawing up tables of values from 0◦ to 360◦,
graphs of y = sin A, y = cos A and y = tan A may be
plotted. Values obtained with a calculator (correct
to 3 decimal places—which is more than sufficient
for plotting graphs), using 30◦ intervals, are shown
below, with the respective graphs shown in Fig. 15.1.

(a) y = sin A

A 0 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

sin A 0 0.500 0.866 1.000 0.866 0.500 0

A 210◦ 240◦ 270◦ 300◦ 330◦ 360◦

sin A −0.500 −0.866 −1.000 −0.866 −0.500 0

(b) y = cos A

A 0 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

cos A 1.000 0.866 0.500 0 −0.500 −0.866 −1.000

A 210◦ 240◦ 270◦ 300◦ 330◦ 360◦

cos A −0.866 −0.500 0 0.500 0.866 1.000

(c) y = tan A

A 0 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

tan A 0 0.577 1.732 ∞ −1.732 −0.577 0

A 210◦ 240◦ 270◦ 300◦ 330◦ 360◦

tan A 0.577 1.732 ∞ −1.732 −0.577 0

From Figure 15.1 it is seen that:

(i) Sine and cosine graphs oscillate between peak
values of ±1.

(ii) The cosine curve is the same shape as the sine
curve but displaced by 90◦.

Figure 15.1

(iii) The sine and cosine curves are continuous and
they repeat at intervals of 360◦; the tangent
curve appears to be discontinuous and repeats
at intervals of 180◦.

15.2 Angles of any magnitude

(i) Figure 15.2 shows rectangular axes XX ′ and YY ′
intersecting at origin 0.As with graphical work,
measurements made to the right and above 0 are
positive while those to the left and downwards
are negative. Let OA be free to rotate about 0.
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90°

360°

270°

0

0°
180°

Quadrant 2 Quadrant 1

Y

Quadrant 3 Quadrant 4

A XX �

Y�

�

� �

�

��

Figure 15.2

By convention, when OA moves anticlockwise
angular measurement is considered positive,
and vice-versa.

(ii) Let OA be rotated anticlockwise so that θ1 is any
angle in the first quadrant and let perpendicular
AB be constructed to form the right-angled tri-
angle OAB (see Fig. 15.3). Since all three sides
of the triangle are positive, all six trigonometric
ratios are positive in the first quadrant. (Note:
OA is always positive since it is the radius of a
circle.)

Figure 15.3

(iii) Let OA be further rotated so that θ2 is any
angle in the second quadrant and let AC be
constructed to form the right-angled triangle

OAC. Then:

sin θ2 = +
+ = + cos θ2 = −

+ = −

tan θ2 = +
− = − cosec θ2 = +

+ = +

sec θ2 = +
− = − cot θ2 = −

+ = −

(iv) Let OA be further rotated so that θ3 is any angle
in the third quadrant and let AD be constructed
to form the right-angled triangle OAD. Then:

sin θ3 = −
+ = − (and hence cosec θ3 is −)

cos θ3 = −
+ = − (and hence sec θ3 is +)

tan θ3 = −
− = + (and hence cot θ3 is −)

(v) Let OA be further rotated so that θ4 is any angle
in the fourth quadrant and let AE be constructed
to form the right-angled triangle OAE. Then:

sin θ4 = −
+ = − (and hence cosec θ4 is −)

cos θ4 = +
+ = + (and hence sec θ4 is +)

tan θ4 = −
+ = − (and hence cot θ4 is −)

(vi) The results obtained in (ii) to (v) are sum-
marized in Fig. 15.4. The letters underlined
spell the word CAST when starting in the
fourth quadrant and moving in an anticlockwise
direction.

Figure 15.4
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(vii) In the first quadrant of Fig. 15.1 all the curves
have positive values; in the second only sine is
positive; in the third only tangent is positive;
in the fourth only cosine is positive (exactly as
summarized in Fig. 15.4).

A knowledge of angles of any magnitude is needed
when finding, for example, all the angles between
0◦ and 360◦ whose sine is, say, 0.3261. If 0.3261
is entered into a calculator and then the inverse
sine key pressed (or sin−1 key) the answer 19.03◦
appears. However there is a second angle between
0◦ and 360◦ which the calculator does not give.
Sine is also positive in the second quadrant
(either from CAST or from Fig. 15.1(a)). The
other angle is shown in Fig. 15.5 as angle θ
where θ = 180◦ − 19.03◦ = 160.97◦. Thus 19.03◦
and 160.97◦ are the angles between 0◦ and 360◦
whose sine is 0.3261 (check that sin 160.97◦ =
0.3261 on your calculator).

Figure 15.5

Be careful! Your calculator only gives you one
of these answers. The second answer needs to
be deduced from a knowledge of angles of any
magnitude, as shown in the following problems.

Problem 1. Determine all the angles between
0◦ and 360◦ whose sine is −0.4638.

The angles whose sine is −0.4638 occurs in the
third and fourth quadrants since sine is negative in
these quadrants (see Fig. 15.6(a)). From Fig. 15.6(b),
θ = sin−1 0.4638 = 27◦38′.

Measured from 0◦, the two angles between 0◦ and
360◦ whose sine is −0.4638 are 180◦ + 27◦38′, i.e.
207◦38′ and 360◦− 27◦38′, i.e. 332◦22′. (Note that
a calculator generally only gives one answer, i.e.
−27.632588◦).

Figure 15.6

Problem 2. Determine all the angles between
0◦ and 360◦ whose tangent is 1.7629.

A tangent is positive in the first and third
quadrants (see Fig. 15.7(a)). From Fig. 15.7(b),

Figure 15.7
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θ = tan−1 1.7629 = 60◦26′. Measured from 0◦, the
two angles between 0◦ and 360◦ whose tangent is
1.7629 are 60◦26′ and 180◦ + 60◦26′, i.e. 240◦26′.

Problem 3. Solve sec−1 (−2.1499) = α for
angles of α between 0◦ and 360◦.

Secant is negative in the second and third quad-
rants (i.e. the same as for cosine). From Fig. 15.8,

θ = sec−1 2.1499 = cos−1
(

1

2.1499

)

= 62◦17′.
Measured from 0◦, the two angles between 0◦ and
360◦ whose secant is −2.1499 are

α = 180◦ − 62◦17′ = 117◦43′ and

α = 180◦ + 62◦17′ = 242◦17′

Figure 15.8

Problem 4. Solve cot−1 1.3111 = α for angles
of α between 0◦ and 360◦.

Cotangent is positive in the first and third quad-
rants (i.e. same as for tangent). From Fig. 15.9,

θ = cot−1 1.3111 = tan−1
(

1

1.3111

)

= 37◦20′.

Figure 15.9

Hence α = 37◦20′

and α = 180◦ + 37◦20′ = 217◦20′

Now try the following exercise.

Exercise 69 Further problems on evaluat-
ing trigonometric ratios of any magnitude

1. Find all the angles between 0◦ and 360◦
whose sine is −0.7321.

[227◦4′ and 312◦56′]

2. Determine the angles between 0◦ and 360◦
whose cosecant is 2.5317.

[23◦16′ and 156◦44′]

3. If cotangent x = −0.6312, determine the val-
ues of x in the range 0◦≤ x≤ 360◦.

[122◦16′ and 302◦16′]

In Problems 4 to 6 solve the given equations.

4. cos−1 (−0.5316) = t
[t = 122◦7′ and 237◦53′]

5. sec−1 2.3162 = x
[x = 64◦25′ and 295◦35′]

6. tan−1 0.8314 = θ
[θ = 39◦44′ and 219◦44′]

15.3 The production of a sine and
cosine wave

In Figure 15.10, let OR be a vector 1 unit long
and free to rotate anticlockwise about O. In one
revolution a circle is produced and is shown with
15◦ sectors. Each radius arm has a vertical and
a horizontal component. For example, at 30◦, the
vertical component is TS and the horizontal compo-
nent is OS.

From trigonometric ratios,

sin 30◦ = TS

TO
= TS

1
, i.e. TS = sin 30◦

and cos 30◦ = OS

TO
= OS

1
, i.e. OS = cos 30◦

The vertical component TS may be projected across
to T ′S′, which is the corresponding value of 30◦
on the graph of y against angle x◦. If all such
vertical components as TS are projected on to the
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Figure 15.10

Figure 15.11

graph, then a sine wave is produced as shown in
Fig. 15.10.

If all horizontal components such as OS are pro-
jected on to a graph of y against angle x◦, then a
cosine wave is produced. It is easier to visualize
these projections by redrawing the circle with the
radius arm OR initially in a vertical position as shown
in Fig. 15.11.

From Figures 15.10 and 15.11 it is seen that a
cosine curve is of the same form as the sine curve
but is displaced by 90◦ (or π/2 radians).

15.4 Sine and cosine curves

Graphs of sine and cosine waveforms

(i) A graph of y = sin A is shown by the broken line
in Fig. 15.12 and is obtained by drawing up a
table of values as in Section 15.1.A similar table
may be produced for y = sin 2A.

A◦ 2A sin 2A

0 0 0
30 60 0.866
45 90 1.0
60 120 0.866
90 180 0

120 240 −0.866
135 270 −1.0
150 300 −0.866
180 360 0
210 420 0.866
225 450 1.0
240 480 0.866
270 540 0
300 600 −0.866
315 630 −1.0
330 660 −0.866
360 720 0
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Figure 15.12

A graph of y = sin 2A is shown in Fig. 15.12.

(ii) A graph of y = sin 1
2 A is shown in Fig. 15.13

using the following table of values.

A◦ 1
2 A sin 1

2 A

0 0 0
30 15 0.259
60 30 0.500
90 45 0.707

120 60 0.866
150 75 0.966
180 90 1.00
210 105 0.966
240 120 0.866
270 135 0.707
300 150 0.500
330 165 0.259
360 180 0

Figure 15.13

(iii) A graph of y = cos A is shown by the broken line
in Fig. 15.14 and is obtained by drawing up a

Figure 15.14

table of values.A similar table may be produced
for y = cos 2A with the result as shown.

(iv) A graph of y = cos 1
2 A is shown in Fig. 15.15

which may be produced by drawing up a table
of values, similar to above.

Figure 15.15

Periodic functions and period

(i) Each of the graphs shown in Figs. 15.12
to 15.15 will repeat themselves as angle
A increases and are thus called periodic
functions.

(ii) y = sin A and y = cos A repeat themselves every
360◦ (or 2π radians); thus 360◦ is called the
period of these waveforms. y = sin 2A and
y = cos 2A repeat themselves every 180◦ (or
π radians); thus 180◦ is the period of these
waveforms.

(iii) In general, if y = sin pA or y = cos pA (where p
is a constant) then the period of the waveform is
360◦/p (or 2π/p rad). Hence if y = sin 3A then
the period is 360/3, i.e. 120◦, and if y = cos 4A
then the period is 360/4, i.e. 90◦.
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Amplitude

Amplitude is the name given to the maximum or
peak value of a sine wave. Each of the graphs
shown in Figs. 15.12 to 15.15 has an amplitude of
+1 (i.e. they oscillate between +1 and −1). How-
ever, if y = 4 sin A, each of the values in the table
is multiplied by 4 and the maximum value, and
thus amplitude, is 4. Similarly, if y = 5 cos 2A, the
amplitude is 5 and the period is 360◦/2, i.e. 180◦.

Problem 5. Sketch y = sin 3A between A = 0◦
and A = 360◦.

Amplitude = 1; period = 360◦/3 = 120◦.

A sketch of y = sin 3A is shown in Fig. 15.16.

Figure 15.16

Problem 6. Sketch y = 3 sin 2A from A = 0 to
A = 2π radians.

Amplitude = 3, period = 2π/2 = π rads (or 180◦).

A sketch of y = 3 sin 2A is shown in Fig. 15.17.

Figure 15.17

Problem 7. Sketch y = 4 cos 2x from x = 0◦ to
x = 360◦.

Amplitude = 4; period = 360◦/2 = 180◦.

A sketch of y = 4 cos 2x is shown in Fig. 15.18.

Figure 15.18

Problem 8. Sketch y = 2 sin
3

5
A over one

cycle.

Amplitude = 2; period = 360◦
3

5

= 360◦ × 5

3
= 600◦.

A sketch of y = 2 sin
3

5
A is shown in Fig. 15.19.

Figure 15.19

Lagging and leading angles

(i) A sine or cosine curve may not always start
at 0◦. To show this a periodic function is rep-
resented by y = sin(A ± α) or y = cos(A ± α)
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where α is a phase displacement compared with
y = sin A or y = cos A.

(ii) By drawing up a table of values, a graph of
y = sin(A − 60◦) may be plotted as shown in
Fig. 15.20. If y = sin A is assumed to start at 0◦
then y = sin(A − 60◦) starts 60◦ later (i.e. has a
zero value 60◦ later). Thus y = sin(A − 60◦) is
said to lag y = sin A by 60◦.

Figure 15.20

(iii) By drawing up a table of values, a graph of
y = cos(A + 45◦) may be plotted as shown in
Fig. 15.21. If y = cos A is assumed to start at 0◦
then y = cos(A + 45◦) starts 45◦ earlier (i.e. has
a zero value 45◦ earlier). Thus y = cos(A + 45◦)
is said to lead y = cos A by 45◦.

Figure 15.21

(iv) Generally, a graph of y = sin(A − α) lags
y = sin A by angle α, and a graph of
y = sin(A + α) leads y = sin A by angle α.

(v) A cosine curve is the same shape as a sine curve
but starts 90◦ earlier, i.e. leads by 90◦. Hence
cos A = sin(A + 90◦).

Problem 9. Sketch y = 5 sin(A + 30◦) from
A = 0◦ to A = 360◦.

Amplitude = 5; period = 360◦/1 = 360◦.

5 sin(A + 30◦) leads 5 sin A by 30◦ (i.e. starts 30◦
earlier).

A sketch of y = 5 sin(A + 30◦) is shown in Fig. 15.22.

Figure 15.22

Problem 10. Sketch y = 7 sin(2A − π/3) in the
range 0 ≤ A ≤ 2π.

Amplitude = 7; period = 2π/2 = π radians.

In general, y = sin(pt − α) lags y = sin pt by α/p,
hence 7 sin(2A − π/3) lags 7 sin 2A by (π/3)/2,
i.e. π/6 rad or 30◦.

A sketch of y = 7 sin(2A − π/3) is shown in
Fig. 15.23.

Figure 15.23
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Problem 11. Sketch y = 2 cos(ωt − 3π/10)
over one cycle.

Amplitude = 2; period = 2π/ω rad.

2 cos(ωt − 3π/10) lags 2 cos ωt by 3π/10ω seconds.

A sketch of y = 2 cos(ωt − 3π/10) is shown in
Fig. 15.24.

Figure 15.24

Graphs of sin2 A and cos2 A

(i) A graph of y = sin2 A is shown in Fig. 15.25
using the following table of values.

A◦ sin A (sin A)2 = sin2 A

0 0 0
30 0.50 0.25
60 0.866 0.75
90 1.0 1.0

120 0.866 0.75
150 0.50 0.25
180 0 0
210 −0.50 0.25
240 −0.866 0.75
270 −1.0 1.0
300 −0.866 0.75
330 −0.50 0.25
360 0 0

(ii) A graph of y = cos2 A is shown in Fig. 15.26
obtained by drawing up a table of values, similar
to above.

(iii) y = sin2 A and y = cos2 A are both periodic
functions of period 180◦ (or π rad) and both

Figure 15.25

Figure 15.26

contain only positive values. Thus a graph of
y = sin2 2A has a period 180◦/2, i.e., 90◦. Simi-
larly, a graph of y = 4 cos2 3A has a maximum
value of 4 and a period of 180◦/3, i.e. 60◦.

Problem 12. Sketch y = 3 sin2 1
2 A in the range

0 < A < 360◦.

Maximum value = 3; period = 180◦/(1/2) = 360◦.

A sketch of 3 sin2 1
2 A is shown in Fig. 15.27.

Figure 15.27

Problem 13. Sketch y = 7 cos2 2A between
A = 0◦ and A = 360◦.

Maximum value = 7; period = 180◦/2 = 90◦.

A sketch of y = 7 cos2 2A is shown in Fig. 15.28.
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Figure 15.28

Now try the following exercise.

Exercise 70 Further problems on sine and
cosine curves

In Problems 1 to 9 state the amplitude and period
of the waveform and sketch the curve between
0◦ and 360◦.

1. y = cos 3A [1, 120◦]

2. y = 2 sin
5x

2
[2, 144◦]

3. y = 3 sin 4t [3, 90◦]

4. y = 3 cos
θ

2
[3, 720◦]

5. y = 7

2
sin

3x

8

[
7

2
, 960◦

]

6. y = 6 sin(t − 45◦) [6, 360◦]

7. y = 4 cos(2θ + 30◦) [4, 180◦]

8. y = 2 sin2 2t [2, 90◦]

9. y = 5 cos2 3

2
θ [5, 120◦]

Figure 15.29

15.5 Sinusoidal form A sin (ωt ± α)

In Figure 15.29, let OR represent a vector that is
free to rotate anticlockwise about O at a velocity of
ω rad/s. A rotating vector is called a phasor. After
a time t seconds OR will have turned through an
angle ωt radians (shown as angle TOR in Fig. 15.29).
If ST is constructed perpendicular to OR, then
sin ωt = ST/TO, i.e. ST = TO sin ωt.

If all such vertical components are projected on
to a graph of y against ωt, a sine wave results of
amplitude OR (as shown in Section 15.3).

If phasor OR makes one revolution (i.e. 2π
radians) in T seconds, then the angular velocity,

ω = 2π/T rad/s, from which, T = 2π/ω seconds.

T is known as the periodic time.
The number of complete cycles occurring per

second is called the frequency, f

Frequency = number of cycles

second
= 1

T

= ω

2π
i.e. f = ω

2π
Hz

Hence angular velocity, ω = 2πf rad/s

Amplitude is the name given to the maximum
or peak value of a sine wave, as explained in
Section 15.4. The amplitude of the sine wave shown
in Fig. 15.29 has an amplitude of 1.

A sine or cosine wave may not always start at
0◦. To show this a periodic function is represented
by y = sin (ωt ± α) or y = cos (ωt ± α), where α is
a phase displacement compared with y = sin A or
y = cos A.A graph of y = sin (ωt − α) lags y = sin ωt
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by angle α, and a graph of y = sin(ωt + α) leads
y = sin ωt by angle α.

The angle ωt is measured in radians (i.e.(

ω
rad

s

)

(ts) = ωt radians) hence angle α should

also be in radians.
The relationship between degrees and radians is:

360◦ = 2π radians or 180◦ = π radians

Hence 1 rad = 180

π
= 57.30◦ and, for example,

71◦ = 71 × π

180
= 1.239 rad.

Given a general sinusoidal function
y = A sin(ω t ± α), then

(i) A = amplitude

(ii) ω = angular velocity = 2πf rad/s

(iii)
2π

ω
= periodic time T seconds

(iv)
ω

2π
= frequency, f hertz

(v) α = angle of lead or lag (compared with
y = A sin ωt)

Problem 14. An alternating current is given
by i = 30 sin(100πt + 0.27) amperes. Find the
amplitude, periodic time, frequency and phase
angle (in degrees and minutes).

i= 30 sin(100πt + 0.27)A, hence amplitude = 30 A
Angular velocity ω = 100π, hence

periodic time, T = 2π

ω
= 2π

100π
= 1

50
= 0.02 s or 20 ms

Frequency, f = 1

T
= 1

0.02
= 50 Hz

Phase angle, α = 0.27 rad =
(

0.27 × 180

π

)◦

= 15.47◦ or 15◦28′ leading
i = 30 sin(100πt)

Problem 15. An oscillating mechanism has
a maximum displacement of 2.5 m and a
frequency of 60 Hz. At time t = 0 the displace-
ment is 90 cm. Express the displacement in the
general form A sin(ωt ± α).

Amplitude = maximum displacement = 2.5 m.
Angular velocity, ω = 2πf = 2π(60) = 120π rad/s.
Hence displacement = 2.5 sin(120πt + α) m.
When t = 0, displacement = 90 cm = 0.90 m.

Hence 0.90 = 2.5 sin (0 + α)

i.e. sin α = 0.90

2.5
= 0.36

Hence α = arcsin 0.36 = 21.10◦ = 21◦6′

= 0.368 rad

Thus displacement = 2.5 sin(120πt + 0.368) m

Problem 16. The instantaneous value of volt-
age in an a.c. circuit at any time t seconds is given
by v = 340 sin(50πt − 0.541) volts. Determine:

(a) the amplitude, periodic time, frequency and
phase angle (in degrees)

(b) the value of the voltage when t = 0

(c) the value of the voltage when t = 10 ms

(d) the time when the voltage first reaches
200V, and

(e) the time when the voltage is a maximum.

Sketch one cycle of the waveform.

(a) Amplitude = 340 V

Angular velocity, ω = 50π

Hence periodic time, T = 2π

ω
= 2π

50π
= 1

25

= 0.04 s or 40 ms

Frequency, f = 1

T
= 1

0.04
= 25 Hz

Phase angle = 0.541rad =
(

0.541 × 180

π

)

= 31◦ lagging v = 340 sin (50πt)

(b) When t = 0,

v = 340 sin(0 − 0.541) = 340 sin (−31◦)
= −175.1 V
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(c) When t = 10 ms

then v = 340 sin

(

50π
10

103 − 0.541

)

= 340 sin(1.0298) = 340 sin 59◦
= 291.4 V

(d) When v = 200 volts

then 200 = 340 sin(50πt − 0.541)

200

340
= sin(50πt − 0.541)

Hence (50πt − 0.541) = arcsin
200

340
= 36.03◦ or 0.6288 rad

50πt = 0.6288 + 0.541
= 1.1698

Hence when v = 200V,

time, t = 1.1698

50π
= 7.447 ms

(e) When the voltage is a maximum, v = 340V.

Hence 340 = 340 sin (50πt − 0.541)
1 = sin (50πt − 0.541)

50πt − 0.541 = arcsin 1
= 90◦or 1.5708 rad

50πt = 1.5708 + 0.541 = 2.1118

Hence time, t = 2.1118

50π
= 13.44 ms

A sketch of v = 340 sin(50πt − 0.541) volts is shown
in Fig. 15.30.

Figure 15.30

Now try the following exercise.

Exercise 71 Further problems on the
sinusoidal form A sin(ωt ± α)

In Problems 1 to 3 find the amplitude, peri-
odic time, frequency and phase angle (stating
whether it is leading or lagging A sin ωt) of the
alternating quantities given.

1. i = 40 sin (50πt + 0.29) mA
[

40, 0.04 s, 25 Hz, 0.29 rad
(or 16◦37′) leading 40 sin 50 πt

]

2. y = 75 sin (40t − 0.54) cm
[

75 cm, 0.157 s, 6.37 Hz, 0.54 rad
(or 30◦56′) lagging 75 sin 40t

]

3. v = 300 sin (200πt − 0.412)V[
300 V, 0.01 s, 100 Hz, 0.412 rad

(or 23◦36′) lagging 300 sin 200πt

]

4. A sinusoidal voltage has a maximum value
of 120V and a frequency of 50 Hz. At time
t = 0, the voltage is (a) zero, and (b) 50V.
Express the instantaneous voltage v in the
form v = A sin(ωt ± α)

[
(a) v = 120 sin 100πt volts
(b) v = 120sin(100πt + 0.43) volts

]

5. An alternating current has a periodic time of
25 ms and a maximum value of 20A. When
time t = 0, current i = −10 amperes. Express
the current i in the form i = A sin(ωt ± α)

[
i = 20 sin

(
80πt − π

6

)
amperes

]

6. An oscillating mechanism has a maximum
displacement of 3.2 m and a frequency of
50 Hz. At time t = 0 the displacement is
150 cm. Express the displacement in the gen-
eral form A sin(ωt ± α).

[3.2 sin(100πt + 0.488) m]

7. The current in an a.c. circuit at any time
t seconds is given by:

i = 5 sin(100πt − 0.432) amperes

Determine (a) the amplitude, periodic time,
frequency and phase angle (in degrees) (b) the
value of current at t = 0 (c) the value of
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current at t = 8 ms (d) the time when the cur-
rent is first a maximum (e) the time when the
current first reaches 3A. Sketch one cycle of
the waveform showing relevant points.

⎡

⎢
⎢
⎢
⎢
⎣

(a) 5 A, 20 ms, 50 Hz,
24◦45′ lagging

(b) −2.093 A
(c) 4.363 A
(d) 6.375 ms
(e) 3.423 ms

⎤

⎥
⎥
⎥
⎥
⎦

15.6 Harmonic synthesis with complex
waveforms

A waveform that is not sinusoidal is called a complex
wave. Harmonic analysis is the process of resolv-
ing a complex periodic waveform into a series of
sinusoidal components of ascending order of fre-
quency. Many of the waveforms met in practice
can be represented by the following mathematical
expression.

v = V1msin(ωt + α1) + V2msin(2ωt + α2)

+ · · · + Vnmsin(nωt + αn)

and the magnitude of their harmonic components
together with their phase may be calculated using
Fourier series (see Chapters 69 to 72). Numer-
ical methods are used to analyse waveforms for
which simple mathematical expressions cannot be
obtained. A numerical method of harmonic analysis
is explained in the Chapter 73 on page 683. In a labo-
ratory, waveform analysis may be performed using a
waveform analyser which produces a direct readout
of the component waves present in a complex wave.

By adding the instantaneous values of the fun-
damental and progressive harmonics of a complex
wave for given instants in time, the shape of a
complex waveform can be gradually built up. This
graphical procedure is known as harmonic synthe-
sis (synthesis meaning ‘the putting together of parts
or elements so as to make up a complex whole’).

Some examples of harmonic synthesis are con-
sidered in the following worked problems.

Problem 17. Use harmonic synthesis to con-
struct the complex voltage given by:

v1 = 100 sin ωt + 30 sin 3ωt volts.

The waveform is made up of a fundamental wave
of maximum value 100V and frequency, f = ω/2π
hertz and a third harmonic component of maximum
value 30V and frequency = 3ω/2π(=3f ), the funda-
mental and third harmonics being initially in phase
with each other.

In Figure 15.31, the fundamental waveform is
shown by the broken line plotted over one cycle, the
periodic time T being 2π/ω seconds. On the same
axis is plotted 30 sin 3ωt, shown by the dotted line,
having a maximum value of 30V and for which three
cycles are completed in time T seconds.At zero time,
30 sin 3ωt is in phase with 100 sin ωt.

The fundamental and third harmonic are com-
bined by adding ordinates at intervals to produce
the waveform for v1, as shown. For example, at time
T/12 seconds, the fundamental has a value of 50V
and the third harmonic a value of 30V.Adding gives a
value of 80V for waveform v1 at time T/12 seconds.
Similarly, at time T/4 seconds, the fundamental has
a value of 100V and the third harmonic a value of
−30V. After addition, the resultant waveform v1 is
70V at T/4. The procedure is continued between
t = 0 and t = T to produce the complex waveform for
v1. The negative half-cycle of waveform v1 is seen
to be identical in shape to the positive half-cycle.

If further odd harmonics of the appropriate ampli-
tude and phase were added to v1 a good approxima-
tion to a square wave would result.

Problem 18. Construct the complex voltage
given by:

v2 = 100 sin ωt + 30 sin
(

3ωt + π

2

)
volts.

The peak value of the fundamental is 100 volts
and the peak value of the third harmonic is 30V.
However the third harmonic has a phase displace-

ment of
π

2
radian leading (i.e. leading 30 sin 3ωt

by
π

2
radian). Note that, since the periodic time

of the fundamental is T seconds, the periodic time
of the third harmonic is T/3 seconds, and a phase

displacement of
π

2
radian or

1

4
cycle of the third har-

monic represents a time interval of (T/3) ÷ 4, i.e.
T/12 seconds.

Figure 15.32 shows graphs of 100 sin ωt and

30 sin
(

3ωt + π

2

)
over the time for one cycle of the

fundamental. When ordinates of the two graphs are
added at intervals, the resultant waveform v2 is as
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Figure 15.31

Figure 15.32

shown. If the negative half-cycle in Fig. 15.32 is
reversed it can be seen that the shape of the positive
and negative half-cycles are identical.

Problems 17 and 18 demonstrate that when-
ever odd harmonics are added to a fundamental

waveform, whether initially in phase with each other
or not, the positive and negative half-cycles of the
resultant complex wave are identical in shape. This
is a feature of waveforms containing a fundamental
and odd harmonics.
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Problem 19. Use harmonic synthesis to con-
struct the complex current given by:

i1 = 10 sin ωt + 4 sin 2ωt amperes.

Current i1 consists of a fundamental compon-
ent, 10 sin ωt, and a second harmonic component,
4 sin 2ωt, the components being initially in phase
with each other. The fundamental and second har-
monic are shown plotted separately in Fig. 15.33.
By adding ordinates at intervals, the complex wave-
form representing i1 is produced as shown. It is noted
that if all the values in the negative half-cycle were
reversed then this half-cycle would appear as a mir-
ror image of the positive half-cycle about a vertical
line drawn through time, t = T/2.

Problem 20. Construct the complex current
given by:

i2 = 10 sin ωt + 4 sin
(

2ωt + π

2

)
amperes.

The fundamental component, 10 sin ωt, and the sec-
ond harmonic component, having an amplitude of

4A and a phase displacement of
π

2
radian leading

Figure 15.33

(i.e. leading 4 sin 2ωt by
π

2
radian or T/8 seconds),

are shown plotted separately in Fig. 15.34. By adding
ordinates at intervals, the complex waveform for i2 is
produced as shown. The positive and negative half-
cycles of the resultant waveform are seen to be quite
dissimilar.

From Problems 18 and 19 it is seen that when-
ever even harmonics are added to a fundamental
component:

(a) if the harmonics are initially in phase, the nega-
tive half-cycle, when reversed, is a mirror image
of the positive half-cycle about a vertical line
drawn through time, t = T/2.

(b) if the harmonics are initially out of phase with
each other, the positive and negative half-cycles
are dissimilar.

These are features of waveforms containing the
fundamental and even harmonics.

Problem 21. Use harmonic synthesis to con-
struct the complex current expression given by:

i = 32 + 50 sin ωt + 20 sin
(

2ωt − π

2

)
mA.
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Figure 15.34

The current i comprises three components—a 32 mA
d.c. component, a fundamental of amplitude 50 mA
and a second harmonic of amplitude 20 mA, lag-

ging by
π

2
radian. The fundamental and second

harmonic are shown separately in Fig. 15.35.Adding
ordinates at intervals gives the complex waveform

50 sin ωt + 20 sin
(

2ωt − π

2

)
.

This waveform is then added to the 32 mA
d.c. component to produce the waveform i as
shown. The effect of the d.c. component is to
shift the whole wave 32 mA upward. The wave-
form approaches that expected from a half-wave
rectifier.

Problem 22. A complex waveform v com-
prises a fundamental voltage of 240V rms and
frequency 50 Hz, together with a 20% third
harmonic which has a phase angle lagging
by 3π/4 rad at time t = 0. (a) Write down an
expression to represent voltage v. (b) Use har-
monic synthesis to sketch the complex wave-
form representing voltage v over one cycle of
the fundamental component.

(a) A fundamental voltage having an rms value of
240V has a maximum value, or amplitude of√

2 (240) i.e. 339.4V.

If the fundamental frequency is 50 Hz then
angular velocity,ω =2πf = 2π(50) = 100π rad/s.
Hence the fundamental voltage is represented
by 339.4 sin 100πt volts. Since the fundamen-
tal frequency is 50 Hz, the time for one cycle
of the fundamental is given by T = 1/f = 1/50 s
or 20 ms.

The third harmonic has an amplitude equal to
20% of 339.4V, i.e. 67.9V. The frequency of the
third harmonic component is 3 × 50 = 150 Hz,
thus the angular velocity is 2π(150), i.e.
300π rad/s. Hence the third harmonic voltage
is represented by 67.9 sin (300πt − 3π/4) volts.
Thus

voltage, v = 339.4 sin 100πt
+ 67.9 sin (300πt−3π/4) volts

(b) One cycle of the fundamental, 339.4 sin 100πt,
is shown sketched in Fig. 15.36, together with
three cycles of the third harmonic compon-
ent, 67.9 sin (300πt − 3π/4) initially lagging
by 3π/4 rad. By adding ordinates at intervals,
the complex waveform representing voltage is
produced as shown.
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Figure 15.35

Figure 15.36
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Now try the following exercise.

Exercise 72 Further problems on harmonic
synthesis with complex waveforms

1. A complex current waveform i comprises
a fundamental current of 50A rms and fre-
quency 100 Hz, together with a 24% third
harmonic, both being in phase with each other
at zero time. (a) Write down an expression
to represent current i. (b) Sketch the com-
plex waveform of current using harmonic
synthesis over one cycle of the fundamental.

[
(a) i = (70.71 sin 628.3t

+ 16.97 sin 1885t) A

]

2. A complex voltage waveform v is com-
prised of a 212.1V rms fundamental voltage
at a frequency of 50 Hz, a 30% second har-
monic component lagging by π/2 rad, and
a 10% fourth harmonic component leading
by π/3 rad. (a) Write down an expression to
represent voltage v. (b) Sketch the complex
voltage waveform using harmonic synthesis
over one cycle of the fundamental waveform.

[
(a) v = 300 sin 314.2t

+ 90 sin (628.3t − π/2)
+ 30sin(1256.6t + π/3) V

]

3. A voltage waveform is represented by:

v = 20 + 50 sin ωt
+ 20sin(2ωt − π/2) volts.

Draw the complex waveform over one
cycle of the fundamental by using harmonic
synthesis.

4. Write down an expression representing a
current i having a fundamental component
of amplitude 16A and frequency 1 kHz,
together with its third and fifth harmonics
being respectively one-fifth and one-tenth the
amplitude of the fundamental, all compo-
nents being in phase at zero time. Sketch the
complex current waveform for one cycle of
the fundamental using harmonic synthesis.

[
i = 16 sin 2π103t + 3.2 sin 6π103t

+ 1.6 sin π104t A

]

5. A voltage waveform is described by

v = 200 sin 377t + 80 sin
(

1131t + π

4

)

+ 20 sin
(

1885t − π

3

)
volts

Determine (a) the fundamental and harmonic
frequencies of the waveform (b) the percent-
age third harmonic and (c) the percentage
fifth harmonic. Sketch the voltage waveform
using harmonic synthesis over one cycle of
the fundamental.

⎡

⎣
(a) 60 Hz, 180 Hz, 300 Hz
(b) 40%
(c)10%

⎤

⎦



Ch16-H8152.tex 23/6/2006 15: 7 Page 166

Geometry and trigonometry

16

Trigonometric identities and equations

16.1 Trigonometric identities

A trigonometric identity is a relationship that is true
for all values of the unknown variable.

tan θ = sin θ

cos θ
, cot θ = cos θ

sin θ
, sec θ = 1

cos θ

cosec θ = 1

sin θ
and cot θ = 1

tan θ

are examples of trigonometric identities from
Chapter 12.

Applying Pythagoras’ theorem to the right-angled
triangle shown in Fig. 16.1 gives:

a2 + b2 = c2 (1)

Figure 16.1

Dividing each term of equation (1) by c2 gives:

a2

c2 + b2

c2 = c2

c2

i.e.
(a

c

)2 +
(

b

c

)2

= 1

(cos θ)2 + (sin θ)2 = 1

Hence cos2 θ + sin2 θ = 1 (2)

Dividing each term of equation (1) by a2 gives:

a2

a2 + b2

a2 = c2

a2

i.e. 1 +
(

b

a

)2

=
( c

a

)2

Hence 1 + tan2 θ = sec2 θ (3)

Dividing each term of equation (1) by b2 gives:

a2

b2 + b2

b2 = c2

b2

i.e.
(a

b

)2 + 1 =
( c

b

)2

Hence cot2 θ + 1 = cosec2 θ (4)

Equations (2), (3) and (4) are three further examples
of trigonometric identities. For the proof of further
trigonometric identities, see Section 16.2.

16.2 Worked problems on
trigonometric identities

Problem 1. Prove the identity
sin2 θ cot θ sec θ = sin θ.

With trigonometric identities it is necessary to start
with the left-hand side (LHS) and attempt to make
it equal to the right-hand side (RHS) or vice-versa.
It is often useful to change all of the trigonometric
ratios into sines and cosines where possible. Thus,

LHS = sin2 θ cot θ sec θ

= sin2 θ

(
cos θ

sin θ

)(
1

cos θ

)

= sin θ (by cancelling) = RHS

Problem 2. Prove that

tan x + sec x

sec x

(

1 + tan x

sec x

) = 1.
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LHS = tan x + sec x

sec x

(

1 + tan x

sec x

)

=
sin x

cos x
+ 1

cos x

(
1

cos x

)
⎛

⎜
⎝1 +

sin x

cos x
1

cos x

⎞

⎟
⎠

=
sin x + 1

cos x(
1

cos x

)[

1 +
(

sin x

cos x

)(cos x

1

)]

=
sin x + 1

cos x(
1

cos x

)

[1 + sin x]

=
(

sin x + 1

cos x

)(
cos x

1 + sin x

)

= 1 (by cancelling) = RHS

Problem 3. Prove that
1 + cot θ

1 + tan θ
= cot θ.

LHS = 1 + cot θ

1 + tan θ

=
1 + cos θ

sin θ

1 + sin θ

cos θ

=
sin θ + cos θ

sin θ
cos θ + sin θ

cos θ

=
(

sin θ + cos θ

sin θ

)(
cos θ

cos θ + sin θ

)

= cos θ

sin θ
= cot θ = RHS

Problem 4. Show that
cos2 θ − sin2 θ = 1 − 2 sin2 θ.

From equation (2), cos2 θ + sin2 θ = 1, from which,
cos2 θ = 1 − sin2 θ.

Hence, LHS

= cos2 θ − sin2 θ = (1 − sin2 θ) − sin2 θ

= 1 − sin2 θ − sin2 θ = 1 − 2 sin2 θ = RHS

Problem 5. Prove that
√(

1 − sin x

1 + sin x

)

= sec x − tan x.

LHS=
√(

1 − sin x

1 + sin x

)

=
√{

(1 − sin x)(1 − sin x)

(1 + sin x)(1 − sin x)

}

=
√{

(1 − sin x)2

(1 − sin2 x)

}

Since cos2 x + sin2 x = 1 then 1 − sin2 x = cos2 x

LHS =
√{

(1 − sin x)2

(1 − sin2 x)

}

=
√{

(1 − sin x)2

cos2 x

}

= 1 − sin x

cos x
= 1

cos x
− sin x

cos x
= sec x − tan x = RHS

Now try the following exercise.

Exercise 73 Further problems on trigono-
metric identities

In Problems 1 to 6 prove the trigonometric
identities.

1. sin x cot x = cos x

2.
1

√
(1 − cos2 θ)

= cosec θ

3. 2 cos2 A − 1 = cos2 A − sin2 A

4.
cos x − cos3 x

sin x
= sin x cos x

5. (1 + cot θ)2 + (1 − cot θ)2 = 2 cosec2 θ

6.
sin2 x( sec x + cosec x)

cos x tan x
= 1 + tan x

16.3 Trigonometric equations

Equations which contain trigonometric ratios are
called trigonometric equations. There are usually
an infinite number of solutions to such equations;
however, solutions are often restricted to those
between 0◦ and 360◦.

A knowledge of angles of any magnitude is essen-
tial in the solution of trigonometric equations and
calculators cannot be relied upon to give all the
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solutions (as shown in Chapter 15). Fig. 16.2 shows
a summary for angles of any magnitude.

Figure 16.2

Equations of the type a sin2A + b sin A + c = 0

(i) When a = 0, b sin A + c = 0, hence

sin A = − c

b
and A = sin−1

(
− c

b

)

There are two values of A between 0◦ and
360◦ which satisfy such an equation, provided

−1 ≤ c

b
≤ 1 (see Problems 6 to 8).

(ii) When b = 0, a sin2 A + c = 0, hence

sin2 A = − c

a
, sin A =

√(
− c

a

)

and A = sin−1
√(

− c
a

)

If either a or c is a negative number, then
the value within the square root sign is posi-
tive. Since when a square root is taken there is
a positive and negative answer there are four
values of A between 0◦ and 360◦ which sat-
isfy such an equation, provided −1 ≤ c

a
≤ 1

(see Problems 9 and 10).

(iii) When a, b and c are all non-zero:
a sin2 A + b sin A + c = 0 is a quadratic equa-
tion in which the unknown is sin A. The solution
of a quadratic equation is obtained either by fac-
torising (if possible) or by using the quadratic
formula:

sin A = −b ±
√

(b2 − 4ac)

2a
(see Problems 11 and 12).

(iv) Often the trigonometric identities
cos2 A + sin2 A = 1, 1 + tan2 A = sec2 A and
cot2 A + 1 = cosec 2A need to be used to reduce
equations to one of the above forms (see
Problems 13 to 15).

16.4 Worked problems (i) on
trigonometric equations

Problem 6. Solve the trigonometric equation
5 sin θ + 3 = 0 for values of θ from 0◦ to 360◦.

5 sin θ + 3 = 0, from which sin θ = − 3
5 = −0.6000

Hence θ = sin−1 (−0.6000). Sine is negative in the
third and fourth quadrants (see Fig. 16.3). The
acute angle sin−1 (0.6000) = 36◦52′ (shown as α in
Fig. 16.3(b)). Hence,

θ = 180◦ + 36◦52′, i.e. 216◦52′ or

θ = 360◦ − 36◦52′, i.e. 323◦8′

Figure 16.3
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Problem 7. Solve 1.5 tan x − 1.8 = 0 for
0◦ ≤ x ≤ 360◦.

1.5 tan x − 1.8 = 0, from which

tan x = 1.8

1.5
= 1.2000.

Hence x = tan−1 1.2000.
Tangent is positive in the first and third quadrants
(see Fig. 16.4) The acute angle tan−1 1.2000 =
50◦12′. Hence,

x = 50◦12′ or 180◦ + 50◦12′ = 230◦12′

Figure 16.4

Problem 8. Solve 4 sec t = 5 for values of t
between 0◦ and 360◦.

4 sec t = 5, from which sec t = 5
4 = 1.2500.

Hence t = sec−1 1.2500.
Secant = (1/cosine) is positive in the first and
fourth quadrants (see Fig. 16.5) The acute angle
sec−1 1.2500 = 36◦52′. Hence,

t = 36◦52′ or 360◦ − 36◦52′ = 323◦8′

Figure 16.5

Now try the following exercise.

Exercise 74 Further problems on trigono-
metric equations

In Problems 1 to 3 solve the equations for angles
between 0◦ and 360◦.

1. 4 − 7 sin θ = 0 [θ = 34◦51′ or 145◦9′]

2. 3 cosec A + 5.5 = 0
[A = 213◦3′ or 326◦57′]

3. 4(2.32 − 5.4 cot t) = 0
[t = 66◦45′ or 246◦45′]

16.5 Worked problems (ii) on
trigonometric equations

Problem 9. Solve 2 − 4 cos2 A = 0 for values
of A in the range 0◦ < A < 360◦.

2 − 4 cos2 A = 0, from which cos2 A = 2
4 = 0.5000

Hence cos A = √
(0.5000) = ±0.7071 and

A = cos−1(±0.7071).
Cosine is positive in quadrants one and four and

negative in quadrants two and three. Thus in this
case there are four solutions, one in each quadrant
(see Fig. 16.6). The acute angle cos−1 0.7071 = 45◦.
Hence,

A = 45◦, 135◦, 225◦ or 315◦

Problem 10. Solve 1
2 cot2 y = 1.3 for

0◦ < y < 360◦.
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Figure 16.6

1
2 cot2 y = 1.3, from which, cot2 y = 2(1.3) = 2.6.
Hence cot y = √

2.6 = ±1.6125, and y = cot−1

(±1.6125). There are four solutions, one in each
quadrant. The acute angle cot−1 1.6125 = 31◦48′.
Hence y = 31◦48′, 148◦12′, 211◦48′ or 328◦12′.

Now try the following exercise.

Exercise 75 Further problems on trigono-
metric equations

In Problems 1 to 3 solve the equations for angles
between 0◦ and 360◦.

1. 5 sin2 y = 3
[

y = 50◦46′, 129◦14′,
230◦46′ or 309◦14′

]

2. 5 + 3 cosec2 D = 8

[D = 90◦ or 270◦]

3. 2 cot2 θ = 5
[
θ = 32◦19′, 147◦41′,
212◦19′ or 327◦41′

]

16.6 Worked problems (iii) on
trigonometric equations

Problem 11. Solve the equation

8 sin2 θ + 2 sin θ − 1 = 0,

for all values of θ between 0◦ and 360◦.

Factorising 8 sin2 θ + 2 sin θ − 1 = 0 gives
(4 sin θ − 1) (2 sin θ + 1) = 0.
Hence 4 sin θ − 1 = 0, from which, sin θ = 1

4 =
0.2500, or 2 sin θ + 1 = 0, from which, sin θ = − 1

2 =
−0.5000. (Instead of factorising, the quadratic for-
mula can, of course, be used).

θ = sin−1 0.2500 = 14◦29′ or 165◦31′, since sine
is positive in the first and second quadrants, or
θ = sin−1 (−0.5000) = 210◦ or 330◦, since sine is
negative in the third and fourth quadrants. Hence

θ = 14◦29′, 165◦31′, 210◦ or 330◦

Problem 12. Solve 6 cos2 θ + 5 cos θ − 6 = 0
for values of θ from 0◦ to 360◦.

Factorising 6 cos2 θ + 5 cos θ − 6 = 0 gives
(3 cos θ − 2) (2 cos θ + 3) = 0.
Hence 3 cos θ − 2 = 0, from which, cos θ = 2

3 =
0.6667, or 2 cos θ + 3 = 0, from which, cos θ =
− 3

2 = −1.5000.
The minimum value of a cosine is −1, hence the lat-
ter expression has no solution and is thus neglected.
Hence,

θ = cos−1 0.6667 = 48◦11′ or 311◦49′

since cosine is positive in the first and fourth
quadrants.

Now try the following exercise.

Exercise 76 Further problems on trigono-
metric equations

In Problems 1 to 3 solve the equations for angles
between 0◦ and 360◦.

1. 15 sin2 A + sin A − 2 = 0[
A = 19◦28′, 160◦32′,
203◦35′ or 336◦25′

]

2. 8 tan2 θ + 2 tan θ = 15[
θ = 51◦20′, 123◦41′,
231◦20′ or 303◦41′

]
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3. 2 cosec2 t − 5 cosec t = 12[
t = 14◦29′, 165◦31′,
221◦49′ or 318◦11′

]

16.7 Worked problems (iv) on
trigonometric equations

Problem 13. Solve 5 cos2 t + 3 sin t − 3 = 0
for values of t from 0◦ to 360◦.

Since cos2 t + sin2 t = 1, cos2 t = 1 − sin2 t. Substi-
tuting for cos2 t in 5 cos2 t + 3 sin t − 3 = 0 gives:

5(1 − sin2 t) + 3 sin t − 3 = 0

5 − 5 sin2 t + 3 sin t − 3 = 0
−5 sin2 t + 3 sin t + 2 = 0

5 sin2 t − 3 sin t − 2 = 0

Factorising gives (5 sin t + 2) ( sin t − 1) = 0. Hence
5 sin t + 2 = 0, from which, sin t = − 2

5 = −0.4000,
or sin t − 1 = 0, from which, sin t = 1.
t = sin−1 (−0.4000) = 203◦35′ or 336◦25′, since
sine is negative in the third and fourth quadrants,
or t = sin−1 1 = 90◦. Hence t = 90◦, 203◦35′ or
336◦25′ as shown in Fig. 16.7.

Figure 16.7

Problem 14. Solve 18 sec2 A − 3 tan A = 21
for values of A between 0◦ and 360◦.

1 + tan2 A = sec2 A. Substituting for sec2 A in
18 sec2 A − 3 tan A = 21 gives
18(1 + tan2 A) − 3 tan A = 21,

i.e. 18 + 18 tan2 A − 3 tan A − 21 = 0
18 tan2 A − 3 tan A − 3 = 0

Factorising gives (6 tan A − 3)(3 tan A + 1) = 0.
Hence 6 tan A − 3 = 0, from which, tan A = 3

6 =
0.5000 or 3 tan A + 1 = 0, from which, tan A =
− 1

3 = − 0.3333. Thus A = tan−1 (0.5000) = 26◦34′
or 206◦34′, since tangent is positive in the first and
third quadrants, or A = tan−1 (−0.3333) = 161◦34′
or 341◦34′, since tangent is negative in the second
and fourth quadrants. Hence,

A = 26◦34′, 161◦34′, 206◦34′ or 341◦34′

Problem 15. Solve 3 cosec2 θ − 5 = 4 cot θ
in the range 0 < θ < 360◦.

cot2 θ + 1 = cosec2 θ. Substituting for cosec2 θ in
3 cosec2 θ − 5 = 4 cot θ gives:

3 (cot2 θ + 1) − 5 = 4 cot θ

3 cot2 θ + 3 − 5 = 4 cot θ
3 cot2 θ − 4 cot θ − 2 = 0

Since the left-hand side does not factorise the
quadratic formula is used. Thus,

cot θ = −(−4) ±√[(−4)2 − 4(3)(−2)]

2(3)

= 4 ± √
(16 + 24)

6
= 4 ± √

40

6

= 10.3246

6
or − 2.3246

6

Hence cot θ = 1.7208 or −0.3874, θ = cot−1

1.7208 = 30◦10′ or 210◦10′, since cotangent is
positive in the first and third quadrants, or
θ = cot−1 (−0.3874) = 111◦11′ or 291◦11′, since
cotangent is negative in the second and fourth
quadrants. Hence,

θ = 30◦10′, 111◦11′, 210◦10′ or 291◦11′

Now try the following exercise.

Exercise 77 Further problems on trigono-
metric equations

In Problems 1 to 6 solve the equations for angles
between 0◦ and 360◦.

1. 12 sin2 θ − 6 = cos θ[
θ = 48◦11′, 138◦35′,
221◦25′ or 311◦49′

]
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2. 16 sec x − 2 = 14 tan2 x
[x = 52◦56′ or 307◦4′]

3. 4 cot2 A − 6 cosec A + 6 = 0 [A = 90◦]

4. 5 sec t + 2 tan2 t = 3
[t = 107◦50′ or 252◦10′]

5. 2.9 cos2 a − 7 sin a + 1 = 0
[a = 27◦50′ or 152◦10′]

6. 3 cosec2 β = 8 − 7 cot β[
β = 60◦10′, 161◦1′,
240◦10′ or 341◦1′

]
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17

The relationship between trigonometric
and hyperbolic functions

17.1 The relationship between
trigonometric and hyperbolic
functions

In Chapter 24, it is shown that

cos θ + j sin θ = e jθ (1)

and cos θ − j sin θ = e−jθ (2)

Adding equations (1) and (2) gives:

cos θ = 1
2

(e jθ + e−jθ) (3)

Subtracting equation (2) from equation (1) gives:

sin θ = 1
2j

(e jθ − e−jθ) (4)

Substituting jθ for θ in equations (3) and (4) gives:

cos jθ = 1

2
(e j( jθ) + e−j( jθ))

and sin jθ = 1

2j
(e j( jθ) − e−j( jθ))

Since j2 = −1, cos jθ = 1
2 (e−θ + eθ) = 1

2 (eθ + e−θ)

Hence from Chapter 5, cos jθ = cosh θ (5)

Similarly, sin jθ = 1

2j
(e−θ − eθ) = − 1

2j
(eθ − e−θ)

= −1

j

[
1

2
(eθ − e−θ)

]

= −1

j
sinh θ (see Chapter 5)

But −1

j
= −1

j
× j

j
= − j

j2 = j,

hence sin jθ = j sinh θ (6)

Equations (5) and (6) may be used to verify that in all
standard trigonometric identities, jθ may be written
for θ and the identity still remains true.

Problem 1. Verify that cos2 jθ + sin2 jθ = 1.

From equation (5), cos jθ = cosh θ, and from equa-
tion (6), sin jθ = j sinh θ.

Thus, cos2 jθ + sin2 jθ = cosh2 θ + j2 sinh2 θ, and
since j2 = −1,

cos2 jθ + sin2 jθ = cosh2 θ − sinh2 θ

But from Chapter 5, Problem 6,

cosh2 θ − sinh2 θ = 1,

hence cos2 jθ + sin2 jθ = 1

Problem 2. Verify that sin j2A = 2 sin jA cos jA.

From equation (6), writing 2A for θ,
sin j2A = j sinh 2A, and from Chapter 5, Table 5.1,
page 45, sinh 2A = 2 sinh A cosh A.

Hence, sin j2A = j(2 sinh A cosh A)

But, sinh A = 1
2 (eA − e−A) and cosh A = 1

2 (eA + e−A)

Hence, sin j2A = j2

(
eA − e−A

2

)(
eA + e−A

2

)

= −2

j

(
eA − e−A

2

)(
eA + e−A

2

)
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= −2

j

(
sin jθ

j

)

( cos jθ)

= 2 sin jA cos jA since j2 = −1

i.e. sin j2A = 2 sin jA cos jA

Now try the following exercise.

Exercise 78 Further problems on the rela-
tionship between trigonometric and hyper-
bolic functions

Verify the following identities by expressing in
exponential form.

1. sin j(A + B) = sin jA cos jB + cos jA sin jB

2. cos j(A − B) = cos jA cos jB + sin jA sin jB

3. cos j2A = 1 − 2 sin2 jA

4. sin jA cos jB = 1
2 [ sin j(A + B) + sin j(A − B)]

5. sin jA − sin jB

= 2 cos j

(
A + B

2

)

sin j

(
A − B

2

)

17.2 Hyperbolic identities

From Chapter 5, cosh θ = 1
2 (eθ + e−θ)

Substituting jθ for θ gives:

cosh jθ = 1
2 (e jθ+ e−jθ) = cos θ, from equation (3),

i.e. cosh jθ = cos θ (7)

Similarly, from Chapter 5,

sinh θ = 1
2 (eθ − e−θ)

Substituting jθ for θ gives:

sinh jθ = 1
2 (e jθ−e −jθ) = j sin θ, from equation (4).

Hence sinh jθ = j sin θ (8)

tan jθ = sin jθ

cosh jθ

From equations (5) and (6),

sin jθ

cos jθ
= j sinh θ

cosh θ
= j tanh θ

Hence tan jθ = j tanh θ (9)

Similarly, tanh jθ = sinh jθ

cosh jθ

From equations (7) and (8),

sinh jθ

cosh jθ
= j sin θ

cos θ
= j tan θ

Hence tanh jθ = j tan θ (10)

Two methods are commonly used to verify hyper-
bolic identities. These are (a) by substituting jθ (and
jφ) in the corresponding trigonometric identity and
using the relationships given in equations (5) to (10)
(see Problems 3 to 5) and (b) by applying Osborne’s
rule given in Chapter 5, page 44.

Problem 3. By writing jA for θ in
cot2 θ + 1 = cosec 2 θ, determine the
corresponding hyperbolic identity.

Substituting jA for θ gives:

cot2 jA + 1 = cosec2jA,

i.e.
cos2 jA

sin2 jA
+ 1 = 1

sin2 jA

But from equation (5), cos jA = cosh A

and from equation (6), sin jA = j sinh A.

Hence
cosh2 A

j2 sinh2 A
+ 1 = 1

j2 sinh2 A

and since j2 = −1, −cosh2 A

sinh2 A
+ 1 = − 1

sinh2 A
Multiplying throughout by −1, gives:

cosh2 A

sinh2 A
− 1 = 1

sinh2 A

i.e. coth2A − 1 = cosech2A

Problem 4. By substituting jA and jB for θ
and φ respectively in the trigonometric identity
for cos θ − cos φ, show that

cosh A − cosh B

= 2 sinh

(
A + B

2

)

sinh

(
A − B

2

)
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cos θ − cos φ = −2 sin

(
θ + φ

2

)

sin

(
θ − φ

2

)

(see Chapter 18, page 184)

thus cos jA − cos jB

= −2 sin j

(
A + B

2

)

sin j

(
A − B

2

)

But from equation (5), cos jA = cosh A

and from equation (6), sin jA = j sinh A

Hence, cosh A − cosh B

= −2 j sinh

(
A + B

2

)

j sinh

(
A − B

2

)

= −2 j2 sinh

(
A + B

2

)

sinh

(
A − B

2

)

But j2 = −1, hence

cosh A − cosh B = 2 sinh
(

A + B
2

)

sinh
(

A − B
2

)

Problem 5. Develop the hyperbolic identity
corresponding to sin 3θ = 3 sin θ − 4 sin3 θ by
writing jA for θ.

Substituting jA for θ gives:

sin 3 jA = 3 sin jA − 4 sin3 jA

and since from equation (6),

sin jA = j sinh A,

j sinh 3A = 3j sinh A − 4 j3 sinh3 A

Dividing throughout by j gives:

sinh 3A = 3 sinh A − j24 sinh3 A

But j2 = −1, hence

sinh 3A = 3 sinh A + 4 sinh3A

[An examination of Problems 3 to 5 shows that
whenever the trigonometric identity contains a term
which is the product of two sines, or the implied
product of two sine (e.g. tan2 θ = sin2 θ/cos2 θ, thus
tan2 θ is the implied product of two sines), the sign
of the corresponding term in the hyperbolic function
changes. This relationship between trigonometric
and hyperbolic functions is known as Osborne’s rule,
as discussed in Chapter 5, page 44].

Now try the following exercise.

Exercise 79 Further problems on hyper-
bolic identities

In Problems 1 to 9, use the substitution A = jθ
(and B = jφ) to obtain the hyperbolic identities
corresponding to the trigonometric identities
given.

1. 1 + tan2 A = sec2 A
[1 − tanh2 θ = sech2 θ]

2. cos (A + B) = cos A cos B − sin A sin B[
cosh (θ + φ)

= cosh θ cosh φ + sinh θ sinh φ

]

3. sin (A − B) = sin A cos B − cos A sin B[
sinh (θ + φ) = sinh θ cosh φ

− cosh θ sinh φ

]

4. tan 2A = 2 tan A

1 − tan2 A[

tanh 2θ = 2 tanh θ

1 + tanh2 θ

]

5. cos A sin B = 1

2
[ sin (A + B) − sin (A − B)]

⎡

⎣cosh θ cosh φ = 1

2
[sinh(θ + φ)

− sinh(θ − φ)]

⎤

⎦

6. sin3 A = 3

4
sin A − 1

4
sin 3A

[

sinh3 θ = 1

4
sinh 3θ − 3

4
sinh θ

]

7. cot2 A(sec2 A − 1) = 1
[coth2 θ(1 − sech2 θ) = 1]
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18

Compound angles

18.1 Compound angle formulae

An electric current i may be expressed as
i = 5 sin(ωt − 0.33) amperes. Similarly, the dis-
placement x of a body from a fixed point can
be expressed as x = 10 sin(2t + 0.67) metres. The
angles (ωt − 0.33) and (2t + 0.67) are called com-
pound angles because they are the sum or difference
of two angles. The compound angle formulae for
sines and cosines of the sum and difference of two
angles A and B are:

sin(A + B) = sin A cos B + cos A sin B
sin(A − B) = sin A cos B − cos A sin B
cos(A + B) = cos A cos B − sin A sin B
cos(A − B) = cos A cos B + sin A sin B

(Note, sin(A + B) is not equal to (sin A + sin B), and
so on.)
The formulae stated above may be used to derive two
further compound angle formulae:

tan(A + B) = tan A + tan B

1 − tan A tan B

tan(A − B) = tan A − tan B

1 + tan A tan B
The compound-angle formulae are true for all values
of A and B, and by substituting values of A and B into
the formulae they may be shown to be true.

Problem 1. Expand and simplify the following
expressions:
(a) sin(π + α) (b) −cos(90◦ + β)
(c) sin(A − B) − sin(A + B)

(a) sin(π + α) = sin π cos α + cos π sin α (from

the formula for sin (A + B))
= (0)(cos α) + (−1) sin α = −sin α

(b) −cos (90◦ + β)

= −[cos 90◦ cos β − sin 90◦ sin β]
= −[(0)(cos β) − (1) sin β] = sin β

(c) sin(A − B) − sin(A + B)

= [sin A cos B − cos A sin B]
− [sin A cos B + cos A sin B]

= −2cos A sin B

Problem 2. Prove that

cos(y − π) + sin
(

y + π

2

)
= 0.

cos (y − π) = cos y cos π + sin y sin π

= (cos y)(−1) + (sin y)(0)
= −cos y

sin
(

y + π

2

)
= sin y cos

π

2
+ cos y sin

π

2
= (sin y)(0) + (cos y)(1) = cos y

Hence cos(y − π) + sin
(

y + π

2

)

= (−cos y) + (cos y) = 0

Problem 3. Show that

tan
(

x + π

4

)
tan
(

x − π

4

)
= −1.

tan
(

x + π

4

)
= tan x + tan π

4

1 − tan x tan π
4

from the formula for tan(A + B)

= tan x + 1

1 − (tan x)(1)
=
(

1 + tan x

1 − tan x

)

since tan
π

4
= 1

tan
(

x − π

4

)
=

tan x − tan
π

4

1 + tan x tan
π

4

=
(

tan x − 1

1 + tan x

)
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Hence tan
(

x + π

4

)
tan
(

x − π

4

)

=
(

1 + tan x

1 − tan x

)(
tan x − 1

1 + tan x

)

= tan x − 1

1 − tan x
= −(1 − tan x)

1 − tan x
= −1

Problem 4. If sin P = 0.8142 and cos Q =
0.4432 evaluate, correct to 3 decimal places:
(a) sin(P − Q), (b) cos(P + Q) and
(c) tan(P + Q), using the compound-angle
formulae.

Since sin P = 0.8142 then
P = sin−1 0.8142 = 54.51◦.
Thus cos P = cos 54.51◦ = 0.5806 and
tan P = tan 54.51◦ = 1.4025.

Since cos Q = 0.4432, Q = cos−1 0.4432 = 63.69◦.
Thus sin Q = sin 63.69◦ = 0.8964 and
tan Q = tan 63.69◦ = 2.0225.

(a) sin (P − Q)

= sin P cos Q − cos P sin Q
= (0.8142)(0.4432) − (0.5806)(0.8964)
= 0.3609 − 0.5204 = −0.160

(b) cos (P + Q)

= cos P cos Q − sin P sin Q
= (0.5806)(0.4432) − (0.8142)(0.8964)
= 0.2573 − 0.7298 = −0.473

(c) tan (P + Q)

= tan P + tan Q

1 − tan P tan Q
= (1.4025) + (2.0225)

1 − (1.4025)(2.0225)

= 3.4250

−1.8366
= −1.865

Problem 5. Solve the equation

4 sin(x − 20◦) = 5 cos x

for values of x between 0◦ and 90◦.

4 sin(x − 20◦) = 4[sin x cos 20◦ − cos x sin 20◦],
from the formula for sin(A − B)

= 4[sin x(0.9397) − cos x(0.3420)]
= 3.7588 sin x − 1.3680 cos x

Since 4 sin (x − 20◦) = 5 cos x then
3.7588 sin x − 1.3680 cos x = 5 cos x
Rearranging gives:

3.7588 sin x = 5 cos x + 1.3680 cos x
= 6.3680 cos x

and
sin x

cos x
= 6.3680

3.7588
= 1.6942

i.e. tan x = 1.6942, and x = tan−1 1.6942 = 59.449◦
or 59◦27′

[Check: LHS = 4 sin (59.449◦ − 20◦)

= 4 sin 39.449◦ = 2.542

RHS = 5 cos x = 5 cos 59.449◦ = 2.542]

Now try the following exercise.

Exercise 80 Further problems on com-
pound angle formulae

1. Reduce the following to the sine of one
angle:

(a) sin 37◦ cos 21◦ + cos 37◦ sin 21◦
(b) sin 7t cos 3t − cos 7t sin 3t

[(a) sin 58◦ (b) sin 4t]

2. Reduce the following to the cosine of one
angle:

(a) cos 71◦ cos 33◦ − sin 71◦ sin 33◦

(b) cos
π

3
cos

π

4
+ sin

π

3
sin

π

4
[ (a) cos 104◦ ≡ −cos 76◦

(b) cos
π

12

]

3. Show that:

(a) sin
(

x + π

3

)
+ sin

(

x + 2π

3

)

= √
3 cos x

and

(b) −sin

(
3π

2
− φ

)

= cos φ

4. Prove that:

(a) sin
(
θ + π

4

)
− sin

(

θ − 3π

4

)

= √
2( sin θ + cos θ)

(b)
cos (270◦ + θ)

cos (360◦ − θ)
= tan θ
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5. Given cos A = 0.42 and sin B = 0.73 evaluate
(a) sin(A − B), (b) cos(A − B), (c) tan (A + B),
correct to 4 decimal places.

[(a) 0.3136 (b) 0.9495 (c) −2.4687]
In Problems 6 and 7, solve the equations for
values of θ between 0◦ and 360◦.

6. 3 sin(θ + 30◦) = 7 cos θ
[64◦43′ or 244◦43′]

7. 4 sin(θ − 40◦) = 2 sin θ
[67◦31′ or 247◦31′]

18.2 Conversion of a sin ω t + b cos ω t
into R sin(ω t + α)

(i) R sin(ωt + α) represents a sine wave of maxi-
mum value R, periodic time 2π/ω, frequency
ω/2π and leading R sin ωt by angle α. (See
Chapter 15).

(ii) R sin (ωt + α) may be expanded using the
compound-angle formula for sin(A + B), where
A = ωt and B = α. Hence,

R sin (ωt + α)

= R[sin ωt cos α + cos ωt sin α]
= R sin ωt cos α + R cos ωt sin α

= (R cos α) sin ωt + (R sin α) cos ωt

(iii) If a = R cos α and b = R sin α, where a and b
are constants, then R sin(ωt + α) = a sin ωt +
b cos ωt, i.e. a sine and cosine function of the
same frequency when added produce a sine
wave of the same frequency (which is further
demonstrated in Section 21.6).

(iv) Since a = R cos α, then cos α = a/R, and since
b = R sin α, then sin α = b/R.

Figure 18.1

If the values of a and b are known then the values of R
and α may be calculated. The relationship between
constants a, b, R and α are shown in Fig. 18.1.

From Fig. 18.1, by Pythagoras’ theorem:

R =
√

a2 + b2

and from trigonometric ratios:

α = tan−1 b/a

Problem 6. Find an expression for
3 sin ωt + 4 cos ωt in the form R sin(ωt + α)
and sketch graphs of 3 sin ωt, 4 cos ωt and
R sin(ωt + α) on the same axes.

Let 3 sin ωt + 4 cos ωt = R sin (ωt + α)

then 3 sin ωt + 4 cos ωt

= R[sin ωt cos α + cos ωt sin α]
= (R cos α) sin ωt + (R sin α) cos ωt

Equating coefficients of sin ωt gives:

3 = R cos α, from which , cos α = 3

R

Equating coefficients of cos ωt gives:

4 = R sin α, from which, sin α = 4

R

There is only one quadrant where both sin α and
cos α are positive, and this is the first, as shown in
Fig. 18.2. From Fig. 18.2, by Pythagoras’ theorem:

R =
√

(32 + 42) = 5

Figure 18.2

From trigonometric ratios: α = tan−1 4
3 = 53◦8′ or

0.927 radians.
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Figure 18.3

Hence 3 sin ω t + 4 cos ω t = 5 sin(ω t + 0.927).

A sketch of 3 sin ωt, 4 cos ωt and 5 sin(ωt + 0.927)
is shown in Fig. 18.3.

Two periodic functions of the same frequency may
be combined by,

(a) plotting the functions graphically and combin-
ing ordinates at intervals, or

(b) by resolution of phasors by drawing or
calculation.

Problem 6, together with Problems 7 and 8 fol-
lowing, demonstrate a third method of combining
waveforms.

Problem 7. Express 4.6 sin ωt − 7.3 cos ωt in
the form R sin(ωt + α).

Let 4.6 sin ωt − 7.3 cos ωt = R sin(ωt + α).

then 4.6 sin ωt − 7.3 cos ωt

= R [sin ωt cos α + cos ωt sin α]
= (R cos α) sin ωt + (R sin α) cos ωt

Equating coefficients of sin ωt gives:

4.6 = R cos α, from which, cos α = 4.6

R

Equating coefficients of cos ωt gives:

−7.3 = R sin α, from which, sin α = −7.3

R

There is only one quadrant where cosine is posi-
tive and sine is negative, i.e., the fourth quadrant, as
shown in Fig. 18.4. By Pythagoras’ theorem:

R =
√

[(4.6)2 + (−7.3)2] = 8.628

Figure 18.4

By trigonometric ratios:

α = tan−1
(−7.3

4.6

)

= −57.78◦ or −1.008 radians.
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Hence

4.6 sin ω t − 7.3 cos ω t = 8.628 sin(ω t − 1.008).

Problem 8. Express −2.7 sin ωt − 4.1 cos ωt
in the form R sin(ωt + α).

Let −2.7 sin ωt − 4.1 cos ωt = R sin(ωt + α)

= R[sin ωt cos α + cos ωt sin α]
= (R cos α)sin ωt + (R sin α)cos ωt

Equating coefficients gives:

−2.7 = R cos α, from which, cos α = −2.7

R

and −4.1 = R sin α, from which, sin α = −4.1

R

There is only one quadrant in which both cosine and
sine are negative, i.e. the third quadrant, as shown in
Fig. 18.5. From Fig. 18.5,

R =
√

[(−2.7)2 + (−4.1)2] = 4.909

and θ = tan−1 4.1

2.7
= 56.63◦

Figure 18.5

Hence α = 180◦ + 56.63◦ = 236.63◦ or 4.130 radi-
ans. Thus,

−2.7 sin ω t − 4.1 cos ω t = 4.909 sin(ω t + 4.130).

An angle of 236.63◦ is the same as −123.37◦ or
−2.153 radians.

Hence −2.7 sin ωt − 4.1 cos ωt may be expressed
also as 4.909 sin(ω t − 2.153), which is preferred
since it is the principal value (i.e. −π ≤ α ≤ π).

Problem 9. Express 3 sin θ + 5 cos θ in the
form R sin(θ + α), and hence solve the equation
3 sin θ + 5 cos θ = 4, for values of θ between 0◦
and 360◦.

Let 3 sin θ + 5 cos θ = R sin(θ + α)

= R[sin θ cos α + cos θ sin α]

= (R cos α)sin θ

+ (R sin α)cos θ

Equating coefficients gives:

3 = R cos α, from which, cos α = 3

R

and 5 = R sin α, from which, sin α = 5

R
Since both sin α and cos α are positive, R lies in the
first quadrant, as shown in Fig. 18.6.

Figure 18.6

From Fig. 18.6, R =√(32 + 52) = 5.831 and
α = tan−1 5

3 = 59◦2′.
Hence 3 sin θ + 5 cos θ = 5.831 sin(θ + 59◦2′)
However 3 sin θ + 5 cos θ = 4
Thus 5.831 sin(θ + 59◦2′) = 4, from which

(θ + 59◦2′) = sin−1
(

4

5.831

)

i.e. θ + 59◦2′ = 43◦19′ or 136◦41′
Hence θ = 43◦19′ − 59◦2′ = −15◦43′
or θ = 136◦41′ − 59◦2′ = 77◦39′
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Since −15◦43′ is the same as −15◦43′ + 360◦,
i.e. 344◦17′, then the solutions are θ=77◦39′ or
344◦17′, which may be checked by substituting into
the original equation.

Problem 10. Solve the equation
3.5 cos A − 5.8 sin A = 6.5 for 0◦ ≤ A ≤ 360◦.

Let 3.5 cos A − 5.8 sin A = R sin(A + α)

= R[sin A cos α + cos A sin α]
= (R cos α) sin A + (R sin α) cos A

Equating coefficients gives:

3.5 = R sin α, from which, sin α = 3.5

R

and −5.8 = R cos α, from which, cos α = −5.8

R
There is only one quadrant in which both sine is
positive and cosine is negative, i.e. the second, as
shown in Fig. 18.7.

Figure 18.7

From Fig. 18.7, R =√[(3.5)2 + (−5.8)2] = 6.774

and θ = tan−1 3.5

5.8
= 31◦7′.

Hence α = 180◦ − 31◦7′ = 148◦53′.
Thus

3.5cos A − 5.8sin A = 6.774 sin(A +148◦53′) = 6.5

Hence sin(A + 148◦53′) = 6.5

6.774
, from which,

(A + 148◦53′) = sin−1 6.5

6.774
= 73◦39′ or 106◦21′

Thus A = 73◦39′ − 148◦53′ = −75◦14′

≡ (−75◦14′ + 360◦) = 284◦46′

or A = 106◦21′ − 148◦53′ = −42◦32′

≡ (−42◦32′ + 360◦) = 317◦28′

The solutions are thus A = 284◦46′ or 317◦28′,
which may be checked in the original equation.

Now try the following exercise.

Exercise 81 Further problems on the
conversion of a sin ω t + b cos ω t into
R sin(ω t + α)

In Problems 1 to 4, change the functions into the
form R sin(ωt ± α).

1. 5 sin ωt + 8 cos ωt [9.434 sin(ωt + 1.012)]

2. 4 sin ωt − 3 cos ωt [5 sin(ωt − 0.644)]

3. −7 sin ωt + 4 cos ωt
[8.062 sin(ωt + 2.622)]

4. −3 sin ωt − 6 cos ωt
[6.708 sin(ωt − 2.034)]

5. Solve the following equations for values of θ
between 0◦ and 360◦: (a) 2 sin θ + 4 cos θ = 3
(b) 12 sin θ − 9 cos θ = 7.[

(a) 74◦26′ or 338◦42′
(b) 64◦41′ or 189◦3′

]

6. Solve the following equations for
0◦ < A < 360◦: (a) 3 cos A + 2 sin A = 2.8
(b) 12 cos A − 4 sin A = 11[

(a) 72◦44′ or 354◦38′
(b) 11◦9′ or 311◦59′

]

7. The third harmonic of a wave motion is given
by 4.3 cos 3θ − 6.9 sin 3θ. Express this in the
form R sin(3θ ± α). [8.13 sin(3θ + 2.584)]

8. The displacement x metres of a mass from
a fixed point about which it is oscillating is
given by x = 2.4 sin ωt + 3.2 cos ωt, where t
is the time in seconds. Express x in the form
R sin(ωt + α). [x = 4.0 sin(ωt + 0.927)m]

9. Two voltages, v1 = 5 cos ωt and
v2 = −8 sin ωt are inputs to an analogue cir-
cuit. Determine an expression for the output
voltage if this is given by (v1 + v2).

[9.434 sin(ωt + 2.583)]
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18.3 Double angles

(i) If, in the compound-angle formula for
sin(A + B), we let B = A then

sin 2A = 2 sin A cos A

Also, for example,

sin 4A = 2 sin 2A cos 2A

and sin 8A = 2 sin 4A cos 4A, and so on.

(ii) If, in the compound-angle formula for
cos(A + B), we let B = A then

cos 2A = cos2 A − sin2 A

Since cos2 A + sin2 A = 1, then
cos2 A = 1 − sin2 A, and sin2 A = 1 − cos2 A,
and two further formula for cos 2A can be
produced.

Thus cos 2A = cos2 A − sin2 A

= (1 − sin2 A) − sin2 A

i.e. cos 2A = 1 − 2 sin2A

and cos 2A = cos2 A − sin2 A

= cos2 A − (1 − cos2 A)

i.e. cos 2 A = 2cos2 A − 1

Also, for example,

cos 4A = cos2 2A − sin2 2A or

1 − 2 sin2 2A or

2 cos2 2A − 1

and cos 6A = cos2 3A − sin2 3A or

1 − 2 sin2 3A or

2 cos2 3A − 1,
and so on.

(iii) If, in the compound-angle formula for
tan(A + B), we let B = A then

tan 2A = 2 tan A
1 − tan2 A

Also, for example,

tan 4A = 2 tan 2A

1 − tan2 2A

and tan 5A = 2 tan 5
2 A

1 − tan2 5
2 A

and so on.

Problem 11. I3 sin 3θ is the third harmonic of a
waveform. Express the third harmonic in terms
of the first harmonic sin θ, when I3 = 1.

When I3 = 1,

I3 sin 3θ = sin 3θ = sin (2θ + θ)

= sin 2θ cos θ + cos 2θ sin θ,

from the sin (A + B) formula

= (2 sin θ cos θ) cos θ + (1 − 2 sin2θ) sin θ,

from the double angle expansions

= 2 sin θ cos2 θ + sin θ − 2 sin3 θ

= 2 sin θ(1 − sin2 θ) + sin θ − 2 sin3 θ,

(since cos2 θ = 1 − sin2 θ)

= 2 sin θ − 2 sin3 θ + sin θ − 2 sin3 θ

i.e. sin 3θ = 3 sinθ − 4 sin3θ

Problem 12. Prove that
1 − cos 2θ

sin 2θ
= tan θ.

LHS = 1 − cos 2θ

sin 2θ
= 1 − (1 − 2 sin2 θ)

2 sin θ cos θ

= 2 sin2 θ

2 sin θ cos θ
= sin θ

cos θ

= tan θ = RHS

Problem 13. Prove that

cot 2x + cosec 2x = cot x.

LHS = cot 2x + cosec 2x = cos 2x

sin 2x
+ 1

sin 2x

= cos 2x + 1

sin 2x

= (2 cos2 x − 1) + 1

sin 2x

= 2 cos2 x

sin 2x
= 2 cos2 x

2 sin x cos x

= cos x

sin x
= cot x = RHS
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Now try the following exercise.

Exercise 82 Further problems on double
angles

1. The power p in an electrical circuit is given

by p = v2

R
. Determine the power in terms of

V , R and cos 2t when v = V cos t.[
V2

2R
(1 + cos 2t)

]

2. Prove the following identities:

(a) 1 − cos 2φ

cos2 φ
= tan2 φ

(b)
1 + cos 2t

sin2 t
= 2 cot2 t

(c)
(tan 2x)(1 + tan x)

tan x
= 2

1 − tan x

(d) 2 cosec 2θ cos 2θ = cot θ − tan θ

3. If the third harmonic of a waveform is given
by V3 cos 3θ, express the third harmonic
in terms of the first harmonic cos θ, when
V3 = 1.

[cos 3θ = 4 cos3 θ − 3 cos θ]

18.4 Changing products of sines and
cosines into sums or differences

(i) sin(A + B) + sin(A − B) = 2 sin A cos B (from
the formulae in Section 18.1)

i.e. sin A cos B
= 1

2 [sin(A + B) + sin(A − B)] (1)

(ii) sin(A + B) − sin(A − B) = 2 cos A sin B

i.e. cos A sin B
= 1

2 [sin(A + B) − sin(A − B)] (2)

(iii) cos(A + B) + cos(A − B) = 2 cos A cos B

i.e. cos A cos B
= 1

2 [cos(A + B) + cos(A − B)] (3)

(iv) cos(A + B) − cos(A − B) = −2 sin A sin B

i.e. sin A sin B
= − 1

2 [cos(A + B) − cos(A − B)] (4)

Problem 14. Express sin 4x cos 3x as a sum or
difference of sines and cosines.

From equation (1),

sin 4x cos 3x = 1
2 [sin(4x + 3x) + sin(4x − 3x)]

= 1
2 (sin 7x + sin x)

Problem 15. Express 2 cos 5θ sin 2θ as a sum
or difference of sines or cosines.

From equation (2),

2 cos 5θ sin 2θ = 2

{
1

2
[sin(5θ + 2θ) − sin(5θ−2θ)]

}

= sin 7θ − sin 3θ

Problem 16. Express 3 cos 4t cos t as a sum or
difference of sines or cosines.

From equation (3),

3 cos 4t cos t = 3

{
1

2
[cos(4t + t) + cos(4t − t)]

}

= 3
2

(cos 5t + cos 3t)

Thus, if the integral
∫

3 cos 4t cos t dt was required
(for integration see Chapter 37), then
∫

3 cos 4t cos t dt =
∫

3

2
(cos 5t + cos 3t) dt

= 3
2

[
sin 5t

5
+ sin 3t

3

]

+ c

Problem 17. In an alternating current circuit,
voltage v = 5 sin ωt and current i = 10 sin(ωt −
π/6). Find an expression for the instantaneous
power p at time t given that p = vi, expressing
the answer as a sum or difference of sines and
cosines.

p = vi = (5 sin ωt)
[
10 sin (ωt − π/6)

]

= 50 sin ωt sin(ωt − π/6)

From equation (4),

50 sin ωt sin(ωt − π/6)

= (50)
[− 1

2

{
cos (ωt + ωt − π/6)

− cos
[
ωt − (ωt − π/6)

]}]

= −25{cos(2ωt − π/6) − cos π/6}
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i.e. instantaneous power,
p = 25[cos π/6 − cos (2ω t − π/6)]

Now try the following exercise.

Exercise 83 Further problems on changing
products of sines and cosines into sums or
differences

In Problems 1 to 5, express as sums or differ-
ences:

1. sin 7t cos 2t
[ 1

2 (sin 9t + sin 5t)
]

2. cos 8x sin 2x
[ 1

2 (sin 10x − sin 6x)
]

3. 2 sin 7t sin 3t [cos 4t − cos 10t]

4. 4 cos 3θ cos θ [2(cos 4θ + cos 2θ)]

5. 3 sin
π

3
cos

π

6

[
3

2

(
sin

π

2
+ sin

π

6

)]

6. Determine
∫

2 sin 3t cos t dt[

−cos 4t

4
− cos 2t

2
+ c

]

7. Evaluate
∫ π

2

0
4 cos 5x cos 2x dx

[

−20

21

]

8. Solve the equation: 2 sin 2φ sin φ = cos φ in
the range φ = 0 to φ = 180◦.

[30◦, 90◦ or 150◦]

18.5 Changing sums or differences of
sines and cosines into products

In the compound-angle formula let,

(A + B) = X
and

(A − B) = Y

Solving the simultaneous equations gives:

A = X + Y

2
and B = X − Y

2
Thus sin(A + B) + sin(A − B) = 2 sin A cos B
becomes,

sin X + sin Y

= 2 sin
(

X + Y
2

)

cos
(

X − Y
2

)

(5)

Similarly,

sin X − sin Y

= 2 cos
(

X + Y
2

)

sin
(

X − Y
2

)

(6)

cos X + cos Y

= 2 cos
(

X + Y
2

)

cos
(

X − Y
2

)

(7)

cos X − cos Y

= −2 sin
(

X + Y
2

)

sin
(

X − Y
2

)

(8)

Problem 18. Express sin 5θ + sin 3θ as a
product.

From equation (5),

sin 5θ + sin 3θ = 2 sin

(
5θ + 3θ

2

)

cos

(
5θ − 3θ

2

)

= 2 sin 4θ cos θ

Problem 19. Express sin 7x − sin x as a
product.

From equation (6),

sin 7x − sin x = 2 cos

(
7x + x

2

)

sin

(
7x − x

2

)

= 2 cos 4x sin 3x

Problem 20. Express cos 2t − cos 5t as a
product.

From equation (8),

cos 2t − cos 5t = −2 sin

(
2t + 5t

2

)

sin

(
2t − 5t

2

)

= −2 sin
7

2
t sin

(

−3

2
t

)

= 2 sin
7
2

t sin
3
2

t
(

since sin

(

−3

2
t

)

= −sin
3

2
t

)

Problem 21. Show that

cos 6x + cos 2x

sin 6x + sin 2x
= cot 4x.
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From equation (7),

cos 6x + cos 2x = 2 cos 4x cos 2x

From equation (5),

sin 6x + sin 2x = 2 sin 4x cos 2x

Hence

cos 6x + cos 2x

sin 6x + sin 2x
= 2 cos 4x cos 2x

2 sin 4x cos 2x

= cos 4x

sin 4x
= cot 4 x

Now try the following exercise.

Exercise 84 Further problems on changing
sums or differences of sines and cosines into
products

In Problems 1 to 5, express as products:

1. sin 3x + sin x [2 sin 2x cos x]

2. 1
2 (sin 9θ − sin 7θ) [cos 8θ sin θ]

3. cos 5t + cos 3t [2 cos 4t cos t]

4. 1
8 (cos 5t − cos t)

[− 1
4 sin 3t sin 2t

]

5. 1
2

(
cos

π

3
+ cos

π

4

) [

cos
7π

24
cos

π

24

]

6. Show that:

(a)
sin 4x − sin 2x

cos 4x + cos 2x
= tan x

(b) 1
2 {sin(5x − α) − sin(x + α)}

= cos 3x sin(2x − α)

18.6 Power waveforms in a.c. circuits

(a) Purely resistive a.c. circuits

Let a voltage v = Vm sin ωt be applied to a circuit
comprising resistance only. The resulting current is
i = Im sin ωt, and the corresponding instantaneous
power, p, is given by:

p = vi = (Vm sin ωt)(Im sin ωt)

i.e., p = VmIm sin2 ωt

From double angle formulae of Section 18.3,

cos 2A = 1 − 2 sin2 A, from which,

sin2 A = 1
2 (1 − cos 2A) thus

sin2 ωt = 1
2 (1 − cos 2ωt)

Then power p = VmIm[ 1
2 (l − cos 2ωt)]

i.e. p = 1
2 VmIm(1 − cos 2ω t)

The waveforms of v, i and p are shown in Fig. 18.8.
The waveform of power repeats itself after π/ω
seconds and hence the power has a frequency twice
that of voltage and current. The power is always pos-
itive, having a maximum value of VmIm. The average
or mean value of the power is 1

2 VmIm.

Figure 18.8

The rms value of voltage V = 0.707Vm, i.e. V = Vm√
2

,

from which, Vm = √
2 V .

Similarly, the rms value of current, I = Im√
2

, from

which, Im = √
2 I . Hence the average power, P,

developed in a purely resistive a.c. circuit is given
by P = 1

2 VmIm = 1
2 (

√
2V )(

√
2I) = VI watts.

Also, power P = I2R or V2/R as for a d.c. circuit,
since V = IR.

Summarizing, the average power P in a purely
resistive a.c. circuit given by

P = VI = I2R = V2

R

where V and I are rms values.

(b) Purely inductive a.c. circuits

Let a voltage v = Vm sin ωt be applied to a circuit
containing pure inductance (theoretical case). The



Ch18-H8152.tex 23/6/2006 15: 8 Page 186

186 GEOMETRY AND TRIGONOMETRY

resulting current is i = Im sin
(
ωt − π

2

)
since current

lags voltage by
π

2
radians or 90◦ in a purely inductive

circuit, and the corresponding instantaneous power,
p, is given by:

p = vi = (Vm sin ωt)Im sin
(
ωt − π

2

)

i.e. p = VmIm sin ωt sin
(
ωt − π

2

)

However,

sin
(
ωt − π

2

)
= − cos ωt thus

p = − VmIm sin ωt cos ωt.

Rearranging gives:

p = − 1
2 VmIm(2 sin ωt cos ωt).

However, from double-angle formulae,

2 sin ωt cos ωt = sin 2ωt.

Thus power, p = − 1
2 VmIm sin 2ω t.

The waveforms of v, i and p are shown in Fig. 18.9.
The frequency of power is twice that of voltage and
current. For the power curve shown in Fig. 18.9, the
area above the horizontal axis is equal to the area

p
i
v

+

0

−

π
ω

2π
ω t (seconds)

p

v

i

Figure 18.9

below, thus over a complete cycle the average power
P is zero. It is noted that when v and i are both posi-
tive, power p is positive and energy is delivered from
the source to the inductance; when v and i have oppo-
site signs, power p is negative and energy is returned
from the inductance to the source.

In general, when the current through an induc-
tance is increasing, energy is transferred from the
circuit to the magnetic field, but this energy is
returned when the current is decreasing.

Summarizing, the average power P in a purely
inductive a.c. circuit is zero.

(c) Purely capacitive a.c. circuits

Let a voltage v = Vm sin ωt be applied to a circuit
containing pure capacitance. The resulting current
is i = Im sin

(
ωt + π

2

)
, since current leads voltage by

90◦ in a purely capacitive circuit, and the correspond-
ing instantaneous power, p, is given by:

p = vi = (Vm sin ωt)Im sin
(
ωt + π

2

)

i.e. p = VmIm sin ωt sin
(
ωt + π

2

)

However, sin
(
ωt + π

2

)
= cos ωt

thus p = VmIm sin ωt cos ωt
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p
i
v

+

0

−

π
ω 2π

ω t (seconds)

p

v

i

Figure 18.10

Rearranging gives p = 1
2 VmIm(2 sin ωt cos ωt).

Thus power, p = 1
2 VmIm sin 2ω t.

The waveforms of v, i and p are shown in
Fig. 18.10. Over a complete cycle the average power
P is zero. When the voltage across a capacitor is
increasing, energy is transferred from the circuit to
the electric field, but this energy is returned when the
voltage is decreasing.

Summarizing, the average power P in a purely
capacitive a.c. circuit is zero.

(d) R–L or R–C a.c. circuits

Let a voltage v = Vm sin ωt be applied to a cir-
cuit containing resistance and inductance or resis-
tance and capacitance. Let the resulting current be
i = Im sin(ωt + φ), where phase angle φ will be posi-
tive for an R–C circuit and negative for an R–L
circuit. The corresponding instantaneous power, p,
is given by:

p = vi = (Vm sin ωt)Im sin(ωt + φ)
i.e. p = VmIm sin ωt sin(ωt + φ)

Products of sine functions may be changed into
differences of cosine functions as shown in Sec-
tion 18.4,
i.e. sin A sin B = − 1

2 [cos(A + B) − cos(A − B)].

Substituting ωt = A and (ωt + φ) = B gives:

power, p = VmIm{− 1
2 [cos(ωt + ωt + φ)

− cos(ωt − (ωt + φ))]}
i.e. p = 1

2 VmIm[cos(−φ) − cos(2ωt + φ)]

However, cos(−φ) = cos φ

Thus p = 1
2 VmIm[cos φ − cos(2ω t + φ)]

The instantaneous power p thus consists of

(i) a sinusoidal term, − 1
2 VmIm cos (2ωt + φ) which

has a mean value over a cycle of zero, and

(ii) a constant term, 1
2 VmIm cos φ (since φ is constant

for a particular circuit).

Thus the average value of power, P = 1
2 VmIm cos φ.

Since Vm = √
2 V and Im = √

2 I , average power,

P = 1
2 (

√
2 V )(

√
2 I) cos φ

i.e. P = VI cos φ

The waveforms of v, i and p, are shown in Fig. 18.11
for an R–L circuit. The waveform of power is seen to
pulsate at twice the supply frequency. The areas of
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−

0

+

p
i
v

v

p

i

π
ω

2π
ω t (seconds)

Figure 18.11

the power curve (shown shaded) above the horizontal
time axis represent power supplied to the load; the
small areas below the axis represent power being
returned to the supply from the inductance as the
magnetic field collapses.

A similar shape of power curve is obtained for an
R–C circuit, the small areas below the horizontal axis
representing power being returned to the supply from
the charged capacitor. The difference between the
areas above and below the horizontal axis represents

the heat loss due to the circuit resistance. Since power
is dissipated only in a pure resistance, the alterna-
tive equations for power, P = I2

RR, may be used,
where IR is the rms current flowing through the
resistance.

Summarizing, the average power P in a cir-
cuit containing resistance and inductance and/or
capacitance, whether in series or in parallel, is
given by P = VI cos φ or P = I2

RR (V, I and IR being
rms values).



Assign-05-H8152.tex 23/6/2006 15: 8 Page 189

B

Geometry and Trigonometry

Assignment 5

This assignment covers the material contained
in Chapters 15 to 18.

The marks for each question are shown in
brackets at the end of each question.

1. Solve the following equations in the range 0◦
to 360◦
(a) sin−1(−0.4161) = x
(b) cot−1(2.4198) = θ (8)

2. Sketch the following curves labelling relevant
points:
(a) y = 4 cos(θ + 45◦)
(b) y = 5 sin(2t − 60◦) (8)

3. The current in an alternating current circuit at
any time t seconds is given by:

i = 120 sin(100πt + 0.274) amperes.

Determine

(a) the amplitude, periodic time, frequency and
phase angle (with reference to 120 sin 100πt)

(b) the value of current when t = 0
(c) the value of current when t = 6 ms
(d) the time when the current first reaches 80A

Sketch one cycle of the oscillation. (19)

4. A complex voltage waveform v is comprised
of a 141.1V rms fundamental voltage at a fre-
quency of 100 Hz, a 35% third harmonic com-
ponent leading the fundamental voltage at zero
time by π/3 radians, and a 20% fifth harmonic
component lagging the fundamental at zero time
by π/4 radians.

(a) Write down an expression to represent
voltage v

(b) Draw the complex voltage waveform using
harmonic synthesis over one cycle of the
fundamental waveform using scales of 12 cm
for the time for one cycle horizontally and
1 cm = 20V vertically (15)

5. Prove the following identities:

(a)

√[
1 − cos2 θ

cos2 θ

]

= tan θ

(b) cos

(
3π

2
+ φ

)

= sin φ

(c)
sin2 x

1 + cos 2x
= 1

2 tan2 x (9)

6. Solve the following trigonometric equations in
the range 0◦ ≤ x ≤ 360◦:

(a) 4 cos x + 1 = 0
(b) 3.25 cosec x = 5.25

(c) 5 sin2 x + 3 sin x = 4
(d) 2 sec2 θ + 5 tan θ = 3 (18)

7. Solve the equation 5 sin(θ − π/6) = 8 cos θ for
values 0 ≤ θ ≤ 2π (8)

8. Express 5.3 cos t − 7.2 sin t in the form
R sin(t + α). Hence solve the equation
5.3 cos t − 7.2 sin t = 4.5 in the range
0 ≤ t ≤ 2π (12)

9. Determine
∫

2 cos 3t sin t dt (3)
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Functions and their curves

19.1 Standard curves

When a mathematical equation is known, co-
ordinates may be calculated for a limited range of
values, and the equation may be represented pictori-
ally as a graph, within this range of calculated values.
Sometimes it is useful to show all the characteristic
features of an equation, and in this case a sketch
depicting the equation can be drawn, in which all
the important features are shown, but the accurate
plotting of points is less important. This technique is
called ‘curve sketching’ and can involve the use of
differential calculus, with, for example, calculations
involving turning points.

If, say, y depends on, say, x, then y is said to be
a function of x and the relationship is expressed as
y = f (x); x is called the independent variable and y
is the dependent variable.

In engineering and science, corresponding values
are obtained as a result of tests or experiments.

Here is a brief resumé of standard curves, some
of which have been met earlier in this text.

(i) Straight Line
The general equation of a straight line is y = mx + c,

where m is the gradient

(

i.e.
dy

dx

)

and c is the y-axis

intercept.
Two examples are shown in Fig. 19.1

(ii) Quadratic Graphs
The general equation of a quadratic graph is
y = ax2 + bx + c, and its shape is that of a parabola.

The simplest example of a quadratic graph, y = x2,
is shown in Fig. 19.2.

(iii) Cubic Equations
The general equation of a cubic graph is
y = ax3 + bx2 + cx + d.

The simplest example of a cubic graph, y = x3, is
shown in Fig. 19.3.

(iv) Trigonometric Functions (see Chapter 15,
page 148)

Graphs of y = sin θ, y = cos θ and y = tan θ are shown
in Fig. 19.4.

Figure 19.1

Figure 19.2
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Figure 19.3

Figure 19.4

(v) Circle (see Chapter 14, page 137)

The simplest equation of a circle is x2 + y2 = r2,
with centre at the origin and radius r, as shown in
Fig. 19.5.

More generally, the equation of a circle, centre
(a, b), radius r, is given by:

(x − a)2 + (y − b)2 = r2

y

r

r−r

−r

x2 + y2 = r 2

O x

Figure 19.5

Figure 19.6 shows a circle

(x − 2)2 + (y − 3)2 = 4

0 2 4 x

2

3

4

5

y

a = 2

b = 3

r = 2

(x − 2)2 + (y − 3)2 = 4

Figure 19.6

(vi) Ellipse

The equation of an ellipse is

x2

a2 + y2

b2 = 1

and the general shape is as shown in Fig. 19.7.

A B

C

D

a

b

O x

y

x 2    
 y 2 = 1

a2    b2+

Figure 19.7
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C

The length AB is called the major axis and CD the
minor axis.

In the above equation, ‘a’ is the semi-major axis
and ‘b’ is the semi-minor axis.
(Note that if b = a, the equation becomes
x2

a2 + y2

a2 = 1, i.e. x2 + y2 = a2, which is a circle of

radius a).

(vii) Hyperbola

The equation of a hyperbola is

x2

a2 − y2

b2 = 1

and the general shape is shown in Fig. 19.8. The
curve is seen to be symmetrical about both the x-
and y-axes. The distance AB in Fig. 19.8 is given
by 2a.

A B
O

y

x

x 2    
 y 2 = 1

a2    b2−

Figure 19.8

(viii) Rectangular Hyperbola

The equation of a rectangular hyperbola is xy = c or

y = c

x
and the general shape is shown in Fig. 19.9.

(ix) Logarithmic Function (see Chapter 4, page 27)

y = ln x and y = lg x are both of the general shape
shown in Fig. 19.10.

(x) Exponential Functions (see Chapter 4, page 31)

y = ex is of the general shape shown in Fig. 19.11.

1 2 3−1−2−3

−1

−2

−3

1

2

3

0
x

y

y = c
x

Figure 19.9

0 1 x

y

y = log x

Figure 19.10

y = ex

0 x

1

y

Figure 19.11
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(xi) Polar Curves

The equation of a polar curve is of the form r = f (θ).
An example of a polar curve, r = a sin θ, is shown in
Fig. 19.12.

Figure 19.12

19.2 Simple transformations

From the graph of y = f (x) it is possible to deduce
the graphs of other functions which are transfor-
mations of y = f (x). For example, knowing the
graph of y = f (x), can help us draw the graphs of
y = a f (x), y = f (x) + a, y = f (x + a), y = f (ax),
y = − f (x) and y = f (−x).

(i) y = a f (x)

For each point (x1, y1) on the graph of y = f (x) there
exists a point (x1, ay1) on the graph of y = af (x). Thus
the graph of y = af (x) can be obtained by stretching
y = f (x) parallel to the y-axis by a scale factor ‘a’.

Graphs of y = x + 1 and y = 3(x + 1) are shown in
Fig. 19.13(a) and graphs of y = sin θ and y = 2 sin θ
are shown in Fig. 19.13(b).

(ii) y = f (x) + a

The graph of y = f (x) is translated by ‘a’ units par-
allel to the y-axis to obtain y = f (x) + a. For exam-
ple, if f (x) = x, y = f (x) + 3 becomes y = x + 3, as
shown in Fig. 19.14(a). Similarly, if f (θ) = cos θ,
then y = f (θ) + 2 becomes y = cos θ + 2, as shown
in Fig. 19.14(b). Also, if f (x) = x2, then y = f (x) + 3
becomes y = x2 + 3, as shown in Fig. 19.14(c).

(iii) y = f (x + a)

The graph of y = f (x) is translated by ‘a’ units par-
allel to the x-axis to obtain y = f (x + a). If ‘a’> 0

0 π
2

π 3π
2

2π

1

y
2

θ

y = 2 sinθ

y =  sinθ

(b)

Figure 19.13

it moves y = f (x) in the negative direction on the
x-axis (i.e. to the left), and if ‘a’< 0 it moves y = f (x)
in the positive direction on the x-axis (i.e. to the

right). For example, if f (x) = sin x, y = f
(

x − π

3

)

becomes y = sin
(

x − π

3

)
as shown in Fig. 19.15(a)

and y = sin
(

x + π

4

)
is shown in Fig. 19.15(b).

Similarly graphs of y = x2, y = (x − 1)2 and
y = (x + 2)2 are shown in Fig. 19.16.

(iv) y = f (ax)

For each point (x1, y1) on the graph of y = f (x), there

exists a point
(x1

a
, y1

)
on the graph of y = f (ax).

Thus the graph of y = f (ax) can be obtained by
stretching y = f (x) parallel to the x-axis by a scale

factor
1

a
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0 π
2

π 3π
2

2π θ

1

3

y = cos θ + 2

y = cos θ

(b)

Figure 19.14

π
2

π 3π
2

2π x0

−1

1

y

π
3

y = sin  x−    π
3

y = sinx

(a)

π
3 ( )

π
2

π 3π
2

2π x0

−1

1

y

π
4

y = sin  x +    π
4

y = sinx

π
4

(b)

( )

Figure 19.15

Figure 19.16

For example, if f (x) = (x − 1)2, and a = 1

2
, then

f (ax) =
(x

2
− 1
)2

.

Both of these curves are shown in Fig. 19.17(a).

Similarly, y = cos x and y = cos 2x are shown in
Fig. 19.17(b).
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Figure 19.17

(v) y = − f (x)

The graph of y = − f (x) is obtained by reflect-
ing y = f (x) in the x-axis. For example, graphs of
y = ex and y = −ex are shown in Fig. 19.18(a) and
graphs of y = x2 + 2 and y = −(x2 + 2) are shown in
Fig. 19.18(b).

(vi) y = f (−x)

The graph of y = f (−x) is obtained by reflecting
y = f (x) in the y-axis. For example, graphs of y = x3

Figure 19.18

Figure 19.18 (Continued)

and y = (−x)3 = −x3 are shown in Fig. 19.19(a)
and graphs of y = ln x and y = −ln x are shown in
Fig. 19.19(b).

Figure 19.19
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Problem 1. Sketch the following graphs,
showing relevant points:

(a) y = (x − 4)2 (b) y = x3 − 8

(a) In Fig. 19.20 a graph of y = x2 is shown by
the broken line. The graph of y = (x − 4)2 is
of the form y = f (x + a). Since a = −4, then
y = (x − 4)2 is translated 4 units to the right of
y = x2, parallel to the x-axis.

(See Section (iii) above).

Figure 19.20

(b) In Fig. 19.21 a graph of y = x3 is shown by the
broken line. The graph of y = x3 − 8 is of the
form y = f (x) + a. Since a = −8, then y = x3− 8
is translated 8 units down from y = x3, parallel
to the y-axis.

(See Section (ii) above).

Figure 19.21

Problem 2. Sketch the following graphs,
showing relevant points:

(a) y = 5 − (x + 2)3 (b) y = 1 + 3 sin 2x

(a) Figure 19.22(a) shows a graph of y = x3.
Figure 19.22(b) shows a graph of y = (x + 2)3

(see f (x + a), Section (iii) above).

2−2

−10

−20

10

20 y = x3

x

y

 0

(a)

2−2

−10

−20

10

20

−4 x

y

(b)

y = (x + 2)3

0

Figure 19.22
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2−2

−10

−20

10

20

−4 x

y

(c)

y = −(x + 2)3

0

2−2

−10

−20

10

20

−4 x

y

(d)

0

y = 5 − (x + 2)3

Figure 19.22 (Continued)

Figure 19.22(c) shows a graph of y = − (x + 2)3

(see −f (x), Section (v) above). Figure 19.22(d)
shows the graph of y = 5 − (x + 2)3 (see
f (x) + a, Section (ii) above).

(b) Figure 19.23(a) shows a graph of y = sin x.
Figure 19.23(b) shows a graph of y = sin 2x
(see f (ax), Section (iv) above).

Figure 19.23(c) shows a graph of y = 3 sin 2x
(see a f (x), Section (i) above). Figure 19.23(d)
shows a graph of y = 1 + 3 sin 2x (see f (x) + a,
Section (ii) above). Figure 19.23
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Now try the following exercise.

Exercise 85 Further problems on simple
transformations with curve sketching

Sketch the following graphs, showing relevant
points:
(Answers on page 213, Fig. 19.39)

1. y = 3x − 5
2. y = − 3x + 4
3. y = x2 + 3
4. y = (x − 3)2

5. y = (x − 4)2 + 2
6. y = x − x2

7. y = x3 + 2
8. y = 1 + 2 cos 3x

9. y = 3 − 2 sin
(

x + π

4

)

10. y = 2 ln x

19.3 Periodic functions

A function f (x) is said to be periodic if f (x + T ) =
f (x) for all values of x, where T is some positive
number. T is the interval between two successive rep-
etitions and is called the period of the function f (x).
For example, y = sin x is periodic in x with period
2π since sin x = sin (x + 2π) = sin (x + 4π), and so
on. Similarly, y = cos x is a periodic function with
period 2π since cos x = cos (x + 2π) = cos (x + 4π),
and so on. In general, if y = sin ωt or y = cos ωt then
the period of the waveform is 2π/ω. The function
shown in Fig. 19.24 is also periodic of period 2π
and is defined by:

f (x) =
{−1, when −π ≤ x ≤ 0

1, when 0 ≤ x ≤ π

f (x)

0

1

−1

−π−2π π 2π x

Figure 19.24

19.4 Continuous and discontinuous
functions

If a graph of a function has no sudden jumps or
breaks it is called a continuous function, examples
being the graphs of sine and cosine functions. How-
ever, other graphs make finite jumps at a point or
points in the interval. The square wave shown in
Fig. 19.24 has finite discontinuities as x = π, 2π,
3π, and so on, and is therefore a discontinuous func-
tion. y = tan x is another example of a discontinuous
function.

19.5 Even and odd functions

Even functions

A function y = f (x) is said to be even if f (−x) = f (x)
for all values of x. Graphs of even functions are
always symmetrical about the y-axis (i.e. is a mirror
image). Two examples of even functions are y = x2

and y = cos x as shown in Fig. 19.25.

−3 −2 −1 0 1 2 3 x

2

4

6

8

y

y = x2

(a)

0−π π/2 π x

y

y = cos x

(b)

−π/2

Figure 19.25

Odd functions

A function y = f (x) is said to be odd if f (−x) = −f (x)
for all values of x. Graphs of odd functions are
always symmetrical about the origin. Two examples
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−3 0 3 x

27

−27

y y = x 3

(a)

−3π/2 −π −π/2 3π/20 π/2 π 2π x

y = sin x
y

1

−1

(b)

Figure 19.26

(a)

0−1 1 2 3 x

y

20

10

y = ex

(b)

0 x

y

Figure 19.27

of odd functions are y = x3 and y = sin x as shown
in Fig. 19.26.

Many functions are neither even nor odd, two such
examples being shown in Fig. 19.27.

Problem 3. Sketch the following functions and
state whether they are even or odd functions:

(a) y = tan x

(b) f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2, when 0 ≤ x ≤ π

2

−2, when
π

2
≤ x ≤ 3π

2
,

2, when
3π

2
≤ x ≤ 2π

and is periodic of period 2π

(a) A graph of y = tan x is shown in Fig. 19.28(a) and
is symmetrical about the origin and is thus an odd
function (i.e. tan (−x) = −tan x).

(b) A graph of f (x) is shown in Fig. 19.28(b) and
is symmetrical about the f (x) axis hence the
function is an even one, ( f (−x) = f (x)).

−π 0 x

y y = tan x

−2π −π 0 π 2π x

f (x)

2

−2

π 2π

(a)

(b)

Figure 19.28

Problem 4. Sketch the following graphs and
state whether the functions are even, odd or
neither even nor odd:
(a) y = ln x
(b) f (x) = x in the range −π to π and is

periodic of period 2π.
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(a) A graph of y = ln x is shown in Fig. 19.29(a)
and the curve is neither symmetrical about the
y-axis nor symmetrical about the origin and is
thus neither even nor odd.

(b) A graph of y = x in the range −π to π is shown
in Fig. 19.29(b) and is symmetrical about the
origin and is thus an odd function.

1 2 3 4 x

y = ln x

y

1.0

0.5

−0.5

−2π −π 0 π 2π x

−π

π
y y = x

(a)

(b)

0

Figure 19.29

Now try the following exercise.

Exercise 86 Further problems on even and
odd functions

In Problems 1 and 2 determine whether the given
functions are even, odd or neither even nor odd.

1. (a) x4 (b) tan 3x (c) 2e3t (d) sin2 x
[

(a) even (b) odd
(c) neither (d) even

]

2. (a) 5t3 (b) ex + e−x (c)
cos θ

θ
(d) ex

[
(a) odd (b) even
(c) odd (d) neither

]

3. State whether the following functions, which
are periodic of period 2π, are even or odd:

(a) f (θ) =
{

θ, when −π ≤ θ ≤ 0
−θ, when 0 ≤ θ ≤ π

(b) f (x) =
⎧
⎨

⎩

x, when −π

2
≤ x ≤ π

2
0, when

π

2
≤ x ≤ 3π

2
[(a) even (b) odd]

19.6 Inverse functions

If y is a function of x, the graph of y against x can be
used to find x when any value of y is given. Thus the
graph also expresses that x is a function of y. Two
such functions are called inverse functions.

In general, given a function y = f (x), its inverse
may be obtained by interchanging the roles of x and
y and then transposing for y. The inverse function is
denoted by y = f −1(x).

For example, if y = 2x + 1, the inverse is obtained
by

(i) transposing for x, i.e. x = y − 1

2
= y

2
− 1

2
and

(ii) interchanging x and y, giving the inverse as

y = x

2
− 1

2

Thus if f (x) = 2x + 1, then f −1(x) = x

2
− 1

2

A graph of f (x) = 2x + 1 and its inverse f −1(x) =
x

2
− 1

2
is shown in Fig. 19.30 and f −1(x) is seen to

be a reflection of f (x) in the line y = x.
Similarly, if y = x2, the inverse is obtained by

(i) transposing for x, i.e. x = ±√
y and

(ii) interchanging x and y, giving the inverse
y = ±√

x.

Hence the inverse has two values for every value
of x. Thus f (x) = x2 does not have a single inverse. In
such a case the domain of the original function may
be restricted to y = x2 for x > 0. Thus the inverse is
then y = +√

x. A graph of f (x) = x2 and its inverse
f −1(x) = √

x for x > 0 is shown in Fig. 19.31 and,
again, f −1(x) is seen to be a reflection of f (x) in
the line y = x.
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Figure 19.30

Figure 19.31

It is noted from the latter example, that not all func-
tions have an inverse. An inverse, however, can be
determined if the range is restricted.

Problem 5. Determine the inverse for each of
the following functions:

(a) f (x) = x − 1 (b) f (x) = x2 − 4 (x > 0)

(c) f (x) = x2 + 1

(a) If y = f (x), then y = x − 1
Transposing for x gives x = y + 1
Interchanging x and y gives y = x + 1
Hence if f (x) = x − 1, then f −1(x) = x + 1

(b) If y = f (x), then y = x2 − 4 (x > 0)
Transposing for x gives x = √

y + 4
Interchanging x and y gives y = √

x + 4
Hence if f (x) = x2 − 4 (x > 0) then
f −1(x) = √

x + 4 if x > −4

(c) If y = f (x), then y = x2 + 1
Transposing for x gives x = √

y − 1
Interchanging x and y gives y = √

x − 1, which
has two values.
Hence there is no inverse of f (x) = x2 + 1,
since the domain of f (x) is not restricted.

Inverse trigonometric functions

If y = sin x, then x is the angle whose sine is y.
Inverse trigonometrical functions are denoted by
prefixing the function with ‘arc’ or, more com-
monly,−1. Hence transposing y = sin x for x gives
x = sin−1 y. Interchanging x and y gives the inverse
y = sin−1 x.

Similarly, y = cos−1 x, y = tan−1 x, y = sec−1 x,
y =cosec−1x and y = cot−1 x are all inverse trigono-
metric functions. The angle is always expressed in
radians.

Inverse trigonometric functions are periodic so
it is necessary to specify the smallest or principal
value of the angle. For sin−1 x, tan−1 x, cosec−1 x
and cot−1 x, the principal value is in the range

−π

2
< y <

π

2
. For cos−1 x and sec−1 x the principal

value is in the range 0 < y < π.
Graphs of the six inverse trigonometric functions

are shown in Fig. 33.1, page 333.

Problem 6. Determine the principal values of

(a) arcsin 0.5 (b) arctan(−1)

(c) arccos

(

−
√

3

2

)

(d) arccosec(
√

2)

Using a calculator,

(a) arcsin 0.5 ≡ sin−1 0.5 = 30◦

= π

6
rad or 0.5236 rad

(b) arctan(−1) ≡ tan−1 (−1) = −45◦

= −π

4
rad or −0.7854 rad
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(c) arccos

(

−
√

3

2

)

≡ cos−1

(

−
√

3

2

)

= 150◦

= 5π

6
rad or 2.6180 rad

(d) arccosec(
√

2) = arcsin

(
1√
2

)

≡ sin−1
(

1√
2

)

= 45◦

= π

4
rad or 0.7854 rad

Problem 7. Evaluate (in radians), correct to
3 decimal places: sin−1 0.30 + cos−1 0.65

sin−1 0.30 = 17.4576◦ = 0.3047 rad

cos−1 0.65 = 49.4584◦ = 0.8632 rad

Hence sin−1 0.30 + cos−1 0.65
= 0.3047 + 0.8632 = 1.168, correct to 3 decimal
places.

Now try the following exercise.

Exercise 87 Further problems on inverse
functions

Determine the inverse of the functions given in
Problems 1 to 4.

1. f (x) = x + 1 [ f −1(x) = x − 1]

2. f (x) = 5x − 1
[
f −1(x) = 1

5 (x + 1)
]

3. f (x) = x3 + 1 [ f −1(x) = 3
√

x − 1]

4. f (x) = 1

x
+ 2

[

f −1(x) = 1

x − 2

]

Determine the principal value of the inverse
functions in Problems 5 to 11.

5. sin−1(−1)
[
−π

2
or −1.5708 rad

]

6. cos−1 0.5
[π

3
or 1.0472 rad

]

7. tan−1 1
[π

4
or 0.7854 rad

]

8. cot−1 2 [0.4636 rad]
9. cosec−1 2.5 [0.4115 rad]

10. sec−1 1.5 [0.8411 rad]

11. sin−1
(

1√
2

) [π

4
or 0.7854 rad

]

12. Evaluate x, correct to 3 decimal places:

x = sin−1 1

3
+ cos−1 4

5
− tan−1 8

9
[0.257]

13. Evaluate y, correct to 4 significant figures:

y = 3 sec−1
√

2 − 4 cosec−1
√

2

+ 5 cot−1 2 [1.533]

19.7 Asymptotes

If a table of values for the function y = x + 2

x + 1
is

drawn up for various values of x and then y plotted
against x, the graph would be as shown in Fig. 19.32.
The straight lines AB, i.e. x = −1, and CD, i.e. y = 1,
are known as asymptotes.

An asymptote to a curve is defined as a straight
line to which the curve approaches as the distance
from the origin increases. Alternatively, an asymp-
tote can be considered as a tangent to the curve at
infinity.

Asymptotes parallel to the x- and y-axes

There is a simple rule which enables asymptotes par-
allel to the x- and y-axis to be determined. For a curve
y = f (x):

(i) the asymptotes parallel to the x-axis are found
by equating the coefficient of the highest power
of x to zero

(ii) the asymptotes parallel to the y-axis are found
by equating the coefficient of the highest power
of y to zero

With the above example y = x + 2

x + 1
, rearranging

gives:

y(x + 1) = x + 2

i.e. yx + y − x − 2 = 0 (1)

and x(y − 1) + y − 2 = 0
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5

4

3

2

1

0 1 2 3 4 x

D

x + 2
x + 1y  =

x + 2
x + 1y  =

−1−2−3−4

C

−2

−3

−4

−5

B

−1

Figure 19.32

The coefficient of the highest power of x (in this
case x1) is (y − 1). Equating to zero gives: y − 1 = 0
From which, y = 1, which is an asymptote of

y = x + 2

x + 1
as shown in Fig. 19.32.

Returning to equation (1) : yx + y − x − 2 = 0

from which, y(x + 1) − x − 2 = 0.

The coefficient of the highest power of y (in this
case y1) is (x + 1). Equating to zero gives: x + 1 = 0
from which, x = −1, which is another asymptote

of y = x + 2

x + 1
as shown in Fig. 19.32.

Problem 8. Determine the asymptotes for the

function y = x − 3

2x + 1
and hence sketch the curve.

Rearranging y = x − 3

2x + 1
gives: y(2x + 1) = x − 3

i.e. 2xy + y = x − 3

or 2xy + y − x + 3 = 0

and x(2y − 1) + y + 3 = 0

Equating the coefficient of the highest power of x to
zero gives: 2y − 1 = 0 from which, y = 1

2 which is
an asymptote.

Since y(2x + 1) = x − 3 then equating the coefficient
of the highest power of y to zero gives: 2x + 1 = 0
from which, x = − 1

2 which is also an asymptote.

When x = 0, y = x − 3

2x + 1
= −3

1
= −3 and when

y = 0, 0 = x − 3

2x + 1
from which, x − 3 = 0 and x = 3.

A sketch of y = x − 3

2x + 1
is shown in Fig. 19.33.
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Problem 9. Determine the asymptotes par-
allel to the x- and y-axes for the function
x2y2 = 9(x2 + y2).

Asymptotes parallel to the x-axis:

Rearranging x2y2 = 9(x2 + y2) gives

x2y2 − 9x2 − 9y2 = 0

hence x2(y2 − 9) − 9y2 = 0

Equating the coefficient of the highest power of
x to zero gives y2 − 9 = 0 from which, y2 = 9 and
y = ±3.

Asymptotes parallel to the y-axis:

Since x2y2 − 9x2 − 9y2 = 0

then y2(x2 − 9) − 9x2 = 0

Equating the coefficient of the highest power of y
to zero gives x2 − 9 = 0 from which, x2 = 9 and
x = ±3.
Hence asymptotes occur at y = ±3 and x = ±3.

Other asymptotes

To determine asymptotes other than those parallel to
x- and y-axes a simple procedure is:

(i) substitute y = mx + c in the given equation

(ii) simplify the expression

(iii) equate the coefficients of the two highest pow-
ers of x to zero and determine the values of m
and c. y = mx + c gives the asymptote.

Problem 10. Determine the asymptotes for the
function: y(x + 1) = (x − 3)(x + 2) and sketch
the curve.

Following the above procedure:

(i) Substituting y = mx + c into
y(x + 1) = (x − 3) (x + 2) gives:

(mx + c)(x + 1) = (x − 3)(x + 2)

(ii) Simplifying gives

mx2 + mx + cx + c = x2 − x − 6

and (m − 1)x2 + (m + c + 1)x + c + 6 = 0

(iii) Equating the coefficient of the highest power
of x to zero gives m − 1 = 0 from which,
m = 1.
Equating the coefficient of the next highest
power of x to zero gives m + c + 1 = 0.
and since m = 1, 1 + c + 1 = 0 from which,
c = −2.
Hence y = mx + c = 1x − 2.

i.e. y = x − 2 is an asymptote.

To determine any asymptotes parallel to the x-axis:

Rearranging y(x + 1) = (x − 3)(x + 2)

gives yx + y = x2 − x − 6

The coefficient of the highest power of x (i.e. x2)
is 1. Equating this to zero gives 1 = 0 which is not
an equation of a line. Hence there is no asymptote
parallel to the x-axis.
To determine any asymptotes parallel to the y-axis:
Since y(x + 1) = (x − 3)(x + 2) the coefficient of
the highest power of y is x + 1. Equating this to
zero gives x + 1 = 0, from which, x = −1. Hence
x = −1 is an asymptote.
When x = 0, y(1) = (−3)(2), i.e. y = −6.
When y = 0, 0 = (x − 3)(x + 2), i.e. x = 3 and x = −2.

A sketch of the function y(x + 1) = (x − 3)(x + 2)
is shown in Fig. 19.34.

Problem 11. Determine the asymptotes for the
function x3 − xy2 + 2x − 9 = 0.

Following the procedure:

(i) Substituting y = mx + c gives
x3 − x(mx + c)2 + 2x − 9 = 0.

(ii) Simplifying gives

x3 − x[m2x2 + 2mcx + c2] + 2x − 9 = 0

i.e. x3 − m2x3 − 2mcx2 − c2x + 2x − 9 = 0

and x3(1 − m2) − 2mcx2 − c2x + 2x − 9 = 0

(iii) Equating the coefficient of the highest power
of x (i.e. x3 in this case) to zero gives
1 − m2 = 0, from which, m = ±1.

Equating the coefficient of the next highest
power of x (i.e. x2 in this case) to zero gives
−2mc = 0, from which, c = 0.
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Hence y = mx + c = ±1x + 0, i.e. y = x and
y = −x are asymptotes.

To determine any asymptotes parallel to the x-
and y-axes for the function x3 − xy2 + 2x − 9 = 0:

Equating the coefficient of the highest power of x
term to zero gives 1 = 0 which is not an equation of
a line. Hence there is no asymptote parallel with the
x-axis.

Equating the coefficient of the highest power of y
term to zero gives −x = 0 from which, x = 0.

Hence x = 0, y = x and y = − x are asymptotes for
the function x3 − xy2 + 2x − 9 = 0.

Problem 12. Find the asymptotes for the func-

tion y = x2 + 1

x
and sketch a graph of the

function.

Rearranging y = x2 + 1

x
gives yx = x2 + 1.

Equating the coefficient of the highest power x term
to zero gives 1 = 0, hence there is no asymptote
parallel to the x-axis.

Equating the coefficient of the highest power y term
to zero gives x = 0.

Hence there is an asymptote at x = 0 (i.e. the
y-axis)
To determine any other asymptotes we substitute
y = mx + c into yx = x2 + 1 which gives

(mx + c)x = x2 + 1

i.e. mx2 + cx = x2 + 1

and (m − 1)x2 + cx − 1 = 0

Equating the coefficient of the highest power x term
to zero gives m − 1 = 0, from which m = 1.
Equating the coefficient of the next highest power x
term to zero gives c = 0. Hence y = mx + c = 1x + 0,
i.e. y = x is an asymptote.

A sketch of y = x2 + 1

x
is shown in Fig. 19.35.

It is possible to determine maximum/minimum
points on the graph (see Chapter 28).

Since y = x2 + 1

x
= x2

x
+ 1

x
= x + x−1

then
dy

dx
= 1 − x−2 = 1 − 1

x2 = 0

for a turning point.

Hence 1 = 1

x2 and x2 = 1, from which, x = ±1.

When x = 1,

y = x2 + 1

x
= 1 + 1

1
= 2

and when x = −1,

y = (−1)2 + 1

−1
= −2

i.e. (1, 2) and (−1, −2) are the co-ordinates of the

turning points.
d2y

dx2 = 2x−3 = 2

x3 ; when x = 1,
d2y

dx2
is positive, which indicates a minimum point and

when x = −1,
d2y

dx2 is negative, which indicates a

maximum point, as shown in Fig. 19.35.

Now try the following exercise.

Exercise 88 Further problems on
asymptotes

In Problems 1 to 3, determine the asymptotes
parallel to the x- and y-axes

1. y = x − 2

x + 1
[y = 1, x = −1]

2. y2 = x

x − 3
[x = 3, y = 1 and y = −1]

3. y = x(x + 3)

(x + 2)(x + 1)
[x = −1, x = −2 and y = 1]

In Problems 4 and 5, determine all the asymp-
totes

4. 8x − 10 + x3 − xy2 = 0
[x = 0, y = x and y = −x]

5. x2(y2 − 16) = y
[y = 4, y = −4 and x = 0]

In Problems 6 and 7, determine the asymptotes
and sketch the curves

6. y = x2 − x − 4

x + 1 [
x = −1, y = x − 2,
see Fig. 19.40, page 215

]

7. xy2 − x2y + 2x − y = 5
[

x = 0, y = 0, y = x,
see Fig. 19.41, page 215

]
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4

6

y

2

−2−4 2 4 x

y =
x

x 2+1
x

y  =

x 2+1
x

y  = −4

−6

−2

0

Figure 19.35

19.8 Brief guide to curve sketching

The following steps will give information from
which the graphs of many types of functions y = f (x)
can be sketched.

(i) Use calculus to determine the location and
nature of maximum and minimum points (see
Chapter 28)

(ii) Determine where the curve cuts the x- and y-
axes

(iii) Inspect the equation for symmetry.

(a) If the equation is unchanged when −x is
substituted for x, the graph will be sym-
metrical about the y-axis (i.e. it is an even
function).

(b) If the equation is unchanged when −y is
substituted for y, the graph will be symmet-
rical about the x-axis.

(c) If f (−x) = −f (x), the graph is symmet-
rical about the origin (i.e. it is an odd
function).

(iv) Check for any asymptotes.
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19.9 Worked problems on curve
sketching

Problem 13. Sketch the graphs of

(a) y = 2x2 + 12x + 20

(b) y = −3x2 + 12x − 15

(a) y = 2x2 + 12x + 20 is a parabola since the equa-
tion is a quadratic. To determine the turning
point:

Gradient = dy

dx
= 4x + 12 = 0 for a turning

point.

Hence 4x = −12 and x = −3.

When x = −3, y = 2(−3)2 + 12(−3) + 20 = 2.

Hence (−3, 2) are the co-ordinates of the turning
point

d2y

dx2 = 4, which is positive, hence (−3, 2) is a

minimum point.

When x = 0, y = 20, hence the curve cuts the
y-axis at y = 20.

Thus knowing the curve passes through (−3, 2)
and (0, 20) and appreciating the general shape
of a parabola results in the sketch given in
Fig. 19.36.

(b) y = −3x2 + 12x − 15 is also a parabola (but
‘upside down’ due to the minus sign in front of
the x2 term).

Gradient = dy

dx
= −6x + 12 = 0 for a turning

point.

Hence 6x = 12 and x = 2.

When x = 2, y = −3(2)2 + 12(2) − 15 = −3.

Hence (2, −3) are the co-ordinates of the turning
point

d2y

dx2 = −6, which is negative, hence (2, −3) is a

maximum point.

When x = 0, y = −15, hence the curve cuts the
axis at y = −15.

The curve is shown sketched in Fig. 19.36.

0 1 2 3 x−1−2−3−4

5

2

10

20

y

15

−5

−10

−15

−20

−25

y = −3x 2 +12x −15

y = 2x 2 +12x+20

−3

Figure 19.36

Problem 14. Sketch the curves depicting the
following equations:

(a) x =√9 − y2 (b) y2 = 16x

(c) xy = 5

(a) Squaring both sides of the equation and trans-
posing gives x2 + y2 = 9. Comparing this with
the standard equation of a circle, centre ori-
gin and radius a, i.e. x2 + y2 = a2, shows that
x2 + y2 = 9 represents a circle, centre origin and
radius 3. A sketch of this circle is shown in
Fig. 19.37(a).

(b) The equation y2 = 16x is symmetrical about
the x-axis and having its vertex at the origin
(0, 0). Also, when x = 1, y = ±4. A sketch of
this parabola is shown in Fig. 19.37(b).

(c) The equation y = a

x
represents a rectangular

hyperbola lying entirely within the first and third

quadrants. Transposing xy = 5 gives y = 5

x
, and

therefore represents the rectangular hyperbola
shown in Fig. 19.37(c).
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Figure 19.37

Problem 15. Sketch the curves depicting the
following equations:

(a) 4x2 = 36 − 9y2 (b) 3y2 + 15 = 5x2

(a) By dividing throughout by 36 and transposing,
the equation 4x2 = 36 − 9y2 can be written as
x2

9
+ y2

4
= 1. The equation of an ellipse is of

the form
x2

a2 + y2

b2 = 1, where 2a and 2b repre-

sent the length of the axes of the ellipse. Thus

x2

32 + y2

22 = 1 represents an ellipse, having its

axes coinciding with the x- and y-axes of a rect-
angular co-ordinate system, the major axis being
2(3), i.e. 6 units long and the minor axis 2(2), i.e.
4 units long, as shown in Fig. 19.38(a).

4

6

x

y

(a) 4x2 = 36−9y2

x

y

(b) 3y2+15 = 5x2

2√ 3

Figure 19.38

(b) Dividing 3y2 + 15 = 5x2 throughout by 15 and

transposing gives
x2

3
− y2

5
= 1. The equation

x2

a2 − y2

b2 = 1 represents a hyperbola which is

symmetrical about both the x- and y-axes, the
distance between the vertices being given by 2a.

Thus a sketch of
x2

3
− y2

5
= 1 is as shown

in Fig. 19.38(b), having a distance of 2
√

3
between its vertices.

Problem 16. Describe the shape of the curves
represented by the following equations:

(a) x = 2

√[

1 −
( y

2

)2
]

(b)
y2

8
= 2x

(c) y = 6

(

1 − x2

16

)1/2
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(a) Squaring the equation gives x2 = 4

[

1 −
( y

2

)2
]

and transposing gives x2 = 4 − y2, i.e.
x2 + y2 = 4. Comparing this equation with
x2 + y2 = a2 shows that x2 + y2 = 4 is the equa-
tion of a circle having centre at the origin (0, 0)
and of radius 2 units.

(b) Transposing
y2

8
= 2x gives y = 4

√
x. Thus

y2

8
= 2x is the equation of a parabola having

its axis of symmetry coinciding with the x-axis
and its vertex at the origin of a rectangular
co-ordinate system.

(c) y = 6

(

1 − x2

16

)1/2

can be transposed to

y

6
=
(

1 − x2

16

)1/2

and squaring both sides gives

y2

36
= 1 − x2

16
, i.e.

x2

16
+ y2

36
= 1.

This is the equation of an ellipse, centre at the
origin of a rectangular co-ordinate system, the
major axis coinciding with the y-axis and being
2
√

36, i.e. 12 units long. The minor axis coin-
cides with the x-axis and is 2

√
16, i.e. 8

units long.

Problem 17. Describe the shape of the curves
represented by the following equations:

(a)
x

5
=
√[

1 +
( y

2

)2
]

(b)
y

4
= 15

2x

(a) Since
x

5
=
√[

1 +
( y

2

)2
]

x2

25
= 1 +

( y

2

)2

i.e.
x2

25
− y2

4
= 1

This is a hyperbola which is symmetrical about
both the x- and y-axes, the vertices being 2

√
25,

i.e. 10 units apart.
(With reference to Section 19.1 (vii), a is equal
to ±5)

(b) The equation
y

4
= 15

2x
is of the form y = a

x
,

a = 60

2
= 30.

This represents a rectangular hyperbola, sym-
metrical about both the x- and y-axis, and lying
entirely in the first and third quadrants, similar
in shape to the curves shown in Fig. 19.9.

Now try the following exercise.

Exercise 89 Further problems on curve
sketching

1. Sketch the graphs of (a) y = 3x2 + 9x + 7

4
(b) y = −5x2 + 20x + 50.

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(a) Parabola with minimum
value at

(− 3
2 , −5

)
and

passing through
(
0, 1 3

4

)
.

(b) Parabola with maximum
value at (2, 70) and passing
through (0, 50).

⎤

⎥
⎥
⎥
⎥
⎥
⎦

In Problems 2 to 8, sketch the curves depicting
the equations given.

2. x = 4

√[

1 −
( y

4

)2
]

[circle, centre (0, 0), radius 4 units]

3.
√

x = y

9 [
parabola, symmetrical about
x-axis, vertex at (0, 0)

]

4. y2 = x2 − 16

4⎡

⎢
⎣

hyperbola, symmetrical about
x- and y-axes, distance
between vertices 8 units along
x-axis

⎤

⎥
⎦

5.
y2

5
= 5 − x2

2
⎡

⎣
ellipse, centre (0, 0), major axis
10 units along y-axis, minor axis
2
√

10 units along x-axis

⎤

⎦

6. x = 3
√

1 + y2

⎡

⎢
⎣

hyperbola, symmetrical about
x- and y-axes, distance
between vertices 6 units along
x-axis

⎤

⎥
⎦
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7. x2y2 = 9 [
rectangular hyperbola, lying in
first and third quadrants only

]

8. x = 1
3

√
(36 − 18y2)
⎡

⎢
⎣

ellipse, centre (0, 0),
major axis 4 units along x-axis,
minor axis 2

√
2 units

along y-axis

⎤

⎥
⎦

9. Sketch the circle given by the equation
x2 + y2 − 4x + 10y + 25 = 0.

[Centre at (2, −5), radius 2]

In Problems 10 to 15 describe the shape of the
curves represented by the equations given.

10. y =√[3(1 − x2)]
⎡

⎣
ellipse, centre (0, 0), major axis
2
√

3 units along y-axis, minor
axis 2 units along x-axis

⎤

⎦

Graphical solutions to Exercise 85, page 199

Figure 19.39

11. y =√[3(x2 − 1)]
[

hyperbola, symmetrical about x-
and y-axes, vertices 2 units
apart along x-axis

]

12. y = √
9 − x2

[circle, centre (0, 0), radius 3 units]
13. y = 7x−1

⎡

⎢
⎣

rectangular hyperbola, lying
in first and third quadrants,
symmetrical about x- and
y-axes

⎤

⎥
⎦

14. y = (3x)1/2
[

parabola, vertex at (0, 0), sym-
metrical about the x-axis

]

15. y2 − 8 = −2x2
⎡

⎢
⎣

ellipse, centre (0, 0), major
axis 2

√
8 units along the

y-axis, minor axis 4 units
along the x-axis

⎤

⎥
⎦
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Figure 19.39 (Continued)
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Graphical solutions to Problems 6 and 7, Exercise 88, page 208

x = −1

y =
 x 

−2

6

6 x

y

4

2

−2−4−6

y = x2 − x − 4
x + 1

y = x2 − x − 4
x + 1

0 2 4

−2

−4

−6

Figure 19.40

xy2 − x2y + 2x − y = 5

xy2 − x2y + 2x − y = 5

y =
 x

xy2 − x2y + 2x − y = 5

y

6

4

0

−2

−4

−6

−2−4−6 2 4 6 x

2

Figure 19.41
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20

Irregular areas, volumes and mean
values of waveforms

20.1 Areas of irregular figures

Areas of irregular plane surfaces may be approxi-
mately determined by using (a) a planimeter, (b) the
trapezoidal rule, (c) the mid-ordinate rule, and (d)
Simpson’s rule. Such methods may be used, for
example, by engineers estimating areas of indicator
diagrams of steam engines, surveyors estimating
areas of plots of land or naval architects estimating
areas of water planes or transverse sections of ships.

(a) A planimeter is an instrument for directly mea-
suring small areas bounded by an irregular
curve.

(b) Trapezoidal rule

To determine the areas PQRS in Fig. 20.1:

Figure 20.1

(i) Divide base PS into any number of equal
intervals, each of width d (the greater
the number of intervals, the greater the
accuracy).

(ii) Accurately measure ordinates y1, y2, y3, etc.

(iii) Areas PQRS

= d

[
y1 + y7

2
+ y2 + y3 + y4 + y5 + y6

]

In general, the trapezoidal rule states:

Area =
(

width of
interval

)[
1
2

(
first +
last
ordinate

)

+
sum of
remaining
ordinates

]

(c) Mid-ordinate rule
To determine the area ABCD of Fig. 20.2:

Figure 20.2

(i) Divide base AD into any number of equal
intervals, each of width d (the greater
the number of intervals, the greater the
accuracy).

(ii) Erect ordinates in the middle of each interval
(shown by broken lines in Fig. 20.2).

(iii) Accurately measure ordinates y1, y2, y3, etc.

(iv) Area ABCD = d(y1+y2 +y3+y4 +y5+y6).

In general, the mid-ordinate rule states:

Area =
(

width of
interval

)(
sum of
mid-ordinates

)
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(d) Simpson’s rule
To determine the area PQRS of Fig. 20.1:

(i) Divide base PS into an even number of
intervals, each of width d (the greater
the number of intervals, the greater the
accuracy).

(ii) Accurately measure ordinates y1, y2, y3,
etc.

(iii) Area PQRS = d

3
[(y1 + y7) + 4(y2 + y4 +

y6) + 2(y3 + y5)]

In general, Simpson’s rule states:

Area = 1
3

(
width of
interval

)[(
first + last
ordinate

)

+ 4
(

sum of even
ordinates

)

+ 2
(

sum of remaining
odd ordinates

)]

Problem 1. A car starts from rest and its speed
is measured every second for 6 s:

Time
t(s) 0 1 2 3 4 5 6

Speed v
(m/s) 0 2.5 5.5 8.75 12.5 17.5 24.0

Determine the distance travelled in 6 seconds
(i.e. the area under the v/t graph), by (a) the
trapezoidal rule, (b) the mid-ordinate rule, and
(c) Simpson’s rule.

A graph of speed/time is shown in Fig. 20.3.

(a) Trapezoidal rule (see para. (b) above)

The time base is divided into 6 strips each of
width 1 s, and the length of the ordinates mea-
sured. Thus

area = (1)

[(
0 + 24.0

2

)

+ 2.5 + 5.5

+ 8.75 + 12.5 + 17.5

]

= 58.75 m

Figure 20.3

(b) Mid-ordinate rule (see para. (c) above)

The time base is divided into 6 strips each of
width 1 second.

Mid-ordinates are erected as shown in Fig. 20.3
by the broken lines. The length of each mid-
ordinate is measured. Thus

area = (1)[1.25 + 4.0 + 7.0 + 10.75

+ 15.0 + 20.25]

= 58.25 m

(c) Simpson’s rule (see para. (d) above)

The time base is divided into 6 strips each of
width 1 s, and the length of the ordinates mea-
sured. Thus

area = 1
3 (1)[(0 + 24.0) + 4(2.5 + 8.75

+ 17.5) + 2(5.5 + 12.5)]

= 58.33 m

Problem 2. A river is 15 m wide. Soundings
of the depth are made at equal intervals of 3 m
across the river and are as shown below.

Depth (m) 0 2.2 3.3 4.5 4.2 2.4 0

Calculate the cross-sectional area of the flow of
water at this point using Simpson’s rule.
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From para. (d) above,

Area = 1
3 (3)[(0 + 0) + 4(2.2 + 4.5 + 2.4)

+ 2(3.3 + 4.2)]

= (1)[0 + 36.4 + 15] = 51.4 m2

Now try the following exercise.

Exercise 90 Further problems on areas of
irregular figures

1. Plot a graph of y = 3x − x2 by completing
a table of values of y from x = 0 to x = 3.
Determine the area enclosed by the curve, the
x-axis and ordinate x = 0 and x = 3 by (a) the
trapezoidal rule, (b) the mid-ordinate rule and
(c) by Simpson’s rule. [4.5 square units]

2. Plot the graph of y = 2x2 + 3 between x = 0
and x = 4. Estimate the area enclosed by the
curve, the ordinates x = 0 and x = 4, and the
x-axis by an approximate method.

[54.7 square units]

3. The velocity of a car at one second intervals
is given in the following table:

time
t (s) 0 1 2 3 4 5 6

velocity
v (m/s) 0 2.0 4.5 8.0 14.0 21.0 29.0

Determine the distance travelled in 6 seconds
(i.e. the area under the v/t graph) using
Simpson’s rule. [63.33 m]

4. The shape of a piece of land is shown in
Fig. 20.4. To estimate the area of the land,
a surveyor takes measurements at intervals
of 50 m, perpendicular to the straight portion
with the results shown (the dimensions being
in metres). Estimate the area of the land in
hectares (1 ha = 104 m2). [4.70 ha]

Figure 20.4

5. The deck of a ship is 35 m long. At equal
intervals of 5 m the width is given by the
following table:

Width (m) 0 2.8 5.2 6.5 5.8 4.1 3.0 2.3

Estimate the area of the deck. [143 m2]

20.2 Volumes of irregular solids

If the cross-sectional areas A1, A2, A3, . . . of an
irregular solid bounded by two parallel planes are
known at equal intervals of width d (as shown in
Fig. 20.5), then by Simpson’s rule:

volume, V = d
3

[(A1 + A7) + 4(A2 + A4

+ A6) + 2 (A3 + A5)]

Figure 20.5

Problem 3. A tree trunk is 12 m in length and
has a varying cross-section. The cross-sectional
areas at intervals of 2 m measured from one end
are:

0.52, 0.55, 0.59, 0.63, 0.72, 0.84, 0.97 m2

Estimate the volume of the tree trunk.

A sketch of the tree trunk is similar to that shown
in Fig. 20.5 above, where d = 2 m, A1 = 0.52 m2,
A2 = 0.55 m2, and so on.

Using Simpson’s rule for volumes gives:

Volume = 2
3 [(0.52 + 0.97) + 4(0.55 + 0.63

+ 0.84) + 2(0.59 + 0.72)]

= 2
3 [1.49 + 8.08 + 2.62] = 8.13 m3
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Problem 4. The areas of seven horizontal
cross-sections of a water reservoir at intervals of
10 m are:

210, 250, 320, 350, 290, 230, 170 m2

Calculate the capacity of the reservoir in litres.

Using Simpson’s rule for volumes gives:

Volume = 10

3
[(210 + 170) + 4(250 + 350

+ 230) + 2(320 + 290)]

= 10

3
[380 + 3320 + 1220]

= 16400 m3

16400 m3 = 16400 × 106 cm3 and since
1 litre = 1000 cm3,

capacity of reservoir = 16400 × 106

1000
litres

= 1 6400000

= 1.64 × 107 litres

Now try the following exercise.

Exercise 91 Further problems on volumes
of irregular solids

1. The areas of equidistantly spaced sections of
the underwater form of a small boat are as
follows:

1.76, 2.78, 3.10, 3.12, 2.61, 1.24, 0.85 m2

Determine the underwater volume if the sec-
tions are 3 m apart. [42.59 m3]

2. To estimate the amount of earth to be removed
when constructing a cutting the cross-
sectional area at intervals of 8 m were esti-
mated as follows:

0, 2.8, 3.7, 4.5, 4.1, 2.6, 0 m3

Estimate the volume of earth to be excavated.
[147 m3]

3. The circumference of a 12 m long log of
timber of varying circular cross-section is

measured at intervals of 2 m along its length
and the results are:

Distance from Circumference
one end (m) (m)

0 2.80
2 3.25
4 3.94
6 4.32
8 5.16

10 5.82
12 6.36

Estimate the volume of the timber in cubic
metres. [20.42 m3]

20.3 The mean or average value of a
waveform

The mean or average value, y, of the waveform
shown in Fig. 20.6 is given by:

y = area under curve
length of base, b

Figure 20.6

If the mid-ordinate rule is used to find the area under
the curve, then:

y = sum of mid-ordinates

number of mid-ordinates
(

= y1 + y2 + y3 + y4 + y5 + y6 + y7

7

for Fig. 20.6

)
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For a sine wave, the mean or average value:

(i) over one complete cycle is zero (see Fig. 20.7(a)),

Figure 20.7

(ii) over half a cycle is 0.637 × maximum value, or
(2/π) × maximum value,

(iii) of a full-wave rectified waveform (see Fig.
20.7(b)) is 0.637 × maximum value,

(iv) of a half-wave rectified waveform (see Fig.
20.7(c)) is 0.318 × maximum value, or (1/π)
maximum value.

Problem 5. Determine the average values over
half a cycle of the periodic waveforms shown in
Fig. 20.8.

Figure 20.8

Figure 20.8 (Continued)

(a) Area under triangular waveform (a) for a half
cycle is given by:

Area = 1
2 (base) (perpendicular height)

= 1
2 (2 × 10−3)(20)

= 20 × 10−3 Vs

Average value of waveform

= area under curve

length of base

= 20 × 10−3 Vs

2 × 10−3 s

= 10 V

(b) Area under waveform (b) for a half
cycle = (1 × 1) + (3 × 2) = 7As.

Average value of waveform

= area under curve

length of base

= 7As

3 s
= 2.33A

(c) A half cycle of the voltage waveform (c) is
completed in 4 ms.

Area under curve = 1
2 {(3 − 1)10−3}(10)

= 10 × 10−3 Vs

Average value of waveform

= area under curve

length of base

= 10 × 10−3 Vs

4 × 10−3 s

= 2.5V
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Problem 6. Determine the mean value of cur-
rent over one complete cycle of the periodic
waveforms shown in Fig. 20.9.

Figure 20.9

(a) One cycle of the trapezoidal waveform (a) is
completed in 10 ms (i.e. the periodic time is
10 ms).

Area under curve = area of trapezium

= 1
2 (sum of parallel sides) (perpendicular

distance between parallel sides)

= 1
2 {(4 + 8) × 10−3}(5 × 10−3)

= 30 × 10−6 As

Mean value over one cycle

= area under curve

length of base
= 30 × 10−6 As

10 × 10−3 s
= 3 mA

(b) One cycle of the sawtooth waveform (b) is
completed in 5 ms.

Area under curve = 1
2 (3 × 10−3)(2)

= 3 × 10−3 As

Mean value over one cycle

= area under curve

length of base
= 3 × 10−3 As

5 × 10−3 s

= 0.6A

Problem 7. The power used in a manufactur-
ing process during a 6 hour period is recorded at
intervals of 1 hour as shown below.

Time (h) 0 1 2 3 4 5 6
Power (kW) 0 14 29 51 45 23 0

Plot a graph of power against time and, by using
the mid-ordinate rule, determine (a) the area
under the curve and (b) the average value of the
power.

The graph of power/time is shown in Fig. 20.10.

Figure 20.10

(a) The time base is divided into 6 equal intervals,
each of width 1 hour. Mid-ordinates are erected
(shown by broken lines in Fig. 20.10) and
measured. The values are shown in Fig. 20.10.

Area under curve = (width of interval)

× (sum of mid-ordinates)

= (1)[7.0 + 21.5 + 42.0

+ 49.5 + 37.0 + 10.0]

= 167 kWh (i.e. a measure

of electrical energy)

(b) Average value of waveform

= area under curve

length of base

= 167 kWh

6 h
= 27.83 kW
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Alternatively, average value

= sum of mid-ordinates

number of mid-ordinates

Problem 8. Fig. 20.11 shows a sinusoidal out-
put voltage of a full-wave rectifier. Determine,
using the mid-ordinate rule with 6 intervals, the
mean output voltage.

Figure 20.11

One cycle of the output voltage is completed in π
radians or 180◦. The base is divided into 6 intervals,
each of width 30◦. The mid-ordinate of each interval
will lie at 15◦, 45◦, 75◦, etc.

At 15◦ the height of the mid-ordinate is
10 sin 15◦ = 2.588V.

At 45◦ the height of the mid-ordinate is
10 sin 45◦ = 7.071V, and so on.

The results are tabulated below:

Mid-ordinate Height of mid-ordinate

15◦ 10 sin 15◦ = 2.588V
45◦ 10 sin 45◦ = 7.071V
75◦ 10 sin 75◦ = 9.659V

105◦ 10 sin 105◦ = 9.659V
135◦ 10 sin 135◦ = 7.071V
165◦ 10 sin 165◦ = 2.588V

sum of mid-ordinates = 38.636V

Mean or average value of output voltage

= sum of mid-ordinates

number of mid-ordinates

= 38.636

6
= 6.439V

(With a larger number of intervals a more accurate
answer may be obtained.) For a sine wave the actual

mean value is 0.637 × maximum value, which in this
problem gives 6.37V.

Problem 9. An indicator diagram for a steam
engine is shown in Fig. 20.12. The base line has
been divided into 6 equally spaced intervals and
the lengths of the 7 ordinates measured with the
results shown in centimetres. Determine (a) the
area of the indicator diagram using Simpson’s
rule, and (b) the mean pressure in the cylinder
given that 1 cm represents 100 kPa.

Figure 20.12

(a) The width of each interval is
12.0

6
cm. Using

Simpson’s rule,

area = 1
3 (2.0)[(3.6 + 1.6) + 4(4.0

+ 2.9 + 1.7) + 2(3.5 + 2.2)]

= 2
3 [5.2 + 34.4 + 11.4]

= 34 cm2

(b) Mean height of ordinates

= area of diagram

length of base
= 34

12

= 2.83 cm

Since 1 cm represents 100 kPa, the mean pressure
in the cylinder
= 2.83 cm × 100 kPa/cm = 283 kPa.

Now try the following exercise.

Exercise 92 Further problems on mean or
average values of waveforms

1. Determine the mean value of the periodic
waveforms shown in Fig. 20.13 over a half
cycle. [(a) 2A (b) 50V (c) 2.5A]
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Figure 20.13

2. Find the average value of the periodic wave-
forms shown in Fig. 20.14 over one complete
cycle. [(a) 2.5V (b) 3A]

3. An alternating current has the following val-
ues at equal intervals of 5 ms

Time (ms) 0 5 10 15 20 25 30
Current (A) 0 0.9 2.6 4.9 5.8 3.5 0

Figure 20.14

Plot a graph of current against time and esti-
mate the area under the curve over the 30 ms
period using the mid-ordinate rule and deter-
mine its mean value.

[0.093As, 3.1A]

4. Determine, using an approximate method,
the average value of a sine wave of maxi-
mum value 50V for (a) a half cycle and (b) a
complete cycle. [(a) 31.83V (b) 0]

5. An indicator diagram of a steam engine is
12 cm long. Seven evenly spaced ordinates,
including the end ordinates, are measured as
follows:

5.90, 5.52, 4.22, 3.63, 3.32, 3.24, 3.16 cm

Determine the area of the diagram and the
mean pressure in the cylinder if 1 cm repre-
sents 90 kPa. [49.13 cm2, 368.5 kPa]
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21

Vectors, phasors and the combination
of waveforms

21.1 Introduction

Some physical quantities are entirely defined by
a numerical value and are called scalar quanti-
ties or scalars. Examples of scalars include time,
mass, temperature, energy and volume. Other phys-
ical quantities are defined by both a numerical value
and a direction in space and these are called vector
quantities or vectors. Examples of vectors include
force, velocity, moment and displacement.

21.2 Vector addition

A vector may be represented by a straight line, the
length of line being directly proportional to the mag-
nitude of the quantity and the direction of the line
being in the same direction as the line of action of
the quantity. An arrow is used to denote the sense
of the vector, that is, for a horizontal vector, say,
whether it acts from left to right or vice-versa. The
arrow is positioned at the end of the vector and this
position is called the ‘nose’of the vector. Figure 21.1
shows a velocity of 20 m/s at an angle of 45◦ to the
horizontal and may be depicted by oa = 20 m/s at
45◦ to the horizontal.

Figure 21.1

To distinguish between vector and scalar quantities,
various ways are used. These include:

(i) bold print,

(ii) two capital letters with an arrow above them to
denote the sense of direction, e.g.

−→
AB, where A

is the starting point and B the end point of the
vector,

(iii) a line over the top of letters, e.g. AB or ā

(iv) letters with an arrow above, e.g. a, A
(v) underlined letters, e.g. a

(vi) xi + jy, where i and j are axes at right-angles to
each other; for example, 3i + 4j means 3 units
in the i direction and 4 units in the j direction,
as shown in Fig. 21.2.

4

j

3 i0

A(3,4)

Figure 21.2

(vii) a column matrix

(
a
b

)

; for example, the vector

OA shown in Fig. 21.2 could be represented

by

(
3
4

)

Thus, in Fig. 21.2,

OA ≡ −→
OA ≡ OA ≡ 3i + 4j ≡

(
3
4

)

The one adopted in this text is to denote vector
quantities in bold print.
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Thus, oa represents a vector quantity, but oa is
the magnitude of the vector oa. Also, positive angles
are measured in an anticlockwise direction from a
horizontal, right facing line and negative angles in a
clockwise direction from this line—as with graph-
ical work. Thus 90◦ is a line vertically upwards
and −90◦ is a line vertically downwards.

The resultant of adding two vectors together, say
V1 at an angle θ1 and V2 at angle (−θ2), as shown in
Fig. 21.3(a), can be obtained by drawing oa to rep-
resent V1 and then drawing ar to represent V2. The
resultant of V1 + V2 is given by or. This is shown in
Fig. 21.3(b), the vector equation being oa + ar = or.
This is called the ‘nose-to-tail’ method of vector
addition.

Figure 21.3

Alternatively, by drawing lines parallel to V1 and V2
from the noses of V2 and V1, respectively, and letting
the point of intersection of these parallel lines be R,
gives OR as the magnitude and direction of the resul-
tant of adding V1 and V2, as shown in Fig. 21.3(c).
This is called the ‘parallelogram’method of vector
addition.

Problem 1. A force of 4 N is inclined at an
angle of 45◦ to a second force of 7 N, both forces
acting at a point. Find the magnitude of the resul-
tant of these two forces and the direction of the
resultant with respect to the 7 N force by both
the ‘triangle’ and the ‘parallelogram’ methods.

The forces are shown in Fig. 21.4(a). Although the
7 N force is shown as a horizontal line, it could have
been drawn in any direction.

Figure 21.4

Using the ‘nose-to-tail’ method, a line 7 units
long is drawn horizontally to give vector oa in
Fig. 21.4(b). To the nose of this vector ar is drawn
4 units long at an angle of 45◦ to oa. The resul-
tant of vector addition is or and by measurement
is 10.2 units long and at an angle of 16◦ to the
7 N force.

Figure 21.4(c) uses the ‘parallelogram’ method
in which lines are drawn parallel to the 7 N and 4 N
forces from the noses of the 4 N and 7 N forces,
respectively. These intersect at R. Vector OR gives
the magnitude and direction of the resultant of vector
addition and as obtained by the ‘nose-to-tail’method
is 10.2 units long at an angle of 16◦ to the 7 N
force.

Problem 2. Use a graphical method to deter-
mine the magnitude and direction of the resultant
of the three velocities shown in Fig. 21.5.

Figure 21.5
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Often it is easier to use the ‘nose-to-tail’ method
when more than two vectors are being added. The
order in which the vectors are added is immaterial.
In this case the order taken is v1, then v2, then v3 but
just the same result would have been obtained if the
order had been, say, v1, v3 and finally v2. v1 is drawn
10 units long at an angle of 20◦ to the horizontal,
shown by oa in Fig. 21.6.v2 is added tov1 by drawing
a line 15 units long vertically upwards from a, shown
as ab. Finally, v3 is added to v1 + v2 by drawing a
line 7 units long at an angle at 190◦ from b, shown
as br. The resultant of vector addition is or and by
measurement is 17.5 units long at an angle of 82◦ to
the horizontal.

Figure 21.6

Thus

v1 + v2 + v3 = 17.5 m/s at 82◦ to the horizontal

21.3 Resolution of vectors

A vector can be resolved into two component parts
such that the vector addition of the component parts
is equal to the original vector. The two compo-
nents usually taken are a horizontal component and
a vertical component. For the vector shown as F in
Fig. 21.7, the horizontal component is F cos θ and
the vertical component is F sin θ.

Figure 21.7

For the vectors F1 and F2 shown in Fig. 21.8, the
horizontal component of vector addition is:

H = F1 cos θ1 + F2 cos θ2

and the vertical component of vector addition is:

V = F1 sin θ1 + F2 sin θ2

Figure 21.8

Having obtained H and V , the magnitude of the
resultant vector R is given by

√
(H2 + V2) and its

angle to the horizontal is given by tan−1(V/H).

Problem 3. Resolve the acceleration vector of
17 m/s2 at an angle of 120◦ to the horizontal into
a horizontal and a vertical component.

For a vector A at angle θ to the horizontal, the hori-
zontal component is given by A cos θ and the vertical
component by A sin θ. Any convention of signs may
be adopted, in this case horizontally from left to right
is taken as positive and vertically upwards is taken
as positive.

Horizontal component H = 17 cos 120◦ = −8.5
m/s2, acting from left to right Vertical compo-
nent V = 17 sin 120◦ = 14.72 m/s2, acting vertically
upwards. These component vectors are shown in
Fig. 21.9.

Problem 4. Calculate the resultant force of the
two forces given in Problem 1.

With reference to Fig. 21.4(a):
Horizontal component of force,
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Figure 21.9

H = 7 cos 0◦+4 cos 45◦ = 7+2.828 = 9.828 N

Vertical component of force,

V = 7 sin 0◦+4 sin 45◦ = 0+2.828 = 2.828 N

The magnitude of the resultant of vector addition

=
√

(H2 + V2) =
√

(9.8282 + 2.8282)

= √(104.59) = 10.23 N

The direction of the resultant of vector addition

= tan−1
(

V

H

)

= tan−1
(

2.828

9.828

)

= 16.05◦

Thus, the resultant of the two forces is a single
vector of 10.23 N at 16.05◦ to the 7 N vector.

Problem 5. Calculate the resultant velocity of
the three velocities given in Problem 2.

With reference to Fig. 21.5:
Horizontal component of the velocity,

H = 10 cos 20◦ + 15 cos 90◦ + 7 cos 190◦
= 9.397 + 0 + (−6.894) = 2.503 m/s

Vertical component of the velocity,

V = 10 sin 20◦ + 15 sin 90◦ + 7 sin 190◦
= 3.420 + 15 + (−1.216) = 17.204 m/s

Magnitude of the resultant of vector addition

=
√

(H2 + V2) =
√

(2.5032 + 17.2042)

= √
302.24 = 17.39 m/s

Direction of the resultant of vector addition

= tan−1
(

V

H

)

= tan−1
(

17.204

2.503

)

= tan−1 6.8734 = 81.72◦

Thus, the resultant of the three velocities is a sin-
gle vector of 17.39 m/s at 81.72◦ to the horizontal.

Now try the following exercise.

Exercise 93 Further problems on vector
addition and resolution

1. Forces of 23 N and 41 N act at a point and
are inclined at 90◦ to each other. Find, by
drawing, the resultant force and its direction
relative to the 41 N force. [47 N at 29◦]

2. Forces A, B and C are coplanar and act at
a point. Force A is 12 kN at 90◦, B is 5 kN
at 180◦ and C is 13 kN at 293◦. Determine
graphically the resultant force. [Zero]

3. Calculate the magnitude and direction of
velocities of 3 m/s at 18◦ and 7 m/s at 115◦
when acting simultaneously on a point.

[7.27 m/s at 90.8◦]

4. Three forces of 2 N, 3 N and 4 N act as shown
in Fig. 21.10. Calculate the magnitude of the
resultant force and its direction relative to the
2 N force. [6.24 N at 76.10◦]

Figure 21.10
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5. A load of 5.89 N is lifted by two strings, mak-
ing angles of 20◦ and 35◦ with the vertical.
Calculate the tensions in the strings. [For a
system such as this, the vectors representing
the forces form a closed triangle when the
system is in equilibrium]. [2.46 N, 4.12 N]

6. The acceleration of a body is due to four
component, coplanar accelerations. These are
2 m/s2 due north, 3 m/s2 due east, 4 m/s2 to
the south-west and 5 m/s2 to the south-east.
Calculate the resultant acceleration and its
direction. [5.7 m/s2 at 310◦]

7. A current phasor i1 is 5A and horizontal. A
second phasor i2 is 8A and is at 50◦ to the
horizontal. Determine the resultant of the two
phasors, i1 + i2, and the angle the resultant
makes with current i1. [11.85A at 31.14◦]

8. A ship heads in a direction of E 20◦ S at a
speed of 20 knots while the current is 4 knots
in a direction of N 30◦ E. Determine the speed
and actual direction of the ship.

[21.07 knots, E 9.22◦ S]

21.4 Vector subtraction

In Fig. 21.11, a force vector F is represented by oa.
The vector (−oa) can be obtained by drawing a vec-
tor from o in the opposite sense to oa but having
the same magnitude, shown as ob in Fig. 21.11, i.e.
ob = (−oa).

Figure 21.11

For two vectors acting at a point, as shown in
Fig. 21.12(a), the resultant of vector addition
is os = oa + ob. Figure 21.12(b) shows vectors
ob + (−oa), that is, ob − oa and the vector equation
is ob − oa = od. Comparing od in Fig. 21.12(b) with
the broken line ab in Fig. 21.12(a) shows that the sec-
ond diagonal of the ‘parallelogram’method of vector
addition gives the magnitude and direction of vector
subtraction of oa from ob.

Figure 21.12

Problem 6. Accelerations of a1 = 1.5 m/s2 at
90◦ and a2 = 2.6 m/s2 at 145◦ act at a point. Find
a1 + a2 and a1 − a2 by (i) drawing a scale vector
diagram and (ii) by calculation.

(i) The scale vector diagram is shown in Fig. 21.13.
By measurement,

a1 + a2 = 3.7 m/s2 at 126◦

a1 − a2 = 2.1 m/s2 at 0◦

Figure 21.13

(ii) Resolving horizontally and vertically gives:

Horizontal component of a1 + a2,

H = 1.5 cos 90◦ + 2.6 cos 145◦ = −2.13

Vertical component of a1 + a2,

V = 1.5 sin 90◦ + 2.6 sin 145◦ = 2.99

Magnitude of a1 + a2 =
√

(−2.132 + 2.992)

= 3.67 m/s2

Direction of a1 + a2 = tan−1
(

2.99

−2.13

)

and must lie in the second quadrant since H is
negative and V is positive.
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Tan−1
(

2.99

−2.13

)

= −54.53◦, and for this to be

in the second quadrant, the true angle is 180◦
displaced, i.e. 180◦ − 54.53◦ or 125.47◦.

Thus a1 + a2 = 3.67 m/s2 at 125.47◦.

Horizontal component of a1 − a2, that is,

a1 + (−a2)

= 1.5 cos 90◦ + 2.6 cos (145◦ − 180◦)

= 2.6 cos (−35◦) = 2.13

Vertical component of a1 − a2, that is,

a1 + (−a2) = 1.5 sin 90◦ + 2.6 sin (−35◦) = 0

Magnitude of a1 − a2 =
√

(2.132 + 02)

= 2.13 m/s2

Direction of a1 − a2 = tan−1
(

0

2.13

)

= 0◦

Thus a1 − a2 = 2.13 m/s2 at 0◦.

Problem 7. Calculate the resultant of
(i) v1 − v2 + v3 and (ii) v2 − v1 − v3 when
v1 = 22 units at 140◦, v2 = 40 units at 190◦ and
v3 = 15 units at 290◦.

(i) The vectors are shown in Fig. 21.14.

+V

140˚
22

190˚

290˚40
15

−H +H

−V

Figure 21.14

The horizontal component of v1 − v2 + v3

= (22 cos 140◦) − (40 cos 190◦)

+ (15 cos 290◦)

= (−16.85) − (−39.39) + (5.13)

= 27.67 units

The vertical component of v1 − v2 + v3

= (22 sin 140◦) − (40 sin 190◦)

+ (15 sin 290◦)

= (14.14) − (−6.95) + (−14.10)

= 6.99 units

The magnitude of the resultant, R, which can
be represented by the mathematical symbol for
‘the modulus of’ as |v1 − v2 + v3| is given by:

|R| =
√

(27.672 + 6.992) = 28.54 units

The direction of the resultant, R, which can
be represented by the mathematical symbol
for ‘the argument of’ as arg (v1 − v2 + v3) is
given by:

arg R = tan−1
(

6.99

27.67

)

= 14.18◦

Thus v1 − v2 + v3 = 28.54 units at 14.18◦.

(ii) The horizontal component of v2 − v1 − v3

= (40 cos 190◦) − (22 cos 140◦)
− (15 cos 290◦)

= (−39.39) − (−16.85) − (5.13)

= −27.67 units

The vertical component of v2 − v1 − v3

= (40 sin 190◦) − (22 sin 140◦)
− (15 sin 290◦)

= (−6.95) − (14.14) − (−14.10)

= −6.99 units

Let R = v2 − v1 − v3

then |R| =
√

[(−27.67)2 + (−6.99)2]

= 28.54 units

and arg R = tan−1
( −6.99

−27.67

)

and must lie in the third quadrant since both H
and V are negative quantities.



Ch21-H8152.tex 23/6/2006 15: 9 Page 231

VECTORS, PHASORS AND THE COMBINATION OF WAVEFORMS 231

D

Tan−1
(−6.99

−27.67

)

= 14.18◦, hence the required

angle is 180◦ + 14.18◦ = 194.18◦.

Thus v2 − v1 − v3 = 28.54 units at 194.18◦.

This result is as expected, since

v2 − v1 − v3 = −(v1 − v2 + v3)

and the vector 28.54 units at 194.18◦ is minus
times the vector 28.54 units at 14.18◦.

Now try the following exercise.

Exercise 94 Further problems on vector
subtraction

1. Forces of F1 = 40 N at 45◦ and F2 = 30 N at
125◦ act at a point. Determine by drawing and
by calculation (a) F1 + F2 (b) F1 − F2

[
(a) 54.0 N at 78.16◦
(b) 45.64 N at 4.66◦

]

2. Calculate the resultant of (a) v1 + v2 − v3
(b) v3 − v2 + v1 when v1 = 15 m/s at 85◦,
v2 = 25 m/s at 175◦ and v3 = 12 m/s at 235◦.

[
(a) 31.71 m/s at 121.81◦
(b) 19.55 m/s at 8.63◦

]

21.5 Relative velocity

For relative velocity problems, some fixed datum
point needs to be selected. This is often a fixed point
on the earth’s surface. In any vector equation, only
the start and finish points affect the resultant vec-
tor of a system. Two different systems are shown in
Fig. 21.15, but in each of the systems, the resultant
vector is ad.

Figure 21.15

The vector equation of the system shown in
Fig. 21.15(a) is:

ad = ab + bd

and that for the system shown in Fig. 21.15(b) is:

ad = ab + bc + cd

Thus in vector equations of this form, only the first
and last letters, a and d, respectively, fix the mag-
nitude and direction of the resultant vector. This
principle is used in relative velocity problems.

Problem 8. Two cars, P and Q, are travelling
towards the junction of two roads which are at
right angles to one another. Car P has a veloc-
ity of 45 km/h due east and car Q a velocity of
55 km/h due south.

Calculate (i) the velocity of car P relative to car
Q, and (ii) the velocity of car Q relative to car P.

(i) The directions of the cars are shown in
Fig. 21.16(a), called a space diagram. The
velocity diagram is shown in Fig. 21.16(b), in
which pe is taken as the velocity of car P relative
to point e on the earth’s surface. The velocity
of P relative to Q is vector pq and the vec-
tor equation is pq = pe + eq. Hence the vector
directions are as shown, eq being in the oppo-
site direction to qe. From the geometry of the
vector triangle,

|pq| =
√

(452 + 552) = 71.06 km/h

and arg pq = tan−1
(

55

45

)

= 50.71◦

Figure 21.16

i.e., the velocity of car P relative to car Q is
71.06 km/h at 50.71◦.

(ii) The velocity of car Q relative to car P is given by
the vector equation qp = qe + ep and the vector
diagram is as shown in Fig. 21.16(c), having ep
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opposite in direction to pe. From the geometry
of this vector triangle:

|qp| =
√

(452 + 552) = 71.06 m/s

and arg qp = tan−1
(

55

45

)

= 50.71◦

but must lie in the third quadrant, i.e., the
required angle is 180◦+ 50.71◦= 230.71◦.

Thus the velocity of car Q relative to car P is
71.06 m/s at 230.71◦.

Now try the following exercise.

Exercise 95 Further problems on relative
velocity

1. A car is moving along a straight horizontal
road at 79.2 km/h and rain is falling vertically
downwards at 26.4 km/h. Find the velocity of
the rain relative to the driver of the car.

[83.5 km/h at 71.6◦ to the vertical]

2. Calculate the time needed to swim across
a river 142 m wide when the swimmer can
swim at 2 km/h in still water and the river is
flowing at 1 km/h. At what angle to the bank
should the swimmer swim?

[4 min 55 s, 60◦]

3. A ship is heading in a direction N 60◦ E at a
speed which in still water would be 20 km/h.
It is carried off course by a current of 8 km/h
in a direction of E 50◦ S. Calculate the ship’s
actual speed and direction.

[22.79 km/h, E 9.78◦ N]

21.6 Combination of two periodic
functions

There are a number of instances in engineering and
science where waveforms combine and where it is
required to determine the single phasor (called the
resultant) which could replace two or more sepa-
rate phasors. (A phasor is a rotating vector). Uses
are found in electrical alternating current theory,
in mechanical vibrations, in the addition of forces
and with sound waves. There are several methods of
determining the resultant and two such methods are
shown below.

(i) Plotting the periodic functions graphically
This may be achieved by sketching the sepa-
rate functions on the same axes and then adding
(or subtracting) ordinates at regular intervals.
(see Problems 9 to 11).

(ii) Resolution of phasors by drawing or
calculation
The resultant of two periodic functions may be
found from their relative positions when the
time is zero. For example, if y1 = 4 sin ωt and
y2 = 3 sin (ωt − π/3) then each may be repre-
sented as phasors as shown in Fig. 21.17, y1
being 4 units long and drawn horizontally and
y2 being 3 units long, lagging y1 by π/3 radians
or 60◦. To determine the resultant of y1 + y2, y1
is drawn horizontally as shown in Fig. 21.18 and
y2 is joined to the end of y1 at 60◦ to the hori-
zontal. The resultant is given by yR. This is the
same as the diagonal of a parallelogram which is
shown completed in Fig. 21.19. Resultant yR, in
Figs. 21.18 and 21.19, is determined either by:

(a) scaled drawing and measurement, or

(b) by use of the cosine rule (and then sine rule
to calculate angle φ), or

Figure 21.17

Figure 21.18

Figure 21.19
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(c) by determining horizontal and vertical
components of lengths oa and ab in
Fig. 21.18, and then using Pythagoras’
theorem to calculate ob.

In the above example, by calculation, yR = 6.083
and angle φ = 25.28◦ or 0.441 rad. Thus the resul-
tant may be expressed in sinusoidal form as
yR = 6.083 sin (ωt − 0.441). If the resultant phasor,
yR = y1 − y2 is required, then y2 is still 3 units long
but is drawn in the opposite direction, as shown in
Fig. 21.20, and yR is determined by measurement or
calculation. (See Problems 12 to 14).

Figure 21.20

Problem 9. Plot the graph of y1 = 3 sin A
from A = 0◦ to A = 360◦. On the same axes
plot y2 = 2 cos A. By adding ordinates plot
yR = 3 sin A + 2 cos A and obtain a sinusoidal
expression for this resultant waveform.

y1 = 3 sin A and y2 = 2 cos A are shown plotted in
Fig. 21.21. Ordinates may be added at, say, 15◦
intervals. For example,

at 0◦, y1 + y2 = 0 + 2 = 2

at 15◦, y1 + y2 = 0.78 + 1.93 = 2.71

at 120◦, y1 + y2 = 2.60 + (−1) = 1.6

at 210◦, y1 + y2 = −1.50 − 1.73

= −3.23, and so on

The resultant waveform, shown by the broken line,
has the same period, i.e. 360◦, and thus the same fre-
quency as the single phasors. The maximum value,
or amplitude, of the resultant is 3.6. The resultant

Figure 21.21

waveform leads y1 = 3 sin A by 34◦ or 0.593 rad.
The sinusoidal expression for the resultant wave-
form is:

yR = 3.6 sin(A + 34◦) or

yR = 3.6 sin(A + 0.593)

Problem 10. Plot the graphs of y1 = 4 sin ωt
and y2 = 3 sin (ωt − π/3) on the same axes, over
one cycle. By adding ordinates at intervals plot
yR = y1 + y2 and obtain a sinusoidal expression
for the resultant waveform.

y1 = 4 sin ωt and y2 = 3 sin (ωt − π/3) are shown
plotted in Fig. 21.22.

Figure 21.22
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Ordinates are added at 15◦ intervals and the resultant
is shown by the broken line. The amplitude of the
resultant is 6.1 and it lags y1 by 25◦ or 0.436 rad.
Hence the sinusoidal expression for the resultant
waveform is

yR = 6.1 sin (ωt − 0.436)

Problem 11. Determine a sinusoidal expres-
sion for y1 − y2 when y1= 4 sin ωt and
y2 = 3 sin (ωt − π/3).

y1 and y2 are shown plotted in Fig. 21.23. At 15◦
intervals y2 is subtracted from y1. For example:

at 0◦, y1 − y2 = 0 − (−2.6) = +2.6

at 30◦, y1 − y2 = 2 − (−1.5) = +3.5

at 150◦, y1 − y2 = 2 − 3 = −1, and so on.

Figure 21.23

The amplitude, or peak value of the resultant (shown
by the broken line), is 3.6 and it leads y1 by 45◦ or
0.79 rad. Hence

y1 − y2 = 3.6 sin (ωt + 0.79)

Problem 12. Given y1 = 2 sin ωt and
y2 = 3 sin (ωt + ω/4), obtain an expression
for the resultant yR = y1 + y2, (a) by drawing
and (b) by calculation.

(a) When time t = 0 the position of phasors y1 and
y2 are as shown in Fig. 21.24(a). To obtain the
resultant, y1 is drawn horizontally, 2 units long,
y2 is drawn 3 units long at an angle of π/4 rads

or 45◦ and joined to the end of y1 as shown in
Fig. 21.24(b). yR is measured as 4.6 units long
and angle φ is measured as 27◦ or 0.47 rad.Alter-
natively, yR is the diagonal of the parallelogram
formed as shown in Fig. 21.24(c).

Figure 21.24

Hence, by drawing,

yR = 4.6 sin (ωt + 0.47)

(b) From Fig. 21.24(b), and using the cosine rule:

y2
R = 22 + 32 − [2(2)(3) cos 135◦]

= 4 + 9 − [−8.485] = 21.49

Hence yR = √
(21.49) = 4.64
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Using the sine rule:

3

sin φ
= 4.64

sin 135◦ from which

sin φ = 3 sin 135◦

4.64
= 0.4572

Hence φ = sin−1 0.4572 = 27◦12′ or 0.475 rad.

By calculation,

yR = 4.64 sin (ωt + 0.475)

Problem 13. Two alternating voltages are
given by v1 = 15 sin ωt volts and
v2 = 25sin (ωt − π/6) volts. Determine a sinu-
soidal expression for the resultant vR = v1 + v2
by finding horizontal and vertical components.

The relative positions of v1 and v2 at time t = 0 are
shown in Fig. 21.25(a) and the phasor diagram is
shown in Fig. 21.25(b).

Figure 21.25

The horizontal component of vR,

H = 15 cos 0◦ + 25 cos (−30◦)

= oa + ab = 36.65V

The vertical component of vR,

V = 15 sin 0◦ + 25 sin (−30◦)

= bc = −12.50V

Hence vR(=oc) =√[(36.65)2 + (−12.50)2]

by Pythagoras’ theorem

= 38.72V

tan φ = V

H

(

= bc

ob

)

= −12.50

36.65
= −0.3411

from which, φ = tan−1(−0.3411) = −18◦50′
or −0.329 radians.

Hence vR = v1 + v2 = 38.72 sin(ωt − 0.329) V.

Problem 14. For the voltages in Problem 13,
determine the resultant vR = v1 − v2.

To find the resultant vR = v1 − v2, the phasor v2 of
Fig. 21.25(b) is reversed in direction as shown in
Fig. 21.26. Using the cosine rule:

v2
R = 152 + 252 − 2(15)(25) cos 30◦

= 225 + 625 − 649.5 = 200.5

vR = √(200.5) = 14.16 V

Figure 21.26

Using the sine rule:

25

sin φ
= 14.16

sin 30◦ from which

sin φ = 25 sin 30◦

14.16
= 0.8828

Hence φ = sin−1 0.8828 = 61.98◦ or 118.02◦. From
Fig. 21.26, φ is obtuse,

hence φ = 118.02◦ or 2.06 radians.

Hence vR = v1 − v2 = 14.16 sin (ωt + 2.06) V.
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Now try the following exercise.

Exercise 96 Further problems on the
combination of periodic functions

1. Plot the graph of y = 2 sin A from A = 0◦
to A = 360◦. On the same axis plot
y = 4 cos A. By adding ordinates at inter-
vals plot y = 2 sin A + 4 cos A and obtain a
sinusoidal expression for the waveform.

[4.5 sin (A + 63◦26′)]

2. Two alternating voltages are given by v1 = 10
sin ωt volts and v2 = 14 sin (ωt + π/3) volts.
By plotting v1 and v2 on the same axes over
one cycle obtain a sinusoidal expression for
(a) v1 + v2 (b) v1 − v2.[

(a) 20.9 sin (ωt + 0.63) volts
(b) 12.5 sin (ωt − 1.36) volts

]

In Problems 3 to 8, express the combi-
nation of periodic functions in the form
A sin (ωt ± α) using phasors, either by draw-
ing or by calculation.

3. 12 sin ωt + 5 cos ωt

[13 sin (ωt + 0.395)]

4. 7 sin ωt + 5 sin
(
ωt + π

4

)

[11.11 sin (ωt + 0.324)]

5. 6 sin ωt + 3 sin
(
ωt − π

6

)

[8.73 sin (ωt − 0.173)]

6. i = 25 sin ωt − 15 sin
(
ωt + π

3

)

[i = 21.79 sin (ωt − 0.639)]

7. v = 8 sin ωt − 5 sin
(
ωt − π

4

)

[v = 5.695 sin (ωt + 0.670)]

8. x = 9 sin
(
ωt + π

3

)
−7 sin

(

ωt − 3π

8

)

[x = 14.38 sin (ωt + 1.444)]
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Vector geometry

22

Scalar and vector products

22.1 The unit triad

When a vector x of magnitude x units and direction θ◦
is divided by the magnitude of the vector, the result
is a vector of unit length at angle θ◦. The unit vector

for a velocity of 10 m/s at 50◦ is
10 m/s at 50◦

10 m/s
, i.e.

1 at 50◦. In general, the unit vector for oa is
oa
|oa| ,

the oa being a vector and having both magnitude
and direction and |oa| being the magnitude of the
vector only.

One method of completely specifying the direc-
tion of a vector in space relative to some reference
point is to use three unit vectors, mutually at right
angles to each other, as shown in Fig. 22.1. Such a
system is called a unit triad.

z

x

yo j
i

k

Figure 22.1

In Fig. 22.2, one way to get from o to r is to move x
units along i to point a, then y units in direction j to
get to b and finally z units in direction k to get to r.
The vector or is specified as

or = xi + yj + zk

Problem 1. With reference to three axes drawn
mutually at right angles, depict the vectors
(i) op = 4i + 3j − 2k and (ii) or = 5i − 2j + 2k.

The required vectors are depicted in Fig. 22.3, op
being shown in Fig. 22.3(a) and or in Fig. 22.3(b).

y

a

i
O

x j
z

k

r

b

Figure 22.2

k

i

4

3

O j

−2

P

(a)

k

j
i

5
2

(b)

−2

O

r

Figure 22.3
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22.2 The scalar product of two vectors

When vector oa is multiplied by a scalar quantity,
say k, the magnitude of the resultant vector will be
k times the magnitude of oa and its direction will
remain the same. Thus 2 × (5 N at 20◦) results in a
vector of magnitude 10 N at 20◦.

One of the products of two vector quantities is
called the scalar or dot product of two vectors
and is defined as the product of their magnitudes
multiplied by the cosine of the angle between them.
The scalar product of oa and ob is shown as oa • ob.
For vectors oa = oa at θ1, and ob = ob at θ2 where
θ2 > θ1, the scalar product is:

oa •ob = oa ob cos(θ2 − θ1)

For vectors v1 and v2 shown in Fig. 22.4, the scalar
product is:

v1 •v2 = v1v2 cos θ

v2

v1

θ

Figure 22.4

The commutative law of algebra, a × b = b × a
applies to scalar products. This is demonstrated in
Fig. 22.5. Let oa represent vector v1 and ob represent
vector v2. Then:

oa •ob = v1v2 cos θ (by definition of
a scalar product)

b

a
v1

v 2

O θ

Figure 22.5

Similarly, ob • oa = v2v1 cos θ = v1v2 cos θ by the
commutative law of algebra. Thus oa • ob = ob • oa.

The projection of ob on oa is shown in Fig. 22.6(a)
and by the geometry of triangle obc, it can be seen
that the projection is v2 cos θ. Since, by definition

oa •ob = v1(v2 cos θ),

it follows that

oa •ob = v1 (the projection of v2 on v1)

b

a
c

v1

v2 cos

O

v 2

v 2

v1

(b)

(a)

θ

θ

θ

θ

v 1
 co

s

Figure 22.6

Similarly the projection of oa on ob is shown in
Fig. 22.6(b) and is v1 cos θ. Since by definition

ob •oa = v2(v1 cos θ),

it follows that

ob •oa = v2 (the projection of v1 on v2)

This shows that the scalar product of two vectors
is the product of the magnitude of one vector and
the magnitude of the projection of the other vector
on it.
The angle between two vectors can be expressed in
terms of the vector constants as follows:
Because a •b = a b cos θ,
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then cos θ = a •b

ab
(1)

Let a = a1i + a2 j + a3k

and b = b1i + b2 j + b3k

a •b = (a1i + a2 j + a3k) • (b1i + b2 j + b3k)

Multiplying out the brackets gives:

a •b = a1b1i • i + a1b2i • j + a1b3i •k

+ a2b1j • i + a2b2j • j + a2b3j •k

+ a3b1k • i + a3b2k • j + a3b3k •k

However, the unit vectors i, j and k all have a
magnitude of 1 and i • i = (1)(1) cos 0◦ = 1, i • j =
(1)(1) cos 90◦ = 0, i •k = (1)(1) cos 90◦ = 0 and sim-
ilarly j • j = 1, j •k = 0 and k •k = 1. Thus, only terms
containing i • i, j • j or k •k in the expansion above
will not be zero.
Thus, the scalar product

a •b = a1b1 + a2b2 + a3b3 (2)

Both a and b in equation (1) can be expressed in
terms of a1, b1, a2, b2, a3 and b3.

c

a

b

O

A B

P

Figure 22.7

From the geometry of Fig. 22.7, the length of diag-
onal OP in terms of side lengths a, b and c can be
obtained from Pythagoras’ theorem as follows:

OP2 = OB2 + BP2 and
OB2 = OA2 + AB2

Thus, OP2 = OA2 + AB2 + BP2

= a2 + b2 + c2,

in terms of side lengths

Thus, the length or modulus or magnitude or norm
of vector OP is given by:

OP =
√

(a2 + b2 + c2) (3)

Relating this result to the two vectors a1i + a2 j +
a3k and b1i + b2 j + b3k, gives:

a =
√

(a2
1 + a2

2 + a2
3)

and b =
√

(b2
1 + b2

2 + b2
3).

That is, from equation (1),

cos θ = a1b1 + a2b2 + a3b3√
(a2

1 + a2
2 + a2

3)
√

(b2
1 + b2

2 + b2
3)

(4)

Problem 2. Find vector a joining points P and
Q where point P has co-ordinates (4, −1, 3) and
point Q has co-ordinates (2, 5, 0). Also, find |a|,
the magnitude or norm of a.

Let O be the origin, i.e. its co-ordinates are (0, 0, 0).
The position vector of P and Q are given by:

OP = 4i − j + 3k and OQ = 2i + 5j

By the addition law of vectors OP + PQ = OQ.

Hence a = PQ = OQ − OP

i.e. a = PQ = (2i + 5j) − (4i − j + 3k)

= −2i + 6j − 3k

From equation (3), the magnitude or norm of a,

|a| =
√

(a2 + b2 + c2)

=
√

[(−2)2 + 62 + (−3)2] = √
49 = 7

Problem 3. If p = 2i + j − k and
q = i − 3j + 2k determine:

(i) p •q (ii) p + q
(iii) |p + q| (iv) |p| + |q|
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(i) From equation (2),

if p = a1i + a2j + a3k

and q = b1i + b2j + b3k

then p •q = a1b1 + a2b2 + a3b3

When p = 2i + j − k,

a1 = 2, a2 = 1 and a3 = −1

and when q = i − 3j + 2k,

b1 = 1, b2 = −3 and b3 = 2

Hence p •q = (2)(1) + (1)(−3) + (−1)(2)

i.e. p •q = −3

(ii) p + q = (2i + j − k) + (i − 3j + 2k)

= 3i − 2j + k

(iii) |p + q| = |3i − 2j + k|
From equation (3),

|p + q| =
√

[32 + (−2)2 + 12] = √
14

(iv) From equation (3),

|p| = |2i + j − k|
=
√

[22 + 12 + (−1)2] = √
6

Similarly,

|q| = |i − 3j + 2k|
=
√

[12 + (−3)2 + 22] = √
14

Hence |p| + |q| = √
6 + √

14 = 6.191, correct
to 3 decimal places.

Problem 4. Determine the angle between vec-
tors oa and ob when

oa = i + 2j − 3k

and ob = 2i − j + 4k.

An equation for cos θ is given in equation (4)

cos θ = a1b1 + a2b2 + a3b3√
(a2

1 + a2
2 + a2

3)
√

(b2
1 + b2

2 + b2
3)

Since oa = i + 2j − 3k,

a1 = 1, a2 = 2 and a3 = −3

Since ob = 2i − j + 4k,

b1 = 2, b2 = −1 and b3 = 4

Thus,

cos θ = (1 × 2) + (2 × −1) + (−3 × 4)
√

(12 + 22 + (−3)2)
√

(22 + (−1)2 + 42)

= −12√
14

√
21

= −0.6999

i.e. θ = 134.4◦ or 225.6◦.
By sketching the position of the two vectors as

shown in Problem 1, it will be seen that 225.6◦ is
not an acceptable answer.

Thus the angle between the vectors oa and ob,
θ = 134.4◦.

Direction cosines

From Fig. 22.2, or = xi + yj + zk and from equa-
tion (3), |or| = √x2 + y2 + z2.
If or makes angles of α, β and γ with the co-ordinate
axes i, j and k respectively, then:
The direction cosines are:

cos α = x
√

x2 + y2 + z2

cos β = y
√

x2 + y2 + z2

and cos γ = y
√

x2 + y2 + z2

such that cos2 α + cos2 β + cos2 γ = 1.
The values of cos α, cos β and cos γ are called the
direction cosines of or.

Problem 5. Find the direction cosines of
3i + 2j + k.

√
x2 + y2 + z2 =

√
32 + 22 + 12 = √

14

The direction cosines are:

cos α = x
√

x2 + y2 + z2
= 3√

14
= 0.802

cos β = y
√

x2 + y2 + z2
= 2√

14
= 0.535

and cos γ = y
√

x2 + y2 + z2
= 1√

14
= 0.267

(and hence α = cos−1 0.802 = 36.7◦, β = cos−1

0.535 = 57.7◦ and γ = cos−1 0.267 = 74.5◦).
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Note that cos2 α + cos2 β + cos2 γ = 0.8022 +
0.5352 + 0.2672 = 1.

Practical application of scalar product

Problem 6. A constant force of
F = 10i + 2j − k newtons displaces an object
from A = i + j + k to B = 2i − j + 3k (in
metres). Find the work done in newton metres.

One of the applications of scalar products is to the
work done by a constant force when moving a body.
The work done is the product of the applied force
and the distance moved in the direction of the force.

i.e. work done = F • d

The principles developed in Problem 8, Chapter 21,
apply equally to this problem when determining the
displacement. From the sketch shown in Fig. 22.8,

AB = AO + OB = OB − OA

that is AB = (2i − j + 3k) − (i + j + k)

= i − 2j + 2k

O (0, 0, 0)

A (1, 1, 1)

B (2, −1, 3)

Figure 22.8

The work done is F • d, that is F • AB in this case

i.e. work done = (10i + 2j − k) • (i − 2j + 2k)

But from equation (2),

a •b = a1b1 + a2b2 + a3b3

Hence work done =
(10 × 1) + (2 × (−2)) + ((−1) × 2) = 4 Nm.

(Theoretically, it is quite possible to get a negative
answer to a ‘work done’problem. This indicates that
the force must be in the opposite sense to that given,
in order to give the displacement stated).

Now try the following exercise.

Exercise 97 Further problems on scalar
products

1. Find the scalar product a •b when

(i) a = i + 2j − k and b = 2i + 3j + k

(ii) a = i − 3j + k and b = 2i + j + k
[(i) 7 (ii) 0]

Given p = 2i − 3j, q = 4j − k and
r = i + 2j − 3k, determine the quantities
stated in problems 2 to 8

2. (a) p •q (b) p •r [(a) −12 (b) −4]

3. (a) q •r (b) r •q [(a) 11 (b) 11]

4. (a) | p | (b) | r | [(a)
√

13 (b)
√

14]

5. (a) p •(q + r) (b) 2r •(q − 2p)

[(a) −16 (b) 38]
6. (a) | p + r | (b) | p | + | r |

[(a)
√

19 (b) 7.347]

7. Find the angle between (a) p and q (b) q
and r [(a) 143.82◦ (b) 44.52◦]

8. Determine the direction cosines of (a) p
(b) q (c) r

[
(a) 0.555, −0.832, 0
(b) 0, 0.970, −0.243
(c) 0.267, 0.535, −0.802

]

9. Determine the angle between the forces:

F1 = 3i + 4j + 5k and

F2 = i + j + k [11.54◦]

10. Find the angle between the velocity vectors
υ1 = 5i + 2j + 7k and υ2 = 4i + j − k

[66.40◦]

11. Calculate the work done by a force
F = (−5i + j + 7k) N when its point of appli-
cation moves from point (−2i − 6j + k) m
to the point (i − j + 10k) m. [53 Nm]

22.3 Vector products

A second product of two vectors is called the vec-
tor or cross product and is defined in terms of its
modulus and the magnitudes of the two vectors and
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the sine of the angle between them. The vector prod-
uct of vectors oa and ob is written as oa × ob and is
defined by:

|oa × ob| = oa ob sin θ

where θ is the angle between the two vectors.
The direction of oa × ob is perpendicular to both oa
and ob, as shown in Fig. 22.9.

θo

a

boa × ob

θ

a

b

ob × oa

(a) (b)

o

Figure 22.9

The direction is obtained by considering that a
right-handed screw is screwed along oa × ob with
its head at the origin and if the direction of oa × ob
is correct, the head should rotate from oa to ob,
as shown in Fig. 22.9(a). It follows that the direc-
tion of ob × oa is as shown in Fig. 22.9(b). Thus
oa × ob is not equal to ob × oa. The magnitudes of
oa ob sin θ are the same but their directions are 180◦
displaced, i.e.

oa × ob = −ob × oa

The vector product of two vectors may be expressed
in terms of the unit vectors. Let two vectors, a and
b, be such that:

a = a1i + a2j + a3k and

b = b1i + b2j + b3k

Then,

a × b = (a1i + a2 j + a3k) × (b1i + b2 j + b3k)

= a1b1i × i + a1b2i × j

+ a1b3i × k + a2b1j × i + a2b2 j × j

+ a2b3j × k + a3b1k × i + a3b2k × j

+ a3b3k × k

But by the definition of a vector product,

i × j = k, j × k = i and k × i = j

Also i × i = j × j = k × k = (1)(1) sin 0◦ = 0.

Remembering that a × b = −b × a gives:

a × b = a1b2k − a1b3 j − a2b1k + a2b3i

+ a3b1 j − a3b2i

Grouping the i, j and k terms together, gives:

a × b = (a2b3 − a3b2)i + (a3b1 − a1b3) j

+ (a1b2 − a2b1)k

The vector product can be written in determinant
form as:

a × b =
∣
∣
∣
∣
∣

i j k
a1 a2 a3
b1 b2 b3

∣
∣
∣
∣
∣

(5)

The 3 × 3 determinant

∣
∣
∣
∣
∣

i j k
a1 a2 a3
b1 b2 b3

∣
∣
∣
∣
∣

is evaluated as:

i

∣
∣
∣
∣

a2 a3
b2 b3

∣
∣
∣
∣− j

∣
∣
∣
∣

a1 a3
b1 b3

∣
∣
∣
∣+ k

∣
∣
∣
∣

a1 a2
b1 b2

∣
∣
∣
∣

where
∣
∣
∣
∣
a2 a3
b2 b3

∣
∣
∣
∣ = a2b3 − a3b2,

∣
∣
∣
∣
a1 a3
b1 b3

∣
∣
∣
∣ = a1b3 − a3b1 and

∣
∣
∣
∣
a1 a2
b1 b2

∣
∣
∣
∣ = a1b2 − a2b1

The magnitude of the vector product of two vectors
can be found by expressing it in scalar product form
and then using the relationship

a •b = a1b1 + a2b2 + a3b3

Squaring both sides of a vector product equation
gives:

(|a × b|)2 = a2b2 sin2 θ = a2b2(1 − cos2 θ)

= a2b2 − a2b2 cos2 θ (6)

It is stated in Section 22.2 that a •b = ab cos θ, hence

a •a = a2 cos θ.

But θ = 0◦, thus a •a = a2
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Also, cos θ = a •b
ab

.

Multiplying both sides of this equation by a2b2 and
squaring gives:

a2b2 cos2 θ = a2b2(a •b)2

a2b2 = (a •b)2

Substituting in equation (6) above for a2 = a •a,
b2 = b •b and a2b2 cos2 θ = (a •b)2 gives:

(|a × b|)2 = (a •a)(b •b) − (a •b)2

That is,

|a × b| =
√

[(a •a)(b •b) − (a •b)2] (7)

Problem 7. For the vectors a = i + 4j − 2k and
b = 2i − j + 3k find (i) a × b and (ii) |a × b|.

(i) From equation (5),

a × b =
∣
∣
∣
∣
∣

i j k
a1 a2 a3
b1 b2 b3

∣
∣
∣
∣
∣

= i

∣
∣
∣
∣
a2 a3
b2 b3

∣
∣
∣
∣− j

∣
∣
∣
∣
a1 a3
b1 b3

∣
∣
∣
∣+ k

∣
∣
∣
∣
a1 a2
b1 b2

∣
∣
∣
∣

Hence

a × b =
∣
∣
∣
∣
∣

i j k
1 4 −2
2 −1 3

∣
∣
∣
∣
∣

= i

∣
∣
∣
∣

4 −2
−1 3

∣
∣
∣
∣ − j

∣
∣
∣
∣
1 −2
2 3

∣
∣
∣
∣

+ k

∣
∣
∣
∣
1 4
2 −1

∣
∣
∣
∣

= i(12 − 2) − j(3 + 4) + k(−1 − 8)

= 10i − 7j − 9k

(ii) From equation (7)

|a × b| =
√

[(a •a)(b •b) − (a •b)2]

Now a •a = (1)(1) + (4 × 4) + (−2)(−2)

= 21

b •b = (2)(2) + (−1)(−1) + (3)(3)

= 14

and a •b = (1)(2) + (4)(−1) + (−2)(3)

= −8

Thus |a × b| = √(21 × 14 − 64)

= √
230 = 15.17

Problem 8. If p = 4i + j − 2k, q = 3i − 2j + k
and r = i − 2k find (a) ( p − 2q) × r
(b) p × (2r × 3q).

(a) ( p − 2q) × r = [4i + j − 2k

− 2(3i − 2j + k)] × (i − 2k)

= (−2i + 5j − 4k) × (i − 2k)

=
∣
∣
∣
∣
∣
∣

i j k
−2 5 −4

1 0 −2

∣
∣
∣
∣
∣
∣

from equation (5)

= i

∣
∣
∣
∣
5 −4
0 −2

∣
∣
∣
∣− j

∣
∣
∣
∣
−2 −4

1 −2

∣
∣
∣
∣

+ k

∣
∣
∣
∣
−2 5

1 0

∣
∣
∣
∣

= i(−10 − 0) − j(4 + 4)

+ k(0 − 5), i.e.

( p − 2q) × r = −10i − 8j − 5k

(b) (2r × 3q) = (2i − 4k) × (9i − 6j + 3k)

=
∣
∣
∣
∣
∣
∣

i j k
2 0 −4
9 −6 3

∣
∣
∣
∣
∣
∣

= i(0 − 24) − j(6 + 36)

+ k(−12 − 0)

= −24i − 42j − 12k

Hence

p × (2r × 3q) = (4i + j − 2k)

× (−24i − 42j − 12k)

=
∣
∣
∣
∣
∣
∣

i j k
4 1 −2

−24 −42 −12

∣
∣
∣
∣
∣
∣
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= i(−12 − 84) − j(−48 − 48)

+ k(−168 + 24)

= −96i + 96j − 144k

or −48(2i − 2j + 3k)

Practical applications of vector products

Problem 9. Find the moment and the magni-
tude of the moment of a force of (i + 2j − 3k)
newtons about point B having co-ordinates
(0, 1, 1), when the force acts on a line through A
whose co-ordinates are (1, 3, 4).

The moment M about point B of a force vector F
which has a position vector of r from A is given by:

M = r × F

r is the vector from B to A, i.e. r = BA.
But BA = BO + OA = OA − OB (see Problem 8,
Chapter 21), that is:

r = (i + 3j + 4k) − ( j + k)

= i + 2j + 3k

Moment,

M = r × F = (i + 2j + 3k) × (i + 2j − 3k)

=
∣
∣
∣
∣
∣
∣

i j k
1 2 3
1 2 −3

∣
∣
∣
∣
∣
∣

= i(−6 − 6) − j(−3 − 3)

+ k(2 − 2)

= −12i + 6j Nm

The magnitude of M,

|M| = |r × F|
=
√

[(r •r)(F •F) − (r •F)2]

r •r = (1)(1) + (2)(2) + (3)(3) = 14

F •F = (1)(1) + (2)(2) + (−3)(−3) = 14

r •F = (1)(1) + (2)(2) + (3)(−3) = −4

|M| =
√

[14 × 14 − (−4)2]

= √
180 Nm = 13.42 Nm

Problem 10. The axis of a circular cylinder
coincides with the z-axis and it rotates with an
angular velocity of (2i − 5j + 7k) rad/s. Deter-
mine the tangential velocity at a point P on
the cylinder, whose co-ordinates are ( j + 3k)
metres, and also determine the magnitude of the
tangential velocity.

The velocity v of point P on a body rotating with
angular velocity ω about a fixed axis is given by:

v = ω × r,

where r is the point on vector P.

Thus v = (2i − 5j + 7k) × ( j + 3k)

=
∣
∣
∣
∣
∣
∣

i j k
2 −5 7
0 1 3

∣
∣
∣
∣
∣
∣

= i(−15 − 7) − j(6 − 0) + k(2 − 0)

= (−22i − 6j + 2k) m/s

The magnitude of v,

|v| =
√

[(ω •ω)(r •r) − (r •ω)2]

ω •ω = (2)(2) + (−5)(−5) + (7)(7) = 78

r •r = (0)(0) + (1)(1) + (3)(3) = 10

ω •r = (2)(0) + (−5)(1) + (7)(3) = 16

Hence,

|v| =
√

(78 × 10 − 162)

= √
524 m/s = 22.89 m/s

Now try the following exercise.

Exercise 98 Further problems on vector
products

In problems 1 to 4, determine the quantities
stated when
p = 3i + 2k, q = i − 2j + 3k and

r = −4i + 3j − k

1. (a) p × q (b) q × p
[(a) 4i − 7j − 6k (b) −4i + 7j + 6k]

2. (a) |p × r| (b) |r × q|
[(a) 11.92 (b) 13.96]
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3. (a) 2p × 3r (b) (p + r) × q
[

(a) −36i − 30j − 54k
(b) 11i + 4j − k

]

4. (a) p × (r × q) (b) (3p × 2r) × q
[

(a) −22i − j + 33k
(b) 18i + 162j + 102k

]

5. For vectors p = 4i − j + 2k and
q = −2i + 3j − 2k determine: (i) p •q
(ii) p × q (iii) |p × q| (iv) q × p and (v) the
angle between the vectors.

⎡

⎣
(i) −15 (ii) −4i + 4j + 10k
(iii) 11.49 (iv) 4i − 4j − 10k
(v) 142.55◦

⎤

⎦

6. For vectors a = −7i + 4j + 1
2 k and b = 6i −

5j − k find (i) a •b (ii) a × b (iii) |a × b|
(iv) b × a and (v) the angle between the
vectors. ⎡

⎢
⎣

(i) −62 1
2 (ii) −1 1

2 i − 4j + 11k

(iii) 11.80 (iv) 1 1
2 i + 4j − 11k

(v) 169.31◦

⎤

⎥
⎦

7. Forces of (i + 3j), (−2i − j), (i − 2j) newtons
act at three points having position vectors of
(2i + 5j), 4j and (−i + j) metres respectively.
Calculate the magnitude of the moment.

[10 Nm]

8. A force of (2i − j + k) newtons acts on a line
through point P having co-ordinates (0, 3, 1)
metres. Determine the moment vector and its
magnitude about point Q having co-ordinates
(4, 0, −1) metres.

[
M = (5i + 8j − 2k) Nm,
|M| = 9.64 Nm

]

9. A sphere is rotating with angular velocity ω
about the z-axis of a system, the axis coincid-
ing with the axis of the sphere. Determine the
velocity vector and its magnitude at position
(−5i + 2j − 7k) m, when the angular velocity
is (i + 2j) rad/s. [

υ = −14i + 7j + 12k,
|υ| = 19.72 m/s

]

10. Calculate the velocity vector and its magni-
tude for a particle rotating about the z-axis
at an angular velocity of (3i − j + 2k) rad/s
when the position vector of the particle is at
(i − 5j + 4k) m.

[6i − 10j − 14k, 18.22 m/s]

22.4 Vector equation of a line

The equation of a straight line may be determined,
given that it passes through the point A with position
vector a relative to O, and is parallel to vector b. Let
r be the position vector of a point P on the line, as
shown in Fig. 22.10.

b

a

r

A

P

O

Figure 22.10

By vector addition, OP = OA + AP,
i.e. r = a + AP.
However, as the straight line through A is parallel
to the free vector b (free vector means one that
has the same magnitude, direction and sense), then
AP = λb, where λ is a scalar quantity. Hence, from

above,

r = a + λ b (8)

If, say, r = xi + yj + zk, a = a1i + a2j + a3k and
b = b1i + b2j + b3k, then from equation (8),

xi + yj + zk = (a1i + a2j + a3k)

+ λ(b1i + b2j + b3k)

Hence x = a1 + λb1, y = a2 + λb2 and z = a3 + λb3.
Solving for λ gives:

x − a1

b1
= y − a2

b2
= z − a3

b3
= λ (9)

Equation (9) is the standard Cartesian form for the
vector equation of a straight line.

Problem 11. (a) Determine the vector equa-
tion of the line through the point with position
vector 2i + 3j − k which is parallel to the vector
i − 2j + 3k.
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(b) Find the point on the line corresponding to
λ = 3 in the resulting equation of part (a).

(c) Express the vector equation of the line in
standard Cartesian form.

(a) From equation (8),

r = a + λb

i.e. r = (2i + 3j − k) + λ(i − 2j + 3k)

or r = (2 + λ)i + (3 − 2λ)j + (3λ − 1)k

which is the vector equation of the line.

(b) When λ = 3, r = 5i − 3j + 8k.

(c) From equation (9),
x − a1

b1
= y − a2

b2
= z − a3

b3
= λ

Since a = 2i + 3j − k, then a1 = 2,

a2 = 3 and a3 = −1 and

b = i − 2j + 3k, then

b1 = 1, b2 = −2 and b3 = 3

Hence, the Cartesian equations are:

x − 2

1
= y − 3

−2
= z − (−1)

3
= λ

i.e. x − 2 = 3 − y
2

= z + 1
3

= λ

Problem 12. The equation

2x − 1

3
= y + 4

3
= −z + 5

2

represents a straight line. Express this in vec-
tor form.

Comparing the given equation with equation (9),
shows that the coefficients of x, y and z need to be
equal to unity.

Thus
2x − 1

3
= y + 4

3
= −z + 5

2
becomes:

x − 1
2

3
2

= y + 4

3
= z − 5

−2

Again, comparing with equation (9), shows that

a1 = 1

2
, a2 = −4 and a3 = 5 and

b1 = 3

2
, b2 = 3 and b3 = −2

In vector form the equation is:

r = (a1 + λb1)i + (a2 + λb2)j + (a3 + λb3)k,
from equation (8)

i.e. r =
(

1

2
+ 3

2
λ

)

i + (−4 + 3λ)j + (5 − 2λ)k

or r = 1
2

(1 + 3λ)i + (3λ − 4)j + (5 − 2λ)k

Now try the following exercise.

Exercise 99 Further problems on the vector
equation of a line

1. Find the vector equation of the line through
the point with position vector 5i − 2j + 3k
which is parallel to the vector 2i + 7j − 4k.
Determine the point on the line corresponding
to λ = 2 in the resulting equation

[
r = (5 + 2λ)i + (7λ − 2)j

+ (3 − 4λ)k;
r = 9i + 12j − 5k

]

2. Express the vector equation of the line in
problem 1 in standard Cartesian form.

[
x − 5

2
= y + 2

7
= 3 − z

4
= λ

]

In problems 3 and 4, express the given straight
line equations in vector form.

3.
3x − 1

4
= 5y + 1

2
= 4 − z

3
[

r = 1
3 (1 + 4λ)i + 1

5 (2λ − 1)j

+ (4 − 3λ)k

]

4. 2x + 1 = 1 − 4y

5
= 3z − 1

4
[

r = 1
2 (λ − 1)i + 1

4 (1 − 5λ)j
+ 1

3 (1 + 4λ)k

]
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Graphs and Vector geometry

Assignment 6

This assignment covers the material contained
in Chapters 19 to 22.
The marks for each question are shown in
brackets at the end of each question.

1. Sketch the following graphs, showing the rele-
vant points:

(a) y = (x − 2)2 (c) x2 + y2 − 2x + 4y − 4 = 0

(b) y = 3 − cos 2x (d) 9x2 − 4y2 = 36

(e) f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1 −π ≤ x ≤ − π

2

x −π

2
≤ x ≤ π

2

1
π

2
≤ x ≤ π

(15)

2. Determine the inverse of f (x) = 3x + 1 (3)

3. Evaluate, correct to 3 decimal places:

2 tan−1 1.64 + sec−1 2.43 − 3 cosec−1 3.85
(3)

4. Determine the asymptotes for the following
function and hence sketch the curve:

y = (x − 1)(x + 4)

(x − 2)(x − 5)
(8)

5. Plot a graph of y = 3x2 + 5 from x = 1 to x = 4.
Estimate, correct to 2 decimal places, using 6
intervals, the area enclosed by the curve, the
ordinates x = 1 and x = 4, and the x-axis by
(a) the trapezoidal rule, (b) the mid-ordinate rule,
and (c) Simpson’s rule. (12)

6. A circular cooling tower is 20 m high. The inside
diameter of the tower at different heights is given
in the following table:
Height (m) 0 5.0 10.0 15.0 20.0
Diameter (m) 16.0 13.3 10.7 8.6 8.0

Determine the area corresponding to each diam-
eter and hence estimate the capacity of the tower
in cubic metres. (6)

7. A vehicle starts from rest and its velocity is
measured every second for 6 seconds, with the
following results:
Time t (s) 0 1 2 3 4 5 6
Velocity 0 1.2 2.4 3.7 5.2 6.0 9.2
v (m/s)

Using Simpson’s rule, calculate (a) the distance
travelled in 6 s (i.e. the area under the v/t graph)
and (b) the average speed over this period. (6)

8. Four coplanar forces act at a point A as shown
in Fig. A6.1 Determine the value and direc-
tion of the resultant force by (a) drawing (b) by
calculation. (10)

4N

A
45°45°5N

8N
7N

Figure A6.1

9. The instantaneous values of two alternating
voltages are given by:

v1 = 150 sin (ωt + π/3) volts and
v2 = 90 sin (ωt − π/6) volts

Plot the two voltages on the same axes to scales

of 1 cm = 50 volts and 1 cm = π

6
rad.

Obtain a sinusoidal expression for the resultant
v1 + v2 in the form R sin (ωt + α): (a) by adding
ordinates at intervals and (b) by calculation

(13)

10. If a = 2i + 4j − 5k and b = 3i − 2j + 6k deter-
mine: (i) a · b (ii) |a + b| (iii) a × b (iv) the angle
between a and b (14)
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11. Determine the work done by a force of F newtons
acting at a point A on a body, when A is displaced
to point B, the co-ordinates of A and B being
(2, 5, −3) and (1, −3, 0) metres respectively, and
when F = 2i − 5j + 4k newtons. (4)

12. A force of F = 3i − 4j + k newtons acts on a line
passing through a point P. Determine moment
M and its magnitude of the force F about a point
Q when P has co-ordinates (4, −1, 5) metres and
Q has co-ordinates (4, 0, −3) metres. (6)



Ch23-H8152.tex 23/6/2006 15: 9 Page 249

Complex numbers

E

23

Complex numbers

23.1 Cartesian complex numbers

(i) If the quadratic equation x2 + 2x + 5 = 0 is
solved using the quadratic formula then,

x = −2 ±√[(2)2 − (4)(1)(5)]

2(1)

= −2 ± √
[−16]

2
= −2 ± √

[(16)(−1)]

2

= −2 ± √
16

√−1

2
= −2 ± 4

√−1

2

= −1 ± 2
√−1

It is not possible to evaluate
√−1 in real

terms. However, if an operator j is defined as
j = √−1 then the solution may be expressed as
x = −1 ± j2.

(ii) −1 + j2 and −1 − j2 are known as complex
numbers. Both solutions are of the form a + jb,
‘a’ being termed the real part and jb the imag-
inary part. A complex number of the form
a + jb is called cartesian complex number.

(iii) In pure mathematics the symbol i is used to
indicate

√−1 (i being the first letter of the word
imaginary). However i is the symbol of electric
current in engineering, and to avoid possible
confusion the next letter in the alphabet, j, is
used to represent

√−1.

Problem 1. Solve the quadratic equation
x2 + 4 = 0.

Since x2 + 4 = 0 then x2 = −4 and x = √−4.

i.e., x = √[(−1)(4)] = √(−1)
√

4 = j(±2)

= ± j2, (since j = √−1)

(Note that ± j2 may also be written ±2 j).

Problem 2. Solve the quadratic equation
2x2 + 3x + 5 = 0.

Using the quadratic formula,

x = −3 ±√[(3)2 − 4(2)(5)]

2(2)

= −3 ± √−31

4
= −3 ± √

(−1)
√

31

4

= −3 ± j
√

31

4

Hence x = −3
4

± j

√
31
4

or −0.750 ± j1.392,

correct to 3 decimal places.

(Note, a graph of y = 2x2 + 3x + 5 does not cross
the x-axis and hence 2x2 + 3x + 5 = 0 has no real
roots.)

Problem 3. Evaluate

(a) j3 (b) j4 (c) j23 (d)
−4

j 9

(a) j 3 = j2 × j = (−1) × j = − j, since j2 = −1

(b) j 4 = j2 × j2 = (−1) × (−1) = 1

(c) j 23 = j × j22 = j × ( j2)11 = j × (−1)11

= j × (−1) = − j

(d) j 9 = j × j8 = j × ( j2)4 = j × (−1)4

= j × 1 = j

Hence
−4

j9 = −4

j
= −4

j
× −j

−j
= 4j

−j2

= 4j

−(−1)
= 4 j or j4
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Now try the following exercise.

Exercise 100 Further problems on the
introduction to cartesian complex numbers

In Problems 1 to 3, solve the quadratic equations.

1. x2 + 25 = 0 [± j5]

2. 2x2 + 3x + 4 = 0[

−3

4
± j

√
23

4
or − 0.750 ± j1.199

]

3. 4t2 − 5t + 7 = 0[
5

8
± j

√
87

8
or 0.625 ± j1.166

]

4. Evaluate (a) j8 (b) − 1

j7 (c)
4

2j13

[(a) 1 (b) −j (c) −j2]

23.2 The Argand diagram

A complex number may be represented pictorially
on rectangular or cartesian axes. The horizontal
(or x) axis is used to represent the real axis and the

−3 −2 −1 0 1 2 3 Real axis

Aj2

j

−j

−j2

j3

j4

−j3

−j4

D

B

Imaginary
axis

−j5
C

Figure 23.1

vertical (or y) axis is used to represent the imaginary
axis. Such a diagram is called an Argand diagram.
In Fig. 23.1, the point A represents the complex
number (3 + j2) and is obtained by plotting the
co-ordinates (3, j2) as in graphical work. Fig-
ure 23.1 also shows the Argand points B, C and
D representing the complex numbers (−2 + j4),
(−3 − j5) and (1 − j3) respectively.

23.3 Addition and subtraction of
complex numbers

Two complex numbers are added/subtracted by
adding/subtracting separately the two real parts and
the two imaginary parts.

For example, if Z1 = a + jb and Z2 = c + jd,

then Z1 + Z2 = (a + jb) + (c + jd)

= (a + c) + j(b + d)

and Z1 − Z2 = (a + jb) − (c + jd)

= (a − c) + j(b − d)

Thus, for example,

(2 + j3) + (3 − j4) = 2 + j3 + 3 − j4

= 5 − j1

and (2 + j3) − (3 − j4) = 2 + j3 − 3 + j4

= −1 + j7

The addition and subtraction of complex numbers
may be achieved graphically as shown in the Argand
diagram of Fig. 23.2. (2 + j3) is represented by vec-
tor OP and (3 − j4) by vector OQ. In Fig. 23.2(a)
by vector addition (i.e. the diagonal of the parallel-
ogram) OP + OQ = OR. R is the point (5, −j1).

Hence (2 + j3) + (3 − j4) = 5 − j1.

In Fig. 23.2(b), vector OQ is reversed (shown as OQ′)
since it is being subtracted. (Note OQ = 3 − j4
and OQ′ = −(3 − j4) = −3 + j4).
OP − OQ = OP + OQ′ = OS is found to be the
Argand point (−1, j7).

Hence (2 + j3) − (3 − j4) = − 1 + j7

Problem 4. Given Z1 = 2 + j4 and Z2 = 3 − j
determine (a) Z1 + Z2, (b) Z1 − Z2, (c) Z2 − Z1
and show the results on an Argand diagram.
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−j4

−j3

−j

j

j2

j3

Imaginary
axis

3 4 5 Real axis0

R (5−j )

P (2+j3)

Q (3−j4)

1 2

(a)

−j4

−j3

−j2

−j

j2

j3

0 31 2 Real axis

(b)

Q (3−j4)

−1−3 −2

j

j4

j5

j 7

Imaginary
axis

S (−1+j7)

P (2+j3)

Q '

j6

−j2

Figure 23.2

(a) Z1 + Z2 = (2 + j4) + (3 − j)

= (2 + 3) + j(4 − 1) = 5 + j3

(b) Z1 − Z2 = (2 + j4) − (3 − j)

= (2 − 3) + j(4 −(−1)) = −1 + j5

(c) Z2 − Z1 = (3 − j) − (2 + j4)

= (3 − 2) + j(−1 − 4) = 1 − j5

Each result is shown in the Argand diagram of
Fig. 23.3.

2 3 4 5 Real axis

Imaginary
axis

1−1

−j

−j2

−j3

−j4

−j5 (1−j5)

(5+j 3)

(−1+j5)

j3

j4

j5

0

j

j2

Figure 23.3

23.4 Multiplication and division of
complex numbers

(i) Multiplication of complex numbers is
achieved by assuming all quantities involved
are real and then using j2 = −1 to simplify.

Hence (a + jb)(c + jd)

= ac + a( jd) + ( jb)c + ( jb)( jd)

= ac + jad + jbc + j2bd

= (ac − bd) + j(ad + bc),

since j2 = −1

Thus (3 + j2)(4 − j5)

= 12 − j15 + j8 − j210

= (12 − (−10)) + j(−15 + 8)

= 22 − j 7

(ii) The complex conjugate of a complex num-
ber is obtained by changing the sign of the
imaginary part. Hence the complex conjugate
of a + jb is a − jb. The product of a complex
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number and its complex conjugate is always a
real number.

For example,

(3 + j4)(3 − j4) = 9 − j12 + j12 − j216

= 9 + 16 = 25

[(a + jb)(a − jb) may be evaluated ‘on sight’as
a2 + b2].

(iii) Division of complex numbers is achieved by
multiplying both numerator and denominator
by the complex conjugate of the denominator.

For example,

2 − j5

3 + j4
= 2 − j5

3 + j4
× (3 − j4)

(3 − j4)

= 6 − j8 − j15 + j220

32 + 42

= −14 − j23

25
= −14

25
− j

23
25

or −0.56 − j0.92

Problem 5. If Z1 = 1 − j3, Z2 = −2 + j5 and
Z3 = −3 − j4, determine in a + jb form:

(a) Z1Z2 (b)
Z1

Z3

(c)
Z1Z2

Z1 + Z2
(d) Z1Z2Z3

(a) Z1Z2 = (1 − j3)(−2 + j5)

= −2 + j5 + j6 − j215

= (−2 + 15) + j(5 + 6), since j2 = −1,

= 13 + j11

(b)
Z1

Z3
= 1 − j3

−3 − j4
= 1 − j3

−3 − j4
× −3 + j4

−3 + j4

= −3 + j4 + j9 − j212

32 + 42

= 9 + j13

25
= 9

25
+ j

13
25

or 0.36 + j0.52

(c)
Z1Z2

Z1 + Z2
= (1 − j3)(−2 + j5)

(1 − j3) + (−2 + j5)

= 13 + j11

−1 + j2
, from part (a),

= 13 + j11

−1 + j2
× −1 − j2

−1 − j2

= −13 − j26 − j11 − j222

12 + 22

= 9 − j37

5
= 9

5
− j

37
5

or 1.8 − j7.4

(d) Z1Z2Z3 = (13 + j11)(−3 − j4), since

Z1Z2 = 13 + j11, from part (a)

= −39 − j52 − j33 − j244

= (−39 + 44) − j(52 + 33)

= 5 − j85

Problem 6. Evaluate:

(a)
2

(1 + j)4 (b) j

(
1 + j3

1 − j2

)2

(a) (1 + j)2 = (1 + j)(1 + j) = 1 + j + j + j2

= 1 + j + j − 1 = j2

(1 + j)4 = [(1 + j)2]2 = ( j2)2 = j24 = −4

Hence
2

(1 + j)4 = 2

−4
= −1

2

(b)
1 + j3

1 − j2
= 1 + j3

1 − j2
× 1 + j2

1 + j2

= 1 + j2 + j3 + j26

12 + 22 = −5 + j5

5

= −1 + j1 = −1 + j

(
1 + j3

1 − j2

)2
= (−1 + j)2 = (−1 + j)(−1 + j)

= 1 − j − j + j2 = −j2
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Hence j

(
1 + j3

1 − j2

)2

= j(− j2) = − j22 = 2,

since j2 = −1

Now try the following exercise.

Exercise 101 Further problems on opera-
tions involving Cartesian complex numbers

1. Evaluate (a) (3 + j2) + (5 − j) and
(b) (−2 + j6) − (3 − j2) and show the
results on an Argand diagram.

[(a) 8 + j (b) −5 + j8]

2. Write down the complex conjugates of
(a) 3 + j4, (b) 2 − j.

[(a) 3 − j4 (b) 2 + j]

In Problems 3 to 7 evaluate in a + jb form
given Z1 = 1 + j2, Z2 = 4 − j3, Z3 = −2 + j3
and Z4 = −5 − j.

3. (a) Z1 + Z2 − Z3 (b) Z2 − Z1 + Z4

[(a) 7 − j4 (b) −2 − j6]

4. (a) Z1Z2 (b) Z3Z4

[(a) 10 + j5 (b) 13 − j13]

5. (a) Z1Z3 + Z4 (b) Z1Z2Z3

[(a) −13 − j2 (b) −35 + j20]

6. (a)
Z1

Z2
(b)

Z1 + Z3

Z2 − Z4
[

(a)
−2

25
+ j

11

25
(b)

−19

85
+ j

43

85

]

7. (a)
Z1Z3

Z1 + Z3
(b) Z2 + Z1

Z4
+ Z3

[

(a)
3

26
+ j

41

26
(b)

45

26
− j

9

26

]

8. Evaluate (a)
1 − j

1 + j
(b)

1

1 + j
[

(a) − j (b)
1

2
− j

1

2

]

9. Show that
−25

2

(
1 + j2

3 + j4
− 2 − j5

−j

)

= 57 + j24

23.5 Complex equations

If two complex numbers are equal, then their real
parts are equal and their imaginary parts are equal.
Hence if a + jb = c + jd, then a = c and b = d.

Problem 7. Solve the complex equations:

(a) 2(x + jy) = 6 − j3

(b) (1 + j2)(−2 − j3) = a + jb

(a) 2(x + jy) = 6 − j3 hence 2x + j2y = 6 − j3

Equating the real parts gives:

2x = 6, i.e. x = 3

Equating the imaginary parts gives:

2y = −3, i.e. y = − 3
2

(b) (1 + j2)(−2 − j3) = a + jb

−2 − j3 − j4 − j26 = a + jb

Hence 4 − j7 = a + jb
Equating real and imaginary terms gives:

a = 4 and b = −7

Problem 8. Solve the equations:

(a) (2 − j3) = √
(a + jb)

(b) (x − j2y) + ( y − j3x) = 2 + j3

(a) (2 − j3) = √
(a + jb)

Hence (2 − j3)2 = a + jb,

i.e. (2 − j3)(2 − j3) = a + jb

Hence 4 − j6 − j6 + j29 = a + jb

and −5 − j12 = a + jb

Thus a = −5 and b = −12

(b) (x − j2y) + (y − j3x) = 2 + j3

Hence (x + y) + j(−2y − 3x) = 2 + j3

Equating real and imaginary parts gives:

x + y = 2 (1)

and −3x − 2y = 3 (2)

i.e. two simultaneous equations to solve
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Multiplying equation (1) by 2 gives:

2x + 2y = 4 (3)

Adding equations (2) and (3) gives:

−x = 7, i.e., x = −7

From equation (1), y = 9, which may be
checked in equation (2).

Now try the following exercise.

Exercise 102 Further problems on complex
equations

In Problems 1 to 4 solve the complex equations.

1. (2 + j)(3 − j2) = a + jb [a = 8, b = −1]

2.
2 + j

1 − j
= j(x + jy)

[

x = 3

2
, y = −1

2

]

3. (2 − j3) = √
(a + jb) [a = −5, b = −12]

4. (x − j2y) − ( y − jx) = 2 + j [x = 3, y = 1]

5. If Z = R + jωL + 1/jωC, express Z in
(a + jb) form when R = 10, L = 5, C = 0.04
and ω = 4. [Z = 10 + j13.75]

23.6 The polar form of a complex
number

(i) Let a complex number z be x + jy as shown
in the Argand diagram of Fig. 23.4. Let dis-
tance OZ be r and the angle OZ makes with the
positive real axis be θ.

From trigonometry, x = r cos θ and

y = r sin θ

Hence Z = x + jy = r cos θ + jr sin θ

= r(cos θ + j sin θ)

Z = r(cos θ + j sin θ) is usually abbreviated to
Z = r∠θ which is known as the polar form of
a complex number.

(ii) r is called the modulus (or magnitude) of Z and
is written as mod Z or |Z|.
r is determined using Pythagoras’ theorem on
triangle OAZ in Fig. 23.4,

Z

jyr

θ
O

x
A Real axis

Imaginary
axis

Figure 23.4

i.e. r =
√

(x2 + y2)

(iii) θ is called the argument (or amplitude) of Z
and is written as arg Z .

By trigonometry on triangle OAZ ,

arg Z = θ = tan−1 y
x

(iv) Whenever changing from cartesian form to
polar form, or vice-versa, a sketch is invalu-
able for determining the quadrant in which the
complex number occurs.

Problem 9. Determine the modulus and argu-
ment of the complex number Z = 2 + j3, and
express Z in polar form.

Z = 2 + j3 lies in the first quadrant as shown in
Fig. 23.5.

r

0 2 Real axis

j3

Imaginary
axis

θ

Figure 23.5
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Modulus, |Z| = r =√(22 + 32) = √
13 or 3.606,

correct to 3 decimal places.

Argument, arg Z = θ = tan−1 3
2

= 56.31◦ or 56◦19′

In polar form, 2 + j3 is written as 3.606∠56◦19′.

Problem 10. Express the following complex
numbers in polar form:

(a) 3 + j4 (b) −3 + j4

(c) −3 − j4 (d) 3 − j4

(a) 3 + j4 is shown in Fig. 23.6 and lies in the first
quadrant.

1 2−1−2

−j

−j2

−j3

−j4

j

j2

j3

j4 (3+j4)(−3+j4)

(−3−j4) (3−j4)

3−3

r

r

r

Real axis

Imaginary
axis

r

θ
αα

α

Figure 23.6

Modulus, r =√(32 + 42) = 5 and argument
θ = arctan 4

3 = 53.13◦ = 53◦8′.

Hence 3 + j4 = 5∠53◦8′

(b) −3 + j4 is shown in Fig. 23.6 and lies in the
second quadrant.

Modulus, r = 5 and angle α = 53◦8′, from
part (a).

Argument = 180◦ − 53◦8′ = 126◦52′ (i.e. the
argument must be measured from the positive
real axis).

Hence −3 + j4 = 5∠126◦52′

(c) −3 − j4 is shown in Fig. 23.6 and lies in the
third quadrant.

Modulus, r = 5 and α = 53◦8′, as above.

Hence the argument = 180◦ + 53◦8′ = 233◦8′,
which is the same as −126◦52′.
Hence (−3 − j4) = 5∠233◦8′ or 5∠−126◦52′

(By convention the principal value is normally
used, i.e. the numerically least value, such that
−π < θ < π).

(d) 3 − j4 is shown in Fig. 23.6 and lies in the fourth
quadrant.

Modulus, r = 5 and angle α = 53◦8′, as above.

Hence (3 − j4) = 5∠−53◦8′

Problem 11. Convert (a) 4∠30◦ (b) 7∠−145◦
into a + jb form, correct to 4 significant figures.

(a) 4∠30◦ is shown in Fig. 23.7(a) and lies in the
first quadrant.

4
30° 

0 Real axisx

jy

Real axis

(b)

7
145° 

x

jy

(a)

Imaginary
axis

α

Figure 23.7

Using trigonometric ratios, x = 4 cos 30◦ = 3.464
and y = 4 sin 30◦ = 2.000.

Hence 4∠30◦ = 3.464 + j2.000

(b) 7∠145◦ is shown in Fig. 23.7(b) and lies in the
third quadrant.

Angle α = 180◦ − 145◦ = 35◦
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Hence x = 7 cos 35◦ = 5.734

and y = 7 sin 35◦ = 4.015

Hence 7∠−145◦ = −5.734 − j4.015

Alternatively

7∠−145◦ = 7 cos (−145◦) + j7 sin (−145◦)

= −5.734 − j4.015

23.7 Multiplication and division in
polar form

If Z1 = r1∠θ1 and Z2 = r2∠θ2 then:

(i) Z1Z2 = r1r2∠(θ1 + θ2) and

(ii)
Z1

Z2
= r1

r2
∠(θ1 − θ2)

Problem 12. Determine, in polar form:

(a) 8∠25◦ × 4∠60◦
(b) 3∠16◦ × 5∠−44◦ × 2∠80◦

(a) 8∠25◦×4∠60◦=(8×4)∠(25◦+60◦)=32∠85◦

(b) 3∠16◦ × 5∠− 44◦ × 2∠80◦

=(3×5×2)∠[16◦+ (−44◦)+80◦]=30∠52◦

Problem 13. Evaluate in polar form

(a)
16∠75◦

2∠15◦ (b)
10∠π

4
× 12∠π

2

6∠−π

3

(a)
16∠75◦

2∠15◦ = 16

2
∠(75◦ − 15◦) = 8∠60◦

(b)
10∠π

4
× 12∠π

2

6∠−π

3

= 10 × 12

6
∠
(π

4
+ π

2
−
(
−π

3

))

= 20∠13π

12
or 20∠−11π

12
or

20∠195◦ or 20∠−165◦

Problem 14. Evaluate, in polar form
2∠30◦ + 5∠−45◦ − 4∠120◦.

Addition and subtraction in polar form is not possible
directly. Each complex number has to be converted
into cartesian form first.

2∠30◦ = 2(cos 30◦ + j sin 30◦)

= 2 cos 30◦ + j2 sin 30◦ = 1.732 + j1.000

5∠−45◦ = 5(cos(−45◦) + j sin(−45◦))

= 5 cos(−45◦) + j5 sin(−45◦)

= 3.536 − j3.536

4∠120◦ = 4( cos 120◦ + j sin 120◦)

= 4 cos 120◦ + j4 sin 120◦

= −2.000 + j3.464

Hence 2∠30◦ + 5∠−45◦ − 4∠120◦

= (1.732 + j1.000) + (3.536 − j3.536)

− (−2.000 + j3.464)

= 7.268 − j6.000, which lies in the
fourth quadrant

= √
[(7.268)2 + (6.000)2]∠ tan−1

(−6.000

7.268

)

= 9.425∠−39.54◦ or 9.425∠−39◦32′

Now try the following exercise.

Exercise 103 Further problems on polar
form

1. Determine the modulus and argument of
(a) 2 + j4 (b) −5 − j2 (c) j(2 − j).

⎡

⎢
⎣

(a) 4.472, 63◦26′

(b) 5.385, −158◦12′

(c) 2.236, 63◦26′

⎤

⎥
⎦

In Problems 2 and 3 express the given Cartesian
complex numbers in polar form, leaving answers
in surd form.

2. (a) 2 + j3 (b) −4 (c) −6 + j
[

(a)
√

13∠56◦19′ (b) 4∠180◦

(c)
√

37∠170◦32′

]

3. (a) −j3 (b) (−2 + j)3 (c) j3(1 − j)
[

(a) 3∠−90◦ (b)
√

125∠100◦18′

(c)
√

2∠−135◦

]
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In Problems 4 and 5 convert the given polar com-
plex numbers into (a + jb) form giving answers
correct to 4 significant figures.

4. (a) 5∠30◦ (b) 3∠60◦ (c) 7∠45◦
⎡

⎣
(a) 4.330 + j2.500
(b) 1.500 + j2.598
(c) 4.950 + j4.950

⎤

⎦

5. (a) 6∠125◦ (b) 4∠π (c) 3.5∠−120◦
⎡

⎣
(a) −3.441 + j4.915
(b) −4.000 + j0
(c) −1.750 − j3.031

⎤

⎦

In Problems 6 to 8, evaluate in polar form.

6. (a) 3∠20◦ × 15∠45◦

(b) 2.4∠65◦ × 4.4∠−21◦
[(a) 45∠65◦ (b) 10.56∠44◦]

7. (a) 6.4∠27◦ ÷ 2∠−15◦

(b) 5∠30◦ × 4∠80◦ ÷ 10∠−40◦
[(a) 3.2∠42◦ (b) 2∠150◦]

8. (a) 4∠π

6
+ 3∠π

8
(b) 2∠120◦ + 5.2∠58◦ − 1.6∠−40◦

[(a) 6.986∠26◦47′ (b) 7.190∠85◦46′]

23.8 Applications of complex numbers

There are several applications of complex numbers
in science and engineering, in particular in electrical
alternating current theory and in mechanical vector
analysis.
The effect of multiplying a phasor by j is to rotate
it in a positive direction (i.e. anticlockwise) on an
Argand diagram through 90◦ without altering its
length. Similarly, multiplying a phasor by −j rotates
the phasor through −90◦. These facts are used in
a.c. theory since certain quantities in the phasor dia-
grams lie at 90◦ to each other. For example, in the
R−L series circuit shown in Fig. 23.8(a), VL leads
I by 90◦ (i.e. I lags VL by 90◦) and may be written
as jVL, the vertical axis being regarded as the imagi-
nary axis of an Argand diagram. Thus VR + jVL = V
and since VR = IR, V = IXL (where XL is the induc-
tive reactance, 2πf L ohms) and V = IZ (where Z is
the impedance) then R + jXL = Z .

R L

V

l
VR VL

R C

V

l
VR VC

VVL

VR l
(a)

Phasor diagram
VR l

VC

V(b)

Phasor diagram

θ

φ

Figure 23.8

Similarly, for the R−C circuit shown in
Fig. 23.8(b), VC lags I by 90◦ (i.e. I leads VC by
90◦) and VR − jVC = V , from which R − jXC = Z

(where XC is the capacitive reactance
1

2πfC
ohms).

Problem 15. Determine the resistance and
series inductance (or capacitance) for each of the
following impedances, assuming a frequency of
50 Hz:

(a) (4.0 + j7.0) � (b) −j20 �

(c) 15∠−60◦ �

(a) Impedance, Z = (4.0 + j7.0) � hence,
resistance = 4.0 
 and reactance = 7.00 �.
Since the imaginary part is positive, the reac-
tance is inductive,

i.e. XL = 7.0 �

Since XL = 2π f L then inductance,

L = XL

2π f
= 7.0

2π(50)
= 0.0223 H or 22.3 mH

(b) Impedance, Z = j20, i.e. Z = (0 − j20) � hence
resistance = 0 and reactance = 20 �. Since the
imaginary part is negative, the reactance is cap-

acitive, i.e., XC = 20 � and since XC = 1

2π f C
then:

capacitance, C = 1

2π f XC
= 1

2π(50)(20)
F

= 106

2π(50)(20)
µF = 159.2 µF



Ch23-H8152.tex 23/6/2006 15: 9 Page 258

258 COMPLEX NUMBERS

(c) Impedance, Z

= 15∠−60◦ = 15[ cos (−60◦) + j sin (−60◦)]

= 7.50 − j12.99 �

Hence resistance = 7.50 
 and capacitive reac-
tance, XC = 12.99 �

Since XC = 1

2π f C
then capacitance,

C = 1

2π f XC
= 106

2π(50)(12.99)
µF

= 245 µF

Problem 16. An alternating voltage of 240V,
50 Hz is connected across an impedance of
(60 − j100) �. Determine (a) the resistance
(b) the capacitance (c) the magnitude of the
impedance and its phase angle and (d) the current
flowing.

(a) Impedance Z = (60 − j100) �.

Hence resistance = 60 


(b) Capacitive reactance XC = 100 � and since

XC = 1

2π f C
then

capacitance, C = 1

2πfXC
= 1

2π(50)(100)

= 106

2π(50)(100)
µF

= 31.83 µF

(c) Magnitude of impedance,

|Z| =
√

[(60)2 + (−100)2] = 116.6 


Phase angle, arg Z = tan−1
(−100

60

)

= −59◦2′

(d) Current flowing, I = V

Z
= 240∠0◦

116.6∠−59◦2′

= 2.058 ∠ 59◦2′ A

The circuit and phasor diagrams are as shown in
Fig. 23.8(b).

Problem 17. For the parallel circuit shown in
Fig. 23.9, determine the value of current I and
its phase relative to the 240V supply, using
complex numbers.

R1 = 4 Ω XL = 3 Ω 

R2 = 10 Ω 

R3 = 12 Ω XC = 5 Ω 
l

240 V, 50 Hz

Figure 23.9

Current I = V

Z
. Impedance Z for the three-branch

parallel circuit is given by:

1

Z
= 1

Z1
+ 1

Z2
+ 1

Z3
,

where Z1 = 4 + j3, Z2 = 10 and Z3 = 12 − j5

Admittance, Y1 = 1

Z1
= 1

4 + j3

= 1

4 + j3
× 4 − j3

4 − j3
= 4 − j3

42 + 32

= 0.160 − j0.120 siemens

Admittance, Y2 = 1

Z2
= 1

10
= 0.10 siemens

Admittance, Y3 = 1

Z3
= 1

12 − j5

= 1

12 − j5
× 12 + j5

12 + j5
= 12 + j5

122 + 52

= 0.0710 + j0.0296 siemens

Total admittance, Y = Y1 + Y2 + Y3

= (0.160 − j0.120) + (0.10)

+ (0.0710 + j0.0296)

= 0.331 − j0.0904

= 0.343∠−15◦17′ siemens
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Current I = V

Z
= VY

= (240∠0◦)(0.343∠−15◦17′)
= 82.32 ∠−15◦17′ A

Problem 18. Determine the magnitude and
direction of the resultant of the three coplanar
forces given below, when they act at a point.

Force A, 10 N acting at 45◦ from the positive
horizontal axis.

Force B, 87 N acting at 120◦ from the positive
horizontal axis.

Force C, 15 N acting at 210◦ from the positive
horizontal axis.

The space diagram is shown in Fig. 23.10. The forces
may be written as complex numbers.

45° 

120° 
210° 

10 N8 N

15 N

Figure 23.10

Thus force A, fA = 10∠45◦, force B, fB = 8∠120◦
and force C, fC = 15∠210◦.

The resultant force

= fA + fB + fC

= 10∠45◦ + 8∠120◦ + 15∠210◦

= 10(cos 45◦ + j sin 45◦) + 8(cos 120◦

+ j sin 120◦) + 15(cos 210◦ + j sin 210◦)

= (7.071 + j7.071) + (−4.00 + j6.928)

+ (−12.99 − j7.50)

= −9.919 + j6.499

Magnitude of resultant force

=
√

[(−9.919)2 + (6.499)2] = 11.86 N

Direction of resultant force

= tan−1
(

6.499

−9.919

)

= 146◦46′

(since −9.919 + j6.499 lies in the second quadrant).

Now try the following exercise.

Exercise 104 Further problems on applica-
tions of complex numbers

1. Determine the resistance R and series induc-
tance L (or capacitance C) for each of
the following impedances assuming the
frequency to be 50 Hz.

(a) (3 + j8) � (b) (2 − j3) �
(c) j14 � (d) 8∠−60◦ �

⎡

⎢
⎢
⎢
⎣

(a) R = 3 �, L = 25.5 mH
(b) R = 2 �, C = 1061 µF
(c) R = 0, L = 44.56 mH
(d) R = 4 �, C = 459.4 µF

⎤

⎥
⎥
⎥
⎦

2. Two impedances, Z1 = (3 + j6) � and
Z2 = (4 − j3) � are connected in series to
a supply voltage of 120V. Determine the
magnitude of the current and its phase angle
relative to the voltage.

[15.76A, 23◦12′ lagging]

3. If the two impedances in Problem 2 are
connected in parallel determine the current
flowing and its phase relative to the 120V
supply voltage. [27.25A, 3◦22′ lagging]

4. A series circuit consists of a 12 � resistor, a
coil of inductance 0.10 H and a capacitance
of 160 µF. Calculate the current flowing
and its phase relative to the supply voltage
of 240V, 50 Hz. Determine also the power
factor of the circuit.

[14.42A, 43◦50′ lagging, 0.721]

5. For the circuit shown in Fig. 23.11, deter-
mine the current I flowing and its phase
relative to the applied voltage.

[14.6A, 2◦30′ leading]

6. Determine, using complex numbers, the
magnitude and direction of the resultant of
the coplanar forces given below, which are
acting at a point. Force A, 5 N acting hori-
zontally, Force B, 9 N acting at an angle of
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135◦ to force A, Force C, 12 N acting at an
angle of 240◦ to force A.

[8.394 N, 208◦40′ from force A]

XC = 20 Ω R1 = 30 Ω

R2 = 40 Ω XL = 50 Ω

R3 = 25 Ω

V = 200 V

l

Figure 23.11

7. A delta-connected impedance ZA is
given by:

ZA = Z1Z2 + Z2Z3 + Z3Z1

Z2

Determine ZA in both Cartesian and polar
form given Z1 = (10 + j0) �,
Z2 = (0 − j10) � and Z3 = (10 + j10) �.

[(10 + j20) �, 22.36∠63.43◦ �]

8. In the hydrogen atom, the angular momen-
tum, p, of the de Broglie wave is given

by: pψ = −
(

jh

2π

)

(±jmψ). Determine an

expression for p.

[

±mh

2π

]

9. An aircraft P flying at a constant height has
a velocity of (400 + j300) km/h. Another
aircraft Q at the same height has a veloc-
ity of (200 − j600) km/h. Determine (a) the
velocity of P relative to Q, and (b) the veloc-
ity of Q relative to P. Express the answers
in polar form, correct to the nearest km/h.[

(a) 922 km/h at 77.47◦

(b) 922 km/h at −102.53◦

]

10. Three vectors are represented by P, 2∠30◦,
Q, 3∠90◦ and R, 4∠−60◦. Determine in
polar form the vectors represented by (a)
P + Q + R, (b) P − Q − R.[

(a) 3.770∠8.17◦

(b) 1.488∠100.37◦

]

11. In a Schering bridge circuit,
ZX = (RX − jXCX ), Z2 = −jXC2 ,

Z3 = (R3)(− jXC3)

(R3 − jXC3)
and Z4 = R4

where XC = 1

2π f C
At balance: (ZX )(Z3) = (Z2)(Z4).

Show that at balance RX = C3R4

C2
and

CX = C2R3

R4
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24

De Moivre’s theorem

24.1 Introduction

From multiplication of complex numbers in polar
form,

(r∠θ) × (r∠θ) = r2∠2θ

Similarly, (r∠θ)×(r∠θ)×(r∠θ) = r3∠3θ, and so on.
In general, De Moivre’s theorem states:

[r∠θ]n = rn∠nθ

The theorem is true for all positive, negative and frac-
tional values of n. The theorem is used to determine
powers and roots of complex numbers.

24.2 Powers of complex numbers

For example [3∠20◦]4 = 34∠(4×20◦) = 81∠80◦ by
De Moivre’s theorem.

Problem 1. Determine, in polar form
(a) [2∠35◦]5 (b) (−2 + j3)6.

(a) [2∠35◦]5 = 25∠(5 × 35◦),

from De Moivre’s theorem

= 32∠175◦

(b) (−2 + j3) =√[(−2)2 + (3)2]∠ tan−1 3

−2

= √
13∠123.69◦, since −2 + j3

lies in the second quadrant

(−2 + j3)6 = [
√

13∠123.69◦]6

= (
√

13)6∠(6 × 123.69◦),

by De Moivre’s theorem

= 2197∠742.14◦

= 2197∠382.14◦(since 742.14

≡ 742.14◦ − 360◦ = 382.14◦)

= 2197∠22.14◦(since 382.14◦

≡ 382.14◦ − 360◦ = 22.14◦)

or 2197∠22◦8′

Problem 2. Determine the value of (−7 + j5)4,
expressing the result in polar and rectangular
forms.

(−7 + j5) =
√

[(−7)2 + 52]∠ tan−1 5

−7

= √
74∠144.46◦

(Note, by considering the Argand diagram, −7 + j5
must represent an angle in the second quadrant and
not in the fourth quadrant.)

Applying De Moivre’s theorem:

(−7 + j5)4 = [
√

74∠144.46◦]4

=
√

744∠4 × 144.46◦

= 5476∠577.84◦

= 5476∠217.84◦or

5476∠217◦15′ in polar form

Since r∠θ = r cos θ + jr sin θ,

5476∠217.84◦ = 5476 cos 217.84◦

+ j5476 sin 217.84◦

= −4325 − j3359

i.e. (−7 + j5)4 = −4325 − j3359

in rectangular form

Now try the following exercise.

Exercise 105 Further problems on powers
of complex numbers

1. Determine in polar form (a) [1.5∠15◦]5

(b) (1 + j2)6.
[(a) 7.594∠75◦ (b) 125∠20◦37′]
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2. Determine in polar and cartesian forms
(a) [3∠41◦]4 (b) (−2 − j)5.

[
(a) 81∠164◦, −77.86 + j22.33
(b) 55.90∠−47◦10′, 38 − j41

]

3. Convert (3 − j) into polar form and hence
evaluate (3 − j)7, giving the answer in polar
form. [

√
10∠−18◦26′, 3162∠−129◦2′]

In problems 4 to 7, express in both polar and
rectangular forms.

4. (6 + j5)3 [476.4∠119◦25′, −234 + j415]

5. (3 − j8)5

[45530∠12◦47′, 44400 + j10070]

6. (−2 + j7)4 [2809∠63◦47′, 1241 + j2520]

7. (−16 − j9)6

[
(38.27 × 106)∠176◦9′,
106(−38.18 + j2.570)

]

24.3 Roots of complex numbers

The square root of a complex number is determined
by letting n = 1/2 in De Moivre’s theorem,

i.e.
√

[r∠θ] = [r∠θ]
1
2 = r

1
2 ∠1

2
θ = √

r∠θ

2

There are two square roots of a real number, equal
in size but opposite in sign.

Problem 3. Determine the two square roots of
the complex number (5 + j12) in polar and carte-
sian forms and show the roots on an Argand
diagram.

(5 + j12) =
√

[52 + 122]∠ arctan
12

5
= 13∠67.38◦

When determining square roots two solutions result.
To obtain the second solution one way is to
express 13∠67.38◦ also as 13∠(67.38◦ + 360◦), i.e.
13∠427.38◦.When the angle is divided by 2 an angle
less than 360◦ is obtained.

Hence
√

(5 + j12) =
√

[13∠67.38◦] and
√

[13∠427.38◦]

= [13∠67.38◦]
1
2 and [13∠427.38◦]

1
2

= 13
1
2 ∠
(

1

2
× 67.38◦

)

and

13
1
2 ∠
(

1

2
× 427.38◦

)

= √
13∠33.69◦ and

√
13∠213.69◦

= 3.61∠33◦41′ and 3.61∠213◦41′

Thus, in polar form, the two roots are
3.61∠33◦41′ and 3.61∠−146◦19′.
√

13∠33.69◦ = √
13( cos 33.69◦ + j sin 33.69◦)

= 3.0 + j2.0
√

13∠213.69◦ = √
13( cos 213.69◦ + j sin 213.69◦)

= −3.0 − j2.0

Thus, in cartesian form the two roots are
±(3.0 + j2.0).

From the Argand diagram shown in Fig. 24.1 the
two roots are seen to be 180◦ apart, which is always
true when finding square roots of complex numbers.

Imaginary axis

j2

213° 41'
33° 41'

3.61

3.61

−j2

−3 3 Real axis

Figure 24.1

In general, when finding the nth root of a complex
number, there are n solutions. For example, there
are three solutions to a cube root, five solutions to a
fifth root, and so on. In the solutions to the roots of a
complex number, the modulus, r, is always the same,
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but the arguments, θ, are different. It is shown in
Problem 3 that arguments are symmetrically spaced
on an Argand diagram and are (360/n)◦ apart, where
n is the number of the roots required. Thus if one of
the solutions to the cube root of a complex number
is, say, 5∠20◦, the other two roots are symmetrically
spaced (360/3)◦, i.e. 120◦ from this root and the
three roots are 5∠20◦, 5∠140◦ and 5∠260◦.

Problem 4. Find the roots of [(5 + j3)]
1
2 in

rectangular form, correct to 4 significant figures.

(5 + j3) = √
34∠30.96◦

Applying De Moivre’s theorem:

(5 + j3)
1
2 =

√

34
1
2 ∠ 1

2 × 30.96◦

= 2.415∠15.48◦or 2.415∠15◦29′

The second root may be obtained as shown above,
i.e. having the same modulus but displaced (360/2)◦
from the first root.

Thus, (5 + j3)
1
2 = 2.415∠(15.48◦ + 180◦)

= 2.415∠195.48◦

In rectangular form:

2.415∠15.48◦ = 2.415 cos 15.48◦

+ j2.415 sin 15.48◦

= 2.327 + j0.6446

and 2.415∠195.48◦ = 2.415 cos 195.48◦

+ j2.415 sin 195.48◦

= −2.327 − j0.6446

Hence [(5 + j3)]
1
2 = 2.415∠15.48◦and

2.415∠195.48◦or

± (2.327 + j0.6446).

Problem 5. Express the roots of

(−14 + j3)
−2
5 in polar form.

(−14 + j3) = √
205∠167.905◦

(−14 + j3)
−2
5 =

√

205
−2
5 ∠

[(

−2

5

)

× 167.905◦
]

= 0.3449∠−67.164◦

or 0.3449∠−67◦10′

There are five roots to this complex number,

(

x
−2
5 = 1

x
2
5

= 1
5
√

x2

)

The roots are symmetrically displaced from one
another (360/5)◦, i.e. 72◦ apart round an Argand
diagram.

Thus the required roots are 0.3449∠−67◦10′,
0.3449∠4◦50′, 0.3449∠76◦50′, 0.3449∠148◦50′
and 0.3449∠220◦50′.

Now try the following exercise.

Exercise 106 Further problems on the
roots of complex numbers

In Problems 1 to 3 determine the two square roots
of the given complex numbers in cartesian form
and show the results on an Argand diagram.

1. (a) 1 + j (b) j [
(a) ±(1.099 + j0.455)

(b) ±(0.707 + j0.707)

]

2. (a) 3 − j4 (b) −1 − j2[
(a) ±(2 − j)

(b) ±(0.786 − j1.272)

]

3. (a) 7∠60◦ (b) 12∠3π

2[
(a) ±(2.291 + j1.323)

(b) ±(−2.449 + j2.449)

]

In Problems 4 to 7, determine the moduli and
arguments of the complex roots.

4. (3 + j4)
1
3[

Moduli 1.710, arguments 17◦43′,
137◦43′ and 257◦43′

]



Ch24-H8152.tex 23/6/2006 15: 9 Page 264

264 COMPLEX NUMBERS

5. (−2 + j)
1
4

⎡

⎣
Moduli 1.223, arguments

38◦22′, 128◦22′,
218◦22′ and 308◦22′

⎤

⎦

6. (−6 − j5)
1
2 [

Moduli 2.795, arguments
109◦54′, 289◦54′

]

7. (4 − j3)
−2
3[
Moduli 0.3420, arguments 24◦35′,

144◦35′ and 264◦35′
]

8. For a transmission line, the characteristic
impedance Z0 and the propagation coefficient
γ are given by:

Z0 =
√(

R + jωL

G + jωC

)

and

γ = √[(R + jωL)(G + jωC)]

Given R = 25 �, L = 5 × 10−3 H,
G = 80 × 10−6 siemens, C = 0.04 × 10−6 F
and ω = 2000 π rad/s, determine, in polar

form, Z0 and γ .

[
Z0 = 390.2∠− 10.43◦ �,
γ = 0.1029∠61.92◦

]

24.4 The exponential form of a
complex number

Certain mathematical functions may be expressed as
power series (for example, by Maclaurin’s series—
see Chapter 8), three example being:

(i) ex = 1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · · (1)

(ii) sin x = x − x3

3! + x5

5! − x7

7! + · · · (2)

(iii) cos x = 1 − x2

2! + x4

4! − x6

6! + · · · (3)

Replacing x in equation (1) by the imaginary number
jθ gives:

e jθ = 1+jθ+ ( jθ)2

2! + ( jθ)3

3! + ( jθ)4

4! + ( jθ)5

5! +· · ·

= 1 + jθ + j2θ2

2! + j3θ3

3! + j4θ4

4! + j5θ5

5! + · · ·

By definition, j = √
(−1), hence j2 = −1, j3 = −j,

j4 = 1, j5 = j, and so on.

Thus e jθ = 1 + jθ − θ2

2! − j
θ3

3! + θ4

4! + j
θ5

5! − · · ·
Grouping real and imaginary terms gives:

e jθ =
(

1 − θ2

2! + θ4

4! − · · ·
)

+ j

(

θ − θ3

3! + θ5

5! − · · ·
)

However, from equations (2) and (3):
(

1 − θ2

2! + θ4

4! − · · ·
)

= cos θ

and

(

θ − θ3

3! + θ5

5! − · · ·
)

= sin θ

Thus e jθ = cos θ + j sin θ (4)

Writing −θ for θ in equation (4), gives:

e j(−θ) = cos(−θ) + j sin(−θ)

However, cos(−θ) = cos θ and sin(−θ) = −sin θ

Thus e −jθ = cos θ − j sin θ (5)

The polar form of a complex number z is:
z = r(cos θ + j sin θ). But, from equation (4),
cos θ + j sin θ = e jθ .

Therefore z = re jθ

When a complex number is written in this way, it is
said to be expressed in exponential form.

There are therefore three ways of expressing a
complex number:

1. z = (a + jb), called Cartesian or rectangu-
lar form,

2. z = r(cos θ + j sin θ) or r∠θ, called polar form,
and

3. z = re jθ called exponential form.

The exponential form is obtained from the polar

form. For example, 4∠30◦ becomes 4e j π6 in expo-
nential form. (Note that in re jθ , θ must be in radians.)
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Problem 6. Change (3 − j4) into (a) polar
form, (b) exponential form.

(a) (3 − j4) = 5∠−53.13◦or 5∠−0.927
in polar form

(b) (3 − j4) = 5∠−0.927 = 5e−j0.927

in exponential form

Problem 7. Convert 7.2e j1.5 into rectangular
form.

7.2e j1.5 =7.2∠1.5 rad(= 7.2∠85.94◦) in polar form

= 7.2 cos 1.5 + j7.2 sin 1.5

= (0.509 + j7.182) in rectangular form

Problem 8. Express z = 2e1+j π3 in Cartesian
form.

z = (2e1)
(

e j π3
)

by the laws of indices

= (2e1)∠π

3
(or 2e∠60◦)in polar form

= 2e
(

cos
π

3
+ j sin

π

3

)

= (2.718 + j4.708) in Cartesian form

Problem 9. Change 6e2−j3 into (a + jb) form.

6e2−j3 = (6e2)(e−j3) by the laws of indices

= 6e2∠−3 rad (or 6e2∠−171.890)
in polar form

= 6e2[cos(−3) + j sin(−3)]
= (−43.89 − j6.26) in (a + jb) form

Problem 10. If z = 4e j1.3, determine ln z (a) in
Cartesian form, and (b) in polar form.

If z = re jθthen ln z = ln (re jθ)

= ln r + ln e jθ

i.e. ln z = ln r + jθ,

by the laws of logarithms

(a) Thus if z = 4e j1.3 then ln z = ln (4e j1.3)
= ln 4 + j1.3

(or 1.386 + j1.300) in Cartesian form.
(b) (1.386 + j1.300) = 1.90∠43.17◦ or 1.90∠0.753

in polar form.

Problem 11. Given z = 3e1−j, find ln z in polar
form.

If z = 3e1−j, then

ln z = ln (3e1−j)

= ln 3 + ln e1−j

= ln 3 + 1 − j

= (1 + ln 3) − j

= 2.0986 − j1.0000

= 2.325∠−25.48◦or 2.325∠−0.445

Problem 12. Determine, in polar form,
ln(3 + j4).

ln(3 + j4) = ln[5∠0.927] = ln[5e j0.927]

= ln 5 + ln(e j0.927)
= ln 5 + j0.927
= 1.609 + j0.927
= 1.857∠29.95◦or 1.857∠0.523

Now try the following exercise.

Exercise 107 Further problems on the
exponential form of complex numbers

1. Change (5 + j3) into exponential form.
[5.83e j0.54]

2. Convert (−2.5 + j4.2) into exponential form.
[4.89e j2.11]

3. Change 3.6e j2 into cartesian form.
[−1.50 + j3.27]
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4. Express 2e3+j π6 in (a + jb) form.
[34.79 + j20.09]

5. Convert 1.7e1.2−j2.5 into rectangular form.
[−4.52 − j3.38]

6. If z = 7e j2.1, determine ln z (a) in Cartesian
form, and (b) in polar form.⎡

⎣
(a) ln 7 + j2.1
(b) 2.86∠47.18◦or

2.86∠0.82

⎤

⎦

7. Given z = 4e1.5−j2, determine ln z in polar
form. [3.51∠−34.72◦ or 3.51∠−0.61]

8. Determine in polar form (a) ln(2 + j5)
(b) ln(−4 − j3)

⎡

⎢
⎣

(a) 2.06∠35.26◦or
2.06∠0.615

(b) 4.11∠66.96◦or
4.11∠1.17

⎤

⎥
⎦

9. When displaced electrons oscillate about an
equilibrium position the displacement x is
given by the equation:

x = Ae

{

− ht
2m + j

√
(4mf −h2)
2m−a t

}

Determine the real part of x in terms of t,
assuming (4mf − h2) is positive.

[

Ae− ht
2m cos

(√
(4mf − h2)
2m − a

)

t

]
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25

The theory of matrices and determinants

25.1 Matrix notation

Matrices and determinants are mainly used for the
solution of linear simultaneous equations. The the-
ory of matrices and determinants is dealt with in this
chapter and this theory is then used in Chapter 26 to
solve simultaneous equations.

The coefficients of the variables for linear simul-
taneous equations may be shown in matrix form. The
coefficients of x and y in the simultaneous equations

x + 2y = 3

4x − 5y = 6

become

(
1 2
4 −5

)

in matrix notation.

Similarly, the coefficients of p, q and r in the
equations

1.3p − 2.0q + r = 7

3.7p + 4.8q − 7r = 3

4.1p + 3.8q + 12r = −6

become

(
1.3 −2.0 1
3.7 4.8 −7
4.1 3.8 12

)

in matrix form.

The numbers within a matrix are called an array and
the coefficients forming the array are called the ele-
ments of the matrix. The number of rows in a matrix
is usually specified by m and the number of columns
by n and a matrix referred to as an ‘m by n’ matrix.

Thus,

(
2 3 6
4 5 7

)

is a ‘2 by 3’ matrix. Matrices can-

not be expressed as a single numerical value, but they
can often be simplified or combined, and unknown
element values can be determined by comparison
methods. Just as there are rules for addition, sub-
traction, multiplication and division of numbers in
arithmetic, rules for these operations can be applied
to matrices and the rules of matrices are such that
they obey most of those governing the algebra of
numbers.

25.2 Addition, subtraction and
multiplication of matrices

(i) Addition of matrices

Corresponding elements in two matrices may be
added to form a single matrix.

Problem 1. Add the matrices

(a)

(
2 −1

−7 4

)

and

(−3 0
7 −4

)

and

(b)

(
3 1 −4
4 3 1
1 4 −3

)

and

(
2 7 −5

−2 1 0
6 3 4

)

(a) Adding the corresponding elements gives:
(

2 −1
−7 4

)

+
(−3 0

7 −4

)

=
(

2 + (−3) −1 + 0
−7 + 7 4 + (−4)

)

=
(−1 −1

0 0

)

(b) Adding the corresponding elements gives:
(

3 1 −4
4 3 1
1 4 −3

)

+
(

2 7 −5
−2 1 0

6 3 4

)

=
(

3 + 2 1 + 7 −4 + (−5)
4 + (−2) 3 + 1 1 + 0
1 + 6 4 + 3 −3 + 4

)

=
(

5 8 −9
2 4 1
7 7 1

)

(ii) Subtraction of matrices

If A is a matrix and B is another matrix, then (A−B)
is a single matrix formed by subtracting the elements
of B from the corresponding elements of A.
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Problem 2. Subtract

(a)

(−3 0
7 −4

)

from

(
2 −1

−7 4

)

and

(b)

(
2 7 −5

−2 1 0
6 3 4

)

from

(
3 1 −4
4 3 1
1 4 −3

)

To find matrix A minus matrix B, the elements of
B are taken from the corresponding elements of A.
Thus:

(a)

(
2 −1

−7 4

)

−
(−3 0

7 −4

)

=
(

2 − (−3) −1 − 0
−7 − 7 4 − (−4)

)

=
(

5 −1
−14 8

)

(b)

(
3 1 −4
4 3 1
1 4 −3

)

−
(

2 7 −5
−2 1 0

6 3 4

)

=
(

3 − 2 1 − 7 −4 − (−5)
4 − (−2) 3 − 1 1 − 0
1 − 6 4 − 3 −3 − 4

)

=
(

1 −6 1
6 2 1

−5 1 −7

)

Problem 3. If

A =
(−3 0

7 −4

)

, B =
(

2 −1
−7 4

)

and

C =
(

1 0
−2 −4

)

find A + B − C.

A + B =
(−1 −1

0 0

)

(from Problem 1)

Hence, A + B − C =
(−1 −1

0 0

)

−
(

1 0
−2 −4

)

=
(−1 − 1 −1 − 0

0 − (−2) 0 − (−4)

)

=
(−2 −1

2 4

)

Alternatively A + B − C

=
(−3 0

7 −4

)

+
(

2 −1
−7 4

)

−
(

1 0
−2 −4

)

=
(−3 + 2 − 1 0 + ( − 1) − 0

7 + (−7) − (−2) −4 + 4 − (−4)

)

=
(−2 −1

2 4

)

as obtained previously

(iii) Multiplication

When a matrix is multiplied by a number, called
scalar multiplication, a single matrix results in
which each element of the original matrix has been
multiplied by the number.

Problem 4. If A =
(−3 0

7 −4

)

,

B =
(

2 −1
−7 4

)

and C =
(

1 0

−2 −4

)

find

2A − 3B + 4C.

For scalar multiplication, each element is multiplied
by the scalar quantity, hence

2A = 2

(−3 0
7 −4

)

=
(−6 0

14 −8

)

3B = 3

(
2 −1

−7 4

)

=
(

6 −3
−21 12

)

and 4C = 4

(
1 0

−2 −4

)

=
(

4 0
−8 −16

)

Hence 2A − 3B + 4C

=
(−6 0

14 −8

)

−
(

6 −3
−21 12

)

+
(

4 0
−8 −16

)

=
(−6 − 6 + 4 0 − (−3) + 0

14 − (−21) + (−8) −8 − 12 + (−16)

)

=
(−8 3

27 −36

)

When a matrix A is multiplied by another matrix B, a
single matrix results in which elements are obtained
from the sum of the products of the corresponding
rows of A and the corresponding columns of B.

Two matrices A and B may be multiplied together,
provided the number of elements in the rows of
matrix A are equal to the number of elements in the
columns of matrix B. In general terms, when multi-
plying a matrix of dimensions (m by n) by a matrix of
dimensions (n by r), the resulting matrix has dimen-
sions (m by r). Thus a 2 by 3 matrix multiplied by a
3 by 1 matrix gives a matrix of dimensions 2 by 1.
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Problem 5. If A =
(

2 3
1 −4

)

and B =
(−5 7

−3 4

)

find A × B.

Let A × B = C where C =
(

C11 C12
C21 C22

)

C11 is the sum of the products of the first row ele-
ments of A and the first column elements of B taken
one at a time,

i.e. C11 = (2 × (−5)) + (3 × (−3)) = −19

C12 is the sum of the products of the first row ele-
ments of A and the second column elements of B,
taken one at a time,

i.e. C12 = (2 × 7) + (3 × 4) = 26

C21 is the sum of the products of the second row
elements of A and the first column elements of B,
taken one at a time,

i.e. C21 = (1 × ( − 5)) + (−4 × (−3)) = 7

Finally, C22 is the sum of the products of the second
row elements of A and the second column elements
of B, taken one at a time,

i.e. C22 = (1 × 7) + ((−4) × 4) = −9

Thus, A × B =
(−19 26

7 −9

)

Problem 6. Simplify
(

3 4 0
−2 6 −3

7 −4 1

)

×
(

2
5

−1

)

The sum of the products of the elements of each
row of the first matrix and the elements of the second
matrix, (called a column matrix), are taken one at a
time. Thus:
(

3 4 0
−2 6 −3

7 −4 1

)

×
(

2
5

−1

)

=
(

(3 × 2) + (4 × 5) + (0 × (−1))
(−2 × 2) + (6 × 5) + (−3 × (−1))
(7 × 2) + (−4 × 5) + (1 × (−1))

)

=
(

26
29
−7

)

Problem 7. If A =
(

3 4 0
−2 6 −3

7 −4 1

)

and

B =
(

2 −5
5 −6

−1 −7

)

, find A × B.

The sum of the products of the elements of each row
of the first matrix and the elements of each column of
the second matrix are taken one at a time. Thus:
(

3 4 0
−2 6 −3

7 −4 1

)

×
(

2 −5
5 −6

−1 −7

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[(3 × 2) [(3 × (−5))
+ (4 × 5) +(4 × (−6))
+ (0 × (−1))] +(0 × (−7))]

[(−2 × 2) [(−2 × (−5))
+ (6 × 5) +(6 × (−6))
+ (−3 × (−1))] +(−3 × (−7))]

[(7 × 2) [(7 × (−5))
+ (−4 × 5) +(−4 × (−6))
+ (1 × (−1))] +(1 × (−7))]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(

26 −39
29 −5
−7 −18

)

Problem 8. Determine
(

1 0 3
2 1 2
1 3 1

)

×
(

2 2 0
1 3 2
3 2 0

)

The sum of the products of the elements of each row
of the first matrix and the elements of each column of
the second matrix are taken one at a time. Thus:
(

1 0 3
2 1 2
1 3 1

)

×
(

2 2 0
1 3 2
3 2 0

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[(1 × 2) [(1 × 2) [(1 × 0)
+ (0 × 1) + (0 × 3) + (0 × 2)
+ (3 × 3)] + (3 × 2)] + (3 × 0)]

[(2 × 2) [(2 × 2) [(2 × 0)
+ (1 × 1) + (1 × 3) + (1 × 2)
+ (2 × 3)] + (2 × 2)] + (2 × 0)]

[(1 × 2) [(1 × 2) [(1 × 0)
+ (3 × 1) + (3 × 3) + (3 × 2)
+ (1 × 3)] + (1 × 2)] + (1 × 0)]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(

11 8 0
11 11 2
8 13 6

)
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In algebra, the commutative law of multiplication
states that a × b = b × a. For matrices, this law is
only true in a few special cases, and in general A×B
is not equal to B × A.

Problem 9. If A =
(

2 3
1 0

)

and

B =
(

2 3
0 1

)

show that A × B �= B × A.

A × B =
(

2 3
1 0

)

×
(

2 3
0 1

)

=
(

[(2 × 2) + (3 × 0)] [(2 × 3) + (3 × 1)]
[(1 × 2) + (0 × 0)] [(1 × 3) + (0 × 1)]

)

=
(

4 9
2 3

)

B × A =
(

2 3
0 1

)

×
(

2 3
1 0

)

=
(

[(2 × 2) + (3 × 1)] [(2 × 3) + (3 × 0)]
[(0 × 2) + (1 × 1)] [(0 × 3) + (1 × 0)]

)

=
(

7 6
1 0

)

Since

(
4 9
2 3

)

�=
(

7 6
1 0

)

, then A × B �= B × A

Now try the following exercise.

Exercise 108 Further problems on addition,
subtraction and multiplication of matrices

In Problems 1 to 13, the matrices A to K are:

A =
(

3 −1
−4 7

)

B =
⎛

⎜
⎝

1

2

2

3

−1

3
−3

5

⎞

⎟
⎠

C =
(−1.3 7.4

2.5 −3.9

)

D =
(

4 −7 6
−2 4 0

5 7 −4

)

E =

⎛

⎜
⎜
⎜
⎜
⎝

3 6
1

2
5 −2

3
7

−1 0
3

5

⎞

⎟
⎟
⎟
⎟
⎠

F =
(

3.1 2.4 6.4
−1.6 3.8 −1.9

5.3 3.4 −4.8

)

G =
⎛

⎜
⎝

3

4

1
2

5

⎞

⎟
⎠

H =
(−2

5

)

J =
(

4
−11

7

)

K =
(

1 0
0 1
1 0

)

Addition, subtraction and multiplication

In Problems 1 to 12, perform the matrix opera-
tion stated.

1. A + B

⎡

⎢
⎣

⎛

⎜
⎝

3
1

2
−1

3

−4
1

3
6

2

5

⎞

⎟
⎠

⎤

⎥
⎦

2. D + E

⎡

⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎝

7 −1 6
1

2
3 3

1

3
7

4 7 −3
2

5

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

3. A − B

⎡

⎢
⎣

⎛

⎜
⎝

2
1

2
−1

2

3

−3
2

3
7

3

5

⎞

⎟
⎠

⎤

⎥
⎦

4. A + B − C

[(
4.8 −7.73̇

−6.83̇ 10.3

)]

5. 5A + 6B

[(
18.0 −1.0

−22.0 31.4

)]

6. 2D + 3E − 4F[(
4.6 −5.6 −12.1

17.4 −9.2 28.6
−14.2 0.4 13.0

)]

7. A × H

[(−11
43

)]

8. A × B

⎡

⎢
⎣

⎛

⎜
⎝

1
5

6
2

3

5

−4
1

3
−6

13

15

⎞

⎟
⎠

⎤

⎥
⎦

9. A × C

[(−6.4 26.1
22.7 −56.9

)]

10. D × J

[(
135
−52
−85

)]
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11. E × K

⎡

⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎝

3
1

2
6

12 −2

3
−2

5
0

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

12. D × F

[(
55.4 3.4 10.1

−12.6 10.4 −20.4
−16.9 25.0 37.9

)]

13. Show that A × C �= C × A⎡

⎢
⎢
⎢
⎢
⎣

A × C =
(−6.4 26.1

22.7 −56.9

)

C × A =
(−33.5 −53.1

23.1 −29.8

)

Hence they are not equal

⎤

⎥
⎥
⎥
⎥
⎦

25.3 The unit matrix

A unit matrix, I, is one in which all elements
of the leading diagonal (\) have a value of 1 and
all other elements have a value of 0. Multiplication
of a matrix by I is the equivalent of multiplying by
1 in arithmetic.

25.4 The determinant of a 2 by 2
matrix

The determinant of a 2 by 2 matrix,

(
a b
c d

)

is

defined as (ad − bc).
The elements of the determinant of a matrix are

written between vertical lines. Thus, the determinant

of

(
3 −4
1 6

)

is written as

∣
∣
∣
∣
3 −4
1 6

∣
∣
∣
∣ and is equal to

(3 × 6) − (−4 × 1), i.e. 18 − (−4) or 22. Hence the
determinant of a matrix can be expressed as a single

numerical value, i.e.

∣
∣
∣
∣
3 −4
1 6

∣
∣
∣
∣ = 22.

Problem 10. Determine the value of
∣
∣
∣
∣
3 −2
7 4

∣
∣
∣
∣

∣
∣
∣
∣
3 −2
7 4

∣
∣
∣
∣ = (3 × 4) − (−2 × 7)

= 12 − (−14) = 26

Problem 11. Evaluate

∣
∣
∣
∣
(1 + j) j2

− j3 (1 − j4)

∣
∣
∣
∣

∣
∣
∣
∣
(1 + j) j2

− j3 (1 − j4)

∣
∣
∣
∣ = (1 + j)(1 − j4) − ( j2)(− j3)

= 1 − j4 + j − j24 + j26
= 1 − j4 + j − (−4) + (−6)

since from Chapter 23, j2 = −1
= 1 − j4 + j + 4 − 6
= −1 − j3

Problem 12. Evaluate

∣
∣
∣
∣
5∠30◦ 2∠−60◦
3∠60◦ 4∠−90◦

∣
∣
∣
∣

∣
∣
∣
∣
5∠30◦ 2∠−60◦
3∠60◦ 4∠−90◦

∣
∣
∣
∣ = (5∠30◦)(4∠−90◦)

− (2∠−60◦)(3∠60◦)
= (20∠−60◦) − (6∠0◦)
= (10 − j17.32) − (6 + j0)
= (4 − j17.32) or 17.78∠−77◦

Now try the following exercise.

Exercise 109 Further problems on 2 by 2
determinants

1. Calculate the determinant of

(
3 −1

−4 7

)

[17]
2. Calculate the determinant of
⎛

⎜
⎝

1

2

2

3

−1

3
−3

5

⎞

⎟
⎠

[

− 7

90

]

3. Calculate the determinant of(−1.3 7.4
2.5 −3.9

)

[−13.43]

4. Evaluate

∣
∣
∣
∣

j2 −j3
(1 + j) j

∣
∣
∣
∣ [−5 + j3]

5. Evaluate

∣
∣
∣
∣

2∠40◦ 5∠−20◦
7∠−32◦ 4∠−117◦

∣
∣
∣
∣

[
(−19.75 + j19.79)
or 27.95∠134.94◦

]
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25.5 The inverse or reciprocal of a
2 by 2 matrix

The inverse of matrix A is A−1 such that A × A−1 = I ,
the unit matrix.

Let matrix A be

(
1 2
3 4

)

and let the inverse matrix,

A−1 be

(
a b
c d

)

.

Then, since A × A−1 = I ,
(

1 2
3 4

)

×
(

a b
c d

)

=
(

1 0
0 1

)

Multiplying the matrices on the left hand side, gives
(

a + 2c b + 2d
3a + 4c 3b + 4d

)

=
(

1 0
0 1

)

Equating corresponding elements gives:

b + 2d = 0, i.e. b = −2d

and 3a + 4c = 0, i.e. a = −4

3
c

Substituting for a and b gives:
⎛

⎜
⎝

−4

3
c + 2c −2d + 2d

3

(

−4

3
c

)

+ 4c 3(−2d) + 4d

⎞

⎟
⎠ =

(
1 0
0 1

)

i.e.

(2

3
c 0

0 −2d

)

=
(

1 0
0 1

)

showing that
2

3
c = 1, i.e. c = 3

2
and −2d = 1, i.e.

d = −1

2

Since b = −2d, b = 1 and since a = −4

3
c, a = −2.

Thus the inverse of matrix

(
1 2
3 4

)

is

(
a b
c d

)

that

is,

(−2 1
3

2
−1

2

)

There is, however, a quicker method of obtaining
the inverse of a 2 by 2 matrix.

For any matrix

(
p q
r s

)

the inverse may be

obtained by:

(i) interchanging the positions of p and s,
(ii) changing the signs of q and r, and

(iii) multiplying this new matrix by the reciprocal of

the determinant of

(
p q
r s

)

Thus the inverse of matrix

(
1 2
3 4

)

is

1

4 − 6

(
4 −2

−3 1

)

=
(−2 1

3

2
−1

2

)

as obtained previously.

Problem 13. Determine the inverse of
(

3 −2
7 4

)

The inverse of matrix

(
p q
r s

)

is obtained by inter-

changing the positions of p and s, changing the signs
of q and r and multiplying by the reciprocal of the

determinant

∣
∣
∣
∣
p q
r s

∣
∣
∣
∣. Thus, the inverse of

(
3 −2
7 4

)

= 1

(3 × 4) − ( − 2 × 7)

(
4 2

−7 3

)

= 1

26

(
4 2

−7 3

)

=

⎛

⎜
⎜
⎝

2
13

1
13

−7
26

3
26

⎞

⎟
⎟
⎠

Now try the following exercise.

Exercise 110 Further problems on the
inverse of 2 by 2 matrices

1. Determine the inverse of

(
3 −1

−4 7

)

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

7

17

1

17
4

17

3

17

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

2. Determine the inverse of

⎛

⎜
⎜
⎝

1

2

2

3

−1

3
−3

5

⎞

⎟
⎟
⎠

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

7
5

7
8

4

7

−4
2

7
−6

3

7

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦



Ch25-H8152.tex 23/6/2006 15: 9 Page 273

THE THEORY OF MATRICES AND DETERMINANTS 273

F

3. Determine the inverse of

(−1.3 7.4
2.5 −3.9

)

⎡

⎣

(
0.290 0.551
0.186 0.097

)

correct to 3 dec. places

⎤

⎦

25.6 The determinant of a 3 by 3
matrix

(i) The minor of an element of a 3 by 3 matrix is
the value of the 2 by 2 determinant obtained by
covering up the row and column containing that
element.

Thus for the matrix

(
1 2 3
4 5 6
7 8 9

)

the minor of

element 4 is obtained by covering the row

(4 5 6) and the column

(
1
4
7

)

, leaving the 2 by

2 determinant

∣
∣
∣
∣
2 3
8 9

∣
∣
∣
∣, i.e. the minor of element

4 is (2 × 9) − (3 × 8) = −6.

(ii) The sign of a minor depends on its posi-
tion within the matrix, the sign pattern

being

(+ − +
− + −
+ − +

)

. Thus the signed-minor

of element 4 in the matrix

(
1 2 3
4 5 6
7 8 9

)

is

−
∣
∣
∣
∣
2 3
8 9

∣
∣
∣
∣ = −(−6) = 6.

The signed-minor of an element is called the
cofactor of the element.

(iii) The value of a 3 by 3 determinant is the
sum of the products of the elements and their
cofactors of any row or any column of the
corresponding 3 by 3 matrix.

There are thus six different ways of evaluating a 3×3
determinant—and all should give the same value.

Problem 14. Find the value of
∣
∣
∣
∣
∣

3 4 −1
2 0 7
1 −3 −2

∣
∣
∣
∣
∣

The value of this determinant is the sum of the prod-
ucts of the elements and their cofactors, of any row
or of any column. If the second row or second col-
umn is selected, the element 0 will make the product
of the element and its cofactor zero and reduce the
amount of arithmetic to be done to a minimum.

Supposing a second row expansion is selected.
The minor of 2 is the value of the determinant

remaining when the row and column containing the
2 (i.e. the second row and the first column), is cov-

ered up. Thus the cofactor of element 2 is

∣
∣
∣
∣

4 −1
−3 −2

∣
∣
∣
∣

i.e. −11. The sign of element 2 is minus, (see (ii)
above), hence the cofactor of element 2, (the signed-
minor) is +11. Similarly the minor of element 7 is∣
∣
∣
∣
3 4
1 −3

∣
∣
∣
∣ i.e. −13, and its cofactor is +13. Hence the

value of the sum of the products of the elements and
their cofactors is 2 × 11 + 7 × 13, i.e.,

∣
∣
∣
∣
∣

3 4 −1
2 0 7
1 −3 −2

∣
∣
∣
∣
∣
= 2(11) + 0 + 7(13) = 113

The same result will be obtained whichever row or
column is selected. For example, the third column
expansion is

(−1)

∣
∣
∣
∣
2 0
1 −3

∣
∣
∣
∣− 7

∣
∣
∣
∣
3 4
1 −3

∣
∣
∣
∣+ (−2)

∣
∣
∣
∣
3 4
2 0

∣
∣
∣
∣

= 6 + 91 + 16 = 113, as obtained previously.

Problem 15. Evaluate

∣
∣
∣
∣
∣

1 4 −3
−5 2 6
−1 −4 2

∣
∣
∣
∣
∣

Using the first row:

∣
∣
∣
∣
∣

1 4 −3
−5 2 6
−1 −4 2

∣
∣
∣
∣
∣

= 1

∣
∣
∣
∣

2 6
−4 2

∣
∣
∣
∣− 4

∣
∣
∣
∣
−5 6
−1 2

∣
∣
∣
∣+ (−3)

∣
∣
∣
∣
−5 2
−1 −4

∣
∣
∣
∣

= (4 + 24) − 4(−10 + 6) − 3(20 + 2)

= 28 + 16 − 66 = −22

Using the second column:

∣
∣
∣
∣
∣

1 4 −3
−5 2 6
−1 −4 2

∣
∣
∣
∣
∣

= −4

∣
∣
∣
∣
−5 6
−1 2

∣
∣
∣
∣+ 2

∣
∣
∣
∣

1 −3
−1 2

∣
∣
∣
∣−(−4)

∣
∣
∣
∣

1 −3
−5 6

∣
∣
∣
∣

= −4(−10 + 6) + 2(2 − 3) + 4(6 − 15)

= 16 − 2 − 36 = −22
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Problem 16. Determine the value of
∣
∣
∣
∣
∣

j2 (1 + j) 3
(1 − j) 1 j

0 j4 5

∣
∣
∣
∣
∣

Using the first column, the value of the determinant is:

( j2)

∣
∣
∣
∣
1 j
j4 5

∣
∣
∣
∣− (1 − j)

∣
∣
∣
∣
(1 + j) 3

j4 5

∣
∣
∣
∣

+ (0)

∣
∣
∣
∣
(1 + j) 3

1 j

∣
∣
∣
∣

= j2(5 − j24) − (1 − j)(5 + j5 − j12) + 0

= j2(9) − (1 − j)(5 − j7)

= j18 − [5 − j7 − j5 + j27]

= j18 − [−2 − j12]

= j18 + 2 + j12 = 2 + j30 or 30.07∠86.19◦

Now try the following exercise.

Exercise 111 Further problems on 3 by 3
determinants

1. Find the matrix of minors of
(

4 −7 6
−2 4 0

5 7 −4

)

[(−16 8 −34
−14 −46 63
−24 12 2

)]

2. Find the matrix of cofactors of
(

4 −7 6
−2 4 0

5 7 −4

)

[(−16 −8 −34
14 −46 −63

−24 −12 2

)]

3. Calculate the determinant of
(

4 −7 6
−2 4 0

5 7 −4

)

[−212]

4. Evaluate

∣
∣
∣
∣
∣

8 −2 −10
2 −3 −2
6 3 8

∣
∣
∣
∣
∣

[−328]

5. Calculate the determinant of
(

3.1 2.4 6.4
−1.6 3.8 −1.9

5.3 3.4 −4.8

)

[−242.83]

6. Evaluate

∣
∣
∣
∣
∣

j2 2 j
(1 + j) 1 −3

5 −j4 0

∣
∣
∣
∣
∣

[−2 − j]

7. Evaluate

∣
∣
∣
∣
∣

3∠60◦ j2 1
0 (1 + j) 2∠30◦
0 2 j5

∣
∣
∣
∣
∣

[
26.94∠−139.52◦ or
(−20.49 − j17.49)

]

8. Find the eigenvalues λ that satisfy the follow-
ing equations:

(a)

∣
∣
∣
∣
(2 − λ) 2

−1 (5 − λ)

∣
∣
∣
∣= 0

(b)

∣
∣
∣
∣
∣

(5 − λ) 7 −5
0 (4 − λ) −1
2 8 (−3 − λ)

∣
∣
∣
∣
∣
= 0

(You may need to refer to chapter 1, pages
8–11, for the solution of cubic equations).

[(a) λ = 3 or 4 (b) λ = 1 or 2 or 3]

25.7 The inverse or reciprocal of a
3 by 3 matrix

The adjoint of a matrix A is obtained by:

(i) forming a matrix B of the cofactors of A, and

(ii) transposing matrix B to give BT , where BT is
the matrix obtained by writing the rows of B
as the columns of BT . Then adj A = BT .

The inverse of matrix A, A−1 is given by

A−1 = adj A
|A|

where adj A is the adjoint of matrix A and |A| is the
determinant of matrix A.
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Problem 17. Determine the inverse of the

matrix

⎛

⎝
3 4 −1
2 0 7
1 −3 −2

⎞

⎠

The inverse of matrix A, A−1 = adj A

|A|
The adjoint of A is found by:

(i) obtaining the matrix of the cofactors of the
elements, and

(ii) transposing this matrix.

The cofactor of element 3 is +
∣
∣
∣
∣

0 7
−3 −2

∣
∣
∣
∣ = 21.

The cofactor of element 4 is −
∣
∣
∣
∣
2 7
1 −2

∣
∣
∣
∣ = 11, and

so on.

The matrix of cofactors is

(
21 11 −6
11 −5 13
28 −23 −8

)

The transpose of the matrix of cofactors, i.e. the
adjoint of the matrix, is obtained by writing the rows

as columns, and is

(
21 11 28
11 −5 −23
−6 13 −8

)

From Problem 14, the determinant of
∣
∣
∣
∣
∣

3 4 −1
2 0 7
1 −3 −2

∣
∣
∣
∣
∣

is 113.

Hence the inverse of

(
3 4 −1
2 0 7
1 −3 −2

)

is

(
21 11 28
11 −5 −23
−6 13 −8

)

113
or

1
113

(
21 11 28
11 −5 −23
−6 13 −8

)

Problem 18. Find the inverse of
(

1 5 −2
3 −1 4

−3 6 −7

)

Inverse = adjoint

determinant

The matrix of cofactors is

(−17 9 15
23 −13 −21
18 −10 −16

)

The transpose of the matrix of cofactors (i.e. the

adjoint) is

(−17 23 18
9 −13 −10

15 −21 −16

)

The determinant of

(
1 5 −2
3 −1 4

−3 6 −7

)

= 1(7 − 24) − 5(−21 + 12) − 2(18 − 3)

= −17 + 45 − 30 = −2

Hence the inverse of

(
1 5 −2
3 −1 4

−3 6 −7

)

=

(−17 23 18
9 −13 −10

15 −21 −16

)

−2

=
(

8.5 −11.5 −9
−4.5 6.5 5
−7.5 10.5 8

)

Now try the following exercise.

Exercise 112 Further problems on the
inverse of a 3 by 3 matrix

1. Write down the transpose of
(

4 −7 6
−2 4 0

5 7 −4

)

[(
4 −2 5

−7 4 7
6 0 −4

)]

2. Write down the transpose of
⎛

⎝
3 6 1

2
5 − 2

3 7
−1 0 3

5

⎞

⎠

⎡

⎣

⎛

⎝
3 5 −1
6 − 2

3 0
1
2 7 3

5

⎞

⎠

⎤

⎦
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3. Determine the adjoint of
(

4 −7 6
−2 4 0

5 7 −4

)

[(−16 14 −24
−8 −46 −12

−34 −63 2

)]

4. Determine the adjoint of
⎛

⎝
3 6 1

2
5 − 2

3 7
−1 0 3

5

⎞

⎠

⎡

⎢
⎣

⎛

⎜
⎝

− 2
5 −3 3

5 42 1
3

−10 2 3
10 −18 1

2

− 2
3 −6 −32

⎞

⎟
⎠

⎤

⎥
⎦

5. Find the inverse of
(

4 −7 6
−2 4 0

5 7 −4

)

[

− 1

212

(−16 14 −24
−8 −46 −12

−34 −63 2

)]

6. Find the inverse of

⎛

⎝
3 6 1

2
5 − 2

3 7
−1 0 3

5

⎞

⎠

⎡

⎢
⎣− 15

923

⎛

⎜
⎝

− 2
5 −3 3

5 42 1
3

−10 2 3
10 −18 1

2

− 2
3 −6 −32

⎞

⎟
⎠

⎤

⎥
⎦
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26

The solution of simultaneous
equations by matrices and
determinants

26.1 Solution of simultaneous
equations by matrices

(a) The procedure for solving linear simultaneous
equations in two unknowns using matrices is:

(i) write the equations in the form

a1x + b1y = c1

a2x + b2y = c2

(ii) write the matrix equation corresponding to
these equations,

i.e.

(
a1 b1
a2 b2

)

×
(

x
y

)

=
(

c1
c2

)

(iii) determine the inverse matrix of

(
a1 b1
a2 b2

)

i.e.
1

a1b2 − b1a2

(
b2 −b1−a2 a1

)

(from Chapter 25)

(iv) multiply each side of (ii) by the inverse
matrix, and

(v) solve for x and y by equating corresponding
elements.

Problem 1. Use matrices to solve the simulta-
neous equations:

3x + 5y − 7 = 0 (1)
4x − 3y − 19 = 0 (2)

(i) Writing the equations in the a1x+b1y = c form
gives:

3x + 5y = 7
4x − 3y = 19

(ii) The matrix equation is
(

3 5
4 −3

)

×
(

x
y

)

=
(

7
19

)

(iii) The inverse of matrix

(
3 5
4 −3

)

is

1

3 × (−3) − 5 × 4

(−3 −5
−4 3

)

i.e.

⎛

⎜
⎝

3

29

5

29
4

29

−3

29

⎞

⎟
⎠

(iv) Multiplying each side of (ii) by (iii) and remem-
bering that A × A−1 = I , the unit matrix, gives:

(
1 0
0 1

)(
x
y

)

=
⎛

⎜
⎝

3

29

5

29
4

29

−3

29

⎞

⎟
⎠×

(
7

19

)

Thus

(
x
y

)

=
⎛

⎜
⎝

21

29
+ 95

29
28

29
− 57

29

⎞

⎟
⎠

i.e.

(
x
y

)

=
(

4
−1

)

(v) By comparing corresponding elements:

x = 4 and y = −1

Checking:

equation (1),

3 × 4 + 5 × (−1) − 7 = 0 = RHS

equation (2),

4 × 4 − 3 × (−1) − 19 = 0 = RHS
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(b) The procedure for solving linear simulta-
neous equations in three unknowns using
matrices is:

(i) write the equations in the form

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

(ii) write the matrix equation corresponding
to these equations, i.e.
(

a1 b1 c1
a2 b2 c2
a3 b3 c3

)

×
(

x
y
z

)

=
(

d1
d2
d3

)

(iii) determine the inverse matrix of
(

a1 b1 c1
a2 b2 c2
a3 b3 c3

)

(see Chapter 25)

(iv) multiply each side of (ii) by the inverse
matrix, and

(v) solve for x, y and z by equating the
corresponding elements.

Problem 2. Use matrices to solve the simulta-
neous equations:

x + y + z − 4 = 0 (1)
2x − 3y + 4z − 33 = 0 (2)
3x − 2y − 2z − 2 = 0 (3)

(i) Writing the equations in the a1x + b1y + c1z =
d1 form gives:

x + y + z = 4
2x − 3y + 4z = 33
3x − 2y − 2z = 2

(ii) The matrix equation is
(

1 1 1
2 −3 4
3 −2 −2

)

×
(

x
y
z

)

=
(

4
33

2

)

(iii) The inverse matrix of

A =
(

1 1 1
2 −3 4
3 −2 −2

)

is given by

A−1 = adj A

|A|

The adjoint of A is the transpose of the matrix of
the cofactors of the elements (see Chapter 25).
The matrix of cofactors is

(
14 16 5

0 −5 5
7 −2 −5

)

and the transpose of this matrix gives

adj A =
(

14 0 7
16 −5 −2

5 5 −5

)

The determinant of A, i.e. the sum of the prod-
ucts of elements and their cofactors, using a first
row expansion is

1

∣
∣
∣
∣
−3 4
−2 −2

∣
∣
∣
∣− 1

∣
∣
∣
∣
2 4
3 −2

∣
∣
∣
∣+ 1

∣
∣
∣
∣
2 −3
3 −2

∣
∣
∣
∣

= (1 × 14) − (1 × (−16)) + (1 × 5) = 35
Hence the inverse of A,

A−1 = 1

35

(
14 0 7
16 −5 −2

5 5 −5

)

(iv) Multiplying each side of (ii) by (iii), and
remembering that A × A−1 = I , the unit matrix,
gives
(

1 0 0
0 1 0
0 0 1

)

×
(

x
y
z

)

= 1

35

(
14 0 7
16 −5 −2

5 5 −5

)

×
(

4
33

2

)

(
x
y
z

)

= 1

35

×
(

(14 × 4) + (0 × 33) + (7 × 2)
(16 × 4) + ((−5) × 33) + ((−2) × 2)
(5 × 4) + (5 × 33) + ((−5) × 2)

)

= 1

35

(
70

−105
175

)

=
(

2
−3

5

)

(v) By comparing corresponding elements, x = 2,
y = −3, z = 5, which can be checked in the
original equations.



Ch26-H8152.tex 23/6/2006 15: 9 Page 279

THE SOLUTION OF SIMULTANEOUS EQUATIONS BY MATRICES AND DETERMINANTS 279

F

Now try the following exercise.

Exercise 113 Further problems on solving
simultaneous equations using matrices

In Problems 1 to 5 use matrices to solve the
simultaneous equations given.

1. 3x + 4y = 0

2x + 5y + 7 = 0 [x = 4, y = −3]

2. 2p + 5q + 14.6 = 0

3.1p + 1.7q + 2.06 = 0

[p = 1.2, q = −3.4]

3. x + 2y + 3z = 5

2x − 3y − z = 3

−3x + 4y + 5z = 3

[x = 1, y = −1, z = 2]

4. 3a + 4b − 3c = 2

−2a + 2b + 2c = 15

7a − 5b + 4c = 26

[a = 2.5, b = 3.5, c = 6.5]

5. p + 2q + 3r + 7.8 = 0

2p + 5q − r − 1.4 = 0

5p − q + 7r − 3.5 = 0

[p = 4.1, q = −1.9, r = −2.7]

6. In two closed loops of an electrical cir-
cuit, the currents flowing are given by the
simultaneous equations:

I1 + 2I2 + 4 = 0
5I1 + 3I2 − 1 = 0

Use matrices to solve for I1 and I2.

[I1 = 2, I2 = −3]

7. The relationship between the displacement,
s, velocity, v, and acceleration, a, of a piston
is given by the equations:

s + 2v + 2a = 4
3s − v + 4a = 25
3s + 2v − a = −4

Use matrices to determine the values of s, v
and a.

[s = 2, v = −3, a = 4]

8. In a mechanical system, acceleration ẍ,
velocity ẋ and distance x are related by the
simultaneous equations:

3.4ẍ + 7.0ẋ − 13.2x = −11.39

−6.0ẍ + 4.0ẋ + 3.5x = 4.98

2.7ẍ + 6.0ẋ + 7.1x = 15.91

Use matrices to find the values of ẍ, ẋ and x.

[ẍ = 0.5, ẋ = 0.77, x = 1.4]

26.2 Solution of simultaneous
equations by determinants

(a) When solving linear simultaneous equations in
two unknowns using determinants:

(i) write the equations in the form

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

and then

(ii) the solution is given by

x

Dx
= −y

Dy
= 1

D

where Dx =
∣
∣
∣
∣
b1 c1

b2 c2

∣
∣
∣
∣

i.e. the determinant of the coefficients left
when the x-column is covered up,

Dy =
∣
∣
∣
∣
a1 c1

a2 c2

∣
∣
∣
∣

i.e. the determinant of the coefficients left
when the y-column is covered up,

and D =
∣
∣
∣
∣
a1 b1

a2 b2

∣
∣
∣
∣

i.e. the determinant of the coefficients left
when the constants-column is covered up.

Problem 3. Solve the following simultaneous
equations using determinants:

3x − 4y = 12

7x + 5y = 6.5
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Following the above procedure:

(i) 3x − 4y − 12 = 0
7x + 5y − 6.5 = 0

(ii)
x

∣
∣
∣
∣
−4 −12

5 −6.5

∣
∣
∣
∣

= −y
∣
∣
∣
∣
3 −12
7 −6.5

∣
∣
∣
∣

= 1
∣
∣
∣
∣
3 −4
7 5

∣
∣
∣
∣

i.e.
x

(−4)(−6.5) − (−12)(5)

= −y

(3)(−6.5) − (−12)(7)

= 1

(3)(5) − (−4)(7)

i.e.
x

26 + 60
= −y

−19.5 + 84
= 1

15 + 28

i.e.
x

86
= −y

64.5
= 1

43

Since
x

86
= 1

43
then x = 86

43
= 2

and since

−y

64.5
= 1

43
then y = −64.5

43
= −1.5

Problem 4. The velocity of a car, accelerating
at uniform acceleration a between two points, is
given by v = u + at, where u is its velocity when
passing the first point and t is the time taken
to pass between the two points. If v = 21 m/s
when t = 3.5 s and v = 33 m/s when t = 6.1 s,
use determinants to find the values of u and a,
each correct to 4 significant figures.

Substituting the given values in v = u + at gives:

21 = u + 3.5a (1)
33 = u + 6.1a (2)

(i) The equations are written in the form
a1x + b1y + c1 = 0,

i.e. u + 3.5a − 21 = 0
and u + 6.1a − 33 = 0

(ii) The solution is given by

u

Du
= −a

Da
= 1

D

where Du is the determinant of coefficients left
when the u column is covered up,

i.e. Du =
∣
∣
∣
∣
∣

3.5 −21

6.1 −33

∣
∣
∣
∣
∣

= (3.5)(−33) − (−21)(6.1)
= 12.6

Similarly, Da =
∣
∣
∣
∣
1 −21
1 −33

∣
∣
∣
∣

= (1)(−33) − (−21)(1)
= −12

and D =
∣
∣
∣
∣
1 3.5
1 6.1

∣
∣
∣
∣

= (1)(6.1) − (3.5)(1) = 2.6

Thus
u

12.6
= −a

−12
= 1

26

i.e. u = 12.6

2.6
= 4.846 m/s

and a = 12

2.6
= 4.615 m/s2,

each correct to 4 significant
figures

Problem 5. Applying Kirchhoff’s laws to an
electric circuit results in the following equations:

(9 + j12)I1 − (6 + j8)I2 = 5
−(6 + j8)I1 + (8 + j3)I2 = (2 + j4)

Solve the equations for I1 and I2

Following the procedure:

(i) (9 + j12)I1 − (6 + j8)I2 − 5 = 0

−(6 + j8)I1 + (8 + j3)I2 − (2 + j4) = 0

(ii)
I1∣

∣
∣
∣
−(6 + j8) −5
(8 + j3) −(2 + j4)

∣
∣
∣
∣

= −I2∣
∣
∣
∣
(9 + j12) −5
−(6 + j8) −(2 + j4)

∣
∣
∣
∣

= 1
∣
∣
∣
∣
(9 + j12) −(6 + j8)
−(6 + j8) (8 + j3)

∣
∣
∣
∣



Ch26-H8152.tex 23/6/2006 15: 9 Page 281

THE SOLUTION OF SIMULTANEOUS EQUATIONS BY MATRICES AND DETERMINANTS 281

F

I1

(−20 + j40) + (40 + j15)

= −I2

(30 − j60) − (30 + j40)

= 1

(36 + j123) − (−28 + j96)

I1

20 + j55
= −I2

−j100

= 1

64 + j27

Hence I1 = 20 + j55

64 + j27

= 58.52∠70.02◦

69.46∠22.87◦ = 0.84∠47.15◦A

and I2 = 100∠90◦

69.46∠22.87◦
= 1.44∠67.13◦ A

(b) When solving simultaneous equations in three
unknowns using determinants:

(i) Write the equations in the form

a1x + b1y + c1z + d1 = 0
a2x + b2y + c2z + d2 = 0
a3x + b3y + c3z + d3 = 0

and then
(ii) the solution is given by

x

Dx
= −y

Dy
= z

Dz
= −1

D

where Dx is

∣
∣
∣
∣
∣

b1 c1 d1
b2 c2 d2
b3 c3 d3

∣
∣
∣
∣
∣

i.e. the determinant of the coefficients
obtained by covering up the x column.

Dy is

∣
∣
∣
∣
∣

a1 c1 d1
a2 c2 d2
a3 c3 d3

∣
∣
∣
∣
∣

i.e., the determinant of the coefficients
obtained by covering up the y column.

Dz is

∣
∣
∣
∣
∣

a1 b1 d1
a2 b2 d2
a3 b3 d3

∣
∣
∣
∣
∣

i.e. the determinant of the coefficients
obtained by covering up the z column.

and D is

∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣

i.e. the determinant of the coefficients
obtained by covering up the constants
column.

Problem 6. A d.c. circuit comprises three
closed loops. Applying Kirchhoff’s laws to the
closed loops gives the following equations for
current flow in milliamperes:

2I1 + 3I2 − 4I3 = 26
I1 − 5I2 − 3I3 = −87

−7I1 + 2I2 + 6I3 = 12

Use determinants to solve for I1, I2 and I3

(i) Writing the equations in the
a1x + b1y + c1z + d1 = 0 form gives:

2I1 + 3I2 − 4I3 − 26 = 0

I1 − 5I2 − 3I3 + 87 = 0

−7I1 + 2I2 + 6I3 − 12 = 0

(ii) the solution is given by

I1

DI1

= −I2

DI2

= I3

DI3

= −1

D

where DI1 is the determinant of coefficients
obtained by covering up the I1 column, i.e.,

DI1 =
∣
∣
∣
∣
∣

3 −4 −26
−5 −3 87

2 6 −12

∣
∣
∣
∣
∣

= (3)

∣
∣
∣
∣
−3 87

6 −12

∣
∣
∣
∣− (−4)

∣
∣
∣
∣
−5 87

2 −12

∣
∣
∣
∣

+ (−26)

∣
∣
∣
∣
−5 −3

2 6

∣
∣
∣
∣

= 3(−486) + 4(−114) − 26(−24)

= −1290

DI2 =
∣
∣
∣
∣
∣

2 −4 −26
1 −3 87

−7 6 −12

∣
∣
∣
∣
∣

= (2)(36 − 522) − (−4)(−12 + 609)

+ (−26)(6 − 21)

= −972 + 2388 + 390

= 1806



Ch26-H8152.tex 23/6/2006 15: 9 Page 282

282 MATRICES AND DETERMINANTS

DI3 =
∣
∣
∣
∣
∣

2 3 −26
1 −5 87

−7 2 −12

∣
∣
∣
∣
∣

= (2)(60 − 174) − (3)(−12 + 609)

+(−26)(2 − 35)

= −228 − 1791 + 858 = −1161

and D =
∣
∣
∣
∣
∣

2 3 −4
1 −5 −3

−7 2 6

∣
∣
∣
∣
∣

= (2)(−30 + 6) − (3)(6 − 21)

+ (−4)(2 − 35)

= −48 + 45 + 132 = 129

Thus

I1

−1290
= −I2

1806
= I3

−1161
= −1

129

giving

I1 = −1290

−129
= 10 mA,

I2 = 1806

129
= 14 mA

and I3 = 1161

129
= 9 mA

Now try the following exercise.

Exercise 114 Further problems on solving
simultaneous equations using determinants

In Problems 1 to 5 use determinants to solve
the simultaneous equations given.

1. 3x − 5y = −17.6

7y − 2x − 22 = 0

[x = −1.2, y = 2.8]

2. 2.3m − 4.4n = 6.84

8.5n − 6.7m = 1.23

[m = −6.4, n = −4.9]

3. 3x + 4y + z = 10
2x − 3y + 5z + 9 = 0
x + 2y − z = 6

[x = 1, y = 2, z = −1]

4. 1.2p − 2.3q − 3.1r + 10.1 = 0

4.7p + 3.8q − 5.3r − 21.5 = 0

3.7p − 8.3q + 7.4r + 28.1 = 0

[p = 1.5, q = 4.5, r = 0.5]

5.
x

2
− y

3
+ 2z

5
= − 1

20
x

4
+ 2y

3
− z

2
= 19

40

x + y − z = 59

60[

x = 7

20
, y = 17

40
, z = − 5

24

]

6. In a system of forces, the relationship
between two forces F1 and F2 is given by:

5F1 + 3F2 + 6 = 0

3F1 + 5F2 + 18 = 0

Use determinants to solve for F1 and F2.

[F1 = 1.5, F2 = −4.5]

7. Applying mesh-current analysis to an a.c.
circuit results in the following equations:

(5 − j4)I1 − (−j4)I2 = 100∠0◦

(4 + j3 − j4)I2 − (−j4)I1 = 0

Solve the equations for I1 and I2.
[

I1 = 10.77∠19.23◦A,
I2 = 10.45∠−56.73◦A

]

8. Kirchhoff’s laws are used to determine the
current equations in an electrical network
and show that

i1 + 8i2 + 3i3 = −31

3i1 − 2i2 + i3 = −5

2i1 − 3i2 + 2i3 = 6

Use determinants to find the values of i1, i2
and i3. [i1 = −5, i2 = −4, i3 = 2]

9. The forces in three members of a framework
are F1, F2 and F3. They are related by the
simultaneous equations shown below.

1.4F1 + 2.8F2 + 2.8F3 = 5.6

4.2F1 − 1.4F2 + 5.6F3 = 35.0

4.2F1 + 2.8F2 − 1.4F3 = −5.6
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Find the values of F1, F2 and F3 using
determinants.

[F1 = 2, F2 = −3, F3 = 4]

10. Mesh-current analysis produces the follow-
ing three equations:

20∠0◦ = (5 + 3 − j4)I1 − (3 − j4)I2

10∠90◦ = (3 − j4 + 2)I2 − (3 − j4)I1 − 2I3

−15∠0◦ − 10∠90◦ = (12 + 2)I3 − 2I2

Solve the equations for the loop currents
I1, I2 and I3.

[
I1 = 3.317∠22.57◦ A
I2 = 1.963∠40.97◦ A
I3 = 1.010∠−148.32◦ A

]

26.3 Solution of simultaneous
equations using Cramers rule

Cramers rule states that if

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

then x = Dx

D
, y = Dy

D
and z = Dz

D

where D =
∣
∣
∣
∣
∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣
∣
∣
∣
∣

Dx =
∣
∣
∣
∣
∣

b1 a12 a13
b2 a22 a23
b3 a32 a33

∣
∣
∣
∣
∣

i.e. the x-column has been replaced by the R.H.S.
b column,

Dy =
∣
∣
∣
∣
∣

a11 b1 a13
a21 b2 a23
a31 b3 a33

∣
∣
∣
∣
∣

i.e. the y-column has been replaced by the R.H.S.
b column,

Dz =
∣
∣
∣
∣
∣

a11 a12 b1
a21 a22 b2
a31 a32 b3

∣
∣
∣
∣
∣

i.e. the z-column has been replaced by the R.H.S.
b column.

Problem 7. Solve the following simultaneous
equations using Cramers rule

x + y + z = 4
2x − 3y + 4z = 33
3x − 2y − 2z = 2

(This is the same as Problem 2 and a comparison
of methods may be made). Following the above
method:

D =
∣
∣
∣
∣
∣

1 1 1
2 −3 4
3 −2 −2

∣
∣
∣
∣
∣

= 1(6 − (−8)) − 1((−4) − 12)
+1((−4) − (−9)) = 14 + 16 + 5 = 35

Dx =
∣
∣
∣
∣
∣

4 1 1
33 −3 4

2 −2 −2

∣
∣
∣
∣
∣

= 4(6 − (−8)) − 1((−66) − 8)
+1((−66) − (−6)) = 56 + 74 − 60 = 70

Dy =
∣
∣
∣
∣
∣

1 4 1
2 33 4
3 2 −2

∣
∣
∣
∣
∣

= 1((−66) − 8) − 4((−4) − 12) + 1(4 − 99)
= −74 + 64 − 95 = −105

Dz =
∣
∣
∣
∣
∣

1 1 4
2 −3 33
3 −2 2

∣
∣
∣
∣
∣

= 1((−6) − (−66)) − 1(4 − 99)
+ 4((−4) − (−9)) = 60 + 95 + 20 = 175

Hence

x = Dx

D
= 70

35
= 2, y = Dy

D
= −105

35
= −3

and z = Dz

D
= 175

35
= 5

Now try the following exercise.

Exercise 115 Further problems on solving
simultaneous equations using Cramers rule

1. Repeat problems 3, 4, 5, 7 and 8 of Exercise
113 on page 279, using Cramers rule.

2. Repeat problems 3, 4, 8 and 9 of Exercise 114
on page 282, using Cramers rule.
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26.4 Solution of simultaneous
equations using the Gaussian
elimination method

Consider the following simultaneous equations:

x + y + z = 4 (1)
2x − 3y + 4z = 33 (2)
3x − 2y − 2z = 2 (3)

Leaving equation (1) as it is gives:

x + y + z = 4 (1)

Equation (2) − 2 × equation (1) gives:

0 − 5y + 2z = 25 (2′)
and equation (3) − 3 × equation (1) gives:

0 − 5y − 5z = −10 (3′)
Leaving equations (1) and (2′) as they are gives:

x + y + z = 4 (1)

0 − 5y + 2z = 25 (2′)
Equation (3′) − equation (2′) gives:

0 + 0 − 7z = −35 (3′′)
By appropriately manipulating the three original
equations we have deliberately obtained zeros in the
positions shown in equations (2′) and (3′′).
Working backwards, from equation (3′′),

z = −35

−7
= 5,

from equation (2′),
−5y + 2(5) = 25,

from which,

y = 25 − 10

−5
= −3

and from equation (1),

x + (−3) + 5 = 4,

from which,

x = 4 + 3 − 5 = 2

(This is the same example as Problems 2 and 7,
and a comparison of methods can be made). The
above method is known as the Gaussian elimination
method.

We conclude from the above example that if
a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

the three-step procedure to solve simultaneous
equations in three unknowns using the Gaussian
elimination method is:

1. Equation (2) − a21

a11
× equation (1) to form equa-

tion (2′) and equation (3) − a31

a11
× equation (1) to

form equation (3′).

2. Equation (3′)− a32

a22
× equation (2′) to form equa-

tion (3′′).

3. Determine z from equation (3′′), then y from
equation (2′) and finally, x from equation (1).

Problem 8. A d.c. circuit comprises three
closed loops. Applying Kirchhoff’s laws to the
closed loops gives the following equations for
current flow in milliamperes:

2I1 + 3I2 − 4I3 = 26 (1)
I1 − 5I2 − 3I3 = −87 (2)

−7I1 + 2I2 + 6I3 = 12 (3)

Use the Gaussian elimination method to solve
for I1, I2 and I3.

(This is the same example as Problem 6 on page 281,
and a comparison of methods may be made)

Following the above procedure:

1. 2I1 + 3I2 − 4I3 = 26 (1)

Equation (2) − 1

2
× equation (1) gives:

0 − 6.5I2 − I3 = −100 (2′)

Equation (3) − −7

2
× equation (1) gives:

0 + 12.5I2 − 8I3 = 103 (3′)
2. 2I1 + 3I2 − 4I3 = 26 (1)

0 − 6.5I2 − I3 = −100 (2′)

Equation (3′) − 12.5

−6.5
× equation (2′) gives:

0 + 0 − 9.923I3 = −89.308 (3′′)
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3. From equation (3′′),

I3 = −89.308

−9.923
= 9 mA,

from equation (2′), −6.5I2 − 9 = −100,

from which, I2 = −100 + 9

−6.5
= 14 mA

and from equation (1), 2I1 + 3(14) − 4(9) = 26,

from which, I1 = 26 − 42 + 36

2
= 20

2
= 10 mA

Now try the following exercise.

Exercise 116 Further problems on solv-
ing simultaneous equations using Gaussian
elimination

1. In a mass-spring-damper system, the acceler-
ation ẍ m/s2, velocity ẋ m/s and displacement
x m are related by the following simultaneous

equations:

6.2ẍ + 7.9ẋ + 12.6x = 18.0
7.5ẍ + 4.8ẋ + 4.8x = 6.39
13.0ẍ + 3.5ẋ − 13.0x = −17.4

By using Gaussian elimination, determine the
acceleration, velocity and displacement for
the system, correct to 2 decimal places.

[ẍ = −0.30, ẋ = 0.60, x = 1.20]

2. The tensions, T1, T2 and T3 in a simple
framework are given by the equations:

5T1 + 5T2 + 5T3 = 7.0
T1 + 2T2 + 4T3 = 2.4

4T1 + 2T2 = 4.0

Determine T1, T2 and T3 using Gaussian
elimination.

[T1 = 0.8, T2 = 0.4, T3 = 0.2]

3. Repeat problems 3, 4, 5, 7 and 8 of Exer-
cise 113 on page 279, using the Gaussian
elimination method.

4. Repeat problems 3, 4, 8 and 9 of Exercise 114
on page 282, using the Gaussian elimination
method.
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Assignment 7

This assignment covers the material contained
in Chapters 23 to 26.

The marks for each question are shown in
brackets at the end of each question.

1. Solve the quadratic equation x2 − 2x + 5 = 0 and
show the roots on an Argand diagram. (9)

2. If Z1 = 2 + j5, Z2 = 1 − j3 and Z3 = 4 − j deter-
mine, in both Cartesian and polar forms, the value

of
Z1Z2

Z1 + Z2
+ Z3, correct to 2 decimal places.

(9)

3. Three vectors are represented by A, 4.2∠45◦, B,
5.5∠−32◦ and C, 2.8∠75◦. Determine in polar
form the resultant D, where D = B + C − A.

(8)

4. Two impedances, Z1 = (2 + j7) ohms and
Z2 = (3 − j4) ohms, are connected in series to
a supply voltage V of 150∠0◦ V. Determine the
magnitude of the current I and its phase angle
relative to the voltage. (6)

5. Determine in both polar and rectangular
forms:

(a) [2.37∠35◦]4 (b) [3.2 − j4.8]5

(c)
√

[−1 − j3] (15)

In questions 6 to 10, the matrices stated are:

A =
(−5 2

7 −8

)

B =
(

1 6
−3 −4

)

C =
(

j3 (1 + j2)
(−1 − j4) −j2

)

D =
⎛

⎝
2 −1 3

−5 1 0
4 −6 2

⎞

⎠ E =
⎛

⎝
−1 3 0

4 −9 2
−5 7 1

⎞

⎠

6. Determine A × B (4)

7. Calculate the determinant of matrix C (4)

8. Determine the inverse of matrix A (4)

9. Determine E × D (9)

10. Calculate the determinant of matrix D (6)

11. Solve the following simultaneous equations:

4x − 3y = 17
x + y + 1 = 0

using matrices. (6)

12. Use determinants to solve the following simul-
taneous equations:

4x + 9y + 2z = 21
−8x + 6y − 3z = 41

3x + y − 5z = −73 (10)

13. The simultaneous equations representing the cur-
rents flowing in an unbalanced, three-phase,
star-connected, electrical network are as follows:

2.4I1 + 3.6I2 + 4.8I3 = 1.2
−3.9I1 + 1.3I2 − 6.5I3 = 2.6
1.7I1 + 11.9I2 + 8.5I3 = 0

Using matrices, solve the equations for I1, I2
and I3 (10)
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27

Methods of differentiation

27.1 The gradient of a curve

If a tangent is drawn at a point P on a curve, then the
gradient of this tangent is said to be the gradient of
the curve at P. In Fig. 27.1, the gradient of the curve
at P is equal to the gradient of the tangent PQ.

Figure 27.1

For the curve shown in Fig. 27.2, let the points
A and B have co-ordinates (x1, y1) and (x2, y2),
respectively. In functional notation, y1 = f (x1) and
y2 = f (x2) as shown.

Figure 27.2

The gradient of the chord AB

= BC

AC
= BD − CD

ED
= f (x2) − f (x1)

(x2 − x1)

For the curve f (x) = x2 shown in Fig. 27.3.

Figure 27.3

(i) the gradient of chord AB

= f (3) − f (1)

3 − 1
= 9 − 1

2
= 4

(ii) the gradient of chord AC

= f (2) − f (1)

2 − 1
= 4 − 1

1
= 3

(iii) the gradient of chord AD

= f (1.5) − f (1)

1.5 − 1
= 2.25 − 1

0.5
= 2.5

(iv) if E is the point on the curve (1.1, f (1.1)) then
the gradient of chord AE

= f (1.1) − f (1)

1.1 − 1
= 1.21 − 1

0.1
= 2.1
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(v) if F is the point on the curve (1.01, f (1.01)) then
the gradient of chord AF

= f (1.01) − f (1)

1.01 − 1
= 1.0201 − 1

0.01
= 2.01

Thus as point B moves closer and closer to point
A the gradient of the chord approaches nearer and
nearer to the value 2. This is called the limiting value
of the gradient of the chord AB and when B coin-
cides with A the chord becomes the tangent to the
curve.

27.2 Differentiation from first
principles

In Fig. 27.4, A and B are two points very close
together on a curve, δx (delta x) and δy (delta y) rep-
resenting small increments in the x and y directions,
respectively.

Figure 27.4

Gradient of chord AB = δy

δx
; however,

δy = f (x + δx) − f (x).

Hence
δy

δx
= f (x + δx) − f (x)

δx
.

As δx approaches zero,
δy

δx
approaches a limiting

value and the gradient of the chord approaches the
gradient of the tangent at A.

When determining the gradient of a tangent to a
curve there are two notations used. The gradient of

the curve at A in Fig. 27.4 can either be written as

limit
δx→0

δy

δx
or limit

δx→0

{
f (x + δx) − f (x)

δx

}

In Leibniz notation,
dy
dx

= limit
δx→0

δy
δx

In functional notation,

f ′(x) = limit
δx→0

{
f (x + δx) − f (x)

δx

}

dy

dx
is the same as f ′(x) and is called the differential

coefficient or the derivative. The process of finding
the differential coefficient is called differentiation.

Problem 1. Differentiate from first principle
f (x) = x2 and determine the value of the gradient
of the curve at x = 2.

To ‘differentiate from first principles’ means ‘to find
f ′(x)’ by using the expression

f ′(x) = limit
δx→0

{
f (x + δx) − f (x)

δx

}

f (x) = x2

Substituting (x + δx) for x gives
f (x + δx) = (x + δx)2 = x2 + 2xδx + δx2, hence

f ′(x) = limit
δx→0

{
(x2 + 2xδx + δx2) − (x2)

δx

}

= limit
δx→0

{
(2xδx + δx2)

δx

}

= limit
δx→0

[2x + δx]

As δx → 0, [2x + δx] → [2x + 0]. Thus f ′(x) = 2x,
i.e. the differential coefficient of x2 is 2x. At x = 2,
the gradient of the curve, f ′(x) = 2(2) = 4.

27.3 Differentiation of common
functions

From differentiation by first principles of a number
of examples such as in Problem 1 above, a general
rule for differentiating y = axn emerges, where a and
n are constants.

The rule is: if y = axn then
dy
dx

= anxn−1



Ch27-H8152.tex 23/6/2006 15: 9 Page 289

METHODS OF DIFFERENTIATION 289

G

(or, if f (x) = axn then f ′(x) = anxn−1) and is true for
all real values of a and n.

For example, if y = 4x3 then a = 4 and n = 3, and

dy

dx
= anxn−1 = (4)(3)x3−1 = 12x2

If y = axn and n = 0 then y = ax0 and

dy

dx
= (a)(0)x0−1 = 0,

i.e. the differential coefficient of a constant is zero.
Figure 27.5(a) shows a graph of y = sin x. The

gradient is continually changing as the curve moves
from 0 to A to B to C to D. The gradient, given

by
dy

dx
, may be plotted in a corresponding position

below y = sin x, as shown in Fig. 27.5(b).

(b)
0

(a)
0

−

0′ 

+

+

y

−

dy
dx

 d
dx

A′ 

B ′ 

C ′ 
3π /2

D ′ 

C

2π x radπ

π /2 3π /2 x radπ 

A
y = sin x

2π
B D

(sin x) = cos x

π /2

Figure 27.5

(i) At 0, the gradient is positive and is at its steepest.
Hence 0′ is a maximum positive value.

(ii) Between 0 and A the gradient is positive but
is decreasing in value until at A the gradient is
zero, shown as A′.

(iii) Between A and B the gradient is negative but
is increasing in value until at B the gradient is at
its steepest negative value. Hence B′ is a maxi-
mum negative value.

(iv) If the gradient of y = sin x is further investi-
gated between B and D then the resulting graph

of
dy

dx
is seen to be a cosine wave. Hence the

rate of change of sin x is cos x,

i.e. if y = sin x then
dy
dx

= cos x

By a similar construction to that shown in Fig. 27.5
it may be shown that:

if y = sin ax then
dy
dx

= a cos ax

If graphs of y = cos x, y = ex and y = ln x are plot-
ted and their gradients investigated, their differential
coefficients may be determined in a similar manner
to that shown for y = sin x. The rate of change of a
function is a measure of the derivative.

The standard derivatives summarized below
may be proved theoretically and are true for all real
values of x

y or f (x)
dy

dx
or f ′(x)

axn anxn−1

sin ax a cos ax
cos ax −a sin ax
eax aeax

ln ax
1

x

The differential coefficient of a sum or difference
is the sum or difference of the differential coeffi-
cients of the separate terms.

Thus, if f (x) = p(x) + q(x) − r(x),
(where f, p, q and r are functions),

then f ′(x) = p′(x) + q′(x) − r′(x)

Differentiation of common functions is demon-
strated in the following worked problems.

Problem 2. Find the differential coefficients of

(a) y = 12x3 (b) y = 12

x3 .

If y = axn then
dy

dx
= anxn−1

Don't forget 
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(a) Since y = 12x3, a = 12 and n = 3 thus
dy

dx
= (12)(3)x3−1 = 36x2

(b) y = 12

x3 is rewritten in the standard axn form as

y = 12x−3 and in the general rule a = 12 and
n = − 3.

Thus
dy

dx
= (12)(−3)x−3−1 = −36x−4 = −36

x4

Problem 3. Differentiate (a) y = 6 (b) y = 6x.

(a) y = 6 may be written as y = 6x0, i.e. in the
general rule a = 6 and n = 0.

Hence
dy

dx
= (6)(0)x0−1 = 0

In general, the differential coefficient of a
constant is always zero.

(b) Since y = 6x, in the general rule a = 6 and n = 1.

Hence
dy

dx
= (6)(1)x1−1 = 6x0 = 6

In general, the differential coefficient of kx,
where k is a constant, is always k.

Problem 4. Find the derivatives of

(a) y = 3
√

x (b) y = 5
3
√

x4
.

(a) y = 3
√

x is rewritten in the standard differential

form as y = 3x
1
2 .

In the general rule, a = 3 and n = 1

2

Thus
dy

dx
= (3)

(
1

2

)

x
1
2 −1 = 3

2
x− 1

2

= 3

2x
1
2

= 3

2
√

x

(b) y = 5
3
√

x4
= 5

x
4
3

= 5x− 4
3 in the standard differen-

tial form.
In the general rule, a = 5 and n = − 4

3

Thus
dy

dx
= (5)

(

−4

3

)

x− 4
3 −1 = −20

3
x− 7

3

= −20

3x
7
3

= −20

3 3√
x7

Problem 5. Differentiate, with respect to x,

y = 5x4 + 4x − 1

2x2 + 1√
x

− 3.

y = 5x4 + 4x − 1

2x2 + 1√
x

− 3 is rewritten as

y = 5x4 + 4x − 1

2
x−2 + x− 1

2 −3

When differentiating a sum, each term is differenti-
ated in turn.

Thus
dy

dx
= (5)(4)x4−1 + (4)(1)x1−1 − 1

2
(−2)x−2−1

+ (1)

(

−1

2

)

x− 1
2 −1 − 0

= 20x3 + 4 + x−3 − 1

2
x− 3

2

i.e.
dy
dx

= 20x3 + 4 + 1
x3 − 1

2
√

x3

Problem 6. Find the differential coefficients
of (a) y = 3 sin 4x (b) f (t) = 2 cos 3t with respect
to the variable.

(a) When y = 3 sin 4x then
dy

dx
= (3)(4 cos 4x)

= 12 cos 4x

(b) When f (t) = 2 cos 3t then
f ′(t) = (2)(−3 sin 3t) = −6 sin 3t

Problem 7. Determine the derivatives of

(a) y = 3e5x (b) f (θ) = 2

e3θ
(c) y = 6 ln 2x.

(a) When y = 3e5x then
dy

dx
= (3)(5)e5x = 15e5x

(b) f (θ) = 2

e3θ
= 2e−3θ , thus

f ′(θ) = (2)(−3)e−30 = −6e−3θ = −6
e3θ
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(c) When y = 6 ln 2x then
dy

dx
= 6

(
1

x

)

= 6
x

Problem 8. Find the gradient of the curve
y = 3x4 − 2x2 + 5x − 2 at the points (0, −2) and
(1, 4).

The gradient of a curve at a given point is given by
the corresponding value of the derivative. Thus, since
y = 3x4 − 2x2 + 5x − 2.

then the gradient = dy

dx
= 12x3 − 4x + 5.

At the point (0, −2), x = 0.
Thus the gradient = 12(0)3 − 4(0) + 5 = 5.

At the point (1, 4), x = 1.
Thus the gradient = 12(1)3 − 4(1) + 5 = 13.

Problem 9. Determine the co-ordinates of the
point on the graph y = 3x2 − 7x + 2 where the
gradient is −1.

The gradient of the curve is given by the derivative.

When y = 3x2 − 7x + 2 then
dy

dx
= 6x − 7

Since the gradient is −1 then 6x − 7 = −1, from
which, x = 1

When x = 1, y = 3(1)2 − 7(1) + 2 = −2

Hence the gradient is −1 at the point (1, −2).

Now try the following exercise.

Exercise 117 Further problems on differen-
tiating common functions

In Problems 1 to 6 find the differential coeffi-
cients of the given functions with respect to the
variable.

1. (a) 5x5 (b) 2.4x3.5 (c)
1

x
[

(a) 25x4 (b) 8.4x2.5 (c) − 1

x2

]

2. (a)
−4

x2 (b) 6 (c) 2x

[

(a)
8

x3 (b) 0 (c) 2

]

3. (a) 2
√

x (b) 3
3√

x5 (c)
4√
x

[

(a)
1√
x

(b) 5
3
√

x2 (c) − 2√
x3

]

4. (a)
−3
3
√

x
(b) (x − 1)2 (c) 2 sin 3x

⎡

⎣ (a)
1

3
√

x4
(b) 2(x − 1)

(c) 6 cos 3x

⎤

⎦

5. (a) −4 cos 2x (b) 2e6x (c)
3

e5x
[

(a) 8 sin 2x (b) 12e6x (c)
−15

e5x

]

6. (a) 4 ln 9x (b)
ex − e−x

2
(c)

1 − √
x

x⎡

⎢
⎢
⎣

(a)
4

x
(b)

ex + e−x

2

(c)
−1

x2 + 1

2
√

x3

⎤

⎥
⎥
⎦

7. Find the gradient of the curve y = 2t4 +
3t3 − t + 4 at the points (0, 4) and (1, 8).

[−1, 16]

8. Find the co-ordinates of the point on the
graph y = 5x2 − 3x + 1 where the gradient
is 2.

[( 1
2 , 3

4

)]

9. (a) Differentiate y = 2

θ2 + 2 ln 2θ −
2 (cos 5θ + 3 sin 2θ) − 2

e3θ

(b) Evaluate
dy

dθ
in part (a) when θ = π

2
,

correct to 4 significant figures.
⎡

⎢
⎢
⎣

(a)
−4

θ3 + 2

θ
+ 10 sin 5θ

−12 cos 2θ + 6

e3θ

(b) 22.30

⎤

⎥
⎥
⎦

10. Evaluate
ds

dt
, correct to 3 significant figures,

when t = π

6
given

s = 3 sin t − 3 + √
t [3.29]
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27.4 Differentiation of a product

When y = uv, and u and v are both functions of x,

then
dy
dx

= u
dv

dx
+ v

du
dx

This is known as the product rule.

Problem 10. Find the differential coefficient of
y = 3x2 sin 2x.

3x2 sin 2x is a product of two terms 3x2 and sin 2x
Let u = 3x2 and v = sin 2x
Using the product rule:

dy

dx
= u

dv

dx
+ v

du

dx
↓ ↓ ↓ ↓

gives:
dy

dx
= (3x2)(2 cos 2x) + (sin 2x)(6x)

i.e.
dy

dx
= 6x2 cos 2x + 6x sin 2x

= 6x(xcos 2x + sin 2x)

Note that the differential coefficient of a product
is not obtained by merely differentiating each term
and multiplying the two answers together. The prod-
uct rule formula must be used when differentiating
products.

Problem 11. Find the rate of change of y with
respect to x given y = 3

√
x ln 2x.

The rate of change of y with respect to x is given

by
dy

dx

y = 3
√

x ln 2x = 3x
1
2 ln 2x, which is a product.

Let u = 3x
1
2 and v = ln 2x

Then
dy

dx
= u

dv

dx
+ v

du

dx
↓ ↓ ↓ ↓

=
(

3x
1
2

)(
1

x

)

+ (ln 2x)

[

3

(
1

2

)

x
1
2 −1
]

= 3x
1
2 −1 + ( ln 2x)

(
3

2

)

x− 1
2

= 3x− 1
2

(

1 + 1

2
ln 2x

)

i.e.
dy
dx

= 3√
x

(

1 + 1
2

ln 2x
)

Problem 12. Differentiate y = x3 cos 3x ln x.

Let u = x3 cos 3x (i.e. a product) and v = ln x

Then
dy

dx
= u

dv

dx
+ v

du

dx

where
du

dx
= (x3)(−3 sin 3x) + (cos 3x)(3x2)

and
dv

dx
= 1

x

Hence
dy

dx
= (x3 cos 3x)

(
1

x

)

+ (ln x)[−3x3 sin 3x

+ 3x2 cos 3x]

= x2 cos 3x + 3x2 ln x(cos 3x − x sin 3x)

i.e.
dy
dx

= x2{cos 3x + 3 ln x(cos 3x − x sin 3x)}

Problem 13. Determine the rate of change of
voltage, given v = 5t sin 2t volts when t = 0.2 s.

Rate of change of voltage = dv

dt

= (5t)(2 cos 2t) + ( sin 2t)(5)

= 10t cos 2t + 5 sin 2t

When t = 0.2,
dv

dt
= 10(0.2) cos 2(0.2)

+ 5 sin 2(0.2)

= 2 cos 0.4 + 5 sin 0.4 (where cos 0.4
means the cosine of 0.4 radians)

Hence
dv

dt
= 2(0.92106) + 5(0.38942)

= 1.8421 + 1.9471 = 3.7892

i.e., the rate of change of voltage when t = 0.2 s is
3.79 volts/s, correct to 3 significant figures.
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Now try the following exercise.

Exercise 118 Further problems on differen-
tiating products

In Problems 1 to 5 differentiate the given prod-
ucts with respect to the variable.

1. 2x3 cos 3x [6x2( cos 3x − x sin 3x)]

2.
√

x3 ln 3x
[√

x
(
1 + 3

2 ln 3x
)]

3. e3t sin 4t [e3t(4 cos 4t + 3 sin 4t)]

4. e4θ ln 3θ

[

e4θ

(
1

θ
+ 4 ln 3θ

)]

5. et ln t cos t
[

et
{(

1

t
+ ln t

)

cos t − ln t sin t

}]

6. Evaluate
di

dt
, correct to 4 significant figures,

when t = 0.1, and i = 15t sin 3t.
[8.732]

7. Evaluate
dz

dt
, correct to 4 significant figures,

when t = 0.5, given that z = 2e3t sin 2t.
[32.31]

27.5 Differentiation of a quotient

When y = u

v
, and u and v are both functions of x

then
dy
dx

=
v

du
dx

− u
dv

dx
v2

This is known as the quotient rule.

Problem 14. Find the differential coefficient of

y = 4 sin 5x

5x4 .

4 sin 5x

5x4 is a quotient. Let u = 4 sin 5x and v = 5x4

(Note that v is always the denominator and u the
numerator)

dy

dx
=

v
du

dx
− u

dv

dx
v2

where
du

dx
= (4)(5) cos 5x = 20 cos 5x

and
dv

dx
= (5)(4)x3 = 20x3

Hence
dy

dx
= (5x4)(20 cos 5x) − (4 sin 5x)(20x3)

(5x4)2

= 100x4 cos 5x − 80x3 sin 5x

25x8

= 20x3[5x cos 5x − 4 sin 5x]

25x8

i.e.
dy
dx

= 4
5x5 (5x cos 5x − 4 sin 5x)

Note that the differential coefficient is not obtained
by merely differentiating each term in turn and then
dividing the numerator by the denominator. The quo-
tient formula must be used when differentiating
quotients.

Problem 15. Determine the differential coeffi-
cient of y = tan ax.

y = tan ax = sin ax

cos ax
. Differentiation of tan ax is thus

treated as a quotient with u = sin ax and v = cos ax

dy

dx
=

v
du

dx
− u

dv

dx
v2

= (cos ax)(a cos ax) − (sin ax)(−a sin ax)

(cos ax)2

= a cos2 ax + a sin2 ax

( cos ax)2 = a(cos2 ax + sin2 ax)

cos2 ax

= a

cos2 ax
, since cos2 ax + sin2 ax = 1

(see Chapter 16)

Hence
dy
dx

= a sec2 ax since sec2 ax = 1

cos2 ax
(see Chapter 12).
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Problem 16. Find the derivative of y = sec ax.

y = sec ax = 1

cos ax
(i.e. a quotient). Let u = 1 and

v = cos ax

dy

dx
=

v
du

dx
− u

dv

dx
v2

= (cos ax)(0) − (1)(−a sin ax)

(cos ax)2

= a sin ax

cos2 ax
= a

(
1

cos ax

)(
sin ax

cos ax

)

i.e.
dy
dx

= a sec ax tan ax

Problem 17. Differentiate y = te2t

2 cos t

The function
te2t

2 cos t
is a quotient, whose numerator

is a product.
Let u = te2t and v = 2 cos t then
du

dt
= (t)(2e2t) + (e2t)(1) and

dv

dt
= −2 sin t

Hence
dy

dx
=

v
du

dx
− u

dv

dx
v2

= (2 cos t)[2te2t + e2t] − (te2t)(−2 sin t)

(2 cos t)2

= 4te2t cos t + 2e2t cos t + 2te2t sin t

4 cos2 t

= 2e2t[2t cos t + cos t + t sin t]

4 cos2 t

i.e.
dy
dx

= e2t

2 cos2t
(2t cos t + cos t + t sin t)

Problem 18. Determine the gradient of the

curve y = 5x

2x2 + 4
at the point

(√
3,

√
3

2

)

.

Let y = 5x and v = 2x2 + 4

dy

dx
=

v
du

dx
− u

dv

dx
v2 = (2x2 + 4)(5) − (5x)(4x)

(2x2 + 4)2

= 10x2 + 20 − 20x2

(2x2 + 4)2 = 20 − 10x2

(2x2 + 4)2

At the point

(√
3,

√
3

2

)

, x = √
3,

hence the gradient = dy

dx
= 20 − 10(

√
3)2

[2(
√

3)2 + 4]2

= 20 − 30

100
= − 1

10

Now try the following exercise.

Exercise 119 Further problems on differen-
tiating quotients

In Problems 1 to 5, differentiate the quotients
with respect to the variable.

1.
2 cos 3x

x3

[−6

x4 (x sin 3x + cos 3x)

]

2.
2x

x2 + 1

[
2(1 − x2)

(x2 + 1)2

]

3.
3
√

θ3

2 sin 2θ

[
3
√

θ(3 sin 2θ − 4θ cos 2θ)

4 sin2 2θ

]

4.
ln 2t√

t

⎡

⎢
⎣

1 − 1

2
ln 2t

√
t3

⎤

⎥
⎦

5.
2xe4x

sin x

[
2e4x

sin2 x
{(1 + 4x) sin x − x cos x}

]

6. Find the gradient of the curve y = 2x

x2 − 5
at

the point (2, −4). [−18]

7. Evaluate
dy

dx
at x = 2.5, correct to 3 significant

figures, given y = 2x2 + 3

ln 2x
.

[3.82]



Ch27-H8152.tex 23/6/2006 15: 9 Page 295

METHODS OF DIFFERENTIATION 295

G

27.6 Function of a function

It is often easier to make a substitution before
differentiating.

If y is a function of x then
dy
dx

= dy
du

× du
dx

This is known as the ‘function of a function’ rule
(or sometimes the chain rule).

For example, if y = (3x − 1)9 then, by making
the substitution u = (3x − 1), y = u9, which is of the
‘standard’ form.

Hence
dy

du
= 9u8 and

du

dx
= 3

Then
dy

dx
= dy

du
× du

dx
= (9u8)(3) = 27u8

Rewriting u as (3x − 1) gives:
dy
dx

= 27(3x − 1)8

Since y is a function of u, and u is a function of x,
then y is a function of a function of x.

Problem 19. Differentiate y = 3 cos(5x2 + 2).

Let u = 5x2 + 2 then y = 3 cos u

Hence
du

dx
= 10x and

dy

du
= −3 sin u.

Using the function of a function rule,

dy

dx
= dy

du
× du

dx
= (−3 sin u)(10x) = −30x sin u

Rewriting u as 5x2 + 2 gives:

dy
dx

= −30x sin(5x2 + 2)

Problem 20. Find the derivative of
y = (4t3 − 3t)6.

Let u = 4t3 − 3t, then y = u6

Hence
du

dt
= 12t2 − 3 and

dy

du
= 6u5

Using the function of a function rule,

dy

dx
= dy

du
× du

dx
= (6u5)(12t2 − 3)

Rewriting u as (4t3 − 3t) gives:

dy
dt

= 6(4t3 − 3t)5(12t2 − 3)

= 18(4t2 − 1)(4t3 − 3t)5

Problem 21. Determine the differential coeffi-
cient of y =√(3x2 + 4x − 1).

y =√(3x2 + 4x − 1) = (3x2 + 4x − 1)
1
2

Let u = 3x2 + 4x − 1 then y = u
1
2

Hence
du

dx
= 6x + 4 and

dy

du
= 1

2
u− 1

2 = 1

2
√

u

Using the function of a function rule,

dy

dx
= dy

du
× du

dx
=
(

1

2
√

u

)

(6x + 4) = 3x + 2√
u

i.e.
dy
dx

= 3x + 2
√

(3x2 + 4x − 1)

Problem 22. Differentiate y = 3 tan4 3x.

Let u = tan 3x then y = 3u4

Hence
du

dx
= 3 sec2 3x, (from Problem 15), and

dy

du
= 12u3

Then
dy

dx
= dy

du
× du

dx
= (12u3)(3 sec2 3x)

= 12( tan 3x)3(3 sec2 3x)

i.e.
dy
dx

= 36 tan33x sec2 3x

Problem 23. Find the differential coefficient of

y = 2

(2t3 − 5)4
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y = 2

(2t3 − 5)4 = 2(2t3 − 5)−4. Let u = (2t3 − 5),

then y = 2u−4

Hence
du

dt
= 6t2 and

dy

du
= −8u−5 = −8

u5

Then
dy

dt
= dy

du
× du

dt
=
(−8

u5

)

(6t2)

= −48t2

(2t3− 5)5

Now try the following exercise.

Exercise 120 Further problems on the func-
tion of a function

In Problems 1 to 8, find the differential coeffi-
cients with respect to the variable.

1. (2x3 − 5x)5 [5(6x2 − 5)(2x3 − 5x)4]

2. 2 sin (3θ − 2) [6 cos (3θ − 2)]

3. 2 cos5 α [−10 cos4 α sin α]

4.
1

(x3 − 2x + 1)5

[
5(2 − 3x2)

(x3 − 2x + 1)6

]

5. 5e2t+1 [10e2t+1]

6. 2 cot (5t2 + 3) [−20t cosec2(5t2 + 3)]

7. 6 tan (3y + 1) [18 sec2 (3y + 1)]

8. 2etan θ [2 sec2 θ etan θ]

9. Differentiate θ sin
(
θ − π

3

)
with respect to θ,

and evaluate, correct to 3 significant figures,

when θ = π

2
[1.86]

27.7 Successive differentiation

When a function y = f (x) is differentiated with
respect to x the differential coefficient is written as
dy

dx
or f ′(x). If the expression is differentiated again,

the second differential coefficient is obtained and

is written as
d2y

dx2 (pronounced dee two y by dee x

squared) or f ′′(x) (pronounced f double-dash x).

By successive differentiation further higher deriv-

atives such as
d3y

dx3 and
d4y

dx4 may be obtained.

Thus if y = 3x4,
dy

dx
= 12x3,

d2y

dx2 = 36x2,

d3y

dx3 = 72x,
d4y

dx4 = 72 and
d5y

dx5
= 0.

Problem 24. If f (x) = 2x5 − 4x3 + 3x − 5, find
f ′′(x).

f (x) = 2x5 − 4x3 + 3x − 5

f ′(x) = 10x4 − 12x2 + 3

f ′′(x) = 40x3 − 24x = 4x(10x2 − 6)

Problem 25. If y = cos x − sin x, evaluate x, in

the range 0 ≤ x ≤ π

2
, when

d2y

dx2 is zero.

Since y = cos x − sin x,
dy

dx
= −sin x − cos x and

d2y

dx2 = −cos x + sin x.

When
d2y

dx2 is zero, −cos x + sin x = 0,

i.e. sin x = cos x or
sin x

cos x
= 1.

Hence tan x = 1 and x = arctan1 = 45◦ or
π

4
rads

in the range 0 ≤ x ≤ π

2

Problem 26. Given y = 2xe−3x show that

d2y

dx2 + 6
dy

dx
+ 9y = 0.

y = 2xe−3x (i.e. a product)

Hence
dy

dx
= (2x)(−3e−3x) + (e−3x)(2)

= −6xe−3x + 2e−3x
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d2y

dx2 = [(−6x)(−3e−3x) + (e−3x)(−6)]

+ (−6e−3x)

= 18xe−3x − 6e−3x − 6e−3x

i.e.
d2y

dx2 = 18xe−3x − 12e−3x

Substituting values into
d2y

dx2 + 6
dy

dx
+ 9y gives:

(18xe−3x − 12e−3x) + 6(−6xe−3x + 2e−3x)

+ 9(2xe−3x) = 18xe−3x − 12e−3x − 36xe−3x

+ 12e−3x + 18xe−3x = 0

Thus when y = 2xe−3x,
d2y

dx2 + 6
dy

dx
+ 9y = 0

Problem 27. Evaluate
d2y

dθ2 when θ = 0 given

y = 4 sec 2θ.

Since y = 4 sec 2θ,

then
dy

dθ
= (4)(2) sec 2θ tan 2θ (from Problem 16)

= 8 sec 2θ tan 2θ (i.e. a product)

d2y

dθ2 = (8 sec 2θ)(2 sec2 2θ)

+ (tan 2θ)[(8)(2) sec 2θ tan 2θ]

= 16 sec3 2θ + 16 sec 2θ tan2 2θ

When θ = 0,
d2y

dθ2 = 16 sec3 0 + 16 sec 0 tan2 0

= 16(1) + 16(1)(0) = 16.

Now try the following exercise.

Exercise 121 Further problems on succes-
sive differentiation

1. If y = 3x4 + 2x3 − 3x + 2 find

(a)
d2y

dx2 (b)
d3y

dx3

[(a) 36x2 + 12x (b) 72x + 12]

2. (a) Given f (t) = 2

5
t2 − 1

t3 + 3

t
− √

t + 1

determine f ′′(t)
(b) Evaluate f ′′(t) when t = 1

⎡

⎣
(a)

4

5
− 12

t5
+ 6

t3 + 1

4
√

t3

(b) −4.95

⎤

⎦

In Problems 3 and 4, find the second differ-
ential coefficient with respect to the variable.

3. (a) 3 sin 2t + cos t (b) 2 ln 4θ[

(a) −(12 sin 2t + cos t) (b)
−2

θ2

]

4. (a) 2 cos2 x (b) (2x − 3)4

[(a) 4( sin2 x − cos2 x) (b) 48(2x − 3)2]

5. Evaluate f ′′(θ) when θ = 0 given
f (θ) = 2 sec 3θ [18]

6. Show that the differential equation
d2y

dx2 − 4
dy

dx
+ 4y = 0 is satisfied

when y = xe2x

7. Show that, if P and Q are constants and
y = P cos(ln t) + Q sin(ln t), then

t2 d2y

dt2 + t
dy

dt
+ y = 0
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28

Some applications of differentiation

28.1 Rates of change

If a quantity y depends on and varies with a quantity

x then the rate of change of y with respect to x is
dy

dx
.

Thus, for example, the rate of change of pressure p

with height h is
dp

dh
.

A rate of change with respect to time is usually
just called ‘the rate of change’, the ‘with respect to
time’ being assumed. Thus, for example, a rate of

change of current, i, is
di

dt
and a rate of change of

temperature, θ, is
dθ

dt
, and so on.

Problem 1. The length l metres of a certain
metal rod at temperature θ◦C is given
by l = 1 + 0.00005θ + 0.0000004θ2. Determine
the rate of change of length, in mm/◦C, when the
temperature is (a) 100◦C and (b) 400◦C.

The rate of change of length means
dl

dθ
.

Since length l = 1 + 0.00005θ + 0.0000004θ2,

then
dl

dθ
= 0.00005 + 0.0000008θ

(a) When θ = 100◦C,

dl

dθ
= 0.00005 + (0.0000008)(100)

= 0.00013 m/◦C

= 0.13 mm/◦C

(b) When θ = 400◦C,

dl

dθ
= 0.00005 + (0.0000008)(400)

= 0.00037 m/◦C

= 0.37 mm/◦C

Problem 2. The luminous intensity I cande-
las of a lamp at varying voltage V is given by
I = 4 ×10−4 V2. Determine the voltage at which
the light is increasing at a rate of 0.6 candelas
per volt.

The rate of change of light with respect to voltage is

given by
dI

dV
.

Since I = 4 × 10−4 V2,

dI

dV
= (4 × 10−4)(2)V = 8 × 10−4 V

When the light is increasing at 0.6 candelas per volt
then +0.6 = 8 × 10−4 V , from which, voltage

V = 0.6

8 × 10−4 = 0.075 × 10+4

= 750 volts

Problem 3. Newtons law of cooling is given
by θ = θ0e−kt , where the excess of temperature
at zero time is θ◦

0C and at time t seconds is θ◦C.
Determine the rate of change of temperature
after 40 s, given that θ0 = 16◦C and k = −0.03.

The rate of change of temperature is
dθ

dt
.

Since θ = θ0e−kt

then
dθ

dt
= (θ0)(−k)e−kt = −kθ0e−kt

When θ0 = 16, k = −0.03 and t = 40

then
dθ

dt
= −(−0.03)(16)e−(−0.03)(40)

= 0.48e1.2 = 1.594◦C/s
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Problem 4. The displacement s cm of the end
of a stiff spring at time t seconds is given by
s = ae−kt sin 2πft. Determine the velocity of the
end of the spring after 1 s, if a = 2, k = 0.9 and
f = 5.

Velocity, v = ds

dt
where s = ae−kt sin 2πft (i.e. a

product).
Using the product rule,

ds

dt
= (ae−kt)(2πf cos 2πft)

+ (sin 2πft)(−ake−kt)

When a = 2, k = 0.9, f = 5 and t = 1,

velocity, v = (2e−0.9)(2π5 cos 2π5)

+ (sin 2π5)(−2)(0.9)e−0.9

= 25.5455 cos 10π − 0.7318 sin 10π

= 25.5455(1) − 0.7318(0)

= 25.55 cm/s

(Note that cos 10π means ‘the cosine of 10π radians’,
not degrees, and cos 10π ≡ cos 2π = 1).

Now try the following exercise.

Exercise 122 Further problems on rates of
change

1. An alternating current, i amperes, is given by
i = 10 sin 2πft, where f is the frequency in
hertz and t the time in seconds. Determine
the rate of change of current when t = 20 ms,
given that f = 150 Hz. [3000πA/s]

2. The luminous intensity, I candelas, of a lamp
is given by I = 6 × 10−4 V2, where V is
the voltage. Find (a) the rate of change of
luminous intensity with voltage when V =
200 volts, and (b) the voltage at which the
light is increasing at a rate of 0.3 candelas
per volt. [(a) 0.24 cd/V (b) 250V]

3. The voltage across the plates of a capacitor at
any time t seconds is given by v = Ve−t/CR,
where V , C and R are constants.

Given V = 300 volts, C = 0.12 × 10−6 F and
R = 4 × 106 � find (a) the initial rate of
change of voltage, and (b) the rate of change
of voltage after 0.5 s.

[(a) −625V/s (b) −220.5V/s]

4. The pressure p of the atmosphere at height h
above ground level is given by p = p0e−h/c,
where p0 is the pressure at ground level
and c is a constant. Determine the rate
of change of pressure with height when
p0 = 1.013 × 105 pascals and c = 6.05 × 104

at 1450 metres. [−1.635 Pa/m]

28.2 Velocity and acceleration

When a car moves a distance x metres in a time t sec-
onds along a straight road, if the velocity v is constant

then v = x

t
m/s, i.e. the gradient of the distance/time

graph shown in Fig. 28.1 is constant.

Figure 28.1

If, however, the velocity of the car is not constant
then the distance/time graph will not be a straight
line. It may be as shown in Fig. 28.2.

The average velocity over a small time δt and dis-
tance δx is given by the gradient of the chord AB, i.e.

the average velocity over time δt is
δx

δt
.

As δt → 0, the chord AB becomes a tangent, such
that at point A, the velocity is given by:

v = dx

dt
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Figure 28.2

Hence the velocity of the car at any instant is given by
the gradient of the distance/time graph. If an expres-
sion for the distance x is known in terms of time t
then the velocity is obtained by differentiating the
expression.

The acceleration a of the car is defined as the
rate of change of velocity. A velocity/time graph is
shown in Fig. 28.3. If δv is the change in v and δt the

corresponding change in time, then a = δv

δt
.

Figure 28.3

As δt → 0, the chord CD becomes a tangent, such
that at point C, the acceleration is given by:

a = dv

dt

Hence the acceleration of the car at any instant is
given by the gradient of the velocity/time graph. If
an expression for velocity is known in terms of time
t then the acceleration is obtained by differentiating
the expression.

Acceleration a = dv

dt
. However, v = dx

dt
. Hence

a = d

dt

(
dx

dt

)

= d2x

dx2

The acceleration is given by the second dif-
ferential coefficient of distance x with respect to
time t.

Summarising, if a body moves a distance
x metres in a time t seconds then:

(i) distance x = f (t).

(ii) velocity v = f ′(t) or
dx
dt

, which is the gradient

of the distance/time graph.

(iii) acceleration a = dv

dt
= f ′′(t) or

d2x
dt2 , which is

the gradient of the velocity/time graph.

Problem 5. The distance x metres moved
by a car in a time t seconds is given by
x = 3t3 − 2t2 + 4t − 1. Determine the velocity
and acceleration when (a) t = 0 and (b) t = 1.5 s.

Distance x = 3t3 − 2t2 + 4t − 1 m

Velocity v = dx

dt
= 9t2 − 4t + 4 m/s

Acceleration a = d2x

dx2 = 18t − 4 m/s2

(a) When time t = 0,
velocity v = 9(0)2 − 4(0) + 4 = 4 m/s and
acceleration a = 18(0) − 4 = −4 m/s2 (i.e. a
deceleration)

(b) When time t = 1.5 s,
velocity v = 9(1.5)2 − 4(1.5) + 4 = 18.25 m/s
and acceleration a = 18(1.5) − 4 = 23 m/s2

Problem 6. Supplies are dropped from a heli-
coptor and the distance fallen in a time t seconds
is given by x = 1

2 gt2, where g = 9.8 m/s2. Deter-
mine the velocity and acceleration of the sup-
plies after it has fallen for 2 seconds.
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Distance x = 1

2
gt2 = 1

2
(9.8)t2 = 4.9t2 m

Velocity v = dv

dt
= 9.8t m/s

and acceleration a = d2x

dt2 = 9.8 m/s2

When time t = 2 s,

velocity, v = (9.8)(2) = 19.6 m/s

and acceleration a = 9.8 m/s2

(which is acceleration due to gravity).

Problem 7. The distance x metres travelled by
a vehicle in time t seconds after the brakes are
applied is given by x = 20t − 5

3 t2. Determine
(a) the speed of the vehicle (in km/h) at the
instant the brakes are applied, and (b) the dis-
tance the car travels before it stops.

(a) Distance, x = 20t − 5
3 t2.

Hence velocity v = dx

dt
= 20 − 10

3
t.

At the instant the brakes are applied, time = 0.

Hence velocity, v = 20 m/s

= 20 × 60 × 60

1000
km/h

= 72 km/h

(Note: changing from m/s to km/h merely
involves multiplying by 3.6).

(b) When the car finally stops, the velocity is zero,

i.e. v = 20 − 10

3
t = 0, from which, 20 = 10

3
t,

giving t = 6 s.
Hence the distance travelled before the car stops
is given by:

x = 20t − 5
3 t2 = 20(6) − 5

3 (6)2

= 120 − 60 = 60 m

Problem 8. The angular displacement θ radi-
ans of a flywheel varies with time t seconds
and follows the equation θ = 9t2 − 2t3. Deter-
mine (a) the angular velocity and acceleration
of the flywheel when time, t = 1 s, and (b) the
time when the angular acceleration is zero.

(a) Angular displacement θ = 9t2 − 2t3 rad

Angular velocity ω = dθ

dt
= 18t − 6t2 rad/s

When time t = 1 s,

ω = 18(1) − 6(1)2 = 12 rad/s

Angular accelerationα = d2θ

dt2 = 18 − 12t rad/s2

When time t = 1 s,

α = 18 − 12(1) = 6 rad/s2

(b) When the angular acceleration is zero,
18 − 12t = 0, from which, 18 = 12t, giving time,
t = 1.5 s.

Problem 9. The displacement x cm of the slide
valve of an engine is given by
x = 2.2 cos 5πt + 3.6 sin 5πt. Evaluate the
velocity (in m/s) when time t = 30 ms.

Displacement x = 2.2 cos 5πt + 3.6 sin 5πt

Velocity v = dx

dt

= (2.2)(−5π) sin 5πt + (3.6)(5π) cos 5πt

= −11π sin 5πt + 18π cos 5πt cm/s

When time t = 30 ms, velocity

= −11π sin

(

5π · 30

103

)

+ 18π cos

(

5π · 30

103

)

= −11π sin 0.4712 + 18π cos 0.4712

= −11π sin 27◦ + 18π cos 27◦

= −15.69 + 50.39 = 34.7 cm/s

= 0.347 m/s

Now try the following exercise.

Exercise 123 Further problems on velocity
and acceleration

1. A missile fired from ground level rises
x metres vertically upwards in t seconds and

x = 100t − 25

2
t2. Find (a) the initial velocity

of the missile, (b) the time when the height of
the missile is a maximum, (c) the maximum
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height reached, (d) the velocity with which
the missile strikes the ground.[

(a) 100 m/s (b) 4 s

(c) 200 m (d) −100 m/s

]

2. The distance s metres travelled by a car in t
seconds after the brakes are applied is given
by s = 25t − 2.5t2. Find (a) the speed of the
car (in km/h) when the brakes are applied,
(b) the distance the car travels before it stops.

[(a) 90 km/h (b) 62.5 m]

3. The equation θ = 10π + 24t − 3t2 gives the
angle θ, in radians, through which a wheel
turns in t seconds. Determine (a) the time
the wheel takes to come to rest, (b) the
angle turned through in the last second of
movement. [(a) 4 s (b) 3 rads]

4. At any time t seconds the distance x metres
of a particle moving in a straight line from
a fixed point is given by x = 4t + ln(1 − t).
Determine (a) the initial velocity and
acceleration (b) the velocity and acceleration
after 1.5 s (c) the time when the velocity is
zero. ⎡

⎢
⎢
⎣

(a) 3 m/s; −1 m/s2

(b) 6 m/s; −4 m/s2

(c) 3
4 s

⎤

⎥
⎥
⎦

5. The angular displacement θ of a rotating disc

is given by θ = 6 sin
t

4
, where t is the time in

seconds. Determine (a) the angular velocity
of the disc when t is 1.5 s, (b) the angular
acceleration when t is 5.5 s, and (c) the first
time when the angular velocity is zero.

⎡

⎢
⎣

(a) ω = 1.40 rad/s

(b) α = −0.37 rad/s2

(c) t = 6.28 s

⎤

⎥
⎦

6. x = 20t3

3
− 23t2

2
+ 6t + 5 represents the dis-

tance, x metres, moved by a body in t seconds.
Determine (a) the velocity and acceleration
at the start, (b) the velocity and acceleration
when t = 3 s, (c) the values of t when the
body is at rest, (d) the value of t when the

acceleration is 37 m/s2 and (e) the distance
travelled in the third second.

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(a) 6 m/s; −23 m/s2

(b) 117 m/s; 97 m/s2

(c) 3
4 s or 2

5 s

(d) 1 1
2 s

(e) 75 1
6 m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

28.3 Turning points

In Fig. 28.4, the gradient (or rate of change) of the
curve changes from positive between O and P to
negative between P and Q, and then positive again
between Q and R. At point P, the gradient is zero
and, as x increases, the gradient of the curve changes
from positive just before P to negative just after. Such
a point is called a maximum point and appears as
the ‘crest of a wave’. At point Q, the gradient is also
zero and, as x increases, the gradient of the curve
changes from negative just before Q to positive just
after. Such a point is called a minimum point, and
appears as the ‘bottom of a valley’. Points such as P
and Q are given the general name of turning points.

Figure 28.4

It is possible to have a turning point, the gradient
on either side of which is the same. Such a point is
given the special name of a point of inflexion, and
examples are shown in Fig. 28.5.

Maximum and minimum points and points of
inflexion are given the general term of stationary
points.

Procedure for finding and distinguishing
between stationary points:

(i) Given y = f (x), determine
dy

dx
(i.e. f ′(x))
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Figure 28.5

(ii) Let
dy

dx
= 0 and solve for the values of x.

(iii) Substitute the values of x into the original
equation, y = f (x), to find the correspond-
ing y-ordinate values. This establishes the
co-ordinates of the stationary points.

To determine the nature of the stationary points:
Either

(iv) Find
d2y

dx2 and substitute into it the values of x

found in (ii).
If the result is:
(a) positive—the point is a minimum one,
(b) negative—the point is a maximum one,
(c) zero—the point is a point of inflexion

or
(v) Determine the sign of the gradient of the curve

just before and just after the stationary points.
If the sign change for the gradient of the
curve is:
(a) positive to negative—the point is a max-

imum one

(b) negative to positive—the point is a min-
imum one

(c) positive to positive or negative to negative—
the point is a point of inflexion

Problem 10. Locate the turning point on the
curve y = 3x2 − 6x and determine its nature by
examining the sign of the gradient on either side.

Following the above procedure:

(i) Since y = 3x2 − 6x,
dy

dx
= 6x − 6.

(ii) At a turning point,
dy

dx
= 0. Hence 6x − 6 = 0,

from which, x = 1.

(iii) When x = 1, y = 3(1)2 − 6(1) = −3.

Hence the co-ordinates of the turning point
are (1, −3).

(iv) If x is slightly less than 1, say, 0.9, then

dy

dx
= 6(0.9) − 6 = −0.6,

i.e. negative.
If x is slightly greater than 1, say, 1.1, then

dy

dx
= 6(1.1) − 6 = 0.6,

i.e. positive.

Since the gradient of the curve is negative just
before the turning point and positive just after
(i.e. − ∨ +), (1, −3) is a minimum point.

Problem 11. Find the maximum and minimum
values of the curve y = x3 − 3x + 5 by

(a) examining the gradient on either side of the
turning points, and

(b) determining the sign of the second
derivative.

Since y = x3 − 3x + 5 then
dy

dx
= 3x2 − 3

For a maximum or minimum value
dy

dx
= 0

Hence 3x2 − 3 = 0, from which, 3x2 = 3 and x = ±1

When x = 1, y = (1)3 − 3(1) + 5 = 3

When x = −1, y = (−1)3 − 3(−1) + 5 = 7

Hence (1, 3) and (−1, 7) are the co-ordinates of the
turning points.

(a) Considering the point (1, 3):
If x is slightly less than 1, say 0.9, then

dy

dx
= 3(0.9)2 − 3,

which is negative.
If x is slightly more than 1, say 1.1, then

dy

dx
= 3(1.1)2 − 3,

which is positive.
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Since the gradient changes from negative to
positive, the point (1, 3) is a minimum point.

Considering the point (−1, 7):

If x is slightly less than −1, say −1.1, then

dy

dx
= 3(−1.1)2 − 3,

which is positive.

If x is slightly more than −1, say −0.9, then

dy

dx
= 3(−0.9)2 − 3,

which is negative.

Since the gradient changes from positive to
negative, the point (−1, 7) is a maximum
point.

(b) Since
dy

dx
= 3x2 − 3, then

d2y

dx2 = 6x

When x = 1,
d2y

dx2 is positive, hence (1, 3) is a

minimum value.

When x = −1,
d2y

dx2 is negative, hence (−1, 7)

is a maximum value.

Thus the maximum value is 7 and the min-
imum value is 3.

It can be seen that the second differential method
of determining the nature of the turning points
is, in this case, quicker than investigating the
gradient.

Problem 12. Locate the turning point on the
following curve and determine whether it is a
maximum or minimum point: y = 4θ + e−θ .

Since y = 4θ + e−θ

then
dy

dθ
= 4 − e−θ = 0

for a maximum or minimum value.

Hence 4 = e−θ , 1
4 = eθ, giving θ = ln 1

4 = −1.3863
(see Chapter 4).

When θ = − 1.3863, y = 4( − 1.3863) + e−(−1.3863)

= 5.5452 + 4.0000 = −1.5452.

Thus (−1.3863, −1.5452) are the co-ordinates of the
turning point.

d2y

dθ2 = e−θ.

When θ = −1.3863,

d2y

dθ2 = e+1.3863 = 4.0,

which is positive, hence (−1.3863, −1.5452) is a
minimum point.

Problem 13. Determine the co-ordinates of the
maximum and minimum values of the graph

y = x3

3
− x2

2
− 6x + 5

3
and distinguish between

them. Sketch the graph.

Following the given procedure:

(i) Since y = x3

3
− x2

2
− 6x + 5

3
then

dy

dx
= x2 − x − 6

(ii) At a turning point,
dy

dx
= 0. Hence

x2 − x − 6 = 0, i.e. (x + 2)(x − 3) = 0,
from which x = −2 or x = 3.

(iii) When x = −2,

y = (−2)3

3
− (−2)2

2
− 6(−2) + 5

3
= 9

When x = 3,

y = (3)3

3
− (3)2

2
− 6(3) + 5

3
= −11

5

6
Thus the co-ordinates of the turning points

are (−2, 9) and
(

3, −11 5
6

)
.

(iv) Since
dy

dx
= x2 − x − 6 then

d2y

dx2 = 2x−1.

When x = −2,

d2y

dx2 = 2(−2) − 1 = −5,

which is negative.

Hence (−2, 9) is a maximum point.
When x = 3,

d2y

dx2 = 2(3) − 1 = 5,

which is positive.
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Hence
(

3, −11 5
6

)
is a minimum point.

Knowing (−2, 9) is a maximum point (i.e. crest

of a wave), and
(

3, −11 5
6

)
is a minimum point

(i.e. bottom of a valley) and that when x = 0,
y = 5

3 , a sketch may be drawn as shown in
Fig. 28.6.

Figure 28.6

Problem 14. Determine the turning points on
the curve y = 4 sin x − 3 cos x in the range x = 0
to x = 2π radians, and distinguish between them.
Sketch the curve over one cycle.

Since y = 4 sin x − 3 cos x

then
dy

dx
= 4 cos x + 3 sin x = 0,

for a turning point, from which,

4 cos x = −3 sin x and
−4

3
= sin x

cos x
= tan x

Hence x = tan−1
(−4

3

)

= 126◦52′ or 306◦52′,
since tangent is negative in the second and fourth
quadrants.
When x = 126◦52′,

y = 4 sin 126◦52′ − 3 cos 126◦52′ = 5

When x = 306◦52′,
y = 4 sin 306◦52′ − 3 cos 306◦52′ = −5

126◦52′ =
(

125◦52′ × π

180

)
radians

= 2.214 rad

306◦52′ =
(

306◦52′ × π

180

)
radians

= 5.356 rad

Hence (2.214, 5) and (5.356, −5) are the
co-ordinates of the turning points.

d2y

dx2 = −4 sin x + 3 cos x

When x = 2.214 rad,

d2y

dx2 = −4 sin 2.214 + 3 cos 2.214,

which is negative.
Hence (2.214, 5) is a maximum point.
When x = 5.356 rad,

d2y

dx2 = −4 sin 5.356 + 3 cos 5.356,

which is positive.
Hence (5.356, −5) is a minimum point.
A sketch of y = 4 sin x − 3 cos x is shown in
Fig. 28.7.

Figure 28.7

Now try the following exercise.

Exercise 124 Further problems on turning
points

In Problems 1 to 7, find the turning points and
distinguish between them.
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1. y = 3x2 − 4x + 2
[
Minimum at

( 2
3 , 2

3

)]

2. x = θ(6 − θ) [Maximum at (3, 9)]

3. y = 4x3 + 3x2 − 60x − 12
[

Minimum (2, −88);
Maximum( − 2.5, 94.25)

]

4. y = 5x − 2 ln x
[Minimum at (0.4000, 3.8326)]

5. y = 2x − ex

[Maximum at (0.6931, −0.6136)]

6. y = t3 − t2

2
− 2t + 4
⎡

⎣
Minimum at (1, 2.5);

Maximum at

(

−2

3
, 4

22

27

)
⎤

⎦

7. x = 8t + 1

2t2 [Minimum at (0.5, 6)]

8. Determine the maximum and minimum val-
ues on the graph y = 12 cos θ − 5 sin θ in the
range θ = 0 to θ = 360◦. Sketch the graph
over one cycle showing relevant points.[

Maximum of 13 at 337◦23′,
Minimum of −13 at 157◦23′

]

9. Show that the curve y = 2
3 (t − 1)3 + 2t(t − 2)

has a maximum value of 2
3 and a minimum

value of −2.

28.4 Practical problems involving
maximum and minimum values

There are many practical problems involving max-
imum and minimum values which occur in science
and engineering. Usually, an equation has to be
determined from given data, and rearranged where
necessary, so that it contains only one variable. Some
examples are demonstrated in Problems 15 to 20.

Problem 15. A rectangular area is formed hav-
ing a perimeter of 40 cm. Determine the length
and breadth of the rectangle if it is to enclose the
maximum possible area.

Let the dimensions of the rectangle be x and y. Then
the perimeter of the rectangle is (2x + 2y). Hence

2x + 2y = 40,
or x + y = 20 (1)

Since the rectangle is to enclose the maximum pos-
sible area, a formula for area A must be obtained in
terms of one variable only.
Area A = xy. From equation (1), x = 20 − y
Hence, area A = (20 − y)y = 20y − y2

dA

dy
= 20 − 2y = 0

for a turning point, from which, y = 10 cm

d2A

dy2 = −2,

which is negative, giving a maximum point.
When y = 10 cm, x = 10 cm, from equation (1).

Hence the length and breadth of the rectangle
are each 10 cm, i.e. a square gives the maximum
possible area. When the perimeter of a rectangle
is 40 cm, the maximum possible area is 10 × 10 =
100 cm2.

Problem 16. A rectangular sheet of metal hav-
ing dimensions 20 cm by 12 cm has squares
removed from each of the four corners and
the sides bent upwards to form an open box.
Determine the maximum possible volume of
the box.

The squares to be removed from each corner are
shown in Fig. 28.8, having sides x cm. When the
sides are bent upwards the dimensions of the box
will be:

Figure 28.8

length (20 − 2x) cm, breadth (12 − 2x) cm and
height, x cm.

Volume of box,

V = (20 − 2x)(12 − 2x)(x)

= 240x − 64x2 + 4x3
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dV

dx
= 240 − 128x + 12x2 = 0

for a turning point

Hence 4(60 − 32x + 3x2) = 0,

i.e. 3x2 − 32x + 60 = 0

Using the quadratic formula,

x = 32 ±√( − 32)2 − 4(3)(60)

2(3)
= 8.239 cm or 2.427 cm.

Since the breadth is (12 − 2x) cm then x = 8.239 cm
is not possible and is neglected. Hence x = 2.427 cm

d2V

dx2 = −128 + 24x.

When x = 2.427,
d2V

dx2 is negative, giving a max-

imum value.
The dimensions of the box are:

length = 20 − 2(2.427) = 15.146 cm,

breadth = 12 − 2(2.427) = 7.146 cm,

and height = 2.427 cm

Maximum volume = (15.146)(7.146)(2.427)

= 262.7 cm3

Problem 17. Determine the height and radius
of a cylinder of volume 200 cm3 which has the
least surface area.

Let the cylinder have radius r and perpendicular
height h.
Volume of cylinder,

V = πr2h = 200 (1)

Surface area of cylinder,

A = 2πrh + 2πr2

Least surface area means minimum surface area and
a formula for the surface area in terms of one variable
only is required.
From equation (1),

h = 200

πr2 (2)

Hence surface area,

A = 2πr

(
200

πr2

)

+ 2πr2

= 400

r
+ 2πr2 = 400r−1 + 2πr2

dA

dr
= −400

r2 + 4πr = 0,

for a turning point.

Hence 4πr = 400

r2 and r3 = 400

4π
,

from which,

r = 3

√(
100

π

)

= 3.169 cm

d2A

dr2 = 800

r3 + 4π.

When r = 3.169 cm,
d2A

dr2 is positive, giving a min-

imum value.
From equation (2),

when r = 3.169 cm,

h = 200

π(3.169)2 = 6.339 cm

Hence for the least surface area, a cylinder of vol-
ume 200 cm3 has a radius of 3.169 cm and height
of 6.339 cm.

Problem 18. Determine the area of the largest
piece of rectangular ground that can be enclosed
by 100 m of fencing, if part of an existing straight
wall is used as one side.

Let the dimensions of the rectangle be x and y as
shown in Fig. 28.9, where PQ represents the straight
wall.

Figure 28.9
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From Fig. 28.9,

x + 2y = 100 (1)

Area of rectangle,

A = xy (2)

Since the maximum area is required, a formula for
area A is needed in terms of one variable only.
From equation (1), x = 100 − 2y
Hence area A = xy = (100 − 2y)y = 100y − 2y2

dA

dy
= 100 − 4y = 0,

for a turning point, from which, y = 25 m

d2A

dy2 = −4,

which is negative, giving a maximum value.
When y = 25 m, x = 50 m from equation (1).
Hence the maximum possible area = xy =
(50)(25) = 1250 m2.

Problem 19. An open rectangular box with
square ends is fitted with an overlapping lid
which covers the top and the front face. Deter-
mine the maximum volume of the box if 6 m2 of
metal are used in its construction.

A rectangular box having square ends of side x and
length y is shown in Fig. 28.10.

Figure 28.10

Surface area of box, A, consists of two ends and five
faces (since the lid also covers the front face.)
Hence

A = 2x2 + 5xy = 6 (1)

Since it is the maximum volume required, a for-
mula for the volume in terms of one variable only
is needed. Volume of box, V = x2y.

From equation (1),

y = 6 − 2x2

5x
= 6

5x
− 2x

5
(2)

Hence volume

V = x2y = x2
(

6

5x
− 2x

5

)

= 6x

5
− 2x3

5

dV

dx
= 6

5
− 6x2

5
= 0

for a maximum or minimum value
Hence 6 = 6x2, giving x = 1 m (x = −1 is not possi-
ble, and is thus neglected).

d2V

dx2 = −12x

5
.

When x = 1,
d2V

dx2 is negative, giving a maximum

value.
From equation (2), when x = 1,

y = 6

5(1)
− 2(1)

5
= 4

5

Hence the maximum volume of the box is given by

V = x2y = (1)2 ( 4
5

) = 4
5 m3

Problem 20. Find the diameter and height of a
cylinder of maximum volume which can be cut
from a sphere of radius 12 cm.

A cylinder of radius r and height h is shown enclosed
in a sphere of radius R = 12 cm in Fig. 28.11.
Volume of cylinder,

V = πr2h (1)

Using the right-angled triangle OPQ shown in
Fig. 28.11,

r2 +
(

h

2

)2

= R2 by Pythagoras’ theorem,

i.e. r2 + h2

4
= 144 (2)

Since the maximum volume is required, a formula
for the volume V is needed in terms of one variable
only. From equation (2),

r2 = 144 − h2

4
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Figure 28.11

Substituting into equation (1) gives:

V = π

(

144 − h2

4

)

h = 144πh − πh3

4

dV

dh
= 144π − 3πh2

4
= 0,

for a maximum or minimum value.
Hence

144π = 3πh2

4

from which, h =
√

(144)(4)

3
= 13.86 cm

d2V

dh2 = −6πh

4

When h = 13.86,
d2V

dh2 is negative, giving a maxi-

mum value.
From equation (2),

r2 = 144 − h2

4
= 144 − 13.862

4

from which, radius r = 9.80 cm

Diameter of cylinder = 2r = 2(9.80) = 19.60 cm.

Hence the cylinder having the maximum volume
that can be cut from a sphere of radius 12 cm
is one in which the diameter is 19.60 cm and the
height is 13.86 cm.

Now try the following exercise.

Exercise 125 Further problems on practical
maximum and minimum problems

1. The speed, v, of a car (in m/s) is related to
time t s by the equation v = 3 + 12t − 3t2.
Determine the maximum speed of the car
in km/h. [54 km/h]

2. Determine the maximum area of a rectangu-
lar piece of land that can be enclosed by
1200 m of fencing. [90000 m2]

3. A shell is fired vertically upwards and
its vertical height, x metres, is given by
x = 24t − 3t2, where t is the time in seconds.
Determine the maximum height reached.

[48 m]

4. A lidless box with square ends is to be made
from a thin sheet of metal. Determine the
least area of the metal for which the volume
of the box is 3.5 m3. [11.42 m2]

5. A closed cylindrical container has a surface
area of 400 cm2. Determine the dimensions
for maximum volume.[

radius = 4.607 cm;
height = 9.212 cm

]

6. Calculate the height of a cylinder of max-
imum volume which can be cut from a cone
of height 20 cm and base radius 80 cm.

[6.67 cm]

7. The power developed in a resistor R by a
battery of emf E and internal resistance r is

given by P = E2R

(R + r)2 . Differentiate P with

respect to R and show that the power is a
maximum when R = r.

8. Find the height and radius of a closed cylin-
der of volume 125 cm3 which has the least
surface area. [

height = 5.42 cm;
radius = 2.71 cm

]

9. Resistance to motion, F, of a moving vehi-
cle, is given by F = 5

x + 100x. Determine the
minimum value of resistance. [44.72]
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10. An electrical voltage E is given by
E = (15 sin 50πt + 40 cos 50πt) volts,
where t is the time in seconds. Determine
the maximum value of voltage.

[42.72 volts]

11. The fuel economy E of a car, in miles per
gallon, is given by:

E = 21 + 2.10 × 10−2v2

− 3.80 × 10−6v4

where v is the speed of the car in miles per
hour.
Determine, correct to 3 significant figures,
the most economical fuel consumption, and
the speed at which it is achieved.

[50.0 miles/gallon, 52.6 miles/hour]

28.5 Tangents and normals

Tangents

The equation of the tangent to a curve y = f (x) at the
point (x1, y1) is given by:

y − y1 = m(x − x1)

where m = dy

dx
= gradient of the curve at (x1, y1).

Problem 21. Find the equation of the tangent
to the curve y = x2 − x − 2 at the point (1, −2).

Gradient, m

= dy

dx
= 2x − 1

At the point (1, −2), x = 1 and m = 2(1) − 1 = 1.
Hence the equation of the tangent is:

y − y1 = m(x − x1)
i.e. y − (−2) = 1(x − 1)
i.e. y + 2 = x − 1
or y = x − 3

The graph of y = x2 − x − 2 is shown in Fig. 28.12.
The line AB is the tangent to the curve at the point C,
i.e. (1, −2), and the equation of this line is y = x − 3.

Figure 28.12

Normals

The normal at any point on a curve is the line which
passes through the point and is at right angles to
the tangent. Hence, in Fig. 28.12, the line CD is the
normal.

It may be shown that if two lines are at right angles
then the product of their gradients is −1. Thus if m
is the gradient of the tangent, then the gradient of the

normal is − 1

m
Hence the equation of the normal at the point (x1, y1)
is given by:

y − y1 = − 1

m
(x − x1)

Problem 22. Find the equation of the normal
to the curve y = x2 − x − 2 at the point (1, −2).

m = 1 from Problem 21, hence the equation of the
normal is

y − y1 = − 1

m
(x − x1)

i.e. y − (−2) = −1

1
(x − 1)

i.e. y + 2 = −x + 1
or y = −x − 1

Thus the line CD in Fig. 28.12 has the equation
y = −x − 1.
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Problem 23. Determine the equations of the

tangent and normal to the curve y = x3

5
at the

point

(

−1, −1

5

)

Gradient m of curve y = x3

5
is given by

m = dy

dx
= 3x2

5

At the point
(−1, − 1

5

)
, x = −1 and m = 3(−1)2

5
= 3

5
Equation of the tangent is:

y − y1 = m(x − x1)

i.e. y −
(

−1

5

)

= 3

5
(x − (−1))

i.e. y + 1

5
= 3

5
(x + 1)

or 5y + 1 = 3x + 3
or 5y − 3x = 2

Equation of the normal is:

y − y1 = − 1

m
(x − x1)

i.e. y −
(

−1

5

)

= −1

(3/5)
(x − (−1))

i.e. y + 1

5
= −5

3
(x + 1)

i.e. y + 1

5
= −5

3
x − 5

3

Multiplying each term by 15 gives:

15y + 3 = −25x − 25

Hence equation of the normal is:

15y + 25x + 28 = 0

Now try the following exercise.

Exercise 126 Further problems on tangents
and normals

For the curves in problems 1 to 5, at the points
given, find (a) the equation of the tangent, and
(b) the equation of the normal.

1. y = 2x2 at the point (1, 2)

[
(a) y = 4x − 2
(b) 4y + x = 9

]

2. y = 3x2 − 2x at the point (2, 8)
[

(a) y = 10x − 12

(b) 10y + x = 82

]

3. y = x3

2
at the point

(

−1, −1

2

)

[
(a) y = 3

2 x + 1

(b) 6y + 4x + 7 = 0

]

4. y = 1 + x − x2 at the point (−2, −5)
[

(a) y = 5x + 5

(b) 5y + x + 27 = 0

]

5. θ = 1

t
at the point

(

3,
1

3

)

[
(a) 9θ + t = 6

(b) θ = 9t − 26 2
3 or 3θ = 27t − 80

]

28.6 Small changes

If y is a function of x, i.e. y = f (x), and the approxi-
mate change in y corresponding to a small change
δx in x is required, then:

δy

δx
≈ dy

dx

and δy ≈ dy
dx

· δx or δy ≈ f ′(x) · δx

Problem 24. Given y = 4x2 − x, determine the
approximate change in y if x changes from 1 to
1.02.

Since y = 4x2 − x, then

dy

dx
= 8x − 1

Approximate change in y,

δy ≈ dy

dx
· δx ≈ (8x − 1)δx

When x = 1 and δx = 0.02, δy ≈ [8(1) − 1](0.02)
≈ 0.14
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[Obviously, in this case, the exact value of dy
may be obtained by evaluating y when x = 1.02,
i.e. y = 4(1.02)2 − 1.02 = 3.1416 and then sub-
tracting from it the value of y when x = 1, i.e.
y = 4(1)2 − 1 = 3, giving δy = 3.1416 − 3 = 0.1416.

Using δy = dy

dx
· δx above gave 0.14, which shows

that the formula gives the approximate change in y
for a small change in x.]

Problem 25. The time of swing T of a pendu-
lum is given by T = k

√
l, where k is a constant.

Determine the percentage change in the time of
swing if the length of the pendulum l changes
from 32.1 cm to 32.0 cm.

If T = k
√

l = kl
1
2 , then

dT

dl
= k

(
1

2
l
−1
2

)

= k

2
√

l

Approximate change in T ,

δt ≈ dT

dl
δl ≈

(
k

2
√

l

)

δl

≈
(

k

2
√

l

)

(−0.1)

(negative since l decreases)
Percentage error

=
(

approximate change in T

original value of T

)

100%

=

(
k

2
√

l

)

(−0.1)

k
√

l
× 100%

=
(−0.1

2l

)

100% =
( −0.1

2(32.1)

)

100%

= −0.156%

Hence the change in the time of swing is a decrease
of 0.156%.

Problem 26. A circular template has a radius
of 10 cm (±0.02). Determine the possible error
in calculating the area of the template. Find also
the percentage error.

Area of circular template, A = πr2, hence

dA

dr
= 2πr

Approximate change in area,

δA ≈ dA

dr
· δr ≈ (2πr)δr

When r = 10 cm and δr = 0.02,

δA = (2π10)(0.02) ≈ 0.4π cm2

i.e. the possible error in calculating the template
area is approximately 1.257 cm2.

Percentage error ≈
(

0.4π

π(10)2

)

100%

= 0.40%

Now try the following exercise.

Exercise 127 Further problems on small
changes

1. Determine the change in y if x changes from
2.50 to 2.51 when

(a) y = 2x − x2 (b) y = 5

x

[(a) −0.03 (b) −0.008]

2. The pressure p and volume v of a mass of
gas are related by the equation pv = 50. If the
pressure increases from 25.0 to 25.4, deter-
mine the approximate change in the volume
of the gas. Find also the percentage change
in the volume of the gas. [−0.032, −1.6%]

3. Determine the approximate increase in (a) the
volume, and (b) the surface area of a cube
of side x cm if x increases from 20.0 cm to
20.05 cm. [(a) 60 cm3 (b) 12 cm2]

4. The radius of a sphere decreases from 6.0 cm
to 5.96 cm. Determine the approximate
change in (a) the surface area, and (b) the
volume. [(a) −6.03 cm2 (b) −18.10 cm3]

5. The rate of flow of a liquid through a
tube is given by Poiseuilles’s equation as:

Q = pπr4

8ηL
where Q is the rate of flow, p
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is the pressure difference between the ends
of the tube, r is the radius of the tube, L
is the length of the tube and η is the coef-
ficient of viscosity of the liquid. η is obtained
by measuring Q, p, r and L. If Q can be
measured accurate to ±0.5%, p accurate to

±3%, r accurate to ±2% and L accurate
to ±1%, calculate the maximum possible
percentage error in the value of η.

[12.5%]
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29

Differentiation of parametric equations

29.1 Introduction to parametric
equations

Certain mathematical functions can be expressed
more simply by expressing, say, x and y separately
in terms of a third variable. For example, y = r sin θ,
x = r cos θ. Then, any value given to θ will produce
a pair of values for x and y, which may be plotted to
provide a curve of y = f (x).

The third variable, θ, is called a parameter and the
two expressions for y and x are called parametric
equations.

The above example of y = r sin θ and x = r cos θ
are the parametric equations for a circle. The equa-
tion of any point on a circle, centre at the origin and
of radius r is given by: x2 + y2 = r2, as shown in
Chapter 14.

To show that y = r sin θ and x = r cos θ are suitable
parametric equations for such a circle:

Left hand side of equation

= x2 + y2

= (r cos θ)2 + (r sin θ)2

= r2 cos2 θ + r2 sin2 θ

= r2 (cos2 θ + sin2 θ
)

= r2 = right hand side

(since cos2 θ + sin2 θ = 1, as shown in
Chapter 16)

29.2 Some common parametric
equations

The following are some of the most common param-
etric equations, and Figure 29.1 shows typical shapes
of these curves.

(a) Ellipse x = a cos θ, y = b sin θ

(b) Parabola x = a t2, y = 2a t
(c) Hyperbola x = a sec θ, y = b tan θ

(d) Rectangular x = c t, y = c

t
hyperbola

(e) Cardioid x = a (2 cos θ − cos 2θ),
y = a (2 sin θ − sin 2θ)

(f) Astroid x = a cos3 θ, y = a sin3 θ

(g) Cycloid x = a (θ− sin θ) , y = a (1− cos θ)

(a) Ellipse

(c) Hyperbola

(e) Cardioid

(b) Parabola

(d) Rectangular hyperbola

(f) Astroid

(g) Cycloid

Figure 29.1

29.3 Differentiation in parameters

When x and y are given in terms of a parameter,
say θ, then by the function of a function rule of
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differentiation (from Chapter 27):

dy

dx
= dy

dθ
× dθ

dx

It may be shown that this can be written as:

dy
dx

=
dy
dθ
dx
dθ

(1)

For the second differential,

d2y

dx2 = d

dx

(
dy

dx

)

= d

dθ

(
dy

dx

)

· dθ

dx
or

d2y
dx2

=
d
dθ

(
dy
dx

)

dx
dθ

(2)

Problem 1. Given x = 5θ − 1 and

y = 2θ (θ − 1), determine
dy

dx
in terms of θ

x = 5θ − 1, hence
dy

dθ
= 5

y = 2θ(θ − 1) = 2θ2 − 2θ,

hence
dy

dθ
= 4θ − 2 = 2 (2θ − 1)

From equation (1),

dy

dx
=

dy

dθ
dx

dθ

= 2(2θ − 1)

5
or

2
5

(2θ − 1)

Problem 2. The parametric equations of a
function are given by y = 3 cos 2t, x = 2 sin t.

Determine expressions for (a)
dy

dx
(b)

d2y

dx2

(a) y = 3 cos 2t, hence
dy

dt
= −6 sin 2t

x = 2 sin t, hence
dx

dt
= 2 cos t

From equation (1),

dy

dx
=

dy

dt
dx

dt

= −6 sin 2t

2 cos t
= −6(2 sin t cos t)

2 cos t

from double angles, Chapter 18

i.e.
dy
dx

= −6 sin t

(b) From equation (2),

d2y

dx2 =
d

dt

(
dy

dx

)

dx

dt

=
d

dt
(−6 sin t)

2 cos t
= −6 cos t

2 cos t

i.e.
d2y
dx2 = −3

Problem 3. The equation of a tangent drawn to
a curve at point (x1, y1) is given by:

y − y1 = dy1

dx1
(x − x1)

Determine the equation of the tangent drawn to
the parabola x = 2t2, y = 4t at the point t.

At point t, x1 = 2t2, hence
dx1

dt
= 4t

and y1 = 4t, hence
dy1

dt
= 4

From equation (1),

dy

dx
=

dy

dt
dx

dt

= 4

4t
= 1

t

Hence, the equation of the tangent is:

y − 4t = 1
t

(
x − 2t2

)

Problem 4. The parametric equations of a
cycloid are x = 4(θ − sin θ), y = 4(1 − cos θ).

Determine (a)
dy

dx
(b)

d2y

dx2
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(a) x = 4(θ − sin θ),

hence
dx

dθ
= 4 − 4 cos θ = 4(1 − cos θ)

y = 4(1 − cos θ), hence
dy

dθ
= 4 sin θ

From equation (1),

dy

dx
=

dy

dθ
dx

dθ

= 4 sin θ

4(1 − cos θ)
= sin θ

(1 − cos θ)

(b) From equation (2),

d2y

dx2 =
d

dθ

(
dy

dx

)

dx

dθ

=
d

dθ

(
sin θ

1 − cos θ

)

4(1 − cos θ)

=
(1 − cos θ)(cos θ) − (sin θ)(sin θ)

(1 − cos θ)2

4(1 − cos θ)

= cos θ − cos2 θ − sin2 θ

4(1 − cos θ)3

= cos θ − (cos2 θ + sin2 θ
)

4(1 − cos θ)3

= cos θ − 1

4(1 − cos θ)3

= −(1 − cos θ)

4(1 − cos θ)3 = −1
4(1 − cos θ)2

Now try the following exercise.

Exercise 128 Further problems on differen-
tiation of parametric equations

1. Given x = 3t − 1 and y = t(t − 1), determine
dy

dx
in terms of t.

[
1

3
(2t − 1)

]

2. A parabola has parametric equations:

x = t2, y = 2t. Evaluate
dy

dx
when t = 0.5

[2]

3. The parametric equations for an ellipse

are x = 4 cos θ, y = sin θ. Determine (a)
dy

dx

(b)
d2y

dx2

[

(a) −1

4
cot θ (b) − 1

16
cosec3θ

]

4. Evaluate
dy

dx
at θ = π

6
radians for the

hyperbola whose parametric equations are
x = 3 sec θ, y = 6 tan θ. [4]

5. The parametric equations for a rectangular

hyperbola are x = 2t, y = 2

t
. Evaluate

dy

dx
when t = 0.40 [−6.25]

The equation of a tangent drawn to a curve at
point (x1, y1) is given by:

y − y1 = dy1

dx1
(x − x1)

Use this in Problems 6 and 7.

6. Determine the equation of the tangent drawn

to the ellipse x = 3 cos θ, y = 2 sin θ at θ = π

6
.

[y = −1.155x + 4]

7. Determine the equation of the tangent drawn

to the rectangular hyperbola x = 5t, y = 5

t
at

t = 2. [

y = −1

4
x + 5

]

29.4 Further worked problems on
differentiation of parametric
equations

Problem 5. The equation of the normal drawn
to a curve at point (x1, y1) is given by:

y − y1 = − 1
dy1

dx1

(x − x1)

Determine the equation of the normal drawn to
the astroid x = 2 cos3 θ, y = 2 sin3 θ at the point

θ = π

4

x = 2 cos3 θ, hence
dx

dθ
= −6 cos2 θ sin θ

y = 2 sin3 θ, hence
dy

dθ
= 6 sin2 θ cos θ
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From equation (1),

dy

dx
=

dy

dθ
dx

dθ

= 6 sin2 θ cos θ

−6 cos2 θ sin θ
=− sin θ

cos θ
= −tanθ

When θ = π

4
,

dy

dx
= −tan

π

4
= −1

x1 = 2 cos3 π

4
= 0.7071 and y1 = 2 sin3 π

4
= 0.7071

Hence, the equation of the normal is:

y − 0.7071 = − 1

−1
(x − 0.7071)

i.e. y − 0.7071 = x − 0.7071
i.e. y = x

Problem 6. The parametric equations for a
hyperbola are x = 2 sec θ, y = 4 tan θ. Evaluate

(a)
dy

dx
(b)

d2y

dx2 , correct to 4 significant figures,

when θ = 1 radian.

(a) x = 2 sec θ, hence
dx

dθ
= 2 sec θ tan θ

y = 4 tan θ, hence
dy

dθ
= 4 sec2 θ

From equation (1),

dy

dx
=

dy

dθ
dx

dθ

= 4 sec2 θ

2 sec θ tan θ
= 2 sec θ

tan θ

=
2

(
1

cos θ

)

(
sin θ

cos θ

) = 2

sin θ
or 2 cosec θ

When θ = 1 rad,
dy

dx
= 2

sin 1
= 2.377, correct to

4 significant figures.

(b) From equation (2),

d2y

dx2 =
d

dθ

(
dy

dx

)

dx

dθ

=
d

dθ
(2 cosec θ)

2 sec θ tan θ

= −2 cosec θ cot θ

2 sec θ tan θ

=
−
(

1

sin θ

)(
cos θ

sin θ

)

(
1

cos θ

)(
sin θ

cos θ

)

= −
(

cos θ

sin2 θ

)(
cos2 θ

sin θ

)

= −cos3 θ

sin3 θ
= − cot3 θ

When θ = 1 rad,
d2y

dx2 = − cot3 1 = − 1

(tan 1)3

= −0.2647, correct to 4 significant figures.

Problem 7. When determining the surface ten-
sion of a liquid, the radius of curvature, ρ, of part
of the surface is given by:

ρ =

√√
√
√
[

1 +
(

dy

dx

)2
] 3

d2y

dx2

Find the radius of curvature of the part of the
surface having the parametric equations x = 3t2,
y = 6t at the point t = 2.

x = 3t2, hence
dx

dt
= 6t

y = 6t, hence
dy

dt
= 6

From equation (1),
dy

dx
=

dy

dt
dx

dt

= 6

6t
= 1

t

From equation (2),

d2y

dx2 =
d

dt

(
dy

dx

)

dx

dt

=
d

dt

(
1

t

)

6t
=

− 1

t2

6t
= − 1

6t3
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Hence, radius of curvature, ρ =

√√
√
√
[

1 +
(

dy

dx

)2
] 3

d2y

dx2

=

√√
√
√
[

1 +
(

1

t

)2
] 3

− 1

6t3

When t = 2, ρ =

√√
√
√
[

1 +
(

1

2

)2
] 3

− 1

6 (2)3

=
√

(1.25)3

− 1

48

= − 48
√

(1.25)3 = −67.08

Now try the following exercise

Exercise 129 Further problems on differen-
tiation of parametric equations

1. A cycloid has parametric equations
x = 2(θ − sin θ), y = 2(1 − cos θ). Eval-
uate, at θ = 0.62 rad, correct to 4 significant

figures, (a)
dy

dx
(b)

d2y

dx2
[(a) 3.122 (b) −14.43]

The equation of the normal drawn to
a curve at point (x1, y1) is given by:

y − y1 = − 1
dy1

dx1

(x − x1)

Use this in Problems 2 and 3.
2. Determine the equation of the normal drawn

to the parabola x = 1

4
t2, y = 1

2
t at t = 2.

[y = −2x + 3]

3. Find the equation of the normal drawn to the
cycloid x = 2(θ − sin θ), y = 2(1 − cos θ) at

θ = π

2
rad. [y = −x + π]

4. Determine the value of
d2y

dx2 , correct to 4 sig-

nificant figures, at θ = π

6
rad for the cardioid

x = 5(2θ − cos 2θ), y = 5(2 sin θ − sin 2θ).

[0.02975]

5. The radius of curvature, ρ, of part of a sur-
face when determining the surface tension of
a liquid is given by:

ρ =

[

1 +
(

dy

dx

)2
] 3/2

d2y

dx2

Find the radius of curvature (correct to 4 sig-
nificant figures) of the part of the surface
having parametric equations

(a) x = 3t, y = 3

t
at the point t = 1

2
(b) x = 4 cos3 t, y = 4 sin3 t at t = π

6
rad

[(a) 13.14 (b) 5.196]
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Differential calculus

30

Differentiation of implicit functions

30.1 Implicit functions

When an equation can be written in the form y = f (x)
it is said to be an explicit function of x. Examples
of explicit functions include

y = 2x3 − 3x + 4, y = 2x ln x

and y = 3ex

cos x

In these examples y may be differentiated with
respect to x by using standard derivatives, the prod-
uct rule and the quotient rule of differentiation
respectively.

Sometimes with equations involving, say, y and x,
it is impossible to make y the subject of the formula.
The equation is then called an implicit function
and examples of such functions include
y3 + 2x2 = y2 − x and sin y = x2 + 2xy.

30.2 Differentiating implicit functions

It is possible to differentiate an implicit function
by using the function of a function rule, which may
be stated as

du

dx
= du

dy
× dy

dx

Thus, to differentiate y3 with respect to x, the sub-

stitution u = y3 is made, from which,
du

dy
= 3y2.

Hence,
d

dx
(y3) = (3y2) × dy

dx
, by the function of a

function rule.
A simple rule for differentiating an implicit func-

tion is summarised as:

d
dx

[ f ( y)] = d
dy

[ f ( y)] × dy
dx

(1)

Problem 1. Differentiate the following func-
tions with respect to x:

(a) 2y4 (b) sin 3t.

(a) Let u = 2y4, then, by the function of a function
rule:
du

dx
= du

dy
× dy

dx
= d

dy
(2y4) × dy

dx

= 8y3 dy
dx

(b) Let u = sin 3t, then, by the function of a function
rule:
du

dx
= du

dt
× dt

dx
= d

dt
(sin 3t) × dt

dx

= 3 cos 3t
dt
dx

Problem 2. Differentiate the following func-
tions with respect to x:

(a) 4 ln 5y (b)
1

5
e3θ−2

(a) Let u = 4 ln 5y, then, by the function of a func-
tion rule:
du

dx
= du

dy
× dy

dx
= d

dy
(4 ln 5y) × dy

dx

= 4
y

dy
dx

(b) Let u = 1

5
e3θ−2, then, by the function of a func-

tion rule:
du

dx
= du

dθ
× dθ

dx
= d

dθ

(
1

5
e3θ−2

)

× dθ

dx

= 3
5

e3θ−2 dθ

dx
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Now try the following exercise.

Exercise 130 Further problems on differen-
tiating implicit functions

In Problems 1 and 2 differentiate the given func-
tions with respect to x.

1. (a) 3y5 (b) 2 cos 4θ (c)
√

k
⎡

⎢
⎢
⎣

(a) 15y4 dy

dx
(b) −8 sin 4θ

dθ

dx

(c)
1

2
√

k

dk

dx

⎤

⎥
⎥
⎦

2. (a)
5

2
ln 3t (b)

3

4
e2y+1 (c) 2 tan 3y

⎡

⎢
⎣

(a)
5

2t

dt

dx
(b)

3

2
e2y+1 dy

dx

(c) 6 sec2 3y
dy

dx

⎤

⎥
⎦

3. Differentiate the following with respect to y:

(a) 3 sin 2θ (b) 4
√

x3 (c)
2

et
⎡

⎢
⎢
⎣

(a) 6 cos 2θ
dθ

dy
(b) 6

√
x

dx

dy

(c)
−2

et

dt

dy

⎤

⎥
⎥
⎦

4. Differentiate the following with respect to u:

(a)
2

(3x + 1)
(b) 3 sec 2θ (c)

2√
y

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(a)
−6

(3x + 1)2

dx

du

(b) 6 sec 2θ tan 2θ
dθ

du

(c)
−1
√

y3

dy

du

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

30.3 Differentiating implicit
functions containing products
and quotients

The product and quotient rules of differentiation
must be applied when differentiating functions con-
taining products and quotients of two variables.

For example,
d

dx
(x2y) = (x2)

d

dx
(y) + (y)

d

dx
(x2),

by the product rule

= (x2)

(

1
dy

dx

)

+ y(2x),

by using equation (1)

= x2 dy
dx

+ 2xy

Problem 3. Determine
d

dx
(2x3y2).

In the product rule of differentiation let u = 2x3 and
v = y2.

Thus
d

dx
(2x3y2) = (2x3)

d

dx
(y2) + (y2)

d

dx
(2x3)

= (2x3)

(

2y
dy

dx

)

+ (y2)(6x2)

= 4x3y
dy

dx
+ 6x2y2

= 2x2y
(

2x
dy
dx

+ 3y
)

Problem 4. Find
d

dx

(
3y

2x

)

.

In the quotient rule of differentiation let u = 3y and
v = 2x.

Thus
d

dx

(
3y

2x

)

=
(2x)

d

dx
(3y) − (3y)

d

dx
(2x)

(2x)2

=
(2x)

(

3
dy

dx

)

− (3y)(2)

4x2

=
6x

dy

dx
− 6y

4x2 = 3
2x2

(

x
dy
dx

− y
)

Problem 5. Differentiate z = x2 + 3x cos 3y
with respect to y.
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dz

dy
= d

dy
(x2) + d

dy
(3x cos 3y)

= 2x
dx

dy
+
[

(3x)(−3 sin 3y) + ( cos 3y)

(

3
dx

dy

)]

= 2x
dx
dy

− 9x sin 3y + 3 cos 3y
dx
dy

Now try the following exercise.

Exercise 131 Further problems on differen-
tiating implicit functions involving products
and quotients

1. Determine
d

dx
(3x2y3)

[

3xy2
(

3x
dy

dx
+ 2y

)]

2. Find
d

dx

(
2y

5x

) [
2

5x2

(

x
dy

dx
− y

)]

3. Determine
d

du

(
3u

4v

) [
3

4v2

(

v − u
dv

du

)]

4. Given z = 3
√

y cos 3x find
dz

dx[

3

(
cos 3x

2
√

y

)
dy

dx
− 9

√
y sin 3x

]

5. Determine
dz

dy
given z = 2x3 ln y

[

2x2
(

x

y
+ 3 ln y

dx

dy

)]

30.4 Further implicit differentiation

An implicit function such as 3x2 + y2 − 5x + y = 2,
may be differentiated term by term with respect to
x. This gives:

d

dx
(3x2) + d

dx
(y2) − d

dx
(5x) + d

dx
(y) = d

dx
(2)

i.e. 6x + 2y
dy

dx
− 5 + 1

dy

dx
= 0,

using equation (1) and standard derivatives.

An expression for the derivative
dy

dx
in terms of

x and y may be obtained by rearranging this latter
equation. Thus:

(2y + 1)
dy

dx
= 5 − 6x

from which,
dy
dx

= 5 − 6x
2y + 1

Problem 6. Given 2y2 − 5x4 − 2 − 7y3 = 0,

determine
dy

dx
.

Each term in turn is differentiated with respect to x:

Hence
d

dx
(2y2) − d

dx
(5x4) − d

dx
(2) − d

dx
(7y3)

= d

dx
(0)

i.e. 4y
dy

dx
− 20x3 − 0 − 21y2 dy

dx
= 0

Rearranging gives:

(4y − 21y2)
dy

dx
= 20x3

i.e.
dy
dx

= 20x3

(4y − 21y2)

Problem 7. Determine the values of
dy

dx
when

x = 4 given that x2 + y2 = 25.

Differentiating each term in turn with respect to x
gives:

d

dx
(x2) + d

dx
(y2) = d

dx
(25)

i.e. 2x + 2y
dy

dx
= 0

Hence
dy

dx
= −2x

2y
= −x

y

Since x2 + y2 = 25, when x = 4, y =√(25 − 42) = ±3

Thus when x = 4 and y = ±3,
dy
dx

= − 4

±3
= ±4

3



Ch30-H8152.tex 23/6/2006 15: 10 Page 322

322 DIFFERENTIAL CALCULUS

x2 + y2 = 25 is the equation of a circle, centre at
the origin and radius 5, as shown in Fig. 30.1. At
x = 4, the two gradients are shown.

y

5

3

0

−3

−5

−5 4 5 x

Gradient
= − 4

3

Gradient
= 4

3

x2 + y2 = 25

Figure 30.1

Above, x2 + y2 = 25 was differentiated implicitly;
actually, the equation could be transposed to
y =√(25 − x2) and differentiated using the function
of a function rule. This gives

dy

dx
= 1

2
(25 − x2)

−1
2 (−2x) = − x

√
(25 − x2)

and when x = 4,
dy

dx
= − 4

√
(25 − 42)

= ±4

3
as

obtained above.

Problem 8.

(a) Find
dy

dx
in terms of x and y given

4x2 + 2xy3 − 5y2 = 0.

(b) Evaluate
dy

dx
when x = 1 and y = 2.

(a) Differentiating each term in turn with respect to
x gives:

d

dx
(4x2) + d

dx
(2xy3) − d

dx
(5y2) = d

dx
(0)

i.e. 8x +
[

(2x)

(

3y2 dy

dx

)

+ (y3)(2)

]

− 10y
dy

dx
= 0

i.e. 8x + 6xy2 dy

dx
+ 2y3 − 10y

dy

dx
= 0

Rearranging gives:

8x + 2y3 = (10y − 6xy2)
dy

dx

and
dy
dx

= 8x + 2y3

10y − 6xy2 = 4x + y3

y(5 − 3xy)
(b) When x = 1 and y = 2,

dy
dx

= 4(1) + (2)3

2[5 − (3)(1)(2)]
= 12

−2
= −6

Problem 9. Find the gradients of the tangents
drawn to the circle x2 + y2 − 2x − 2y = 3 at
x = 2.

The gradient of the tangent is given by
dy

dx
Differentiating each term in turn with respect to x
gives:

d

dx
(x2) + d

dx
(y2) − d

dx
(2x) − d

dx
(2y) = d

dx
(3)

i.e. 2x + 2y
dy

dx
− 2 − 2

dy

dx
= 0

Hence (2y − 2)
dy

dx
= 2 − 2x,

from which
dy

dx
= 2 − 2x

2y − 2
= 1 − x

y − 1

The value of y when x = 2 is determined from the
original equation

Hence (2)2 + y2 − 2(2) − 2y = 3

i.e. 4 + y2 − 4 − 2y = 3

or y2 − 2y − 3 = 0

Factorising gives: (y + 1)(y − 3) = 0, from which
y = −1 or y = 3
When x = 2 and y = −1,

dy

dx
= 1 − x

y − 1
= 1 − 2

−1 − 1
= −1

−2
= 1

2

When x = 2 and y = 3,

dy

dx
= 1 − 2

3 − 1
= −1

2

Hence the gradients of the tangents are ±1
2
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Gradient

4 x1 20

Gradient

r = √ 5

−1

−2

3

2

1

y

4

x2+y2−2x−2y=3

= 1
2

= − 1
2

Figure 30.2

The circle having the given equation has its centre at
(1, 1) and radius

√
5 (see Chapter 14) and is shown

in Fig. 30.2 with the two gradients of the tangents.

Problem 10. Pressure p and volume v of a gas
are related by the law pvγ = k, where γ and k
are constants. Show that the rate of change of

pressure
dp

dt
= −γ

p

v

dv

dt

Since pvγ = k, then p = k

vγ
= kv−γ

dp

dt
= dp

dv
× dv

dt

by the function of a function rule

dp

dv
= d

dv
(kv−γ )

= −γkv−γ−1 = −γk

vγ+1

dp

dt
= −γk

vγ+1 × dv

dt

Since k = pvγ ,
dp

dt
= −γ(pvγ )

vγ+1

dv

dt
= −γpvγ

vγv1

dv

dt

i.e.
dp
dt

= −γ
p
v

dv

dt

Now try the following exercise.

Exercise 132 Further problems on implicit
differentiation

In Problems 1 and 2 determine
dy

dx

1. x2 + y2 + 4x − 3y + 1 = 0

[
2x + 4

3 − 2y

]

2. 2y3 − y + 3x − 2 = 0

[
3

1 − 6y2

]

3. Given x2 + y2 = 9 evaluate
dy

dx
when

x = √
5 and y = 2

[
−

√
5

2

]

In Problems 4 to 7, determine
dy

dx

4. x2 + 2x sin 4y = 0

[−(x + sin 4y)

4x cos 4y

]

5. 3y2 + 2xy − 4x2 = 0

[
4x − y

3y + x

]

6. 2x2y + 3x3 = sin y

[
x(4y + 9x)

cos y − 2x2

]

7. 3y + 2x ln y = y4 + x

[
1 − 2 ln y

3 + (2x/y) − 4y3

]

8. If 3x2 + 2x2y3 − 5

4
y2 = 0 evaluate

dy

dx
when

x = 1

2
and y = 1 [5]

9. Determine the gradients of the tangents
drawn to the circle x2 + y2 = 16 at the point
where x = 2. Give the answer correct to 4
significant figures [±0.5774]

10. Find the gradients of the tangents drawn to

the ellipse
x2

4
+ y2

9
= 2 at the point where

x = 2 [±1.5]

11. Determine the gradient of the curve
3xy + y2 = −2 at the point (1,−2) [−6]
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31

Logarithmic differentiation

31.1 Introduction to logarithmic
differentiation

With certain functions containing more complicated
products and quotients, differentiation is often made
easier if the logarithm of the function is taken before
differentiating. This technique, called ‘logarithmic
differentiation’ is achieved with a knowledge of
(i) the laws of logarithms, (ii) the differential coef-
ficients of logarithmic functions, and (iii) the differ-
entiation of implicit functions.

31.2 Laws of logarithms

Three laws of logarithms may be expressed as:

(i) log(A × B) = log A + log B

(ii) log

(
A

B

)

= log A − log B

(iii) log An = n log A

In calculus, Napierian logarithms (i.e. logarithms to
a base of ‘e’) are invariably used. Thus for two func-
tions f (x) and g(x) the laws of logarithms may be
expressed as:

(i) ln[ f (x) · g(x)] = ln f (x) + ln g(x)

(ii) ln

(
f (x)

g(x)

)

= ln f (x) − ln g(x)

(iii) ln[ f (x)]n = n ln f (x)

Taking Napierian logarithms of both sides of the

equation y = f (x) · g(x)

h(x)
gives:

ln y = ln

(
f (x) · g(x)

h(x)

)

which may be simplified using the above laws of
logarithms, giving:

ln y = ln f (x) + ln g(x) − ln h(x)

This latter form of the equation is often easier to
differentiate.

31.3 Differentiation of logarithmic
functions

The differential coefficient of the logarithmic func-
tion ln x is given by:

d
dx

(ln x) = 1
x

More generally, it may be shown that:

d
dx

[ln f (x)] = f ′(x)

f (x)
(1)

For example, if y = ln(3x2 + 2x − 1) then,

dy

dx
= 6x + 2

3x2 + 2x − 1

Similarly, if y = ln(sin 3x) then
dy

dx
= 3 cos 3x

sin 3x
= 3 cot 3x.

As explained in Chapter 30, by using the function
of a function rule:

d
dx

(ln y) =
(

1
y

)
dy
dx

(2)

Differentiation of an expression such as

y = (1 + x)2√(x − 1)

x
√

(x + 2)
may be achieved by using the

product and quotient rules of differentiation; how-
ever the working would be rather complicated. With
logarithmic differentiation the following procedure
is adopted:

(i) Take Napierian logarithms of both sides of the
equation.

Thus ln y = ln

{
(1 + x)2√(x − 1)

x
√

(x + 2)

}

= ln

{
(1 + x)2(x − 1)

1
2

x(x + 2)
1
2

}



Ch31-H8152.tex 23/6/2006 15: 10 Page 325

LOGARITHMIC DIFFERENTIATION 325

G

(ii) Apply the laws of logarithms.

Thus ln y = ln(1 + x)2 + ln(x − 1)
1
2

− ln x − ln(x + 2)
1
2 , by laws (i)

and (ii) of Section 31.2

i.e. ln y = 2 ln(1 + x) + 1
2 ln(x − 1)

− ln x − 1
2 ln(x + 2), by law (iii)

of Section 31.2

(iii) Differentiate each term in turn with respect to x
using equations (1) and (2).

Thus
1

y

dy

dx
= 2

(1 + x)
+

1
2

(x − 1)
−1

x
−

1
2

(x + 2)

(iv) Rearrange the equation to make
dy

dx
the subject.

Thus
dy

dx
= y

{
2

(1 + x)
+ 1

2(x − 1)
− 1

x

− 1

2(x + 2)

}

(v) Substitute for y in terms of x.

Thus
dy
dx

= (1 + x)2√(x − 1)

x
√

(x + 2)

{
2

(1 + x)

+ 1
2(x − 1)

− 1
x

− 1
2(x + 2)

}

Problem 1. Use logarithmic differentiation to

differentiate y = (x + 1)(x − 2)3

(x − 3)

Following the above procedure:

(i) Since y = (x + 1)(x − 2)3

(x − 3)

then ln y = ln

{
(x + 1)(x − 2)3

(x − 3)

}

(ii) ln y = ln(x + 1) + ln(x − 2)3 − ln(x − 3),

by laws (i) and (ii) of Section 31.2,

i.e. ln y = ln(x +1)+3 ln(x −2)− ln(x −3),

by law (iii) of Section 31.2.

(iii) Differentiating with respect to x gives:

1

y

dy

dx
= 1

(x + 1)
+ 3

(x − 2)
− 1

(x − 3)
,

by using equations (1) and (2)

(iv) Rearranging gives:

dy

dx
= y

{
1

(x + 1)
+ 3

(x − 2)
− 1

(x − 3)

}

(v) Substituting for y gives:

dy
dx

= (x + 1)(x − 2)3

(x − 3)

{
1

(x + 1)

+ 3
(x − 2)

− 1
(x − 3)

}

Problem 2. Differentiate

y =
√

(x − 2)3

(x + 1)2(2x − 1)
with respect to x and eval-

uate
dy

dx
when x = 3.

Using logarithmic differentiation and following the
above procedure:

(i) Since y =
√

(x − 2)3

(x + 1)2(2x − 1)

then ln y = ln

{ √
(x − 2)3

(x + 1)2(2x − 1)

}

= ln

{
(x − 2)

3
2

(x + 1)2(2x − 1)

}

(ii) ln y = ln(x − 2)
3
2 − ln(x + 1)2 − ln(2x − 1)

i.e. ln y = 3
2 ln(x − 2) − 2 ln(x + 1)

− ln(2x − 1)

(iii)
1

y

dy

dx
=

3
2

(x − 2)
− 2

(x + 1)
− 2

(2x − 1)

(iv)
dy

dx
= y

{
3

2(x − 2)
− 2

(x + 1)
− 2

(2x − 1)

}

(v)
dy
dx

=
√

(x − 2)3

(x + 1)2(2x − 1)

{
3

2(x − 2)

− 2
(x + 1)

− 2
(2x − 1)

}
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When x = 3,
dy

dx
=
√

(1)3

(4)2(5)

(
3

2
− 2

4
− 2

5

)

= ± 1

80

(
3

5

)

= ± 3
400

or ±0.0075

Problem 3. Given y = 3e2θ sec 2θ√
(θ − 2)

determine
dy

dθ

Using logarithmic differentiation and following the
procedure gives:

(i) Since y = 3e2θ sec 2θ√
(θ − 2)

then ln y = ln

{
3e2θ sec 2θ√

(θ − 2)

}

= ln

{
3e2θ sec 2θ

(θ − 2)
1
2

}

(ii) ln y = ln 3e2θ + ln sec 2θ − ln(θ − 2)
1
2

i.e. ln y = ln 3 + ln e2θ + ln sec 2θ

− 1
2 ln(θ − 2)

i.e. ln y = ln 3 + 2θ + ln sec 2θ − 1
2 ln(θ − 2)

(iii) Differentiating with respect to θ gives:

1

y

dy

dθ
= 0 + 2 + 2 sec 2θ tan 2θ

sec 2θ
−

1
2

(θ − 2)

from equations (1) and (2)

(iv) Rearranging gives:

dy

dθ
= y

{

2 + 2 tan 2θ − 1

2(θ − 2)

}

(v) Substituting for y gives:

dy
dθ

= 3e2θ sec 2θ√
(θ − 2)

{

2 + 2 tan 2θ − 1
2(θ − 2)

}

Problem 4. Differentiate y = x3 ln 2x

ex sin x
with

respect to x.

Using logarithmic differentiation and following the
procedure gives:

(i) ln y = ln

{
x3 ln 2x

ex sin x

}

(ii) ln y = ln x3 + ln(ln 2x) − ln(ex) − ln(sin x)

i.e. ln y = 3 ln x + ln(ln 2x) − x − ln(sin x)

(iii)
1

y

dy

dx
= 3

x
+

1
x

ln 2x
− 1 − cos x

sin x

(iv)
dy

dx
= y

{
3

x
+ 1

x ln 2x
− 1 − cot x

}

(v)
dy
dx

= x3 ln 2x
ex sin x

{
3
x

+ 1
x ln 2x

− 1 − cot x
}

Now try the following exercise.

Exercise 133 Further problems on differen-
tiating logarithmic functions

In Problems 1 to 6, use logarithmic differenti-
ation to differentiate the given functions with
respect to the variable.

1. y = (x − 2)(x + 1)

(x − 1)(x + 3)

⎡

⎢
⎢
⎣

(x − 2)(x + 1)

(x − 1)(x + 3)

{
1

(x − 2)
+ 1

(x + 1)

− 1

(x − 1)
− 1

(x + 3)

}

⎤

⎥
⎥
⎦

2. y = (x + 1)(2x + 1)3

(x − 3)2(x + 2)4

⎡

⎢
⎢
⎣

(x + 1)(2x + 1)3

(x − 3)2(x + 2)4

{
1

(x + 1)
+ 6

(2x + 1)

− 2

(x − 3)
− 4

(x + 2)

}

⎤

⎥
⎥
⎦

3. y = (2x − 1)
√

(x + 2)

(x − 3)
√

(x + 1)3

⎡

⎢
⎢
⎢
⎣

(2x − 1)
√

(x + 2)

(x − 3)
√

(x + 1)3

{
2

(2x − 1)
+ 1

2(x + 2)

− 1

(x − 3)
− 3

2(x + 1)

}

⎤

⎥
⎥
⎥
⎦
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4. y = e2x cos 3x√
(x − 4)

[
e2x cos 3x√

(x − 4)

{

2 − 3 tan 3x − 1

2(x − 4)

}]

5. y = 3θ sin θ cos θ
[

3θ sin θ cos θ

{
1

θ
+ cot θ − tan θ

}]

6. y = 2x4 tan x

e2x ln 2x

[
2x4 tan x

e2x ln 2x

{
4

x
+ 1

sin x cos x

− 2 − 1

x ln 2x

}]

7. Evaluate
dy

dx
when x = 1 given

y = (x + 1)2√(2x − 1)
√

(x + 3)3

[
13

16

]

8. Evaluate
dy

dθ
, correct to 3 significant figures,

when θ = π

4
given y = 2eθ sin θ√

θ5

[−6.71]

31.4 Differentiation of [ f (x)]x

Whenever an expression to be differentiated con-
tains a term raised to a power which is itself a
function of the variable, then logarithmic differen-
tiation must be used. For example, the differentia-
tion of expressions such as xx, (x + 2)x, x

√
(x − 1)

and x3x+2 can only be achieved using logarithmic
differentiation.

Problem 5. Determine
dy

dx
given y = xx.

Taking Napierian logarithms of both sides of
y = xx gives:

ln y = ln xx = x ln x, by law (iii) of Section 31.2

Differentiating both sides with respect to x gives:

1

y

dy

dx
= (x)

(
1

x

)

+ (lnx)(1), using the product rule

i.e.
1

y

dy

dx
= 1 + ln x,

from which,
dy

dx
= y(1 + ln x)

i.e.
dy
dx

= xx(1 + ln x)

Problem 6. Evaluate
dy

dx
when x = −1 given

y = (x + 2)x.

Taking Napierian logarithms of both sides of
y = (x + 2)x gives:

ln y = ln(x + 2)x = x ln (x + 2), by law (iii)

of Section 31.2

Differentiating both sides with respect to x gives:

1

y

dy

dx
= (x)

(
1

x + 2

)

+ [ln(x + 2)](1),

by the product rule.

Hence
dy

dx
= y

(
x

x + 2
+ ln(x + 2)

)

= (x + 2)x
{

x
x + 2

+ ln(x + 2)

}

When x = −1,
dy
dx

= (1)−1
(−1

1
+ ln 1

)

= (+1)(−1) = −1

Problem 7. Determine (a) the differential coef-

ficient of y = x
√

(x − 1) and (b) evaluate
dy

dx
when x = 2.

(a) y = x
√

(x − 1) = (x − 1)
1
x , since by the laws of

indices n
√

am = a
m
n

Taking Napierian logarithms of both sides gives:

ln y = ln(x − 1)
1
x = 1

x
ln(x − 1),

by law (iii) of Section 31.2.

Differentiating each side with respect to x gives:

1

y

dy

dx
=
(

1

x

)(
1

x − 1

)

+ [ ln(x − 1)]

(−1

x2

)

,

by the product rule.

Hence
dy

dx
= y

{
1

x(x − 1)
− ln(x − 1)

x2

}
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i.e.
dy
dx

= x
√

(x − 1)

{
1

x(x − 1)
− ln(x − 1)

x2

}

(b) When x = 2,
dy
dx

= 2
√

(1)

{
1

2(1)
− ln (1)

4

}

= ±1

{
1

2
− 0

}

= ±1
2

Problem 8. Differentiate x3x+2 with respect
to x.

Let y = x3x+2

Taking Napierian logarithms of both sides gives:

ln y = ln x3x+2

i.e. ln y = (3x + 2) ln x, by law (iii) of Section 31.2

Differentiating each term with respect to x gives:

1

y

dy

dx
= (3x + 2)

(
1

x

)

+ (ln x)(3),

by the product rule.

Hence
dy

dx
= y

{
3x + 2

x
+ 3 ln x

}

= x3x+2
{

3x + 2

x
+ 3 ln x

}

= x3x+2
{

3 + 2
x

+ 3 ln x
}

Now try the following exercise.

Exercise 134 Further problems on differen-
tiating [ f (x)]x type functions

In Problems 1 to 4, differentiate with respect to x

1. y = x2x [2x2x(1 + ln x)]

2. y = (2x − 1)x

[

(2x − 1)x
{

2x

2x − 1
+ ln(2x − 1)

}]

3. y = x
√

(x + 3)
[

x
√

(x + 3)

{
1

x(x + 3)
− ln(x + 3)

x2

}]

4. y = 3x4x+1
[

3x4x+1
{

4 + 1

x
+ 4 ln x

}]

5. Show that when y = 2xx and x = 1,
dy

dx
= 2.

6. Evaluate
d

dx

{
x
√

(x − 2)
}

when x = 3.
[

1

3

]

7. Show that if y = θθ and θ = 2,
dy

dθ
=6.77,

correct to 3 significant figures.
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Differential calculus

Assignment 8

This assignment covers the material contained
in Chapters 27 to 31.

The marks for each question are shown in
brackets at the end of each question.

1. Differentiate the following with respect to the
variable:

(a) y = 5 + 2
√

x3 − 1

x2 (b) s = 4e2θ sin 3θ

(c) y = 3 ln 5t

cos 2t

(d) x = 2
√

(t2 − 3t + 5)
(13)

2. If f (x) = 2.5x2 − 6x + 2 find the co-ordinates at
the point at which the gradient is −1. (5)

3. The displacement s cm of the end of a stiff spring
at time t seconds is given by:
s = ae−kt sin 2πft. Determine the velocity and
acceleration of the end of the spring after
2 seconds if a = 3, k = 0.75 and f = 20. (10)

4. Find the co-ordinates of the turning points on the
curve y = 3x3 + 6x2 + 3x − 1 and distinguish
between them. (7)

5. The heat capacity C of a gas varies with absolute
temperature θ as shown:

C = 26.50 + 7.20 × 10−3θ − 1.20 × 10−6θ2

Determine the maximum value of C and the
temperature at which it occurs. (5)

6. Determine for the curve y = 2x2 − 3x at the point
(2, 2): (a) the equation of the tangent (b) the
equation of the normal (6)

7. A rectangular block of metal with a square cross-
section has a total surface area of 250 cm2. Find
the maximum volume of the block of metal. (7)

8. A cycloid has parametric equations given by:
x = 5(θ − sin θ) and y = 5(1 − cos θ). Evaluate

(a)
dy

dx
(b)

d2y

dx2 when θ = 1.5 radians. Give

answers correct to 3 decimal places. (8)

9. Determine the equation of (a) the tangent, and
(b) the normal, drawn to an ellipse x = 4 cos θ,

y = sin θ at θ = π

3
(8)

10. Determine expressions for
dz

dy
for each of the

following functions:

(a) z = 5y2 cos x (b) z = x2 + 4xy − y2 (5)

11. If x2 + y2 + 6x + 8y + 1 = 0, find
dy

dx
in terms of

x and y. (3)

12. Determine the gradient of the tangents drawn to
the hyperbola x2 − y2 = 8 at x = 3. (3)

13. Use logarithmic differentiation to differentiate

y = (x + 1)2√(x − 2)

(2x − 1) 3
√

(x − 3)4
with respect to x. (6)

14. Differentiate y = 3eθ sin 2θ√
θ5

and hence evaluate

dy

dθ
, correct to 2 decimal places, when θ = π

3
(9)

15. Evaluate
d

dt

[
t

√
(2t + 1)

]
when t = 2, correct to

4 significant figures. (5)
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Differentiation of hyperbolic functions

32.1 Standard differential coefficients of
hyperbolic functions

From Chapter 5,

d

dx
(sinh x) = d

dx

(
ex − e−x

2

)

=
[

ex − (−e−x)

2

]

=
(

ex + e−x

2

)

= cosh x

If y = sinh ax, where ‘a’ is a constant, then
dy
dx

= a cosh ax

d

dx
( cosh x) = d

dx

(
ex + e−x

2

)

=
[

ex + ( − e−x)

2

]

=
(

ex − e−x

2

)

= sinh x

If y = cosh ax, where ‘a’ is a constant, then
dy
dx

= a sinh ax

Using the quotient rule of differentiation the deriva-
tives of tanh x, sech x, cosech x and coth x may be
determined using the above results.

Problem 1. Determine the differential coeffi-
cient of: (a) th x (b) sech x.

(a)
d

dx
(th x) = d

dx

(
sh x

ch x

)

= (ch x)(ch x) − (sh x)(sh x)

ch2 x
using the quotient rule

= ch2 x − sh2x

ch2 x
= 1

ch2 x
= sech2 x

(b)
d

dx
(sech x) = d

dx

(
1

ch x

)

= (ch x)(0) − (1)(sh x)

ch2 x

= −sh x

ch2 x
= −

(
1

ch x

)(
sh x

ch x

)

= −sech x th x

Problem 2. Determine
dy

dθ
given

(a) y = cosech θ (b) y = coth θ.

(a)
d

dθ
(cosec θ) = d

dθ

(
1

sh θ

)

= (sh θ)(0) − (1)(ch θ)

sh2 θ

= −ch θ

sh2 θ
= −

(
1

sh θ

)(
ch θ

sh θ

)

= −cosech θ coth θ

(b)
d

dθ
( coth θ) = d

dθ

(
ch θ

sh θ

)

= (sh θ)(sh θ) − (ch θ)(ch θ)

sh2 θ

= sh2 θ − ch2 θ

sh2 θ
= −(ch2 θ − sh2 θ)

sh2 θ

= −1

sh2 θ
= −cosech2 θ

Summary of differential coefficients

y or f (x)
dy
dx

or f ′(x)

sinh ax a cosh ax

cosh ax a sinh ax

tanh ax a sech2 ax

sech ax −a sech ax tanh ax

cosech ax −a cosech ax coth ax

coth ax −a cosech2 ax
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32.2 Further worked problems on
differentiation of hyperbolic
functions

Problem 3. Differentiate the following with
respect to x:

(a) y = 4 sh 2x − 3

7
ch 3x

(b) y = 5 th
x

2
− 2 coth 4x

(a) y = 4 sh 2x − 3

7
ch 3x

dy

dx
= 4(2 cosh 2x) − 3

7
(3 sinh 3x)

= 8 cosh 2x − 9
7

sinh 3x

(b) y = 5 th
x

2
− 2 coth 4x

dy

dx
= 5

(
1

2
sech2 x

2

)

− 2(−4 cosech2 4x)

= 5
2

sech2 x
2

+ 8 cosech2 4x

Problem 4. Differentiate the following with
respect to the variable: (a) y = 4 sin 3t ch 4t
(b) y = ln(sh 3θ) − 4 ch2 3θ.

(a) y = 4 sin 3t ch 4t (i.e. a product)

dy

dx
= (4 sin 3t)(4 sh 4t) + (ch 4t)(4)(3 cos 3t)

= 16 sin 3t sh 4t + 12 ch 4t cos 3t

= 4(4 sin 3t sh 4t + 3 cos 3t ch 4t)

(b) y = ln(sh 3θ) − 4 ch23θ

(i.e. a function of a function)

dy

dθ
=
(

1

sh 3θ

)

(3 ch 3θ) − (4)(2 ch 3θ)(3 sh 3θ)

= 3 coth 3θ − 24 ch 3θ sh 3θ

= 3(coth 3θ − 8 ch 3θ sh 3θ)

Problem 5. Show that the differential coeffi-
cient of

y = 3x2

ch 4x
is: 6x sech 4x (1 − 2x th 4x)

y = 3x2

ch 4x
(i.e. a quotient)

dy

dx
= (ch 4x)(6x) − (3x2)(4 sh 4x)

(ch 4x)2

= 6x(ch 4x − 2x sh 4x)

ch2 4x

= 6x

[
ch 4x

ch2 4x
− 2x sh 4x

ch2 4x

]

= 6x

[
1

ch 4x
− 2x

(
sh 4x

ch 4x

)(
1

ch 4x

)]

= 6x[sech 4x − 2x th 4x sech 4x]

= 6x sech 4x (1 − 2x th 4x)

Now try the following exercise.

Exercise 135 Further problems on differen-
tiation of hyperbolic functions

In Problems 1 to 5 differentiate the given func-
tions with respect to the variable:

1. (a) 3 sh 2x (b) 2 ch 5θ (c) 4 th 9t[
(a) 6 ch 2x (b) 10 sh 5θ (c) 36 sech2 9t

]

2. (a)
2

3
sech 5x (b)

5

8
cosech

t

2
(c) 2 coth 7θ

⎡

⎢
⎢
⎢
⎣

(a) −10

3
sech 5x th 5x

(b) − 5

16
cosech

t

2
coth

t

2
(c) −14 cosech2 7θ

⎤

⎥
⎥
⎥
⎦

3. (a) 2 ln(sh x) (b)
3

4
ln

(

th

(
θ

2

))

[

(a) 2 coth x (b)
3

8
sech

θ

2
cosech

θ

2

]

4. (a) sh 2x ch 2x (b) 3e2x th 2x
[

(a) 2(sh2 2x + ch2 2x)

(b) 6e2x(sech2 2x + th 2x)

]

5. (a)
3 sh 4x

2x3 (b)
ch 2t

cos 2t
⎡

⎢
⎣

(a)
12x ch 4x − 9 sh 4x

2x4

(b)
2(cos 2t sh 2t + ch 2t sin 2t)

cos2 2t

⎤

⎥
⎦



Ch33-H8152.tex 11/7/2006 12: 46 Page 332

Differential calculus

33

Differentiation of inverse
trigonometric and hyperbolic
functions

33.1 Inverse functions

If y = 3x − 2, then by transposition, x = y + 2

3
. The

function x = y + 2

3
is called the inverse function of

y = 3x − 2 (see page 201).
Inverse trigonometric functions are denoted by

prefixing the function with ‘arc’ or, more com-
monly, by using the −1 notation. For example, if
y = sin x, then x = arcsin y or x = sin−1 y. Similarly,
if y = cos x, then x = arccos y or x = cos−1 y, and so
on. In this chapter the −1 notation will be used. A
sketch of each of the inverse trigonometric functions
is shown in Fig. 33.1.

Inverse hyperbolic functions are denoted by pre-
fixing the function with ‘ar’ or, more commonly, by
using the −1 notation. For example, if y = sinh x, then
x = arsinh y or x = sinh−1 y. Similarly, if y = sech x,
then x = arsech y or x = sech−1y, and so on. In this
chapter the −1 notation will be used. A sketch of
each of the inverse hyperbolic functions is shown in
Fig. 33.2.

33.2 Differentiation of inverse
trigonometric functions

(i) If y = sin−1 x, then x = sin y.
Differentiating both sides with respect to y
gives:

dx

dy
= cos y =

√
1 − sin2 y

since cos2 y + sin2 y = 1, i.e.
dx

dy
= √

1 − x2

However
dy

dx
= 1

dx

dy

Hence, when y = sin−1 x then
dy
dx

= 1√
1 − x2

(ii) A sketch of part of the curve of y = sin−1 x
is shown in Fig. 33(a). The principal value of
sin−1 x is defined as the value lying between
−π/2 and π/2. The gradient of the curve
between points A and B is positive for all values
of x and thus only the positive value is taken

when evaluating
1√

1 − x2
.

(iii) Given y = sin−1 x

a
then

x

a
= sin y and

x = a sin y

Hence
dx

dy
= a cos y = a

√
1 − sin2 y

= a

√[

1 −
(x

a

)2
]

= a

√(
a2 − x2

a2

)

= a
√

a2 − x2

a
= √

a2 − x2

Thus
dy

dx
= 1

dx

dy

= 1√
a2 − x2

i.e. when y = sin−1 x
a

then
dy
dx

= 1√
a2 − x2

Since integration is the reverse process of
differentiation then:

∫
1√

a2 − x2
dx = sin−1 x

a
+ c

(iv) Given y = sin−1 f (x) the function of a function

rule may be used to find
dy

dx
.
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Let u = f (x) then y = sin−1 u

Then
du

dx
= f ′(x) and

dy

du
= 1√

1 − u2

(see para. (i))

Thus
dy

dx
= dy

du
× du

dx
= 1√

1 − u2
f ′(x)

= f ′(x)
√

1 − [ f (x)]2

(v) The differential coefficients of the remaining
inverse trigonometric functions are obtained in
a similar manner to that shown above and a
summary of the results is shown in Table 33.1.

Table 33.1 Differential coefficients of inverse
trigonometric functions

y or f (x)
dy

dx
or f ′(x)

(i) sin−1 x

a

1√
a2 − x2

sin−1 f (x)
f ′(x)

√
1 − [ f (x)]2

(ii) cos−1 x

a

−1√
a2 − x2

cos−1 f (x)
−f ′(x)

√
1 − [ f (x)]2

(iii) tan−1 x

a

a

a2 + x2

tan−1 f (x)
f ′(x)

1 + [ f (x)]2

(iv) sec−1 x

a

a

x
√

x2 − a2

sec−1 f (x)
f ′(x)

f (x)
√

[ f (x)]2 − 1

(v) cosec−1 x

a

−a

x
√

x2 − a2

cosec−1 f (x)
−f ′(x)

f (x)
√

[ f (x)]2 − 1

(vi) cot−1 x

a

−a

a2 + x2

cot−1 f (x)
−f ′(x)

1 + [ f (x)]2

Problem 1. Find
dy

dx
given y = sin−1 5x2.

From Table 33.1(i), if

y = sin−1 f (x) then
dy

dx
= f ′(x)
√

1 − [ f (x)]2

Hence, if y = sin−1 5x2 then f (x) = 5x2 and
f ′(x) = 10x.

Thus
dy

dx
= 10x
√

1 − (5x2)2
= 10x√

1 − 25x4

Problem 2.

(a) Show that if y = cos−1 x then

dy

dx
= 1√

1 − x2

(b) Hence obtain the differential coefficient of
y = cos−1 (1 − 2x2).

(a) If y = cos−1 x then x = cos y.

Differentiating with respect to y gives:

dx

dy
= −sin y = −√1 − cos2 y

= −√
1 − x2

Hence
dy

dx
= 1

dx

dy

= − 1√
1 − x2

The principal value of y = cos−1 x is defined as
the angle lying between 0 and π, i.e. between
points C and D shown in Fig. 33.1(b). The gradi-
ent of the curve is negative between C and D and

thus the differential coefficient
dy

dx
is negative as

shown above.

(b) If y = cos−1 f (x) then by letting u = f (x),
y = cos−1 u

Then
dy

du
= − 1√

1 − u2
(from part (a))

and
du

dx
= f ′(x)

From the function of a function rule,

dy

dx
= dy

du
· du

dx
= − 1√

1 − u2
f ′(x)

= −f ′(x)
√

1 − [ f (x)]2
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Hence, when y = cos−1(1 − 2x2)

then
dy

dx
= −(−4x)
√

1 − [1 − 2x2]2

= 4x
√

1 − (1 − 4x2 + 4x4)
= 4x
√

(4x2 − 4x4)

= 4x
√

[4x2(1 − x2)]
= 4x

2x
√

1 − x2
= 2√

1 − x2

Problem 3. Determine the differential coeffi-
cient of y = tan−1 x

a
and show that the differ-

ential coefficient of tan−1 2x

3
is

6

9 + 4x2

If y = tan−1 x

a
then

x

a
= tan y and x = a tan y

dx

dy
= a sec2 y = a(1 + tan2 y) since

sec2 y = 1 + tan2 y

= a

[

1 +
(x

a

)2
]

= a

(
a2 + x2

a2

)

= a2 + x2

a

Hence
dy

dx
= 1

dx

dy

= a

a2 + x2

The principal value of y = tan−1 x is defined as

the angle lying between −π

2
and

π

2
and the gra-

dient

(

i.e.
dy

dx

)

between these two values is always

positive (see Fig. 33.1 (c)).

Comparing tan−1 2x

3
with tan−1 x

a
shows that a = 3

2

Hence if y = tan−1 2x

3
then

dy

dx
=

3

2
(

3

2

)2
+ x2

=
3

2
9

4
+ x2

=
3

2
9 + 4x2

4

=
3

2
(4)

9 + 4x2 = 6
9 + 4x2

Problem 4. Find the differential coefficient of
y = ln(cos−1 3x).

Let u = cos−1 3x then y = ln u.

By the function of a function rule,

dy

dx
= dy

du
· du

dx
= 1

u
× d

dx
( cos−1 3x)

= 1

cos−1 3x

{
−3

√
1 − (3x)2

}

i.e.
d

dx
[ln(cos−1 3x)] = −3√

1 − 9x2 cos−1 3x

Problem 5. If y = tan−1 3

t2 find
dy

dt

Using the general form from Table 33.1(iii),

f (t) = 3

t2 = 3t−2,

from which f ′(t) = −6

t3

Hence
d

dt

(

tan−1 3

t2

)

= f ′(t)
1 + [ f (t)]2

=
− 6

t3
{

1 +
(

3

t2

)2
} =

− 6

t3

t4 + 9

t4

=
(

− 6

t3

)(
t4

t4 + 9

)

= − 6t
t4 + 9

Problem 6. Differentiate y = cot−1 2x

1 + 4x2

Using the quotient rule:

dy

dx
=

(1 + 4x2)

( −2

1 + (2x)2

)

− (cot−1 2x)(8x)

(1 + 4x2)2

from Table 33.1(vi)

= −2(1 + 4x cot−12x)

(1 + 4x2)2
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Problem 7. Differentiate y = x cosec−1 x.

Using the product rule:

dy

dx
= (x)

[ −1

x
√

x2 − 1

]

+ (cosec−1 x) (1)

from Table 33.1(v)

= −1√
x2 − 1

+ cosec−1 x

Problem 8. Show that if

y = tan−1
(

sin t

cos t − 1

)

then
dy

dt
= 1

2

If f (t) =
(

sin t

cos t − 1

)

then f ′(t) = (cos t − 1)(cos t) − (sin t)(−sin t)

(cos t − 1)2

= cos2 t − cos t + sin2 t

(cos t − 1)2 = 1 − cos t

(cos t − 1)2

since sin2 t + cos2 t = 1

= −(cos t − 1)

(cos t − 1)2 = −1

cos t − 1

Using Table 33.1(iii), when

y = tan−1
(

sin t

cos t − 1

)

then
dy

dt
=

−1

cos t − 1

1 +
(

sin t

cos t − 1

)2

=
−1

cos t − 1
(cos t − 1)2 + (sin t)2

(cos t − 1)2

=
( −1

cos t − 1

)(
(cos t − 1)2

cos2 t − 2 cos t + 1 + sin2 t

)

= −(cos t − 1)

2 − 2 cos t
= 1 − cos t

2(1 − cos t)
= 1

2

Now try the following exercise.

Exercise 136 Further problems on
differentiating inverse trigonometric
functions

In Problems 1 to 6, differentiate with respect to
the variable.

1. (a) sin−1 4x (b) sin−1 x

2
[

(a)
4√

1 − 16x2
(b)

1√
4 − x2

]

2. (a) cos−1 3x (b)
2

3
cos−1 x

3
[

(a)
−3√

1 − 9x2
(b)

−2

3
√

9 − x2

]

3. (a) 3 tan−1 2x (b)
1

2
tan−1 √

x

[

(a)
6

1 + 4x2 (b)
1

4
√

x(1 + x)

]

4. (a) 2 sec−1 2t (b) sec−1 3

4
x

[

(a)
2

t
√

4t2 − 1
(b)

4

x
√

9x2 − 16

]

5. (a)
5

2
cosec−1 θ

2
(b) cosec−1 x2

[

(a)
−5

θ
√

θ2 − 4
(b)

−2

x
√

x4 − 1

]

6. (a) 3 cot−1 2t (b) cot−1
√

θ2 − 1
[

(a)
−6

1 + 4t2 (b)
−1

θ
√

θ2 − 1

]

7. Show that the differential coefficient of

tan−1 x

1 − x2 is
1 + x2

1 − x2 + x4

In Problems 8 to 11 differentiate with respect to
the variable.

8. (a) 2x sin−1 3x (b) t2 sec−1 2t
⎡

⎢
⎣

(a)
6x√

1 − 9x2
+ 2 sin−1 3x

(b)
t√

4t2 − 1
+ 2t sec−1 2t

⎤

⎥
⎦
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9. (a) θ2 cos−1 (θ2 − 1) (b) (1 − x2) tan−1 x
⎡

⎢
⎢
⎣

(a) 2θ cos−1 (θ2 − 1) − 2θ2

√
2 − θ2

(b)

(
1 − x2

1 + x2

)

− 2x tan−1 x

⎤

⎥
⎥
⎦

10. (a) 2
√

t cot−1 t (b) x cosec−1 √
x

⎡

⎢
⎢
⎣

(a)
−2

√
t

1 + t2 + 1√
t

cot−1 t

(b) cosec−1 √
x − 1

2
√

(x − 1)

⎤

⎥
⎥
⎦

11. (a)
sin−1 3x

x2 (b)
cos−1 x√

1 − x2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(a)
1

x3

{
3x√

1 − 9x2
− 2 sin−1 3x

}

(b)
−1 + x√

1 − x2
cos−1 x

(1 − x2)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

33.3 Logarithmic forms of the inverse
hyperbolic functions

Inverse hyperbolic functions may be evaluated most
conveniently when expressed in a logarithmic
form.
For example, if y = sinh−1 x

a
then

x

a
= sinh y.

From Chapter 5, e y = cosh y + sinh y and
cosh2 y − sinh2 y = 1, from which,
cosh y =

√
1 + sinh2 y which is positive since cosh y

is always positive (see Fig. 5.2, page 43).

Hence e y =
√

1 + sinh2 y + sinh y

=
√[

1 +
(x

a

)2
]

+ x

a
=
√(

a2 + x2

a2

)

+ x

a

=
√

a2 + x2

a
+ x

a
or

x + √
a2 + x2

a

Taking Napierian logarithms of both sides gives:

y = ln

{
x + √

a2 + x2

a

}

Hence, sinh−1 x
a

= ln

{
x +

√
a2 + x2

a

}

(1)

Thus to evaluate sinh−1 3

4
, let x = 3 and a = 4 in

equation (1).

Then sin h−1 3

4
= ln

{
3 + √

42 + 32

4

}

= ln

(
3 + 5

4

)

= ln 2 = 0.6931

By similar reasoning to the above it may be
shown that:

cosh−1 x
a

= ln

{
x + √

x2 − a2

a

}

and tanh−1 x
a

= 1
2

ln
(

a + x
a − x

)

Problem 9. Evaluate, correct to 4 decimal
places, sinh−1 2.

From above, sinh−1 x

a
= ln

{
x + √

a2 + x2

a

}

With x = 2 and a = 1,

sinh−1 2 = ln

{
2 + √

12 + 22

1

}

= ln (2 + √
5) = ln 4.2361

= 1.4436, correct to 4 decimal places

Problem 10. Show that

tanh−1 x

a
= 1

2
ln

(
a + x

a − x

)

and evaluate, correct

to 4 decimal places, tanh−1 3

5

If y = tanh−1 x

a
then

x

a
= tanh y.

From Chapter 5,

tanh y = sinh x

cosh x
=

1
2 (e y − e−y)
1
2 (e y + e−y)

= e2y − 1

e2y + 1

by dividing each term by e−y
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Thus,
x

a
= e2y − 1

e2y + 1

from which, x(e2y + 1) = a(e2y − 1)

Hence x + a = ae2y − xe2y = e2y(a − x)

from which e2y =
(

a + x

a − x

)

Taking Napierian logarithms of both sides gives:

2y = ln

(
a + x

a − x

)

and y = 1

2
ln

(
a + x

a − x

)

Hence, tanh−1 x
a

= 1
2

ln
(

a + x
a − x

)

Substituting x = 3 and a = 5 gives:

tanh−1 3

5
= 1

2
ln

(
5 + 3

5 − 3

)

= 1

2
ln 4

= 0.6931, correct to 4 decimal places

Problem 11. Prove that

cosh−1 x

a
= ln

{
x + √

x2 − a2

a

}

and hence evaluate cosh−11.4 correct to
4 decimal places.

If y = cosh−1 x

a
then

x

a
= cos y

e y = cosh y + sinh y = cosh y ±
√

cosh2 y − 1

= x

a
±
√[(x

a

)2 − 1

]

= x

a
±

√
x2 − a2

a

= x ± √
x2 − a2

a
Taking Napierian logarithms of both sides gives:

y = ln

{
x ± √

x2 − a2

a

}

Thus, assuming the principal value,

cosh−1 x
a

= ln

{
x + √

x2 − a2

a

}

cosh−1 1.4 = cosh−1 14

10
= cosh−1 7

5

In the equation for cosh−1 x

a
, let x = 7 and a = 5

Then cosh−1 7

5
= ln

{
7 + √

72 − 52

5

}

= ln 2.3798 = 0.8670,
correct to 4 decimal places

Now try the following exercise.

Exercise 137 Further problems on logarith-
mic forms of the inverse hyperbolic functions

In Problems 1 to 3 use logarithmic equivalents of
inverse hyperbolic functions to evaluate correct
to 4 decimal places.

1. (a) sinh−1 1

2
(b) sinh−1 4 (c) sinh−1 0.9

[(a) 0.4812 (b) 2.0947 (c) 0.8089]

2. (a) cosh−1 5

4
(b) cosh−1 3 (c) cosh−1 4.3

[(a) 0.6931 (b) 1.7627 (c) 2.1380]

3. (a) tanh−1 1

4
(b) tanh−1 5

8
(c) tanh−1 0.7

[(a) 0.2554 (b) 0.7332 (c) 0.8673]

33.4 Differentiation of inverse
hyperbolic functions

If y = sinh−1 x

a
then

x

a
= sinh y and x = a sinh y

dx

dy
= a cosh y (from Chapter 32).

Also cosh2 y − sinh2 y = 1, from which,

cosh y=
√

1 + sinh2 y =
√[

1 +
(x

a

)2
]

=
√

a2 + x2

a

Hence
dx

dy
= a cosh y = a

√
a2 + x2

a
= √

a2 + x2

Then
dy
dx

= 1
dx

dy

= 1
√

a2 + x2
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[An alternative method of differentiating sinh−1 x

a
is to differentiate the logarithmic form

ln

{
x + √

a2 + x2

a

}

with respect to x].

From the sketch of y = sinh−1 x shown in

Fig. 33.2(a) it is seen that the gradient

(

i.e.
dy

dx

)

is always positive.

It follows from above that
∫

1√
x2 + a2

dx = sinh−1 x

a
+ c

or ln

{
x + √

a2 + x2

a

}

+ c

It may be shown that

d
dx

(sinh−1 x) = 1
√

x2 + 1

or more generally

d
dx

[sinh−1 f (x)] = f ′(x)
√

[ f (x)]2 + 1

by using the function of a function rule as in
Section 33.2(iv).

The remaining inverse hyperbolic functions are
differentiated in a similar manner to that shown
above and the results are summarized in Table 33.2.

Problem 12. Find the differential coefficient
of y = sinh−1 2x.

From Table 33.2(i),

d

dx
[sinh−1 f (x)] = f ′(x)

√
[ f (x)]2 + 1

Hence
d

dx
(sinh−1 2x) = 2

√
[(2x)2 + 1]

= 2
√

[4x2 + 1]

Problem 13. Determine
d

dx

[
cosh−1

√
(x2 + 1)

]

Table 33.2 Differential coefficients of inverse hyper-
bolic functions

y or f (x)
dy

dx
or f ′(x)

(i) sinh−1 x

a

1√
x2 + a2

sinh−1 f (x)
f ′(x)

√
[ f (x)]2 + 1

(ii) cosh−1 x

a

1√
x2 − a2

cosh−1 f (x)
f ′(x)

√
[ f (x)]2 − 1

(iii) tanh−1 x

a

a

a2 − x2

tanh−1 f (x)
f ′(x)

1 − [ f (x)]2

(iv) sech−1 x

a

−a

x
√

a2 − x2

sech−1f (x)
−f ′(x)

f (x)
√

1 − [ f (x)]2

(v) cosech−1 x

a

−a

x
√

x2 + a2

cosech−1f (x)
−f ′(x)

f (x)
√

[ f (x)]2 + 1

(vi) coth−1 x

a

a

a2 − x2

coth−1f (x)
f ′(x)

1 − [ f (x)]2

If y = cosh−1 f (x),
dy

dx
= f ′(x)
√

[ f (x)]2 − 1

If y = cosh−1
√

(x2 + 1), then f (x) =√(x2 + 1) and

f ′(x) = 1

2
(x + 1)−1/2(2x) = x

√
(x2 + 1)

Hence,
d

dx

[
cosh−1

√
(x2 + 1)

]

=
x

√
(x2 + 1)

√[(√
(x2 + 1)

)2 − 1

] =
x

√
(x2 + 1)

√
(x2 + 1 − 1)

=
x

√
(x2 + 1)

x
= 1
√

(x2 + 1)
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Problem 14. Show that
d

dx

[
tanh−1 x

a

]
=

a

a2 − x2 and hence determine the differential

coefficient of tanh−1 4x

3

If y = tanh−1 x

a
then

x

a
= tanh y and x = a tanh y

dx

dy
= a sech2 y = a(1 − tanh2 y), since

1 − sech2 y = tanh2 y

= a

[

1 −
(x

a

)2
]

= a

(
a2 − x2

a2

)

= a2 − x2

a

Hence
dy

dx
= 1

dx

dy

= a

a2 − x2

Comparing tanh−1 4x

3
with tanh−1 x

a
shows that

a = 3

4

Hence
d

dx

[

tanh−1 4x

3

]

=
3

4
(

3

4

)2

− x2

=
3

4
9

16
− x2

=
3

4
9 − 16x2

16

= 3

4
· 16

(9 − 16x2)
= 12

9 − 16x2

Problem 15. Differentiate cosech−1(sinh θ).

From Table 33.2(v),

d

dx
[cosech−1 f (x)] = −f ′(x)

f (x)
√

[ f (x)]2 + 1

Hence
d

dθ
[cosech−1(sinh θ)]

= −cosh θ

sinh θ
√

[sinh2 θ + 1]

= −cosh θ

sinh θ
√

cosh2 θ
since cosh2 θ − sinh2 θ = 1

= −cosh θ

sinh θ cosh θ
= −1

sinh θ
= −cosech θ

Problem 16. Find the differential coefficient of
y = sech−1 (2x − 1).

From Table 33.2(iv),

d

dx
[sech−1 f (x)] = −f ′(x)

f (x)
√

1 − [ f (x)]2

Hence,
d

dx
[sech−1 (2x − 1)]

= −2

(2x − 1)
√

[1 − (2x − 1)2]

= −2

(2x − 1)
√

[1 − (4x2 − 4x + 1)]

= −2

(2x − 1)
√

(4x − 4x2)
= −2

(2x −1)
√

[4x(1−x)]

= −2

(2x − 1)2
√

[x(1 − x)]
= −1

(2x − 1)
√

[x(1 − x)]

Problem 17. Show that
d

dx
[coth−1(sin x)] = sec x.

From Table 33.2(vi),

d

dx
[coth−1 f (x)] = f ′(x)

1 − [ f (x)]2

Hence
d

dx
[coth−1(sin x)] = cos x

[1 − (sin x)2]

= cos x

cos2 x
since cos2 x + sin2 x = 1

= 1

cos x
= sec x

Problem 18. Differentiate
y = (x2 − 1) tanh−1 x.

Using the product rule,

dy

dx
= (x2 − 1)

(
1

1 − x2

)

+ ( tanh−1 x)(2x)

= −(1 − x2)

(1 − x2)
+ 2x tanh−1 x = 2x tanh−1 x − 1
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Problem 19. Determine
∫

dx
√

(x2 + 4)

Since
d

dx

(
sinh−1 x

a

)
= 1
√

(x2 + a2)

then
∫

dx
√

(x2 + a2)
= sinh−1 x

a
+ c

Hence
∫

1
√

(x2 + 4)
dx =

∫
1

√
(x2 + 22)

dx

= sinh−1 x
2

+ c

Problem 20. Determine
∫

4
√

(x2 − 3)
dx.

Since
d

dx

(
cosh−1 x

a

)
= 1
√

(x2 − a2)

then
∫

1
√

(x2 − a2)
dx = cosh−1 x

a
+ c

Hence
∫

4
√

(x2 − 3)
dx = 4

∫
1

√
[x2 − (

√
3)2]

dx

= 4 cosh−1 x√
3

+ c

Problem 21. Find
∫

2

(9 − 4x2)
dx.

Since tanh−1 x

a
= a

a2 − x2

then
∫

a

a2 − x2 dx = tanh−1 x

a
+ c

i.e.
∫

1

a2 − x2 dx = 1

a
tanh−1 x

a
+ c

Hence
∫

2

(9 − 4x2)
dx = 2

∫
1

4
( 9

4 − x2
) dx

= 1

2

∫
1

[( 3
2

)2 − x2
] dx

= 1

2

[
1
( 3

2

) tanh−1 x
( 3

2

) + c

]

i.e.
∫

2

(9 − 4x2)
dx = 1

3
tanh−1 2x

3
+ c

Now try the following exercise.

Exercise 138 Further problems on differen-
tiation of inverse hyperbolic functions

In Problems 1 to 11, differentiate with respect to
the variable.

1. (a) sinh−1 x

3
(b) sinh−1 4x

[

(a)
1

√
(x2 + 9)

(b)
4

√
(16x2 + 1)

]

2. (a) 2 cosh−1 t

3
(b)

1

2
cosh−1 2θ

[

(a)
2

√
(t2 − 9)

(b)
1

√
(4θ2 − 1)

]

3. (a) tanh−1 2x

5
(b) 3 tanh−1 3x

[

(a)
10

25 − 4x2 (b)
9

(1 − 9x2)

]

4. (a) sech−1 3x

4
(b) −1

2
sech−1 2x

[

(a)
−4

x
√

(16 − 9x2)
(b)

1

2x
√

(1 − 4x2)

]

5. (a) cosech−1 x

4
(b)

1

2
cosech−1 4x

[

(a)
−4

x
√

(x2 + 16)
(b)

−1

2x
√

(16x2 + 1)

]

6. (a) coth−1 2x

7
(b)

1

4
coth−1 3t

[

(a)
14

49 − 4x2 (b)
3

4(1 − 9t2)

]

7. (a) 2 sinh−1
√

(x2 − 1)

(b)
1

2
cosh−1

√
(x2 + 1)

[

(a)
2

√
(x2 − 1)

(b)
1

2
√

(x2 + 1)

]
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8. (a) sech−1(x − 1) (b) tanh−1 (tanh x)
[

(a)
−1

(x − 1)
√

[x(2 − x)]
(b) 1

]

9. (a) cosh−1
(

t

t − 1

)

(b) coth−1 (cos x)

[

(a)
−1

(t − 1)
√

(2t − 1)
(b) −cosec x

]

10. (a) θ sinh−1 θ (b)
√

x cosh−1 x
⎡

⎢
⎢
⎢
⎣

(a)
θ

√
(θ2 + 1)

+ sinh−1 θ

(b)

√
x

√
(x2 − 1)

+ cosh−1 x

2
√

x

⎤

⎥
⎥
⎥
⎦

11. (a)
2 sec h−1 √

t

t2 (b)
tan h−1 x

(1 − x2)
⎡

⎢
⎢
⎢
⎢
⎣

(a)
−1

t3

{
1√

(1 − t)
+ 4 sech−1 √

t

}

(b)
1 + 2x tanh−1 x

(1 − x2)2

⎤

⎥
⎥
⎥
⎥
⎦

12. Show that
d

dx
[x cosh−1(cosh x)] = 2x

In Problems 13 to 15, determine the given
integrals

13. (a)
∫

1
√

(x2 + 9)
dx

(b)
∫

3
√

(4x2 + 25)
dx

[

(a) sinh−1 x

3
+ c (b)

3

2
sinh−1 2x

5
+ c

]

14. (a)
∫

1
√

(x2 − 16)
dx

(b)
∫

1
√

(t2 − 5)
dt

[

(a) cosh−1 x

4
+ c (b) cosh−1 t√

5
+ c

]

15. (a)
∫

dθ
√

(36 + θ2)
(b)
∫

3

(16 − 2x2)
dx

⎡

⎢
⎢
⎣

(a)
1

6
tan−1 θ

6
+ c

(b)
3

2
√

8
tanh−1 x√

8
+ c

⎤

⎥
⎥
⎦
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Differential calculus

34

Partial differentiation

34.1 Introduction to partial derivatives

In engineering, it sometimes happens that the varia-
tion of one quantity depends on changes taking place
in two, or more, other quantities. For example, the
volume V of a cylinder is given by V= πr2h. The
volume will change if either radius r or height h
is changed. The formula for volume may be stated
mathematically as V= f (r, h) which means ‘V is
some function of r and h’. Some other practical
examples include:

(i) time of oscillation, t = 2π

√
l

g
i.e. t = f (l, g).

(ii) torque T = Iα, i.e. T = f (I , α).

(iii) pressure of an ideal gas p = mRT

V
i.e. p = f (T , V ).

(iv) resonant frequency fr = 1

2π
√

LC
i.e. fr = f (L, C), and so on.

When differentiating a function having two vari-
ables, one variable is kept constant and the dif-
ferential coefficient of the other variable is found
with respect to that variable. The differential coef-
ficient obtained is called a partial derivative of
the function.

34.2 First order partial derivatives

A ‘curly dee’, ∂, is used to denote a differential coef-
ficient in an expression containing more than one
variable.

Hence if V = πr2h then
∂V

∂r
means ‘the partial

derivative of V with respect to r, with h remaining
constant’. Thus,

∂V

∂r
= (πh)

d

dr
(r2) = (πh)(2r) = 2πrh.

Similarly,
∂V

∂h
means ‘the partial derivative of V with

respect to h, with r remaining constant’. Thus,

∂V

∂h
= (πr2)

d

dh
(h) = (πr2)(1) = πr2.

∂V

∂r
and

∂V

∂h
are examples of first order partial

derivatives, since n = 1 when written in the form
∂nV

∂rn
.

First order partial derivatives are used when finding
the total differential, rates of change and errors for
functions of two or more variables (see Chapter 35),
when finding maxima, minima and saddle points for
functions of two variables (see Chapter 36), and with
partial differential equations (see Chapter 53).

Problem 1. If z = 5x4 + 2x3y2 − 3y find

(a)
∂z

∂x
and (b)

∂z

∂y

(a) To find
∂z

∂x
, y is kept constant.

Since z = 5x4 + (2y2)x3 − (3y)

then,
∂z

∂x
= d

dx
(5x4) + (2y2)

d

dx
(x3) − (3y)

d

dx
(1)

= 20x3 + (2y2)(3x2) − 0.

Hence
∂z
∂x

= 20x3 + 6x2y2.

(b) To find
∂z

∂y
, x is kept constant.

Since z = (5x4) + (2x3)y2 − 3y

then,

∂z

∂y
= (5x4)

d

dy
(1) + (2x3)

d

dy
(y2) − 3

d

dy
(y)

= 0 + (2x3)(2y) − 3
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Hence
∂z
∂y

= 4x3y − 3.

Problem 2. Given y = 4 sin 3x cos 2t, find
∂y

∂x

and
∂y

∂t
.

To find
∂y

∂x
, t is kept constant

Hence
∂y

∂x
= (4 cos 2t)

d

dx
(sin 3x)

= (4 cos 2t)(3 cos 3x)

i.e.
∂y
∂x

= 12 cos 3x cos 2t

To find
∂y

∂t
, x is kept constant.

Hence
∂y

∂t
= (4 sin 3x)

d

dt
(cos 2t)

= (4 sin 3x)(−2 sin 2t)

i.e.
∂y
∂t

= −8 sin 3x sin 2t

Problem 3. If z = sin xy show that

1

y

∂z

∂x
= 1

x

∂z

∂y

∂z

∂x
= y cos xy, since y is kept constant.

∂z

∂y
= x cos xy, since x is kept constant.

1

y

∂z

∂x
=
(

1

y

)

(y cos xy) = cos xy

and
1

x

∂z

∂y
=
(

1

x

)

(x cos xy) = cos xy.

Hence
1
y

∂z
∂x

= 1
x

∂z
∂y

Problem 4. Determine
∂z

∂x
and

∂z

∂y
when

z = 1
√

(x2 + y2)
.

z = 1
√

(x2 + y2)
= (x2 + y2)

−1
2

∂z

∂x
= −1

2
(x2 + y2)

−3
2 (2x), by the function of a

function rule (keeping y constant)

= −x

(x2 + y2)
3
2

= −x
√

(x2 + y2)3

∂z

∂y
= −1

2
(x2 + y2)

−3
2 (2y), (keeping x constant)

= −y
√

(x2 + y2)3

Problem 5. Pressure p of a mass of gas is given
by pV = mRT , where m and R are constants,
V is the volume and T the temperature. Find

expressions for
∂p

∂T
and

∂p

∂V

Since pV = mRT then p = mRT

V

To find
∂p

∂T
, V is kept constant.

Hence
∂p

∂T
=
(

mR

V

)
d

dT
(T ) = mR

V

To find
∂p

∂V
, T is kept constant.

Hence
∂p

∂V
= (mRT )

d

dV

(
1

V

)

= (mRT )(−V−2) = −mRT
V2

Problem 6. The time of oscillation, t, of a pen-

dulum is given by t = 2π

√
l

g
where l is the length

of the pendulum and g the free fall acceleration

due to gravity. Determine
∂t

∂l
and

∂t

∂g

To find
∂t

∂l
, g is kept constant.
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t = 2π

√
l

g
=
(

2π√
g

)√
l =

(
2π√

g

)

l
1
2

Hence
∂t

∂l
=
(

2π√
g

)
d

dl
(l

1
2 ) =

(
2π√

g

)(
1

2
l

−1
2

)

=
(

2π√
g

)(
1

2
√

l

)

= π√
lg

To find
∂t

∂g
, l is kept constant

t = 2π

√
l

g
= (2π

√
l)

(
1√
g

)

= (2π
√

l)g
−1
2

Hence
∂t

∂g
= (2π

√
l)

(

−1

2
g

−3
2

)

= (2π
√

l)

(
−1

2
√

g3

)

= −π
√

l
√

g3
= −π

√
l

g3

Now try the following exercise.

Exercise 139 Further problems on first
order partial derivatives

In Problems 1 to 6, find
∂z

∂x
and

∂z

∂y

1. z = 2xy

[
∂z

∂x
= 2y

∂z

∂y
= 2x

]

2. z = x3 − 2xy + y2

⎡

⎢
⎣

∂z

∂x
= 3x2 − 2y

∂z

∂y
= −2x + 2y

⎤

⎥
⎦

3. z = x

y

⎡

⎢
⎣

∂z

∂x
= 1

y
∂z

∂y
= −x

y2

⎤

⎥
⎦

4. z = sin (4x + 3y)
⎡

⎢
⎣

∂z

∂x
= 4 cos (4x + 3y)

∂z

∂y
= 3 cos (4x + 3y)

⎤

⎥
⎦

5. z = x3y2 − y

x2 + 1

y
⎡

⎢
⎢
⎣

∂z

∂x
= 3x2y2 + 2y

x3

∂z

∂y
= 2x3y − 1

x2 − 1

y2

⎤

⎥
⎥
⎦

6. z = cos 3x sin 4y
⎡

⎢
⎢
⎣

∂z

∂x
= −3 sin 3x sin 4y

∂z

∂y
= 4 cos 3x cos 4y

⎤

⎥
⎥
⎦

7. The volume of a cone of height h and base
radius r is given by V = 1

3πr2h. Determine
∂V

∂h
and

∂V

∂r [
∂V

∂h
= 1

3
πr2 ∂V

∂r
= 2

3
πrh

]

8. The resonant frequency fr in a series electrical

circuit is given by fr = 1

2π
√

LC
. Show that

∂fr
∂L

= −1

4π
√

CL3

9. An equation resulting from plucking a
string is:

y= sin
(nπ

L

)
x

{

k cos

(
nπb

L

)

t + c sin

(
nπb

L

)

t

}

Determine
∂y

∂t
and

∂y

∂x
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂y

∂t
= nπb

L
sin
(nπ

L

)
x

{

c cos

(
nπb

L

)

t

− k sin

(
nπb

L

)

t

}

∂y

∂x
= nπ

L
cos
(nπ

L

)
x

{

k cos

(
nπb

L

)

t

+ c sin

(
nπb

L

)

t

}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

10. In a thermodynamic system, k = Ae
T�S−�H

RT ,
where R, k and A are constants.

Find (a)
∂k

∂T
(b)

∂A

∂T
(c)

∂(�S)

∂T
(d)

∂(�H)

∂T
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(a)
∂k

∂T
= A�H

RT2 e
T�S−�S

RT

(b)
∂A

∂T
= −k�H

RT2 e
�H−T�S

RT

(c)
∂(�S)

∂T
= −�H

T2

(d)
∂(�H)

∂T
= �S − R ln

(
k

A

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

34.3 Second order partial derivatives

As with ordinary differentiation, where a differen-
tial coefficient may be differentiated again, a partial
derivative may be differentiated partially again to
give higher order partial derivatives.

(i) Differentiating
∂V

∂r
of Section 34.2 with respect

to r, keeping h constant, gives
∂

∂r

(
∂V

∂r

)

which

is written as
∂2V

∂r2

Thus if V = πr2h,

then
∂2V

∂r2 = ∂

∂r
(2πrh) = 2πh.

(ii) Differentiating
∂V

∂h
with respect to h, keeping

r constant, gives
∂

∂h

(
∂V

∂h

)

which is written as

∂2V

∂h2

Thus
∂2V

∂h2 = ∂

∂h
(πr2) = 0.

(iii) Differentiating
∂V

∂h
with respect to r, keeping

h constant, gives
∂

∂r

(
∂V

∂h

)

which is written as

∂2V

∂r∂h
. Thus,

∂2V

∂r∂h
= ∂

∂r

(
∂V

∂h

)

= ∂

∂r
(πr2) = 2πr.

(iv) Differentiating
∂V

∂r
with respect to h, keeping r

constant, gives
∂

∂h

(
∂V

∂r

)

, which is written as

∂2V

∂h∂r
. Thus,

∂2V

∂h∂r
= ∂

∂h

(
∂V

∂r

)

= ∂

∂h
(2πrh) = 2πr.

(v)
∂2V

∂r2 ,
∂2V

∂h2 ,
∂2V

∂r∂h
and

∂2V

∂h∂r
are examples of

second order partial derivatives.

(vi) It is seen from (iii) and (iv) that
∂2V

∂r∂h
= ∂2V

∂h∂r
and such a result is always true for continuous
functions (i.e. a graph of the function which has
no sudden jumps or breaks).

Second order partial derivatives are used in the
solution of partial differential equations, in waveg-
uide theory, in such areas of thermodynamics cov-
ering entropy and the continuity theorem, and when
finding maxima, minima and saddle points for func-
tions of two variables (see Chapter 36).

Problem 7. Given z = 4x2y3 − 2x3 + 7y2 find

(a)
∂2z

∂x2 (b)
∂2z

∂y2 (c)
∂2z

∂x∂y
(d)

∂2z

∂y∂x

(a)
∂z

∂x
= 8xy3 − 6x2

∂2z

∂x2 = ∂

∂x

(
∂z

∂x

)

= ∂

∂x
(8xy3 − 6x2)

= 8y3− 12 x

(b)
∂z

∂y
= 12x2y2 + 14y

∂2z

∂y2 = ∂

∂y

(
∂z

∂y

)

= ∂

∂y
(12x2y2 + 14y)

= 24x2y + 14

(c)
∂2z

∂x∂y
= ∂

∂x

(
∂z

∂y

)

= ∂

∂x
(12x2y2+14y) = 24xy2

(d)
∂2z

∂y∂x
= ∂

∂y

(
∂z

∂x

)

= ∂

∂y
(8xy3 − 6x2) = 24xy2
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[

It is noted that
∂2z

∂x∂y
= ∂2z

∂y∂x

]

Problem 8. Show that when z = e−t sin θ,

(a)
∂2z

∂t2 = − ∂2z

∂θ2 , and (b)
∂2z

∂t∂θ
= ∂2z

∂θ∂t

(a)
∂z

∂t
= −e−t sin θ and

∂2z

∂t2 = e−t sin θ

∂z

∂θ
= e−t cos θ and

∂2z

∂θ2 = − e−t sin θ

Hence
∂2z
∂t2 = − ∂2z

∂θ2

(b)
∂2z

∂t∂θ
= ∂

∂t

(
∂z

∂θ

)

= ∂

∂t
( e−t cos θ)

= −e−t cos θ

∂2z

∂θ∂t
= ∂

∂θ

(
∂z

∂t

)

= ∂

∂θ
(−e−t sin θ)

= −e−t cos θ

Hence
∂2z
∂t∂θ

= ∂2z
∂θ∂t

Problem 9. Show that if z = x

y
ln y, then

(a)
∂z

∂y
= x

∂2z

∂y∂x
and (b) evaluate

∂2z

∂y2 when

x = −3 and y = 1.

(a) To find
∂z

∂x
, y is kept constant.

Hence
∂z

∂x
=
(

1

y
ln y

)
d

dx
(x) = 1

y
ln y

To find
∂z

∂y
, x is kept constant.

Hence
∂z

∂y
= (x)

d

dy

(
ln y

y

)

= (x)

⎧
⎪⎪⎨

⎪⎪⎩

(y)

(
1

y

)

− ( ln y)(1)

y2

⎫
⎪⎪⎬

⎪⎪⎭

using the quotient rule

= x

(
1 − ln y

y2

)

= x

y2 (1 − ln y)

∂2z

∂y∂x
= ∂

∂y

(
∂z

∂x

)

= ∂

∂y

(
ln y

y

)

=
(y)

(
1

y

)

− ( ln y)(1)

y2

using the quotient rule

= 1

y2 (1 − ln y)

Hence x
∂2z
∂y∂x

= x
y2 (1 − ln y) = ∂z

∂y

(b) ∂2z

∂y2 = ∂

∂y

(
∂z

∂y

)

= ∂

∂y

{
x

y2 (1 − ln y)

}

= (x)
d

dy

(
1 − ln y

y2

)

= (x)

⎧
⎪⎪⎨

⎪⎪⎩

(y2)

(

−1

y

)

− (1 − ln y)(2y)

y4

⎫
⎪⎪⎬

⎪⎪⎭

using the quotient rule

= x

y4 [ −y − 2y + 2y ln y]

= xy

y4 [ −3 + 2 ln y] = x

y3 (2 ln y − 3)

When x = −3 and y = 1,

∂2z

∂y2 = (−3)

(1)3 (2ln 1− 3) = (−3)(−3) = 9

Now try the following exercise.

Exercise 140 Further problems on second
order partial derivatives

In Problems 1 to 4, find (a)
∂2z

∂x2 (b)
∂2z

∂y2

(c)
∂2z

∂x∂y
(d)

∂2z

∂y∂x

1. z = (2x − 3y)2
[

(a) 8 (b) 18
(c) −12 (d) −12

]
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2. z = 2 ln xy

⎡

⎣
(a)

−2

x2 (b)
−2

y2

(c) 0 (d) 0

⎤

⎦

3. z = (x − y)

(x + y)

⎡

⎢
⎢
⎢
⎣

(a)
−4y

(x + y)3 (b)
4x

(x + y)3

(c)
2(x − y)

(x + y)3 (d)
2(x − y)

(x + y)3

⎤

⎥
⎥
⎥
⎦

4. z = sinh x cosh 2y

⎡

⎢
⎢
⎢
⎣

(a) sinh x cosh 2y

(b) 4 sinh x cosh 2y

(c) 2 cosh x sinh 2y

(d) 2 cosh x sinh 2y

⎤

⎥
⎥
⎥
⎦

5. Given z = x2 sin (x − 2y) find (a)
∂2z

∂x2 and

(b)
∂2z

∂y2

Show also that
∂2z

∂x∂y
= ∂2z

∂y∂x
= 2x2 sin(x − 2y) − 4x cos(x − 2y).

⎡

⎢
⎢
⎣

(a) (2 − x2) sin (x − 2y)

+ 4x cos (x − 2y)

(b) − 4x2 sin (x − 2y)

⎤

⎥
⎥
⎦

6. Find
∂2z

∂x2 ,
∂2z

∂y2 and show that
∂2z

∂x∂y
= ∂2z

∂y∂x

when z = arccos
x

y

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(a)
∂2z

∂x2 = −x
√

(y2 − x2)3
,

(b)
∂2z

∂y2 = −x
√

(y2 − x2)

{
1

y2 + 1

(y2 − x2)

}

(c)
∂2z

∂x∂y
= ∂2z

∂y∂x
= y
√

(y2 − x2)3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7. Given z =
√(

3x

y

)

show that

∂2z

∂x∂y
= ∂2z

∂y∂x
and evaluate

∂2z

∂x2 when

x = 1

2
and y = 3.

[

− 1√
2

]

8. An equation used in thermodynamics is the
Benedict-Webb-Rubine equation of state for
the expansion of a gas. The equation is:

p = RT

V
+
(

B0RT − A0 − C0

T2

)
1

V2

+ (bRT − a)
1

V3 + Aα

V6

+
C
(

1 + γ

V2

)

T2

(
1

V3

)

e− γ

V2

Show that
∂2p

∂T2

= 6

V2T4

{
C

V

(
1 + γ

V2

)
e− γ

V2 − C0

}
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Differential calculus

35

Total differential, rates of change and
small changes

35.1 Total differential

In Chapter 34, partial differentiation is introduced for
the case where only one variable changes at a time,
the other variables being kept constant. In practice,
variables may all be changing at the same time.

If z = f (u, v, w, . . . ), then the total differential,
dz, is given by the sum of the separate partial
differentials of z,

i.e. dz = ∂z
∂u

du + ∂z
∂v

dv + ∂z
∂w

dw + . . . (1)

Problem 1. If z = f (x, y) and z = x2y3 +
2x

y
+ 1, determine the total differential, dz.

The total differential is the sum of the partial
differentials,

i.e. dz = ∂z

∂x
dx + ∂z

∂y
dy

∂z

∂x
= 2xy3 + 2

y
(i.e. y is kept constant)

∂z

∂y
= 3x2y2 2x

y2 (i.e. x is kept constant)

Hence dz =
(

2xy3 + 2
y

)

dx +
(

3x2y2 − 2x
y2

)

dy

Problem 2. If z = f (u, v, w) and z = 3u2 −
2v + 4w3v2 find the total differential, dz.

The total differential

dz = ∂z

∂u
du + ∂z

∂v
dv + ∂z

∂w
dw

∂z

∂u
= 6u (i.e. v and w are kept constant)

∂z

∂v
= −2 + 8w3v

(i.e. u and w are kept constant)
∂z

∂w
= 12w2v2 (i.e. u and v are kept constant)

Hence

dz = 6u du + (8vw3 − 2) dv + (12v2w2) dw

Problem 3. The pressure p, volume V and tem-
perature T of a gas are related by pV = kT , where
k is a constant. Determine the total differentials
(a) dp and (b) dT in terms of p, V and T .

(a) Total differential dp = ∂p

∂T
dT + ∂p

∂V
dV .

Since pV = kT then p = kT

V

hence
∂p

∂T
= k

V
and

∂p

∂V
= − kT

V2

Thus dp = k

V
dT − kT

V2 dV

Since pV = kT , k = pV

T

Hence dp =

(
pV

T

)

V
dT −

(
pV

T

)

T

V2 dV

i.e. dp = p
T

dT − p
V

dV

(b) Total differential dT = ∂T

∂p
dp + ∂T

∂V
dV

Since pV = kT , T = pV

k

hence
∂T

∂p
= V

k
and

∂T

∂V
= p

k
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Thus dT = V

k
dp + p

k
dV and substituting

k = pV

T
gives:

dT = V
(

pV

T

) dp + p
(

pV

T

) dV

i.e. dT = T
p

dp + T
V

dV

Now try the following exercise.

Exercise 141 Further problems on the total
differential

In Problems 1 to 5, find the total differential dz.

1. z = x3 + y2 [3x2 dx + 2y dy]

2. z = 2xy − cos x [(2y + sin x) dx + 2x dy]

3. z = x − y

x + y

[
2y

(x + y)2 dx − 2x

(x + y)2 dy

]

4. z = x ln y

[

ln y d x + x

y
dy

]

5. z = xy +
√

x

y
− 4

[(

y + 1

2y
√

x

)

dx +
(

x −
√

x

y2

)

dy

]

6. If z = f (a, b, c) and z = 2ab − 3b2c + abc,
find the total differential, dz.

[
b(2 + c) da + (2a − 6bc + ac) db

+ b(a − 3b) dc

]

7. Given u = ln sin (xy) show that
du = cot (xy)(y dx + x dy)

35.2 Rates of change

Sometimes it is necessary to solve problems in which
different quantities have different rates of change.

From equation (1), the rate of change of z,
dz

dt
is

given by:

dz
dt

= ∂z
∂u

du
dt

+ ∂z
∂v

dv

dt
+ ∂z

∂w
dw
dt

+ · · · (2)

Problem 4. If z = f (x, y) and z = 2x3 sin 2y find
the rate of change of z, correct to 4 significant
figures, when x is 2 units and y is π/6 radians
and when x is increasing at 4 units/s and y is
decreasing at 0.5 units/s.

Using equation (2), the rate of change of z,

dz

dt
= ∂z

∂x

dx

dt
+ ∂z

∂y

dy

dt

Since z = 2x3 sin 2y, then

∂z

∂x
= 6x2 sin 2y and

∂z

∂y
= 4x3 cos 2y

Since x is increasing at 4 units/s,
dx

dt
= +4

and since y is decreasing at 0.5 units/s,
dy

dt
= −0.5

Hence
dz

dt
= (6x2 sin 2y)(+4) + (4x3 cos 2y)(−0.5)

= 24x2 sin 2y − 2x3 cos 2y

When x = 2 units and y = π

6
radians, then

dz

dt
= 24(2)2 sin [2(π/6)] − 2(2)3 cos [2(π/6)]

= 83.138 − 8.0

Hence the rate of change of z,
dz
dt

= 75.14 units/s,

correct to 4 significant figures.

Problem 5. The height of a right circular cone
is increasing at 3 mm/s and its radius is decreas-
ing at 2 mm/s. Determine, correct to 3 significant
figures, the rate at which the volume is chang-
ing (in cm3/s) when the height is 3.2 cm and the
radius is 1.5 cm.

Volume of a right circular cone, V = 1

3
πr2h

Using equation (2), the rate of change of volume,

dV

dt
= ∂V

∂r

dr

dt
+ ∂V

∂h

dh

dt

∂V

∂r
= 2

3
πrh and

∂V

∂h
= 1

3
πr2
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Since the height is increasing at 3 mm/s,

i.e. 0.3 cm/s, then
dh

dt
= +0.3

and since the radius is decreasing at 2 mm/s,

i.e. 0.2 cm/s, then
dr

dt
= −0.2

Hence
dV

dt
=
(

2

3
πrh

)

(−0.2) +
(

1

3
πr2
)

(+0.3)

= −0.4

3
πrh + 0.1πr2

However, h = 3.2 cm and r = 1.5 cm.

Hence
dV

dt
= −0.4

3
π(1.5)(3.2) + (0.1)π(1.5)2

= −2.011 + 0.707 = −1.304 cm3/s

Thus the rate of change of volume is 1.30 cm3/s
decreasing.

Problem 6. The area A of a triangle is given
by A = 1

2 ac sin B, where B is the angle between
sides a and c. If a is increasing at 0.4 units/s, c
is decreasing at 0.8 units/s and B is increasing at
0.2 units/s, find the rate of change of the area of
the triangle, correct to 3 significant figures, when
a is 3 units, c is 4 units and B is π/6 radians.

Using equation (2), the rate of change of area,

dA

dt
= ∂A

∂a

da

dt
+ ∂A

∂c

dc

dt
+ ∂A

∂B

dB

dt

Since A = 1

2
ac sin B,

∂A

∂a
= 1

2
c sin B,

∂A

∂c
= 1

2
a sin B and

∂A

∂B
= 1

2
ac cos B

da

dt
= 0.4 units/s,

dc

dt
= −0.8 units/s

and
dB

dt
= 0.2 units/s

Hence
dA

dt
=
(

1

2
c sin B

)

(0.4) +
(

1

2
a sin B

)

(−0.8)

+
(

1

2
ac cos B

)

(0.2)

When a = 3, c = 4 and B = π

6
then:

dA
dt

=
(

1

2
(4) sin

π

6

)

(0.4) +
(

1

2
(3) sin

π

6

)

(−0.8)

+
(

1

2
(3)(4) cos

π

6

)

(0.2)

= 0.4 − 0.6 + 1.039 = 0.839 units2/s, correct
to 3 significant figures.

Problem 7. Determine the rate of increase of
diagonal AC of the rectangular solid, shown in
Fig. 35.1, correct to 2 significant figures, if the
sides x, y and z increase at 6 mm/s, 5 mm/s and
4 mm/s when these three sides are 5 cm, 4 cm
and 3 cm respectively.

x = 5 cm
y = 4 cm

B

C

b

z = 3 cm

A

Figure 35.1

Diagonal AB =
√

(x2 + y2)

Diagonal AC =
√

(BC2 + AB2)

=
√

[z2 + {
√

(x2 + y2)}2

=
√

(z2 + x2 + y2)

Let AC = b, then b =√(x2 + y2 + z2)

Using equation (2), the rate of change of diagonal b
is given by:

db

dt
= ∂b

∂x

dx

dt
+ ∂b

∂y

dy

dt
+ ∂b

∂z

dz

dt

Since b =√(x2 + y2 + z2)

∂b

∂x
= 1

2
(x2 + y2 + z2)

−1
2 (2x) = x

√
(x2 + y2 + z2)
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Similarly,
∂b

∂y
= y
√

(x2 + y2 + z2)

and
∂b

∂z
= z
√

(x2 + y2 + z2)

dx

dt
= 6 mm/s = 0.6 cm/s,

dy

dt
= 5 mm/s = 0.5 cm/s,

and
dz

dt
= 4 mm/s = 0.4 cm/s

Hence
db

dt
=
[

x
√

(x2 + y2 + z2)

]

(0.6)

+
[

y
√

(x2 + y2 + z2)

]

(0.5)

+
[

z
√

(x2 + y2 + z2)

]

(0.4)

When x = 5 cm, y = 4 cm and z = 3 cm, then:

db

dt
=
[

5
√

(52 + 42 + 32)

]

(0.6)

+
[

4
√

(52 + 42 + 32)

]

(0.5)

+
[

3
√

(52 + 42 + 32)

]

(0.4)

= 0.4243 + 0.2828 + 0.1697 = 0.8768 cm/s

Hence the rate of increase of diagonal AC is
0.88 cm/s or 8.8 mm/s, correct to 2 significant
figures.

Now try the following exercise.

Exercise 142 Further problems on rates of
change

1. The radius of a right cylinder is increas-
ing at a rate of 8 mm/s and the height is
decreasing at a rate of 15 mm/s. Find the
rate at which the volume is changing in

cm3/s when the radius is 40 mm and the
height is 150 mm. [+226.2 cm3/s]

2. If z = f (x, y) and z = 3x2y5, find the rate of
change of z when x is 3 units and y is 2 units
when x is decreasing at 5 units/s and y is
increasing at 2.5 units/s. [2520 units/s]

3. Find the rate of change of k, correct to
4 significant figures, given the following
data: k = f (a, b, c); k = 2b ln a + c2ea; a is
increasing at 2 cm/s; b is decreasing at
3 cm/s; c is decreasing at 1 cm/s; a = 1.5 cm,
b = 6 cm and c = 8 cm. [515.5 cm/s]

4. A rectangular box has sides of length x cm,
y cm and z cm. Sides x and z are expanding
at rates of 3 mm/s and 5 mm/s respectively
and side y is contracting at a rate of 2 mm/s.
Determine the rate of change of volume when
x is 3 cm, y is 1.5 cm and z is 6 cm.

[1.35 cm3/s]

5. Find the rate of change of the total surface
area of a right circular cone at the instant
when the base radius is 5 cm and the height
is 12 cm if the radius is increasing at 5 mm/s
and the height is decreasing at 15 mm/s.

[17.4 cm2/s]

35.3 Small changes

It is often useful to find an approximate value for
the change (or error) of a quantity caused by small
changes (or errors) in the variables associated with
the quantity. If z = f (u, v, w, . . .) and δu, δv, δw, . . .
denote small changes in u, v, w, . . . respectively,
then the corresponding approximate change δz in
z is obtained from equation (1) by replacing the
differentials by the small changes.

Thus δz ≈ ∂z
∂u

δu + ∂z
∂v

δv + ∂z
∂w

δw + · · · (3)

Problem 8. Pressure p and volume V of a gas
are connected by the equation pV1.4 = k. Deter-
mine the approximate percentage error in k when
the pressure is increased by 4% and the volume
is decreased by 1.5%.
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Using equation (3), the approximate error in k,

δk ≈ ∂k

∂p
δp + ∂k

∂V
δV

Let p, V and k refer to the initial values.

Since k = pV1.4 then
∂k

∂p
= V1.4

and
∂k

∂V
= 1.4pV0.4

Since the pressure is increased by 4%, the change in

pressure δp = 4

100
× p = 0.04p.

Since the volume is decreased by 1.5%, the change

in volume δV = −1.5

100
× V = −0.015V .

Hence the approximate error in k,

δk ≈ (V )1.4(0.04p) + (1.4pV0.4)(−0.015V )

≈ pV1.4[0.04 − 1.4(0.015)]

≈ pV1.4[0.019] ≈ 1.9

100
pV1.4 ≈ 1.9

100
k

i.e. the approximate error in k is a 1.9% increase.

Problem 9. Modulus of rigidity G = (R4θ)/L,
where R is the radius, θ the angle of twist and L
the length. Determine the approximate percent-
age error in G when R is increased by 2%, θ is
reduced by 5% and L is increased by 4%.

Using δG ≈ ∂G

∂R
δR + ∂G

∂θ
δθ + ∂G

∂L
δL

Since G = R4θ

L
,
∂G

∂R
= 4R3θ

L
,
∂G

∂θ
= R4

L

and
∂G

∂L
= −R4θ

L2

Since R is increased by 2%, δR = 2

100
R = 0.02R

Similarly, δθ = −0.05θ and δL = 0.04L

Hence δG ≈
(

4R3θ

L

)

(0.02R) +
(

R4

L

)

(−0.05θ)

+
(

−R4θ

L2

)

(0.04L)

≈ R4θ

L
[0.08 − 0.05 − 0.04] ≈ −0.01

R4θ

L
,

i.e. δG ≈ − 1

100
G

Hence the approximate percentage error in G is
a 1% decrease.

Problem 10. The second moment of area of
a rectangle is given by I = (bl3)/3. If b and l
are measured as 40 mm and 90 mm respectively
and the measurement errors are −5 mm in b and
+8 mm in l, find the approximate error in the
calculated value of I .

Using equation (3), the approximate error in I ,

δI ≈ ∂I

∂b
δb + ∂I

∂l
δl

∂I

∂b
= l3

3
and

∂I

∂l
= 3bl2

3
= bl2

δb = −5 mm and δl = +8 mm

Hence δI ≈
(

l3

3

)

(−5) + (bl2)(+8)

Since b = 40 mm and l = 90 mm then

δI ≈
(

903

3

)

(−5) + 40(90)2(8)

≈ −1215000 + 2592000

≈ 1377000 mm4 ≈ 137.7 cm4

Hence the approximate error in the calculated
value of I is a 137.7 cm4 increase.

Problem 11. The time of oscillation t of a pen-

dulum is given by t = 2π

√
l

g
. Determine the

approximate percentage error in t when l has
an error of 0.2% too large and g 0.1% too small.

Using equation (3), the approximate change in t,

δt ≈ ∂t

∂l
δl + ∂t

∂g
δg

Since t = 2π

√
l

g
,

∂t

∂l
= π√

lg
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and
∂t

∂g
= −π

√
l

g3 (from Problem 6, Chapter 34)

δl = 0.2

100
l = 0.002 l and δg = −0.001g

hence δt ≈ π√
lg

(0.002l) + −π

√
l

g3 (−0.001 g)

≈ 0.002π

√
l

g
+ 0.001π

√
l

g

≈ (0.001)

[

2π

√
l

g

]

+ 0.0005

[

2π

√
l

g

]

≈ 0.0015t ≈ 0.15

100
t

Hence the approximate error in t is a 0.15%
increase.

Now try the following exercise.

Exercise 143 Further problems on small
changes

1. The power P consumed in a resistor is given
by P = V2/R watts. Determine the approxi-
mate change in power when V increases by
5% and R decreases by 0.5% if the original
values of V and R are 50 volts and 12.5 ohms
respectively. [+21 watts]

2. An equation for heat generated H is H = i2Rt.
Determine the error in the calculated value of
H if the error in measuring current i is +2%,
the error in measuring resistance R is −3%
and the error in measuring time t is +1%.

[+2%]

3. fr = 1

2π
√

LC
represents the resonant

frequency of a series connected circuit
containing inductance L and capacitance
C. Determine the approximate percentage
change in fr when L is decreased by 3% and
C is increased by 5%. [−1%]

4. The second moment of area of a rectangle
about its centroid parallel to side b is given by
I = bd3/12. If b and d are measured as 15 cm
and 6 cm respectively and the measurement
errors are +12 mm in b and −1.5 mm in d,
find the error in the calculated value of I .

[+1.35 cm4]

5. The side b of a triangle is calculated using
b2 = a2 + c2 − 2ac cos B. If a, c and B are
measured as 3 cm, 4 cm and π/4 radians
respectively and the measurement errors
which occur are +0.8 cm, −0.5 cm and
+π/90 radians respectively, determine the
error in the calculated value of b.

[−0.179 cm]

6. Q factor in a resonant electrical circuit is

given by: Q = 1

R

√
L

C
. Find the percentage

change in Q when L increases by 4%, R
decreases by 3% and C decreases by 2%.

[+6%]

7. The rate of flow of gas in a pipe is given

by: v = C
√

d
6√

T5
, where C is a constant, d is

the diameter of the pipe and T is the ther-
modynamic temperature of the gas. When
determining the rate of flow experimentally,
d is measured and subsequently found to
be in error by +1.4%, and T has an error of
−1.8%. Determine the percentage error in the
rate of flow based on the measured values of
d and T . [+2.2%]
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36

Maxima, minima and saddle points for
functions of two variables

36.1 Functions of two independent
variables

If a relation between two real variables, x and y,
is such that when x is given, y is determined, then
y is said to be a function of x and is denoted by
y = f (x); x is called the independent variable and y
the dependent variable. If y = f (u, v), then y is a
function of two independent variables u and v. For
example, if, say, y = f (u, v) = 3u2 − 2v then when
u = 2 and v = 1, y = 3(2)2 − 2(1) = 10. This may be
written as f (2, 1) = 10. Similarly, if u = 1 and v = 4,
f (1, 4) = −5.

Consider a function of two variables x and y
defined by z = f (x, y) = 3x2 − 2y. If (x, y) = (0, 0),
then f (0, 0) = 0 and if (x , y) = (2, 1), then f (2, 1)=10.
Each pair of numbers, (x, y), may be represented
by a point P in the (x, y) plane of a rectangular
Cartesian co-ordinate system as shown in Fig. 36.1.
The corresponding value of z = f (x, y) may be rep-
resented by a line PP′ drawn parallel to the z-axis.
Thus, if, for example, z = 3x2 − 2y, as above, and
P is the co-ordinate (2, 3) then the length of PP′

x

y

z

6

30

2 p

p ′ 

Figure 36.1

is 3(2)2 − 2(3) = 6. Figure 36.2 shows that when
a large number of (x, y) co-ordinates are taken for
a function f (x, y), and then f (x, y) calculated for
each, a large number of lines such as PP′ can
be constructed, and in the limit when all points
in the (x, y) plane are considered, a surface is
seen to result as shown in Fig. 36.2. Thus the
function z = f (x, y) represents a surface and not
a curve.

y

x

z

o

Figure 36.2

36.2 Maxima, minima and saddle
points

Partial differentiation is used when determining sta-
tionary points for functions of two variables. A
function f (x, y) is said to be a maximum at a point
(x, y) if the value of the function there is greater
than at all points in the immediate vicinity, and is



Ch36-H8152.tex 23/6/2006 15: 11 Page 356

356 DIFFERENTIAL CALCULUS

a minimum if less than at all points in the imme-
diate vicinity. Figure 36.3 shows geometrically a
maximum value of a function of two variables and
it is seen that the surface z = f (x, y) is higher at
(x, y) = (a, b) than at any point in the immediate
vicinity. Figure 36.4 shows a minimum value of a
function of two variables and it is seen that the sur-
face z = f (x, y) is lower at (x, y) = ( p, q) than at any
point in the immediate vicinity.

Maximum
pointz

b

a

y

x

Figure 36.3

Minimum
point

y
q

p

x

z

Figure 36.4

If z = f (x, y) and a maximum occurs at (a, b),
the curve lying in the two planes x = a and y = b
must also have a maximum point (a, b) as shown in
Fig. 36.5. Consequently, the tangents (shown as t1
and t2) to the curves at (a, b) must be parallel to Ox

and Oy respectively. This requires that
∂z

∂x
= 0 and

Maximum
point

b
y

z

a

O

t1

t2

x

Figure 36.5

∂z

∂y
= 0 at all maximum and minimum values, and

the solution of these equations gives the stationary
(or critical) points of z.

With functions of two variables there are three
types of stationary points possible, these being a
maximum point, a minimum point, and a saddle
point. A saddle point Q is shown in Fig. 36.6 and
is such that a point Q is a maximum for curve 1 and
a minimum for curve 2.

Q

Curve 1

Curve 2

Figure 36.6

36.3 Procedure to determine maxima,
minima and saddle points for
functions of two variables

Given z = f (x, y):

(i) determine
∂z

∂x
and

∂z

∂y

(ii) for stationary points,
∂z

∂x
= 0 and

∂z

∂y
= 0,
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(iii) solve the simultaneous equations
∂z

∂x
= 0 and

∂z

∂y
= 0 for x and y, which gives the co-ordinates

of the stationary points,

(iv) determine
∂2z

∂x2 ,
∂2z

∂y2 and
∂2z

∂x∂y

(v) for each of the co-ordinates of the station-
ary points, substitute values of x and y into
∂2z

∂x2 ,
∂2z

∂y2 and
∂2z

∂x∂y
and evaluate each,

(vi) evaluate

(
∂2z

∂x∂y

)2
for each stationary point,

(vii) substitute the values of
∂2z

∂x2 ,
∂2z

∂y2 and
∂2z

∂x∂y
into

the equation

� =
(

∂2z

∂x∂y

)2
−
(

∂2z

∂x2

)(
∂2z

∂y2

)

and evaluate,

(viii) (a) if  > 0 then the stationary point is a
saddle point

(b) if  < 0 and
∂2z
∂x2 < 0, then the stationary

point is a maximum point,

and

(c) if  < 0 and
∂2z
∂x2 > 0, then the stationary

point is a minimum point

36.4 Worked problems on maxima,
minima and saddle points for
functions of two variables

Problem 1. Show that the function
z = (x − 1)2 + (y − 2)2 has one stationary point
only and determine its nature. Sketch the surface
represented by z and produce a contour map in
the x-y plane.

Following the above procedure:

(i)
∂z

∂x
= 2(x − 1) and

∂z

∂y
= 2(y − 2)

(ii) 2(x − 1) = 0 (1)
2(y − 2) = 0 (2)

(iii) From equations (1) and (2), x = 1 and y = 2,
thus the only stationary point exists at (1, 2).

(iv) Since
∂z

∂x
= 2(x − 1) = 2x − 2,

∂2z

∂x2 = 2

and since
∂z

∂y
= 2(y − 2) = 2y − 4,

∂2z

∂y2 = 2

and
∂2z

∂x∂y
= ∂

∂x

(
∂z

∂y

)

= ∂

∂x
(2y − 4) = 0

(v)
∂2z

∂x2 = ∂2z

∂y2 = 2 and
∂2z

∂x∂y
= 0

(vi)

(
∂2z

∂x∂y

)2
= 0

(vii) � = (0)2 − (2)(2) = −4

(viii) Since � < 0 and
∂2z

∂x2 > 0, the stationary point

(1, 2) is a minimum.

The surface z = (x − 1)2 + (y − 2)2 is shown in three
dimensions in Fig. 36.7. Looking down towards the
x-y plane from above, it is possible to produce a con-
tour map. A contour is a line on a map which gives
places having the same vertical height above a datum
line (usually the mean sea-level on a geographical
map). A contour map for z = (x − 1)2 + (y − 2)2 is
shown in Fig. 36.8. The values of z are shown on the
map and these give an indication of the rise and fall
to a stationary point.

1

o

1
2

x

y

z

Figure 36.7
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y

1

2 z = 4 z = 9 z = 16

1 2 x

z = 1

Figure 36.8

Problem 2. Find the stationary points of the
surface f (x, y) = x3 − 6xy + y3 and determine
their nature.

Let z = f (x, y) = x3 − 6xy + y3

Following the procedure:

(i)
∂z

∂x
= 3x2 − 6y and

∂z

∂y
= −6x + 3y2

(ii) for stationary points, 3x2 − 6y = 0 (1)

and −6x + 3y2 = 0 (2)

(iii) from equation (1), 3x2 = 6y

and y = 3x2

6
= 1

2
x2

and substituting in equation (2) gives:

−6x + 3

(
1

2
x2
)2

= 0

−6x + 3

4
x4 = 0

3x

(
x3

4
− 2

)

= 0

from which, x = 0 or
x3

4
− 2 = 0

i.e. x3 = 8 and x = 2
When x = 0, y = 0 and when x = 2, y = 2 from
equations (1) and (2).
Thus stationary points occur at (0, 0)
and (2, 2).
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(iv)
∂2z

∂x2 = 6x,
∂2z

∂y2 = 6y and
∂2z

∂x∂y
= ∂

∂x

(
∂z

∂y

)

= ∂

∂x
(−6x + 3y2) = −6

(v) for (0, 0)
∂2z

∂x2 = 0,
∂2z

∂y2 = 0

and
∂2z

∂x∂y
= −6

for (2, 2),
∂2z

∂x2 = 12,
∂2z

∂y2 = 12

and
∂2z

∂x∂y
= −6

(vi) for (0, 0),

(
∂2z

∂x∂y

)2

= (−6)2 = 36

for (2, 2),

(
∂2z

∂x∂y

)2

= (−6)2 = 36

(vii) �(0, 0) =
(

∂2z

∂x∂y

)2

−
(

∂2z

∂x2

)(
∂2z

∂y2

)

= 36 − (0)(0) = 36

�(2, 2) = 36 − (12)(12) = −108

(viii) Since �(0, 0) > 0 then (0, 0) is a saddle point

Since �(2, 2) < 0 and
∂2z

∂x2 > 0, then (2, 2) is a

minimum point.

Now try the following exercise.

Exercise 144 Further problems on maxima,
minima and saddle points for functions of two
variables

1. Find the stationary point of the surface
f (x, y) = x2 + y2 and determine its nature.
Sketch the surface represented by z.

[Minimum at (0, 0)]

2. Find the maxima, minima and saddle points
for the following functions:
(a) f (x, y) = x2 + y2 − 2x + 4y + 8
(b) f (x, y) = x2 − y2 − 2x + 4y + 8
(c) f (x, y) = 2x + 2y − 2xy − 2x2 − y2 + 4[

(a) Minimum at (1, −2)
(b) Saddle point at (1, 2)
(c) Maximum at (0, 1)

]

3. Determine the stationary values of the func-
tion f (x, y) = x3 −6x2 −8y2 and distinguish
between them. Sketch an approximate con-
tour map to represent the surface f (x, y).[

Maximum point at (0, 0),
saddle point at (4, 0)

]

4. Locate the stationary point of the function
z = 12x2 + 6xy + 15y2.

[Minimum at (0, 0)]

5. Find the stationary points of the surface
z = x3 − xy + y3 and distinguish between
them. [

saddle point at (0, 0),
minimum at

( 1
3 , 1

3

)
]

36.5 Further worked problems on
maxima, minima and saddle
points for functions of two
variables

Problem 3. Find the co-ordinates of the sta-
tionary points on the surface

z = (x2 + y2)2 − 8(x2 − y2)

and distinguish between them. Sketch the
approximate contour map associated with z.

Following the procedure:

(i)
∂z

∂x
= 2(x2 + y2)2x − 16x and

∂z

∂y
= 2(x2 + y2)2y + 16y

(ii) for stationary points,

2(x2 + y2)2x − 16x = 0

i.e. 4x3 + 4xy2 − 16x = 0 (1)

and 2(x2 + y2)2y + 16y = 0

i.e. 4y(x2 + y2 + 4) = 0 (2)

(iii) From equation (1), y2 = 16x − 4x3

4x
= 4 − x2

Substituting y2 = 4 − x2 in equation (2) gives

4y(x2 + 4 − x2 + 4) = 0

i.e. 32y = 0 and y = 0
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When y = 0 in equation (1), 4x3 − 16x = 0

i.e. 4x(x2 − 4) = 0
from which, x = 0 or x = ±2
The co-ordinates of the stationary points are
(0, 0), (2, 0) and (−2, 0).

(iv)
∂2z

∂x2 = 12x2 + 4y2 − 16,

∂2z

∂y2 = 4x2 + 12y2 + 16 and
∂2z

∂x∂y
= 8xy

(v) For the point (0, 0),

∂2z

∂x2 = −16,
∂2z

∂y2 = 16 and
∂2z

∂x∂y
= 0

For the point (2, 0),

∂2z

∂x2 = 32,
∂2z

∂y2 = 32 and
∂2z

∂x∂y
= 0

For the point (−2, 0),

∂2z

∂x2 = 32,
∂2z

∂y2 = 32 and
∂2z

∂x∂y
= 0

(vi)

(
∂2z

∂x∂y

)2

= 0 for each stationary point

(vii) �(0, 0) = (0)2 − (−16)(16) = 256

�(2, 0) = (0)2 − (32)(32) = −1024

�(−2, 0) = (0)2 − (32)(32) = −1024

(viii) Since �(0, 0) > 0, the point (0, 0) is a saddle
point.

Since�(0, 0) < 0 and

(
∂2z

∂x2

)

(2, 0)
> 0, the point

(2, 0) is a minimum point.

Since �(−2, 0) < 0 and

(
∂2z

∂x2

)

(−2, 0)
> 0, the

point (−2, 0) is a minimum point.

Looking down towards the x-y plane from above,
an approximate contour map can be constructed
to represent the value of z. Such a map is shown
in Fig. 36.9. To produce a contour map requires a
large number of x-y co-ordinates to be chosen and
the values of z at each co-ordinate calculated. Here

are a few examples of points used to construct the
contour map.

When z = 0, 0 = (x2 + y2)2 − 8(x2 − y)2

In addition, when, say, y = 0 (i.e. on the x-axis)

0 = x4 − 8x2, i.e. x2(x2 − 8) = 0

from which, x = 0 or x = ±√
8

Hence the contour z = 0 crosses the x-axis at 0
and ±√

8, i.e. at co-ordinates (0, 0), (2.83, 0) and
(−2.83, 0) shown as points, S, a and b respectively.

When z = 0 and x = 2 then

0 = (4 + y2)2 − 8(4 − y2)

i.e. 0 = 16 + 8y2 + y4 − 32 + 8y2

i.e. 0 = y4 + 16y2 − 16

Let y2 = p, then p2 + 16p − 16 = 0 and

p = −16 ±√162 − 4(1)(−16)

2

= −16 ± 17.89

2
= 0.945 or −16.945

Hence y = √
p = √(0.945) or

√
(−16.945)

= ± 0.97 or complex roots.

Hence the z = 0 contour passes through the
co-ordinates (2, 0.97) and (2, −0.97) shown as a
c and d in Fig. 36.9.

Similarly, for the z = 9 contour, when y = 0,

9 = (x2 + 02)2 − 8(x2 − 02)

i.e. 9 = x4 − 8x2

i.e. x4 − 8x2 − 9 = 0

Hence (x2 − 9)(x2 + 1) = 0.
from which, x = ±3 or complex roots.
Thus the z = 9 contour passes through (3, 0) and
(−3, 0), shown as e and f in Fig. 36.9.

If z = 9 and x = 0, 9 = y4 + 8y2

i.e. y4 + 8y2 − 9 = 0

i.e. (y2 + 9)(y2 − 1) = 0

from which, y = ±1 or complex roots.



Ch36-H8152.tex 23/6/2006 15: 11 Page 361

MAXIMA, MINIMA AND SADDLE POINTS FOR FUNCTIONS OF TWO VARIABLES 361

G

h

−2

j

−4

z = 0
c

d

2 a e

S

g

−2bf x

y

4

i

2

z = 9

z = 128

Figure 36.9

Thus the z = 9 contour also passes through (0, 1) and
(0, −1), shown as g and h in Fig. 36.9.

When, say, x = 4 and y = 0,

z = (42)2 − 8(42) = 128.

when z = 128 and x = 0, 128 = y4 + 8y2

i.e. y4 + 8y2 − 128 = 0

i.e. (y2 + 16)(y2 − 8) = 0

from which, y = ±√
8 or complex roots.

Thus the z = 128 contour passes through (0, 2.83)
and (0, −2.83), shown as i and j in Fig. 36.9.
In a similar manner many other points may be cal-
culated with the resulting approximate contour map
shown in Fig. 36.9. It is seen that two ‘hollows’
occur at the minimum points, and a ‘cross-over’
occurs at the saddle point S, which is typical of such
contour maps.

Problem 4. Show that the function

f (x, y) = x3 − 3x2 − 4y2 + 2

has one saddle point and one maximum point.
Determine the maximum value.

Let z = f (x, y) = x3 − 3x2 − 4y2 + 2.

Following the procedure:

(i)
∂z

∂x
= 3x2 − 6x and

∂z

∂y
= − 8y

(ii) for stationary points, 3x2 −6x = 0 (1)
and −8y = 0 (2)

(iii) From equation (1), 3x(x − 2) = 0 from
which, x = 0 and x = 2.
From equation (2), y = 0.
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Hence the stationary points are (0, 0)
and (2, 0).

(iv)
∂2z

∂x2 = 6x − 6,
∂2z

∂y2 = −8 and
∂2z

∂x∂y
= 0

(v) For the point (0, 0),

∂2z

∂x2 = −6,
∂2z

∂y2 = −8 and
∂2z

∂x∂y
= 0

For the point (2, 0),

∂2z

∂x2 = 6,
∂2z

∂y2 = −8 and
∂2z

∂x∂y
= 0

(vi)

(
∂2z

∂x∂y

)2
= (0)2 = 0

(vii) �(0, 0) = 0 − (−6)(−8) = −48
�(2, 0) = 0 −(6)(−8) = 48

(viii) Since �(0, 0) < 0 and

(
∂2z

∂x2

)

(0, 0)
< 0, the

point (0, 0) is a maximum point and hence
the maximum value is 0.

y

2

0

−2

2
S

4−2 x

z =
 2

z = −1

z = −2

z = −4

z = −1

MAX

Figure 36.10

Since �(2, 0) > 0, the point (2, 0) is a saddle
point.

The value of z at the saddle point is
23 − 3(2)2 − 4(0)2 + 2 = −2.

An approximate contour map representing the
surface f (x, y) is shown in Fig. 36.10 where a
‘hollow effect’ is seen surrounding the maximum
point and a ‘cross-over’ occurs at the saddle
point S.

Problem 5. An open rectangular container is to
have a volume of 62.5 m3. Determine the least
surface area of material required.

Let the dimensions of the container be x, y and z as
shown in Fig. 36.11.

Volume V = xyz = 62.5 (1)

Surface area, S = xy + 2yz + 2xz (2)

From equation (1), z = 62.5

xy
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Substituting in equation (2) gives:

S = xy + 2y

(
62.5

xy

)

+ 2x

(
62.5

xy

)

i.e. S = xy + 125

x
+ 125

y

which is a function of two variables

∂s

∂x
= y − 125

x2 = 0 for a stationary point,

hence x2y =125 (3)
∂s

∂y
= x − 125

y2 = 0 for a stationary point,

hence xy2 = 125 (4)

Dividing equation (3) by (4) gives:

x2y

xy2 = 1, i.e.
x

y
= 1, i.e. x = y

Substituting y = x in equation (3) gives x3 = 125,
from which, x = 5 m.

Hence y = 5 m also

From equation (1), (5) (5) z = 62.5

from which, z = 62.5

25
= 2.5 m

∂2S

∂x2 = 250

x3 ,
∂2S

∂y2 = 250

y3 and
∂2S

∂x∂y
= 1

When x = y = 5,
∂2S

∂x2 = 2,
∂2S

∂y2 = 2 and
∂2S

∂x∂y
= 1

� = (1)2 − (2)(2) = −3

Since � < 0 and
∂2S

∂x2 > 0, then the surface area S is

a minimum.

Hence the minimum dimensions of the container to
have a volume of 62.5 m3 are 5 m by 5 m by 2.5 m.
From equation (2), minimum surface area, S

= (5)(5) + 2(5)(2.5) + 2(5)(2.5)

= 75 m2

Now try the following exercise.

Exercise 145 Further problems on maxima,
minima and saddle points for functions of two
variables

1. The function z = x2 + y2 + xy + 4x − 4y +3
has one stationary value. Determine its co-
ordinates and its nature.

[Minimum at (−4, 4)]

2. An open rectangular container is to have a
volume of 32 m3. Determine the dimensions
and the total surface area such that the total
surface area is a minimum.

[
4 m by 4 m by 2 m,
surface area = 48m2

]

3. Determine the stationary values of the
function

f (x, y) = x4 + 4x2y2 − 2x2 + 2y2 − 1

and distinguish between them.

[
Minimum at (1, 0),
minimum at (−1, 0),
saddle point at (0, 0)

]

4. Determine the stationary points of the sur-
face f (x, y) = x3 − 6x2 − y2.

[
Maximum at (0, 0),
saddle point at (4, 0)

]
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5. Locate the stationary points on the surface

f (x, y) = 2x3 + 2y3 − 6x − 24y + 16

and determine their nature.
[

Minimum at (1, 2),
maximum at (−1, −2),
saddle points at (1, −2) and (−1, 2)

]

6. A large marquee is to be made in the form
of a rectangular box-like shape with canvas
covering on the top, back and sides. Deter-
mine the minimum surface area of canvas
necessary if the volume of the marquee is to
the 250 m3. [150 m2]
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Differential calculus

Assignment 9

This assignment covers the material contained
in Chapters 32 to 36.

The marks for each question are shown in
brackets at the end of each question.

1. Differentiate the following functions with respect
to x:

(a) 5 ln (shx) (b) 3 ch32x

(c) e2x sech 2x (7)

2. Differentiate the following functions with respect
to the variable:

(a) y = 1

5
cos−1 x

2

(b) y = 3esin−1 t

(c) y = 2 sec−1 5x

x

(d) y = 3 sinh−1
√

(2x2 − 1) (14)

3. Evaluate the following, each correct to 3 decimal
places:

(a) sinh−1 3 (b) cosh−1 2.5 (c) tanh−1 0.8 (6)

4. If z = f (x, y) and z = x cos(x + y) determine

∂z

∂x
,
∂z

∂y
,
∂2z

∂x2 ,
∂2z

∂y2 ,
∂2z

∂x∂y
and

∂2z

∂y∂x
(12)

5. The magnetic field vector H due to a steady cur-
rent I flowing around a circular wire of radius r

and at a distance x from its centre is given by

H = ± I

2

∂

∂x

(
x√

r2 + x2

)

.

Show that H = ± r2I

2
√

(r2 + x2)3
(7)

6. If xyz = c, where c is constant, show that

dz = −z

(
dx

x
+ dy

y

)

(6)

7. An engineering function z = f (x, y) and
z = e

y
2 ln (2x + 3y). Determine the rate of increase

of z, correct to 4 significant figures, when
x = 2 cm, y = 3 cm, x is increasing at 5 cm/s and
y is increasing at 4 cm/s. (8)

8. The volume V of a liquid of viscosity coefficient
η delivered after time t when passed through a
tube of length L and diameter d by a pressure p

is given by V = pd4t

128ηL
. If the errors in V , p and

L are 1%, 2% and 3% respectively, determine the
error in η. (8)

9. Determine and distinugish between the stationary
values of the function

f (x, y) = x3 − 6x2 − 8y2

and sketch an approximate contour map to repre-
sent the surface f (x, y). (20)

10. An open, rectangular fish tank is to have a volume
of 13.5 m3. Determine the least surface area of
glass required. (12)
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37

Standard integration

37.1 The process of integration

The process of integration reverses the process of
differentiation. In differentiation, if f (x) = 2x2 then
f ′(x) = 4x. Thus the integral of 4x is 2x2, i.e. inte-
gration is the process of moving from f ′(x) to f (x).
By similar reasoning, the integral of 2t is t2.

Integration is a process of summation or adding
parts together and an elongated S, shown as

∫
, is used

to replace the words ‘the integral of’. Hence, from
above,

∫
4x = 2x2 and

∫
2t is t2.

In differentiation, the differential coefficient
dy

dx
indicates that a function of x is being differentiated
with respect to x, the dx indicating that it is ‘with
respect to x’. In integration the variable of integration
is shown by adding d (the variable) after the function
to be integrated.

Thus
∫

4x dx means ‘the integral of 4x
with respect to x’,

and
∫

2t dt means ‘the integral of 2t
with respect to t’

As stated above, the differential coefficient of 2x2 is
4x, hence

∫
4x dx = 2x2. However, the differential

coefficient of 2x2 + 7 is also 4x. Hence
∫

4x dx is also
equal to 2x2 + 7. To allow for the possible presence
of a constant, whenever the process of integration is
performed, a constant ‘c’ is added to the result.

Thus
∫

4x dx = 2x2 + c and
∫

2t dt = t2 + c

‘c’ is called the arbitrary constant of integration.

37.2 The general solution of integrals
of the form axn

The general solution of integrals of the form
∫

axndx,
where a and n are constants is given by:

∫
axn dx = axn+1

n + 1
+ c

This rule is true when n is fractional, zero, or a
positive or negative integer, with the exception of
n = −1.

Using this rule gives:

(i)
∫

3x4 dx = 3x4+1

4 + 1
+ c = 3

5
x5 + c

(ii)
∫

2

x2 dx =
∫

2x−2 dx = 2x−2+1

−2 + 1
+ c

= 2x−1

−1
+ c = −2

x
+ c, and

(iii)
∫ √

x dx =
∫

x
1
2 dx = x

1
2 +1

1

2
+ 1

+ c = x
3
2

3

2

+ c

= 2
3

√
x3 + c

Each of these three results may be checked by
differentiation.

(a) The integral of a constant k is kx + c. For
example,

∫
8 dx = 8x + c

(b) When a sum of several terms is integrated the
result is the sum of the integrals of the separate
terms. For example,

∫
(3x + 2x2 − 5) dx

=
∫

3x dx +
∫

2x2 dx −
∫

5 dx

= 3x2

2
+ 2x3

3
− 5x + c

37.3 Standard integrals

Since integration is the reverse process of differenti-
ation the standard integrals listed in Table 37.1 may
be deduced and readily checked by differentiation.
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Table 37.1 Standard integrals

(i)
∫

axn dx = axn+1

n + 1
+ c

(except when n = −1)

(ii)
∫

cos ax dx = 1

a
sin ax + c

(iii)
∫

sin ax dx = −1

a
cos ax + c

(iv)
∫

sec2 ax dx = 1

a
tan ax + c

(v)
∫

cosec 2 ax dx = −1

a
cot ax + c

(vi)
∫

cosec ax cot ax dx = −1

a
cosec ax + c

(vii)
∫

sec ax tan ax dx = 1

a
sec ax + c

(viii)
∫

eax dx = 1

a
eax + c

(ix)
∫

1

x
dx = ln x + c

Problem 1. Determine (a)
∫

5x2 dx (b)
∫

2t3 dt.

The standard integral,
∫

axn dx = axn+1

n + 1
+ c

(a) When a = 5 and n = 2 then
∫

5x2 dx = 5x2+1

2 + 1
+ c = 5x3

3
+ c

(b) When a = 2 and n = 3 then
∫

2t3 dt = 2t3+1

3 + 1
+ c = 2t4

4
+ c = 1

2
t4 + c

Each of these results may be checked by differenti-
ating them.

Problem 2. Determine
∫ (

4 + 3

7
x − 6x2

)

dx.

∫
(4 + 3

7 x − 6x2) dx may be written as∫
4 dx + ∫ 3

7 x dx −∫ 6x2 dx, i.e. each term is

integrated separately. (This splitting up of terms only
applies, however, for addition and subtraction.)

Hence
∫ (

4 + 3

7
x − 6x2

)

dx

= 4x +
(

3

7

)
x1+1

1 + 1
− (6)

x2+1

2 + 1
+ c

= 4x +
(

3

7

)
x2

2
− (6)

x3

3
+ c

= 4x + 3
14

x2 − 2x3 + c

Note that when an integral contains more than one
term there is no need to have an arbitrary constant
for each; just a single constant at the end is sufficient.

Problem 3. Determine

(a)
∫

2x3 − 3x

4x
dx (b)

∫
(1 − t)2 dt

(a) Rearranging into standard integral form gives:
∫

2x3 − 3x

4x
dx

=
∫

2x3

4x
− 3x

4x
dx =

∫
x2

2
− 3

4
dx

=
(

1

2

)
x2+1

2 + 1
− 3

4
x + c

=
(

1

2

)
x3

3
− 3

4
x + c = 1

6
x3 − 3

4
x + c

(b) Rearranging
∫

(1 − t)2 dt gives:

∫
(1 − 2t + t2) dt = t − 2t1+1

1 + 1
+ t2+1

2 + 1
+ c

= t − 2t2

2
+ t3

3
+ c

= t − t2 + 1
3

t3 + c

This problem shows that functions often have to be
rearranged into the standard form of

∫
axn dx before

it is possible to integrate them.
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Problem 4. Determine
∫

3

x2 dx.

∫
3

x2 dx =
∫

3x−2 dx. Using the standard integral,
∫

axn dx when a = 3 and n = −2 gives:

∫
3x−2 dx = 3x−2+1

−2 + 1
+ c = 3x−1

−1
+ c

= −3x−1 + c = −3
x

+ c

Problem 5. Determine
∫

3
√

x dx.

For fractional powers it is necessary to appreciate
n
√

am = a
m
n

∫
3
√

x dx =
∫

3x
1
2 dx = 3x

1
2 +1

1

2
+ 1

+ c

= 3x
3
2

3

2

+ c = 2x
3
2 + c = 2

√
x3 + c

Problem 6. Determine
∫ −5

9
4
√

t3
dt.

∫ −5

9
4
√

t3
dt =

∫ −5

9t
3
4

dt =
∫ (

−5

9

)

t−
3
4 dt

=
(

−5

9

)
t
−3

4
+1

−3

4
+ 1

+ c

=
(

−5

9

)
t

1
4

1
4

+ c =
(

−5

9

)(
4

1

)

t
1
4 + c

= −20
9

4√t + c

Problem 7. Determine
∫

(1 + θ)2

√
θ

dθ.

∫
(1 + θ)2

√
θ

dθ =
∫

(1 + 2θ + θ2)√
θ

dθ

=
∫ (

1

θ
1
2

+ 2θ

θ
1
2

+ θ2

θ
1
2

)

dθ

=
∫ (

θ
−1
2 + 2θ

1−
(

1
2

)

+ θ
2−
(

1
2

))

dθ

=
∫ (

θ
−1
2 + 2θ

1
2 + θ

3
2

)
dθ

= θ

(−1
2

)
+1

− 1
2 + 1

+ 2θ

(
1
2

)
+1

1
2 + 1

+ θ

(
3
2

)
+1

3
2 + 1

+ c

= θ
1
2

1
2

+ 2θ
3
2

3
2

+ θ
5
2

5
2

+ c

= 2θ
1
2 + 4

3
θ

3
2 + 2

5
θ

5
2 + c

= 2
√

θ + 4
3

√
θ3 + 2

5

√
θ5 + c

Problem 8. Determine
(a)

∫
4 cos 3x dx (b)

∫
5 sin 2θ dθ.

(a) From Table 37.1(ii),
∫

4 cos 3x dx = (4)

(
1

3

)

sin 3x + c

= 4
3

sin 3x + c

(b) From Table 37.1(iii),
∫

5 sin 2θ dθ = (5)

(

−1

2

)

cos 2θ + c

= −5
2

cos 2θ + c

Problem 9. Determine

(a)
∫

7 sec2 4t dt (b) 3
∫

cosec2 2θ dθ.
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(a) From Table 37.1(iv),
∫

7 sec2 4t dt = (7)

(
1

4

)

tan 4t + c

= 7
4

tan 4t + c

(b) From Table 37.1(v),

3
∫

cosec2 2θ dθ = (3)

(

−1

2

)

cot 2θ + c

= −3
2

cot 2θ + c

Problem 10. Determine

(a)
∫

5 e3x dx (b)
∫

2

3 e4t
dt.

(a) From Table 37.1(viii),
∫

5 e3x dx = (5)

(
1

3

)

e3x + c = 5
3

e3x + c

(b)
∫

2

3 e4t
dt =

∫
2

3
e−4t dt =

(
2

3

)(

−1

4

)

e−4t + c

= −1

6
e−4t + c = − 1

6e4t + c

Problem 11. Determine

(a)
∫

3

5x
dx (b)

∫ (
2m2 + 1

m

)

dm.

(a)
∫

3

5x
dx =

∫ (
3

5

)(
1

x

)

dx = 3
5

ln x + c

(from Table 37.1(ix))

(b)
∫ (

2m2 + 1

m

)

dm =
∫ (

2m2

m
+ 1

m

)

dm

=
∫ (

2m + 1

m

)

dm

= 2m2

2
+ ln m + c

= m2 + ln m + c

Now try the following exercise.

Exercise 146 Further problems on standard
integrals

In Problems 1 to 12, determine the indefinite
integrals.

1. (a)
∫

4 dx (b)
∫

7x dx

[

(a) 4x + c (b)
7x2

2
+ c

]

2. (a)
∫

2

5
x2 dx (b)

∫
5

6
x3 dx

[

(a)
2

15
x3 + c (b)

5

24
x4 + c

]

3. (a)
∫(

3x2 − 5x

x

)

dx (b)
∫

(2 + θ)2 dθ

⎡

⎢
⎢
⎣

(a)
3x2

2
− 5x + c

(b) 4θ + 2θ2 + θ3

3
+ c

⎤

⎥
⎥
⎦

4. (a)
∫

4

3x2 dx (b)
∫

3

4x4 dx

[

(a)
−4

3x
+ c (b)

−1

4x3 + c

]

5. (a) 2
∫ √

x3 dx (b)
∫

1

4
4
√

x5 dx

[

(a)
4

5

√
x5 + c (b)

1

9
4
√

x9 + c

]

6. (a)
∫ −5√

t3
dt (b)

∫
3

7
5
√

x4
dx

[

(a)
10√

t
+ c (b)

15

7
5
√

x + c

]

7. (a)
∫

3 cos 2x dx (b)
∫

7 sin 3θ dθ

⎡

⎢
⎢
⎣

(a)
3

2
sin 2x + c

(b) −7

3
cos 3θ + c

⎤

⎥
⎥
⎦
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8. (a)
∫

3

4
sec2 3x dx (b)

∫
2 cosec2 4θ dθ

[

(a)
1

4
tan 3x+c (b) −1

2
cot 4θ+c

]

9. (a) 5
∫

cot 2t cosec 2t dt

(b)
∫

4

3
sec 4t tan 4t dt

⎡

⎢
⎢
⎣

(a) −5

2
cosec 2t + c

(b)
1

3
sec 4t + c

⎤

⎥
⎥
⎦

10. (a)
∫

3

4
e2x dx (b)

2

3

∫
dx

e5x

[

(a)
3

8
e2x + c (b)

−2

15 e5x
+ c

]

11. (a)
∫

2

3x
dx (b)

∫ (
u2 − 1

u

)

du

[

(a)
2

3
ln x + c (b)

u2

2
− ln u + c

]

12. (a)
∫

(2+3x)2

√
x

dx (b)
∫ (

1

t
+ 2t

)2

dt

⎡

⎢
⎢
⎣

(a) 8
√

x + 8
√

x3 + 18

5

√
x5 + c

(b) −1

t
+ 4t + 4t3

3
+ c

⎤

⎥
⎥
⎦

37.4 Definite integrals

Integrals containing an arbitrary constant c in their
results are called indefinite integrals since their
precise value cannot be determined without further
information. Definite integrals are those in which
limits are applied. If an expression is written as [x]b

a,
‘b’ is called the upper limit and ‘a’ the lower limit.
The operation of applying the limits is defined as
[x]b

a = (b) − (a).
The increase in the value of the integral x2 as x
increases from 1 to 3 is written as

∫ 3
1 x2 dx.

Applying the limits gives:

∫ 3

1
x2 dx =

[
x3

3
+ c

]3

1
=
(

33

3
+ c

)

−
(

13

3
+ c

)

= (9 + c) −
(

1

3
+ c

)

= 8
2
3

Note that the ‘c’ term always cancels out when limits
are applied and it need not be shown with definite
integrals.

Problem 12. Evaluate

(a)
∫ 2

1 3x dx (b)
∫ 3
−2 (4 − x2) dx.

(a)
∫ 2

1
3x dx =

[
3x2

2

]2

1
=
{

3

2
(2)2

}

−
{

3

2
(1)2

}

= 6 − 1
1

2
= 4

1
2

(b)
∫ 3

−2
(4 − x2) dx =

[

4x − x3

3

]3

−2

=
{

4(3) − (3)3

3

}

−
{

4(−2) − (−2)3

3

}

= {12 − 9} −
{

−8 − −8

3

}

= {3} −
{

−5
1

3

}

= 8
1
3

Problem 13. Evaluate
∫ 4

1

(
θ + 2√

θ

)

dθ, taking

positive square roots only.

∫ 4

1

(
θ + 2√

θ

)

dθ =
∫ 4

1

(
θ

θ
1
2

+ 2

θ
1
2

)

dθ

=
∫ 4

1

(

θ
1
2 + 2θ

−1
2

)

dθ

=
⎡

⎢
⎣

θ

(
1
2

)
+1

1

2
+ 1

+ 2θ

(−1
2

)
+1

−1

2
+ 1

⎤

⎥
⎦

4

1
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=
⎡

⎣θ
3
2

3
2

+ 2θ
1
2

1
2

⎤

⎦

4

1

=
[

2

3

√
θ3 + 4

√
θ

]4

1

=
{

2

3

√
(4)3 + 4

√
4

}

−
{

2

3

√
(1)3 + 4

√
(1)

}

=
{

16

3
+ 8

}

−
{

2

3
+ 4

}

= 5
1

3
+ 8 − 2

3
− 4 = 8

2
3

Problem 14. Evaluate
∫ π

2

0
3 sin 2x dx.

∫ π
2

0
3 sin 2x dx

=
[

(3)

(

−1

2

)

cos 2x

] π
2

0
=
[

−3

2
cos 2x

] π
2

0

=
{

−3

2
cos 2

(π

2

)}

−
{

−3

2
cos 2(0)

}

=
{

−3

2
cos π

}

−
{

−3

2
cos 0

}

=
{

−3

2
( − 1)

}

−
{

−3

2
(1)

}

= 3

2
+ 3

2
= 3

Problem 15. Evaluate
∫ 2

1
4 cos 3t dt.

∫ 2

1
4 cos 3t dt =

[

(4)

(
1

3

)

sin 3t

]2

1
=
[

4

3
sin 3t

]2

1

=
{

4

3
sin 6

}

−
{

4

3
sin 3

}

Note that limits of trigonometric functions are always
expressed in radians—thus, for example, sin 6 means
the sine of 6 radians = −0.279415 . . .

Hence
∫ 2

1
4 cos 3t dt

=
{

4

3
(−0.279415 . . . )

}

−
{

4

3
(0.141120 . . . )

}

= (−0.37255) − (0.18816) = −0.5607

Problem 16. Evaluate

(a)
∫ 2

1
4 e2x dx (b)

∫ 4

1

3

4u
du,

each correct to 4 significant figures.

(a)
∫ 2

1
4 e2x dx =

[
4

2
e2x
]2

1
= 2[ e2x]2

1=2[ e4 − e2]

= 2[54.5982 − 7.3891] = 94.42

(b)
∫ 4

1

3

4u
du =

[
3

4
ln u

]4

1
= 3

4
[ ln 4 − ln 1]

= 3

4
[1.3863 − 0] = 1.040

Now try the following exercise.

Exercise 147 Further problems on definite
integrals

In problems 1 to 8, evaluate the definite inte-
grals (where necessary, correct to 4 significant
figures).

1. (a)
∫ 4

1
5x2 dx (b)

∫ 1

−1
−3

4
t2 dt

[

(a) 105 (b) −1

2

]

2. (a)
∫ 2

−1
(3 − x2) dx (b)

∫ 3

1
(x2 − 4x + 3) dx

[

(a) 6 (b)−1
1

3

]

3. (a)
∫ π

0

3

2
cos θ dθ (b)

∫ π
2

0
4 cos θ dθ

[(a) 0 (b) 4]

4. (a)
∫ π

3

π
6

2 sin 2θ dθ (b)
∫ 2

0
3 sin t dt

[(a) 1 (b) 4.248]

5. (a)
∫ 1

0
5 cos 3x dx (b)

∫ π
6

0
3 sec2 2x dx

[(a) 0.2352 (b) 2.598]
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6. (a)
∫ 2

1
cosec2 4t dt

(b)
∫ π

2

π
4

(3 sin 2x − 2 cos 3x) dx

[(a) 0.2527 (b) 2.638]

7. (a)
∫ 1

0
3 e3t dt (b)

∫ 2

−1

2

3 e2x
dx

[(a) 19.09 (b) 2.457]

8. (a)
∫ 3

2

2

3x
dx (b)

∫ 3

1

2x2 + 1

x
dx

[(a) 0.2703 (b) 9.099]

9. The entropy change �S, for an ideal gas is
given by:

�S =
∫ T2

T1

Cv

dT

T
− R

∫ V2

V1

dV

V

where T is the thermodynamic temperature,
V is the volume and R = 8.314. Determine
the entropy change when a gas expands from

1 litre to 3 litres for a temperature rise from
100 K to 400 K given that:

Cv = 45 + 6 × 10−3T + 8 × 10−6T2

[55.65]

10. The p.d. between boundaries a and b of an

electric field is given by: V =
∫ b

a

Q

2πrε0εr
dr

If a = 10, b = 20, Q = 2 × 10−6 coulombs,
ε0 = 8.85 × 10−12 and εr = 2.77, show that
V = 9 kV.

11. The average value of a complex voltage
waveform is given by:

VAV = 1

π

∫ π

0
(10 sin ωt + 3 sin 3ωt

+ 2 sin 5ωt) d(ωt)

Evaluate VAV correct to 2 decimal places.
[7.26]
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38

Some applications of integration

38.1 Introduction

There are a number of applications of integral calcu-
lus in engineering. The determination of areas, mean
and r.m.s. values, volumes, centroids and second
moments of area and radius of gyration are included
in this chapter.

38.2 Areas under and between curves

In Fig. 38.1,

total shaded area =
∫ b

a
f (x)dx −

∫ c

b
f (x)dx

+
∫ d

c
f (x)dx

Figure 38.1

Problem 1. Determine the area between the
curve y = x3 − 2x2 − 8x and the x-axis.

y = x3−2x2−8x = x(x2−2x−8) = x(x+2)(x−4)

When y = 0, x = 0 or (x + 2) = 0 or (x − 4) = 0,
i.e. when y = 0, x = 0 or −2 or 4, which means that
the curve crosses the x-axis at 0, −2, and 4. Since
the curve is a continuous function, only one other

co-ordinate value needs to be calculated before a
sketch of the curve can be produced. When x = 1,
y = −9, showing that the part of the curve between
x = 0 and x = 4 is negative. A sketch of
y = x3 − 2x2 − 8x is shown in Fig. 38.2. (Another
method of sketching Fig. 38.2 would have been to
draw up a table of values).

Shaded area

=
∫ 0

−2
(x3 − 2x2 − 8x)dx −

∫ 4

0
(x3 − 2x2 − 8x)dx

=
[

x4

4
− 2x3

3
− 8x2

2

]0

−2
−
[

x4

4
− 2x3

3
− 8x2

2

]4

0

=
(

6
2

3

)

−
(

−42
2

3

)

= 49
1
3

square units

Figure 38.2

Problem 2. Determine the area enclosed
between the curves y = x2 + 1 and y = 7 − x.

At the points of intersection the curves are equal.
Thus, equating the y values of each curve gives:

x2 + 1 = 7 − x

from which, x2 + x − 6 = 0

Factorising gives (x − 2)(x + 3) = 0

from which x = 2 and x = −3
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By firstly determining the points of intersection the
range of x-values has been found. Tables of values
are produced as shown below.

x −3 −2 −1 0 1 2

y = x2 + 1 10 5 2 1 2 5

x −3 0 2
y = 7 − x 10 7 5

A sketch of the two curves is shown in Fig. 38.3.

Shaded area =
∫ 2

−3
(7 − x)dx −

∫ 2

−3
(x2 + 1)dx

=
∫ 2

−3
[(7 − x) − (x2 + 1)]dx

=
∫ 2

−3
(6 − x − x2)dx

=
[

6x − x2

2
− x3

3

]2

−3

=
(

12 − 2 − 8

3

)

−
(

−18 − 9

2
+ 9

)

=
(

7
1

3

)

−
(

−13
1

2

)

= 20
5
6

square units

Figure 38.3

Problem 3. Determine by integration the area
bounded by the three straight lines y = 4 − x,
y = 3x and 3y = x.

Each of the straight lines are shown sketched in
Fig. 38.4.

Shaded area

=
∫ 1

0

(
3x − x

3

)
dx +

∫ 3

1

[
(4 − x) − x

3

]
dx

=
[

3x2

2
− x2

6

]1

0
+
[

4x − x2

2
− x2

6

]3

1

=
[(

3

2
− 1

6

)

− (0)

]

+
[(

12 − 9

2
− 9

6

)

−
(

4 − 1

2
− 1

6

)]

=
(

1
1

3

)

+
(

6 − 3
1

3

)

= 4 square units

Figure 38.4

Now try the following exercise.

Exercise 148 Further problems on areas
under and between curves

1. Find the area enclosed by the curve
y = 4 cos 3x, the x-axis and ordinates x = 0

and x = π

6
[1 1

3 square units]

2. Sketch the curves y = x2 + 3 and y = 7 − 3x
and determine the area enclosed by them.

[20 5
6 square units]

3. Determine the area enclosed by the three
straight lines y = 3x, 2y = x and y + 2x = 5.

[2 1
2 square units]
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38.3 Mean and r.m.s. values

With reference to Fig. 38.5,

mean value, y = 1
b − a

∫ b

a
y dx

and r.m.s. value =
√√
√
√

{
1

b − a

∫ b

a
y2 dx

}

Figure 38.5

Problem 4. A sinusoidal voltagev =100 sin ωt
volts. Use integration to determine over half a
cycle (a) the mean value, and (b) the r.m.s. value.

(a) Half a cycle means the limits are 0 to π radians.

Mean value, y = 1

π − 0

∫ π

0
v d(ωt)

= 1

π

∫ π

0
100 sin ωt d(ωt)

= 100

π
[−cos ωt]π0

= 100

π
[(−cos π) − (−cos 0)]

= 100

π
[(+1) − (−1)] = 200

π

= 63.66 volts

[Note that for a sine wave,

mean value = 2
π

× maximum value

In this case, mean value = 2

π
× 100 = 63.66V]

(b) r.m.s. value

=
√{

1

π − 0

∫ π

0
v2 d(ωt)

}

=
√{

1

π

∫ π

0
(100 sin ωt)2 d(ωt)

}

=
√{

10000

π

∫ π

0
sin2 ωt d(ωt)

}

,

which is not a ‘standard’ integral.

It is shown in Chapter 18 that cos 2A = 1−2 sin2 A
and this formula is used whenever sin2 A needs to
be integrated.

Rearranging cos 2A = 1 − 2 sin2 A gives

sin2 A = 1

2
(1 − cos 2A)

Hence

√{
10000

π

∫ π

0
sin2 ωt d(ωt)

}

=
√{

10000

π

∫ π

0

1

2
(1 − cos 2ωt) d(ωt)

}

=
√{

10000

π

1

2

[

ωt − sin 2ωt

2

]π

0

}

=

√√
√
√
√
√
√

⎧
⎪⎪⎨

⎪⎪⎩

10000

π
1
2

[(

π − sin 2π

2

)

−
(

0 − sin 0

2

)]

⎫
⎪⎪⎬

⎪⎪⎭

=
√{

10000

π

1

2
[π]

}

=
√{

10000

2

}

= 100√
2

= 70.71 volts

[Note that for a sine wave,

r.m.s. value = 1√
2

× maximum value.

In this case,

r.m.s. value = 1√
2

× 100 = 70.71V]
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Now try the following exercise.

Exercise 149 Further problems on mean
and r.m.s. values

1. The vertical height h km of a missile varies
with the horizontal distance d km, and is
given by h = 4d − d2. Determine the mean
height of the missile from d = 0 to d = 4 km.

[2 2
3 km].

2. The distances of points y from the mean value
of a frequency distribution are related to the

variate x by the equation y = x + 1

x
. Deter-

mine the standard deviation (i.e. the r.m.s.
value), correct to 4 significant figures for
values of x from 1 to 2. [2.198]

3. A current i = 25 sin 100πt mA flows in an
electrical circuit. Determine, using integral
calculus, its mean and r.m.s. values each cor-
rect to 2 decimal places over the range t = 0
to t = 10 ms. [15.92 mA, 17.68 mA]

4. A wave is defined by the equation:
v = E1 sin ωt + E3 sin 3ωt

where E1, E3 and ω are constants.
Determine the r.m.s. value of v over the

interval 0 ≤ t ≤ π

ω
.

⎡

⎣

√
E2

1 + E2
3

2

⎤

⎦

38.4 Volumes of solids of revolution

With reference to Fig. 38.6, the volume of revolution,
V , obtained by rotating area A through one revolution
about the x-axis is given by:

V =
∫ b

a
πy2 dx

y

0 x = a x = b x

y = f (x)

A

Figure 38.6

If a curve x = f (y) is rotated 360◦ about the y-axis
between the limits y = c and y = d then the volume
generated, V , is given by:

V =
∫ d

c
πx2 dy.

Problem 5. The curve y = x2 + 4 is rotated one
revolution about the x-axis between the limits
x = 1 and x = 4. Determine the volume of solid
of revolution produced.

Revolving the shaded area shown in Fig. 38.7, 360◦
about the x-axis produces a solid of revolution
given by:

Volume =
∫ 4

1
πy2 dx =

∫ 4

1
π(x2 + 4)2 dx

=
∫ 4

1
π(x4 + 8x2 + 16) dx

= π

[
x5

5
+ 8x3

3
+ 16x

]4

1

= π[(204.8 + 170.67 + 64)

− (0.2 + 2.67 + 16)]

= 420.6π cubic units

Figure 38.7

Problem 6. Determine the area enclosed by
the two curves y = x2 and y2 = 8x. If this area
is rotated 360◦ about the x-axis determine the
volume of the solid of revolution produced.
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At the points of intersection the co-ordinates of the
curves are equal. Since y = x2 then y2 = x4. Hence
equating the y2 values at the points of intersection:

x4 = 8x

from which, x4 − 8x = 0

and x(x3 − 8) = 0

Hence, at the points of intersection, x = 0 and x = 2.
When x = 0, y = 0 and when x = 2, y = 4. The

points of intersection of the curves y = x2 and
y2 = 8x are therefore at (0,0) and (2,4). A sketch is
shown in Fig. 38.8. If y2 = 8x then y = √

8x.

Shaded area

=
∫ 2

0

(√
8x − x2

)
dx =

∫ 2

0

(√
8
)

x
1
2 − x2

)

dx

=
⎡

⎣
(√

8
) x

3
2

3
2

− x3

3

⎤

⎦

2

0

=
{√

8
√

8
3
2

− 8

3

}

− {0}

= 16

3
− 8

3
= 8

3
= 2

2
3

square units

Figure 38.8

The volume produced by revolving the shaded area
about the x-axis is given by:

{(volume produced by revolving y2 = 8x)

− (volume produced by revolving y = x2)}

i.e. volume =
∫ 2

0
π(8x)dx −

∫ 2

0
π(x4)dx

= π

∫ 2

0
(8x − x4)dx = π

[
8x2

2
− x5

5

]2

0

= π

[(

16 − 32

5

)

− (0)

]

= 9.6π cubic units

Now try the following exercise.

Exercise 150 Further problems on volumes

1. The curve xy = 3 is revolved one revolution
about the x-axis between the limits x = 2 and
x = 3. Determine the volume of the solid
produced. [1.5π cubic units]

2. The area between
y

x2 = 1 and y + x2 = 8 is

rotated 360◦ about the x-axis. Find the vol-
ume produced. [170 2

3π cubic units]

3. The curve y = 2x2 +3 is rotated about (a) the
x-axis between the limits x = 0 and x = 3,
and (b) the y-axis, between the same limits.
Determine the volume generated in each case.

[(a) 329.4π (b) 81π]

4. The profile of a rotor blade is bounded by the
lines x = 0.2, y = 2x, y = e−x, x = 1 and the
x-axis. The blade thickness t varies linearly
with x and is given by: t = (1.1 − x)K, where
K is a constant.

(a) Sketch the rotor blade, labelling the
limits.

(b) Determine, using an iterative method, the
value of x, correct to 3 decimal places,
where 2x = e−x

(c) Calculate the cross-sectional area of the
blade, correct to 3 decimal places.

(d) Calculate the volume of the blade in terms
of K, correct to 3 decimal places.

[(b) 0.352 (c) 0.419 square units
(d) 0.222 K]

38.5 Centroids

A lamina is a thin flat sheet having uniform thick-
ness. The centre of gravity of a lamina is the point
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where it balances perfectly, i.e. the lamina’s cen-
tre of mass. When dealing with an area (i.e. a
lamina of negligible thickness and mass) the term
centre of area or centroid is used for the point
where the centre of gravity of a lamina of that shape
would lie.

If x and y denote the co-ordinates of the centroid
C of area A of Fig. 38.9, then:

x =

∫ b

a
xy dx

∫ b

a
y dx

and y =
1
2

∫ b

a
y2 dx

∫ b

a
y dx

0 x = a x = b x

y

x
y

C

Area A

y = f (x)

Figure 38.9

Problem 7. Find the position of the centroid
of the area bounded by the curve y = 3x2, the
x-axis and the ordinates x = 0 and x = 2.

If (x, y) are co-ordinates of the centroid of the given
area then:

x =

∫ 2

0
xy dx

∫ 2

0
y dx

=

∫ 2

0
x(3x2) dx

∫ 2

0
3x2 dx

=

∫ 2

0
3x3 dx

∫ 2

0
3x2 dx

=

[
3x4

4

]2

0

[x3]2
0

= 12

8
= 1.5

y =
1

2

∫ 2

0
y2 dx

∫ 2

0
y dx

=
1

2

∫ 2

0
(3x2)2 dx

8

=
1

2

∫ 2

0
9x4 dx

8
=

9

2

[
x5

5

]2

0

8

=
9

2

(
32

5

)

8
= 18

5
= 3.6

Hence the centroid lies at (1.5, 3.6)

Problem 8. Determine the co-ordinates of
the centroid of the area lying between the curve
y = 5x − x2 and the x-axis.

y = 5x − x2 = x(5 − x). When y = 0, x = 0 or x = 5.
Hence the curve cuts the x-axis at 0 and 5 as shown
in Fig. 38.10. Let the co-ordinates of the centroid be
(x, y) then, by integration,

x =

∫ 5

0
xy dx

∫ 5

0
y dx

=

∫ 5

0
x(5x − x2) dx

∫ 5

0
(5x − x2) dx

=

∫ 5

0
(5x2 − x3) dx

∫ 5

0
(5x − x2) dx

=
[

5x3

3 − x4

4

]5

0
[

5x2

2 − x3

3

]5

0

Figure 38.10
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=
625

3
− 625

4
125

2
− 125

3

=
625

12
125

6

=
(

625

12

)(
6

125

)

= 5

2
= 2.5

y =
1

2

∫ 5

0
y2 dx

∫ 5

0
y dx

=
1

2

∫ 5

0
(5x − x2)2 dx

∫ 5

0
(5x − x2) dx

=
1

2

∫ 5

0
(25x2 − 10x3 + x4) dx

125

6

=

1

2

[
25x3

3
− 10x4

4
+ x5

5

]5

0
125

6

=
1

2

(
25(125)

3
− 6250

4
+ 625

)

125

6

= 2.5

Hence the centroid of the area lies at (2.5, 2.5).

(Note from Fig. 38.10 that the curve is symmetrical
about x = 2.5 and thus x could have been determined
‘on sight’.)

Now try the following exercise.

Exercise 151 Further problems on
centroids
In Problems 1 and 2, find the position of the cen-
troids of the areas bounded by the given curves,
the x-axis and the given ordinates.

1. y = 3x + 2 x = 0, x = 4 [(2.5, 4.75)]

2. y = 5x2 x = 1, x = 4 [(3.036, 24.36)]

3. Determine the position of the centroid of a
sheet of metal formed by the curve
y = 4x − x2 which lies above the x-axis.

[(2, 1.6)]

4. Find the co-ordinates of the centroid of the
area which lies between the curve y/x = x−2
and the x-axis. [(1, −0.4)]

5. Sketch the curve y2 = 9x between the limits
x = 0 and x = 4. Determine the position of
the centroid of this area.

[(2.4, 0)]

38.6 Theorem of Pappus

A theorem of Pappus states:

‘If a plane area is rotated about an axis in its own
plane but not intersecting it, the volume of the solid
formed is given by the product of the area and the
distance moved by the centroid of the area’.
With reference to Fig. 38.11, when the curve y = f (x)
is rotated one revolution about the x-axis between
the limits x = a and x = b, the volume V generated
is given by:

volume V = (A)(2πy), from which, y = V
2πA

Figure 38.11

Problem 9. (a) Calculate the area bounded by
the curve y = 2x2, the x-axis and ordinates x = 0
and x = 3. (b) If this area is revolved (i) about the
x-axis and (ii) about the y-axis, find the volumes
of the solids produced. (c) Locate the position
of the centroid using (i) integration, and (ii) the
theorem of Pappus.

(a) The required area is shown shaded in
Fig. 38.12.

Area =
∫ 3

0
y dx =

∫ 3

0
2x2 dx

=
[

2x3

3

]3

0
= 18 square units
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Figure 38.12

(b) (i) When the shaded area of Fig. 38.12 is
revolved 360◦ about the x-axis, the volume
generated

=
∫ 3

0
πy2 dx =

∫ 3

0
π(2x2)2 dx

=
∫ 3

0
4πx4 dx = 4π

[
x5

5

]3

0

= 4π

(
243

5

)

= 194.4πcubic units

(ii) When the shaded area of Fig. 38.12 is
revolved 360◦ about the y-axis, the volume
generated

= (volume generated by x = 3)

− (volume generated by y = 2x2)

=
∫ 18

0
π(3)2 dy −

∫ 18

0
π
( y

2

)
dy

= π

∫ 18

0

(
9 − y

2

)
dy = π

[

9y − y2

4

]18

0
= 81π cubic units

(c) If the co-ordinates of the centroid of the shaded
area in Fig. 38.12 are (x, y) then:

(i) by integration,

x =

∫ 3

0
xy dx

∫ 3

0
y dx

=

∫ 3

0
x(2x2) dx

18

=

∫ 3

0
2x3 dx

18
=

[
2x4

4

]3

0

18

= 81

36
= 2.25

y =
1

2

∫ 3

0
y2 dx

∫ 3

0
y dx

=
1

2

∫ 3

0
(2x2)2 dx

18

=
1

2

∫ 3

0
4x4 dx

18
=

1

2

[
4x5

5

]3

0

18
= 5.4

(ii) using the theorem of Pappus:

Volume generated when shaded area is
revolved about OY = (area)(2πx).

i.e. 81π = (18)(2πx),

from which, x = 81π

36π
= 2.25

Volume generated when shaded area is
revolved about OX = (area)(2πy).

i.e. 194.4π = (18)(2πy),

from which, y = 194.4π

36π
= 5.4

Hence the centroid of the shaded area in
Fig. 38.12 is at (2.25, 5.4).

Problem 10. A metal disc has a radius of 5.0 cm
and is of thickness 2.0 cm.A semicircular groove
of diameter 2.0 cm is machined centrally around
the rim to form a pulley. Determine, using Pap-
pus’ theorem, the volume and mass of metal
removed and the volume and mass of the pulley
if the density of the metal is 8000 kg m−3.

A side view of the rim of the disc is shown in
Fig. 38.13.

Figure 38.13
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When area PQRS is rotated about axis XX the vol-
ume generated is that of the pulley. The centroid of

the semicircular area removed is at a distance of
4r

3π
from its diameter (see ‘Engineering Mathematics 4th

edition’, page 471), i.e.
4(1.0)

3π
, i.e. 0.424 cm from

PQ. Thus the distance of the centroid from XX is
5.0 − 0.424, i.e. 4.576 cm.
The distance moved through in one revolution by the
centroid is 2π(4.576) cm.

Area of semicircle = πr2

2
= π(1.0)2

2
= π

2
cm2

By the theorem of Pappus,

volume generated = area × distance moved by

centroid =
(π

2

)
(2π)(4.576).

i.e. volume of metal removed = 45.16 cm3

Mass of metal removed = density × volume

= 8000 kg m−3×45.16

106 m3

= 0.3613 kg or 361.3 g

volume of pulley = volume of cylindrical disc
− volume of metal removed

= π(5.0)2(2.0) − 45.16

= 111.9 cm3

Mass of pulley = density × volume

= 8000 kg m−3 × 111.9

106 m3

= 0.8952 kg or 895.2 g

Now try the following exercise.

Exercise 152 Further problems on the the-
orem of Pappus

1. A right angled isosceles triangle having a
hypotenuse of 8 cm is revolved one revolution
about one of its equal sides as axis. Deter-
mine the volume of the solid generated using
Pappus’ theorem. [189.6 cm3]

2. Using (a) the theorem of Pappus, and (b) inte-
gration, determine the position of the centroid

of a metal template in the form of a quadrant
of a circle of radius 4 cm. (The equation of a
circle, centre 0, radius r is x2 + y2 = r2).

⎡

⎢
⎣

On the centre line, distance
2.40 cm from the centre,
i.e. at co-ordinates
(1.70, 1.70)

⎤

⎥
⎦

3.(a) Determine the area bounded by the curve
y = 5x2, the x-axis and the ordinates
x = 0 and x = 3.

(b) If this area is revolved 360◦ about (i) the
x-axis, and (ii) the y-axis, find the vol-
umes of the solids of revolution produced
in each case.

(c) Determine the co-ordinates of the cen-
troid of the area using (i) integral calcu-
lus, and (ii) the theorem of Pappus.

⎡

⎢
⎣

(a) 45 square units
(b) (i) 1215π cubic units

(ii) 202.5π cubic units
(c) (2.25, 13.5)

⎤

⎥
⎦

4. A metal disc has a radius of 7.0 cm and is
of thickness 2.5 cm. A semicircular groove of
diameter 2.0 cm is machined centrally around
the rim to form a pulley. Determine the vol-
ume of metal removed using Pappus’theorem
and express this as a percentage of the origi-
nal volume of the disc. Find also the mass of
metal removed if the density of the metal is
7800 kg m−3.

[64.90 cm3, 16.86%, 506.2 g]

For more on areas, mean and r.m.s. values, volumes
and centroids, see ‘Engineering Mathematics 4th
edition’, Chapters 54 to 57.

38.7 Second moments of area of
regular sections

The first moment of area about a fixed axis of a
lamina of area A, perpendicular distance y from the
centroid of the lamina is defined as Ay cubic units.
The second moment of area of the same lamina as
above is given by Ay2, i.e. the perpendicular distance
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from the centroid of the area to the fixed axis is
squared.

Second moments of areas are usually denoted by
I and have units of mm4, cm4, and so on.

Radius of gyration

Several areas, a1, a2, a3, . . . at distances y1, y2, y3, . . .
from a fixed axis, may be replaced by a single area
A, where A = a1 + a2 + a3 + · · · at distance k from
the axis, such that Ak2 =∑ ay2.

k is called the radius of gyration of area A about
the given axis. Since Ak2 = ∑

ay2 = I then the
radius of gyration,

k =
√

I

A
.

The second moment of area is a quantity much used
in the theory of bending of beams, in the torsion
of shafts, and in calculations involving water planes
and centres of pressure.

The procedure to determine the second moment
of area of regular sections about a given axis is (i) to
find the second moment of area of a typical element
and (ii) to sum all such second moments of area by
integrating between appropriate limits.

For example, the second moment of area of the
rectangle shown in Fig. 38.14 about axis PP is found
by initially considering an elemental strip of width
δx, parallel to and distance x from axis PP. Area of
shaded strip = bδx.

Figure 38.14

Second moment of area of the shaded strip about
PP = (x2)(b δx).
The second moment of area of the whole rectan-
gle about PP is obtained by summing all such strips
between x = 0 and x = l, i.e.

∑x=l
x=0 x2 bδx.

It is a fundamental theorem of integration that

limit
δx→0

x=l∑

x=0

x2b δx =
∫ l

0
x2b dx

Thus the second moment of area of the rectangle
about PP

= b
∫ l

0
x2 dx = b

[
x3

3

]l

0
= bl3

3

Since the total area of the rectangle, A = lb, then

Ipp = (lb)

(
l2

3

)

= Al2

3

Ipp = Ak2
pp thus k2

pp = l2

3
i.e. the radius of gyration about axes PP,

kpp =
√

l2

3
= l√

3

Parallel axis theorem

In Fig. 38.15, axis GG passes through the centroid
C of area A. Axes DD and GG are in the same plane,
are parallel to each other and distance d apart. The
parallel axis theorem states:

IDD = IGG + Ad2

Using the parallel axis theorem the second moment
of area of a rectangle about an axis through the

Figure 38.15
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Figure 38.16

centroid may be determined. In the rectangle shown

in Fig. 38.16, Ipp = bl3

3
(from above).

From the parallel axis theorem

Ipp = IGG + (bl)

(
1

2

)2

i.e.
bl3

3
= IGG + bl3

4

from which, IGG = bl3

3
− bl3

4
= bl3

12

Perpendicular axis theorem

In Fig. 38.17, axes OX , OY and OZ are mutually
perpendicular. If OX and OY lie in the plane of area
A then the perpendicular axis theorem states:

IOZ = IOX + IOY

Figure 38.17

A summary of derive standard results for the second
moment of area and radius of gyration of regular
sections are listed in Table 38.1.

Problem 11. Determine the second moment of
area and the radius of gyration about axes AA,
BB and CC for the rectangle shown in Fig. 38.18.

A

B

C
b=4.0 cm

A
l =12.0 cm

B

C

Figure 38.18

From Table 38.1, the second moment of area about
axis AA,

IAA = bl3

3
= (4.0)(12.0)3

3
= 2304 cm4

Radius of gyration, kAA = l√
3

= 12.0√
3

= 6.93 cm

Similarly, IBB = lb3

3
= (12.0)(4.0)3

3
= 256 cm4

and kBB = b√
3

= 4.0√
3

= 2.31 cm

The second moment of area about the centroid of a

rectangle is
bl3

12
when the axis through the centroid

is parallel with the breadth b. In this case, the axis
CC is parallel with the length l.

Hence ICC = lb3

12
= (12.0)(4.0)3

12
= 64 cm4

and kCC = b√
12

= 4.0√
12

= 1.15 cm
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Table 38.1 Summary of standard results of the second moments of areas of regular sections

Shape Position of axis Second moment Radius of
of area, I gyration, k

Rectangle (1) Coinciding with b
bl3

3

l√
3

length l, breadth b

(2) Coinciding with l
lb3

3

b√
3

(3) Through centroid, parallel to b
bl3

12

l√
12

(4) Through centroid, parallel to l
lb3

12

b√
12

Triangle (1) Coinciding with b
bh3

12

h√
6

Perpendicular height h,
base b (2) Through centroid, parallel to base

bh3

36

h√
18

(3) Through vertex, parallel to base
bh3

4

h√
2

Circle (1) Through centre, perpendicular to
πr4

2

r√
2

radius r plane (i.e. polar axis)

(2) Coinciding with diameter
πr4

4

r

2

(3) About a tangent
5πr4

4

√
5

2
r

Semicircle Coinciding with diameter
πr4

8

r

2
radius r

Problem 12. Find the second moment of area
and the radius of gyration about axis PP for the
rectangle shown in Fig. 38.19.

40.0 mm

15.0 mm
G

25.0 mm

G

P P

Figure 38.19

IGG = lb3

12
where 1 = 40.0 mm and b = 15.0 mm

Hence IGG = (40.0)(15.0)3

12
= 11250 mm4

From the parallel axis theorem, IPP = IGG + Ad2,
where A = 40.0 × 15.0 = 600 mm2 and
d = 25.0 + 7.5 = 32.5 mm, the perpendicular
distance between GG and PP. Hence,

IPP = 11 250 + (600)(32.5)2

= 645000 mm4
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IPP = Ak2
PP, from which,

kPP =
√

IPP

area
=
√(

645000

600

)

= 32.79 mm

Problem 13. Determine the second moment of
area and radius of gyration about axis QQ of the
triangle BCD shown in Fig. 38.20.

B

GG

C D

Q Q

12.0 cm

8.0 cm 6.0 cm

Figure 38.20

Using the parallel axis theorem: IQQ = IGG + Ad2,
where IGG is the second moment of area about the
centroid of the triangle,

i.e.
bh3

36
= (8.0)(12.0)3

36
= 384 cm4,

A is the area of the triangle,

= 1
2 bh = 1

2 (8.0)(12.0) = 48 cm2

and d is the distance between axes GG and QQ,

= 6.0 + 1
3 (12.0) = 10 cm.

Hence the second moment of area about axis QQ,

IQQ = 384 + (48)(10)2 = 5184 cm4.

Radius of gyration,

kQQ =
√

IQQ

area
=
√(

5184

48

)

= 10.4 cm

Problem 14. Determine the second moment of
area and radius of gyration of the circle shown
in Fig. 38.21 about axis YY .

Y Y

3.0 cm

G G

r = 2.0 cm

Figure 38.21

In Fig. 38.21, IGG = πr4

4
= π

4
(2.0)4 = 4π cm4.

Using the parallel axis theorem, IYY = IGG + Ad2,
where d = 3.0 + 2.0 = 5.0 cm.

Hence IYY = 4π + [π(2.0)2](5.0)2

= 4π + 100π = 104π = 327 cm4.

Radius of gyration,

kYY =
√

IYY

area
=
√(

104π

π(2.0)2

)

= √
26 = 5.10 cm

Problem 15. Determine the second moment of
area and radius of gyration for the semicircle
shown in Fig. 38.22 about axis XX.

G G

B B

X X

15.0 mm

10.0 mm

Figure 38.22
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The centroid of a semicircle lies at
4r

3π
from its

diameter.
Using the parallel axis theorem:

IBB = IGG + Ad2,

where IBB = πr4

8
(from Table 38.1)

= π(10.0)4

8
= 3927 mm4,

A = πr2

2
= π(10.0)2

2
= 157.1 mm2

and d = 4r

3π
= 4(10.0)

3π
= 4.244 mm

Hence 3927 = IGG + (157.1)(4.244)2

i.e. 3927 = IGG + 2830,

from which, IGG = 3927 − 2830 = 1097 mm4

Using the parallel axis theorem again:
IXX = IGG + A(15.0 + 4.244)2

i.e. IXX = 1097 + (157.1)(19.244)2

= 1097 + 58 179

= 59276 mm4 or 59280 mm4,

correct to 4 significant figures.

Radius of gyration, kXX =
√

IXX

area
=
√(

59 276

157.1

)

= 19.42 mm

Problem 16. Determine the polar second
moment of area of the propeller shaft cross-
section shown in Fig. 38.23.

7.
0 

cm

6.
0 

cm

Figure 38.23

The polar second moment of area of a circle = πr4

2
.

The polar second moment of area of the shaded
area is given by the polar second moment of area of
the 7.0 cm diameter circle minus the polar second
moment of area of the 6.0 cm diameter circle.

Hence the polar second moment of area of the
cross-section shown

= π

2

(
7.0

2

)4
− π

2

(
6.0

2

)4

= 235.7 − 127.2 = 108.5 cm4

Problem 17. Determine the second moment of
area and radius of gyration of a rectangular lam-
ina of length 40 mm and width 15 mm about an
axis through one corner, perpendicular to the
plane of the lamina.

The lamina is shown in Fig. 38.24.

Figure 38.24

From the perpendicular axis theorem:

IZZ = IXX + IYY

IXX = lb3

3
= (40)(15)3

3
= 45000 mm4

and IYY = bl3

3
= (15)(40)3

3
= 320000 mm4

Hence IZZ = 45 000 + 320 000

= 365000 mm4 or 36.5 cm4

Radius of gyration,

kZZ =
√

IZZ

area
=
√(

365 000

(40)(15)

)

= 24.7 mm or 2.47 cm
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Problem 18. Determine correct to 3 significant
figures, the second moment of area about axis
XX for the composite area shown in Fig. 38.25.

4.0
 cm

X X
1.0 cm 1.0 cm

8.0 cm

6.0 cm
TT

2.0 cm 2.0 cm

CT

Figure 38.25

For the semicircle,

IXX = πr4

8
= π(4.0)4

8
= 100.5 cm4

For the rectangle,

IXX = bl3

3
= (6.0)(8.0)3

3
= 1024 cm4

For the triangle, about axis TT through centroid CT ,

ITT = bh3

36
= (10)(6.0)3

36
= 60 cm4

By the parallel axis theorem, the second moment of
area of the triangle about axis XX

= 60 + [ 1
2 (10)(6.0)

] [
8.0 + 1

3 (6.0)
]2 = 3060 cm4.

Total second moment of area about XX

= 100.5 + 1024 + 3060

= 4184.5

= 4180 cm4, correct to 3 significant figures

Problem 19. Determine the second moment of
area and the radius of gyration about axis XX for
the I-section shown in Fig. 38.26.

Figure 38.26

The I-section is divided into three rectangles, D, E
and F and their centroids denoted by CD, CE and CF
respectively.

For rectangle D:
The second moment of area about CD (an axis
through CD parallel to XX)

= bl3

12
= (8.0)(3.0)3

12
= 18 cm4

Using the parallel axis theorem:

IXX = 18 + Ad2

where A = (8.0)(3.0) = 24 cm2 and d = 12.5 cm

Hence IXX = 18 + 24(12.5)2 = 3768 cm4.

For rectangle E:
The second moment of area about CE (an axis
through CE parallel to XX)

= bl3

12
= (3.0)(7.0)3

12
= 85.75 cm4

Using the parallel axis theorem:

IXX = 85.75 + (7.0)(3.0)(7.5)2 = 1267 cm4.
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For rectangle F:

IXX = bl3

3
= (15.0)(4.0)3

3
= 320 cm4

Total second moment of area for the I-section
about axis XX,

IXX = 3768 + 1267 + 320 = 5355 cm4

Total area of I-section

= (8.0)(3.0) + (3.0)(7.0) + (15.0)(4.0)

= 105 cm2.

Radius of gyration,

kXX =
√

IXX

area
=
√(

5355

105

)

= 7.14 cm

Now try the following exercise.

Exercise 153 Further problems on second
moment of areas of regular sections

1. Determine the second moment of area and
radius of gyration for the rectangle shown in
Fig. 38.27 about (a) axis AA (b) axis BB and
(c) axis CC.

⎡

⎣
(a) 72 cm4, 1.73 cm
(b) 128 cm4, 2.31 cm
(c) 512 cm4, 4.62 cm

⎤

⎦

Figure 38.27

2. Determine the second moment of area and
radius of gyration for the triangle shown in
Fig. 38.28 about (a) axis DD (b) axis EE
and (c) an axis through the centroid of the
triangle parallel to axis DD.

⎡

⎣
(a) 729 cm4, 3.67 cm
(b) 2187 cm4, 6.36 cm
(c) 243 cm4, 2.12 cm

⎤

⎦

Figure 38.28

3. For the circle shown in Fig. 38.29, find the
second moment of area and radius of gyra-
tion about (a) axis FF and (b) axis HH.

[
(a) 201 cm4, 2.0 cm
(b) 1005 cm4, 4.47 cm

]

Figure 38.29

4. For the semicircle shown in Fig. 38.30, find
the second moment of area and radius of
gyration about axis JJ .

[3927 mm4, 5.0 mm]

Figure 38.30

5. For each of the areas shown in Fig. 38.31
determine the second moment of area and
radius of gyration about axis LL, by using
the parallel axis theorem.

⎡

⎣
(a) 335 cm4, 4.73 cm
(b) 22030 cm4, 14.3 cm
(c) 628 cm4, 7.07 cm

⎤

⎦
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Figure 38.31

6. Calculate the radius of gyration of a rectan-
gular door 2.0 m high by 1.5 m wide about a
vertical axis through its hinge.

[0.866 m]

7. A circular door of a boiler is hinged so that
it turns about a tangent. If its diameter is
1.0 m, determine its second moment of area
and radius of gyration about the hinge.

[0.245 m4, 0.559 m]

8. A circular cover, centre 0, has a radius of
12.0 cm. A hole of radius 4.0 cm and centre
X, where OX = 6.0 cm, is cut in the cover.
Determine the second moment of area and
the radius of gyration of the remainder about
a diameter through 0 perpendicular to OX.

[14280 cm4, 5.96 cm]

9. For the sections shown in Fig. 38.32, find
the second moment of area and the radius of
gyration about axis XX.[

(a) 12190 mm4, 10.9 mm

(b) 549.5 cm4, 4.18 cm

]

Figure 38.32

10. Determine the second moments of areas
about the given axes for the shapes shown

in Fig. 38.33. (In Fig. 38.33(b), the circular
area is removed.) ⎡

⎣
IAA = 4224 cm4,
IBB = 6718 cm4,
Icc = 37300 cm4

⎤

⎦

Figure 38.33

11. Find the second moment of area and radius
of gyration about the axis XX for the beam
section shown in Fig. 38.34. [

1350 cm4,
5.67 cm

]

Figure 38.34
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39

Integration using algebraic
substitutions

39.1 Introduction

Functions which require integrating are not always in
the ‘standard form’ shown in Chapter 37. However,
it is often possible to change a function into a form
which can be integrated by using either:

(i) an algebraic substitution (see Section 39.2),

(ii) a trigonometric or hyperbolic substitution (see
Chapter 40),

(iii) partial fractions (see Chapter 41),

(iv) the t = tan θ/2 substitution (see Chapter 42),

(v) integration by parts (see Chapter 43), or

(vi) reduction formulae (see Chapter 44).

39.2 Algebraic substitutions

With algebraic substitutions, the substitution usu-
ally made is to let u be equal to f (x) such that f (u) du
is a standard integral. It is found that integrals of the
forms,

k
∫

[ f (x)]nf ′(x) dx and k
∫

f ′(x)

[ f (x)]n
dx

(where k and n are constants) can both be integrated
by substituting u for f (x).

39.3 Worked problems on integration
using algebraic substitutions

Problem 1. Determine
∫

cos(3x + 7) dx.

∫
cos (3x + 7) dx is not a standard integral of the

form shown in Table 37.1, page 368, thus an alge-
braic substitution is made.

Let u = 3x + 7 then
du

dx
= 3 and rearranging gives

dx = du

3
. Hence,

∫
cos(3x + 7) dx =

∫
(cos u)

du

3
=
∫

1

3
cos u du,

which is a standard integral

= 1

3
sin u + c

Rewriting u as (3x + 7) gives:
∫

cos(3x + 7) dx = 1
3

sin(3x + 7) + c,

which may be checked by differentiating it.

Problem 2. Find
∫

(2x − 5)7 dx.

(2x − 5) may be multiplied by itself 7 times and
then each term of the result integrated. However, this
would be a lengthy process, and thus an algebraic
substitution is made.

Let u = (2x − 5) then
du

dx
= 2 and dx = du

2
Hence

∫
(2x − 5)7 dx =

∫
u7 du

2
= 1

2

∫
u7 du

= 1

2

(
u8

8

)

+ c = 1

16
u8 + c

Rewriting u as (2x − 5) gives:
∫

(2x − 5)7 dx = 1
16

(2x − 5)8 + c

Problem 3. Find
∫

4

(5x − 3)
dx.
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Let u = (5x − 3) then
du

dx
= 5 and dx = du

5
Hence
∫

4

(5x − 3)
dx =

∫
4

u

du

5
= 4

5

∫
1

u
du

= 4

5
ln u + c = 4

5
ln(5x − 3) + c

Problem 4. Evaluate
∫ 1

0 2e6x−1 dx, correct to
4 significant figures.

Let u = 6x − 1 then
du

dx
= 6 and dx = du

6
Hence

∫
2e6x−1 dx =

∫
2eu du

6
= 1

3

∫
eu du

= 1

3
eu + c = 1

3
e6x−1 + c

Thus
∫ 1

0
2e6x−1 dx = 1

3
[e6x−1]1

0 = 1

3
[e5 − e−1] = 49.35,

correct to 4 significant figures.

Problem 5. Determine
∫

3x(4x2 + 3)5 dx.

Let u = (4x2 + 3) then
du

dx
= 8x and dx = du

8x
Hence

∫
3x(4x2 + 3)5 dx =

∫
3x(u)5 du

8x

= 3

8

∫
u5 du, by cancelling

The original variable ‘x’ has been completely
removed and the integral is now only in terms of
u and is a standard integral.

Hence
3

8

∫
u5 du = 3

8

(
u6

6

)

+ c

= 1

16
u6 + c = 1

16
(4x2 + 3)6 + c

Problem 6. Evaluate
∫ π

6

0
24 sin5 θ cos θ dθ.

Let u = sin θ then
du

dθ
= cos θ and dθ = du

cos θ

Hence
∫

24 sin5 θ cos θ dθ =
∫

24u5 cos θ
du

cos θ

= 24
∫

u5 du, by cancelling

= 24
u6

6
+ c = 4u6 + c = 4(sin θ)6 + c

= 4 sin6 θ + c

Thus
∫ π

6

0
24 sin5 θ cos θ dθ = [4 sin6 θ]

π
6
0

= 4

[(
sin

π

6

)6 − ( sin 0)6
]

= 4

[(
1

2

)6

− 0

]

= 1
16

or 0.0625

Now try the following exercise.

Exercise 154 Further problems on integra-
tion using algebraic substitutions

In Problems 1 to 6, integrate with respect to the
variable.

1. 2 sin (4x + 9)

[

−1

2
cos (4x + 9) + c

]

2. 3 cos (2θ − 5)

[
3

2
sin (2θ − 5) + c

]

3. 4 sec2 (3t + 1)

[
4

3
tan (3t + 1) + c

]

4.
1

2
(5x − 3)6

[
1

70
(5x − 3)7 + c

]

5.
−3

(2x − 1)

[

−3

2
ln (2x − 1) + c

]

6. 3e3θ+5 [e3θ + 5 + c]

In Problems 7 to 10, evaluate the definite inte-
grals correct to 4 significant figures.
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7.
∫ 1

0
(3x + 1)5 dx [227.5]

8.
∫ 2

0
x
√

(2x2 + 1) dx [4.333]

9.
∫ π

3

0
2 sin

(
3t + π

4

)
dt [0.9428]

10.
∫ 1

0
3 cos (4x − 3) dx [0.7369]

39.4 Further worked problems on
integration using algebraic
substitutions

Problem 7. Find
∫

x

2 + 3x2 dx.

Let u = 2 + 3x2 then
du

dx
= 6x and dx = du

6x
Hence

∫
x

2 + 3x2 dx =
∫

x

u

du

6x
= 1

6

∫
1

u
du,

by cancelling,

= 1

6
ln u + c = 1

6
ln(2 + 3x2) + c

Problem 8. Determine
∫

2x
√

(4x2 − 1)
dx.

Let u = 4x2 − 1 then
du

dx
= 8x and dx = du

8x

Hence
∫

2x
√

(4x2 − 1)
dx =

∫
2x√

u

du

8x

= 1

4

∫
1√
u

du, by cancelling

= 1

4

∫
u

−1
2 du = 1

4

⎡

⎢
⎣

u

(−1
2

)
+1

−1

2
+ 1

⎤

⎥
⎦+ c

= 1

4

⎡

⎢
⎣

u
1
2

1

2

⎤

⎥
⎦+ c = 1

2

√
u + c

= 1
2

√
(4x2 − 1) + c

Problem 9. Show that
∫

tan θ dθ = ln(sec θ) + c.

∫
tan θ dθ =

∫
sin θ

cos θ
dθ. Let u = cos θ

then
du

dθ
= −sin θ and dθ = −du

sin θ

Hence

∫
sin θ

cos θ
dθ =

∫
sin θ

u

(−du

sin θ

)

= −
∫

1

u
du = − ln u + c

= − ln(cos θ) + c = ln(cos θ)−1 + c,

by the laws of logarithms

Hence
∫

tan θ dθ = ln(sec θ) + c,

since (cos θ)−1 = 1

cos θ
= sec θ

39.5 Change of limits

When evaluating definite integrals involving substi-
tutions it is sometimes more convenient to change
the limits of the integral as shown in Problems 10
and 11.

Problem 10. Evaluate
∫ 3

1 5x
√

(2x2 + 7) dx,
taking positive values of square roots only.

Let u = 2x2 + 7, then
du

dx
= 4x and dx = du

4x
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It is possible in this case to change the limits of inte-
gration. Thus when x = 3, u = 2(3)2 + 7 = 25 and
when x = 1, u = 2(1)2 + 7 = 9.

Hence

∫ x=3

x=1
5x
√

(2x2 + 7) dx =
∫ u=25

u=9
5x

√
u

du

4x

= 5

4

∫ 25

9

√
u du

= 5

4

∫ 25

9
u

1
2 du

Thus the limits have been changed, and it is unneces-
sary to change the integral back in terms of x.

Thus
∫ x=3

x=1
5x
√

(2x2 + 7) dx = 5

4

⎡

⎣ u
3
2

3/2

⎤

⎦

25

9

= 5

6

[√
u3
]25

9
= 5

6

[√
253 −

√
93
]

= 5

6
(125 − 27) = 81

2
3

Problem 11. Evaluate
∫ 2

0

3x
√

(2x2 + 1)
dx,

taking positive values of square roots only.

Let u = 2x2 + 1 then
du

dx
= 4x and dx = du

4x

Hence
∫ 2

0

3x
√

(2x2 + 1)
dx =

∫ x=2

x=0

3x√
u

du

4x

= 3

4

∫ x=2

x=0
u

−1
2 du

Since u = 2x2 + 1, when x = 2, u = 9 and when
x = 0, u = 1.

Thus
3

4

∫ x=2

x=0
u

−1
2 du = 3

4

∫ u=9

u=1
u

−1
2 du,

i.e. the limits have been changed

= 3

4

⎡

⎢
⎣

u
1
2

1

2

⎤

⎥
⎦

9

1

= 3

2

[√
9 − √

1
]

= 3,

taking positive values of square roots only.

Now try the following exercise.

Exercise 155 Further problems on integra-
tion using algebraic substitutions

In Problems 1 to 7, integrate with respect to the
variable.

1. 2x(2x2 − 3)5
[

1

12
(2x2 − 3)6 + c

]

2. 5 cos5 t sin t

[

−5

6
cos6 t + c

]

3. 3 sec2 3x tan 3x
[

1

2
sec2 3x + c or

1

2
tan2 3x + c

]

4. 2t
√

(3t2 − 1)

[
2

9

√
(3t2 − 1)3 + c

]

5.
ln θ

θ

[
1

2
( ln θ)2 + c

]

6. 3 tan 2t

[
3

2
ln ( sec 2t) + c

]

7.
2et

√
(et + 4)

[
4
√

(et + 4) + c
]

In Problems 8 to 10, evaluate the definite inte-
grals correct to 4 significant figures.

8.
∫ 1

0
3x e(2x2−1) dx [1.763]

9.
∫ π

2

0
3 sin4 θ cos θ dθ [0.6000]

10.
∫ 1

0

3x

(4x2 − 1)5
dx [0.09259]
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11. The electrostatic potential on all parts of a
conducting circular disc of radius r is given
by the equation:

V = 2πσ

∫ 9

0

R√
R2 + r2

dR

Solve the equation by determining the
integral.

[
V = 2πσ

{√
(92 + r2) − r

}]

12. In the study of a rigid rotor the following
integration occurs:

Zr =
∫ ∞

0
(2 J + 1)e

−J(J+1) h2

8π2Ik T dJ

Determine Zr for constant temperature T
assuming h, I and k are constants.[

8π2IkT

h2

]

13. In electrostatics,

E =
∫ π

0

⎧
⎪⎨

⎪⎩

a2σ sin θ

2ε

√(
a2 − x2 − 2ax cos θ

)dθ

⎫
⎪⎬

⎪⎭

where a, σ and ε are constants, x is greater
than a, and x is independent of θ. Show that

E = a2σ

εx
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Assignment 10

This assignment covers the material contained
in Chapters 37 to 39.

The marks for each question are shown in
brackets at the end of each question.

1. Determine (a)
∫

3
√

t5 dt (b)
∫

2
3
√

x2
dx

(c)
∫

(2 + θ)2 dθ (9)

2. Evaluate the following integrals, each correct to
4 significant figures:

(a)
∫ π

3

0
3 sin 2t dt (b)

∫ 2

1

(
2

x2 + 1

x
+ 3

4

)

dx

(c)
∫ 1

0

3

e2t
dt (15)

3. Calculate the area between the curve
y = x3 − x2 − 6x and the x-axis. (10)

4. A voltage v = 25 sin 50πt volts is applied across
an electrical circuit. Determine, using integra-
tion, its mean and r.m.s. values over the range
t = 0 to t = 20 ms, each correct to 4 significant
figures. (12)

5. Sketch on the same axes the curves x2 = 2y and
y2 = 16x and determine the co-ordinates of the
points of intersection. Determine (a) the area
enclosed by the curves, and (b) the volume of
the solid produced if the area is rotated one
revolution about the x-axis. (13)

6. Calculate the position of the centroid of the
sheet of metal formed by the x-axis and the part
of the curve y = 5x − x2 which lies above the
x-axis. (9)

7. A cylindrical pillar of diameter 400 mm has a
groove cut around its circumference as shown in

Fig. A10.1. The section of the groove is a semi-
circle of diameter 50 mm. Given that the centroid

of a semicircle from its base is
4r

3π
, use the

theorem of Pappus to determine the volume of
material removed, in cm3, correct to 3 significant
figures. (8)

Figure A10.1

8. A circular door is hinged so that it turns about a
tangent. If its diameter is 1.0 m find its second
moment of area and radius of gyration about the
hinge. (5)

9. Determine the following integrals:

(a)
∫

5(6t + 5)7 dt (b)
∫

3 ln x

x
dx

(c)
∫

2√
(2θ − 1)

dθ (9)

10. Evaluate the following definite integrals:

(a)
∫ π

2

0
2 sin

(
2t + π

3

)
dt (b)

∫ 1

0
3x e4x2−3 dx

(10)
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Integral calculus

40

Integration using trigonometric and
hyperbolic substitutions

40.1 Introduction

Table 40.1 gives a summary of the integrals that
require the use of trigonometric and hyperbolic
substitutions and their application is demonstrated
in Problems 1 to 27.

40.2 Worked problems on integration
of sin2 x, cos2 x, tan2 x and cot2 x

Problem 1. Evaluate
∫ π

4

0
2 cos2 4t dt.

Since cos 2t = 2 cos2 t − 1 (from Chapter 18),

then cos2 t = 1

2
(1 + cos 2t) and

cos2 4t = 1

2
(1 + cos 8t)

Hence
∫ π

4

0
2 cos2 4t dt

= 2
∫ π

4

0

1

2
(1 + cos 8t) dt

=
[

t + sin 8t

8

]π
4

0

=
⎡

⎢
⎣

π

4
+

sin 8
(π

4

)

8

⎤

⎥
⎦−

[

0 + sin 0

8

]

= π

4
or 0.7854

Problem 2. Determine
∫

sin2 3x dx.

Since cos 2x = 1 − 2 sin2 x (from Chapter 18),

then sin2 x = 1

2
(1 − cos 2x) and

sin2 3x = 1

2
(1 − cos 6x)

Hence
∫

sin2 3x dx =
∫

1

2
(1 − cos 6x) dx

= 1
2

(

x − sin 6x
6

)

+ c

Problem 3. Find 3
∫

tan2 4x dx.

Since 1 + tan2 x = sec2 x, then tan2 x = sec2 x − 1
and tan2 4x = sec2 4x − 1.

Hence 3
∫

tan2 4x dx = 3
∫

( sec2 4x − 1) dx

= 3
(

tan 4x
4

− x
)

+ c

Problem 4. Evaluate
∫ π

3

π
6

1

2
cot2 2θ dθ.

Since cot2 θ +1 = cosec2 θ, then cot2 θ = cosec2 θ−1
and cot2 2θ = cosec2 2θ − 1.

Hence
∫ π

3

π
6

1

2
cot2 2θ dθ

= 1

2

∫ π
3

π
6

(cosec2 2θ − 1) dθ = 1

2

[−cot 2θ

2
− θ

]π
3

π
6

= 1

2

⎡

⎢
⎣

⎛

⎜
⎝
−cot 2

(π

3

)

2
− π

3

⎞

⎟
⎠−
⎛

⎜
⎝
−cot 2

(π

6

)

2
− π

6

⎞

⎟
⎠

⎤

⎥
⎦

= 1

2
[(0.2887 − 1.0472) − (−0.2887 − 0.5236)]

= 0.0269
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Table 40.1 Integrals using trigonometric and hyperbolic substitutions

f (x)
∫

f (x)dx Method See problem

1. cos2 x
1

2

(

x + sin 2x

2

)

+ c Use cos 2x = 2 cos2 x − 1 1

2. sin2 x
1

2

(

x − sin 2x

2

)

+ c Use cos 2x = 1 − 2 sin2 x 2

3. tan2 x tan x − x + c Use 1 + tan2 x = sec2 x 3

4. cot2 x − cot x − x + c Use cot2 x + 1 = cosec2x 4

5. cosm x sinn x (a) If either m or n is odd (but not both), use

cos2 x + sin2 x = 1 5, 6

(b) If both m and n are even, use either

cos 2x = 2 cos2 x − 1 or cos 2x = 1 − 2 sin2 x 7, 8

6. sin A cos B Use 1
2 [ sin(A + B) + sin(A − B)] 9

7. cos A sin B Use 1
2 [ sin(A + B) − sin(A − B)] 10

8. cos A cos B Use 1
2 [ cos(A + B) + cos(A − B)] 11

9. sin A sin B Use − 1
2 [ cos(A + B) − cos(A − B)] 12

10.
1

√
(a2 − x2)

sin−1 x

a
+ c Use x = a sin θ substitution 13, 14

11.
√

(a2 − x2)
a2

2
sin−1 x

a
+ x

2

√
(a2 − x2) + c Use x = a sin θ substitution 15, 16

12.
1

a2 + x2

1

a
tan−1 x

a
+ c Use x = a tan θ substitution 17–19

13.
1

√
(x2 + a2)

sinh−1 x

a
+ c Use x = a sinh θ substitution 20–22

or ln

{
x +√(x2 + a2)

a

}

+ c

14.
√

(x2 + a2)
a2

2
sinh−1 x

a
+ x

2

√
(x2 + a2) + c Use x = a sinh θ substitution 23

15.
1

√
(x2 − a2)

cosh−1 x

a
+ c Use x = a cosh θ substitution 24, 25

or ln

{
x +√(x2 − a2)

a

}

+ c

16.
√

(x2 − a2)
x

2

√
(x2 − a2) − a2

2
cosh−1 x

a
+ c Use x = a cosh θ substitution 26, 27
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Now try the following exercise.

Exercise 156 Further problems on integra-
tion of sin2 x, cos2 x, tan2 x and cot2 x

In Problems 1 to 4, integrate with respect to the
variable.

1. sin2 2x

[
1

2

(

x − sin 4x

4

)

+ c

]

2. 3 cos2 t

[
3

2

(

t + sin 2t

2

)

+ c

]

3. 5 tan2 3θ

[

5

(
1

3
tan 3θ − θ

)

+ c

]

4. 2 cot2 2t [−(cot 2t + 2t) + c]

In Problems 5 to 8, evaluate the definite integrals,
correct to 4 significant figures.

5.
∫ π

3

0
3 sin2 3x dx

[π

2
or 1.571

]

6.
∫ π

4

0
cos2 4x dx

[π

8
or 0.3927

]

7.
∫ 1

0
2 tan2 2t dt [−4.185]

8.
∫ π

3

π
6

cot2 θ dθ [0.6311]

40.3 Worked problems on powers of
sines and cosines

Problem 5. Determine
∫

sin5 θ dθ.

Since cos2 θ + sin2 θ = 1 then sin2 θ = (1 − cos2 θ).

Hence
∫

sin5 θ dθ

=
∫

sin θ( sin2 θ)2 dθ =
∫

sin θ(1 − cos2 θ)2 dθ

=
∫

sin θ(1 − 2 cos2 θ + cos4 θ) dθ

=
∫

(sin θ − 2 sin θ cos2 θ + sin θ cos4 θ) dθ

= −cos θ + 2 cos3 θ

3
− cos5 θ

5
+ c

[Whenever a power of a cosine is multiplied by a
sine of power 1, or vice-versa, the integral may be
determined by inspection as shown.

In general,
∫

cosn θ sin θ dθ = −cosn+1 θ

(n + 1)
+ c

and
∫

sinn θ cos θ dθ = sinn+1 θ

(n + 1)
+ c

Problem 6. Evaluate
∫ π

2

0
sin2 x cos3 x dx.

∫ π
2

0
sin2 x cos3 x dx =

∫ π
2

0
sin2 x cos2 x cos x dx

=
∫ π

2

0
(sin2 x)(1 − sin2 x)(cos x) dx

=
∫ π

2

0
(sin2 x cos x − sin4 x cos x) dx

=
[

sin3 x

3
− sin5 x

5

]π
2

0

=
⎡

⎢
⎣

(
sin

π

2

)3

3
−
(

sin
π

2

)5

5

⎤

⎥
⎦− [0 − 0]

= 1

3
− 1

5
= 2

15
or 0.1333

Problem 7. Evaluate
∫ π

4

0
4 cos4 θ dθ, correct

to 4 significant figures.

∫ π
4

0
4 cos4 θ dθ = 4

∫ π
4

0
(cos2 θ)2 dθ

= 4
∫ π

4

0

[
1

2
(1 + cos 2θ)

]2

dθ

=
∫ π

4

0
(1 + 2 cos 2θ + cos2 2θ) dθ

=
∫ π

4

0

[

1 + 2 cos 2θ + 1

2
(1 + cos 4θ)

]

dθ

=
∫ π

4

0

(
3

2
+ 2 cos 2θ + 1

2
cos 4θ

)

dθ
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=
[

3θ

2
+ sin 2θ + sin 4θ

8

]π
4

0

=
[

3

2

(π

4

)
+ sin

2π

4
+ sin 4(π/4)

8

]

− [0]

= 3π

8
+ 1 = 2.178,

correct to 4 significant figures

Problem 8. Find
∫

sin2 t cos4 t dt.

∫
sin2 t cos4 t dt =

∫
sin2 t(cos2 t)2 dt

=
∫ (

1 − cos 2t

2

)(
1 + cos 2t

2

)2

dt

= 1

8

∫
(1 − cos 2t)(1 + 2 cos 2t + cos2 2t) dt

= 1

8

∫
(1 + 2 cos 2t + cos2 2t − cos 2t

− 2 cos2 2t − cos3 2t) dt

= 1

8

∫
(1 + cos 2t − cos2 2t − cos3 2t) dt

= 1

8

∫ [

1 + cos 2t −
(

1 + cos 4t

2

)

− cos 2t(1 − sin2 2t)

]

dt

= 1

8

∫ (
1

2
− cos 4t

2
+ cos 2t sin2 2t

)

dt

= 1
8

(
t
2

− sin 4t
8

+ sin32t
6

)

+ c

Now try the following exercise.

Exercise 157 Further problems on integra-
tion of powers of sines and cosines

In Problems 1 to 6, integrate with respect to the
variable.

1. sin3 θ

[

(a)−cos θ + cos3 θ

3
+ c

]

2. 2 cos3 2x

[

sin 2x − sin3 2x

3
+ c

]

3. 2 sin3 t cos2 t [−2

3
cos3 t + 2

5
cos5 t + c

]

4. sin3 x cos4 x

[
− cos5 x

5
+ cos7 x

7
+ c

]

5. 2 sin4 2θ [
3θ

4
− 1

4
sin 4θ + 1

32
sin 8θ + c

]

6. sin2 t cos2 t

[
t

8
− 1

32
sin 4t + c

]

40.4 Worked problems on integration
of products of sines and cosines

Problem 9. Determine
∫

sin 3t cos 2t dt.

∫
sin 3t cos 2t dt

=
∫

1

2
[sin (3t + 2t) + sin (3t − 2t)] dt,

from 6 of Table 40.1, which follows from Sec-
tion 18.4, page 183,

= 1

2

∫
(sin 5t + sin t) dt

= 1
2

(−cos 5t
5

− cos t
)

+ c

Problem 10. Find
∫

1

3
cos 5x sin 2x dx.

∫
1

3
cos 5x sin 2x dx

= 1

3

∫
1

2
[sin (5x + 2x) − sin (5x − 2x)] dx,

from 7 of Table 40.1

= 1

6

∫
(sin 7x − sin 3x) dx

= 1
6

(−cos 7x
7

+ cos 3x
3

)

+ c



Ch40-H8152.tex 11/7/2006 12: 47 Page 401

INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 401

H

Problem 11. Evaluate
∫ 1

0
2 cos 6θ cos θ dθ,

correct to 4 decimal places.

∫ 1

0
2 cos 6θ cos θ dθ

= 2
∫ 1

0

1

2
[ cos (6θ + θ) + cos (6θ − θ)] dθ,

from 8 of Table 40.1

=
∫ 1

0
(cos 7θ + cos 5θ) dθ =

[
sin 7θ

7
+ sin 5θ

5

]1

0

=
(

sin 7

7
+ sin 5

5

)

−
(

sin 0

7
+ sin 0

5

)

‘sin 7’ means ‘the sine of 7 radians’ (≡401◦4′) and
sin 5 ≡ 286◦29′.

Hence
∫ 1

0
2 cos 6θ cos θ dθ

= (0.09386 + (−0.19178)) − (0)

= −0.0979, correct to 4 decimal places

Problem 12. Find 3
∫

sin 5x sin 3x dx.

3
∫

sin 5x sin 3x dx

= 3
∫

−1

2
[ cos (5x + 3x) − cos (5x − 3x)] dx,

from 9 of Table 40.1

= −3

2

∫
( cos 8x − cos 2x) dx

= −3
2

(
sin 8

8
− sin 2x

2

)

+ c or

3
16

(4 sin 2x − sin 8x) + c

Now try the following exercise.

Exercise 158 Further problems on integra-
tion of products of sines and cosines

In Problems 1 to 4, integrate with respect to the
variable.

1. sin 5t cos 2t

[

−1

2

(
cos 7t

7
+ cos 3t

3

)

+ c

]

2. 2 sin 3x sin x

[
sin 2x

2
− sin 4x

4
+ c

]

3. 3 cos 6x cos x [
3

2

(
sin 7x

7
+ sin 5x

5

)

+ c

]

4.
1

2
cos 4θ sin 2θ

[
1

4

(
cos 2θ

2
− cos 6θ

6

)

+ c

]

In Problems 5 to 8, evaluate the definite integrals.

5.
∫ π

2

0
cos 4x cos 3x dx

[

(a)
3

7
or 0.4286

]

6.
∫ 1

0
2 sin 7t cos 3t dt [0.5973]

7. −4
∫ π

3

0
sin 5θ sin 2θ dθ [0.2474]

8.
∫ 2

1
3 cos 8t sin 3t dt [−0.1999]

40.5 Worked problems on integration
using the sin θ substitution

Problem 13. Determine
∫

1
√

(a2 − x2)
dx.

Let x = a sin θ, then
dx

dθ
= a cos θ and dx = a cos θ dθ.

Hence
∫

1
√

(a2 − x2)
dx

=
∫

1
√

(a2 − a2 sin2 θ)
a cos θ dθ

=
∫

a cos θ dθ
√

[a2(1 − sin2 θ)]

=
∫

a cos θ dθ
√

(a2 cos2 θ)
, since sin2 θ + cos2 θ = 1

=
∫

a cos θ dθ

a cos θ
=
∫

dθ = θ + c
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Since x = a sin θ, then sin θ = x

a
and θ = sin−1 x

a
.

Hence
∫

1
√

(a2 − x2)
dx = sin−1 x

a
+ c

Problem 14. Evaluate
∫ 3

0

1
√

(9 − x2)
dx.

From Problem 13,
∫ 3

0

1
√

(9 − x2)
dx

=
[
sin−1 x

3

]3

0
, since a = 3

= (sin−1 1 − sin−1 0) = π

2
or 1.5708

Problem 15. Find
∫ √

(a2 − x2) dx.

Let x = a sin θ then
dx

dθ
= a cos θ and dx = a cos θ dθ.

Hence
∫ √

(a2 − x2) dx

=
∫ √

(a2 − a2 sin2 θ) (a cos θ dθ)

=
∫ √

[a2(1 − sin2 θ)] (a cos θ dθ)

=
∫ √

(a2 cos2 θ) (a cos θ dθ)

=
∫

(a cos θ)(a cos θ dθ)

= a2
∫

cos2 θ dθ = a2
∫ (

1 + cos 2θ

2

)

dθ

(since cos 2θ = 2 cos2 θ − 1)

= a2

2

(

θ + sin 2θ

2

)

+ c

= a2

2

(

θ + 2 sin θ cos θ

2

)

+ c

since from Chapter 18, sin 2θ = 2 sin θ cos θ

= a2

2
[θ + sin θ cos θ] + c

Since x = a sin θ, then sin θ = x

a
and θ = sin−1 x

a

Also, cos2 θ + sin2 θ = 1, from which,

cos θ =
√

(1 − sin2 θ) =
√[

1 −
(x

a

)2
]

=
√(

a2 − x2

a2

)

=
√

(a2 − x2)

a

Thus
∫ √

(a2 − x2) dx = a2

2
[θ + sin θ cos θ]

= a2

2

[

sin−1 x

a
+
(x

a

) √(a2 − x2)

a

]

+ c

= a2

2
sin−1 x

a
+ x

2

√
(a2 − x2) + c

Problem 16. Evaluate
∫ 4

0

√
(16 − x2) dx.

From Problem 15,
∫ 4

0

√
(16 − x2) dx

=
[

16

2
sin−1 x

4
+ x

2

√
(16 − x2)

]4

0

=
[
8 sin−11 + 2

√
(0)
]

− [8 sin−1 0 + 0]

= 8 sin−11 = 8
(π

2

)
= 4π or 12.57

Now try the following exercise.

Exercise 159 Further problems on integra-
tion using the sine θ substitution

1. Determine
∫

5
√

(4 − t2)
dt
[
5 sin−1 x

2
+ c
]

2. Determine
∫

3
√

(9 − x2)
dx
[
3 sin−1 x

3
+ c
]

3. Determine
∫ √

(4 − x2) dx
[
2 sin−1 x

2
+ x

2

√
(4 − x2) + c

]
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4. Determine
∫ √

(16 − 9t2) dt

[
8

3
sin−1 3t

4
+ t

2

√
(16 − 9t2) + c

]

5. Evaluate
∫ 4

0

1
√

(16 − x2)
dx

[π

2
or 1.571

]

6. Evaluate
∫ 1

0

√
(9 − 4x2) dx [2.760]

40.6 Worked problems on integration
using tan θ substitution

Problem 17. Determine
∫

1

(a2 + x2)
dx.

Let x=a tan θ then
dx

dθ
=a sec2 θ and dx=a sec2 θ dθ.

Hence
∫

1

(a2 + x2)
dx

=
∫

1

(a2 + a2 tan2 θ)
(a sec2 θ dθ)

=
∫

a sec2 θ dθ

a2(1 + tan2 θ)

=
∫

a sec2 θ dθ

a2 sec2 θ
, since 1+ tan2 θ = sec2 θ

=
∫

1

a
dθ = 1

a
(θ) + c

Since x = a tan θ, θ = tan−1 x

a

Hence
∫

1
(a2 + x2)

dx = 1
a

tan−1 x
a

+ c.

Problem 18. Evaluate
∫ 2

0

1

(4 + x2)
dx.

From Problem 17,
∫ 2

0

1

(4 + x2)
dx

= 1

2

[
tan−1 x

2

]2

0
since a = 2

= 1

2
(tan−1 1 − tan−1 0) = 1

2

(π

4
− 0
)

= π

8
or 0.3927

Problem 19. Evaluate
∫ 1

0

5

(3 + 2x2)
dx, cor-

rect to 4 decimal places.

∫ 1

0

5

(3 + 2x2)
dx =

∫ 1

0

5

2[(3/2) + x2]
dx

= 5

2

∫ 1

0

1

[
√

(3/2)]2 + x2
dx

= 5

2

[
1√

(3/2)
tan−1 x√

(3/2)

]1

0

= 5

2

√(
2

3

)[

tan−1

√(
2

3

)

− tan−1 0

]

= (2.0412)[0.6847 − 0]
= 1.3976, correct to 4 decimal places

Now try the following exercise.

Exercise 160 Further problems on integra-
tion using the tan θ substitution

1. Determine
∫

3

4 + t2 dt

[
3

2
tan−1 t

2
+ c

]

2. Determine
∫

5

16 + 9θ2 dθ

[
5

12
tan−1 3θ

4
+ c

]

3. Evaluate
∫ 1

0

3

1 + t2 dt [2.356]

4. Evaluate
∫ 3

0

5

4 + x2 dx [2.457]

40.7 Worked problems on integration
using the sinh θ substitution

Problem 20. Determine
∫

1
√

(x2 + a2)
dx.
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Let x = a sinh θ, then
dx

dθ
= a cosh θ and

dx = a cosh θ dθ

Hence
∫

1
√

(x2 + a2)
dx

=
∫

1
√

(a2 sinh2θ + a2)
(a cosh θ dθ)

=
∫

a cosh θ dθ
√

(a2 cosh2 θ)
,

since cosh2 θ − sinh2 θ = 1

=
∫

a cosh θ

a cosh θ
dθ =

∫
dθ = θ + c

= sinh−1 x
a

+ c, since x = a sinh θ

It is shown on page 337 that

sinh−1 x

a
= ln

{
x +√(x2 + a2)

a

}

,

which provides an alternative solution to
∫

1
√

(x2 + a2)
dx

Problem 21. Evaluate
∫ 2

0

1
√

(x2 + 4)
dx, cor-

rect to 4 decimal places.

∫ 2

0

1
√

(x2 + 4)
dx =

[
sinh−1 x

2

]2

0
or

[

ln

{
x +√(x2 + 4)

2

}]2

0

from Problem 20, where a = 2

Using the logarithmic form,
∫ 2

0

1
√

(x2 + 4)
dx

=
[

ln

(
2 + √

8

2

)

− ln

(
0 + √

4

2

)]

= ln 2.4142 − ln 1 = 0.8814,
correct to 4 decimal places

Problem 22. Evaluate
∫ 2

1

2

x2
√

(1 + x2)
dx,

correct to 3 significant figures.

Since the integral contains a term of the form√
(a2 + x2), then let x = sinh θ, from which

dx

dθ
= cosh θ and dx = cosh θ dθ

Hence
∫

2

x2
√

(1 + x2)
dx

=
∫

2(cosh θ dθ)

sinh2 θ
√

(1 + sinh2 θ)

= 2
∫

cosh θ dθ

sinh2 θ cosh θ
,

since cosh2 θ − sinh2 θ = 1

= 2
∫

dθ

sinh2 θ
= 2

∫
cosech2 θ dθ

= −2 coth θ + c

coth θ = cosh θ

sinh θ
=
√

(1 + sinh2 θ)

sinh θ
=
√

(1 + x2)

x

Hence
∫ 2

1

2

x2
√

1 + x2)
dx

= −[2 coth θ]2
1 = −2

[√
(1 + x2)

x

]2

1

= −2

[√
5

2
−

√
2

1

]

= 0.592,

correct to 3 significant figures

Problem 23. Find
∫ √

(x2 + a2) dx.

Let x = a sinh θ then
dx

dθ
= a cosh θ and

dx = a cosh θ dθ

Hence
∫ √

(x2 + a2) dx

=
∫ √

(a2 sinh2 θ + a2)(a cosh θ dθ)

=
∫ √

[a2(sinh2 θ + 1)](a cosh θ dθ)
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=
∫ √

(a2 cosh2 θ) (a cosh θ dθ),

since cosh2 θ − sinh2 θ = 1

=
∫

(a cosh θ)(a cosh θ) dθ = a2
∫

cosh2 θ dθ

= a2
∫ (

1 + cosh 2θ

2

)

dθ

= a2

2

(

θ + sinh 2θ

2

)

+ c

= a2

2
[θ + sinh θ cosh θ] + c,

since sinh 2θ = 2 sinh θ cosh θ

Since x = a sinh θ, then sinh θ = x

a
and θ = sinh−1 x

a

Also since cosh2 θ − sinh2 θ = 1

then cosh θ =
√

(1 + sinh2 θ)

=
√[

1 +
(x

a

)2
]

=
√(

a2 + x2

a2

)

=
√

(a2 + x2)

a

Hence
∫ √

(x2 + a2) dx

= a2

2

[

sinh−1 x

a
+
(x

a

) √(x2 + a2)

a

]

+ c

= a2

2
sinh−1 x

a
+ x

2

√
(x2 + a2) + c

Now try the following exercise.

Exercise 161 Further problems on integra-
tion using the sinh θ substitution

1. Find
∫

2
√

(x2 + 16)
dx

[
2 sinh−1 x

4
+ c
]

2. Find
∫

3
√

(9 + 5x2)
dx

[
3√
5

sinh−1

√
5

3
x + c

]

3. Find
∫ √

(x2 + 9) dx
[

9

2
sinh−1 x

3
+ x

2

√
(x2 + 9) + c

]

4. Find
∫ √

(4t2 + 25) dt
[

25

4
sinh−1 2t

5
+ t

2

√
(4t2 + 25) + c

]

5. Evaluate
∫ 3

0

4
√

(t2 + 9)
dt [3.525]

6. Evaluate
∫ 1

0

√
(16 + 9θ2) dθ [4.348]

40.8 Worked problems on integration
using the cosh θ substitution

Problem 24. Determine
∫

1
√

(x2 − a2)
dx.

Let x = a cosh θ then
dx

dθ
= a sinh θ and

dx = a sinh θ dθ

Hence
∫

1
√

(x2 − a2)
dx

=
∫

1
√

(a2 cosh2 θ − a2)
(a sinh θ dθ)

=
∫

a sinh θ dθ
√

[a2( cosh2 θ − 1)]

=
∫

a sinh θ dθ
√

(a2 sinh2 θ)
,

since cosh2 θ − sinh2 θ = 1

=
∫

a sinh θ dθ

a sinh θ
=
∫

dθ = θ + c

= cosh−1 x
a

+ c, since x = a cosh θ

It is shown on page 337 that

cosh−1 x
a

= ln

{
x +

√
(x2 − a2)
a

}
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which provides as alternative solution to
∫

1
√

(x2 − a2)
dx

Problem 25. Determine
∫

2x − 3
√

(x2 − 9)
dx.

∫
2x − 3
√

(x2 − 9)
dx =

∫
2x

√
(x2 − 9)

dx

−
∫

3
√

(x2 − 9)
dx

The first integral is determined using the algebraic
substitution u = (x2 − 9), and the second integral is

of the form
∫

1
√

(x2 − a2)
dx (see Problem 24)

Hence
∫

2x
√

(x2 − 9)
dx −

∫
3

√
(x2 − 9)

dx

= 2
√

(x2 − 9) − 3 cosh−1 x
3

+ c

Problem 26.
∫ √

(x2 − a2) dx.

Let x = a cosh θ then
dx

dθ
= a sinh θ and

dx = a sinh θ dθ

Hence
∫ √

(x2 − a2) dx

=
∫ √

(a2 cosh2 θ − a2) (a sinh θ dθ)

=
∫ √

[a2( cosh2 θ − 1)] (a sinh θ dθ)

=
∫ √

(a2 sinh2 θ) (a sinh θ dθ)

= a2
∫

sinh2 θ dθ = a2
∫ (

cosh 2θ − 1

2

)

dθ

since cosh 2θ = 1 + 2 sinh2 θ

from Table 5.1, page 45,

= a2

2

[
sinh 2θ

2
− θ

]

+ c

= a2

2
[ sinh θ cosh θ − θ] + c,

since sinh 2θ = 2 sinh θ cosh θ

Since x = a cosh θ then cosh θ = x

a
and

θ = cosh−1 x

a
Also, since cosh2 θ − sinh2 θ = 1, then

sinh θ =
√

(cosh2 θ − 1)

=
√[(x

a

)2 − 1

]

=
√

(x2 − a2)

a

Hence
∫ √

(x2 − a2) dx

= a2

2

[√
(x2 − a2)

a

(x

a

)
− cosh−1 x

a

]

+ c

= x
2

√
(x2 − a2) − a2

2
cosh−1 x

a
+ c

Problem 27. Evaluate
∫ 3

2

√
(x2 − 4) dx.

∫ 3

2

√
(x2 − 4) dx =

[
x

2

√
(x2 − 4) − 4

2
cosh−1 x

2

]3

2

from Problem 26, when a = 2,

=
(

3

5

√
5 − 2 cosh−1 3

2

)

− (0 − 2 cosh−1 1)

Since cosh−1 x

a
= ln

{
x +√(x2 − a2)

a

}

then

cosh−1 3

2
= ln

{
3 +√(32 − 22)

2

}

= ln 2.6180 = 0.9624

Similarly, cosh−11 = 0



Ch40-H8152.tex 11/7/2006 12: 47 Page 407

INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS 407

H

Hence
∫ 3

2

√
(x2 − 4) dx

=
[

3

2

√
5 − 2(0.9624)

]

− [0]

= 1.429, correct to 4 significant figures

Now try the following exercise.

Exercise 162 Further problems on integra-
tion using the cosh θ substitution

1. Find
∫

1
√

(t2 − 16)
dt

[
cosh−1 x

4
+ c
]

2. Find
∫

3
√

(4x2 − 9)
dx

[
3

2
cosh−1 2x

3
+ c

]

3. Find
∫ √

(θ2 − 9) dθ

[
θ

2

√
(θ2 − 9) − 9

2
cosh−1 θ

3
+ c

]

4. Find
∫ √

(4θ2 − 25) dθ

[

θ

√(

θ2 − 25

4

)

− 25

4
cosh−1 2θ

5
+ c

]

5. Evaluate
∫ 2

1

2
√

(x2 − 1)
dx [2.634]

6. Evaluate
∫ 3

2

√
(t2 − 4) dt [1.429]
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41

Integration using partial fractions

41.1 Introduction

The process of expressing a fraction in terms of
simpler fractions—called partial fractions—is dis-
cussed in Chapter 3, with the forms of partial frac-
tions used being summarized in Table 3.1, page 18.

Certain functions have to be resolved into partial
fractions before they can be integrated as demon-
strated in the following worked problems.

41.2 Worked problems on integration
using partial fractions with linear
factors

Problem 1. Determine
∫

11 − 3x

x2 + 2x − 3
dx.

As shown in problem 1, page 18:

11 − 3x

x2 + 2x − 3
≡ 2

(x − 1)
− 5

(x + 3)

Hence
∫

11 − 3x

x2 + 2x − 3
dx

=
∫ {

2

(x − 1)
− 5

(x + 3)

}

dx

= 2 ln(x − 1) − 5 ln(x + 3) + c

(by algebraic substitutions — see Chapter 39)

or ln

{
(x − 1)2

(x + 3)5

}

+ c by the laws of logarithms

Problem 2. Find
∫

2x2 − 9x − 35

(x + 1)(x − 2)(x + 3)
dx

It was shown in Problem 2, page 19:

2x2 − 9x − 35

(x + 1)(x − 2)(x + 3)
≡ 4

(x + 1)
− 3

(x − 2)
+ 1

(x + 3)

Hence
∫

2x2 − 9x − 35

(x + 1)(x − 2)(x + 3)
dx

≡
∫ {

4

(x + 1)
− 3

(x − 2)
+ 1

(x + 3)

}

dx

= 4 ln(x + 1) − 3 ln(x − 2) + ln(x + 3) + c

or ln

{
(x + 1)4(x + 3)

(x − 2)3

}

+ c

Problem 3. Determine
∫

x2 + 1

x2 − 3x + 2
dx.

By dividing out (since the numerator and denomina-
tor are of the same degree) and resolving into partial
fractions it was shown in Problem 3, page 19:

x2 + 1

x2 − 3x + 2
≡ 1 − 2

(x − 1)
+ 5

(x − 2)

Hence
∫

x2 + 1

x2 − 3x + 2
dx

≡
∫ {

1 − 2

(x − 1)
+ 5

(x − 2)

}

dx

= (x − 2) ln(x − 1) + 5 ln(x − 2) + c

or x + ln

{
(x − 2)5

(x − 1)2

}

+ c

Problem 4. Evaluate
∫ 3

2

x3 − 2x2 − 4x − 4

x2 + x − 2
dx,

correct to 4 significant figures.
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By dividing out and resolving into partial fractions
it was shown in Problem 4, page 20:

x3 − 2x2 − 4x − 4

x2 + x − 2
≡ x − 3 + 4

(x + 2)
− 3

(x − 1)

Hence
∫ 3

2

x3 − 2x2 − 4x − 4

x2 + x − 2
dx

≡
∫ 3

2

{

x − 3 + 4

(x + 2)
− 3

(x − 1)

}

dx

=
[

x2

2
− 3x + 4 ln(x + 2) − 3 ln(x − 1)

]3

2

=
(

9

2
− 9 + 4 ln 5 − 3 ln 2

)

− (2 − 6 + 4 ln 4 − 3 ln 1)

= −1.687, correct to 4 significant figures

Now try the following exercise.

Exercise 163 Further problems on integra-
tion using partial fractions with linear factors

In Problems 1 to 5, integrate with respect to x

1.
∫

12

(x2 − 9)
dx

⎡

⎢
⎣

2 ln(x − 3) − 2 ln(x + 3) + c

or ln

{
x − 3

x + 3

}2

+ c

⎤

⎥
⎦

2.
∫

4(x − 4)

(x2 − 2x − 3)
dx

⎡

⎢
⎣

5 ln(x + 1) − ln(x − 3) + c

or ln

{
(x + 1)5

(x − 3)

}

+ c

⎤

⎥
⎦

3.
∫

3(2x2 − 8x − 1)

(x + 4)(x + 1)(2x − 1)
dx

⎡

⎢
⎢
⎢
⎣

7 ln(x + 4) − 3 ln(x + 1)

− ln(2x − 1) + c or

ln

{
(x + 4)7

(x + 1)3(2x − 1)

}

+ c

⎤

⎥
⎥
⎥
⎦

4.
∫

x2 + 9x + 8

x2 + x − 6
dx

[
x + 2 ln(x + 3) + 6 ln(x − 2) + c

or x + ln{(x + 3)2(x − 2)6} + c

]

5.
∫

3x3 − 2x2 − 16x + 20

(x − 2)(x + 2)
dx

⎡

⎣
3x2

2
− 2x + ln(x − 2)

−5 ln(x + 2) + c

⎤

⎦

In Problems 6 and 7, evaluate the definite inte-
grals correct to 4 significant figures.

6.
∫ 4

3

x2 − 3x + 6

x(x − 2)(x − 1)
dx [0.6275]

7.
∫ 6

4

x2 − x − 14

x2 − 2x − 3
dx [0.8122]

8. Determine the value of k, given that:∫ 1

0

(x − k)

(3x + 1)(x + 1)
dx = 0

[
1

3

]

9. The velocity constant k of a given chemical
reaction is given by:

kt =
∫ (

1

(3 − 0.4x)(2 − 0.6x)

)

dx

where x = 0 when t = 0. Show that:

kt = ln

{
2(3 − 0.4x)

3(2 − 0.6x)

}

41.3 Worked problems on integration
using partial fractions with
repeated linear factors

Problem 5. Determine
∫

2x + 3

(x − 2)2 dx.

It was shown in Problem 5, page 21:

2x + 3

(x − 2)2 ≡ 2

(x − 2)
+ 7

(x − 2)2
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Thus
∫

2x + 3

(x − 2)2 dx ≡
∫ {

2

(x − 2)
+ 7

(x − 2)2

}

dx

= 2 ln(x − 2) − 7
(x − 2)

+ c

⎡

⎣

∫
7

(x − 2)2 dx is determined using the algebraic

substitution u = (x − 2) — see Chapter 39.

⎤

⎦

Problem 6. Find
∫

5x2 − 2x − 19

(x + 3)(x − 1)2 dx.

It was shown in Problem 6, page 21:

5x2 − 2x − 19

(x + 3)(x − 1)2 ≡ 2

(x + 3)
+ 3

(x − 1)
− 4

(x − 1)2

Hence
∫

5x2 − 2x − 19

(x + 3)(x − 1)2 dx

≡
∫ {

2

(x + 3)
+ 3

(x − 1)
− 4

(x − 1)2

}

dx

= 2 ln (x + 3) + 3 ln (x − 1) + 4
(x − 1)

+ c

or ln
{

(x + 3)2(x − 1)3
}

+ 4
(x − 1)

+ c

Problem 7. Evaluate
∫ 1

−2

3x2 + 16x + 15

(x + 3)3 dx,

correct to 4 significant figures.

It was shown in Problem 7, page 22:

3x2 + 16x + 15

(x + 3)3 ≡ 3

(x + 3)
− 2

(x + 3)2 − 6

(x + 3)3

Hence
∫

3x2 + 16x + 15

(x + 3)3 dx

≡
∫ 1

−2

{
3

(x + 3)
− 2

(x + 3)2 − 6

(x + 3)3

}

dx

=
[

3 ln(x + 3) + 2

(x + 3)
+ 3

(x + 3)2

]1

−2

=
(

3 ln 4 + 2

4
+ 3

16

)

−
(

3 ln 1 + 2

1
+ 3

1

)

= −0.1536, correct to 4 significant figures

Now try the following exercise.

Exercise 164 Further problems on integra-
tion using partial fractions with repeated
linear factors

In Problems 1 and 2, integrate with respect
to x.

1.
∫

4x − 3

(x + 1)2 dx

[

4 ln(x + 1) + 7

(x + 1)
+ c

]

2.
∫

5x2 − 30x + 44

(x − 2)3 dx

⎡

⎢
⎣

5 ln(x − 2) + 10

(x − 2)

− 2

(x − 2)2 + c

⎤

⎥
⎦

In Problems 3 and 4, evaluate the definite inte-
grals correct to 4 significant figures.

3.
∫ 2

1

x2 + 7x + 3

x2(x + 3)
[1.663]

4.
∫ 7

6

18 + 21x − x2

(x − 5)(x + 2)2 dx [1.089]

5. Show that
∫ 1

0

(
4t2 + 9t + 8

(t + 2)(t + 1)2

)

dt = 2.546,

correct to 4 significant figures.

41.4 Worked problems on integration
using partial fractions with
quadratic factors

Problem 8. Find
∫

3 + 6x + 4x2 − 2x3

x2(x2 + 3)
dx.
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It was shown in Problem 9, page 23:

3 + 6x + 4x2 − 2x3

x2(x2 + 3)
≡ 2

x
+ 1

x2 + 3 − 4x

(x2 + 3)

Thus
∫

3 + 6x + 4x2 − 2x3

x2(x2 + 3)
dx

≡
∫ (

2

x
+ 1

x2 + (3 − 4x)

(x2 + 3)

)

dx

=
∫ {

2

x
+ 1

x2 + 3

(x2 + 3)
− 4x

(x2 + 3)

}

dx

∫
3

(x2 + 3)
dx = 3

∫
1

x2 + (
√

3)2
dx

= 3√
3

tan−1 x√
3

, from 12, Table 40.1, page 398.

∫
4x

x2 + 3
dx is determined using the algebraic sub-

stitution u = (x2 + 3).

Hence
∫ {

2

x
+ 1

x2 + 3

(x2 + 3)
− 4x

(x2 + 3)

}

dx

= 2 ln x − 1

x
+ 3√

3
tan−1 x√

3

− 2 ln(x2 + 3) + c

= ln
(

x
x2 + 3

)2

− 1
x

+ √
3 tan−1 x√

3
+ c

Problem 9. Determine
∫

1

(x2 − a2)
dx.

Let
1

(x2 − a2)
≡ A

(x − a)
+ B

(x + a)

≡ A(x + a) + B(x − a)

(x + a)(x − a)

Equating the numerators gives:

1 ≡ A(x + a) + B(x − a)

Let x = a, then A = 1

2a
, and let x = −a, then

B = − 1

2a

Hence
∫

1

(x2 − a2)
dx

≡
∫

1

2a

[
1

(x − a)
− 1

(x + a)

]

dx

= 1

2a
[ ln(x − a) − ln(x + a)] + c

= 1
2a

ln
(

x − a
x + a

)

+ c

Problem 10. Evaluate
∫ 4

3

3

(x2 − 4)
dx,

correct to 3 significant figures.

From Problem 9,
∫ 4

3

3

(x2 − 4)
dx = 3

[
1

2(2)
ln

(
x − 2

x + 2

)]4

3

= 3

4

[

ln
2

6
− ln

1

5

]

= 3

4
ln

5

3
= 0.383, correct to 3

significant figures

Problem 11. Determine
∫

1

(a2 − x2)
dx.

Using partial fractions, let

1

(a2 − x2)
≡ 1

(a − x)(a + x)
≡ A

(a − x)
+ B

(a + x)

≡ A(a + x) + B(a − x)

(a − x)(a + x)

Then 1 ≡ A(a + x) + B(a − x)

Let x = a then A = 1

2a
. Let x = −a then B = 1

2a

Hence
∫

1

(a2 − x2)
dx

=
∫

1

2a

[
1

(a − x)
+ 1

(a + x)

]

dx
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= 1

2a
[−ln(a − x) + ln (a + x)] + c

= 1
2a

ln
(

a + x
a − x

)

+ c

Problem 12. Evaluate
∫ 2

0

5

(9 − x2)
dx,

correct to 4 decimal places.

From Problem 11,

∫ 2

0

5

(9 − x2)
dx = 5

[
1

2(3)
ln

(
3 + x

3 − x

)]2

0

= 5

6

[

ln
5

1
− ln 1

]

= 1.3412, correct to 4
decimal places

Now try the following exercise.

Exercise 165 Further problems on integra-
tion using partial fractions with quadratic
factors

1. Determine
∫

x2 − x − 13

(x2 + 7)(x − 2)
dx

⎡

⎣ ln (x2 + 7) + 3√
7

tan−1 x√
7− ln (x − 2) + c

⎤

⎦

In Problems 2 to 4, evaluate the definite integrals
correct to 4 significant figures.

2.
∫ 6

5

6x − 5

(x − 4)(x2 + 3)
dx [0.5880]

3.
∫ 2

1

4

(16 − x2)
dx [0.2939]

4.
∫ 5

4

2

(x2 − 9)
dx [0.1865]

5. Show that
∫ 2

1

(
2 + θ + 6θ2 − 2θ3

θ2(θ2 + 1)

)

dθ

= 1.606, correct to 4 significant figures.
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42

The t = tanθ
2 substitution

42.1 Introduction

Integrals of the form
∫

1

a cos θ + b sin θ + c
dθ,

where a, b and c are constants, may be determined

by using the substitution t = tan
θ

2
. The reason is

explained below.
If angle A in the right-angled triangle ABC shown

in Fig. 42.1 is made equal to
θ

2
then, since tangent =

opposite

adjacent
, if BC = t and AB = 1, then tan

θ

2
= t.

By Pythagoras’ theorem, AC = √
1 + t2

C

BA

t

2
1

1�t2

θ

Figure 42.1

Therefore sin
θ

2
= t√

1 + t2
and cos

θ

2
= 1√

1 + t2

Since sin 2x = 2 sin x cos x (from double angle for-
mulae, Chapter 18), then

sin θ = 2 sin
θ

2
cos

θ

2

= 2

(
t√

1 + t2

)(
t√

1 + t2

)

i.e. sin θ = 2t

(1 + t2)
(1)

Since cos 2x = cos2 θ

2
− sin2 θ

2

=
(

1√
1 + t2

)2

−
(

t√
1 + t2

)2

i.e. cos θ = 1 − t2

1 + t2
(2)

Also, since t = tan
θ

2
,

dt

dθ
= 1

2
sec2 θ

2
= 1

2

(

1 + tan2 θ

2

)

from trigonomet-

ric identities,

i.e.
dt

dθ
= 1

2
(1 + t2)

from which, dθ = 2 d t

1 + t2
(3)

Equations (1), (2) and (3) are used to determine

integrals of the form
∫

1

a cos θ + b sin θ + c
dθ

where a, b or c may be zero.

42.2 Worked problems on the t = tan
θ

2
substitution

Problem 1. Determine:
∫

dθ

sin θ

If t = tan
θ

2
then sin θ = 2t

1 + t2 and dθ = 2 dt

1 + t2

from equations (1) and (3).

Thus
∫

dθ

sin θ
=
∫

1

sin θ
dθ
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=
∫ 1

2t
1 + t2

(
2 dt

1 + t2

)

=
∫

1

t
dt = ln t + c

Hence
∫

dθ

sin θ
= ln

(

tan
θ

2

)

+ c

Problem 2. Determine:
∫

dx

cos x

If tan
x

2
then cos x = 1 − t2

1 + t2 and dx = 2 dt

1 + t2 from

equations (2) and (3).

Thus
∫

dx

cos x
=
∫ 1

1 − t2

1 + t2

(
2 dt

1 + t2

)

=
∫

2

1 − t2 dt

2

1 − t2 may be resolved into partial fractions (see

Chapter 3).

Let
2

1 − t2 = 2

(1 − t)(1 + t)

= A

(1 − t)
+ B

(1 + t)

= A(1 + t) + B(1 − t)

(1 − t)(1 + t)

Hence 2 = A(1 + t) + B(1 − t)

When t = 1, 2 = 2A, from which, A = 1

When t = −1, 2 = 2B, from which, B = 1

Hence
∫

2 dt

1 − t2 =
∫

1

(1 − t)
+ 1

(1 + t)
dt

= −ln(1 − t) + ln(1 + t) + c

= ln

{
(1 + t)

(1 − t)

}

+ c

Thus
∫

dx
cos x

= ln

⎧
⎪⎨

⎪⎩

1 + tan
x
2

1 − tan
x
2

⎫
⎪⎬

⎪⎭
+ c

Note that since tan
π

4
= 1, the above result may be

written as:

∫
dx

cos x
= ln

⎧
⎪⎨

⎪⎩

tan
π

4
+ tan

x

2

1 − tan
π

4
tan

x

2

⎫
⎪⎬

⎪⎭
+ c

= ln
{

tan
(π

4
+ x

2

)}
+ c

from compound angles, Chapter 18.

Problem 3. Determine:
∫

dx

1 + cos x

If tan
x

2
then cos x = 1 − t2

1 + t2 and dx = 2 dt

1 + t2 from

equations (2) and (3).

Thus
∫

dx

1 + cos x
=
∫

1

1 + cos x
dx

=
∫

1

1 + 1 − t2

1 + t2

(
2 dt

1 + t2

)

=
∫

1

(1 + t2) + (1 − t2)

1 + t2

(
2 dt

1 + t2

)

=
∫

dt

Hence
∫

dx

1 + cos x
= t + c = tan

x
2

+ c

Problem 4. Determine:
∫

dθ

5 + 4 cos θ

If t = tan
θ

2
then cos θ = 1 − t2

1 + t2 and dx = 2 dt

1 + t2

from equations (2) and (3).

Thus
∫

dθ

5 + 4 cos θ
=
∫

(
2 dt

1 + t2

)

5 + 4

(
1 − t2

1 + t2

)

=
∫

(
2 dt

1 + t2

)

5(1 + t2) + 4(1 − t2)

(1 + t2)

= 2
∫

dt

t2 + 9
= 2

∫
dt

t2 + 32

= 2

(
1

3
tan−1 t

3

)

+ c,
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from 12 of Table 40.1, page 398. Hence

∫
dθ

5 + 4 cos θ
= 2

3
tan−1

(
1
3

tan
θ

2

)

+ c

Now try the following exercise.

Exercise 166 Further problems on the

t = tan
θ

2
substitution

Integrate the following with respect to the
variable:

1.
∫

dθ

1 + sin θ

⎡

⎢
⎣

−2

1 + tan
θ

2

+ c

⎤

⎥
⎦

2.
∫

dx

1 − cos x + sin x
⎡

⎢
⎣ln

⎧
⎪⎨

⎪⎩

tan
x

2

1 + tan
x

2

⎫
⎪⎬

⎪⎭
+ c

⎤

⎥
⎦

3.
∫

dα

3 + 2 cos α
[

2√
5

tan−1
(

1√
5

tan
α

2

)

+ c

]

4.
∫

dx

3 sin x − 4 cos x
⎡

⎢
⎣

1

5
ln

⎧
⎪⎨

⎪⎩

2 tan
x

2
− 1

tan
x

2
+ 2

⎫
⎪⎬

⎪⎭
+ c

⎤

⎥
⎦

42.3 Further worked problems on the

t = tan
θ

2
substitution

Problem 5. Determine:
∫

dx

sin x + cos x

If tan
x

2
then sin x = 2t

1 + t2 , cos x = 1 − t2

1 + t2 and

dx = 2 dt

1 + t2 from equations (1), (2) and (3).

Thus
∫

dx

sin x + cos x
=
∫ 2 dt

1 + t2
(

2t

1 + t2

)

+
(

1 − t2

1 + t2

)

=
∫ 2 dt

1 + t2

2t + 1 − t2

1 + t2

=
∫

2 dt

1 + 2t − t2

=
∫ −2 dt

t2 − 2t − 1
=
∫ −2 dt

(t − 1)2 − 2

=
∫

2 dt

(
√

2)2 − (t − 1)2

= 2

[
1

2
√

2
ln

{√
2 + (t − 1)√
2 − (t − 1)

}]

+ c

(see problem 11, Chapter 41, page 411),

i.e.
∫

dx

sin x + cos x

= 1√
2

ln

⎧
⎪⎨

⎪⎩

√
2 − 1 + tan

x
2√

2 + 1 − tan
x
2

⎫
⎪⎬

⎪⎭
+ c

Problem 6. Determine:∫
dx

7 − 3 sin x + 6 cos x

From equations (1) and (3),
∫

dx

7 − 3 sin x + 6 cos x

=
∫ 2 dt

1 + t2

7 − 3

(
2t

1 + t2

)

+ 6

(
1 − t2

1 + t2

)

=
∫ 2 dt

1 + t2

7(1 + t2) − 3(2t) + 6(1 − t2)

1 + t2

=
∫

2 dt

7 + 7t2 − 6t + 6 − 6t2

=
∫

2 dt

t2 − 6t + 13
=
∫

2 dt

(t − 3)2 + 22

= 2

[
1

2
tan−1

(
t − 3

2

)]

+ c
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from 12, Table 40.1, page 398. Hence
∫

dx

7 − 3 sin x + 6 cos x

= tan−1

⎛

⎜
⎝

tan
x
2

− 3

2

⎞

⎟
⎠+ c

Problem 7. Determine:
∫

dθ

4 cos θ + 3 sin θ

From equations (1) to (3),
∫

dθ

4 cos θ + 3 sin θ

=
∫ 2 dt

1 + t2

4

(
1 − t2

1 + t2

)

+ 3

(
2t

1 + t2

)

=
∫

2 dt

4 − 4t2 + 6t
=
∫

dt

2 + 3t − 2t2

= −1

2

∫
dt

t2 − 3

2
t − 1

= −1

2

∫
dt

(

t − 3

4

)2

− 25

16

= 1

2

∫
dt

(
5

4

)2

−
(

t − 3

4

)2

= 1

2

⎡

⎢
⎢
⎣

1

2

(
5

4

) ln

⎧
⎪⎪⎨

⎪⎪⎩

5

4
+
(

t − 3

4

)

5

4
−
(

t − 3

4

)

⎫
⎪⎪⎬

⎪⎪⎭

⎤

⎥
⎥
⎦+ c

from problem 11, Chapter 41, page 411

= 1

5
ln

⎧
⎪⎨

⎪⎩

1

2
+ t

2 − t

⎫
⎪⎬

⎪⎭
+ c

Hence
∫

dθ

4 cos θ + 3 sin θ

= 1
5

ln

⎧
⎪⎨

⎪⎩

1
2

+ tan
θ

2

2 − tan
θ

2

⎫
⎪⎬

⎪⎭
+ c

or
1
5

ln

⎧
⎪⎨

⎪⎩

1 + 2 tan
θ

2

4 − 2 tan
θ

2

⎫
⎪⎬

⎪⎭
+ c

Now try the following exercise.

Exercise 167 Further problems on the
t = tan θ/2 substitution

In Problems 1 to 4, integrate with respect to the
variable.

1.
∫

dθ

5 + 4 sin θ
⎡

⎢
⎣

2

3
tan−1

⎛

⎜
⎝

5 tan
θ

2
+ 4

3

⎞

⎟
⎠ + c

⎤

⎥
⎦

2.
∫

dx

1 + 2 sin x
⎡

⎢
⎣

1√
3

ln

⎧
⎪⎨

⎪⎩

tan
x

2
+ 2 − √

3

tan
x

2
+ 2 + √

3

⎫
⎪⎬

⎪⎭
+ c

⎤

⎥
⎦

3.
∫

dp

3 − 4 sin p + 2 cos p
⎡

⎢
⎣

1√
11

ln

⎧
⎪⎨

⎪⎩

tan
p

2
− 4 − √

11

tan
p

2
− 4 + √

11

⎫
⎪⎬

⎪⎭
+ c

⎤

⎥
⎦

4.
∫

dθ

3 − 4 sin θ
⎡

⎢
⎣

1√
7

ln

⎧
⎪⎨

⎪⎩

3 tan
θ

2
− 4 − √

7

3 tan
θ

2
− 4 + √

7

⎫
⎪⎬

⎪⎭
+ c

⎤

⎥
⎦

5. Show that

∫
dt

1 + 3 cos t
= 1

2
√

2
ln

⎧
⎪⎨

⎪⎩

√
2 + tan

t

2√
2 − tan

t

2

⎫
⎪⎬

⎪⎭
+ c

6. Show that
∫ π/3

0

3 dθ

cos θ
= 3.95, correct to 3

significant figures.

7. Show that
∫ π/2

0

dθ

2 + cos θ
= π

3
√

3
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Assignment 11

This assignment covers the material contained
in Chapters 40 to 42.

The marks for each question are shown in
brackets at the end of each question.

1. Determine the following integrals:

(a)
∫

cos3 x sin2 x dx (b)
∫

2
√

(9 − 4x2)
dx

(c)
∫

2
√

(4x2 − 9)
dx (14)

2. Evaluate the following definite integrals, correct
to 4 significant figures:

(a)
∫ π

2

0
3 sin2 t dt (b)

∫ π
3

0
3 cos 5θ sin 3θ dθ

(c)
∫ 2

0

5

4 + x2 dx (15)

3. Determine

(a)
∫

x − 11

x2 − x − 2
dx

(b)
∫

3 − x

(x2 + 3)(x + 3)
dx (21)

4. Evaluate
∫ 2

1

3

x2(x + 2)
dx correct to 4 significant

figures. (12)

5. Determine:
∫

dx

2 sin x + cos x
(8)

6. Evaluate:
∫ π

2

π
3

dx

3 − 2 sin x
correct to 3 decimal

places. (10)
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Integration by parts

43.1 Introduction

From the product rule of differentiation:

d

dx
(uv) = v

du

dx
+ u

dv

dx
,

where u and v are both functions of x.

Rearranging gives: u
dv

dx
= d

dx
(uv) − v

du

dx
Integrating both sides with respect to x gives:

∫
u

dv

dx
dx =

∫
d

dx
(uv) dx −

∫
v

du

dx
dx

i.e.
∫

u
dv

dx
dx = uv −

∫
v

du

dx
dx

or
∫

u dv = uv −
∫

v du

This is known as the integration by parts for-
mula and provides a method of integrating such
products of simple functions as

∫
xex dx,

∫
t sin t dt,∫

eθ cos θ dθ and
∫

x ln x dx.
Given a product of two terms to integrate the ini-

tial choice is: ‘which part to make equal to u’ and
‘which part to make equal to v’. The choice must
be such that the ‘u part’ becomes a constant after
successive differentiation and the ‘dv part’ can be
integrated from standard integrals. Invariable, the
following rule holds: If a product to be integrated
contains an algebraic term (such as x, t2 or 3θ) then
this term is chosen as the u part. The one exception
to this rule is when a ‘ln x’ term is involved; in this
case ln x is chosen as the ‘u part’.

43.2 Worked problems on integration
by parts

Problem 1. Determine
∫

x cos x dx.

From the integration by parts formula,

∫
u dv = uv −

∫
v du

Let u = x, from which
du

dx
= 1, i.e. du = dx and let

dv = cos x dx, from which v = ∫
cos x dx = sin x.

Expressions for u, du and v are now substituted
into the ‘by parts’ formula as shown below.

i.e.
∫

x cos x dx = x sin x − (−cos x) + c

= x sin x + cos x + c

[This result may be checked by differentiating the
right hand side,

i.e.
d

dx
(x sin x + cos x + c)

= [(x)(cos x) + (sin x)(1)] − sin x + 0
using the product rule

= x cos x, which is the function
being integrated]

Problem 2. Find
∫

3te2t dt.

Let u = 3t, from which,
du

dt
= 3, i.e. du = 3 dt and

let dv = e2t dt, from which, v = ∫
e2t dt = 1

2
e2t

Substituting into
∫

u dv = uv − ∫
v du gives:

∫
3te2t dt = (3t)

(
1

2
e2t
)

−
∫ (

1

2
e2t
)

(3 dt)
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= 3

2
te2t − 3

2

∫
e2t dt

= 3

2
te2t − 3

2

(
e2t

2

)

+ c

Hence
∫

3t e2t dt = 3
2 e2t

(
t − 1

2

)
+ c,

which may be checked by differentiating.

Problem 3. Evaluate
∫ π

2

0
2θ sin θ dθ.

Let u = 2θ, from which,
du

dθ
= 2, i.e. du = 2 dθ and

let dv = sin θ dθ, from which,

v =
∫

sin θ dθ = −cos θ

Substituting into
∫

u dv = uv − ∫
v du gives:

∫
2θ sin θ dθ = (2θ)(−cos θ) −

∫
(−cos θ)(2 dθ)

= −2θ cos θ + 2
∫

cos θ dθ

= −2θ cos θ + 2 sin θ + c

Hence
∫ π

2

0
2θ sin θ dθ

= [−2θ cos θ + 2 sin θ]
π
2
0

=
[
−2
(π

2

)
cos

π

2
+ 2 sin

π

2

]
− [0 + 2 sin 0]

= (−0 + 2) − (0 + 0) = 2

since cos
π

2
= 0 and sin

π

2
= 1

Problem 4. Evaluate
∫ 1

0
5xe4x dx, correct to

3 significant figures.

Let u = 5x, from which
du

dx
= 5, i.e. du = 5 dx and

let dv = e4x dx, from which, v = ∫
e4x dx = 1

4 e4x.

Substituting into
∫

u dv = uv − ∫
v du gives:

∫
5xe4x dx = (5x)

(
e4x

4

)

−
∫ (

e4x

4

)

(5 dx)

= 5

4
xe4x − 5

4

∫
e4x dx

= 5

4
xe4x − 5

4

(
e4x

4

)

+ c

= 5

4
e4x
(

x − 1

4

)

+ c

Hence
∫ 1

0
5xe4x dx

=
[

5

4
e4x
(

x − 1

4

)]1

0

=
[

5

4
e4
(

1 − 1

4

)]

−
[

5

4
e0
(

0 − 1

4

)]

=
(

15

16
e4
)

−
(

− 5

16

)

= 51.186 + 0.313 = 51.499 = 51.5,

correct to 3 significant figures

Problem 5. Determine
∫

x2 sin x dx.

Let u = x2, from which,
du

dx
= 2x, i.e. du = 2x dx, and

let dv = sin x dx, from which,

v =
∫

sin x dx = −cos x

Substituting into
∫

u dv = uv − ∫
v du gives:

∫
x2 sin x dx = (x2)(−cos x) −

∫
(−cos x)(2x dx)

= −x2 cos x + 2

[∫
x cos x dx

]

The integral,
∫

x cos x dx, is not a ‘standard integral’
and it can only be determined by using the integration
by parts formula again.
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From Problem 1,
∫

x cos x dx = x sin x + cos x

Hence
∫

x2 sin x dx

= −x2 cos x + 2{x sin x + cos x} + c

= −x2 cos x + 2x sin x + 2 cos x + c

= (2 − x2)cos x + 2x sin x + c

In general, if the algebraic term of a product is of
power n, then the integration by parts formula is
applied n times.

Now try the following exercise.

Exercise 168 Further problems on integra-
tion by parts

Determine the integrals in Problems 1 to 5 using
integration by parts.

1.
∫

xe2x dx

[[
e2x

2

(

x − 1

2

)]

+ c

]

2.
∫

4x

e3x
dx

[

−4

3
e−3x

(

x + 1

3

)

+ c

]

3.
∫

x sin x dx [−x cos x + sin x + c]

4.
∫

5θ cos 2θ dθ

[
5
2

(
θ sin 2θ + 1

2 cos 2θ
)+ c

]

5.
∫

3t2e2t dt
[ 3

2 e2t(t2 − t + 1
2

)+ c
]

Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.

6.
∫ 2

0
2xex dx [16.78]

7.
∫ π

4

0
x sin 2x dx [0.2500]

8.
∫ π

2

0
t2 cos t dt [0.4674]

9.
∫ 2

1
3x2e

x
2 dx [15.78]

43.3 Further worked problems on
integration by parts

Problem 6. Find
∫

x ln x dx.

The logarithmic function is chosen as the ‘u part’.

Thus when u = ln x, then
du

dx
= 1

x
, i.e. du = dx

x

Letting dv = x dx gives v = ∫
x dx = x2

2
Substituting into

∫
u dv = uv − ∫

v du gives:
∫

x ln x dx = ( ln x)

(
x2

2

)

−
∫ (

x2

2

)
dx

x

= x2

2
ln x − 1

2

∫
x dx

= x2

2
ln x − 1

2

(
x2

2

)

+ c

Hence
∫

x ln x dx = x2

2

(

ln x − 1
2

)

+ c or

x2

4
(2 ln x − 1) + c

Problem 7. Determine
∫

ln x dx.

∫
ln x dx is the same as

∫
(1) ln x dx

Let u = ln x, from which,
du

dx
= 1

x
, i.e. du = dx

x
and let dv = 1dx, from which, v = ∫

1 dx = x

Substituting into
∫

u dv = uv − ∫
v du gives:

∫
ln x dx = ( ln x)(x) −

∫
x

dx

x

= x ln x −
∫

dx = x ln x − x + c

Hence
∫

ln x dx = x(ln x − 1) + c

Problem 8. Evaluate
∫ 9

1

√
x ln x dx, correct to

3 significant figures.
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Let u = ln x, from which du = dx

x

and let dv = √
x dx = x

1
2 dx, from which,

v =
∫

x
1
2 dx = 2

3
x

3
2

Substituting into
∫

u dv = uv − ∫ v du gives:

∫ √
x ln x dx = (ln x)

(
2

3
x

3
2

)

−
∫ (

2

3
x

3
2

)(
dx

x

)

= 2

3

√
x3 ln x − 2

3

∫
x

1
2 dx

= 2

3

√
x3 ln x − 2

3

(
2

3
x

3
2

)

+ c

= 2

3

√
x3

[

ln x − 2

3

]

+ c

Hence
∫ 9

1

√
x ln x dx

=
[

2

3

√
x3

(

ln x − 2

3

)]9

1

=
[

2

3

√
93

(

ln 9 − 2

3

)]

−
[

2

3

√
13

(

ln1 − 2

3

)]

=
[

18

(

ln 9 − 2

3

)]

−
[

2

3

(

0 − 2

3

)]

= 27.550 + 0.444 = 27.994 = 28.0,
correct to 3 significant figures

Problem 9. Find
∫

eax cos bx dx.

When integrating a product of an exponential and a
sine or cosine function it is immaterial which part is
made equal to ‘u’.

Let u = eax, from which
du

dx
= aeax,

i.e. du = aeax dx and let dv = cos bx dx, from which,

v =
∫

cos bx dx = 1

b
sin bx

Substituting into
∫

u dv = uv − ∫
v du gives:

∫
eax cos bx dx

= (eax)

(
1

b
sin bx

)

−
∫ (

1

b
sin bx

)

(aeax dx)

= 1

b
eax sin bx − a

b

[∫
eax sin bx dx

]

(1)

∫
eax sin bx dx is now determined separately using

integration by parts again:

Let u = eax then du = aeax dx, and let dv = sin bx dx,
from which

v =
∫

sin bx dx = −1

b
cos bx

Substituting into the integration by parts formula
gives:

∫
eax sin bx dx = (eax)

(

−1

b
cos bx

)

−
∫ (

−1

b
cos bx

)

(aeax dx)

= −1

b
eax cos bx

+a

b

∫
eax cos bx dx

Substituting this result into equation (1) gives:

∫
eax cos bx dx = 1

b
eax sin bx − a

b

[

−1

b
eax cos bx

+ a

b

∫
eax cos bx dx

]

= 1

b
eax sin bx + a

b2 eax cos bx

−a2

b2

∫
eax cos bx dx

The integral on the far right of this equation is the
same as the integral on the left hand side and thus
they may be combined.

∫
eax cos bx dx + a2

b2

∫
eax cos bx dx

= 1

b
eax sin bx + a

b2 eax cos bx
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i.e.

(

1 + a2

b2

)∫
eax cos bx dx

= 1

b
eax sin bx + a

b2 eax cos bx

i.e.

(
b2 + a2

b2

)∫
eax cos bx dx

= eax

b2 (b sin bx + a cos bx)

Hence
∫

eax cos bx dx

=
(

b2

b2 + a2

)(
eax

b2

)

(b sin bx + a cos bx)

= eax

a2 + b2 (b sin bx + a cos bx) + c

Using a similar method to above, that is, integrating
by parts twice, the following result may be proved:
∫

eax sin bx dx

= eax

a2 + b2 (a sin bx − b cos bx) + c (2)

Problem 10. Evaluate
∫ π

4

0
et sin 2t dt, correct

to 4 decimal places.

Comparing
∫

et sin 2t dt with
∫

eax sin bx dx shows
that x = t, a = 1 and b = 2.

Hence, substituting into equation (2) gives:

∫ π
4

0
et sin 2t dt

=
[

et

12 + 22 (1 sin 2t − 2 cos 2t)

]π
4

0

=
[

e
π
4

5

(
sin 2

(π

4

)
− 2 cos 2

(π

4

))
]

−
[

e0

5
(sin 0 − 2 cos 0)

]

=
[

e
π
4

5
(1 − 0)

]

−
[

1

5
(0 − 2)

]

= e
π
4

5
+ 2

5

= 0.8387, correct to 4 decimal places

Now try the following exercise.

Exercise 169 Further problems on integra-
tion by parts

Determine the integrals in Problems 1 to 5 using
integration by parts.

1.
∫

2x2 ln x dx

[
2

3
x3
(

ln x − 1

3

)

+ c

]

2.
∫

2 ln 3x dx [2x(ln 3x − 1) + c]

3.
∫

x2 sin 3x dx

[
cos 3x

27
(2 − 9x2) + 2

9
x sin 3x + c

]

4.
∫

2e5x cos 2x dx

[
2

29
e5x(2 sin 2x + 5 cos 2x) + c

]

5.
∫

2θ sec2 θ dθ [2[θ tan θ − ln(sec θ)] + c]

Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.

6.
∫ 2

1
x ln x dx [0.6363]

7.
∫ 1

0
2e3x sin 2x dx [11.31]

8.
∫ π

2

0
et cos 3t dt [−1.543]

9.
∫ 4

1

√
x3 ln x dx [12.78]
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10. In determining a Fourier series to repre-
sent f (x) = x in the range −π to π, Fourier
coefficients are given by:

an = 1

π

∫ π

−π

x cos nx dx

and bn = 1

π

∫ π

−π

x sin nx dx

where n is a positive integer. Show by
using integration by parts that an = 0 and

bn = −2

n
cos nπ.

11. The equation C =
∫ 1

0
e−0.4θ cos 1.2θ dθ

and S =
∫ 1

0
e−0.4θ sin 1.2θ dθ

are involved in the study of damped oscilla-
tions. Determine the values of C and S.

[C = 0.66, S = 0.41]
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44

Reduction formulae

44.1 Introduction

When using integration by parts in Chapter 43, an
integral such as

∫
x2ex dx requires integration by

parts twice. Similarly,
∫

x3ex dx requires integra-
tion by parts three times. Thus, integrals such as∫

x5ex dx,
∫

x6 cos x dx and
∫

x8 sin 2x dx for exam-
ple, would take a long time to determine using
integration by parts. Reduction formulae provide
a quicker method for determining such integrals
and the method is demonstrated in the following
sections.

44.2 Using reduction formulae for
integrals of the form

∫
xnexdx

To determine
∫

xnex dx using integration by parts,

let u = xn from which,

du

dx
= nxn−1 and du = nxn−1 dx

and dv= ex dx from which,

v =
∫

ex dx = ex

Thus,
∫

xnex dx = xnex −
∫

exnxn−1 dx

using the integration by parts formula,

= xnex − n
∫

xn−1ex dx

The integral on the far right is seen to be of the same
form as the integral on the left-hand side, except that
n has been replaced by n − 1.
Thus, if we let,

∫
xnex dx = In,

then
∫

xn−1ex dx = In−1

Hence
∫

xnex dx = xnex − n
∫

xn−1ex dx

can be written as:

In = xnex − nIn−1 (1)

Equation (1) is an example of a reduction formula
since it expresses an integral in n in terms of the
same integral in n − 1.

Problem 1. Determine
∫

x2ex dx using a reduc-
tion formula.

Using equation (1) with n = 2 gives:
∫

x2ex dx = I2 = x2ex − 2I1

and I1 = x1ex − 1I0

I0 =
∫

x0ex dx =
∫

ex dx = ex + c1

Hence I2 = x2ex − 2[xex − 1I0]

= x2ex − 2[xex − 1(ex + c1)]

i.e.
∫

x2ex dx = x2ex − 2xex+ 2ex + 2c1

= ex(x2 − 2x + 2) + c
(where c = 2c1)

As with integration by parts, in the following exam-
ples the constant of integration will be added at the
last step with indefinite integrals.

Problem 2. Use a reduction formula to deter-
mine

∫
x3ex dx.

From equation (1), In = xnex − nIn−1

Hence
∫

x3ex dx = I3 = x3ex − 3I2

I2 = x2ex − 2I1

I1 = x1ex − 1I0
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and I0 =
∫

x0ex dx =
∫

ex dx = ex

Thus
∫

x3ex dx = x3ex − 3[x2ex − 2I1]

= x3ex − 3[x2ex − 2(xex − I0)]

= x3ex − 3[x2ex − 2(xex − ex)]

= x3ex − 3x2ex + 6(xex − ex)

= x3ex − 3x2ex + 6xex − 6ex

i.e.
∫

x3ex dx = ex(x3− 3x2+ 6x − 6) + c

Now try the following exercise.

Exercise 170 Further problems on using
reduction formulae for integrals of the form∫

xnex dx

1. Use a reduction formula to determine∫
x4ex dx.

[ex(x4 − 4x3 + 12x2 − 24x + 24) + c]

2. Determine
∫

t3e2tdt using a reduction for-
mula. [

e2t
( 1

2 t3 − 3
4 t2 + 3

4 t − 3
8

) + c
]

3. Use the result of Problem 2 to evaluate∫ 1
0 5t3e2tdt, correct to 3 decimal places.

[6.493]

44.3 Using reduction formulae for
integrals of the form

∫
xn cos x dx

and
∫

xn sin x dx

(a)
∫

xn cos x dx

Let In = ∫
xn cos x dx then, using integration by

parts:

if u = xn then
du

dx
= nxn−1

and if dv = cos x dx then

v =
∫

cos x dx = sin x

Hence In = xn sin x −
∫

( sin x)nxn−1 dx

= xn sin x − n
∫

xn−1 sin x dx

Using integration by parts again, this time with
u = xn−1:

du

dx
= (n − 1)xn−2, and dv = sin x dx,

from which,

v =
∫

sin x dx = −cos x

Hence In = xn sin x − n

[

xn−1(−cos x)

−
∫

(−cos x)(n − 1)xn−2 dx

]

= xn sin x + nxn−1 cos x

− n(n − 1)
∫

xn−2 cos x dx

i.e.
In = xnsin x + nxn−1cos x

− n(n − 1)In−2
(2)

Problem 3. Use a reduction formula to deter-
mine

∫
x2 cos x dx.

Using the reduction formula of equation (2):
∫

x2 cos x dx = I2

= x2 sin x + 2x1 cos x − 2(1)I0

and I0 =
∫

x0 cos x dx

=
∫

cos x dx = sin x

Hence
∫

x2cos x dx = x2sin x + 2x cos x

− 2 sin x + c

Problem 4. Evaluate
∫ 2

1 4t3 cos t dt, correct to
4 significant figures.

Let us firstly find a reduction formula for∫
t3 cos t dt.
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From equation (2),
∫

t3 cos t dt = I3 = t3 sin t + 3t2 cos t − 3(2)I1

and

I1 = t1 sin t + 1t0 cos t − 1(0)In−2

= t sin t + cos t

Hence
∫

t3 cos t dt = t3 sin t + 3t2 cos t

−3(2)[t sin t + cos t]

= t3sin t + 3t2cos t − 6t sin t − 6 cos t

Thus
∫ 2

1
4t3 cos t dt

= [4(t3 sin t + 3t2 cos t − 6t sin t − 6 cos t)]2
1

= [4(8 sin 2 + 12 cos 2 − 12 sin 2 − 6 cos 2)]

− [4(sin 1 + 3 cos 1 − 6 sin 1 − 6 cos 1)]

= (−24.53628) − (−23.31305)

= −1.223

Problem 5. Determine a reduction formula
for
∫ π

0 xn cos x dx and hence evaluate∫ π

0 x4 cos x dx, correct to 2 decimal places.

From equation (2),

In = xn sin x + nxn−1 cos x − n(n − 1)In−2.

hence
∫ π

0
xn cos x dx = [xn sin x + nxn−1 cos x]π0

− n(n − 1)In−2

= [(πn sin π + nπn−1 cos π)

− (0 + 0)] − n(n − 1)In−2

= − nπn−1 − n(n − 1)In−2

Hence
∫ π

0
x4 cos x dx = I4

= −4π3 − 4(3)I2 since n = 4

When n = 2,
∫ π

0
x2 cos x dx = I2 = −2π1 − 2(1)I0

and I0 =
∫ π

0
x0 cos x dx

=
∫ π

0
cos x dx

= [sin x]π0 = 0

Hence
∫ π

0
x4 cos x dx = −4π3 − 4(3)[−2π − 2(1)(0)]

= −4π3 + 24π or −48.63,

correct to 2 decimal places

(b)
∫

xnsin x dx

Let In = ∫
xn sin x dx

Using integration by parts, if u = xn then
du

dx
= nxn−1 and if dv = sin x dx then

v = ∫
sin x dx = −cos x. Hence

∫
xn sin x dx

= In = xn(−cos x) −
∫

(−cos x)nxn−1 dx

= −xn cos x + n
∫

xn−1 cos x dx

Using integration by parts again, with u = xn−1,

from which,
du

dx
= (n − 1)xn−2 and dv = cos x, from

which, v = ∫
cos x dx = sin x. Hence

In = −xn cos x + n

[

xn−1(sin x)

−
∫

(sin x)(n − 1)xn−2 dx

]

= −xn cos x + nxn−1(sin x)

− n(n − 1)
∫

xn−2 sin x dx

i.e.
In = −xncos x + nxn−1 sin x

− n(n − 1)In−2
(3)
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Problem 6. Use a reduction formula to deter-
mine

∫
x3 sin x dx.

Using equation (3),
∫

x3 sin x dx = I3

= −x3 cos x + 3x2 sin x − 3(2)I1

and I1 = −x1 cos x + 1x0 sin x

= −x cos x + sin x

Hence
∫

x3 sin x dx = −x3 cos x + 3x2 sin x

− 6[−x cos x + sin x]

= −x3cos x + 3x2sin x

+ 6x cos x − 6 sin x + c

Problem 7. Evaluate
∫ π

2

0
3θ4 sin θ dθ, correct

to 2 decimal places.

From equation (3),

In = [−xn cos x + nxn−1(sin x)]
π
2
0 − n(n − 1)In−2

=
[(

−
(π

2

)n
cos

π

2
+ n

(π

2

)n−1
sin

π

2

)

− (0)

]

− n(n − 1)In−2

= n
(π

2

)n−1 − n(n − 1)In−2

Hence

∫ π
2

0
3θ4 sin θ dθ = 3

∫ π
2

0
θ4 sin θ dθ

= 3I4

= 3

[

4
(π

2

)3 − 4(3)I2

]

I2 = 2
(π

2

)1 − 2(1)I0 and

I0 =
∫ π

2

0
θ0 sin θ dθ = [−cos x]

π
2
0

= [−0 − (−1)] = 1

Hence

3
∫ π

2

0
θ4 sin θ dθ

= 3I4

= 3

[

4
(π

2

)3 − 4(3)

{

2
(π

2

)1 − 2(1)I0

}]

= 3

[

4
(π

2

)3 − 4(3)

{

2
(π

2

)1 − 2(1)(1)

}]

= 3

[

4
(π

2

)3 − 24
(π

2

)1 + 24

]

= 3(15.503 − 37.699 + 24)

= 3(1.8039) = 5.41

Now try the following exercise.

Exercise 171 Further problems on reduc-
tion formulae for integrals of the form∫

xncos x dx and
∫

xnsin x dx

1. Use a reduction formula to determine∫
x5 cos x dx.

⎡

⎣
x5 sin x + 5x4 cos x − 20x3 sin x

− 60x2 cos x + 120x sin x
+ 120 cos x + c

⎤

⎦

2. Evaluate
∫ π

0 x5 cos x dx, correct to 2 decimal
places. [−134.87]

3. Use a reduction formula to determine∫
x5 sin x dx.
⎡

⎣
−x5 cos x + 5x4 sin x + 20x3 cos x

− 60x2 sin x − 120x cos x
+ 120 sin x + c

⎤

⎦

4. Evaluate
∫ π

0 x5 sin x dx, correct to 2 decimal
places. [62.89]

44.4 Using reduction formulae for
integrals of the form

∫
sinn x dx

and
∫

cosn x dx

(a)
∫

sinnx dx

Let In = ∫
sinn x dx ≡ ∫ sinn−1 x sin x dx from laws

of indices.
Using integration by parts, let u = sinn−1 x, from
which,
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du

dx
= (n − 1) sinn−2 x cos x and

du = (n − 1) sinn−2 x cos x dx

and let dv = sin x dx, from which,
v = ∫ sin x dx = −cos x. Hence,

In =
∫

sinn−1 x sin x dx

= (sinn−1 x)(−cos x)

−
∫

(−cos x)(n − 1) sinn−2 x cos x dx

= −sinn−1 x cos x

+ (n − 1)
∫

cos2 x sinn−2 x dx

= −sinn−1 x cos x

+ (n − 1)
∫

(1 − sin2 x) sinn−2 x dx

= −sinn−1 x cos x

+ (n − 1)

{∫
sinn−2 x dx −

∫
sinn x dx

}

i.e. In = −sinn−1 x cos x

+ (n − 1)In−2 −(n − 1)In

i.e. In + (n − 1)In

= −sinn−1 x cos x + (n − 1)In−2

and nIn = −sinn−1 x cos x + (n − 1)In−2

from which,
∫

sinn x dx =

In = −1
n

sinn−1 xcos x + n − 1
n

In−2 (4)

Problem 8. Use a reduction formula to deter-
mine

∫
sin4 x dx.

Using equation (4),
∫

sin4 x dx = I4 = −1

4
sin3 x cos x + 3

4
I2

I2 = −1

2
sin1 x cos x + 1

2
I0

and I0 =
∫

sin0 x dx =
∫

1 dx = x

Hence
∫

sin4 x dx = I4 = −1

4
sin3 x cos x

+ 3

4

[

−1

2
sin x cos x + 1

2
(x)

]

= −1
4

sin3x cos x − 3
8

sin x cos x

+ 3
8

x + c

Problem 9. Evaluate
∫ 1

0 4 sin5 t dt, correct to 3
significant figures.

Using equation (4),
∫

sin5 t dt = I5 = −1

5
sin4 t cos t + 4

5
I3

I3 = −1

3
sin2 t cos t + 2

3
I1

and I1 = −1

1
sin0 t cos t + 0 = −cos t

Hence
∫

sin5 t dt = −1

5
sin4 t cos t

+ 4

5

[

−1

3
sin2 t cos t + 2

3
(−cos t)

]

= −1

5
sin4 t cos t − 4

15
sin2 t cos t

− 8

15
cos t + c

and
∫ t

0
4 sin5 t dt

= 4

[

−1

5
sin4 t cos t

− 4

15
sin2 t cos t − 8

15
cos t

]1

0

= 4

[(

−1

5
sin4 1 cos 1 − 4

15
sin2 1 cos 1

− 8

15
cos 1

)

−
(

−0 − 0 − 8

15

)]
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= 4[(−0.054178 − 0.1020196
− 0.2881612) − (−0.533333)]

= 4(0.0889745) = 0.356

Problem 10. Determine a reduction formula

for
∫ π

2

0
sinn x dx and hence evaluate

∫ π
2

0
sin6 x dx.

From equation (4),
∫

sinn x dx

= In = −1

n
sinn−1 x cos x + n − 1

n
In−2

hence
∫ π

2

0
sinn x dx =

[

−1

n
sinn−1 x cos x

] π
2

0
+ n − 1

n
In−2

= [0 − 0] + n − 1

n
In−2

i.e. In = n − 1
n

In−2

Hence
∫ π

2

0
sin6 x dx = I6 = 5

6
I4

I4 = 3

4
I2, I2 = 1

2
I0

and I0 =
∫ π

2

0
sin0 x dx =

∫ π
2

0
1 dx = π

2

Thus
∫ π

2

0
sin6 x dx = I6 = 5

6
I4 = 5

6

[
3

4
I2

]

= 5

6

[
3

4

{
1

2
I0

}]

= 5

6

[
3

4

{
1

2

[π

2

]}]

= 15
96

π

(b)
∫

cosnx dx

Let In = ∫
cosn x dx ≡ ∫ cosn−1 x cos x dx from laws

of indices.

Using integration by parts, let u = cosn−1 x from
which,

du

dx
= (n − 1) cosn−2 x(−sin x)

and du = (n − 1) cosn−2 x(−sin x) dx

and let dv= cos x dx

from which, v =
∫

cos x dx = sin x

Then

In = (cosn−1 x)(sin x)

−
∫

(sin x)(n − 1) cosn−2 x(−sin x) dx

= (cosn−1 x)(sin x)

+ (n − 1)
∫

sin2 x cosn−2 x dx

= (cosn−1 x)(sin x)

+ (n − 1)
∫

(1 − cos2 x) cosn−2 x dx

= (cosn−1x)(sin x)

+ (n − 1)

{∫
cosn−2 x dx −

∫
cosn x dx

}

i.e. In = (cosn−1 x)(sin x) + (n − 1)In−2 − (n − 1)In

i.e. In + (n − 1)In = (cosn−1 x)( sin x) + (n − 1)In−2

i.e. nIn = (cosn−1 x)(sin x) + (n − 1)In−2

Thus In = 1
n

cosn−1 x sin x + n − 1
n

In−2 (5)

Problem 11. Use a reduction formula to deter-
mine

∫
cos4 x dx.

Using equation (5),
∫

cos4 x dx = I4 = 1

4
cos3 x sin x + 3

4
I2

and I2 = 1

2
cos x sin x + 1

2
I0

and I0 =
∫

cos0 x dx

=
∫

1 dx = x
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Hence
∫

cos4 x dx

= 1

4
cos3 x sin x + 3

4

(
1

2
cos x sin x + 1

2
x

)

= 1
4

cos3x sin x + 3
8

cos x sin x + 3
8

x + c

Problem 12. Determine a reduction formula

for
∫ π

2

0
cosn x dx and hence evaluate

∫ π
2

0
cos5 x dx.

From equation (5),
∫

cosn x dx = 1

n
cosn−1 x sin x + n − 1

n
In−2

and hence
∫ π

2

0
cosn x dx =

[
1

n
cosn−1 x sin x

] π
2

0

+ n − 1

n
In−2

= [0 − 0] + n − 1

n
In−2

i.e.
∫ π

2

0
cosnx dx = In = n − 1

n
In−2 (6)

(Note that this is the same reduction formula as

for
∫ π

2

0
sinn x dx (in Problem 10) and the result is

usually known as Wallis’s formula).
Thus, from equation (6),

∫ π
2

0
cos5 x dx = 4

5
I3, I3 = 2

3
I1

and I1 =
∫ π

2

0
cos1 x dx

= [sin x]
π
2
0 = (1 − 0) = 1

Hence
∫ π

2

0
cos5 x dx = 4

5
I3 = 4

5

[
2

3
I1

]

= 4

5

[
2

3
(1)

]

= 8
15

Now try the following exercise.

Exercise 172 Further problems on reduc-
tion formulae for integrals of the form∫

sinn x dx and
∫

cosn x d x

1. Use a reduction formula to determine∫
sin7 x dx.

⎡

⎢
⎣

− 1

7
sin6 x cos x − 6

35
sin4 x cos x

− 8

35
sin2 x cos x − 16

35
cos x + c

⎤

⎥
⎦

2. Evaluate
∫ π

0 3 sin3 x dx using a reduction
formula. [4]

3. Evaluate
∫ π

2

0
sin5 x dx using a reduction

formula.

[
8

15

]

4. Determine, using a reduction formula,∫
cos6 x dx.

⎡

⎢
⎣

1

6
cos5 x sin x + 5

24
cos3 x sin x

+ 5

16
cos x sin x + 5

16
x + c

⎤

⎥
⎦

5. Evaluate
∫ π

2

0
cos7 x dx.

[
16

35

]

44.5 Further reduction formulae

The following worked problems demonstrate further
examples where integrals can be determined using
reduction formulae.

Problem 13. Determine a reduction formula
for
∫

tann x dx and hence find
∫

tan7 x dx.

Let In =
∫

tann x dx ≡
∫

tann−2 x tan2 x dx

by the laws of indices

=
∫

tann−2 x(sec2 x − 1) dx

since 1 + tan2 x = sec2 x

=
∫

tann−2 x sec2 x dx −
∫

tann−2 x dx
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=
∫

tann−2 x sec2 x dx − In−2

i.e. In = tann−1 x
n − 1

− In−2

When n = 7,

I7 =
∫

tan7 x dx = tan6 x

6
− I5

I5 = tan4 x

4
− I3 and I3 = tan2 x

2
− I1

I1 =
∫

tan x dx = ln (sec x) from

Problem 9, Chapter 39, page 393

Thus
∫

tan7 x dx = tan6 x

6
−
[

tan4 x

4

−
(

tan2 x

2
− ln(sec x)

)]

Hence
∫

tan7 x dx

= 1
6

tan6 x − 1
4

tan4 x + 1
2

tan2 x

− ln(sec x) + c

Problem 14. Evaluate, using a reduction for-

mula,
∫ π

2

0
sin2 t cos6 t dt.

∫ π
2

0
sin2 t cos6 t dt =

∫ π
2

0
(1 − cos2 t) cos6 t dt

=
∫ π

2

0
cos6 t dt −

∫ π
2

0
cos8 t dt

If In =
∫ π

2

0
cosn t dt

then
∫ π

2

0
sin2 t cos6 t dt = I6 − I8

and from equation (6),

I6 = 5

6
I4 = 5

6

[
3

4
I2

]

= 5

6

[
3

4

(
1

2
I0

)]

and I0 =
∫ π

2

0
cos0 t dt

=
∫ π

2

0
1 dt = [x]

π
2
0 = π

2

Hence I6 = 5

6
· 3

4
· 1

2
· π

2

= 15π

96
or

5π

32

Similarly, I8 = 7

8
I6 = 7

8
· 5π

32
Thus

∫ π
2

0
sin2 t cos6 t dt = I6 − I8

= 5π

32
− 7

8
· 5π

32

= 1

8
· 5π

32
= 5π

256

Problem 15. Use integration by parts to deter-
mine a reduction formula for

∫
(ln x)n dx. Hence

determine
∫

(ln x)3 dx.

Let In = ∫
(ln x)n dx.

Using integration by parts, let u = (ln x)n, from
which,

du

dx
= n(ln x)n−1

(
1

x

)

and du = n(ln x)n−1
(

1

x

)

dx

and let dv = dx, from which, v = ∫
dx = x

Then In =
∫

(ln x)n dx

= (ln x)n(x) −
∫

(x)n(ln x)n−1
(

1

x

)

dx
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= x( ln x)n − n
∫

(ln x)n−1 dx

i.e. In = x(ln x)n − nIn−1

When n = 3,
∫

(ln x)3 dx = I3 = x(ln x)3 − 3I2

I2 = x(ln x)2 − 2I1 and I1 = ∫
ln x dx = x(ln x − 1)

from Problem 7, page 420.

Hence
∫

(ln x)3 dx = x(ln x)3 − 3[x(ln x)2 − 2I1] + c

= x(ln x)3 − 3[x(ln x)2

− 2[x(ln x − 1)]] + c

= x(ln x)3 − 3[x(ln x)2

− 2x ln x + 2x] + c

= x(ln x)3 − 3x(ln x)2

+ 6x ln x − 6x + c

= x[(ln x)3 − 3(ln x)2

+ 6 ln x − 6] + c

Now try the following exercise.

Exercise 173 Further problems on reduc-
tion formulae

1. Evaluate
∫ π

2

0
cos2 x sin5 x dx.

[
8

105

]

2. Determine
∫

tan6 x dx by using reduction

formulae and hence evaluate
∫ π

4

0
tan6 x dx.
[

13

15
− π

4

]

3. Evaluate
∫ π

2

0
cos5 x sin4 x dx.

[
8

315

]

4. Use a reduction formula to determine∫
(ln x)4 dx.

[
x(ln x)4 − 4x(ln x)3 + 12x(ln x)2

− 24x ln x + 24x + c

]

5. Show that
∫ π

2

0
sin3 θ cos4 θ dθ = 2

35
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Integral calculus

45

Numerical integration

45.1 Introduction

Even with advanced methods of integration there are
many mathematical functions which cannot be inte-
grated by analytical methods and thus approximate
methods have then to be used.Approximate methods
of definite integrals may be determined by what is
termed numerical integration.

It may be shown that determining the value of a
definite integral is, in fact, finding the area between a
curve, the horizontal axis and the specified ordinates.
Three methods of finding approximate areas under
curves are the trapezoidal rule, the mid-ordinate rule
and Simpson’s rule, and these rules are used as a
basis for numerical integration.

45.2 The trapezoidal rule

Let a required definite integral be denoted by
∫ b

a y dx
and be represented by the area under the graph of

y
y = f (x)

y1 y2 y3 y4 yn +1

O x = a x = b x 

d d d

Figure 45.1

y = f (x) between the limits x = a and x = b as shown
in Fig. 45.1.

Let the range of integration be divided into n equal
intervals each of width d, such that nd = b − a, i.e.

d = b − a

n
The ordinates are labelled y1, y2, y3, . . . , yn+1 as

shown.
An approximation to the area under the curve

may be determined by joining the tops of the ordi-
nates by straight lines. Each interval is thus a trapez-
ium, and since the area of a trapezium is given by:

area = 1

2
(sum of parallel sides) (perpendicular

distance between them) then

∫ b

a
y dx ≈ 1

2
(y1 + y2)d + 1

2
(y2 + y3)d

+ 1

2
(y3 + y4)d + · · · 1

2
(yn + yn+1)d

≈ d

[
1

2
y1 + y2 + y3 + y4 + · · · + yn

+ 1

2
yn+1

]

i.e. the trapezoidal rule states:

∫ b

a
y dx ≈

(
width of
interval

){
1
2

(
first + last
ordinate

)

+
(

sum of remaining
ordinates

)} (1)

Problem 1. (a) Use integration to evaluate, cor-

rect to 3 decimal places,
∫ 3

1

2√
x

dx (b) Use the

trapezoidal rule with 4 intervals to evaluate the
integral in part (a), correct to 3 decimal places.
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(a)
∫ 3

1

2√
x

dx =
∫ 3

1
2x− 1

2 dx

=
⎡

⎢
⎣

2x

(−1
2

)
+1

−1

2
+ 1

⎤

⎥
⎦

3

1

=
[

4x
1
2

]3

1

= 4
[√

x
]3

1 = 4
[√

3 − √
1
]

= 2.928, correct to 3 decimal
places

(b) The range of integration is the difference bet-
ween the upper and lower limits, i.e. 3 − 1 = 2.
Using the trapezoidal rule with 4 intervals gives

an interval width d = 3 − 1

4
= 0.5 and ordinates

situated at 1.0, 1.5, 2.0, 2.5 and 3.0. Corre-

sponding values of
2√
x

are shown in the table

below, each correct to 4 decimal places (which
is one more decimal place than required in the
problem).

x
2√
x

1.0 2.0000
1.5 1.6330
2.0 1.4142
2.5 1.2649
3.0 1.1547

From equation (1):
∫ 3

1

2√
x

dx ≈ (0.5)

{
1

2
(2.0000 + 1.1547)

+ 1.6330 + 1.4142 + 1.2649

}

= 2.945, correct to 3 decimal places

This problem demonstrates that even with just 4
intervals a close approximation to the true value of
2.928 (correct to 3 decimal places) is obtained using
the trapezoidal rule.

Problem 2. Use the trapezoidal rule with 8

intervals to evaluate,
∫ 3

1

2√
x

dx correct to 3

decimal places.

With 8 intervals, the width of each is
3 − 1

8
i.e. 0.25

giving ordinates at 1.00, 1.25, 1.50, 1.75, 2.00, 2.25,

2.50, 2.75 and 3.00. Corresponding values of
2√
x

are shown in the table below.

x
2√
x

1.00 2.0000
1.25 1.7889
1.50 1.6330
1.75 1.5119
2.00 1.4142
2.25 1.3333
2.50 1.2649
2.75 1.2060
3.00 1.1547

From equation (1):
∫ 3

1

2√
x

dx ≈ (0.25)

{
1

2
(2.000 + 1.1547) + 1.7889

+ 1.6330 + 1.5119 + 1.4142

+ 1.3333 + 1.2649 + 1.2060

}

= 2.932, correct to 3 decimal places

This problem demonstrates that the greater the num-
ber of intervals chosen (i.e. the smaller the interval
width) the more accurate will be the value of the
definite integral. The exact value is found when the
number of intervals is infinite, which is, of course,
what the process of integration is based upon.

Problem 3. Use the trapezoidal rule to evalu-

ate
∫ π

2

0

1

1 + sin x
dx using 6 intervals. Give the

answer correct to 4 significant figures.

With 6 intervals, each will have a width of

π

2
− 0

6
i.e.

π

12
rad (or 15◦) and the ordinates occur at

0,
π

12
,
π

6
,
π

4
,
π

3
,

5π

12
and

π

2
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Corresponding values of
1

1 + sin x
are shown in the

table below.

x
1

1 + sin x

0 1.0000
π

12
(or 15◦) 0.79440

π

6
(or 30◦) 0.66667

π

4
(or 45◦) 0.58579

π

3
(or 60◦) 0.53590

5π

12
(or 75◦) 0.50867

π

2
(or 90◦) 0.50000

From equation (1):

∫ π
2

0

1

1 + sin x
dx ≈

( π

12

){1

2
(1.00000 + 0.50000)

+ 0.79440 + 0.66667

+ 0.58579 + 0.53590

+ 0.50867

}

= 1.006, correct to 4
significant figures

Now try the following exercise.

Exercise 174 Further problems on the
trapezoidal rule

In Problems 1 to 4, evaluate the definite integrals
using the trapezoidal rule, giving the answers
correct to 3 decimal places.

1.
∫ 1

0

2

1 + x2 dx (Use 8 intervals) [1.569]

2.
∫ 3

1
2 ln 3x dx (Use 8 intervals) [6.979]

3.
∫ π

3

0

√
(sin θ)dθ (Use 6 intervals) [0.672]

4.
∫ 1.4

0
e−x2

dx (Use 7 intervals) [0.843]

45.3 The mid-ordinate rule

Let a required definite integral be denoted again
by
∫ b

a y dx and represented by the area under the
graph of y = f (x) between the limits x = a and x = b,
as shown in Fig. 45.2.

a

d d d

O

y

y1 y2 y3 yn

b x

y = f (x)

Figure 45.2

With the mid-ordinate rule each interval of width
d is assumed to be replaced by a rectangle of height
equal to the ordinate at the middle point of each
interval, shown as y1, y2, y3, . . . yn in Fig. 45.2.

Thus

∫ b

a
y dx ≈ dy1 + dy2 + dy3 + · · · + dyn

≈ d( y1 + y2 + y3 + · · · + yn)

i.e. the mid-ordinate rule states:

∫ b

a
y dx ≈ (width of interval)

(sum of mid-ordinates)
(2)
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Problem 4. Use the mid-ordinate rule with
(a) 4 intervals, (b) 8 intervals, to evaluate∫ 3

1

2√
x

dx, correct to 3 decimal places.

(a) With 4 intervals, each will have a width of
3 − 1

4
, i.e. 0.5 and the ordinates will occur at 1.0,

1.5, 2.0, 2.5 and 3.0. Hence the mid-ordinates
y1, y2, y3 and y4 occur at 1.25, 1.75, 2.25 and

2.75. Corresponding values of
2√
x

are shown in

the following table.

x
2√
x

1.25 1.7889
1.75 1.5119
2.25 1.3333
2.75 1.2060

From equation (2):

∫ 3

1

2√
x

dx ≈ (0.5)[1.7889 + 1.5119

+ 1.3333 + 1.2060]
= 2.920, correct to

3 decimal places

(b) With 8 intervals, each will have a width of 0.25
and the ordinates will occur at 1.00, 1.25, 1.50,
1.75, . . . and thus mid-ordinates at 1.125, 1.375,
1.625, 1.875 . . .

Corresponding values of
2√
x

are shown in the

following table.

x
2√
x

1.125 1.8856
1.375 1.7056
1.625 1.5689
1.875 1.4606
2.125 1.3720
2.375 1.2978
2.625 1.2344
2.875 1.1795

From equation (2):
∫ 3

1

2√
x

dx ≈ (0.25)[1.8856 + 1.7056

+ 1.5689 + 1.4606 + 1.3720

+ 1.2978 + 1.2344 + 1.1795]

= 2.926, correct to 3 decimal places

As previously, the greater the number of intervals
the nearer the result is to the true value (of 2.928,
correct to 3 decimal places).

Problem 5. Evaluate
∫ 2.4

0
e

−x2
3 dx, correct to

4 significant figures, using the mid-ordinate rule
with 6 intervals.

With 6 intervals each will have a width of
2.4 − 0

6
,

i.e. 0.40 and the ordinates will occur at 0, 0.40, 0.80,
1.20, 1.60, 2.00 and 2.40 and thus mid-ordinates at
0.20, 0.60, 1.00, 1.40, 1.80 and 2.20. Corresponding

values of e
−x2

3 are shown in the following table.

x e
−x2

3

0.20 0.98676

0.60 0.88692

1.00 0.71653

1.40 0.52031

1.80 0.33960

2.20 0.19922

From equation (2):

∫ 2.4

0
e

−x2
3 dx ≈ (0.40)[0.98676 + 0.88692

+ 0.71653 + 0.52031

+ 0.33960 + 0.19922]

= 1.460, correct to
4 significant figures
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Now try the following exercise.

Exercise 175 Further problems on the
mid-ordinate rule

In Problems 1 to 4, evaluate the definite integrals
using the mid-ordinate rule, giving the answers
correct to 3 decimal places.

1.
∫ 2

0

3

1 + t2 dt (Use 8 intervals) [3.323]

2.
∫ π

2

0

1

1 + sin θ
dθ (Use 6 intervals) [0.997]

3.
∫ 3

1

ln x

x
dx (Use 10 intervals) [0.605]

4.
∫ π

3

0

√
(cos3x)dx (Use 6 intervals) [0.799]

45.4 Simpson’s rule

The approximation made with the trapezoidal rule
is to join the top of two successive ordinates by a
straight line, i.e. by using a linear approximation of
the form a + bx. With Simpson’s rule, the approxi-
mation made is to join the tops of three successive
ordinates by a parabola, i.e. by using a quadratic
approximation of the form a + bx + cx2.

Figure 45.3 shows a parabola y = a + bx + cx2

with ordinates y1, y2 and y3 at x = −d, x = 0 and
x = d respectively.
Thus the width of each of the two intervals is d.
The area enclosed by the parabola, the x-axis and
ordinates x = −d and x = d is given by:

∫ d

−d
(a + bx + cx2)dx =

[

ax + bx2

2
+ cx3

3

]d

−d

=
(

ad + bd2

2
+ cd3

3

)

−
(

−ad + bd2

2
− cd3

3

)

= 2ad + 2

3
cd3 or

1

3
d(6a + 2cd2) (3)

y = a + bx + cx2

y

y1 y2 y3

−d dO x

Figure 45.3

Since y = a + bx + cx2,

at x = −d, y1 = a − bd + cd2

at x = 0, y2 = a

and at x = d, y3 = a + bd + cd2

Hence y1 + y3 = 2a + 2cd2

And y1 + 4y2 + y3 = 6a + 2cd2 (4)

Thus the area under the parabola between
x = −d and x =d in Fig. 45.3 may be expressed as
1
3 d(y1 + 4y2 + y3), from equations (3) and (4), and
the result is seen to be independent of the position
of the origin.

Let a definite integral be denoted by
∫ b

a y dx and
represented by the area under the graph of y = f (x)
between the limits x = a and x = b, as shown in
Fig. 45.4. The range of integration, b − a, is divided
into an even number of intervals, say 2n, each of
width d.

Since an even number of intervals is specified,
an odd number of ordinates, 2n + 1, exists. Let an
approximation to the curve over the first two intervals
be a parabola of the form y = a + bx + cx2 which
passes through the tops of the three ordinates y1, y2
and y3. Similarly, let an approximation to the curve
over the next two intervals be the parabola which
passes through the tops of the ordinates y3, y4 and
y5, and so on.

Then
∫ b

a
y dx

≈ 1

3
d(y1 + 4y2 + y3) + 1

3
d(y3 + 4y4 + y5)

+ 1

3
d(y2n−1 + 4y2n + y2n+1)
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y

y1 y2 y3 y4 y2n+1

a

d d d

y = f (x )

O xb

Figure 45.4

≈ 1

3
d[(y1 + y2n+1) + 4(y2 + y4 + · · · + y2n)

+ 2(y3 + y5 + · · · + y2n−1)]

i.e. Simpson’s rule states:

∫ b

a
y dx ≈ 1

3

(
width of
interval

){(
first + last
ordinate

)

+ 4
(

sum of even
ordinates

)

+ 2
(

sum of remaining
odd ordinates

)}

(5)

Note that Simpson’s rule can only be applied when
an even number of intervals is chosen, i.e. an odd
number of ordinates.

Problem 6. Use Simpson’s rule with (a) 4

intervals, (b) 8 intervals, to evaluate
∫ 3

1

2√
x

dx,

correct to 3 decimal places.

(a) With 4 intervals, each will have a width of
3 − 1

4
,

i.e. 0.5 and the ordinates will occur at 1.0, 1.5,

2.0, 2.5 and 3.0. The values of the ordinates are
as shown in the table of Problem 1(b), page 434.
Thus, from equation (5):
∫ 3

1

2√
x

dx ≈ 1

3
(0.5) [(2.0000 + 1.1547)

+ 4(1.6330 + 1.2649) + 2(1.4142)]

= 1

3
(0.5)[3.1547 + 11.5916

+ 2.8284]

= 2.929, correct to 3 decimal places

(b) With 8 intervals, each will have a width of
3 − 1

8
, i.e. 0.25 and the ordinates occur at 1.00,

1.25, 1.50, 1.75, . . ., 3.0. The values of the ordi-
nates are as shown in the table in Problem 2,
page 434.
Thus, from equation (5):

∫ 3

1

2√
x

dx ≈ 1

3
(0.25) [(2.0000 + 1.1547)

+ 4(1.7889 + 1.5119 + 1.3333

+ 1.2060) + 2(1.6330 + 1.4142

+ 1.2649)]

= 1

3
(0.25)[3.1547 + 23.3604

+ 8.6242]

= 2.928, correct to 3 decimal places

It is noted that the latter answer is exactly the
same as that obtained by integration. In general,
Simpson’s rule is regarded as the most accurate of
the three approximate methods used in numerical
integration.

Problem 7. Evaluate

∫ π
3

0

√(

1 − 1

3
sin2 θ

)

dθ,

correct to 3 decimal places, using Simpson’s
rule with 6 intervals.
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With 6 intervals, each will have a width of

π

3
− 0

6
i.e.

π

18
rad (or 10◦), and the ordinates will occur at

0,
π

18
,
π

9
,
π

6
,

2π

9
,

5π

18
and

π

3

Corresponding values of

√(

1 − 1

3
sin2 θ

)

are

shown in the table below.

θ 0
π

18

π

9

π

6
(or 10◦) (or 20◦) (or 30◦)

√(

1 − 1

3
sin2 θ

)

1.0000 0.9950 0.9803 0.9574

θ
2π

9

5π

18

π

3
(or 40◦) (or 50◦) (or 60◦)

√(

1 − 1

3
sin2 θ

)

0.9286 0.8969 0.8660

From Equation (5)

∫ π
3

0

√(

1 − 1

3
sin2 θ

)

dθ

≈ 1

3

( π

18

)
[(1.0000 + 0.8660) + 4(0.9950

+ 0.9574 + 0.8969)

+ 2(0.9803 + 0.9286)]

= 1

3

( π

18

)
[1.8660 + 11.3972 + 3.8178]

= 0.994, correct to 3 decimal places

Problem 8. An alternating current i has
the following values at equal intervals of
2.0 milliseconds

Time (ms) Current i (A)
0 0
2.0 3.5
4.0 8.2
6.0 10.0

8.0 7.3
10.0 2.0
12.0 0

Charge, q, in millicoulombs, is given by
q = ∫ 12.0

0 i dt.

Use Simpson’s rule to determine the approxi-
mate charge in the 12 millisecond period.

From equation (5):

Charge, q =
∫ 12.0

0
i dt ≈ 1

3
(2.0) [(0 + 0) + 4(3.5

+10.0 + 2.0) + 2(8.2 + 7.3)]

= 62 mC

Now try the following exercise.

Exercise 176 Further problems on
Simpson’s rule

In problems 1 to 5, evaluate the definite inte-
grals using Simpson’s rule, giving the answers
correct to 3 decimal places.

1.
∫ π

2

0

√
(sin x) dx (Use 6 intervals) [1.187]

2.
∫ 1.6

0

1

1 + θ4 dθ (Use 8 intervals) [1.034]

3.
∫ 1.0

0.2

sin θ

θ
dθ (Use 8 intervals) [0.747]

4.
∫ π

2

0
x cos x dx (Use 6 intervals) [0.571]

5.
∫ π

3

0
ex2

sin 2x dx (Use 10 intervals)

[1.260]

In problems 6 and 7 evaluate the definite inte-
grals using (a) integration, (b) the trapezoidal
rule, (c) the mid-ordinate rule, (d) Simpson’s
rule. Give answers correct to 3 decimal places.
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6.
∫ 4

1

4

x3 dx (Use 6 intervals)
[

(a) 1.875 (b) 2.107
(c) 1.765 (d) 1.916

]

7.
∫ 6

2

1√
(2x − 1)

dx (Use 8 intervals)
[

(a) 1.585 (b) 1.588
(c) 1.583 (d) 1.585

]

In problems 8 and 9 evaluate the definite inte-
grals using (a) the trapezoidal rule, (b) the
mid-ordinate rule, (c) Simpson’s rule. Use 6
intervals in each case and give answers correct
to 3 decimal places.

8.
∫ 3

0

√
(1 + x4) dx

[
(a) 10.194 (b) 10.007
(c) 10.070

]

9.
∫ 0.7

0.1

1
√

(1 − y2)
dy

[
(a) 0.677 (b) 0.674
(c) 0.675

]

10. A vehicle starts from rest and its velocity is
measured every second for 8 s, with values as
follows:

time t (s) velocity v (ms−1)
0 0
1.0 0.4

2.0 1.0
3.0 1.7
4.0 2.9
5.0 4.1
6.0 6.2
7.0 8.0
8.0 9.4

The distance travelled in 8.0 s is given by∫ 8.0
0 v dt

Estimate this distance using Simpson’s rule,
giving the answer correct to 3 significant
figures. [28.8 m]

11. A pin moves along a straight guide so that
its velocity v (m/s) when it is a distance x(m)
from the beginning of the guide at time t(s)
is given in the table below.

t (s) v (m/s)
0 0
0.5 0.052
1.0 0.082
1.5 0.125
2.0 0.162
2.5 0.175
3.0 0.186
3.5 0.160
4.0 0

Use Simpson’s rule with 8 intervals to deter-
mine the approximate total distance travelled
by the pin in the 4.0 s period. [0.485 m]
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Integral calculus

Assignment 12

This assignment covers the material contained
in Chapters 43 to 45.

The marks for each question are shown in
brackets at the end of each question.

1. Determine the following integrals:

(a)
∫

5x e2x dx (b)
∫

t2 sin 2t dt (13)

2. Evaluate correct to 3 decimal places:
∫ 4

1

√
x ln x dx (10)

3. Use reduction formulae to determine:

(a)
∫

x3e3x dx (b)
∫

t4 sin t dt (13)

4. Evaluate
∫ π

2

0
cos6 x dx using a reduction

formula. (6)

5. Evaluate
∫ 3

1

5

x2 dx using (a) integration (b) the

trapezoidal rule (c) the mid-ordinate rule
(d) Simpson’s rule. In each of the approximate
methods use 8 intervals and give the answers
correct to 3 decimal places. (19)

6. An alternating current i has the following values
at equal intervals of 5 ms:

Time t(ms) 0 5 10 15 20 25 30
Current i(A) 0 4.8 9.1 12.7 8.8 3.5 0

Charge q, in coulombs, is given by

q = ∫ 30×10−3

0 i dt.
Use Simpson’s rule to determine the approximate
charge in the 30 ms period. (4)
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I

46

Solution of first order differential
equations by separation of variables

46.1 Family of curves

Integrating both sides of the derivative
dy

dx
= 3 with

respect to x gives y = ∫
3 dx, i.e., y = 3x + c, where

c is an arbitrary constant.

y = 3x + c represents a family of curves, each of
the curves in the family depending on the value of
c. Examples include y = 3x + 8, y = 3x + 3, y = 3x
and y = 3x − 10 and these are shown in Fig. 46.1.

Figure 46.1

Each are straight lines of gradient 3. A particular
curve of a family may be determined when a point
on the curve is specified. Thus, if y = 3x + c passes
through the point (1, 2) then 2 = 3(1) + c, from
which, c = −1. The equation of the curve passing
through (1, 2) is therefore y = 3x − 1.

Problem 1. Sketch the family of curves given

by the equation
dy

dx
= 4x and determine the equa-

tion of one of these curves which passes through
the point (2, 3).

Integrating both sides of
dy

dx
= 4x with respect to x

gives:
∫

dy

dx
dx =

∫
4x dx, i.e., y = 2x2 + c

Some members of the family of curves having
an equation y = 2x2 + c include y = 2x2 + 15,
y = 2x2 + 8, y = 2x2 and y = 2x2 − 6, and these are
shown in Fig. 46.2. To determine the equation of
the curve passing through the point (2, 3), x = 2 and
y = 3 are substituted into the equation y = 2x2 + c.

Figure 46.2

Thus 3 = 2(2)2 + c, from which c = 3 − 8 = −5.

Hence the equation of the curve passing through
the point (2, 3) is y = 2x2 − 5.
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Now try the following exercise.

Exercise 177 Further problems on families
of curves

1. Sketch a family of curves represented by each
of the following differential equations:

(a)
dy

dx
= 6 (b)

dy

dx
= 3x (c)

dy

dx
= x + 2

2. Sketch the family of curves given by the equa-

tion
dy

dx
= 2x + 3 and determine the equation

of one of these curves which passes through
the point (1, 3). [y = x2 + 3x − 1]

46.2 Differential equations

A differential equation is one that contains differ-
ential coefficients.

Examples include

(i)
dy

dx
= 7x and (ii)

d2y

dx2 + 5
dy

dx
+ 2y = 0

Differential equations are classified according to the
highest derivative which occurs in them. Thus exam-
ple (i) above is a first order differential equation,
and example (ii) is a second order differential
equation.

The degree of a differential equation is that of the
highest power of the highest differential which the
equation contains after simplification.

Thus

(
d2x

dt2

)3

+ 2

(
dx

dt

)5

= 7 is a second order

differential equation of degree three.
Starting with a differential equation it is possible,

by integration and by being given sufficient data to
determine unknown constants, to obtain the origi-
nal function. This process is called ‘solving the
differential equation’. A solution to a differential
equation which contains one or more arbitrary con-
stants of integration is called the general solution
of the differential equation.

When additional information is given so that con-
stants may be calculated the particular solution of
the differential equation is obtained. The additional
information is called boundary conditions. It was

shown in Section 46.1 that y = 3x + c is the general

solution of the differential equation
dy

dx
= 3.

Given the boundary conditions x = 1 and y = 2,
produces the particular solution of y = 3x − 1.
Equations which can be written in the form

dy

dx
= f (x),

dy

dx
= f (y) and

dy

dx
= f (x) · f (y)

can all be solved by integration. In each case it is
possible to separate the y’s to one side of the equa-
tion and the x’s to the other. Solving such equations
is therefore known as solution by separation of
variables.

46.3 The solution of equations of the

form
dy
dx

= f (x)

A differential equation of the form
dy

dx
= f (x) is

solved by direct integration,

i.e. y =
∫

f (x) dx

Problem 2. Determine the general solution of

x
dy

dx
= 2 − 4x3

Rearranging x
dy

dx
= 2 − 4x3 gives:

dy

dx
= 2 − 4x3

x
= 2

x
− 4x3

x
= 2

x
− 4x2

Integrating both sides gives:

y =
∫ (

2

x
− 4x2

)

dx

i.e. y = 2 ln x − 4
3

x3 + c,

which is the general solution.

Problem 3. Find the particular solution of the

differential equation 5
dy

dx
+ 2x = 3, given the

boundary conditions y = 1
2

5
when x = 2.
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Since 5
dy

dx
+ 2x = 3 then

dy

dx
= 3 − 2x

5
= 3

5
− 2x

5

Hence y =
∫ (

3

5
− 2x

5

)

dx

i.e. y = 3x

5
− x2

5
+ c,

which is the general solution.

Substituting the boundary conditions y = 1 2
5 and

x = 2 to evaluate c gives:

1 2
5 = 6

5 − 4
5 + c, from which, c = 1

Hence the particular solution is y = 3x
5

− x2

5
+ 1.

Problem 4. Solve the equation

2t

(

t − dθ

dt

)

= 5, given θ = 2 when t = 1.

Rearranging gives:

t − dθ

dt
= 5

2t
and

dθ

dt
= t − 5

2t

Integrating gives:

θ =
∫ (

t − 5

2t

)

dt

i.e. θ = t2

2
− 5

2
ln t + c,

which is the general solution.

When θ = 2, t = 1, thus 2 = 1
2 − 5

2 ln 1 + c from
which, c = 3

2 .
Hence the particular solution is:

θ = t2

2
− 5

2
ln t + 3

2

i.e. θ = 1
2

(t2 − 5 ln t + 3)

Problem 5. The bending moment M of the

beam is given by
dM

dx
= −w(l −x), where w and

x are constants. Determine M in terms of x given:
M = 1

2 wl2 when x = 0.

dM

dx
= −w(l − x) = −wl + wx

Integrating with respect to x gives:

M = −wlx + wx2

2
+ c

which is the general solution.

When M = 1
2 wl2, x = 0.

Thus
1

2
wl2 = −wl(0) + w(0)2

2
+ c

from which, c = 1

2
wl2.

Hence the particular solution is:

M = −wlx + w(x)2

2
+ 1

2
wl2

i.e. M = 1
2

w(l2 − 2lx + x2)

or M = 1
2

w(l − x)2

Now try the following exercise.

Exercise 178 Further problems on equa-

tions of the form
dy
dx

= f (x).

In Problems 1 to 5, solve the differential
equations.

1.
dy

dx
= cos 4x − 2x

[

y = sin 4x

4
− x2 + c

]

2. 2x
dy

dx
= 3 − x3

[

y = 3

2
ln x − x3

6
+ c

]

3.
dy

dx
+ x = 3, given y = 2 when x = 1.

[

y = 3x − x2

2
− 1

2

]

4. 3
dy

dθ
+ sin θ = 0, given y = 2

3
when θ = π

3[

y = 1

3
cos θ + 1

2

]

5.
1

ex
+ 2 = x − 3

dy

dx
, given y = 1 when x = 0.

[

y = 1

6

(

x2 − 4x + 2

ex
+ 4

)]

6. The gradient of a curve is given by:

dy

dx
+ x2

2
= 3x
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Find the equation of the curve if it passes
through the point

(
1, 1

3

)
.
[

y = 3

2
x2 − x3

6
− 1

]

7. The acceleration, a, of a body is equal to its

rate of change of velocity,
dv

dt
. Find an equa-

tion for v in terms of t, given that when t = 0,
velocity v = u. [v = u + at]

8. An object is thrown vertically upwards with
an initial velocity, u, of 20 m/s. The motion
of the object follows the differential equation
ds

dt
= u−gt, where s is the height of the object

in metres at time t seconds and g = 9.8 m/s2.
Determine the height of the object after 3
seconds if s = 0 when t = 0. [15.9 m]

46.4 The solution of equations of the

form
dy
dx

= f ( y)

A differential equation of the form
dy

dx
= f (y) is

initially rearranged to give dx = dy

f (y)
and then the

solution is obtained by direct integration,

i.e.
∫

dx =
∫

dy
f ( y)

Problem 6. Find the general solution of
dy

dx
= 3 + 2y.

Rearranging
dy

dx
= 3 + 2y gives:

dx = dy

3 + 2y

Integrating both sides gives:

∫
dx =

∫
dy

3 + 2y

Thus, by using the substitution u = (3 + 2y) — see
Chapter 39,

x = 1
2 ln (3 + 2y) + c (1)

It is possible to give the general solution of a differ-
ential equation in a different form. For example, if
c = ln k, where k is a constant, then:

x = 1
2 ln(3 + 2y) + ln k,

i.e. x = ln(3 + 2y)
1
2 + ln k

or x = ln [k
√

(3 + 2y)] (2)

by the laws of logarithms, from which,

ex = k
√

(3 + 2y) (3)

Equations (1), (2) and (3) are all acceptable general
solutions of the differential equation

dy

dx
= 3 + 2y

Problem 7. Determine the particular solu-

tion of (y2 − 1)
dy

dx
= 3y given that y = 1 when

x = 2
1

6

Rearranging gives:

dx =
(

y2 − 1

3y

)

dy =
(

y

3
− 1

3y

)

dy

Integrating gives:
∫

dx =
∫ (

y

3
− 1

3y

)

dy

i.e. x = y2

6
− 1

3
ln y + c,

which is the general solution.

When y = 1, x = 2 1
6 , thus 2 1

6 = 1
6 − 1

3 ln 1 + c, from
which, c = 2.

Hence the particular solution is:

x = y2

6
− 1

3
ln y + 2

Problem 8. (a) The variation of resistance,
R ohms, of an aluminium conductor with

temperature θ◦C is given by
dR

dθ
= αR, where
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α is the temperature coefficient of resistance of
aluminium. If R = R0 when θ = 0◦C, solve the
equation for R. (b) If α = 38 × 10−4/◦C, deter-
mine the resistance of an aluminium conductor
at 50◦C, correct to 3 significant figures, when its
resistance at 0◦C is 24.0 �.

(a)
dR

dθ
= αR is of the form

dy

dx
= f (y)

Rearranging gives: dθ = dR

αR

Integrating both sides gives:
∫

dθ =
∫

dR

αR

i.e., θ = 1

α
ln R + c,

which is the general solution.

Substituting the boundary conditions R = R0
when θ = 0 gives:

0 = 1

α
ln R0 + c

from which c = − 1

α
ln R0

Hence the particular solution is

θ = 1

α
ln R − 1

α
ln R0 = 1

α
(ln R − ln R0)

i.e. θ = 1

α
ln

(
R

R0

)

or αθ = ln

(
R

R0

)

Hence eαθ = R

R0
from which, R = R0eαθ .

(b) Substituting α = 38 × 10−4, R0 = 24.0 and θ =
50 into R = R0eαθ gives the resistance at 50◦C,
i.e., R50 = 24.0 e(38×10−4×50) = 29.0 ohms.

Now try the following exercise.

Exercise 179 Further problems on equa-

tions of the form
dy
dx

= f ( y)

In Problems 1 to 3, solve the differential
equations.

1.
dy

dx
= 2 + 3y

[

x = 1

3
ln (2 + 3y) + c

]

2.
dy

dx
= 2 cos2 y [ tan y = 2x + c]

3. (y2 + 2)
dy

dx
= 5y, given y = 1 when x = 1

2
[

y2

2
+ 2 ln y = 5x − 2

]

4. The current in an electric circuit is given by
the equation

Ri + L
di

dt
= 0,

where L and R are constants. Show that

i = Ie
−Rt

L , given that i = I when t = 0.

5. The velocity of a chemical reaction is given

by
dx

dt
= k(a − x), where x is the amount

transferred in time t, k is a constant and a
is the concentration at time t = 0 when x = 0.
Solve the equation and determine x in terms
of t. [x = a(1 − e−kt)]

6.(a) Charge Q coulombs at time t seconds
is given by the differential equation

R
dQ

dt
+ Q

C
= 0, where C is the capaci-

tance in farads and R the resistance in
ohms. Solve the equation for Q given that
Q = Q0 when t = 0.

(b) A circuit possesses a resistance of
250 × 103 � and a capacitance of
8.5 × 10−6 F, and after 0.32 seconds the
charge falls to 8.0 C. Determine the ini-
tial charge and the charge after 1 second,
each correct to 3 significant figures.

[(a) Q = Q0e
−t
CR (b) 9.30 C, 5.81 C]

7. A differential equation relating the difference
in tension T , pulley contact angle θ and coeffi-

cient of friction µ is
dT

dθ
= µT . When θ = 0,

T = 150 N, and µ = 0.30 as slipping starts.
Determine the tension at the point of slipping
when θ = 2 radians. Determine also the value
of θ when T is 300 N. [273.3 N, 2.31 rads]
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8. The rate of cooling of a body is given by
dθ

dt
= kθ, where k is a constant. If θ = 60◦C

when t = 2 minutes and θ = 50◦C when
t = 5 minutes, determine the time taken for θ
to fall to 40◦C, correct to the nearest second.

[8 m 40 s]

46.5 The solution of equations of the

form
dy
dx

= f (x) · f ( y)

A differential equation of the form
dy

dx
= f (x) · f (y),

where f (x) is a function of x only and f (y) is a func-

tion of y only, may be rearranged as
dy

f (y)
= f (x) dx,

and then the solution is obtained by direct integra-
tion, i.e.

∫
dy

f (y)
=
∫

f (x) dx

Problem 9. Solve the equation 4xy
dy

dx
= y2−1

Separating the variables gives:
(

4y

y2 − 1

)

dy = 1

x
dx

Integrating both sides gives:
∫ (

4y

y2 − 1

)

dy =
∫ (

1

x

)

dx

Using the substitution u = y2 − 1, the general
solution is:

2 ln ( y2 − 1) = ln x + c (1)

or ln (y2 − 1)2 − ln x = c

from which, ln

{
(y2 − 1)2

x

}

= c

and
( y2 − 1)2

x
= ec (2)

If in equation (1), c = ln A, where A is a different
constant,

then ln (y2 − 1)2 = ln x + ln A

i.e. ln (y2 − 1)2 = ln Ax
i.e. ( y2 − 1)2 = Ax (3)

Equations (1) to (3) are thus three valid solutions of
the differential equations

4xy
dy

dx
= y2 − 1

Problem 10. Determine the particular solution

of
dθ

dt
= 2e3t−2θ , given that t = 0 when θ = 0.

dθ

dt
= 2e3t−2θ = 2(e3t)(e−2θ),

by the laws of indices.
Separating the variables gives:

dθ

e−2θ
= 2e3tdt,

i.e. e2θdθ = 2e3tdt

Integrating both sides gives:
∫

e2θdθ =
∫

2e3tdt

Thus the general solution is:

1

2
e2θ = 2

3
e3t + c

When t = 0, θ = 0, thus:

1

2
e0 = 2

3
e0 + c

from which, c = 1

2
− 2

3
= −1

6

Hence the particular solution is:

1

2
e2θ = 2

3
e3t − 1

6

or 3e2θ = 4e3t − 1

Problem 11. Find the curve which satisfies the

equation xy = (1 + x2)
dy

dx
and passes through the

point (0, 1).

Separating the variables gives:

x

(1 + x2)
dx = dy

y
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Integrating both sides gives:
1
2 ln (1 + x2) = ln y + c

When x = 0, y = 1 thus 1
2 ln 1 = ln 1 + c, from

which, c = 0.

Hence the particular solution is 1
2 ln (1 + x2) = ln y

i.e. ln (1 + x2)
1
2 = ln y, from which, (1 + x2)

1
2 = y.

Hence the equation of the curve is y =
√

(1 + x2).

Problem 12. The current i in an electric cir-
cuit containing resistance R and inductance L in
series with a constant voltage source E is given

by the differential equation E − L

(
di

dt

)

= Ri.

Solve the equation and find i in terms of time
t given that when t = 0, i = 0.

In the R − L series circuit shown in Fig. 46.3, the
supply p.d., E, is given by

E = VR + VL

VR = iR and VL = L
di

dt

Hence E = iR + L
di

dt

from which E − L
di

dt
= Ri

E

i

R L

VR VL

Figure 46.3

Most electrical circuits can be reduced to a differen-
tial equation.

Rearranging E − L
di

dt
= Ri gives

di

dt
= E − Ri

L

and separating the variables gives:

di

E − Ri
= dt

L
Integrating both sides gives:

∫
di

E − Ri
=
∫

dt

L

Hence the general solution is:

− 1

R
ln (E − Ri) = t

L
+ c

(by making a substitution u = E − Ri, see
Chapter 39).

When t = 0, i = 0, thus − 1

R
ln E = c

Thus the particular solution is:

− 1

R
ln (E − Ri) = t

L
− 1

R
ln E

Transposing gives:

− 1

R
ln (E − Ri) + 1

R
ln E = t

L

1

R
[ln E − ln (E − Ri)] = t

L

ln

(
E

E − Ri

)

= Rt

L

from which
E

E − Ri
= e

Rt
L

Hence
E − Ri

E
= e

−Rt
L and E − Ri = Ee

−Rt
L and

Ri = E − Ee
−Rt

L .

Hence current,

i = E
R

(

1 − e
−Rt

L

)

,

which represents the law of growth of current in an
inductive circuit as shown in Fig. 46.4.

i

0 Time t

(l −e-Rt /L)  i =  ER

E
R

Figure 46.4
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Problem 13. For an adiabatic expansion of
a gas

Cv

dp

p
+ Cp

dV

V
= 0,

where Cp and Cv are constants. Given n = Cp

Cv

,

show that pVn = constant.

Separating the variables gives:

Cv

dp

p
= −Cp

dV

V

Integrating both sides gives:

Cv

∫
dp

p
= −Cp

∫
dV

V

i.e. Cv ln p = −Cp ln V + k

Dividing throughout by constant Cv gives:

ln p = −Cp

Cv

ln V + k

Cv

Since
Cp

Cv

= n, then ln p + n ln V = K ,

where K = k

Cv

.

i.e. ln p + ln Vn = K or ln pVn = K , by the laws of
logarithms.

Hence pVn = eK , i.e., pVn = constant.

Now try the following exercise.

Exercise 180 Further problems on equa-

tions of the form
dy
dx

= f (x) · f (y)

In Problems 1 to 4, solve the differential
equations.

1.
dy

dx
= 2y cos x [ln y = 2 sin x + c]

2. (2y − 1)
dy

dx
= (3x2 + 1), given x = 1 when

y = 2. [y2 − y = x3 + x]

3.
dy

dx
= e2x−y, given x = 0 when y = 0.

[

ey = 1

2
e2x + 1

2

]

4. 2y(1 − x) + x(1 + y)
dy

dx
= 0, given x = 1

when y = 1. [ln (x2y) = 2x − y − 1]

5. Show that the solution of the equation
y2 + 1

x2 + 1
= y

x

dy

dx
is of the form

√(
y2 + 1

x2 + 1

)

= constant.

6. Solve xy = (1 − x2)
dy

dx
for y, given x = 0

when y = 1.

[

y = 1
√

(1 − x2)

]

7. Determine the equation of the curve which

satisfies the equation xy
dy

dx
= x2 − 1, and

which passes through the point (1, 2).

[y2 = x2 − 2 ln x + 3]

8. The p.d., V , between the plates of a capac-
itor C charged by a steady voltage E
through a resistor R is given by the equation

CR
dV

dt
+ V = E.

(a) Solve the equation for V given that at
t = 0, V = 0.

(b) Calculate V , correct to 3 significant fig-
ures, when E = 25 V, C = 20 ×10−6F,
R = 200 ×103 � and t = 3.0 s.⎡

⎣(a) V = E

(

1 − e
−t
CR

)

(b) 13.2 V

⎤

⎦

9. Determine the value of p, given that

x3 dy

dx
= p − x, and that y = 0 when x = 2 and

when x = 6. [3]
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47

Homogeneous first order differential
equations

47.1 Introduction

Certain first order differential equations are not of the
‘variable-separable’ type, but can be made separable
by changing the variable.

An equation of the form P
dy

dx
= Q, where P and

Q are functions of both x and y of the same degree
throughout, is said to be homogeneous in y and x.
For example, f (x, y) = x2 + 3xy + y2 is a homoge-
neous function since each of the three terms are of

degree 2. However, f (x, y) = x2 − y

2x2 + y2 is not homo-

geneous since the term in y in the numerator is of
degree 1 and the other three terms are of degree 2.

47.2 Procedure to solve differential

equations of the form P
dy
dx

= Q

(i) Rearrange P
dy

dx
= Q into the form

dy

dx
= Q

P

(ii) Make the substitution y = vx (where v is a func-

tion of x), from which,
dy

dx
= v(1) + x

dv

dx
, by the

product rule.

(iii) Substitute for both y and
dy

dx
in the equa-

tion
dy

dx
= Q

P
. Simplify, by cancelling, and an

equation results in which the variables are
separable.

(iv) Separate the variables and solve using the
method shown in Chapter 46.

(v) Substitute v = y

x
to solve in terms of the original

variables.

47.3 Worked problems on
homogeneous first order
differential equations

Problem 1. Solve the differential equation:

y − x = x
dy

dx
, given x = 1 when y = 2.

Using the above procedure:

(i) Rearranging y − x = x
dy

dx
gives:

dy

dx
= y − x

x
,

which is homogeneous in x and y.

(ii) Let y = vx, then
dy

dx
= v + x

dv

dx

(iii) Substituting for y and
dy

dx
gives:

v + x
dv

dx
= vx − x

x
=x(v − 1)

x
= v − 1

(iv) Separating the variables gives:

x
dv

dx
= v − 1 − v = −1, i.e. dv = −1

x
dx

Integrating both sides gives:
∫

dv =
∫

−1

x
dx

Hence, v = −ln x + c

(v) Replacing v by
y

x
gives:

y

x
= −ln x + c, which

is the general solution.

When x = 1, y = 2, thus:
2

1
= − ln 1 + c from

which, c = 2
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Thus, the particular solution is:
y

x
= − ln x + 2

or y = −x(ln x − 2) or y = x(2 − ln x)

Problem 2. Find the particular solution of the

equation: x
dy

dx
= x2 + y2

y
, given the boundary

conditions that y = 4 when x = 1.

Using the procedure of section 47.2:

(i) Rearranging x
dy

dx
= x2 + y2

y
gives:

dy

dx
= x2 + y2

xy
which is homogeneous in x and

y since each of the three terms on the right hand
side are of the same degree (i.e. degree 2).

(ii) Let y = vx then
dy

dx
= v + x

dv

dx

(iii) Substituting for y and
dy

dx
in the equation

dy

dx
= x2 + y2

xy
gives:

v + x
dv

dx
= x2 + v2x2

x(vx)
= x2 + v2x2

vx2 = 1 + v2

v

(iv) Separating the variables gives:

x
dv

dx
= 1 + v2

v
− v = 1 + v2 − v2

v
= 1

v

Hence, v dv = 1

x
dx

Integrating both sides gives:
∫

v dv =
∫

1

x
dx i.e.

v2

2
= ln x + c

(v) Replacing v by
y

x
gives:

y2

2x2 = ln x + c, which

is the general solution.

When x = 1, y = 4, thus:
16

2
= ln 1 + c from

which, c = 8

Hence, the particular solution is:
y2

2x2 = ln x + 8

or y2 = 2x2(8 + ln x)

Now try the following exercise.

Exercise 181 Further problems on homoge-
neous first order differential equations

1. Find the general solution of: x2 = y2 dy

dx[

− 1

3
ln

(
x3 − y3

x3

)

= ln x + c

]

2. Find the general solution of:

x − y + x
dy

dx
= 0 [y = x(c − ln x)]

3. Find the particular solution of the differen-
tial equation: (x2 + y2)dy = xy dx, given that
x = 1 when y = 1.

[

x2 = 2y2
(

ln y + 1

2

)]

4. Solve the differential equation:
x + y

y − x
= dy

dx
⎡

⎣−1

2
ln

(

1 + 2y

x
− y2

x2

)

= ln x + c

or x2 + 2xy − y2 = k

⎤

⎦

5. Find the particular solution of the differential

equation:

(
2y − x

y + 2x

)
dy

dx
= 1 given that y = 3

when x = 2. [x2 + xy − y2 = 1]

47.4 Further worked problems on
homogeneous first order
differential equations

Problem 3. Solve the equation:
7x(x − y)dy = 2(x2 + 6xy − 5y2)dx
given that x = 1 when y = 0.

Using the procedure of section 47.2:

(i) Rearranging gives:
dy

dx
= 2x2 + 12xy − 10y2

7x2 − 7xy
which is homogeneous in x and y since each of
the terms on the right hand side is of degree 2.

(ii) Let y = vx then
dy

dx
= v + x

dv

dx
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(iii) Substituting for y and
dy

dx
gives:

v + x
dv

dx
= 2x2 + 12x(vx) − 10 (vx)2

7x2 − 7x(vx)

= 2 + 12v − 10v2

7 − 7v

(iv) Separating the variables gives:

x
dv

dx
= 2 + 12v − 10v2

7 − 7v
− v

= (2 + 12v − 10v2) − v(7 − 7v)

7 − 7v

= 2 + 5v − 3v2

7 − 7v

Hence,
7 − 7v

2 + 5v − 3v2 dv = dx

x

Integrating both sides gives:

∫ (
7 − 7v

2 + 5v − 3v2

)

dv =
∫

1

x
dx

Resolving
7 − 7v

2 + 5v − 3v2 into partial fractions

gives:
4

(1 + 3v)
− 1

(2 − v)
(see chapter 3)

Hence,
∫ (

4

(1 + 3v)
− 1

(2 − v)

)

dv =
∫

1

x
dx

i.e.
4

3
ln (1 + 3v) + ln (2 − v) = ln x + c

(v) Replacing v by
y

x
gives:

4

3
ln

(

1 + 3y

x

)

+ ln
(

2 − y

x

)
= ln + c

or
4

3
ln

(
x + 3y

x

)

+ ln

(
2x − y

x

)

= ln + c

When x = 1, y = 0, thus:
4

3
ln 1 + ln 2 = ln 1 + c

from which, c = ln 2

Hence, the particular solution is:

4

3
ln

(
x + 3y

x

)

+ ln

(
2x − y

x

)

= ln + ln 2

i.e. ln

(
x + 3y

x

)4
3
(

2x − y

x

)

= ln(2x)

from the laws of logarithms

i.e.

(
x + 3y

x

)4
3
(

2x − y
x

)

= 2x

Problem 4. Show that the solution of the

differential equation: x2 − 3y2 + 2xy
dy

dx
= 0 is:

y = x
√

(8x + 1), given that y = 3 when x = 1.

Using the procedure of section 47.2:

(i) Rearranging gives:

2xy
dy

dx
= 3y2 − x2 and

dy

dx
= 3y2 − x2

2xy

(ii) Let y = vx then
dy

dx
= v + x

dv

dx

(iii) Substituting for y and
dy

dx
gives:

v + x
dv

dx
= 3 (vx)2 − x2

2x(vx)
= 3v2 − 1

2v

(iv) Separating the variables gives:

x
dv

dx
= 3v2 − 1

2v
− v = 3v2 − 1 − 2v2

2v
= v2 − 1

2v

Hence,
2v

v2 − 1
dv = 1

x
dx

Integrating both sides gives:
∫

2v

v2 − 1
dv =

∫
1

x
dx

i.e. ln (v2 − 1) = ln x + c

(v) Replacing v by
y

x
gives:

ln

(
y2

x2 − 1

)

= ln x + c,

which is the general solution.
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When y = 3, x = 1, thus: ln

(
9

1
− 1

)

= ln 1 + c

from which, c = ln 8

Hence, the particular solution is:

ln

(
y2

x2 − 1

)

= ln x + ln 8 = ln 8x

by the laws of logarithms.

Hence,

(
y2

x2 − 1

)

= 8x i.e.
y2

x2 = 8x + 1 and

y2 = x2 (8x + 1)

i.e. y = x
√

(8x + 1)

Now try the following exercise.

Exercise 182 Further problems on homoge-
neous first order differential equations

1. Solve the differential equation:
xy3 dy = (x4 + y4)dx [

y4 = 4x4(ln x + c)
]

2. Solve: (9xy − 11xy)
dy

dx
= 11y2 − 16xy + 3x2

[
1

5

{
3

13
ln

(
13y − 3x

x

)

− ln

(
y − x

x

)}

= ln x + c

]

3. Solve the differential equation:

2x
dy

dx
= x + 3y, given that when x = 1, y = 1.

[
(x + y)2 = 4x3]

4. Show that the solution of the differential

equation: 2xy
dy

dx
= x2 + y2 can be expressed

as: x = K(x2 − y2), where K is a constant.

5. Determine the particular solution of
dy

dx
= x3 + y3

xy2 , given that x = 1 when y = 4.

[
y3 = x3(3 ln x + 64)

]

6. Show that the solution of the differential

equation:
dy

dx
= y3 − xy2 − x2y − 5x3

xy2 − x2y − 2x3 is of

the form:
y2

2x2 + 4y

x
+ 18 ln

(
y − 5x

x

)

= ln x + 42,

when x = 1 and y = 6.
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Linear first order differential equations

48.1 Introduction

An equation of the form
dy

dx
+ Py = Q, where P and

Q are functions of x only is called a linear differ-
ential equation since y and its derivatives are of the
first degree.

(i) The solution of
dy

dx
+ Py = Q is obtained by

multiplying throughout by what is termed an
integrating factor.

(ii) Multiplying
dy

dx
+ Py = Q by say R, a function

of x only, gives:

R
dy

dx
+ RPy = RQ (1)

(iii) The differential coefficient of a product Ry is
obtained using the product rule,

i.e.
d

dx
(Ry) = R

dy

dx
+ y

dR

dx
,

which is the same as the left hand side of
equation (1), when R is chosen such that

RP = dR

dx

(iv) If
dR

dx
= RP, then separating the variables gives

dR

R
= P dx.

Integrating both sides gives:
∫

dR

R
=
∫

P dx i.e. ln R =
∫

P dx + c

from which,

R = e
∫

P dx+c = e
∫

P dxec

i.e. R = Ae
∫

P dx, where A = ec = a constant.

(v) Substituting R = Ae
∫

P dx in equation (1) gives:

Ae
∫

P dx
(

dy

dx

)

+ Ae
∫

P dxPy = Ae
∫

P dxQ

i.e. e
∫

P dx
(

dy

dx

)

+ e
∫

P dxPy = e
∫

P dxQ (2)

(vi) The left hand side of equation (2) is

d

dx

(
ye
∫

P dx
)

which may be checked by differentiating
ye
∫

P dx with respect to x, using the product rule.

(vii) From equation (2),

d

dx

(
ye
∫

P dx
)

= e
∫

P dxQ

Integrating both sides gives:

ye
∫

P dx =
∫

e
∫

P dxQ dx (3)

(viii) e
∫

P dx is the integrating factor.

48.2 Procedure to solve differential
equations of the form
dy
dx

+ Py = Q

(i) Rearrange the differential equation into the

form
dy

dx
+ Py = Q, where P and Q are functions

of x.
(ii) Determine

∫
P dx.

(iii) Determine the integrating factor e
∫

P dx.

(iv) Substitute e
∫

P dx into equation (3).
(v) Integrate the right hand side of equation (3)

to give the general solution of the differential
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equation. Given boundary conditions, the par-
ticular solution may be determined.

48.3 Worked problems on linear first
order differential equations

Problem 1. Solve
1

x

dy

dx
+ 4y = 2 given the

boundary conditions x = 0 when y = 4.

Using the above procedure:

(i) Rearranging gives
dy

dx
+ 4xy = 2x, which is

of the form
dy

dx
+ Py = Q where P = 4x and

Q = 2x.

(ii)
∫

Pdx = ∫
4xdx = 2x2.

(iii) Integrating factor e
∫

P dx = e2x2
.

(iv) Substituting into equation (3) gives:

ye2x2 =
∫

e2x2
(2x) dx

(v) Hence the general solution is:

ye2x2 = 1
2 e2x2 + c,

by using the substitution u = 2x2 When x = 0,
y = 4, thus 4e0 = 1

2 e0 + c, from which, c = 7
2 .

Hence the particular solution is

ye2x2 = 1
2 e2x2 + 7

2

or y = 1
2 + 7

2 e−2x2
or y = 1

2

(
1 + 7e−2x2

)

Problem 2. Show that the solution of the equa-

tion
dy

dx
+ 1 = −y

x
is given by y = 3 − x2

2x
, given

x = 1 when y = 1.

Using the procedure of Section 48.2:

(i) Rearranging gives:
dy

dx
+
(

1

x

)

y = −1, which

is of the form
dy

dx
+ Py = Q, where P = 1

x
and

Q = −1. (Note that Q can be considered to be
−1x0, i.e. a function of x).

(ii)
∫

P dx =
∫

1

x
dx = ln x.

(iii) Integrating factor e
∫

P dx = eln x = x (from the
definition of logarithm).

(iv) Substituting into equation (3) gives:

yx =
∫

x(−1) dx

(v) Hence the general solution is:

yx = −x2

2
+ c

When x = 1, y = 1, thus 1 = −1

2
+ c, from

which, c = 3

2
Hence the particular solution is:

yx = −x2

2
+ 3

2

i.e. 2yx = 3 − x2 and y = 3 − x2

2x

Problem 3. Determine the particular solution

of
dy

dx
− x + y = 0, given that x = 0 when y = 2.

Using the procedure of Section 48.2:

(i) Rearranging gives
dy

dx
+ y = x, which is of the

form
dy

dx
+ P, = Q, where P = 1 and Q = x. (In

this case P can be considered to be 1x0, i.e. a
function of x).

(ii)
∫

P dx = ∫
1dx = x.

(iii) Integrating factor e
∫

P dx = ex.

(iv) Substituting in equation (3) gives:

yex =
∫

ex(x) dx (4)

(v)
∫

ex(x) dx is determined using integration by
parts (see Chapter 43).

∫
xex dx = xex − ex + c
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Hence from equation (4): yex = xex − ex + c,
which is the general solution.

When x = 0, y = 2 thus 2e0 = 0 − e0 + c, from
which, c = 3.

Hence the particular solution is:

yex = xex − ex + 3 or y = x − 1 + 3e−x

Now try the following exercise.

Exercise 183 Further problems on linear
first order differential equations

Solve the following differential equations.

1. x
dy

dx
= 3 − y

[
y = 3 + c

x

]

2.
dy

dx
= x(1 − 2y)

[
y = 1

2 + ce−x2
]

3. t
dy

dt
−5t = −y

[

y = 5t

2
+ c

t

]

4. x

(
dy

dx
+ 1

)

= x3 − 2y, given x = 1 when

y = 3

[

y = x3

5
− x

3
+ 47

15x2

]

5.
1

x

dy

dx
+ y = 1

[
y = 1 + ce−x2/2

]

6.
dy

dx
+ x = 2y

[

y = x

2
+ 1

4
+ ce2x

]

48.4 Further worked problems on
linear first order differential
equations

Problem 4. Solve the differential equation
dy

dθ
= sec θ + y tan θ given the boundary condi-

tions y = 1 when θ = 0.

Using the procedure of Section 48.2:

(i) Rearranging gives
dy

dθ
− (tan θ)y = sec θ, which

is of the form
dy

dθ
+ Py = Q where P = −tan θ

and Q = sec θ.

(ii)
∫

P dx = ∫ − tan θdθ = − ln(sec θ)
= ln(sec θ)−1 = ln (cos θ).

(iii) Integrating factor e
∫

P dθ = eln(cos θ) = cos θ
(from the definition of a logarithm).

(iv) Substituting in equation (3) gives:

y cos θ =
∫

cos θ( sec θ) dθ

i.e. y cos θ =
∫

dθ

(v) Integrating gives: y cos θ = θ + c, which is
the general solution. When θ = 0, y = 1, thus
1 cos 0 = 0 + c, from which, c = 1.
Hence the particular solution is:

y cos θ = θ + 1 or y = (θ + 1) sec θ

Problem 5.

(a) Find the general solution of the equation

(x − 2)
dy

dx
+ 3(x − 1)

(x + 1)
y = 1

(b) Given the boundary conditions that y = 5
when x = −1, find the particular solution of
the equation given in (a).

(a) Using the procedure of Section 48.2:

(i) Rearranging gives:

dy

dx
+ 3(x − 1)

(x + 1)(x − 2)
y = 1

(x − 2)

which is of the form
dy

dx
+ Py = Q, where P = 3(x − 1)

(x + 1)(x − 2)

and Q = 1

(x − 2)
.

(ii)
∫

P dx =
∫

3(x − 1)

(x + 1)(x − 2)
dx, which is

integrated using partial fractions.

Let
3x − 3

(x + 1)(x − 2)

≡ A

(x + 1)
+ B

(x − 2)

≡ A(x − 2) + B(x + 1)

(x + 1)(x − 2)

from which, 3x − 3 = A(x − 2) + B(x + 1)
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When x = −1,

−6 = −3A, from which, A = 2

When x = 2,

3 = 3B, from which, B = 1

Hence
∫

3x − 3

(x + 1)(x − 2)
dx

=
∫ [

2

x + 1
+ 1

x − 2

]

dx

= 2 ln(x + 1) + ln(x − 2)

= ln[(x + 1)2(x − 2)]

(iii) Integrating factor

e
∫

P dx = eln [(x+1)2(x−2)] = (x + 1)2(x − 2)

(iv) Substituting in equation (3) gives:

y(x + 1)2(x − 2)

=
∫

(x + 1)2(x − 2)
1

x − 2
dx

=
∫

(x + 1)2 dx

(v) Hence the general solution is:

y(x + 1)2(x − 2) = 1
3 (x + 1)3 + c

(b) When x = −1, y = 5 thus 5(0)(−3) = 0 + c, from
which, c = 0.

Hence y(x + 1)2(x − 2) = 1
3 (x + 1)3

i.e. y = (x + 1)3

3(x + 1)2(x − 2)
and hence the particular solution is

y = (x + 1)

3(x − 2)

Now try the following exercise.

Exercise 184 Further problems on linear
first order differential equations

In problems 1 and 2, solve the differential
equations

1. cot x
dy

dx
= 1 − 2y, given y = 1 when x = π

4
.

[y = 1
2 + cos2 x]

2. t
dθ

dt
+ sec t(t sin t + cos t)θ = sec t, given

t = π when θ = 1.

[

θ = 1

t
(sin t − π cos t)

]

3. Given the equation x
dy

dx
= 2

x + 2
− y show

that the particular solution is y = 2

x
ln(x + 2),

given the boundary conditions that x = −1
when y = 0.

4. Show that the solution of the differential
equation

dy

dx
− 2(x + 1)3 = 4

(x + 1)
y

is y = (x + 1)4 ln(x + 1)2, given that x = 0
when y = 0.

5. Show that the solution of the differential
equation

dy

dx
+ ky = a sin bx

is given by:

y =
(

a

k2 + b2

)

(k sin bx − b cos bx)

+
(

k2 + b2 + ab

k2 + b2

)

e−kx,

given y = 1 when x = 0.

6. The equation
dv

dt
= −(av + bt), where a and

b are constants, represents an equation of
motion when a particle moves in a resisting
medium. Solve the equation for v given that
v = u when t = 0.

[

v = b

a2 − bt

a
+
(

u − b

a2

)

e−at
]

7. In an alternating current circuit containing
resistance R and inductance L the current i is

given by: Ri + L
di

dt
= E0 sin ωt. Given i = 0

when t = 0, show that the solution of the
equation is given by:

i =
(

E0

R2 + ω2L2

)

(R sin ωt − ωL cos ωt)

+
(

E0ωL

R2 + ω2L2

)

e−Rt/L
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8. The concentration, C, of impurities of an oil
purifier varies with time t and is described by
the equation

a
dC

dt
= b + dm − Cm, where a, b, d and m are

constants. Given C = c0 when t = 0, solve the
equation and show that:

C =
(

b

m
+ d

)

(1 − e−mt/a) + c0e−mt/a

9. The equation of motion of a train is given

by: m
dv

dt
= mk(1 − e−t) − mcv, where v is the

speed, t is the time and m, k and c are con-
stants. Determine the speed, v, given v = 0 at
t = 0.

[

v = k

{
1

c
− e−t

c − 1
+ e−ct

c(c − 1)

}]
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49

Numerical methods for first order
differential equations

49.1 Introduction

Not all first order differential equations may be
solved by separating the variables (as in Chapter 46)
or by the integrating factor method (as in Chap-
ter 48). A number of other analytical methods of
solving differential equations exist. However the
differential equations that can be solved by such
analytical methods is fairly restricted.

Where a differential equation and known bound-
ary conditions are given, an approximate solution
may be obtained by applying a numerical method.
There are a number of such numerical methods avail-
able and the simplest of these is called Euler’s
method.

49.2 Euler’s method

From Chapter 8, Maclaurin’s series may be stated as:

f (x) = f (0) + x f ′(0) + x2

2! f ′′(0) + · · ·
Hence at some point f (h) in Fig. 51.1:

f (h) = f (0) + h f ′(0) + h2

2! f ′′(0) + · · ·

y

P

0
h

x

f(h)

Q y = f(x)

f(0)

Figure 49.1

If the y-axis and origin are moved a units to the left,
as shown in Fig. 49.2, the equation of the same curve

relative to the new axis becomes y = f (a+x) and the
function value at P is f (a).

y

P

h

f(a) f(a + x)

Q y = f(a + x)

x0
a

Figure 49.2

At point Q in Fig. 49.2:

f (a + h) = f (a) + h f ′(a) + h2

2! f ′′(a) + · · · (1)

which is a statement called Taylor’s series.
If h is the interval between two new ordinates y0

and y1, as shown in Fig. 49.3, and if f (a) = y0 and
y1 = f (a + h), then Euler’s method states:

f (a + h) = f (a) + hf ′(a)

i.e. y1 = y0 + h (y′)0 (2)

a (a + h) x0

y

P

Q

y0 y1

y = f (x)

h

Figure 49.3
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The approximation used with Euler’s method is to
take only the first two terms of Taylor’s series shown
in equation (1).

Hence if y0, h and (y′)0 are known, y1, which is an
approximate value for the function at Q in Fig. 49.3,
can be calculated.

Euler’s method is demonstrated in the worked
problems following.

49.3 Worked problems on Euler’s
method

Problem 1. Obtain a numerical solution of the
differential equation

dy

dx
= 3(1 + x) − y

given the initial conditions that x = 1 when y = 4,
for the range x = 1.0 to x = 2.0 with intervals of
0.2. Draw the graph of the solution.

dy

dx
= y′ = 3(1 + x) − y

With x0 = 1 and y0 = 4, (y′)0 = 3(1 + 1) − 4 = 2.

By Euler’s method:

y1 = y0 + h(y′)0, from equation (2)

Hence y1 = 4 + (0.2)(2) = 4.4, since h = 0.2

At point Q in Fig. 49.4, x1 = 1.2, y1 = 4.4

and (y′)1 = 3(1 + x1) − y1

i.e. (y′)1 = 3(1 + 1.2) − 4.4 = 2.2

If the values of x, y and y′ found for point Q are
regarded as new starting values of x0, y0 and (y′)0,
the above process can be repeated and values found
for the point R shown in Fig. 49.5.

Thus at point R,

y1 = y0 + h(y′)0 from equation (2)

= 4.4 + (0.2)(2.2) = 4.84

When x1 = 1.4 and y1 = 4.84,
(y′)1 = 3(1 + 1.4) − 4.84 = 2.36

This step by step Euler’s method can be continued
and it is easiest to list the results in a table, as shown

0 x0 =1 x1 =1.2 x

4

4.4

y

P

Q

y0 y1

h

Figure 49.4

0 1.0 x0 = 1.2 x1 = 1.4

h

x

y

P

Q

R

y0 y1

Figure 49.5

in Table 49.1. The results for lines 1 to 3 have been
produced above.

Table 49.1

x0 y0 (y′)0

1. 1 4 2
2. 1.2 4.4 2.2
3. 1.4 4.84 2.36
4. 1.6 5.312 2.488
5. 1.8 5.8096 2.5904
6. 2.0 6.32768

For line 4, where x0 = 1.6:

y1 = y0 + h(y′)0

= 4.84 + (0.2)(2.36) = 5.312

and (y′)0 = 3(1 + 1.6) − 5.312 = 2.488
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For line 5, where x0 = 1.8:

y1 = y0 + h(y′)0

= 5.312 + (0.2)(2.488) = 5.8096

and (y′)0 = 3(1 + 1.8) − 5.8096 = 2.5904

For line 6, where x0 = 2.0:

y1 = y0 + h(y′)0

= 5.8096 + (0.2)(2.5904)

= 6.32768

(As the range is 1.0 to 2.0 there is no need to calculate
(y′)0 in line 6). The particular solution is given by the
value of y against x.

A graph of the solution of
dy

dx
= 3(1 + x) − y

with initial conditions x = 1 and y = 4 is shown in
Fig. 49.6.

1.0 1.2 1.4 1.6 1.8 2.0 x

5.0

6.0

y

4.0

Figure 49.6

In practice it is probably best to plot the graph as
each calculation is made, which checks that there is
a smooth progression and that no calculation errors
have occurred.

Problem 2. Use Euler’s method to obtain a
numerical solution of the differential equation
dy

dx
+ y = 2x, given the initial conditions that at

x = 0, y = 1, for the range x = 0(0.2)1.0. Draw
the graph of the solution in this range.

x = 0(0.2)1.0 means that x ranges from 0 to 1.0 in
equal intervals of 0.2 (i.e. h = 0.2 in Euler’s method).

dy

dx
+ y = 2x,

hence
dy

dx
= 2x − y, i.e. y′ = 2x − y

If initially x0 = 0 and y0 = 1, then
(y′)0 = 2(0) − 1 = −1.
Hence line 1 in Table 49.2 can be completed with
x = 0, y = 1 and y′(0) = −1.

Table 49.2

x0 y0 (y′)0

1. 0 1 −1
2. 0.2 0.8 −0.4
3. 0.4 0.72 0.08
4. 0.6 0.736 0.464
5. 0.8 0.8288 0.7712
6. 1.0 0.98304

For line 2, where x0 = 0.2 and h = 0.2:

y1 = y0 + h(y′), from equation (2)

= 1 + (0.2)(−1) = 0.8

and (y′)0 = 2x0 − y0 = 2(0.2) − 0.8 = −0.4

For line 3, where x0 = 0.4:

y1 = y0 + h(y′)0

= 0.8 + (0.2)(−0.4) = 0.72

and (y′)0 = 2x0 − y0 = 2(0.4) − 0.72 = 0.08

For line 4, where x0 = 0.6:

y1 = y0 + h(y′)0

= 0.72 + (0.2)(0.08) = 0.736

and (y′)0 = 2x0 − y0 = 2(0.6) − 0.736 = 0.464

For line 5, where x0 = 0.8:

y1 = y0 + h(y′)0

= 0.736 + (0.2)(0.464) = 0.8288

and (y′)0 = 2x0 − y0 = 2(0.8) − 0.8288 = 0.7712

For line 6, where x0 = 1.0:

y1 = y0 + h(y′)0

= 0.8288 + (0.2)(0.7712) = 0.98304

As the range is 0 to 1.0, (y′)0 in line 6 is not needed.
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A graph of the solution of
dy

dx
+ y = 2x, with initial

conditions x = 0 and y = 1 is shown in Fig. 49.7.

0 0.2 0.4 0.6 0.8 1.0 x

0.5

1.0

y

Figure 49.7

Problem 3.

(a) Obtain a numerical solution, using
Euler’s method, of the differential equation
dy

dx
= y − x, with the initial conditions that

at x = 0, y = 2, for the range x = 0(0.1)0.5.
Draw the graph of the solution.

(b) By an analytical method (using the inte-
grating factor method of Chapter 48), the
solution of the above differential equation is
given by y = x + 1 + ex.
Determine the percentage error at x = 0.3.

(a)
dy

dx
= y′ = y − x.

If initially x0 = 0 and y0 = 2,
then (y′)0 = y0 − x0 = 2 − 0 = 2.
Hence line 1 of Table 49.3 is completed.

For line 2, where x0 = 0.1:

y1 = y0 + h(y′)0, from equation (2),

= 2 + (0.1)(2) = 2.2

and (y′)0 = y0 − x0

= 2.2 − 0.1 = 2.1

Table 49.3

x0 y0 (y′)0

1. 0 2 2
2. 0.1 2.2 2.1
3. 0.2 2.41 2.21
4. 0.3 2.631 2.331
5. 0.4 2.8641 2.4641
6. 0.5 3.11051

For line 3, where x0 = 0.2:

y1 = y0 + h(y′)0

= 2.2 + (0.1)(2.1) = 2.41
and (y′)0 = y0 − x0 = 2.41 − 0.2 = 2.21

For line 4, where x0 = 0.3:

y1 = y0 + h(y′)0

= 2.41 + (0.1)(2.21) = 2.631
and (y′)0 = y0 − x0

= 2.631 − 0.3 = 2.331

For line 5, where x0 = 0.4:

y1 = y0 + h(y′)0

= 2.631 + (0.1)(2.331) = 2.8641
and (y′)0 = y0 − x0

= 2.8641 − 0.4 = 2.4641

For line 6, where x0 = 0.5:

y1 = y0 + h(y′)0

= 2.8641 + (0.1)(2.4641) = 3.11051

A graph of the solution of
dy

dx
= y − x with x = 0,

y = 2 is shown in Fig. 49.8.

(b) If the solution of the differential equation
dy

dx
= y − x is given by y = x + 1 + ex, then when

x = 0.3, y = 0.3 + 1 + e0.3 = 2.649859.

By Euler’s method, when x = 0.3 (i.e. line 4 in
Table 49.3), y = 2.631.

Percentage error

=
(

actual − estimated

actual

)

× 100%

=
(

2.649859 − 2.631

2.649859

)

× 100%

= 0.712%
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0 0.1 0.2 0.3 0.4 0.5 x

2.5

3.0

y

2.0

Figure 49.8

Euler’s method of numerical solution of differential
equations is simple, but approximate. The method is
most useful when the interval h is small.

Now try the following exercise.

Exercise 185 Further problems on Euler’s
method

1. Use Euler’s method to obtain a numer-
ical solution of the differential equation
dy

dx
= 3 − y

x
, with the initial conditions that

x = 1 when y = 2, for the range x = 1.0 to
x = 1.5 with intervals of 0.1. Draw the graph
of the solution in this range.

[see Table 49.4]

Table 49.4

x y

1.0 2
1.1 2.1
1.2 2.209091
1.3 2.325000
1.4 2.446154
1.5 2.571429

2. Obtain a numerical solution of the differen-

tial equation
1

x

dy

dx
+ 2y = 1, given the initial

conditions that x = 0 when y = 1, in the range
x = 0(0.2)1.0. [see Table 49.5]

Table 49.5

x y

0 1
0.2 1
0.4 0.96
0.6 0.8864
0.8 0.793664
1.0 0.699692

3.(a) The differential equation
dy

dx
+ 1 = −y

x
has the initial conditions that y = 1 at
x = 2. Produce a numerical solution of
the differential equation in the range
x = 2.0(0.1)2.5.

(b) If the solution of the differential equa-
tion by an analytical method is given by

y = 4

x
− x

2
, determine the percentage error

at x = 2.2.

[(a) see Table 49.6 (b) 1.206%]

Table 49.6

x y

2.0 1
2.1 0.85
2.2 0.709524
2.3 0.577273
2.4 0.452174
2.5 0.333334

4. Use Euler’s method to obtain a numer-
ical solution of the differential equation
dy

dx
= x − 2y

x
, given the initial conditions

that y = 1 when x = 2, in the range
x = 2.0(0.2)3.0.
If the solution of the differential equation is

given by y = x2

4
, determine the percentage

error by using Euler’s method when x = 2.8.

[see Table 49.7, 1.596%]
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Table 49.7

x y

2.0 1
2.2 1.2
2.4 1.421818
2.6 1.664849
2.8 1.928718
3.0 2.213187

49.4 An improved Euler method

In Euler’s method of Section 49.2, the gradient (y′)0
at P(x0, y0) in Fig. 49.9 across the whole interval h is
used to obtain an approximate value of y1 at point
Q. QR in Fig. 49.9 is the resulting error in the result.

0 x0 x1 x

h

P
R

Q

y

y0

Figure 49.9

In an improved Euler method, called the Euler-
Cauchy method, the gradient at P(x0, y0) across half
the interval is used and then continues with a line
whose gradient approximates to the gradient of the
curve at x1, shown in Fig. 49.10.

Let yP1 be the predicted value at point R using
Euler’s method, i.e. length RZ , where

yP1 = y0 + h( y′)0 (3)

The error shown as QT in Fig. 49.10 is now less than
the error QR used in the basic Euler method and the
calculated results will be of greater accuracy. The
corrected value, yC1 in the improved Euler method
is given by:

yC1 = y0 + 1
2 h[( y′)0 + f (x1, yP1 )] (4)

0 x0 x0 +    h x1
1
2 x

P
S

R

T

Q

y

h

z

Figure 49.10

The following worked problems demonstrate how
equations (3) and (4) are used in the Euler-Cauchy
method.

Problem 4. Apply the Euler-Cauchy method to
solve the differential equation

dy

dx
= y − x

in the range 0(0.1)0.5, given the initial condi-
tions that at x = 0, y = 2.

dy

dx
= y′ = y − x

Since the initial conditions are x0 = 0 and y0 = 2
then (y′)0 = 2 − 0 = 2. Interval h = 0.1, hence
x1 = x0 + h = 0 + 0.1 = 0.1.
From equation (3),

yP1 = y0 + h(y′)0 = 2 + (0.1)(2) = 2.2

From equation (4),

yC1 = y0 + 1
2 h[(y′)0 + f (x1, yP1 )]

= y0 + 1
2 h[(y′)0 + (yP1 − x1)],

in this case

= 2 + 1
2 (0.1)[2 + (2.2 − 0.1)] = 2.205

(y′)1 = yC1 − x1 = 2.205 − 0.1 = 2.105

If we produce a table of values, as in Euler’s method,
we have so far determined lines 1 and 2 of Table 49.8.

The results in line 2 are now taken as x0, y0 and
(y′)0 for the next interval and the process is repeated.
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Table 49.8

x y y′

1. 0 2 2
2. 0.1 2.205 2.105
3. 0.2 2.421025 2.221025
4. 0.3 2.649232625 2.349232625
5. 0.4 2.89090205 2.49090205
6. 0.5 3.147446765

For line 3, x1 = 0.2

yP1 = y0 + h(y′)0 = 2.205 + (0.1)(2.105)

= 2.4155

yC1 = y0 + 1
2 h[(y′)0 + f (x1, yP1 )]

= 2.205 + 1
2 (0.1)[2.105 + (2.4155 − 0.2)]

= 2.421025

(y′)0 = yC1 − x1 = 2.421025 − 0.2 = 2.221025

For line 4, x1 = 0.3

yP1 = y0 + h(y′)0

= 2.421025 + (0.1)(2.221025)

= 2.6431275

yC1 = y0 + 1
2 h[(y′)0 + f (x1, yP1 )]

= 2.421025 + 1
2 (0.1)[2.221025

+ (2.6431275 − 0.3)]

= 2.649232625

(y′)0 = yC1 − x1 = 2.649232625 − 0.3

= 2.349232625

For line 5, x1 = 0.4

yP1 = y0 + h(y′)0

= 2.649232625 + (0.1)(2.349232625)

= 2.884155887

Table 49.9

Euler method Euler-Cauchy method Exact value
x y y y = x + 1 + ex

1. 0 2 2 2
2. 0.1 2.2 2.205 2.205170918
3. 0.2 2.41 2.421025 2.421402758
4. 0.3 2.631 2.649232625 2.649858808
5. 0.4 2.8641 2.89090205 2.891824698
6. 0.5 3.11051 3.147446765 3.148721271

yC1 = y0 + 1
2 h[(y′)0 + f (x1, yP1 )]

= 2.649232625 + 1
2 (0.1)[2.349232625

+ (2.884155887 − 0.4)]

= 2.89090205

(y′)0 = yC1 − x1 = 2.89090205 − 0.4

= 2.49090205

For line 6, x1 = 0.5

yP1 = y0 + h(y′)0

= 2.89090205 + (0.1)(2.49090205)

= 3.139992255

yC1 = y0 + 1
2 h[(y′)0 + f (x1, yP1 )]

= 2.89090205 + 1
2 (0.1)[2.49090205

+ (3.139992255 − 0.5)]

= 3.147446765

Problem 4 is the same example as Problem 3 and
Table 49.9 shows a comparison of the results, i.e.
it compares the results of Tables 49.3 and 49.8.
dy

dx
= y − x may be solved analytically by the inte-

grating factor method of Chapter 48 with the solution
y = x + 1 + ex. Substituting values of x of 0, 0.1,
0.2, . . . give the exact values shown in Table 49.9.

The percentage error for each method for each
value of x is shown in Table 49.10. For example
when x = 0.3,
% error with Euler method

=
(

actual − estimated

actual

)

× 100%

=
(

2.649858808 − 2.631

2.649858808

)

× 100%

= 0.712%
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% error with Euler-Cauchy method

=
(

2.649858808 − 2.649232625

2.649858808

)

× 100%

= 0.0236%

This calculation and the others listed in Table 49.10
show the Euler-Cauchy method to be more accurate
than the Euler method.

Table 49.10

x Error in Error in
Euler method Euler-Cauchy method

0 0 0
0.1 0.234% 0.00775%
0.2 0.472% 0.0156%
0.3 0.712% 0.0236%
0.4 0.959% 0.0319%
0.5 1.214% 0.0405%

Problem 5. Obtain a numerical solution of the
differential equation

dy

dx
= 3(1 + x) − y

in the range 1.0(0.2)2.0, using the Euler-Cauchy
method, given the initial conditions that x = 1
when y = 4.

This is the same as Problem 1 on page 461, and a
comparison of values may be made.

dy

dx
= y′ = 3(1 + x) − y i.e. y′ = 3 + 3x − y

x0 = 1.0, y0 = 4 and h = 0.2

(y′)0 = 3 + 3x0 − y0 = 3 + 3(1.0) − 4 = 2

x1 = 1.2 and from equation (3),
yP1 = y0 + h(y′)0 = 4 + 0.2(2) = 4.4

yC1 = y0 + 1
2 h[(y′)0 + f (x1, yP1 )]

= y0 + 1
2 h[(y′)0 + (3 + 3x1 − yP1 )]

= 4 + 1
2 (0.2)[2 + (3 + 3(1.2) − 4.4)]

= 4.42

(y′)1 = 3 + 3x1 − yP1 = 3 + 3(1.2) − 4.42 = 2.18

Thus the first two lines of Table 49.11 have been
completed.

Table 49.11

x0 y0 y′
0

1. 1.0 4 2
2. 1.2 4.42 2.18
3. 1.4 4.8724 2.3276
4. 1.6 5.351368 2.448632
5. 1.8 5.85212176 2.54787824
6. 2.0 6.370739847

For line 3, x1 = 1.4

yP1 = y0 + h(y′)0 = 4.42 + 0.2(2.18) = 4.856

yC1 = y0 + 1
2 h[(y′)0 + (3 + 3x1 − yP1 )]

= 4.42 + 1
2 (0.2)[2.18

+ (3 + 3(1.4) − 4.856)]

= 4.8724

(y′)1 = 3 + 3x1 − yP1 = 3 + 3(1.4) − 4.8724

= 2.3276

For line 4, x1 = 1.6

yP1 = y0 + h(y′)0 = 4.8724 + 0.2(2.3276)

= 5.33792

yC1 = y0 + 1
2 h[(y′)0 + (3 + 3x1 − yP1 )]

= 4.8724 + 1
2 (0.2)[2.3276

+ (3 + 3(1.6) − 5.33792)]

= 5.351368

(y′)1 = 3 + 3x1 − yP1

= 3 + 3(1.6) − 5.351368

= 2.448632

For line 5, x1 = 1.8

yP1 = y0 + h(y′)0 = 5.351368 + 0.2(2.448632)

= 5.8410944

yC1 = y0 + 1
2 h[(y′)0 + (3 + 3x1 − yP1 )]

= 5.351368 + 1
2 (0.2)[2.448632

+ (3 + 3(1.8) − 5.8410944)]

= 5.85212176

(y′)1 = 3 + 3x1 − yP1

= 3 + 3(1.8) − 5.85212176

= 2.54787824



Ch49-H8152.tex 23/6/2006 15: 13 Page 468

468 DIFFERENTIAL EQUATIONS

For line 6, x1 = 2.0

yP1 = y0 + h(y′)0

= 5.85212176 + 0.2(2.54787824)

= 6.361697408

yC1 = y0 + 1
2 h[(y′)0 + (3 + 3x1 − yP1 )]

= 5.85212176 + 1
2 (0.2)[2.54787824

+ (3 + 3(2.0) − 6.361697408)]

= 6.370739843

Problem 6. Using the integrating factor
method the solution of the differential equa-

tion
dy

dx
= 3(1 + x) − y of Problem 5 is

y = 3x + e1 − x. When x = 1.6, compare the
accuracy, correct to 3 decimal places, of the
Euler and the Euler-Cauchy methods.

When x = 1.6, y = 3x + e1−x = 3(1.6) + e1−1.6 =
4.8 + e−0.6 = 5.348811636.

From Table 49.1, page 461, by Euler’s method,
when x = 1.6, y = 5.312

% error in the Euler method

=
(

5.348811636 − 5.312

5.348811636

)

× 100%

= 0.688%

From Table 49.11 of Problem 5, by the Euler-Cauchy
method, when x = 1.6, y = 5.351368

% error in the Euler-Cauchy method

=
(

5.348811636 − 5.351368

5.348811636

)

× 100%

= −0.048%

The Euler-Cauchy method is seen to be more accu-
rate than the Euler method when x = 1.6.

Now try the following exercise.

Exercise 186 Further problems on an
improved Euler method

1. Apply the Euler-Cauchy method to solve the
differential equation

dy

dx
= 3 − y

x

for the range 1.0(0.1)1.5, given the initial
conditions that x = 1 when y = 2.

[see Table 49.12]

Table 49.12

x y y′

1.0 2 1
1.1 2.10454546 1.08677686
1.2 2.216666672 1.152777773
1.3 2.33461539 1.204142008
1.4 2.457142859 1.2448987958
1.5 2.583333335

2. Solving the differential equation in Prob-
lem 1 by the integrating factor method gives

y = 3

2
x + 1

2x
. Determine the percentage

error, correct to 3 significant figures, when
x = 1.3 using (a) Euler’s method (see
Table 49.4, page 464), and (b) the Euler-
Cauchy method.

[(a) 0.412% (b) 0.000000214%]

3.(a) Apply the Euler-Cauchy method to solve
the differential equation

dy

dx
− x = y

for the range x = 0 to x = 0.5 in incre-
ments of 0.1, given the initial conditions
that when x = 0, y = 1.

(b) The solution of the differential equation
in part (a) is given by y = 2ex − x − 1.
Determine the percentage error, correct to
3 decimal places, when x = 0.4.

[(a) see Table 49.13 (b) 0.117%]

Table 49.13

x y y′

0 1 1
0.1 1.11 1.21
0.2 1.24205 1.44205
0.3 1.398465 1.698465
0.4 1.581804 1.981804
0.5 1.794893
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4. Obtain a numerical solution of the differential
equation

1

x

dy

dx
+ 2y = 1

using the Euler-Cauchy method in the range
x = 0(0.2)1.0, given the initial conditions that
x = 0 when y = 1.

[see Table 49.14]
Table 49.14

x y y′

0 1 0
0.2 0.99 −0.196
0.4 0.958336 −0.3666688
0.6 0.875468851 −0.450562623
0.8 0.784755575 −0.45560892
1.0 0.700467925

49.5 The Runge-Kutta method

The Runge-Kutta method for solving first order dif-
ferential equations is widely used and provides a
high degree of accuracy. Again, as with the two
previous methods, the Runge-Kutta method is a
step-by-step process where results are tabulated for
a range of values of x. Although several intermediate
calculations are needed at each stage, the method is
fairly straightforward.

The 7 step procedure for the Runge-Kutta
method, without proof, is as follows:

To solve the differential equation
dy

dx
= f (x, y) given

the initial condition y = y0 at x = x0 for a range of
values of x = x0(h)xn:

1. Identify x0, y0 and h, and values of x1, x2,
x3, . . . .

2. Evaluate k1 = f(xn, yn) starting with n = 0

3. Evaluate k2 = f

(

xn + h

2
, yn + h

2
k1

)

4. Evaluate k3 = f

(

xn + h

2
, yn + h

2
k2

)

5. Evaluate k4 = f (xn + h, yn + hk3)

6. Use the values determined from steps 2 to 5 to
evaluate:

yn+1 = yn + h

6
{k1 + 2k2 + 2k3 + k4}

7. Repeat steps 2 to 6 for n = 1, 2, 3, . . .

Thus, step 1 is given, and steps 2 to 5 are intermediate
steps leading to step 6. It is usually most convenient
to construct a table of values.
The Runge-Kutta method is demonstrated in the
following worked problems.

Problem 7. Use the Runge-Kutta method to
solve the differential equation:
dy

dx
= y − x

in the range 0(0.1)0.5, given the initial condi-
tions that at x = 0, y = 2.

Using the above procedure:

1. x0 = 0, y0 = 2 and since h = 0.1, and the range
is from x = 0 to x = 0.5, then x1 = 0.1, x2 = 0.2,
x3 = 0.3, x4 = 0.4, and x5 = 0.5

Let n = 0 to determine y1:

2. k1 = f (x0, y0) = f (0, 2);

since
dy

dx
= y − x, f (0, 2) = 2 − 0 = 2

3. k2 = f

(

x0 + h

2
, y0 + h

2
k1

)

= f

(

0 + 0.1

2
, 2 + 0.1

2
(2)

)

= f (0.05, 2.1) = 2.1 − 0.05 = 2.05

4. k3 = f

(

x0 + h

2
, y0 + h

2
k2

)

= f

(

0 + 0.1

2
, 2 + 0.1

2
(2.05)

)

= f (0.05, 2.1025)

= 2.1025 − 0.05 = 2.0525

5. k4 = f (x0 + h, y0 + hk3)

= f (0 + 0.1, 2 + 0.1(2.0525))

= f (0.1, 2.20525)

= 2.20525 − 0.1 = 2.10525
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6. yn+1 = yn + h

6
{k1 + 2k2 + 2k3 + k4} and when

n = 0:

y1 = y0 + h

6
{k1 + 2k2 + 2k3 + k4}

= 2 + 0.1

6
{2 + 2(2.05) + 2(2.0525)

+ 2.10525}
= 2 + 0.1

6
{12.31025} = 2.205171

A table of values may be constructed as shown in
Table 49.15. The working has been shown for the
first two rows.

Let n = 1 to determine y2:

2. k1 = f (x1, y1) = f (0.1, 2.205171); since
dy

dx
= y − x, f (0.1, 2.205171)

= 2.205171 − 0.1 = 2.105171

3. k2 = f

(

x1 + h

2
, y1 + h

2
k1

)

= f

(

0.1 + 0.1

2
, 2.205171 + 0.1

2
(2.105171)

)

= f (0.15, 2.31042955)

= 2.31042955 − 0.15 = 2.160430

4. k3 = f

(

x1 + h

2
, y1 + h

2
k2

)

= f

(

0.1 + 0.1

2
, 2.205171 + 0.1

2
(2.160430)

)

= f (0.15, 2.3131925) = 2.3131925 − 0.15

= 2.163193

Table 49.15

n xn k1 k2 k3 k4 yn

0 0 2

1 0.1 2.0 2.05 2.0525 2.10525 2.205171

2 0.2 2.105171 2.160430 2.163193 2.221490 2.421403

3 0.3 2.221403 2.282473 2.285527 2.349956 2.649859

4 0.4 2.349859 2.417339 2.420726 2.491932 2.891824

5 0.5 2.491824 2.566415 2.570145 2.648838 3.148720

5. k4 = f (x1 + h, y1 + hk3)

= f (0.1 + 0.1, 2.205171 + 0.1(2.163193))

= f (0.2, 2.421490)

= 2.421490 − 0.2 = 2.221490

6. yn+1 = yn + h

6
{k1 + 2k2 + 2k3 + k4}

and when n = 1:

y2 = y1 + h

6
{k1 + 2k2 + 2k3 + k4}

= 2.205171+ 0.1

6
{2.105171+2(2.160430)

+ 2(2.163193) + 2.221490}

= 2.205171 + 0.1

6
{12.973907} = 2.421403

This completes the third row of Table 49.15. In a
similar manner y3, y4 and y5 can be calculated and
the results are as shown in Table 49.15. Such a table
is best produced by using a spreadsheet, such as
Microsoft Excel.

This problem is the same as problem 3, page 463
which used Euler’s method, and problem 4, page 465
which used the improved Euler’s method, and a com-
parison of results can be made.

The differential equation
dy
dx

= y − x may be solved

analytically using the integrating factor method of
chapter 48, with the solution:

y = x + 1 + ex

Substituting values of x of 0, 0.1, 0.2, . . ., 0.5 will
give the exact values. A comparison of the results
obtained by Euler’s method, the Euler-Cauchy
method and the Runga-Kutta method, together with
the exact values is shown in Table 49.16 below.
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Table 49.16

Euler’s Euler-Cauchy Runge-Kutta
method method method Exact value

x y y y y = x + 1 + ex

0 2 2 2 2
0.1 2.2 2.205 2.205171 2.205170918
0.2 2.41 2.421025 2.421403 2.421402758
0.3 2.631 2.649232625 2.649859 2.649858808
0.4 2.8641 2.89090205 2.891824 2.891824698
0.5 3.11051 3.147446765 3.148720 3.148721271

It is seen from Table 49.16 that the Runge-Kutta
method is exact, correct to 5 decimal places.

Problem 8. Obtain a numerical solution of

the differential equation:
dy

dx
= 3(1 + x) − y in

the range 1.0(0.2)2.0, using the Runge-Kutta
method, given the initial conditions that x = 1.0
when y = 4.0

Using the above procedure:

1. x0 = 1.0, y0 = 4.0 and since h = 0.2, and the
range is from x = 1.0 to x = 2.0, then x1 = 1.2,
x2 = 1.4, x3 = 1.6, x4 = 1.8, and x5 = 2.0

Let n = 0 to determine y1:

2. k1 = f (x0, y0) = f (1.0, 4.0); since
dy

dx
= 3(1 + x) − y,

f (1.0, 4.0) = 3(1 + 1.0) − 4.0 = 2.0

3. k2 = f

(

x0 + h

2
, y0 + h

2
k1

)

= f

(

1.0 + 0.2

2
, 4.0 + 0.2

2
(2)

)

= f (1.1, 4.2) = 3(1 + 1.1) − 4.2 = 2.1

4. k3 = f

(

x0 + h

2
, y0 + h

2
k2

)

= f

(

1.0 + 0.2

2
, 4.0 + 0.2

2
(2.1)

)

= f (1.1, 4.21)

= 3(1 + 1.1) − 4.21 = 2.09

5. k4 = f (x0 + h, y0 + hk3)

= f (1.0 + 0.2, 4.1 + 0.2(2.09))

= f (1.2, 4.418)

= 3(1 + 1.2) − 4.418 = 2.182

6. yn+1 = yn + h

6
{k1 + 2k2 + 2k3 + k4} and when

n = 0:

y1 = y0 + h

6
{k1 + 2k2 + 2k3 + k4}

= 4.0 + 0.2

6
{2.0 + 2(2.1) + 2(2.09) + 2.182}

= 4.0 + 0.2

6
{12.562} = 4.418733

A table of values is compiled in Table 49.17. The
working has been shown for the first two rows.

Let n = 1 to determine y2:

2. k1 = f (x1, y1) = f (1.2, 4.418733); since

dy

dx
= 3(1 + x) − y, f (1.2, 4.418733)

= 3(1 + 1.2) − 4.418733 = 2.181267

3. k2 = f

(

x1 + h

2
, y1 + h

2
k1

)

= f

(

1.2 + 0.2

2
, 4.418733 + 0.2

2
(2.181267)

)

= f (1.3, 4.636860)

= 3(1 + 1.3) − 4.636860 = 2.263140
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Table 49.17

n xn k1 k2 k3 k4 yn

0 1.0 4.0

1 1.2 2.0 2.1 2.09 2.182 4.418733

2 1.4 2.181267 2.263140 2.254953 2.330276 4.870324

3 1.6 2.329676 2.396708 2.390005 2.451675 5.348817

4 1.8 2.451183 2.506065 2.500577 2.551068 5.849335

5 2.0 2.550665 2.595599 2.591105 2.632444 6.367886

4. k3 = f

(

x1 + h

2
, y1 + h

2
k2

)

= f

(

1.2 + 0.2

2
, 4.418733 + 0.2

2
(2.263140)

)

= f (1.3, 4.645047) = 3(1 + 1.3) − 4.645047

= 2.254953

5. k4 = f (x1 + h, y1 + hk3)

= f (1.2 + 0.2, 4.418733 + 0.2(2.254953))

= f (1.4, 4.869724) = 3(1 + 1.4) − 4.869724

= 2.330276

6. yn+1 = yn + h

6
{k1 + 2k2 + 2k3 + k4} and when

n = 1:

y2 = y1 + h

6
{k1 + 2k2 + 2k3 + k4}

= 4.418733 + 0.2

6
{2.181267 + 2(2.263140)

+ 2(2.254953) + 2.330276}

= 4.418733 + 0.2

6
{13.547729} = 4.870324

This completes the third row of Table 49.17. In a
similar manner y3, y4 and y5 can be calculated and
the results are as shown in Table 49.17. As in the
previous problem such a table is best produced by
using a spreadsheet.

This problem is the same as problem 1, page 461
which used Euler’s method, and problem 5, page 467
which used the Euler-Cauchy method, and a compar-
ison of results can be made.

The differential equation
dy

dx
= 3(1 + x) − y may

be solved analytically using the integrating factor
method of chapter 48, with the solution:

y = 3x + e1−x

Substituting values of x of 1.0, 1.2, 1.4, . . ., 2.0 will
give the exact values. A comparison of the results
obtained by Euler’s method, the Euler-Cauchy
method and the Runga-Kutta method, together
with the exact values is shown in Table 49.18 on
page 473.

It is seen from Table 49.18 that the Runge-Kutta
method is exact, correct to 4 decimal places.

The percentage error in the Runge-Kutta method
when, say, x = 1.6 is:

(
5.348811636 − 5.348817

5.348811636

)

×100% = −0.0001%

From problem 6, page 468, when x = 1.6, the per-
centage error for the Euler method was 0.688%, and
for the Euler-Cauchy method −0.048%. Clearly, the
Runge-Kutta method is the most accurate of the three
methods.

Now try the following exercise.

Exercise 187 Further problems on the
Runge-Kutta method

1. Apply the Runge-Kutta method to solve

the differential equation:
dy

dx
= 3 − y

x
for the

range 1.0(0.1)1.5, given that the initial con-
ditions that x = 1 when y = 2.

[see Table 49.19]
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Table 49.18

Euler’s Euler-Cauchy Runge-Kutta
method method method Exact value

x y y y y = 3x + e1−x

1.0 4 4 4 4

1.2 4.4 4.42 4.418733 4.418730753

1.4 4.84 4.8724 4.870324 4.870320046

1.6 5.312 5.351368 5.348817 5.348811636

1.8 5.8096 5.85212176 5.849335 5.849328964

2.0 6.32768 6.370739847 6.367886 6.367879441

Table 49.19

n xn yn

0 1.0 2.0

1 1.1 2.104545

2 1.2 2.216667

3 1.3 2.334615

4 1.4 2.457143

5 1.5 2.533333

2. Obtain a numerical solution of the differential

equation:
1

x

dy

dx
+ 2y = 1 using the Runge-

Kutta method in the range x = 0(0.2)1.0,
given the initial conditions that x = 0 when
y = 1. [see Table 49.20]

Table 49.20

n xn yn

0 0 1.0
1 0.2 0.980395
2 0.4 0.926072
3 0.6 0.848838
4 0.8 0.763649
5 1.0 0.683952

3.(a) The differential equation:
dy

dx
+ 1 = −y

x
has the initial conditions that y = 1 at
x = 2. Produce a numerical solution of the
differential equation, correct to 6 decimal
places, using the Runge-Kutta method in
the range x = 2.0(0.1)2.5.

(b) If the solution of the differential equa-
tion by an analytical method is given by:

y = 4

x
− x

2
determine the percentage error

at x = 2.2.
[(a) see Table 49.21 (b) no error]

Table 49.21

n xn yn

0 2.0 1.0
1 2.1 0.854762
2 2.2 0.718182
3 2.3 0.589130
4 2.4 0.466667
5 2.5 0.340000



Assign-13-H8152.tex 23/6/2006 15: 13 Page 474

Differential equations

Assignment 13

This assignment covers the material contained
in Chapters 46 to 49.

The marks for each question are shown in
brackets at the end of each question.

1. Solve the differential equation: x
dy

dx
+ x2 = 5

given that y = 2.5 when x = 1. (4)

2. Determine the equation of the curve which satis-

fies the differential equation 2xy
dy

dx
= x2 + 1 and

which passes through the point (1, 2). (5)

3. A capacitor C is charged by applying a steady
voltage E through a resistance R. The p.d.
between the plates, V , is given by the differential
equation:

CR
dV

dt
+ V = E

(a) Solve the equation for E given that when time
t = 0, V = 0.

(b) Evaluate voltageV when E =50 V, C =10 µF,
R = 200 k� and t = 1.2 s. (14)

4. Show that the solution to the differential equa-

tion: 4x
dy

dx
= x2 + y2

y
is of the form

3y2 = √
x
(

1 − √
x3
)

given that y = 0 when

x = 1 (12)

5. Show that the solution to the differential equation

x cos x
dy

dx
+ (x sin x + cos x)y = 1

is given by: xy = sin x + k cos x where k is a
constant. (11)

6. (a) Use Euler’s method to obtain a numerical
solution of the differential equation:

dy

dx
= y

x
+ x2 − 2

given the initial conditions that x = 1 when
y = 3, for the range x = 1.0 (0.1) 1.5.

(b) Apply the Euler-Cauchy method to the differ-
ential equation given in part (a) over the same
range.

(c) Apply the integrating factor method to
solve the differential equation in part (a)
analytically.

(d) Determine the percentage error, correct to
3 significant figures, in each of the two
numerical methods when x = 1.2. (30)

7. Use the Runge-Kutta method to solve the differ-

ential equation:
dy

dx
= y

x
+ x2 − 2 in the range

1.0(0.1)1.5, given the initial conditions that at
x = 1, y = 3. Work to an accuracy of 6 decimal
places. (24)
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Differential equations

50

Second order differential equations of

the form a
d2y

dx2 + b
dy

dx
+ cy = 0

50.1 Introduction

An equation of the form a
d2y

dx2 +b
dy

dx
+ cy = 0, where

a, b and c are constants, is called a linear second
order differential equation with constant coeffi-
cients. When the right-hand side of the differential
equation is zero, it is referred to as a homogeneous
differential equation. When the right-hand side is
not equal to zero (as in Chapter 51) it is referred to
as a non-homogeneous differential equation.

There are numerous engineering examples
of second order differential equations. Three
examples are:

(i) L
d2q

dt2 + R
dq

dt
+ 1

C
q = 0, representing an equa-

tion for charge q in an electrical circuit contain-
ing resistance R, inductance L and capacitance
C in series.

(ii) m
d2s

dt2 + a
ds

dt
+ ks = 0, defining a mechanical

system, where s is the distance from a fixed
point after t seconds, m is a mass, a the damping
factor and k the spring stiffness.

(iii)
d2y

dx2 + P

EI
y = 0, representing an equation for

the deflected profile y of a pin-ended uniform
strut of length l subjected to a load P. E is
Young’s modulus and I is the second moment
of area.

If D represents
d

dx
and D2 represents

d2

dx2 then the

above equation may be stated as
(aD2 + bD + c)y = 0. This equation is said to be in
‘D-operator’ form.

If y = Aemx then
dy

dx
= Amemx and

d2y

dx2 = Am2emx.

Substituting these values into a
d2y

dx2 + b
dy

dx
+ cy = 0

gives:

a(Am2emx) + b(Amemx) + c(Aemx) = 0

i.e. Aemx(am2 + bm + c) = 0

Thus y = Aemx is a solution of the given equation pro-
vided that (am2 + bm + c) = 0. am2 + bm + c = 0 is
called the auxiliary equation, and since the equation
is a quadratic, m may be obtained either by factoris-
ing or by using the quadratic formula. Since, in the
auxiliary equation, a, b and c are real values, then
the equation may have either

(i) two different real roots (when b2 > 4ac) or

(ii) two equal real roots (when b2 = 4ac) or

(iii) two complex roots (when b2 < 4ac).

50.2 Procedure to solve differential
equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = 0

(a) Rewrite the differential equation

a
d2y

dx2 + b
dy

dx
+ cy = 0

as (aD2 + bD + c)y = 0

(b) Substitute m for D and solve the auxiliary
equation am2 + bm + c = 0 for m.
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(c) If the roots of the auxiliary equation are:

(i) real and different, say m = α and m = β,
then the general solution is

y = Aeαx + Beβx

(ii) real and equal, say m = α twice, then the
general solution is

y = (Ax + B)eαx

(iii) complex, say m = α ± jβ, then the general
solution is

y = eαx{A cos βx + B sin βx}

(d) Given boundary conditions, constants A and B,
may be determined and the particular solution
of the differential equation obtained.

The particular solutions obtained in the worked
problems of Section 50.3 may each be verified by

substituting expressions for y,
dy

dx
and

d2y

dx2 into the

original equation.

50.3 Worked problems on differential
equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = 0

Problem 1. Determine the general solution

of 2
d2y

dx2 + 5
dy

dx
− 3y = 0. Find also the parti-

cular solution given that when x = 0, y = 4 and
dy

dx
= 9.

Using the above procedure:

(a) 2
d2y

dx2 + 5
dy

dx
− 3y = 0 in D-operator form is

(2D2 + 5D − 3)y = 0, where D ≡ d

dx
(b) Substituting m for D gives the auxiliary equation

2m2 + 5m − 3 = 0.

Factorising gives: (2m − 1)(m + 3) = 0, from
which, m = 1

2 or m = −3.

(c) Since the roots are real and different the general
solution is y = Ae

1
2 x + Be−3x.

(d) When x = 0, y = 4,

hence 4 = A + B (1)

Since y = Ae
1
2 x + Be−3x

then
dy

dx
= 1

2
Ae

1
2 x − 3Be−3x

When x = 0,
dy

dx
= 9

thus 9 = 1

2
A − 3B (2)

Solving the simultaneous equations (1) and (2)
gives A = 6 and B = −2.

Hence the particular solution is

y = 6e
1
2 x − 2e−3x

Problem 2. Find the general solution of

9
d2y

dt2 − 24
dy

dt
+ 16y = 0 and also the particular

solution given the boundary conditions that

when t = 0, y = dy

dt
= 3.

Using the procedure of Section 50.2:

(a) 9
d2y

dt2 − 24
dy

dt
+ 16y = 0 in D-operator form is

(9D2 − 24D + 16)y = 0 where D ≡ d

dt

(b) Substituting m for D gives the auxiliary equation
9m2 − 24m + 16 = 0.

Factorising gives: (3m − 4)(3m − 4) = 0, i.e.
m = 4

3 twice.

(c) Since the roots are real and equal, the general
solution is y = (At + B)e

4
3 t.

(d) When t = 0, y = 3 hence 3 = (0 + B)e0, i.e. B = 3.

Since y = (At + B)e
4
3 t

then
dy

dt
= (At + B)

(
4

3
e

4
3 t
)

+ Ae
4
3 t , by the

product rule.
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When t = 0,
dy

dt
= 3

thus 3 = (0 + B)
4

3
e0 + Ae0

i.e. 3 = 4

3
B + A from which, A = −1, since

B = 3.
Hence the particular solution is

y = (−t + 3)e
4
3 t or

y = (3 − t)e
4
3 t

Problem 3. Solve the differential equation
d2y

dx2 + 6
dy

dx
+ 13y = 0, given that when x = 0,

y = 3 and
dy

dx
= 7.

Using the procedure of Section 50.2:

(a)
d2y

dx2 + 6
dy

dx
+ 13y = 0 in D-operator form is

(D2 + 6D + 13)y = 0, where D ≡ d

dx
(b) Substituting m for D gives the auxiliary equation

m2 + 6m + 13 = 0.
Using the quadratic formula:

m = −6 ±√[(6)2 − 4(1)(13)]

2(1)

= −6 ± √
(−16)

2

i.e. m = −6 ± j4

2
= −3 ± j2

(c) Since the roots are complex, the general solu-
tion is

y = e−3x(A cos 2x + B sin 2x)

(d) When x = 0, y = 3, hence
3 = e0(A cos 0 + B sin 0), i.e. A = 3.

Since y = e−3x(A cos 2x + B sin 2x)

then
dy

dx
= e−3x(−2A sin 2x + 2B cos 2x)

− 3e−3x(A cos 2x + B sin 2x),
by the product rule,

= e−3x[(2B − 3A) cos 2x
− (2A + 3B) sin 2x]

When x = 0,
dy

dx
= 7,

hence 7 = e0[(2B − 3A) cos 0 − (2A + 3B) sin 0]
i.e. 7 = 2B − 3A, from which, B = 8, since A = 3.
Hence the particular solution is

y = e−3x(3 cos 2x + 8 sin 2x)

Since, from Chapter 18, page 178,
a cos ωt + b sin ωt = R sin (ωt + α), where

R =√(a2 + b2) and α = tan−1 a

b
then

3 cos 2x + 8 sin 2x =
√

(32 + 82) sin (2x

+ tan−1 3
8 )

= √
73 sin(2x + 20.56◦)

= √
73 sin(2x + 0.359)

Thus the particular solution may also be
expressed as

y = √
73 e−3x sin(2x + 0.359)

Now try the following exercise.

Exercise 188 Further problems on differen-
tial equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = 0

In Problems 1 to 3, determine the general solu-
tion of the given differential equations.

1. 6
d2y

dt2 − dy

dt
− 2y = 0

[
y = Ae

2
3 t + Be− 1

2 t
]

2. 4
d2θ

dt2 + 4
dθ

dt
+ θ = 0

[
θ = (At + B)e− 1

2 t
]

3.
d2y

dx2 + 2
dy

dx
+ 5y = 0

[y = e−x(A cos 2x + B sin 2x)]

In Problems 4 to 9, find the particular solu-
tion of the given differential equations for the
stated boundary conditions.
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4. 6
d2y

dx2 + 5
dy

dx
− 6y = 0; when x = 0, y = 5 and

dy

dx
= −1.

[
y = 3e

2
3 x + 2e− 3

2 x
]

5. 4
d2y

dt2 − 5
dy

dt
+ y = 0; when t = 0, y = 1 and

dy

dt
= −2.

[
y = 4e

1
4 t − 3et

]

6. (9D2 + 30D + 25)y = 0, where D ≡ d

dx
;

when x = 0, y = 0 and
dy

dx
= 2.

[
y = 2xe− 5

3 x
]

7.
d2x

dt2 − 6
dx

dt
+ 9x = 0; when t = 0, x = 2 and

dx

dt
= 0. [x = 2(1 − 3t)e3t]

8.
d2y

dx2 + 6
dy

dx
+ 13y = 0; when x = 0, y = 4 and

dy

dx
= 0. [ y = 2e−3x(2 cos 2x + 3 sin 2x)]

9. (4D2 + 20D + 125)θ = 0, where D ≡ d

dt
;

when t = 0, θ = 3 and
dθ

dt
= 2.5.

[θ = e−2.5t(3 cos 5t + 2 sin 5t)]

50.4 Further worked problems on
practical differential equations of

the form a
d2y
dx2 + b

dy
dx

+ cy = 0

Problem 4. The equation of motion of a body
oscillating on the end of a spring is

d2x

dt2 + 100x = 0,

where x is the displacement in metres of the body
from its equilibrium position after time t sec-
onds. Determine x in terms of t given that at

time t = 0, x = 2m and
dx

dt
= 0.

An equation of the form
d2x

dt2 + m2x = 0 is a differ-

ential equation representing simple harmonic motion
(S.H.M.). Using the procedure of Section 50.2:

(a)
d2x

dt2 + 100x = 0 in D-operator form is

(D2 + 100)x = 0.

(b) The auxiliary equation is m2 + 100 = 0, i.e.
m2 = −100 and m = √

(−100), i.e. m = ± j10.

(c) Since the roots are complex, the general solution
is x = e0(A cos 10t + B sin 10t),

i.e. x = (A cos 10t + B sin 10t) metres

(d) When t = 0, x = 2, thus 2 = A

dx

dt
= −10A sin 10t + 10B cos 10t

When t = 0,
dx

dt
= 0

thus 0 = −10A sin 0 + 10B cos 0, i.e. B = 0

Hence the particular solution is

x = 2 cos 10t metres

Problem 5. Given the differential equation
d2V

dt2 = ω2V , where ω is a constant, show that

its solution may be expressed as:

V = 7 cosh ωt + 3 sinh ωt

given the boundary conditions that when

t = 0, V = 7 and
dV

dt
= 3ω.

Using the procedure of Section 50.2:

(a)
d2V

dt2 = ω2V , i.e.
d2V

dt2 − ω2V = 0 in D-operator

form is (D2 − ω2)v = 0, where D ≡ d

dx
(b) The auxiliary equation is m2 − ω2 = 0, from

which, m2 = ω2 and m = ±ω.
(c) Since the roots are real and different, the general

solution is

V = Aeωt + Be−ωt

(d) When t = 0, V = 7 hence 7 = A + B (1)

dV

dt
= Aωeωt − Bωe−ωt
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When t = 0,
dV

dt
= 3ω,

thus 3ω = Aω − Bω,

i.e. 3 = A − B (2)

From equations (1) and (2), A = 5 and B = 2
Hence the particular solution is

V = 5eωt + 2e−ωt

Since sinh ωt = 1
2 (eωt − e−ωt)

and cosh ωt = 1
2 (eωt + e−ωt)

then sinh ωt + cosh ωt = eωt

and cosh ωt − sinh ωt = e−ωt from Chapter 5.

Hence the particular solution may also be
written as

V = 5(sinh ωt + cosh ωt)
+ 2(cosh ωt − sinh ωt)

i.e. V = (5 + 2) cosh ωt + (5 − 2) sinh ωt
i.e. V = 7 cosh ωt + 3 sinh ωt

Problem 6. The equation

d2i

dt2 + R

L

di

dt
+ 1

LC
i = 0

represents a current i flowing in an elec-
trical circuit containing resistance R, induc-
tance L and capacitance C connected in
series. If R = 200 ohms, L = 0.20 henry and
C = 20 × 10−6 farads, solve the equation for i
given the boundary conditions that when t = 0,

i = 0 and
di

dt
= 100.

Using the procedure of Section 50.2:

(a)
d2i

dt2 + R

L

di

dt
+ 1

LC
i = 0 in D-operator form is

(

D2 + R

L
D + 1

LC

)

i = 0 where D ≡ d

dt

(b) The auxiliary equation is m2 + R

L
m + 1

LC
= 0

Hence m =
−R

L
±
√√
√
√

[(
R

L

)2

− 4(1)

(
1

LC

)]

2

When R = 200, L = 0.20 and C = 20 × 10−6,
then

m =
− 200

0.20
±
√√
√
√

[(
200

0.20

)2

− 4

(0.20)(20 × 10−6)

]

2

= −1000 ± √
0

2
= −500

(c) Since the two roots are real and equal (i.e. −500
twice, since for a second order differential equa-
tion there must be two solutions), the general
solution is i = (At + B)e−500t.

(d) When t = 0, i = 0, hence B = 0

di

dt
= (At + B)(−500e−500t) + (e−500t)(A),

by the product rule

When t = 0,
di

dt
= 100, thus 100 = −500B + A

i.e. A = 100, since B = 0

Hence the particular solution is

i = 100te−500t

Problem 7. The oscillations of a heav-
ily damped pendulum satisfy the differential

equation
d2x

dt2 + 6
dx

dt
+ 8x = 0, where x cm is

the displacement of the bob at time t seconds.
The initial displacement is equal to +4 cm and

the initial velocity

(

i.e.
dx

dt

)

is 8 cm/s. Solve the

equation for x.

Using the procedure of Section 50.2:

(a)
d2x

dt2 + 6
dx

dt
+ 8x = 0 in D-operator form is

(D2 + 6D + 8)x = 0, where D ≡ d

dt

(b) The auxiliary equation is m2 + 6m + 8 = 0.
Factorising gives: (m + 2)(m + 4) = 0, from
which, m = −2 or m = −4.

(c) Since the roots are real and different, the general
solution is x = Ae−2t + Be−4t.

(d) Initial displacement means that time t = 0. At
this instant, x = 4.
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Thus 4 = A + B (1)

Velocity,

dx

dt
= −2Ae−2t − 4Be−4t

dx

dt
= 8 cm/s when t = 0,

thus 8 = −2A − 4B (2)

From equations (1) and (2),

A = 12 and B = −8

Hence the particular solution is

x = 12e−2t − 8e−4t

i.e. displacement, x = 4(3e−2t − 2e−4t) cm

Now try the following exercise.

Exercise 189 Further problems on second
order differential equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = 0

1. The charge, q, on a capacitor in a certain elec-
trical circuit satisfies the differential equa-

tion
d2q

dt2 + 4
dq

dt
+ 5q = 0. Initially (i.e. when

t = 0), q = Q and
dq

dt
= 0. Show that the

charge in the circuit can be expressed as:
q = √

5 Qe−2t sin (t + 0.464)

2. A body moves in a straight line so that its
distance s metres from the origin after time

t seconds is given by
d2s

dt2 + a2s = 0, where a

is a constant. Solve the equation for s given

that s = c and
ds

dt
= 0 when t = 2π

a
[s = c cos at]

3. The motion of the pointer of a galvanometer
about its position of equilibrium is repre-
sented by the equation

I
d2θ

dt2 + K
dθ

dt
+ Fθ = 0.

If I , the moment of inertia of the pointer about
its pivot, is 5 × 10−3, K , the resistance due to
friction at unit angular velocity, is 2 × 10−2

and F, the force on the spring necessary to
produce unit displacement, is 0.20, solve the
equation for θ in terms of t given that when

t = 0, θ = 0.3 and
dθ

dt
= 0.

[θ = e−2t(0.3 cos 6t + 0.1 sin 6t)]

4. Determine an expression for x for a differ-

ential equation
d2x

dt2 + 2n
dx

dt
+ n2x = 0 which

represents a critically damped oscillator,

given that at time t = 0, x = s and
dx

dt
= u.

[x = {s + (u + ns)t}e−nt]

5. L
d2i

dt2 + R
di

dt
+ 1

C
i = 0 is an equation repre-

senting current i in an electric circuit. If
inductance L is 0.25 henry, capacitance C
is 29.76 × 10−6 farads and R is 250 ohms,
solve the equation for i given the boundary

conditions that when t = 0, i = 0 and
di

dt
= 34.

[

i = 1

20

(
e−160t − e−840t

)
]

6. The displacement s of a body in a damped
mechanical system, with no external forces,
satisfies the following differential equation:

2
d2s

dt2 + 6
ds

dt
+ 4.5s = 0

where t represents time. If initially, when

t = 0, s = 0 and
ds

dt
= 4, solve the differential

equation for s in terms of t. [s = 4te− 3
2 t]
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51

Second order differential equations of

the form ad2y
dx2 + bdy

dx + cy = f (x)

51.1 Complementary function and
particular integral

If in the differential equation

a
d2y

dx2 + b
dy

dx
+ cy = f (x) (1)

the substitution y = u + v is made then:

a
d2(u + v)

dx2 + b
d(u + v)

dx
+ c(u + v) = f (x)

Rearranging gives:

(

a
d2u

dx2 + b
du

dx
+ cu

)

+
(

a
d2v

dx2 + b
dv

dx
+cv

)

= f (x)

If we let

a
d2v

dx2 + b
dv

dx
+ cv = f (x) (2)

then

a
d2u

dx2 + b
du

dx
+ cu = 0 (3)

The general solution, u, of equation (3) will con-
tain two unknown constants, as required for the
general solution of equation (1). The method of solu-
tion of equation (3) is shown in Chapter 50. The
function u is called the complementary function
(C.F.).

If the particular solution, v, of equation (2) can
be determined without containing any unknown

constants then y = u + v will give the general solu-
tion of equation (1). The function v is called the par-
ticular integral (P.I.). Hence the general solution of
equation (1) is given by:

y = C.F. + P.I.

51.2 Procedure to solve differential
equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = f (x)

(i) Rewrite the given differential equation as
(aD2 + bD + c)y = f (x).

(ii) Substitute m for D, and solve the auxiliary
equation am2 + bm + c = 0 for m.

(iii) Obtain the complementary function, u, which
is achieved using the same procedure as in
Section 50.2(c), page 476.

(iv) To determine the particular integral, v, firstly
assume a particular integral which is sug-
gested by f (x), but which contains undeter-
mined coefficients. Table 51.1 on page 482
gives some suggested substitutions for different
functions f (x).

(v) Substitute the suggested P.I. into the dif-
ferential equation (aD2 + bD + c)v = f (x) and
equate relevant coefficients to find the constants
introduced.

(vi) The general solution is given by
y = C.F. + P.I., i.e. y = u + v.

(vii) Given boundary conditions, arbitrary constants
in the C.F. may be determined and the par-
ticular solution of the differential equation
obtained.
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Table 51.1 Form of particular integral for different functions

Type Straightforward cases ‘Snag’ cases See
Try as particular integral: Try as particular integral: problem

(a) f (x) = a constant v = k v = kx (used when C.F. 1, 2
contains a constant)

(b) f (x) = polynomial (i.e. v = a + bx + cx2 + · · · 3
f (x) = L + Mx + Nx2 + · · ·
where any of the coefficients
may be zero)

(c) f (x) = an exponential function v = keax (i) v = kxeax (used when eax 4, 5
(i.e. f (x) = Aeax) appears in the C.F.)

(ii) v = kx2eax (used when eax 6
and xeax both appear in
the C.F.)

(d) f (x) = a sine or cosine function v = A sin px + B cos px v = x(A sin px + B cos px) 7, 8
(i.e. f (x) = a sin px + b cos px, (used when sin px and/or
where a or b may be zero) cos px appears in the C.F.)

(e) f (x) = a sum e.g. 9
(i) f (x) = 4x2 − 3 sin 2x (i) v = ax2 + bx + c

+ d sin 2x + e cos 2x

(ii) f (x) = 2 − x + e3x (ii) v = ax + b + ce3x

(f) f (x) = a product e.g. v = ex(A sin 2x + B cos 2x) 10
f (x) = 2ex cos 2x

51.3 Worked problems on differential
equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = f (x) where

f (x) is a constant or polynomial

Problem 1. Solve the differential equation
d2y

dx2 + dy

dx
− 2y = 4.

Using the procedure of Section 51.2:

(i)
d2y

dx2 + dy

dx
− 2y = 4 in D-operator form is

(D2 + D − 2)y = 4.
(ii) Substituting m for D gives the auxiliary equa-

tion m2 + m − 2 = 0. Factorising gives: (m − 1)
(m + 2) = 0, from which m = 1 or m = −2.

(iii) Since the roots are real and different, the C.F.,
u = Aex + Be−2x.

(iv) Since the term on the right hand side of the given
equation is a constant, i.e. f (x) = 4, let the P.I.
also be a constant, say v = k (see Table 51.1(a)).

(v) Substituting v = k into (D2 + D − 2)v = 4
gives (D2 + D − 2)k = 4. Since D(k) = 0 and
D2(k) = 0 then −2k = 4, from which, k = −2.
Hence the P.I., v = −2.

(vi) The general solution is given by y = u + v, i.e.
y = Aex + Be−2x − 2.

Problem 2. Determine the particular solu-

tion of the equation
d2y

dx2 − 3
dy

dx
= 9, given the

boundary conditions that when x = 0, y = 0 and
dy

dx
= 0.

Using the procedure of Section 51.2:

(i)
d2y

dx2 − 3
dy

dx
= 9 in D-operator form is

(D2 − 3D)y = 9.
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(ii) Substituting m for D gives the auxil-
iary equation m2 − 3m = 0. Factorising gives:
m(m − 3) = 0, from which, m = 0 or m = 3.

(iii) Since the roots are real and different, the C.F.,
u = Ae0 + Be3x, i.e. u = A + Be3x.

(iv) Since the C.F. contains a constant (i.e. A) then
let the P.I., v = kx (see Table 51.1(a)).

(v) Substituting v = kx into (D2 − 3D)v = 9 gives
(D2 − 3D)kx = 9.
D(kx) = k and D2(kx) = 0.
Hence (D2 − 3D)kx = 0 − 3k = 9, from which,
k = −3.
Hence the P.I., v = −3x.

(vi) The general solution is given by y = u + v, i.e.
y = A + Be3x −3x.

(vii) When x = 0, y = 0, thus 0 = A + Be0− 0, i.e.
0 = A + B (1)
dy

dx
= 3Be3x − 3;

dy

dx
= 0 when x = 0, thus

0 = 3Be0 − 3 from which, B = 1. From equa-
tion (1), A = −1.
Hence the particular solution is

y = −1 + 1e3x − 3x,

i.e. y = e3x − 3x − 1

Problem 3. Solve the differential equation

2
d2y

dx2 − 11
dy

dx
+ 12y = 3x − 2.

Using the procedure of Section 51.2:

(i) 2
d2y

dx2 − 11
dy

dx
+ 12y = 3x − 2 in D-operator

form is

(2D2 − 11D + 12)y = 3x − 2.

(ii) Substituting m for D gives the auxiliary equa-
tion 2m2 − 11m + 12 = 0. Factorising gives:
(2m − 3)(m − 4) = 0, from which, m = 3

2 or
m = 4.

(iii) Since the roots are real and different, the C.F.,

u = Ae
3
2 x + Be4x

(iv) Since f (x) = 3x − 2 is a polynomial, let the P.I.,
v = ax + b (see Table 51.1(b)).

(v) Substituting v = ax + b into

(2D2 − 11D + 12)v = 3x − 2 gives:

(2D2 − 11D + 12)(ax + b) = 3x − 2,

i.e. 2D2(ax + b) − 11D(ax + b)

+ 12(ax + b) = 3x − 2

i.e. 0 − 11a + 12ax + 12b = 3x − 2

Equating the coefficients of x gives: 12a = 3,
from which, a = 1

4 .

Equating the constant terms gives:
−11a + 12b = −2.

i.e. −11
( 1

4

) + 12b = −2 from which,

12b = −2 + 11

4
= 3

4
i.e. b = 1

16

Hence the P.I., v = ax + b = 1
4

x + 1
16

(vi) The general solution is given by y = u + v, i.e.

y = Ae
3
2 x + Be4x + 1

4
x + 1

16

Now try the following exercise.

Exercise 190 Further problems on differen-
tial equations of the form

a
d2y
d x2 + b

dy
d x

+ cy = f (x) where f (x) is a

constant or polynomial.

In Problems 1 and 2, find the general solutions
of the given differential equations.

1. 2
d2y

dx2 + 5
dy

dx
− 3y = 6

[

y = Ae
1
2 x + Be−3x − 2

]

2. 6
d2y

dx2 + 4
dy

dx
− 2y = 3x − 2

[

y = Ae
1
3 x + Be−x − 2 − 3

2 x

]

In Problems 3 and 4 find the particular solutions
of the given differential equations.

3. 3
d2y

dx2 + dy

dx
− 4y = 8; when x = 0, y = 0 and

dy

dx
= 0.

[

y = 2
7 (3e− 4

3 x + 4ex) − 2

]
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4. 9
d2y

dx2 − 12
dy

dx
+ 4y = 3x − 1; when x = 0,

y = 0 and
dy

dx
= −4

3
[

y = −(2 + 3
4 x
)

e
2
3 x + 2 + 3

4 x

]

5. The charge q in an electric circuit at time t sat-

isfies the equation L
d2q

dt2 + R
dq

dt
+ 1

C
q = E,

where L, R, C and E are constants. Solve the
equation given L = 2H, C = 200 × 10−6 F
and E = 250V, when (a) R = 200 � and (b) R
is negligible. Assume that when t = 0, q = 0

and
dq

dt
= 0.

⎡

⎢
⎢
⎣

(a) q = 1

20
−
(

5

2
t + 1

20

)

e−50t

(b) q = 1

20
(1 − cos 50t)

⎤

⎥
⎥
⎦

6. In a galvanometer the deflection θ satisfies the

differential equation
d2θ

dt2 + 4
dθ

dt
+ 4 θ = 8.

Solve the equation for θ given that when t = 0,

θ = d θ

dt
= 2. [ θ = 2(te−2t + 1)]

51.4 Worked problems on differential
equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = f (x) where

f (x) is an exponential function

Problem 4. Solve the equation
d2y

dx2 − 2
dy

dx
+ y = 3e4x given the boundary

conditions that when x = 0, y = −2
3 and

dy

dx
= 4 1

3

Using the procedure of Section 51.2:

(i)
d2y

dx2 − 2
dy

dx
+ y = 3e4x in D-operator form is

(D2 − 2D + 1)y = 3e4x.

(ii) Substituting m for D gives the auxiliary
equation m2 − 2m + 1 = 0. Factorising gives:
(m − 1)(m − 1) = 0, from which, m = 1 twice.

(iii) Since the roots are real and equal the C.F.,
u = (Ax + B)ex.

(iv) Let the particular integral, v = ke4x (see
Table 51.1(c)).

(v) Substituting v = ke4x into

(D2 − 2D + 1)v = 3e4x gives:

(D2 − 2D + 1)ke4x = 3e4x

i.e. D2(ke4x) − 2D(ke4x) + 1(ke4x) = 3e4x

i.e. 16ke4x − 8ke4x + ke4x = 3e4x

Hence 9ke4x = 3e4x, from which, k = 1
3

Hence the P.I., v = ke4x = 1
3 e4x.

(vi) The general solution is given by y = u + v, i.e.
y = (Ax + B)ex + 1

3 e4x.

(vii) When x = 0, y = − 2
3 thus

− 2
3 = (0 + B)e0 + 1

3 e0, from which, B = −1.
dy

dx
= (Ax + B)ex + ex(A) + 4

3 e4x.

When x = 0,
dy

dx
= 4

1

3
, thus

13

3
= B + A + 4

3
from which, A = 4, since B = −1.
Hence the particular solution is:

y = (4x − 1)ex + 1
3 e4x

Problem 5. Solve the differential equation

2
d2y

dx2 − dy

dx
− 3y = 5e

3
2 x.

Using the procedure of Section 51.2:

(i) 2
d2y

dx2 − dy

dx
− 3y = 5e

3
2 x in D-operator form is

(2D2 − D − 3)y = 5e
3
2 x.

(ii) Substituting m for D gives the auxiliary
equation 2m2 − m − 3 = 0. Factorising gives:
(2m − 3)(m + 1) = 0, from which, m = 3

2 or
m = −1. Since the roots are real and different

then the C.F., u = Ae
3
2 x + Be−x.

(iii) Since e
3
2 x appears in the C.F. and in the

right hand side of the differential equation, let
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I

the P.I., v = kxe
3
2 x (see Table 51.1(c), snag

case (i)).

(iv) Substituting v = kxe
3
2 x into (2D2 − D − 3)v =

5e
3
2 x gives: (2D2 − D − 3)kxe

3
2 x = 5e

3
2 x.

D

(

kxe
3
2 x
)

= (kx)

(
3
2 e

3
2 x
)

+
(

e
3
2 x
)

(k),

by the product rule,

= ke
3
2 x ( 3

2 x + 1
)

D2
(

kxe
3
2 x
)

= D

[

ke
3
2 x ( 3

2 x + 1
)
]

=
(

ke
3
2 x
)
( 3

2

)

+ ( 3
2 x + 1

)
(

3
2 ke

3
2 x
)

= ke
3
2 x ( 9

4 x + 3
)

Hence (2D2 − D − 3)

(

kxe
3
2 x
)

= 2

[

ke
3
2 x ( 9

4 x + 3
)
]

−
[

ke
3
2 x ( 3

2 x + 1
)
]

− 3

[

kxe
3
2 x
]

= 5e
3
2 x

i.e. 9
2 kxe

3
2 x + 6ke

3
2 x − 3

2 xke
3
2 x − ke

3
2 x

− 3kxe
3
2 x = 5e

3
2 x

Equating coefficients of e
3
2 x gives: 5k = 5, from

which, k = 1.

Hence the P.I., v = kxe
3
2 x = xe

3
2 x.

(v) The general solution is y = u + v, i.e.

y = Ae
3
2 x + Be−x + xe

3
2 x.

Problem 6. Solve
d2y

dx2 − 4
dy

dx
+ 4y = 3e2x.

Using the procedure of Section 51.2:

(i)
d2y

dx2 − 4
dy

dx
+ 4y = 3e2x in D-operator form is

(D2 − 4D + 4)y = 3e2x.

(ii) Substituting m for D gives the auxiliary
equation m2 − 4m + 4 = 0. Factorising gives:
(m − 2)(m − 2) = 0, from which, m = 2 twice.

(iii) Since the roots are real and equal, the C.F.,
u = (Ax + B)e2x.

(iv) Since e2x and xe2x both appear in the C.F.
let the P.I., v = kx2e2x (see Table 51.1(c), snag
case (ii)).

(v) Substituting v = kx2e2x into (D2 − 4D + 4)v =
3e2x gives: (D2 − 4D + 4)(kx2e2x) = 3e2x

D(kx2e2x) = (kx2)(2e2x) + (e2x)(2kx)

= 2ke2x(x2 + x)

D2(kx2e2x) = D[2ke2x(x2 + x)]

= (2ke2x)(2x + 1) + (x2 + x)(4ke2x)

= 2ke2x(4x + 1 + 2x2)

Hence (D2 −4D + 4)(kx2e2x)

= [2ke2x(4x + 1 + 2x2)]

− 4[2ke2x(x2 + x)] + 4[kx2e2x]

= 3e2x

from which, 2ke2x = 3e2x and k = 3
2

Hence the P.I., v = kx2e2x = 3
2 x2e2x.

(vi) The general solution, y = u + v, i.e.

y = (Ax + B)e2x + 3
2 x2e2x

Now try the following exercise.

Exercise 191 Further problems on differen-
tial equations of the form

a
d2y
dx2 + b

dy
dx

+cy = f (x) where f (x) is an expo-

nential function

In Problems 1 to 4, find the general solutions of
the given differential equations.

1.
d2y

dx2 − dy

dx
− 6y = 2ex

[
y = Ae3x + Be−2x − 1

3 ex
]

2.
d2y

dx2 − 3
dy

dx
− 4y = 3e−x

[
y = Ae4x + Be−x − 3

5 xe−x
]



Ch51-H8152.tex 19/7/2006 17: 56 Page 486

486 DIFFERENTIAL EQUATIONS

3.
d2y

dx2 + 9y = 26e2x

[y = A cos 3x + B sin 3x + 2e2x]

4. 9
d2y

dt2 − 6
dy

dt
+ y = 12e

t
3

[

y = (At + B)e
1
3 t + 2

3 t2e
1
3 t
]

In problems 5 and 6 find the particular solutions
of the given differential equations.

5. 5
d2y

dx2 + 9
dy

dx
−2y = 3ex; when x = 0, y = 1

4

and
dy

dx
= 0.

[

y = 5

44

(

e−2x − e
1
5 x
)

+ 1

4
ex
]

6.
d2y

dt2 − 6
dy

dt
+ 9y = 4e3t ; when t = 0, y = 2

and
dy

dt
= 0 [y = 2e3t(1 − 3t + t2)]

51.5 Worked problems on differential
equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = f (x) where f (x)

is a sine or cosine function

Problem 7. Solve the differential equation

2
d2y

dx2 + 3
dy

dx
− 5y = 6 sin 2x.

Using the procedure of Section 51.2:

(i) 2
d2y

dx2 +3
dy

dx
−5y = 6 sin 2x in D-operator form

is (2D2 + 3D − 5)y = 6 sin 2x

(ii) The auxiliary equation is 2m2 + 3m − 5 = 0,
from which,

(m − 1)(2m + 5) = 0,

i.e. m = 1 or m = −5
2

(iii) Since the roots are real and different the C.F.,
u = Aex + Be− 5

2 x.

(iv) Let the P.I., v = A sin 2x + B cos 2x (see
Table 51.1(d)).

(v) Substituting v = A sin 2x + B cos 2x into
(2D2 + 3D − 5)v = 6 sin 2x gives:
(2D2 + 3D − 5)(A sin 2x + B cos 2x) = 6 sin 2x.

D(A sin 2x + B cos 2x)

= 2A cos 2x − 2B sin 2x

D2(A sin 2x + B cos 2x)

= D(2A cos 2x − 2B sin 2x)

= −4A sin 2x − 4B cos 2x

Hence (2D2 + 3D − 5)(A sin 2x + B cos 2x)

= − 8A sin 2x − 8B cos 2x + 6A cos 2x

− 6B sin 2x − 5A sin 2x − 5B cos 2x

= 6 sin 2x

Equating coefficient of sin 2x gives:

−13A − 6B = 6 (1)

Equating coefficients of cos 2x gives:

6A − 13B = 0 (2)

6 × (1)gives : − 78A − 36B = 36 (3)

13 × (2)gives : 78A − 169B = 0 (4)

(3) + (4)gives : − 205B = 36

from which, B = −36

205

Substituting B = −36

205
into equation (1) or (2)

gives A = −78

205

Hence the P.I., v = −78
205

sin 2x − 36
205

cos 2x.

(vi) The general solution, y = u + v, i.e.

y = Aex + Be− 5
2 x

− 2
205

(39 sin 2x + 18 cos 2x)

Problem 8. Solve
d2y

dx2 + 16y = 10 cos 4x

given y = 3 and
dy

dx
= 4 when x = 0.
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Using the procedure of Section 51.2:

(i)
d2y

dx2 + 16y = 10 cos 4x in D-operator form is

(D2 + 16)y = 10 cos 4x

(ii) The auxiliary equation is m2 + 16 = 0, from
which m = √−16 = ± j4.

(iii) Since the roots are complex the C.F.,
u = e0(A cos 4x + B sin 4x)

i.e. u = Acos 4x + B sin 4x

(iv) Since sin 4x occurs in the C.F. and in the
right hand side of the given differential equa-
tion, let the P.I., v = x(C sin 4x + D cos 4x) (see
Table 51.1(d), snag case—constants C and D
are used since A and B have already been used
in the C.F.).

(v) Substituting v = x(C sin 4x + D cos 4x) into
(D2 + 16)v = 10 cos 4x gives:

(D2 + 16)[x(C sin 4x + D cos 4x)]

= 10 cos 4x

D[x(C sin 4x + D cos 4x)]

= x(4C cos 4x − 4D sin 4x)

+ (C sin 4x + D cos 4x)(1),

by the product rule

D2[x(C sin 4x + D cos 4x)]

= x(−16C sin 4x − 16D cos 4x)

+ (4C cos 4x − 4D sin 4x)

+ (4C cos 4x − 4D sin 4x)

Hence (D2 + 16)[x(C sin 4x + D cos 4x)]

=− 16Cx sin 4x−16Dx cos 4x + 4C cos 4x
− 4D sin 4x + 4C cos 4x − 4D sin 4x

+ 16Cx sin 4x + 16Dx cos 4x
= 10 cos 4x,

i.e. −8D sin 4x + 8C cos 4x = 10 cos 4x

Equating coefficients of cos 4x gives:

8C = 10, from which, C = 10

8
= 5

4

Equating coefficients of sin 4x gives:
−8D = 0, from which, D = 0.

Hence the P.I., v = x
(

5
4 sin 4x

)
.

(vi) The general solution, y = u + v, i.e.

y = A cos 4x + B sin 4x + 5
4 x sin 4x

(vii) When x = 0, y = 3, thus
3 = A cos 0 + B sin 0 + 0, i.e. A = 3.

dy

dx
= −4A sin 4x + 4B cos 4x

+ 5
4 x(4 cos 4x) + 5

4 sin 4x

When x = 0,
dy

dx
= 4, thus

4 = −4A sin 0 + 4B cos 0 + 0 + 5
4 sin 0

i.e. 4 = 4B, from which, B = 1
Hence the particular solution is

y = 3 cos 4x + sin 4x + 5
4 x sin 4x

Now try the following exercise.

Exercise 192 Further problems on differen-
tial equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = f (x) where f (x) is a sine

or cosine function

In Problems 1 to 3, find the general solutions of
the given differential equations.

1. 2
d2y

dx2 − dy

dx
− 3y = 25 sin 2x

[
y = Ae

3
2 x + Be−x

− 1
5 (11 sin 2x − 2 cos 2x)

]

2.
d2y

dx2 − 4
dy

dx
+ 4y = 5 cos x

[
y = (Ax + B)e2x − 4

5 sin x + 3
5 cos x

]

3.
d2y

dx2 + y = 4 cos x

[y = A cos x + B sin x + 2x sin x]

4. Find the particular solution of the differential

equation
d2y

dx2 − 3
dy

dx
− 4y = 3 sin x; when

x = 0, y = 0 and
dy

dx
= 0.

⎡

⎢
⎣

y = 1

170
(6e4x − 51e−x)

− 1

34
(15 sin x − 9 cos x)

⎤

⎥
⎦
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5. A differential equation representing the

motion of a body is
d2y

dt2 + n2y = k sin pt,

where k, n and p are constants. Solve the
equation (given n �= 0 and p2 �= n2) given that

when t = 0, y = dy

dt
= 0.

[

y = k

n2 − p2

(
sin pt − p

n
sin nt

)]

6. The motion of a vibrating mass is given by
d2y

dt2 + 8
dy

dt
+ 20y = 300 sin 4t. Show that the

general solution of the differential equation is
given by:

y = e−4t(A cos 2t + B sin 2t)

+ 15

13
( sin 4t − 8 cos 4t)

7. L
d2q

dt2 + R
dq

dt
+ 1

C
q = V0 sin ωt represents

the variation of capacitor charge in an
electric circuit. Determine an expression
for q at time t seconds given that R = 40 �,
L = 0.02 H, C = 50 × 10−6 F, V0 = 540.8V
and ω = 200 rad/s and given the boundary
conditions that when t = 0, q = 0 and
dq

dt
= 4.8
[

q = (10t + 0.01)e−1000t

+ 0.024 sin 200t − 0.010 cos 200t

]

51.6 Worked problems on differential
equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = f (x) where

f (x) is a sum or a product

Problem 9. Solve
d2y

dx2 + dy

dx
− 6y = 12x − 50 sin x.

Using the procedure of Section 51.2:

(i)
d2y

dx2 + dy

dx
− 6y = 12x − 50 sin x in D-operator

form is

(D2 + D − 6)y = 12x − 50 sin x

(ii) The auxiliary equation is (m2 + m − 6) = 0,
from which,

(m − 2)(m + 3) = 0,
i.e. m = 2 or m = −3

(iii) Since the roots are real and different, the C.F.,
u = Ae2x + Be−3x.

(iv) Since the right hand side of the given differen-
tial equation is the sum of a polynomial and a
sine function let the P.I. v = ax + b + c sin x +
d cos x (see Table 51.1(e)).

(v) Substituting v into
(D2 + D − 6)v = 12x − 50 sin x gives:

(D2 + D − 6)(ax + b + c sin x + d cos x)
= 12x − 50 sin x

D(ax + b + c sin x + d cos x)

= a + c cos x − d sin x

D2(ax + b + c sin x + d cos x)
= −c sin x − d cos x

Hence (D2 + D − 6)(v)

= (−c sin x − d cos x) + (a + c cos x

−d sin x) − 6(ax + b + c sin x + d cos x)

= 12x − 50 sin x

Equating constant terms gives:

a − 6b = 0 (1)

Equating coefficients of x gives: −6a = 12,
from which, a = −2.

Hence, from (1), b = − 1
3

Equating the coefficients of cos x gives:

−d + c − 6d = 0

i.e. c − 7d = 0
(2)

Equating the coefficients of sin x gives:

−c − d − 6c = −50

i.e. −7c − d = −50
(3)

Solving equations (2) and (3) gives: c = 7 and
d = 1.
Hence the P.I.,

υ = −2x − 1
3 + 7 sin x + cos x
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(vi) The general solution, y = u + v,

i.e. y = Ae2x + Be−3x − 2x

− 1
3 + 7 sin x + cos x

Problem 10. Solve the differential equation
d2y

dx2 − 2
dy

dx
+ 2y = 3ex cos 2x, given that when

x = 0, y = 2 and
dy

dx
= 3.

Using the procedure of Section 51.2:

(i)
d2y

dx2 − 2
dy

dx
+ 2y = 3ex cos 2x in D-operator

form is

(D2 − 2D + 2)y = 3ex cos 2x

(ii) The auxiliary equation is m2 − 2m + 2 = 0
Using the quadratic formula,

m = 2 ± √
[4 − 4(1)(2)]

2

= 2 ± √−4

2
= 2 ± j2

2
i.e. m = 1 ± j1.

(iii) Since the roots are complex, the C.F.,
u = ex(A cos x + B sin x).

(iv) Since the right hand side of the given dif-
ferential equation is a product of an expo-
nential and a cosine function, let the P.I.,
v = ex(C sin 2x + D cos 2x) (see Table 51.1(f)
— again, constants C and D are used since A
and B have already been used for the C.F.).

(v) Substitutingv into (D2 − 2D + 2)v = 3ex cos 2x
gives:

(D2 − 2D + 2)[ex(C sin 2x + D cos 2x)]

= 3ex cos 2x

D(v) = ex(2C cos 2x − 2D sin 2x)

+ ex(C sin 2x + D cos 2x)

(≡ex{(2C + D) cos 2x

+ (C − 2D) sin 2x})
D2(v) = ex(−4C sin 2x − 4D cos 2x)

+ ex(2C cos 2x − 2D sin 2x)

+ ex(2C cos 2x − 2D sin 2x)

+ ex(C sin 2x + D cos 2x)

≡ ex{( − 3C − 4D) sin 2x

+ (4C − 3D) cos 2x}
Hence (D2 − 2D + 2)v

= ex{(−3C − 4D) sin 2x

+ (4C − 3D) cos 2x}
− 2ex{(2C + D) cos 2x

+ (C − 2D) sin 2x}
+ 2ex(C sin 2x + D cos 2x)

= 3ex cos 2x

Equating coefficients of ex sin 2x gives:

−3C − 4D − 2C + 4D + 2C = 0

i.e. −3C = 0, from which, C = 0.

Equating coefficients of ex cos 2x gives:

4C − 3D − 4C − 2D + 2D = 3

i.e. −3D = 3, from which, D = −1.

Hence the P.I., υ = ex(−cos 2x).

(vi) The general solution, y = u + v, i.e.

y = ex(A cos x + B sin x) − ex cos 2x

(vii) When x = 0, y = 2 thus

2 = e0(A cos 0 + B sin 0)

− e0 cos 0

i.e. 2 = A − 1, from which, A = 3

dy

dx
= ex(−A sin x + B cos x)

+ ex(A cos x + B sin x)

− [ex(−2 sin 2x) + ex cos 2x]

When x = 0,
dy

dx
= 3

thus 3 = e0(−A sin 0 + B cos 0)

+ e0(A cos 0 + B sin 0)

− e0(−2 sin 0) − e0 cos 0

i.e. 3 = B + A − 1, from which,

B = 1, since A = 3

Hence the particular solution is

y = ex(3 cos x + sin x) − ex cos 2x
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Now try the following exercise.

Exercise 193 Further problems on second
order differential equations of the form

a
d2y
dx2 + b

dy
dx

+ cy = f (x) where f (x) is a sum

or product

In Problems 1 to 4, find the general solutions of
the given differential equations.

1. 8
d2y

dx2 − 6
dy

dx
+ y = 2x + 40 sin x

⎡

⎣
y = Ae

x
4 + Be

x
2 + 2x + 12

+ 8

17
(6 cos x − 7 sin x)

⎤

⎦

2.
d2y

dθ2 − 3
dy

dθ
+ 2y = 2 sin 2 θ − 4 cos 2 θ

[
y = Ae2θ + Beθ + 1

2 ( sin 2 θ + cos 2 θ)
]

3.
d2y

dx2 + dy

dx
− 2y = x2 + e2x

[
y = Aex + Be−2x − 3

4

− 1
2 x − 1

2 x2 + 1
4 e2x

]

4.
d2y

dt2 − 2
dy

dt
+ 2y = et sin t

[
y = et(A cos t + B sin t) − t

2 et cos t
]

In Problems 5 to 6 find the particular solutions
of the given differential equations.

5.
d2y

dx2 − 7
dy

dx
+ 10y = e2x + 20; when x = 0,

y = 0 and
dy

dx
= −1

3[

y = 4

3
e5x − 10

3
e2x − 1

3
xe2x + 2

]

6. 2
d2y

dx2 − dy

dx
− 6y = 6ex cos x; when x = 0,

y = −21

29
and

dy

dx
= −6

20

29
⎡

⎣
y = 2e− 3

2 x − 2e2x

+3ex

29
(3 sin x − 7 cos x)

⎤

⎦
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52

Power series methods of solving
ordinary differential equations

52.1 Introduction

Second order ordinary differential equations that
cannot be solved by analytical methods (as shown
in Chapters 50 and 51), i.e. those involving vari-
able coefficients, can often be solved in the form
of an infinite series of powers of the variable. This
chapter looks at some of the methods that make this
possible—by the Leibniz–Maclaurin and Frobinius
methods, involving Bessel’s and Legendre’s equa-
tions, Bessel and gamma functions and Legendre’s
polynomials. Before introducing Leibniz’s theorem,
some trends with higher differential coefficients are
considered. To better understand this chapter it is
necessary to be able to:

(i) differentiate standard functions (as explained
in Chapters 27 and 32),

(ii) appreciate the binomial theorem (as explained
in Chapters 7), and

(iii) use Maclaurins theorem (as explained in
Chapter 8).

52.2 Higher order differential
coefficients as series

The following is an extension of successive dif-
ferentiation (see page 296), but looking for trends,
or series, as the differential coefficient of common
functions rises.

(i) If y = eax, then
dy

dx
= aeax,

d2y

dx2 = a2eax, and so
on.

If we abbreviate
dy

dx
as y′, d2y

dx2 as y′′, … and

dny

dxn
as y(n), then y′ = aeax, y′′ = a2eax, and the

emerging pattern gives: y(n) = aneax (1)

For example, if y = 3e2x, then
d7y

dx7 = y(7) = 3(27) e2x = 384e2x

(ii) If y = sin ax,

y′ = a cos ax = a sin
(

ax + π

2

)

y′′ = −a2 sin ax = a2 sin (ax + π)

= a2 sin

(

ax + 2π

2

)

y′′′ = −a3 cos x

= a3 sin

(

ax + 3π

2

)

and so on.

In general, y(n) = an sin
(

ax + nπ

2

)
(2)

For example, if

y = sin 3x, then
d5y

dx5
= y(5)

= 35 sin

(

3x + 5π

2

)

= 35 sin
(

3x + π

2

)

= 243 cos 3x

(iii) If y = cos ax,

y′ = −a sin ax = a cos
(

ax + π

2

)

y′′ = −a2 cos ax = a2 cos

(

ax + 2π

2

)

y′′′ = a3 sin ax = a3 cos

(

ax + 3π

2

)

and so on.

In general, y(n) = an cos
(

ax + nπ

2

)
(3)
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For example, if y = 4 cos 2x,

then
d6y

dx6 = y(6) = 4(26) cos

(

2x + 6π

2

)

= 4(26) cos(2x + 3π)

= 4(26) cos(2x + π)

= −256 cos 2x

(iv) If y = xa, y′ = a xa−1, y′′ = a(a − 1)xa−2,
y′′′ = a(a − 1)(a − 2)xa−3,

and y(n) = a(a−1)(a−2) . . . . .(a−n+1) xa−n

or y(n) = a!
(a − n)! xa−n (4)

where a is a positive integer.

For example, if y = 2x6, then
d4y

dx4 = y(4)

= (2)
6!

(6 − 4)!x
6−4

= (2)
6 × 5 × 4 × 3 × 2 × 1

2 × 1
x2

= 720x2

(v) If y = sinh ax, y′ = a cosh ax

y′′ = a2 sinh ax

y′′′ = a3 cosh ax, and so on

Since sinh ax is not periodic (see graph on page
43), it is more difficult to find a general state-
ment for y(n). However, this is achieved with the
following general series:

y(n) = an

2
{[1 + (−1)n] sinh ax

+ [1 − (−1)n] cosh ax} (5)

For example, if

y = sinh 2x, then
d5y

dx5
= y(5)

= 25

2
{[1 + (−1)5] sinh 2x

+ [1 − (−1)5] cosh 2x}

= 25

2
{[0] sinh 2x + [2] cosh 2x}

= 32 cosh 2x

(vi) If y = cosh ax,

y′ = a sinh ax

y′′ = a2 cosh ax

y′′′ = a3 sinh ax, and so on

Since cosh ax is not periodic (see graph on page
43), again it is more difficult to find a general
statement for y(n). However, this is achieved
with the following general series:

y(n) = an

2
{[1 − (−1)n] sinh ax

+ [1 + (−1)n] cosh ax} (6)

For example, if y = 1
9

cosh 3x,

then
d7y

dx7 = y(7) =
(

1

9

)
37

2
(2 sinh 3x)

= 243 sinh 3x

(vii) If y = ln ax, y′ = 1

x
, y′′ = − 1

x2 , y′′′ = 2

x3 , and
so on.

In general, y(n) = (−1)n−1 (n − 1)!
xn (7)

For example, if y = ln 5x, then
d6y

dx6 = y(6) = (−1)6−1
(

5!
x6

)

= −120
x6

Note that if y = ln x, y′ = 1

x
; if in equation (7),

n = 1 then y′ = (−1)0 (0)!
x1

(−1)0 = 1 and if y′ = 1

x
then (0)! = 1 (Check

that (−1)0 = 1 and (0)! = 1 on a calculator).

Now try the following exercise.

Exercise 194 Further problems on higher
order differential coefficients as series

Determine the following derivatives:

1. (a) y(4) when y = e2x (b) y(5) when y = 8 e
t
2

[(a) 16 e2x (b)
1

4
e

t
2 ]

2. (a) y(4) when y = sin 3t

(b) y(7) when y = 1

50
sin 5θ

[(a) 81 sin 3t (b) −1562.5 cos 5θ]
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3. (a) y(8) when y = cos 2x

(b) y(9) when y = 3 cos
2

3
t

[

(a) 256 cos 2x (b) −29

38 sin
2

3
t

]

4. (a) y(7) when y = 2x9 (b) y(6) when y = t7

8
[(a) (9!)x2 (b) 630 t]

5. (a) y(7) when y = 1

4
sinh 2x

(b) y(6) when y = 2 sinh 3x

[(a) 32 cosh 2x (b) 1458 sinh 3x]

6. (a) y(7) when y = cosh 2x

(b) y(8) when y = 1

9
cosh 3x

[(a) 128 sinh 2x (b) 729 cosh 3x]

7. (a) y(4) when y = 2ln 3θ

(b) y(7) when y = 1

3
ln 2t

[

(a) − 6

θ4 (b)
240

t7

]

52.3 Leibniz’s theorem

If y = uv (8)

where u and v are each functions of x, then by using
the product rule,

y′ = uv′ + vu′ (9)

y′′ = uv′′ + v′u′ + vu′′ + u′v′

= u′′v + 2u′v′ + uv′′ (10)

y′′′ = u′′v′ + vu′′′ + 2u′v′′ + 2v′u′′ + uv′′′ + v′′u′

= u′′′v + 3u′′v′ + 3u′v′′ + uv′′′ (11)

y(4) = u(4)v + 4u(3)v(1) + 6u(2)v(2)

+ 4u(1)v(3) + uv(4) (12)

From equations (8) to (12) it is seen that

(a) the n’th derivative of u decreases by 1 moving
from left to right

(b) the n’th derivative of v increases by 1 moving
from left to right

(c) the coefficients 1, 4, 6, 4, 1 are the normal
binomial coefficients (see page 58)

In fact, (uv)(n) may be obtained by expanding
(u + v)(n) using the binomial theorem (see page 59),
where the ‘powers’ are interpreted as derivatives.
Thus, expanding (u + v)(n) gives:

y(n) = (uv)(n) = u(n)v + nu(n−1)v(1)

+ n(n − 1)
2! u(n−2)v(2)

+ n(n − 1)(n − 2)
3! u(n−3)v(3) + · · · (13)

Equation (13) is a statement of Leibniz’s theo-
rem, which can be used to differentiate a product n
times. The theorem is demonstrated in the following
worked problems.

Problem 1. Determine y(n) when y = x2e3x

For a product y = uv, the function taken as

(i) u is the one whose nth derivative can readily be
determined (from equations (1) to (7))

(ii) v is the one whose derivative reduces to zero
after a few stages of differentiation.

Thus, when y = x2e3x, v = x2, since its third deriva-
tive is zero, and u = e3x since the nth derivative is
known from equation (1), i.e. 3neax

Using Leinbiz’s theorem (equation (13),

y(n) = u(n)v + nu(n−1)v(1) + n(n − 1)

2! u(n−2)v(2)

+ n(n − 1)(n − 2)

3! u(n−3)v(3) + · · ·

where in this case v = x2, v(1) = 2x, v(2) = 2 and
v(3) = 0

Hence, y(n) = (3ne3x)(x2) + n(3n−1e3x)(2x)

+ n(n − 1)

2! (3n−2e3x)(2)

+ n(n − 1)(n − 2)

3! (3n−3e3x)(0)

= 3n−2e3x(32x2 + n(3)(2x)

+ n(n − 1) + 0)

i.e. y(n) = e3x3n−2(9x2 + 6nx + n(n − 1))

Problem 2. If x2y′′ + 2xy′ + y = 0 show that:
xy(n+2) +2(n +1)xy(n+1) + (n2 +n +1)y(n) = 0



Ch52-H8152.tex 23/6/2006 15: 13 Page 494

494 DIFFERENTIAL EQUATIONS

Differentiating each term of x2y′′ + 2xy′ + y = 0
n times, using Leibniz’s theorem of equation (13),
gives:
{

y(n+2)x2 + n y(n+1)(2x) + n(n − 1)

2! y(n)(2) + 0

}

+ {y(n+1)(2x) + n y(n)(2) + 0} + {y(n)} = 0

i.e. x2y(n+2) + 2n xy(n+1) + n(n − 1)y(n)

+ 2xy(n+1) + 2n y(n) + y(n) = 0

i.e. x2y(n+2) + 2(n + 1)xy(n+1)

+ (n2 − n + 2n + 1)y(n) = 0

or x2y(n+2) + 2(n + 1) x y(n+1)

+ (n2 + n + 1)y(n) = 0

Problem 3. Differentiate the following
differential equation n times:
(1 + x2)y′′ + 2xy′ − 3y = 0

By Leibniz’s equation, equation (13),
{

y(n+2)(1 + x2) + ny(n+1)(2x)+ n(n−1)

2! y(n)(2)+0

}

+ 2{y(n+1)(x) + n y(n)(1) + 0} − 3{y(n)} = 0

i.e. (1 + x2)y(n+2) + 2n xy(n+1) + n(n − 1)y(n)

+ 2xy(n+1) + 2 ny(n) − 3y(n) = 0

or (1 + x2)y(n+2) + 2(n + 1)xy(n+1)

+ (n2 − n + 2n − 3)y(n) = 0

i.e. (1 + x2)y(n+2) + 2(n + 1)xy(n+1)

+ (n2 + n − 3)y(n) = 0

Problem 4. Find the 5th derivative of
y = x4 sin x

If y = x4 sin x, then using Leibniz’s equation with
u = sin x and v = x4 gives:

y(n) =
[
sin
(

x + nπ

2

)
x4
]

+ n

[

sin

(

x + (n − 1)π

2

)

4x3
]

+ n(n − 1)

2!
[

sin

(

x + (n − 2)π

2

)

12x2
]

+ n(n − 1)(n − 2)

3!
[

sin

(

x + (n − 3)π

2

)

24x

]

+ n(n − 1)(n − 2)(n − 3)

4!
[

sin

(

x

+ (n − 4)π

2

)

24

]

and y(5) = x4 sin

(

x + 5π

2

)

+ 20x3 sin (x + 2π)

+ (5)(4)

2
(12x2) sin

(

x + 3π

2

)

+ (5)(4)(3)

(3)(2)
(24x) sin(x + π)

+ (5)(4)(3)(2)

(4)(3)(2)
(24) sin

(
x + π

2

)

Since sin

(

x + 5π

2

)

≡ sin
(
x + π

2

)
≡ cos x,

sin(x + 2π) ≡ sin x, sin

(

x + 3π

2

)

≡ −cos x,

and sin (x + π) ≡ −sin x,

then y(5) = x4 cos x + 20x3 sin x + 120x2(−cos x)
+ 240x(−sin x) + 120 cos x

i.e. y(5) = (x4 − 120x2 + 120)cos x
+ (20x3 − 240x) sin x

Now try the following exercise.

Exercise 195 Further problems on Leibniz’s
theorem

Use the theorem of Leibniz in the following
problems:

1. Obtain the n’th derivative of: x2y
[
x2y(n) + 2n xy(n−1) + n(n − 1)y(n−2)

]

2. If y = x3e2x find y(n) and hence y(3).
⎡

⎢
⎣

y(n) = e2x2n−3{8x3 + 12nx2

+ n(n − 1)(6x) + n(n − 1)(n − 2)}
y(3) = e2x(8x3 + 36x2 + 36x + 6)

⎤

⎥
⎦



Ch52-H8152.tex 23/6/2006 15: 13 Page 495

POWER SERIES METHODS OF SOLVING ORDINARY DIFFERENTIAL EQUATIONS 495

I

3. Determine the 4th derivative of: y = 2x3e−x

[y(4) = 2e−x(x3 − 12x2 + 36x − 24)]

4. If y = x3 cos x determine the 5th derivative.

[y(5) = (60x − x3) sin x +
(15x2 − 60) cos x]

5. Find an expression for y(4) if y = e−tsin t.

[y(4) = −4 e−tsin t]

6. If y = x5 ln 2x find y(3).

[y(3) = x2(47 + 60 ln 2x)]

7. Given 2x 2 y ′′ + xy ′ + 3y = 0 show that
2x 2 y(n+2) + (4n + 1)xy(n+1) + (2n2 − n +

3)y(n) = 0

8. If y = (x3 + 2x2)e2x determine an expansion
for y(5).

[y(5) = e2x24(2x3 + 19x2 + 50x + 35)]

52.4 Power series solution by the
Leibniz–Maclaurin method

For second order differential equations that can-
not be solved by algebraic methods, the Leibniz–
Maclaurin method produces a solution in the form
of infinite series of powers of the unknown variable.
The following simple 5-step procedure may be used
in the Leibniz–Maclaurin method:

(i) Differentiate the given equation n times, using
the Leibniz theorem of equation (13),

(ii) rearrange the result to obtain the recurrence
relation at x = 0,

(iii) determine the values of the derivatives at x = 0,
i.e. find (y)0 and (y′)0,

(iv) substitute in the Maclaurin expansion for
y = f (x) (see page 67, equation (5)),

(v) simplify the result where possible and apply
boundary condition (if given).

The Leibniz–Maclaurin method is demonstrated,
using the above procedure, in the following worked
problems.

Problem 5. Determine the power series solu-
tion of the differential equation:
d2y

dx2 + x
dy

dx
+ 2y = 0 using Leibniz–Maclaurin’s

method, given the boundary conditions that at

x = 0, y = 1 and
dy

dx
= 2.

Following the above procedure:

(i) The differential equation is rewritten as:
y′′ + xy′ + 2y = 0 and from the Leibniz theorem
of equation (13), each term is differentiated n
times, which gives:

y(n+2)+{y(n+1)(x)+n y(n)(1)+0}+2 y(n) =0

i.e. y(n+2) + xy(n+1) + (n + 2) y(n) =0

(14)

(ii) At x = 0, equation (14) becomes:

y(n+2) + (n + 2) y(n) = 0

from which, y(n+2) = −(n + 2) y(n)

This equation is called a recurrence relation
or recurrence formula, because each recurring
term depends on a previous term.

(iii) Substituting n = 0, 1, 2, 3, … will produce
a set of relationships between the various
coefficients.

For n = 0, (y′′)0 = −2(y)0

n = 1, (y′′′)0 = −3(y′)0

n = 2, (y(4))0 = −4(y′′)0 = −4{−2(y)0}
= 2 × 4(y)0

n = 3, (y(5))0 = −5(y′′′)0 = −5{−3(y′)0}
= 3 × 5(y′)0

n = 4, (y(6))0 = −6(y(4))0 = −6{2 × 4(y)0}
= −2 × 4 × 6(y)0

n = 5, (y(7))0 = −7(y(5))0 = −7{3×5(y′)0}
= −3 × 5 × 7(y′)0

n = 6, (y(8))0 = −8(y(6))0 =
−8{−2 × 4 × 6(y)0}=2 × 4 × 6 × 8(y)0
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(iv) Maclaurin’s theorem from page 67 may be
written as:

y = (y)0 + x(y′)0 + x2

2! (y′′)0 + x3

3! (y′′′)0

+ x4

4! (y(4))0 + · · ·
Substituting the above values into Maclaurin’s
theorem gives:

y = (y)0 + x(y′)0 + x2

2! {−2(y)0}

+ x3

3! {−3(y′)0} + x4

4! {2 × 4(y)0}

+ x5

5! {3 × 5(y′)0} + x6

6! {−2 × 4 × 6(y)0}

+x7

7! {−3 × 5 × 7(y′)0}

+ x8

8! {2 × 4 × 6 × 8(y)0}

(v) Collecting similar terms together gives:

y = (y)0

{

1 − 2x2

2! + 2 × 4x4

4!

− 2 × 4 × 6x6

6! + 2 × 4 × 6 × 8x8

8!

− · · ·
}

+ (y′)0

{

x − 3x3

3! + 3 × 5x5

5!

− 3 × 5 × 7x7

7! + · · ·
}

i.e. y = (y)0

{

1 − x2

1
+ x4

1 × 3
− x6

3 × 5

+ x8

3 × 5 × 7
− · · ·

}

+ (y′)0 ×
{

x

1
− x3

1 × 2
+ x5

2 × 4

− x7

2 × 4 × 6
+ · · ·

}

The boundary conditions are that at x = 0, y = 1

and
dy

dx
= 2, i.e. (y)0 = 1 and (y′)0 = 2.

Hence, the power series solution of the differ-

ential equation:
d2y

dx2 + x
dy

dx
+ 2y = 0 is:

y =
{

1 − x2

1
+ x4

1 × 3
− x6

3 × 5

+ x8

3 × 5 × 7
− · · ·

}

+ 2
{

x
1

− x3

1 × 2

+ x5

2 × 4
− x7

2 × 4 × 6
+ · · ·

}

Problem 6. Determine the power series solu-
tion of the differential equation:
d2y

dx2 + dy

dx
+ xy = 0 given the boundary con-

ditions that at x = 0, y = 0 and
dy

dx
= 1, using

Leibniz–Maclaurin’s method.

Following the above procedure:

(i) The differential equation is rewritten as:
y′′ + y′ + xy = 0 and from the Leibniz theorem
of equation (13), each term is differentiated n
times, which gives:

y(n+2) + y(n+1) + y(n)(x) + n y(n−1)(1) + 0 = 0

i.e. y(n+2) + y(n+1) + xy(n) + n y(n−1) = 0
(15)

(ii) At x = 0, equation (15) becomes:

y(n+2) + y(n+1) + n y(n−1) = 0

from which, y(n+2) = −{y(n+1) + n y(n−1)}
This is the recurrence relation and applies for
n ≥ 1

(iii) Substituting n = 1, 2, 3, . . . will produce a set of
relationships between the various coefficients.

For n = 1, (y′′′)0 = −{(y′′)0 + (y)0}
n = 2, (y(4))0 = −{(y′′′)0 + 2(y′)0}
n = 3, (y(5))0 = −{(y(4))0 + 3(y′′)0}
n = 4, (y(6))0 = −{(y(5))0 + 4(y′′′)0}
n = 5, (y(7))0 = −{(y(6))0 + 5(y(4))0}
n = 6, (y(8))0 = −{(y(7))0 + 6(y(5))0}

From the given boundary conditions, at x = 0,

y = 0, thus (y)0 = 0, and at x = 0,
dy

dx
= 1, thus

(y′)0 = 1
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From the given differential equation,
y′′ + y′ + xy = 0, and, at x = 0,
(y′′)0 + (y′)0 + (0)y = 0 from which,
(y′′)0 = −(y′)0 = −1

Thus, (y)0 = 0, (y′)0 = 1, (y′′)0 = −1,

(y′′′)0 = −{(y′′)0 + (y)0} = −(−1 + 0) = 1

(y(4))0 = −{(y′′′)0 + 2(y′)0}
= −[1 + 2(1)] = −3

(y(5))0 = −{(y(4))0 + 3(y′′)0}
= −[−3 + 3(−1)] = 6

(y(6))0 = −{(y(5))0 + 4(y′′′)0}
= −[6 + 4(1)] = −10

(y(7))0 = −{(y(6))0 + 5(y(4))0}
= −[−10 + 5(−3)] = 25

(y(8))0 = −{(y(7))0 + 6(y(5))0}
= −[25 + 6(6)] = −61

(iv) Maclaurin’s theorem states:

y = (y)0 + x(y′)0 + x2

2! (y′′)0 + x3

3! (y′′′)0

+ x4

4! (y(4))0 + · · ·
and substituting the above values into
Maclaurin’s theorem gives:

y = 0 + x(1) + x2

2! {−1} + x3

3! {1} + x4

4! {−3}

+ x5

5! {6} + x6

6! {−10} + x7

7! {25}

+ x8

8! {−61} + · · ·
(v) Simplifying, the power series solution of

the differential equation:
d2y

dx2 + dy

dx
+ xy = 0 is

given by:

y = x−x2

2! +
x3

3! −
3x4

4! +6x5

5! −10x6

6!

+25x7

7! −61x8

8! + · · ·

Now try the following exercise.

Exercise 196 Further problems on power
series solutions by the Leibniz–Maclaurin
method

1. Determine the power series solution of the

differential equation:
d2y

dx2 + 2x
dy

dx
+ y = 0

using the Leibniz–Maclaurin method, given

that at x = 0, y = 1 and
dy

dx
= 2.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y =
(

1 − x2

2! + 5x4

4! − 5 × 9x6

6!
+5 × 9 × 13x8

8! − · · ·
)

+ 2

(

x − 3x3

3!
+3 × 7x5

5! − 3 × 7 × 11x7

7! + · · ·
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2. Show that the power series solution of the dif-

ferential equation: (x + 1)
d2y

dx2 + (x −1)
dy

dx
−

2y = 0, using the Leibniz–Maclaurin method,
is given by: y = 1 + x2 + ex given the bound-

ary conditions that at x = 0, y = dy

dx
= 1.

3. Find the particular solution of the differen-

tial equation: (x2 + 1)
d2y

dx2 + x
dy

dx
− 4y = 0

using the Leibniz–Maclaurin method, given
the boundary conditions that at x = 0, y = 1

and
dy

dx
= 1.

[

y = 1 + x + 2x2 + x3

2
− x5

8
+ x7

16
+ · · ·

]

4. Use the Leibniz–Maclaurin method to deter-
mine the power series solution for the differ-

ential equation: x
d2y

dx2 + dy

dx
+ xy = 1 given

that at x = 0, y = 1 and
dy

dx
= 2.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y =
{

1 − x2

22 + x4

22 × 42 − x6

22 × 42 × 62

+ · · ·
}

+ 2

{

x − x3

32 + x5

32 × 52

− x7

32 × 52 × 72 + · · ·
}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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52.5 Power series solution by the
Frobenius method

A differential equation of the form y ′′ + P y ′ +
Q y = 0, where P and Q are both functions of x,
such that the equation can be represented by a power
series, may be solved by the Frobenius method.

The following 4-step procedure may be used in
the Frobenius method:

(i) Assume a trial solution of the form y =
xc
{
a0 + a1x + a2x2 + a3x3 + · · · + arxr + · · · }

(ii) differentiate the trial series,

(iii) substitute the results in the given differential
equation,

(iv) equate coefficients of corresponding powers
of the variable on each side of the equation;
this enables index c and coefficients a1, a2,
a3, … from the trial solution, to be determined.

This introductory treatment of the Frobenius method
covering the simplest cases is demonstrated, using
the above procedure, in the following worked
problems.

Problem 7. Determine, using the Frobenius
method, the general power series solution of the

differential equation: 3x
d2y

dx2 + dy

dx
− y = 0

The differential equation may be rewritten as:
3xy′′ + y′ − y = 0

(i) Let a trial solution be of the form

y = xc {a0 + a1x + a2x2 + a3x3 + · · ·
+ arxr + · · · } (16)

where a0 �= 0,

i.e. y = a0xc + a1xc+1 + a2xc+2 + a3xc+3

+ · · · + arxc+r + · · · (17)

(ii) Differentiating equation (17) gives:

y′ = a0cxc−1 + a1(c + 1)xc

+ a2(c + 2)xc+1 + · · ·
+ ar(c + r)xc+r−1 + · · ·

and y′′ = a0c(c − 1)xc−2 + a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + · · ·
+ ar(c + r − 1)(c + r)xc+r−2 + · · ·

(iii) Substituting y, y′ and y′′ into each term of the
given equation 3xy′′ + y′ − y = 0 gives:

3xy′′ = 3a0c(c − 1)xc−1 + 3a1c(c + 1)xc

+ 3a2(c + 1)(c + 2)xc+1 + · · ·
+ 3ar(c + r − 1)(c+r)xc+r−1+· · ·(a)

y′ = a0cxc−1+a1(c + 1)xc+a2(c + 2)xc+1

+ · · · + ar(c + r)xc+r−1 + · · · (b)

−y = −a0xc − a1xc+1 − a2xc+2 − a3xc+3

− · · · − arxc+r − · · · (c)

(iv) The sum of these three terms forms the left-
hand side of the equation. Since the right-hand
side is zero, the coefficients of each power of x
can be equated to zero.

For example, the coefficient of xc−1 is
equated to zero giving: 3a0c(c − 1) + a0c = 0

or a0c[3c − 3 + 1] = a0c(3c − 2) = 0 (18)

The coefficient of xc is equated to zero giving:
3a1c(c + 1) + a1(c + 1) − a0 = 0

i.e. a1(3c2 + 3c + c + 1) − a0

= a1(3c2 + 4c + 1) − a0 = 0

or a1(3c + 1)(c + 1) − a0 = 0 (19)

In each of series (a), (b) and (c) an xc term
is involved, after which, a general relationship
can be obtained for xc+r , where r ≥ 0.

In series (a) and (b), terms in xc+r−1 are
present; replacing r by (r + 1) will give the cor-
responding terms in xc+r , which occurs in all
three equations, i.e.

in series (a), 3ar+1(c + r)(c + r + 1)xc+r

in series (b), ar+1(c + r + 1)xc+r

in series (c), −arxc+r

Equating the total coefficients of xc+r to zero
gives:

3ar+1(c + r)(c + r + 1) + ar+1(c + r + 1)

− ar = 0

which simplifies to:

ar+1{(c + r + 1)(3c + 3r + 1)} − ar = 0 (20)

Equation (18), which was formed from the
coefficients of the lowest power of x, i.e. xc−1,
is called the indicial equation, from which,
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the value of c is obtained. From equation (18),

since a0 �= 0, then c = 0 or c = 2
3

(a) When c = 0:

From equation (19), if c = 0, a1(1 × 1) − a0 = 0,
i.e. a1 = a0

From equation (20), if c = 0,
ar+1(r + 1)(3r + 1) − ar = 0,

i.e. ar+1 = ar

(r + 1)(3r + 1)
r ≥ 0

Thus, when r = 1, a2 = a1

(2 × 4)
= a0

(2 × 4)
since a1 = a0

when r = 2, a3 = a2

(3 × 7)
= a0

(2 × 4)(3 × 7)

or
a0

(2 × 3)(4 × 7)

when r = 3, a4 = a3

(4 × 10)

= a0

(2 × 3 × 4)(4 × 7 × 10)
and so on.

From equation (16), the trial solution was:

y = xc{a0 + a1x + a2x2 + a3x3 + · · · + arxr + · · · }
Substituting c = 0 and the above values of a1, a2,
a3, … into the trial solution gives:

y = x0
{

a0 + a0x +
(

a0

(2 × 4)

)

x2

+
(

a0

(2 × 3)(4 × 7)

)

x3

+
(

a0

(2 × 3 × 4)(4 × 7 × 10)

)

x4 + · · ·
}

i.e. y = a0

{

1 + x + x2

(2 × 4)
+ x3

(2 × 3) (4 × 7)

+ x4

(2 × 3 × 4) (4 × 7 × 10)
+ · · ·

}

(21)

(b) When c = 2
3

:

From equation (19), if c = 2

3
, a1(3)

(
5

3

)

− a0 = 0,

i.e. a1 = a0

5

From equation (20), if c = 2

3

ar+1

(
2

3
+ r + 1

)

(2 + 3r + 1) − ar = 0,

i.e. ar+1

(

r + 5

3

)

(3r + 3) − ar

= ar+1(3r2 + 8r + 5) − ar = 0,

i.e. ar+1 = ar

(r + 1)(3r + 5)
r ≥ 0

Thus, when r = 1, a2 = a1

(2 × 8)
= a0

(2 × 5 × 8)

since a1 = a0

5

when r = 2, a3 = a2

(3 × 11)

= a0

(2 × 3)(5 × 8 × 11)

when r = 3, a4 = a3

(4 × 14)

= a0

(2×3×4)(5×8×11×14)
and so on.

From equation (16), the trial solution was:

y = xc{a0 + a1x + a2x2 + a3x3 + · · · + arxr + · · · }

Substituting c = 2

3
and the above values of a1, a2,

a3, … into the trial solution gives:

y = x
2
3

{

a0 +
(a0

5

)
x +

(
a0

2 × 5 × 8

)

x2

+
(

a0

(2 × 3)(5 × 8 × 11)

)

x3

+
(

a0

(2 × 3 × 4)(5 × 8 × 11 × 14)

)

x4 + · · ·
}

i.e. y = a0x
2
3

{

1 + x

5
+ x2

(2 × 5 × 8)

+ x3

(2 × 3)(5 × 8 × 11)

+ x4

(2 × 3 × 4)(5 × 8 × 11 × 14)
+ · · ·

}

(22)

Since a0 is an arbitrary (non-zero) constant in each
solution, its value could well be different.
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Let a0 = A in equation (21), and a0 = B in equation
(22). Also, if the first solution is denoted by u(x) and
the second by v(x), then the general solution of the
given differential equation is y = u(x) + v(x). Hence,

y = A
{

1 + x + x2

(2 × 4)
+ x3

(2 × 3) (4 × 7)

+ x4

(2 × 3 × 4) (4 × 7 × 10)
+ · · ·

}

+ B x
2
3

{

1 + x
5

+ x2

(2 × 5 × 8)

+ x3

(2 × 3)(5 × 8 × 11)

+ x4

(2 × 3 × 4)(5 × 8 × 11 × 14)
+ · · ·

}

Problem 8. Use the Frobenius method to
determine the general power series solution of
the differential equation:

2x2 d2y

dx2 − x
dy

dx
+ (1 − x)y = 0

The differential equation may be rewritten as:
2x2y′′ − xy′ + (1 − x)y = 0

(i) Let a trial solution be of the form

y = xc{a0 + a1x + a2x2 + a3x3 + · · ·
+ arxr + · · · } (23)

where a0 �= 0,

i.e. y = a0xc + a1xc+1 + a2xc+2 + a3xc+3

+ · · · + arxc+r + · · · (24)

(ii) Differentiating equation (24) gives:

y′ = a0cxc−1 + a1(c + 1)xc + a2(c + 2)xc+1

+ · · · + ar(c + r)xc+r−1 + · · ·
and y′′ = a0c(c − 1)xc−2 + a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + · · ·
+ ar(c + r − 1)(c + r)xc+r−2 + · · ·

(iii) Substituting y, y′ and y′′ into each term of
the given equation 2x2y′′ − xy′ + (1 − x)y = 0

gives:

2x2y′′ = 2a0c(c − 1)xc + 2a1c(c + 1)xc+1

+ 2a2(c + 1)(c + 2)xc+2 + · · ·
+ 2ar(c + r − 1)(c + r)xc+r + · · ·

(a)

−xy′ = −a0cxc − a1(c + 1)xc+1

− a2(c + 2)xc+2 − · · ·
− ar(c + r)xc+r − · · · (b)

(1 − x)y = (1 − x)(a0xc + a1xc+1 + a2xc+2

+ a3xc+3 + · · · + arxc+r + · · · )

= a0xc + a1xc+1 + a2xc+2 + a3xc+3

+ · · · + arxc+r + · · ·
− a0xc+1 − a1xc+2 − a2xc+3

− a3xc+4 − · · · − arxc+r+1 − · · ·
(c)

(iv) The indicial equation, which is obtained by
equating the coefficient of the lowest power of
x to zero, gives the value(s) of c. Equating the
total coefficients of xc (from equations (a) to
(c)) to zero gives:

2a0c(c − 1) − a0c + a0 = 0
i.e. a0[2c(c − 1) − c + 1] = 0

i.e. a0[2c2 − 2c − c + 1] = 0

i.e. a0[2c2 − 3c + 1] = 0
i.e. a0[(2c − 1)(c − 1)] = 0

from which, c = 1 or c = 1
2

The coefficient of the general term, i.e. xc+r ,
gives (from equations (a) to (c)):

2ar(c + r − 1)(c + r) − ar(c + r)
+ ar − ar−1 = 0

from which,

ar[2(c + r − 1)(c + r) − (c + r) + 1] = ar−1

and ar = ar−1

2(c + r − 1)(c + r) − (c + r) + 1
(25)

(a) With c = 1, ar = ar−1

2(r)(1 + r) − (1 + r) +1

= ar−1

2r + 2r2 − 1 − r + 1

= ar−1

2r2 + r
= ar−1

r(2r + 1)
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Thus, when r = 1,

a1 = a0

1(2 + 1)
= a0

1 × 3

when r = 2,

a2 = a1

2(4 + 1)
= a1

(2 × 5)

= a0

(1 × 3)(2 × 5)
or

a0

(1 × 2) × (3 × 5)

when r = 3,

a3 = a2

3(6 + 1)
= a2

3 × 7

= a0

(1 × 2 × 3) × (3 × 5 × 7)

when r = 4,

a4 = a3

4(8 + 1)
= a3

4 × 9

= a0

(1 × 2 × 3 × 4) × (3 × 5 × 7 × 9)

and so on.

From equation (23), the trial solution was:

y = xc {a0 + a1x + a2x2 + a3x3 + · · ·
+ arxr + · · · }

Substituting c = 1 and the above values of
a1, a2, a3, … into the trial solution gives:

y = x1
{

a0 + a0

(1×3)
x + a0

(1×2)× (3×5)
x2

+ a0

(1 × 2 × 3) × (3 × 5 × 7)
x3

+ a0

(1×2×3×4)× (3×5×7×9)
x4

+ · · ·
}

i.e. y = a0x1
{

1+ x

(1×3)
+ x2

(1 × 2) × (3 × 5)

+ x3

(1 × 2 × 3) × (3 × 5 × 7)

+ x4

(1×2×3×4)×(3×5×7×9)

+ · · ·
}

(26)

(b) With c = 1
2

ar = ar−1

2(c + r − 1)(c + r) − (c + r) + 1

from equation (25)

i.e. ar = ar−1

2

(
1

2
+ r − 1

)(
1

2
+ r

)

−
(

1

2
+ r

)

+1

= ar−1

2

(

r − 1

2

)(

r + 1

2

)

− 1

2
− r + 1

= ar−1

2

(

r2 − 1

4

)

− 1

2
− r + 1

= ar−1

2r2 − 1

2
− 1

2
− r + 1

= ar−1

2r2 − r

= ar−1

r(2r − 1)

Thus, when r = 1, a1 = a0

1(2 − 1)
= a0

1 × 1

when r = 2, a2 = a1

2(4 − 1)
= a1

(2 × 3)

= a0

(2 × 3)

when r = 3, a3 = a2

3(6 − 1)
= a2

3 × 5

= a0

(2 × 3) × (3 × 5)

when r = 4, a4 = a3

4(8 − 1)
= a3

4 × 7

= a0

(2×3×4)×(3×5×7)
and so on.

From equation (23), the trial solution was:

y = xc {a0 + a1x + a2x2 + a3x3 + · · ·
+ arxr + · · · }

Substituting c = 1

2
and the above values of

a1, a2, a3, … into the trial solution gives:

y = x
1
2

{

a0 +a0x+ a0

(2×3)
x2+ a0

(2×3)×(3×5)
x3

+ a0

(2 × 3 × 4) × (3 × 5 × 7)
x4 + · · ·

}
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i.e. y = a0x
1
2

{

1 + x + x2

(2 × 3)

+ x3

(2 × 3) × (3 × 5)

+ x4

(2 × 3 × 4) × (3 × 5 × 7)

+ · · ·
}

(27)

Since a0 is an arbitrary (non-zero) constant in
each solution, its value could well be different.
Let a0 = A in equation (26), and a0 = B in equa-
tion (27). Also, if the first solution is denoted
by u(x) and the second by v(x), then the gen-
eral solution of the given differential equation
is y = u(x) + v(x),

i.e. y = Ax
{

1 + x
(1 × 3)

+ x2

(1 × 2) × (3 × 5)

+ x3

(1 × 2 × 3) × (3 × 5 × 7)

+ x4

(1 × 2 × 3×4)×(3×5×7×9)

+ · · ·
}

+ B x
1
2

{

1 + x + x2

(2 × 3)

+ x3

(2 × 3) × (3 × 5)

+ x4

(2 × 3 × 4) ×(3 × 5 × 7)
+ · · ·

}

Problem 9. Use the Frobenius method to deter-
mine the general power series solution of the

differential equation:
d2y

dx2 − 2y = 0

The differential equation may be rewritten as:
y′′ − 2y = 0

(i) Let a trial solution be of the form

y = xc {a0 + a1x + a2x2 + a3x3 + · · ·
+ arxr + · · · } (28)

where a0 �= 0,

i.e. y = a0xc + a1xc+1 + a2xc+2 + a3xc+3

+ · · · + arxc+r + · · · (29)

(ii) Differentiating equation (29) gives:

y′ = a0cxc−1 + a1(c + 1)xc + a2(c + 2)xc+1

+ · · · + ar(c + r)xc+r−1 + · · ·
and y′′ = a0c(c − 1)xc−2 + a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + · · ·
+ ar(c + r − 1)(c + r)xc+r−2 + · · ·

(iii) Replacing r by (r + 2) in
ar(c + r − 1)(c + r) xc+r−2 gives:
ar+2(c + r + 1)(c + r + 2)xc+r

Substituting y and y′′ into each term of the given
equation y′′ − 2y = 0 gives:

y′′ − 2y = a0c(c − 1)xc−2 + a1c(c + 1)xc−1

+ [a2(c+1)(c + 2)−2a0]xc+· · ·
+ [ar+2(c + r + 1)(c + r + 2)

− 2ar] xc+r + · · · = 0 (30)

(iv) The indicial equation is obtained by equating
the coefficient of the lowest power of x to zero.

Hence, a0c(c − 1) = 0 from which, c = 0
or c = 1 since a0 �= 0

For the term in xc−1, i.e. a1c(c + 1) = 0
With c = 1, a1 = 0; however, when c = 0, a1
is indeterminate, since any value of a1 com-
bined with the zero value of c would make the
product zero.

For the term in xc,

a2(c + 1)(c + 2) − 2a0 = 0 from which,

a2 = 2a0

(c + 1)(c + 2)
(31)

For the term in xc+r ,

ar+2(c + r + 1)(c + r + 2) − 2ar = 0

from which,

ar+2 = 2ar

(c + r + 1)(c + r + 2)
(32)

(a) When c = 0: a1 is indeterminate, and from
equation (31)

a2 = 2a0

(1 × 2)
= 2a0

2!
In general, ar + 2 = 2ar

(r + 1)(r + 2)
and

when r = 1, a3 = 2a1

(2 × 3)
= 2a1

(1 × 2 × 3)
= 2a1

3!
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when r = 2, a4 = 2a2

3 × 4
= 4a0

4!

Hence, y = x0
{

a0 + a1x + 2a0

2! x2 + 2a1

3! x3

+ 4a0

4! x4 + · · ·
}

from equation (28)

= a0

{

1 + 2x2

2! + 4x4

4! + · · ·
}

+ a1

{

x + 2x3

3! + 4x5

5! + · · ·
}

Since a0 and a1 are arbitrary constants
depending on boundary conditions, let a0 = P
and a1 = Q, then:

y = P
{

1 + 2x2

2! + 4x4

4! + · · ·
}

+ Q
{

x + 2x3

3! + 4x5

5! + · · ·
}

(33)

(b) When c = 1: a1 = 0, and from equa-
tion (31),

a2 = 2a0

(2 × 3)
= 2a0

3!
Since c = 1, ar+2 = 2ar

(c + r + 1)(c + r + 2)

= 2ar

(r + 2)(r + 3)

from equation (32) and when r = 1,

a3 = 2a1

(3 × 4)
= 0 since a1 = 0

when r = 2,

a4 = 2a2

(4 × 5)
= 2

(4 × 5)
× 2a0

3! = 4a0

5!
when r = 3,

a5 = 2a3

(5 × 6)
= 0

Hence, when c = 1,

y = x1
{

a0 + 2a0

3! x2 + 4a0

5! x4 + · · ·
}

from equation (28)

i.e. y = a0

{

x + 2x3

3! + 4x5

5! + . . .

}

Again, a0 is an arbitrary constant; let a0 = K ,

then y = K
{

x + 2x3

3! + 4x5

5! + · · ·
}

However, this latter solution is not a separate solu-
tion, for it is the same form as the second series
in equation (33). Hence, equation (33) with its two
arbitrary constants P and Q gives the general solu-
tion. This is always the case when the two values of
c differ by an integer (i.e. whole number). From the
above three worked problems, the following can be
deduced, and in future assumed:

(i) if two solutions of the indicial equation differ
by a quantity not an integer, then two inde-
pendent solutions y = u(x) + v(x) results, the
general solution of which is y = Au + Bv (note:

Problem 7 had c = 0 and
2

3
and Problem 8 had

c = 1 and
1

2
; in neither case did c differ by an

integer)

(ii) if two solutions of the indicial equation do differ
by an integer, as in Problem 9 where c = 0 and
1, and if one coefficient is indeterminate, as with
when c = 0, then the complete solution is always
given by using this value of c. Using the second
value of c, i.e. c = 1 in Problem 9, always gives
a series which is one of the series in the first
solution.

Now try the following exercise.

Exercise 197 Further problems on power
series solution by the Frobenius method

1. Produce, using Frobenius’ method, a power
series solution for the differential equation:

2x
d2y

dx2 + dy

dx
− y = 0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y = A

{

1 + x + x2

(2 × 3)

+ x3

(2 × 3)(3 × 5)
+ · · ·

}

+ B x
1
2

{

1 + x

(1 × 3)
+ x2

(1 × 2)(3 × 5)

+ x3

(1 × 2 × 3)(3 × 5 × 7)
+ · · ·

}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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2. Use the Frobenius method to determine the
general power series solution of the differen-

tial equation:
d2y

dx2 + y = 0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y = A

(

1 − x2

2! + x4

4! − · · ·
)

+ B

(

x − x3

3! + x5

5! − · · ·
)

= P cos x + Q sin x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3. Determine the power series solution of the

differential equation: 3x
d2y

dx2 + 4
dy

dx
− y = 0

using the Frobenius method.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y = A

{

1 + x

(1 × 4)
+ x2

(1 × 2)(4 × 7)

+ x3

(1 × 2 × 3)(4 × 7 × 10)
+ · · ·

}

+ Bx− 1
3

{

1 + x

(1 × 2)
+ x2

(1 × 2)(2 × 5)

+ x3

(1 × 2 × 3)(2 × 5 × 8)
+ · · ·

}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4. Show, using the Frobenius method, that
the power series solution of the differential

equation:
d2y

dx2 − y = 0 may be expressed as

y = P cosh x + Q sinh x, where P and Q are
constants. [Hint: check the series expansions
for cosh x and sinh x on page 48]

52.6 Bessel’s equation and Bessel’s
functions

One of the most important differential equations in
applied mathematics is Bessel’s equation and is of
the form:

x2 d2y

dx2 + x
dy

dx
+ (x2 − v2)y = 0

where v is a real constant. The equation, which has
applications in electric fields, vibrations and heat
conduction, may be solved using Frobenius’ method
of the previous section.

Problem 10. Determine the general power
series solution of Bessels equation.

Bessel’s equation x2 d2y

dx2 + x
dy

dx
+ (x2 − v2)y = 0

may be rewritten as: x2y′′ + xy′ + (x2 − v2)y = 0

Using the Frobenius method from page 498:

(i) Let a trial solution be of the form

y = xc{a0 + a1x + a2x2 + a3x3 + · · ·
+ arxr + · · · } (34)

where a0 �= 0,

i.e. y = a0xc + a1xc+1 + a2xc+2 + a3xc+3

+ · · · + arxc+r + · · · (35)

(ii) Differentiating equation (35) gives:

y′ = a0cxc−1 + a1(c + 1)xc

+ a2(c + 2)xc+1 + · · ·
+ ar(c + r)xc+r−1 + · · ·

and y′′ = a0c(c − 1)xc−2 + a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + · · ·
+ ar(c + r − 1)(c + r)xc+r−2 + · · ·

(iii) Substituting y, y′ and y′′ into each term of the
given equation: x2y′′ + xy′ + (x2 − v2)y = 0
gives:

a0c(c − 1)xc + a1c(c + 1)xc+1

+ a2(c + 1)(c + 2)xc+2 + · · ·
+ ar(c + r − 1)(c + r)xc+r + · · · + a0cxc

+ a1(c + 1)xc+1 + a2(c + 2)xc+2 + · · ·
+ ar(c + r)xc+r + · · · + a0xc+2 + a1xc+3

+ a2xc+4 + · · · + arxc+r+2 + · · · − a0v
2xc

− a1v
2xc+1 − · · · − arv

2xc+r + · · · = 0
(36)

(iv) The indicial equation is obtained by equating
the coefficient of the lowest power of x to zero.
Hence, a0c(c − 1) + a0c − a0v

2 = 0

from which, a0[c2 − c + c − v2] = 0

i.e. a0[c2 − v2] = 0

from which, c = +v or c = −v since a0 �= 0
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For the term in xc+r ,

ar(c + r − 1)(c + r) + ar(c + r) + ar−2

− arv
2 = 0

ar[(c + r − 1)(c + r) + (c + r) − v2] = −ar−2

i.e. ar[(c + r)(c + r − 1 + 1) − v2] = −ar−2

i.e. ar[(c + r)2 − v2] = −ar−2

i.e. the recurrence relation is:

ar = ar−2

v2 − (c + r)2 for r ≥ 2 (37)

For the term in xc+1,

a1[c(c + 1) + (c + 1) − v2] = 0

i.e. a1[(c + 1)2 − v2] = 0

but if c = v a1[(v + 1)2 − v2] = 0
i.e. a1[2v + 1] = 0
Similarly, if c = −v a1[1 − 2v] = 0

The terms (2v+1) and (1−2v) cannot both be
zero since v is a real constant, hence a1 = 0.

Since a1 = 0, then from equation (37)
a3 = a5 = a7 = . . . = 0

and

a2 = a0

v2 − (c + 2)2

a4 = a0

[v2 − (c + 2)2][v2 − (c + 4)2]

a6 = a0

[v2−(c+2)2][v2−(c+4)2][v2−(c+6)2]

and so on.

When c = +v,

a2 = a0

v2 − (v + 2)2 = a0

v2 − v2 − 4v − 4

= −a0

4 + 4v
= −a0

22(v + 1)

a4 = a0[
v2 − (v + 2)2

] [
v2 − (v + 4)2

]

= a0

[−22(v + 1)][−23(v + 2)]

= a0

25(v + 1)(v + 2)

= a0

24 × 2(v + 1)(v + 2)

a6 = a0

[v2−(v+2)2][v2−(v+4)2][v2−(v+6)2]

= a0

[24 × 2(v + 1)(v + 2)][−12(v + 3)]

= −a0

24 × 2(v + 1)(v + 2) × 22 × 3(v + 3)

= −a0

26 × 3!(v + 1)(v + 2)(v + 3)
and so on.

The resulting solution for c = +v is given by:

y = u =

A xv

{

1− x2

22(v +1)
+ x4

24 × 2!(v +1)(v +2)

− x6

26 × 3!(v +1)(v + 2)(v + 3)
+ · · ·

}

(38)

which is valid provided v is not a negative
integer and where A is an arbitrary constant.

When c = −v,

a2 = a0

v2 − (−v + 2)2 = a0

v2 − (v2 − 4v + 4)

= −a0

4 − 4v
= −a0

22 (v − 1)

a4 = a0

[22(v − 1)][v2 − (−v + 4)2]

= a0

[22(v − 1)][23(v − 2)]

= a0

24 × 2(v − 1)(v − 2)

Similarly, a6 = a0

26 × 3!(v−1)(v−2)(v−3)

Hence,

y = w =

B x−v

{

1 + x2

22(v−1)
+ x4

24 ×2!(v−1)(v−2)

+ x6

26 × 3!(v − 1)(v − 2)(v − 3)
+ · · ·

}

which is valid provided v is not a positive
integer and where B is an arbitrary constant.
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The complete solution of Bessel’s equation:

x2 d2y

dx2 + x
dy

dx
+ (x2 − v2

)
y = 0 is:

y = u + w =
A xv

{

1 − x2

22(v + 1)
+ x4

24 × 2!(v + 1)(v + 2)

− x6

26 × 3!(v + 1)(v + 2)(v + 3)
+ · · ·

}

+ B x−v

{

1 + x2

22(v − 1)

+ x4

24 × 2!(v − 1)(v − 2)

+ x6

26 × 3!(v−1)(v−2)(v−3)
+· · ·

}

(39)

The gamma function

The solution of the Bessel equation of Problem 10
may be expressed in terms of gamma functions. � is
the upper case Greek letter gamma, and the gamma
function �(x) is defined by the integral

�(x) =
∫ ∞

0
tx−1e−tdt (40)

and is convergent for x > 0

From equation (40), �(x + 1) =
∫ ∞

0
txe−tdt

and by using integration by parts (see page 418):

�(x + 1) =
[
(
tx)
(

e−t

−1

)]∞

0

−
∫ ∞

0

(
e−t

−1

)

x tx−1dx

= (0 − 0) + x
∫ ∞

0
e−t tx−1dt

= x�(x) from equation (40)

This is an important recurrence relation for gamma
functions.

Thus, since �(x + 1) = x�(x)

then similarly, �(x + 2) = (x + 1)�(x + 1)

= (x + 1)x�(x) (41)

and �(x + 3) = (x + 2)�(x + 2)
= (x + 2)(x + 1)x�(x),

and so on.

These relationships involving gamma functions are
used with Bessel functions.

Bessel functions

The power series solution of the Bessel equation may
be written in terms of gamma functions as shown in
worked problem 11 below.

Problem 11. Show that the power series solu-
tion of the Bessel equation of worked problem 10
may be written in terms of the Bessel functions
Jv(x) and J−v(x) as:

A Jv(x) + B J−v(x)

=
(x

2

)v
{

1

�(v + 1)
− x2

22(1!)�(v + 2)

+ x4

24(2!)�(v + 4)
− · · ·

}

+
(x

2

)−v
{

1

�(1 − v)
− x2

22(1!)�(2 − v)

+ x4

24(2!)�(3 − v)
− · · ·

}

From Problem 10 above, when c = +v,

a2 = −a0

22(v + 1)

If we let a0 = 1

2v�(v + 1)

then

a2 = −1

22(v + 1) 2v�(v + 1)
= −1

2v+2(v + 1)�(v + 1)

= −1

2v+2�(v + 2)
from equation (41)

Similarly, a4 = a2

v2 − (c + 4)2 from equation (37)

= a2

(v − c − 4)(v + c + 4)
= a2

−4(2v + 4)

since c = v
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= −a2

23(v + 2)
= −1

23(v + 2)

−1

2v+2�(v + 2)

= 1

2v+4(2!)�(v + 3)

since (v + 2)�(v + 2) = �(v + 3)

and a6 = −1

2v+6(3!)�(v + 4)
and so on.

The recurrence relation is:

ar = (−1)r/2

2v+r
( r

2
!
)

�
(
v + r

2
+ 1
)

And if we let r = 2k, then

a2k = (−1)k

2v+2k(k!)�(v + k + 1)
(42)

for k = 1, 2, 3, · · ·
Hence, it is possible to write the new form for
equation (38) as:

y = Axv

{
1

2v�(v + 1)
− x2

2v+2(1!)�(v + 2)

+ x4

2v+4(2!)�(v + 3)
− · · ·

}

This is called the Bessel function of the first order
kind, of order v, and is denoted by Jv(x),

i.e. Jv(x) =
(x

2

)v
{

1
�(v + 1)

− x2

22(1!)�(v + 2)

+ x4

24(2!)�(v + 3)
− · · ·

}

provided v is not a negative integer.

For the second solution, when c = −v, replacing v
by −v in equation (42) above gives:

a2k = (−1)k

22k−v(k!) �(k − v + 1)

from which, when k = 0, a0 = (−1)0

2−v(0!)�(1 − v)

= 1

2−v�(1 − v)
since 0! = 1 (see page 492)

when k = 1, a2 = (−1)1

22−v (1!) �(1 − v + 1)

= −1

22−v(1!)�(2 − v)

when k = 2, a4 = (−1)2

24−v(2!)�(2 − v + 1)

= 1

24−v(2!)�(3 − v)

when k = 3, a6 = (−1)3

26−v (3!) �(3 − v + 1)

= 1

26−v(3!)�(4 − v)
and so on.

Hence, y = Bx−v

{
1

2−v�(1 − v)
− x2

22−v(1!)�(2 − v)

+ x4

24−v(2!)�(3 − v)
− · · ·

}

i.e. J−v(x) =
(x

2

)−v
{

1
�(1 − v)

− x2

22(1!)�(2 − v)

+ x4

24(2!)�(3 − v)
−· · ·

}

provided v is not a positive integer.

Jv(x) and J−v(x) are two independent solutions of
the Bessel equation; the complete solution is:

y = AJv(x) + BJ−v(x) where A and B are constants

i.e. y = AJv(x) + BJ−v(x)

= A
(x

2

)v
{

1
�(v + 1)

− x2

22(1!)�(v + 2)

+ x4

24(2!)�(v + 4)
− · · ·

}

+ B
(x

2

)−v
{

1
�(1 − v)

− x2

22(1!)�(2 − v)

+ x4

24(2!)�(3 − v)
− · · ·

}

In general terms: Jv(x) =
(x

2

)v ∞∑
k=0

(−1)kx2k

22k(k!)�(v+k+1)

and J−v(x) =
(x

2

)−v ∞∑
k=0

(−1)kx2k

22k(k!)�(k − v + 1)
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Another Bessel function

It may be shown that another series for Jn(x) is
given by:

Jn(x) =
(x

2

)n
{

1

n! − 1

(n + 1)!
(x

2

)2

+ 1

(2!)(n + 2)!
(x

2

)4 − · · ·
}

From this series two commonly used function are
derived,

i.e. J0(x) = 1

(0!) − 1

(1!)2

(x

2

)2 + 1

(2!)2

(x

2

)4

− 1

(3!)2

(x

2

)6 + · · ·

= 1 − x2

22(1!)2 + x4

24(2!)2 − x6

26(3!)2 + · · ·

and J1(x) = x

2

{
1

(1!) − 1

(1!)(2!)
(x

2

)2

+ 1

(2!)(3!)
(x

2

)4 − · · ·
}

= x
2

− x3

23(1!)(2!) + x5

25(2!)(3!)
− x7

27(3!)(4!) + · · ·

x1412108642

−0.5

0

0.5

1

y

y = J0(x )

y = J1(x )

Figure 52.1

Tables of Bessel functions are available for a range
of values of n and x, and in these, J0(x) and J1(x) are
most commonly used.

Graphs of J0(x), which looks similar to a cosine,
and J1(x), which looks similar to a sine, are shown
in Figure 52.1.

Now try the following exercise.

Exercise 198 Further problems on Bessel’s
equation and Bessel’s functions

1. Determine the power series solution of Bes-

sel’s equation: x2 d2y

dx2 +x
dy

dx
+ (x2 −v2)y = 0

when v = 2, up to and including the term
in x6. [

y = Ax2
{

1 − x2

12
+ x4

384
− · · ·

}]

2. Find the power series solution of the Bessel
function: x2y′′ + xy′ + (

x2 − v2
)

y = 0 in
terms of the Bessel function J3(x) when
v = 3. Give the answer up to and including
the term in x7.⎡

⎢
⎢
⎢
⎣

y = AJ3(x) =
(x

2

)3
{

1

�4
− x2

22�5

+ x4

25�6
− · · ·

}

⎤

⎥
⎥
⎥
⎦
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3. Evaluate the Bessel functions J0(x) and J1(x)
when x = 1, correct to 3 decimal places.

[J0(x) = 0.765, J1(x) = 0.440]

52.7 Legendre’s equation and
Legendre polynomials

Another important differential equation in physics
and engineering applications is Legendre’s equation

of the form: (1 − x2)
d2y

dx2 − 2x
dy

dx
+ k(k + 1)y = 0 or

(1 − x2)y′′ − 2xy′ + k(k + 1)y = 0 where k is a real
constant.

Problem 12. Determine the general power
series solution of Legendre’s equation.

To solve Legendre’s equation
(1−x2)y′′ − 2xy′ + k(k+1)y = 0 using the Frobenius
method:

(i) Let a trial solution be of the form

y = xc {a0 + a1x + a2x2 + a3x3

+ · · · + arxr + · · · } (43)

where a0 �= 0,

i.e. y = a0xc + a1xc+1 + a2xc+2 + a3xc+3

+ · · · + arxc+r + · · · (44)

(ii) Differentiating equation (44) gives:

y′ = a0cxc−1 + a1(c + 1)xc

+ a2(c + 2)xc+1 + · · ·
+ ar(c + r)xc+r−1 + · · ·

and y′′ = a0c(c − 1)xc−2 + a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + · · ·
+ ar(c + r − 1)(c + r)xc+r−2 + · · ·

(iii) Substituting y, y′ and y′′ into each term of the
given equation:(
1 − x2

)
y′′ − 2xy′ + k(k + 1)y = 0 gives:

a0c(c − 1)xc−2 + a1c(c + 1)xc−1

+ a2(c + 1)(c + 2)xc + · · ·
+ ar(c + r − 1)(c + r)xc+r−2 + · · ·

− a0c(c − 1)xc − a1c(c + 1)xc+1

− a2(c + 1)(c + 2)xc+2 − · · ·
− ar(c + r − 1)(c + r)xc+r − · · · − 2a0cxc

− 2a1(c + 1)xc+1 − 2a2(c + 2)xc+2 − · · ·
− 2ar(c + r)xc+r − · · · + k2a0xc

+ k2a1xc+1 + k2a2xc+2+ · · · + k2arxc+r

+ · · · + ka0xc + ka1xc+1 + · · ·
+ karxc+r + · · · = 0 (45)

(iv) The indicial equation is obtained by equat-
ing the coefficient of the lowest power of x
(i.e. xc−2) to zero. Hence, a0c(c − 1) = 0 from
which, c = 0 or c = 1 since a0 �= 0.

For the term in xc−1, i.e. a1c(c + 1) = 0
With c = 1, a1 = 0; however, when c = 0, a1 is
indeterminate, since any value of a1 combined
with the zero value of c would make the product
zero.

For the term in xc+r ,
ar+2(c + r + 1)(c + r + 2) −ar(c + r − 1)

(c + r) − 2ar(c + r) + k2ar + kar = 0
from which,

ar+2 = ar
[
(c+r−1)(c+r)+2(c+r)−k2 −k

]

(c+r+1)(c+r+2)

= ar[(c + r)(c + r + 1) − k(k + 1)]

(c + r + 1)(c + r + 2) (46)

When c = 0,

ar+2 = ar[r(r + 1) − k(k + 1)]

(r + 1)(r + 2)

For r = 0,

a2 = a0[−k(k + 1)]

(1)(2)

For r = 1,

a3 = a1[(1)(2) − k(k + 1)]

(2)(3)

= −a1[k2 + k − 2]

3! = −a1(k − 1)(k + 2)

3!
For r = 2,

a4 = a2[(2)(3) − k(k + 1)]

(3)(4)
= −a2

[
k2 + k − 6

]

(3)(4)
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= −a2(k + 3)(k − 2)

(3)(4)

= −(k + 3)(k − 2)

(3)(4)
.

a0[−k(k + 1)]

(1)(2)

= a0k(k+1)(k+3)(k−2)

4!
For r = 3,

a5 = a3[(3)(4) − k(k + 1)]

(4)(5)
= −a3[k2 + k − 12]

(4)(5)

= −a3(k + 4)(k − 3)

(4)(5)

= −(k + 4)(k − 3)

(4)(5)
.
−a1(k − 1)(k + 2)

(2)(3)

= a1(k − 1)(k − 3)(k + 2)(k + 4)

5! and so on.

Substituting values into equation (43) gives:

y = x0
{

a0 + a1x − a0k(k + 1)

2! x2

− a1(k − 1)(k + 2)

3! x3

+ a0k(k + 1)(k − 2)(k + 3)

4! x4

+ a1(k − 1)(k − 3)(k + 2)(k + 4)

5! x5

+ · · ·
}

i.e. y = a0

{

1 − k(k + 1)
2! x2

+ k(k + 1)(k − 2)(k + 3)
4! x4 − · · ·

}

+ a1

{

x − (k − 1)(k + 2)
3! x3

+ (k − 1)(k − 3)(k + 2)(k + 4)
5! x5 − · · ·

}

(47)
From page 503, it was stated that if two solutions
of the indicial equation differ by an integer, as in
this case, where c = 0 and 1, and if one coefficient is
indeterminate, as with when c = 0, then the complete
solution is always given by using this value of c.
Using the second value of c, i.e. c = 1 in this problem,
will give a series which is one of the series in the first
solution. (This may be checked for c = 1 and where
a1 = 0; the result will be the first part of equation
(47) above).

Legendre’s polynomials

(A polynomial is an expression of the form:
f (x) = a + bx + cx2 + dx3 + · · · ). When k in equa-
tion (47) above is an integer, say, n, one of the
solution series terminates after a finite number of
terms. For example, if k = 2, then the first series
terminates after the term in x2. The resulting poly-
nomial in x, denoted by Pn(x), is called a Legendre
polynomial. Constants a0 and a1 are chosen so
that y = 1 when x = 1. This is demonstrated in the
following worked problems.

Problem 13. Determine the Legendre polyno-
mial P2(x).

Since in P2(x), n = k = 2, then from the first part of
equation (47), i.e. the even powers of x:

y = a0

{

1 − 2(3)

2! x2 + 0

}

= a0{1 − 3x2}
a0 is chosen to make y = 1 when x = 1

i.e. 1 = a0{1 − 3(1)2} = −2a0, from which, a0 = −1

2

Hence, P2(x) = −1

2

(
1 − 3x2

) = 1
2

(3x2 − 1)

Problem 14. Determine the Legendre poly-
nomial P3(x).

Since in P3(x), n = k = 3, then from the second part
of equation (47), i.e. the odd powers of x:

y = a1

{

x − (k − 1)(k + 2)

3! x3

+ (k − 1)(k − 3)(k + 2)(k + 4)

5! x5 − · · ·
}

i.e. y = a1

{

x − (2)(5)

3! x3 + (2)(0)(5)(7)

5! x5
}

= a1

{

x − 5

3
x3 + 0

}

a1 is chosen to make y = 1 when x = 1.

i.e. 1 = a1

{

1 − 5

3

}

= a1

(

−2

3

)

from which, a1 = −3

2

Hence, P3(x) =−3

2

(

x−5

3
x3
)

or P3(x) = 1
2

(5x3− 3x)
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Rodrigue’s formula

An alternative method of determining Legendre
polynomials is by using Rodrigue’s formula, which
states:

Pn(x) = 1
2nn!

dn
(
x2 − 1

)n

dxn (48)

This is demonstrated in the following worked
problems.

Problem 15. Determine the Legendre polyno-
mial P2(x) using Rodrigue’s formula.

In Rodrigue’s formula, Pn(x) = 1

2nn!
dn
(
x2 − 1

)n

dxn

and when n = 2,

P2(x) = 1

222!
d2(x2 − 1)2

dx2

= 1

23

d2(x4 − 2x2 + 1)

dx2

d

dx
(x4 − 2x2 + 1)

= 4x3 − 4x

and
d2
(
x4 − 2x2 + 1

)

dx2 = d(4x3 − 4x)

dx
= 12x2 − 4

Hence, P2(x) = 1

23

d2
(
x4−2x2+1

)

dx2 = 1

8

(
12x2 − 4

)

i.e. P2(x) = 1
2

(
3x2 − 1

)
the same as in Problem 13.

Problem 16. Determine the Legendre polyno-
mial P3(x) using Rodrigue’s formula.

In Rodrigue’s formula, Pn(x) = 1

2nn!
dn
(
x2 − 1

)n

dxn

and when n = 3,

P3(x) = 1

233!
d3
(
x2 − 1

)3

dx3

= 1

23(6)

d3
(
x2 − 1

) (
x4 − 2x2 + 1

)

dx3

= 1

(8)(6)

d3
(
x6 − 3x4 + 3x2 − 1

)

dx3

d
(
x6−3x4+3x2−1

)

dx
= 6x5 − 12x3 + 6x

d
(
6x5−12x3+6x

)

dx
= 30x4 − 36x2 + 6

and
d
(
30x4 − 36x2 + 6

)

dx
= 120x3 − 72x

Hence, P3(x) = 1

(8)(6)

d3
(
x6 − 3x4 + 3x2 − 1

)

dx3

= 1

(8)(6)

(
120x3 − 72x

) = 1

8

(
20x3 − 12x

)

i.e. P3(x) = 1
2

(
5x3 − 3x

)
the same as in Prob-

lem 14.

Now try the following exercise.

Exercise 199 Legendre’s equation and
Legendre polynomials

1. Determine the power series solution of
the Legendre equation:(
1 − x2

)
y′′ − 2xy′ + k(k + 1)y = 0 when

(a) k = 0 (b) k = 2, up to and including the
term in x5.
⎡

⎢
⎢
⎢
⎢
⎢
⎣

(a) y = a0 + a1

(

x + x3

3
+ x5

5
+ · · ·

)

(b) y = a0
{
1 − 3x2

}

+ a1

{

x − 2

3
x3 − 1

5
x5
}

⎤

⎥
⎥
⎥
⎥
⎥
⎦

2. Find the following Legendre polynomials:
(a) P1(x) (b) P4(x) (c) P5(x)

⎡

⎢
⎣

(a) x (b)
1

8

(
35x4 − 30x2 + 3

)

(c)
1

8

(
63x5 − 70x3 + 15x

)

⎤

⎥
⎦



Ch53-H8152.tex 23/6/2006 15: 14 Page 512

Differential equations

53

An introduction to partial differential
equations

53.1 Introduction

A partial differential equation is an equation that
contains one or more partial derivatives. Examples
include:

(i) a
∂u

∂x
+ b

∂u

∂y
= c

(ii)
∂2u

∂x2 = 1

c2

∂u

∂t

(known as the heat conduction equation)

(iii)
∂2u

∂x2 + ∂2u

∂y2 = 0

(known as Laplace’s equation)

Equation (i) is a first order partial differential
equation, and equations (ii) and (iii) are second
order partial differential equations since the high-
est power of the differential is 2.

Partial differential equations occur in many areas
of engineering and technology; electrostatics, heat
conduction, magnetism, wave motion, hydrodynam-
ics and aerodynamics all use models that involve
partial differential equations. Such equations are
difficult to solve, but techniques have been devel-
oped for the simpler types. In fact, for all but for
the simplest cases, there are a number of numerical
methods of solutions of partial differential equations
available.

To be able to solve simple partial differential
equations knowledge of the following is required:

(a) partial integration,

(b) first and second order partial differentiation — as
explained in Chapter 34, and

(c) the solution of ordinary differential equations —
as explained in Chapters 46–51.

It should be appreciated that whole books have been
written on partial differential equations and their

solutions. This chapter does no more than introduce
the topic.

53.2 Partial integration

Integration is the reverse process of differentiation.

Thus, if, for example,
∂u

∂t
= 5 cos x sin t is integrated

partially with respect to t, then the 5 cos x term is
considered as a constant,

and u =
∫

5 cos x sin t dt = (5 cos x)
∫

sin t dt

= (5 cos x)(−cos t) + c
= −5 cos x cos t + f (x)

Similarly, if
∂2u

∂x∂y
= 6x2 cos 2y is integrated par-

tially with respect to y,

then
∂u

∂x
=
∫

6x2 cos 2y dy = (6x2)
∫

cos 2y dy

= (6x2)
(

1

2
sin 2y

)

+ f (x)

= 3x2 sin 2y + f (x)

and integrating
∂u

∂x
partially with respect to x gives:

u =
∫

[3x2 sin 2y + f (x)] dx

= x3 sin 2y + (x) f (x) + g(y)

f (x) and g(y) are functions that may be determined
if extra information, called boundary conditions or
initial conditions, are known.
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53.3 Solution of partial differential
equations by direct partial
integration

The simplest form of partial differential equations
occurs when a solution can be determined by direct
partial integration. This is demonstrated in the fol-
lowing worked problems.

Problem 1. Solve the differential equation
∂2u

∂x2 = 6x2(2y − 1) given the boundary condi-

tions that at x = 0,
∂u

∂x
= sin 2y and u = cos y.

Since
∂2u

∂x2 = 6x2(2y − 1) then integrating partially

with respect to x gives:

∂u

∂x
=
∫

6x2(2y − 1)dx = (2y − 1)
∫

6x2dx

= (2y − 1)
6x3

3
+ f (y)

= 2x3(2y − 1) + f (y)

where f (y) is an arbitrary function.
From the boundary conditions, when x = 0,

∂u

∂x
= sin 2y.

Hence, sin 2y = 2(0)3(2y − 1) + f (y)

from which, f (y) = sin 2y

Now
∂u

∂x
= 2x3(2y − 1) + sin 2y

Integrating partially with respect to x gives:

u =
∫

[2x3(2y − 1) + sin 2y]dx

= 2x4

4
(2y − 1) + x(sin 2y) + F(y)

From the boundary conditions, when x = 0,
u = cos y, hence

cos y = (0)4

2
(2y − 1) + (0)sin 2y + F(y)

from which, F(y) = cos y

Hence, the solution of
∂2u

∂x2 = 6x2(2y − 1) for the

given boundary conditions is:

u = x4

2
(2y − 1) + x sin y + cos y

Problem 2. Solve the differential equation:
∂2u

∂x∂y
= cos(x+y) given that

∂u

∂x
= 2 when y = 0,

and u = y2 when x = 0.

Since
∂2u

∂x∂y
= cos(x + y) then integrating partially

with respect to y gives:

∂u

∂x
=
∫

cos(x + y)dy = sin(x + y) + f (x)

From the boundary conditions,
∂u

∂x
= 2 when y = 0,

hence
2 = sin x + f (x)

from which, f (x) = 2 − sin x

i.e.
∂u

∂x
= sin(x + y) + 2 − sin x

Integrating partially with respect to x gives:

u =
∫

[sin(x + y) + 2 − sin x]dx

= −cos(x + y) + 2x + cos x + f (y)

From the boundary conditions, u = y2 when x = 0,
hence

y2 = −cos y + 0 + cos 0 + f (y)

= 1 − cos y + f (y)

from which, f (y) = y2 − 1 + cos y

Hence, the solution of
∂2u

∂x∂y
= cos(x+y) is given by:

u = −cos(x + y) + 2x + cos x + y2 − 1 + cos y

Problem 3. Verify that

φ(x, y, z) = 1
√

x2 + y2 + z2
satisfies the partial

differential equation:
∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0.
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The partial differential equation

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0 is called Laplace’s equation.

If φ(x, y, z) = 1
√

x2 + y2 + z2
= (x2 + y2 + z2)−

1
2

then differentiating partially with respect to x gives:

∂φ

∂x
= −1

2
(x2 + y2 + z2)−

3
2 (2x)

= −x(x2 + y2 + z2)−
3
2

and
∂2φ

∂x2 = (−x)

[

−3

2
(x2 + y2 + z2)−

5
2 (2x)

]

+ (x2 + y2 + z2)−
3
2 (−1)

by the product rule

= 3x2

(x2 + y2 + z2)
5
2

− 1

(x2 + y2 + z2)
3
2

= (3x2) − (x2 + y2 + z2)

(x2 + y2 + z2)
5
2

Similarly, it may be shown that

∂2φ

∂y2 = (3y2) − (x2 + y2 + z2)

(x2 + y2 + z2)
5
2

and
∂2φ

∂z2 = (3z2) − (x2 + y2 + z2)

(x2 + y2 + z2)
5
2

Thus,

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = (3x2) − (x2 + y2 + z2)

(x2 + y2 + z2)
5
2

+ (3y2) − (x2 + y2 + z2)

(x2 + y2 + z2)
5
2

+ (3z2) − (x2 + y2 + z2)

(x2 + y2 + z2)
5
2

=

⎛

⎜
⎜
⎝

3x2 − (x2 + y2 + z2)

+ 3y2 − (x2 + y2 + z2)

+ 3z2 − (x2 + y2 + z2)

⎞

⎟
⎟
⎠

(x2 + y2 + z2)
5
2

= 0

Thus,
1

√
x2 + y2 + z2

satisfies the Laplace equation

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0

Now try the following exercise.

Exercise 200 Further problems on the solu-
tion of partial differential equations by direct
partial integration

1. Determine the general solution of
∂u

∂y
= 4ty [u = 2ty2 + f (t)]

2. Solve
∂u

∂t
= 2t cos θ given that u = 2t when

θ = 0. [u = t2(cos θ − 1) + 2t]

3. Verify that u(θ, t) = θ2 + θt is a solution of
∂u

∂θ
− 2

∂u

∂t
= t.

4. Verify that u = e−y cos x is a solution of
∂2u

∂x2 + ∂2u

∂y2 = 0.

5. Solve
∂2u

∂x∂y
= 8ey sin 2x given that at y = 0,

∂u

∂x
= sin x, and at x = π

2
, u = 2y2.

[u = −4ey cos 2x − cos x + 4 cos 2x

+ 2y2 − 4ey + 4
]

6. Solve
∂2u

∂x2 = y(4x2 − 1) given that at x = 0,

u = sin y and
∂u

∂x
= cos 2y.

[

u = y

(
x4

3
− x2

2

)

+ x cos 2y + sin y

]
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7. Solve
∂2u

∂x∂t
= sin(x + t) given that

∂u

∂x
= 1

when t = 0, and when u = 2t when x = 0.

[u = −sin(x + t) + x + sin x + 2t + sin t]

8. Show that u(x, y) = xy + x

y
is a solution of

2x
∂2u

∂x∂y
+ y

∂2u

∂y2 = 2x.

9. Find the particular solution of the differ-

ential equation
∂2u

∂x∂y
= cos x cos y given the

initial conditions that when y = π,
∂u

∂x
= x,

and when x = π, u = 2 cos y.
[

u = sin x sin y + x2

2
+ 2 cos y − π2

2

]

10. Verify that φ(x, y) = x cos y + ex sin y satis-
fies the differential equation

∂2φ

∂x2 + ∂2φ

∂y2 + x cos y = 0.

53.4 Some important engineering
partial differential equations

There are many types of partial differential equa-
tions. Some typically found in engineering and
science include:

(a) The wave equation, where the equation of
motion is given by:

∂2u

∂x2 = 1

c2

∂2u

∂t2

where c2 = T

ρ
, with T being the tension in a string

and ρ being the mass/unit length of the string.

(b) The heat conduction equation is of the form:

∂2u

∂x2 = 1

c2

∂u

∂t

where c2 = h

σρ
, with h being the thermal conduc-

tivity of the material, σ the specific heat of the
material, and ρ the mass/unit length of material.

(c) Laplace’s equation, used extensively with elec-
trostatic fields is of the form:

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 = 0.

(d) The transmission equation, where the poten-
tial u in a transmission cable is of the form:

∂2u

∂x2 = A
∂2u

∂t2 + B
∂u

∂t
+ Cu where A, B and C are

constants.

Some of these equations are used in the next sections.

53.5 Separating the variables

Let u(x, t) = X(x)T (t), where X(x) is a function of
x only and T (t) is a function of t only, be a trial

solution to the wave equation
∂2u

∂x2 = 1

c2

∂2u

∂t2 . If the

trial solution is simplified to u = XT , then
∂u

∂x
= X ′T

and
∂2u

∂x2 = X ′′T . Also
∂u

∂t
= XT ′ and

∂2u

∂t2 = XT ′′.

Substituting into the partial differential equation
∂2u

∂x2 = 1

c2

∂2u

∂t2 gives:

X ′′T = 1

c2 XT ′′

Separating the variables gives:

X′′

X
= 1

c2

T ′′

T

Let µ = X ′′

X
= 1

c2

T ′′

T
where µ is a constant.

Thus, since µ = X ′′

X
(a function of x only), it must be

independent of t; and, since µ = 1

c2

T ′′

T
(a function

of t only), it must be independent of x.

If µ is independent of x and t, it can only be a con-

stant. If µ = X ′′

X
then X ′′ = µX or X ′′ − µX = 0 and

if µ = 1

c2

T ′′

T
then T ′′ = c2µT or T ′′ − c2µT = 0.

Such ordinary differential equations are of the form
found in Chapter 50, and their solutions will depend
on whether µ > 0, µ = 0 or µ < 0.
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Worked Problem 4 will be a reminder of solving
ordinary differential equations of this type.

Problem 4. Find the general solution of the
following differential equations:

(a) X ′′ − 4X = 0 (b) T ′′ + 4T = 0.

(a) If X ′′ − 4X = 0 then the auxiliary equation (see
Chapter 50) is:

m2 − 4 = 0 i.e. m2 = 4 from which,
m = +2 or m = −2

Thus, the general solution is:

X = Ae2x + Be−2x

(b) If T ′′ + 4T = 0 then the auxiliary equation is:

m2 + 4 = 0 i.e. m2 = −4 from which,
m = √−4 = ±j2

Thus, the general solution is:

T = e0{A cos 2t + B sin 2t} = A cos 2t + B sin 2t

Now try the following exercise.

Exercise 201 Further problems on revising
the solution of ordinary differential equation

1. Solve T ′′ = c2µT given c = 3 and µ = 1

[T = Ae3t + Be−3t]

2. Solve T ′′ −c2µT = 0 given c = 3 and µ = −1

[T = A cos 3t + B sin 3t]

3. Solve X ′′ = µX given µ = 1[
X = Aex + Be−x

]

4. Solve X ′′ − µX = 0 given µ = −1
[X = A cos x + B sin x]

53.6 The wave equation

An elastic string is a string with elastic proper-
ties, i.e. the string satisfies Hooke’s law. Figure 53.1
shows a flexible elastic string stretched between two
points at x = 0 and x = L with uniform tension T .
The string will vibrate if the string is displace slightly
from its initial position of rest and released, the end
points remaining fixed. The position of any point P
on the string depends on its distance from one end,
and on the instant in time. Its displacement u at any

x
0 xL

u (x, t )

u
=

f(
x,

 t
)

P

Figure 53.1

time t can be expressed as u = f (x, t), where x is its
distance from 0.
The equation of motion is as stated in

section 53.4 (a), i.e.
∂2u

∂x2 = 1

c2

∂2u

∂t2

The boundary and initial conditions are:

(i) The string is fixed at both ends, i.e. x = 0 and
x = L for all values of time t.

Hence, u(x, t) becomes:

u(0, t) = 0
u(L, t) = 0

}

for all values of t ≥ 0

(ii) If the initial deflection of P at t = 0 is denoted
by f (x) then u(x, 0) = f (x)

(iii) Let the initial velocity of P be g(x), then
[
∂u

∂t

]

t=0
= g(x)

Initially a trial solution of the form u(x, t) = X(x)T (t)
is assumed, where X(x) is a function of x only and
T (t) is a function of t only. The trial solution may be
simplified to u = XT and the variables separated as
explained in the previous section to give:

X ′′

X
= 1

c2

T ′′

T
When both sides are equated to a constant µ this
results in two ordinary differential equations:

T ′′ − c2µT = 0 and X ′′ − µX = 0
Three cases are possible, depending on the
value of µ.

Case 1: µ> 0

For convenience, let µ = p2, where p is a real
constant. Then the equations

X ′′ − p2X = 0 and T ′′ − c2p2T = 0

have solutions: X = Aepx + Be−px and
T = Cecpt + De−cpt where A, B, C and D are
constants.
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But X = 0 at x = 0, hence 0 = A + B i.e. B = −A and
X = 0 at x = L, hence
0 = AepL + Be−pL = A(epL − e−pL).
Assuming (epL – e−pL) is not zero, then A = 0 and
since B = −A, then B = 0 also.
This corresponds to the string being stationary; since
it is non-oscillatory, this solution will be disregarded.

Case 2: µ= 0

In this case, since µ = p2 = 0, T ′′ = 0 and X ′′ = 0.
We will assume that T (t) �= 0. Since X ′′ = 0, X ′ = a
and X = ax + b where a and b are constants. But
X = 0 at x = 0, hence b = 0 and X = ax and X = 0
at x = L, hence a = 0. Thus, again, the solution is
non-oscillatory and is also disregarded.

Case 3: µ< 0

For convenience,
let µ = −p2 then X ′′ + p2X = 0 from which,

X = A cos px + B sin px (1)

and T ′′ + c2p2T = 0 from which,

T = C cos cpt + D sin cpt (2)

(see worked Problem 4 above).

Thus, the suggested solution u = XT now becomes:

u = {A cos px + B sin px}{C cos cpt + D sin cpt}
(3)

Applying the boundary conditions:

(i) u = 0 when x = 0 for all values of t,
thus 0 = {A cos 0 + B sin 0}{C cos cpt

+ D sin cpt}
i.e. 0 = A{C cos cpt + D sin cpt}

from which, A = 0, (since {C cos cpt

+ D sin cpt} �= 0)

Hence, u = {B sin px}{C cos cpt

+ D sin cpt} (4)

(ii) u = 0 when x = L for all values of t

Hence, 0 = {B sin pL}{C cos cpt + D sin cpt}
Now B �= 0 or u(x, t) would be identically zero.

Thus sin pL = 0 i.e. pL = nπ or p = nπ

L
for

integer values of n.

Substituting in equation (4) gives:

u =
{
B sin

nπx

L

}{

C cos
cnπt

L
+ D sin

cnπt

L

}

i.e. u = sin
nπx

L

{

An cos
cnπt

L
+ Bn sin

cnπt

L

}

(where constant An = BC and Bn = BD). There
will be many solutions, depending on the value
of n. Thus, more generally,

un(x, t) =
∞∑

n=1

{

sin
nπx

L

(

An cos
cnπt

L

+ Bn sin
cnπt

L

)}

(5)

To find An and Bn we put in the initial conditions
not yet taken into account.

(i) At t = 0, u(x, 0) = f (x) for 0 ≤ x ≤ L

Hence, from equation (5),

u(x, 0) = f (x) =
∞∑

n=1

{
An sin

nπx
L

}
(6)

(ii) Also at t = 0,

[
∂u

∂t

]

t=0
= g(x) for 0 ≤ x ≤ L

Differentiating equation (5) with respect to t
gives:

∂u

∂t
=

∞∑

n=1

{

sin
nπx

L

(

An

(

−cnπ

L
sin

cnπt

L

)

+ Bn

(
cnπ

L
cos

cnπt

L

))}

and when t = 0,

g(x) =
∞∑

n=1

{
sin

nπx

L
Bn

cnπ

L

}

i.e. g(x) = cπ
L

∞∑

n=1

{
Bn n sin

nπx
L

}
(7)

From Fourier series (see page 684) it may be shown
that:
An is twice the mean value of f (x) sin

nπx

L
between

x = 0 and x = L

i.e. An = 2
L

∫ L

0
f (x)sin

nπx
L

dx

for n = 1, 2, 3, . . . (8)
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and Bn

(cnπ

L

)
is twice the mean value of

g(x)sin
nπx

L
between x = 0 and x = L

i.e. Bn = L

cnπ

(
2

L

)∫ L

0
g(x)sin

nπx

L
dx

or Bn = 2
cnπ

∫ L

0
g(x)sin

nπx
L

dx (9)

Summary of solution of the wave equation

The above may seem complicated; however a prac-
tical problem may be solved using the following
8-point procedure:

1. Identify clearly the initial and boundary
conditions.

2. Assume a solution of the form u = XT and express
the equations in terms of X and T and their
derivatives.

3. Separate the variables by transposing the equation
and equate each side to a constant, say, µ; two
separate equations are obtained, one in x and the
other in t.

4. Let µ = −p2 to give an oscillatory solution.

5. The two solutions are of the form:

X = A cos px + B sin px

and T = C cos cpt + D sin cpt.

Then u(x, t) = {A cos px + B sin px}{C cos cpt +
D sin cpt}.

6. Apply the boundary conditions to determine con-
stants A and B.

7. Determine the general solution as an infinite sum.

8. Apply the remaining initial and boundary condi-
tions and determine the coefficients An and Bn
from equations (8) and (9), using Fourier series
techniques.

Problem 5. Figure 53.2 shows a stretched
string of length 50 cm which is set oscillating by
displacing its mid-point a distance of 2 cm from
its rest position and releasing it with zero veloc-

ity. Solve the wave equation:
∂2u

∂x2 = 1

c2

∂2u

∂t2

where c2 = 1, to determine the resulting motion
u(x, t).

u = f (x)

250

2

4

u
(x

, 0
)

50 x (cm)

Figure 53.2

Following the above procedure,

1. The boundary and initial conditions given are:

u(0, t) = 0

u(50, t) = 0

}

i.e. fixed end points

u(x, 0) = f (x) = 2
25

x 0 ≤ x ≤ 25

= − 2

25
x + 4 = 100 − 2x

25

25 ≤ x ≤ 50

(Note: y = mx + c is a straight line graph, so the
gradient, m, between 0 and 25 is 2/25 and the

y-axis intercept is zero, thus y = f (x) = 2

25
x + 0;

between 25 and 50, the gradient = −2/25 and the

y-axis intercept is at 4, thus f (x) = − 2

25
x + 4).

[
∂u

∂t

]

t=0
= 0 i.e. zero initial velocity.

2. Assuming a solution u = XT , where X is a
function of x only, and T is a function of t only,

then
∂u

∂x
= X ′T and

∂2u

∂x2 = X ′′T and
∂u

∂y
= XT ′ and

∂2u

∂y2 = XT ′′. Substituting into the partial differen-

tial equation,
∂2u

∂x2 = 1

c2

∂2u

∂t2 gives:

X ′′T = 1

c2 XT ′′ i.e. X ′′T = XT ′′ since c2 = 1.
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3. Separating the variables gives:
X ′′

X
= T ′′

T
Let constant,

µ = X ′′

X
= T ′′

T
then µ = X ′′

X
and µ = T ′′

T

from which,

X ′′ − µX = 0 and T ′′ − µT = 0.

4. Letting µ = −p2 to give an oscillatory solution
gives:

X ′′ + p2X = 0 and T ′′ + p2T = 0

The auxiliary equation for each is: m2 + p2 = 0
from which, m =√−p2 = ±jp.

5. Solving each equation gives:
X = A cos px+B sin px and T = C cos pt + D sin pt.
Thus,
u(x, t) ={A cos px+B sin px}{C cos pt+D sin pt}.

6. Applying the boundary conditions to determine
constants A and B gives:

(i) u(0, t) = 0, hence 0 = A{C cos pt +D sin pt}
from which we conclude that A = 0.
Therefore,

u(x, t) = B sin px{C cos pt + D sin pt} (a)

(ii) u(50, t) = 0, hence
0 = B sin 50p{C cos pt + D sin pt}. B �= 0,
hence sin 50p = 0 from which, 50p = nπ and

p = nπ

50

7. Substituting in equation (a) gives:

u(x, t) = B sin
nπx

50

{

C cos
nπt

50
+ D sin

nπt

50

}

or, more generally,

un(x, t) =
∞∑

n=1

sin
nπx

50

{

An cos
nπt

50

+ Bn sin
nπt

50

}

(b)

where An = BC and Bn = BD.

8. From equation (8),

An = 2

L

∫ L

0
f (x) sin

nπx

L
dx

= 2

50

[∫ 25

0

(
2

25
x

)

sin
nπx

50
dx

+
∫ 50

25

(
100 − 2x

25

)

sin
nπx

50
dx

]

Each integral is determined using integration by
parts (see Chapter 43, page 418) with the result:

An = 16

n2π2 sin
nπ

2
From equation (9),

Bn = 2

cnπ

∫ L

0
g(x) sin

nπx

L
dx

[
∂u

∂t

]

t=0
= 0 = g(x) thus, Bn = 0

Substituting into equation (b) gives:

un(x, t) =
∞∑

n=1

sin
nπx

50

{

An cos
nπt

50

+ Bn sin
nπt

50

}

=
∞∑

n=1

sin
nπx

50

{
16

n2π2 sin
nπ

2
cos

nπt

50

+ (0) sin
nπt

50

}

Hence,

u(x, t) = 16
π2

∞∑

n=1

1
n2 sin

nπx
50

sin
nπ

2
cos

nπt
50

For stretched string problems as in problem 5 above,
the main parts of the procedure are:

1. Determine An from equation (8).

Note that
2

L

∫ L

0
f (x) sin

nπx

L
dx is always equal

to
8d

n2π2 sin
nπ

2
(see Fig. 53.3)

2. Determine Bn from equation (9)
3. Substitute in equation (5) to determine u(x, t)

y

d

0 L x

y = f (x )

L
2

Figure 53.3
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Now try the following exercise.

Exercise 202 Further problems on the wave
equation

1. An elastic string is stretched between two
points 40 cm apart. Its centre point is dis-
placed 1.5 cm from its position of rest at
right angles to the original direction of the
string and then released with zero velocity.
Determine the subsequent motion u(x, t) by

applying the wave equation
∂2u

∂x2 = 1

c2

∂2u

∂t2

with c2 = 9.[

u(x, t) = 12

π2

∞∑

n=1

1

n2 sin
nπ

2
sin

nπx

40

cos
3nπt

40

]

2. The centre point of an elastic string between
two points P and Q, 80 cm apart, is deflected
a distance of 1 cm from its position of rest
perpendicular to PQ and released initially
with zero velocity. Apply the wave equation
∂2u

∂x2 = 1

c2

∂2u

∂t2 where c = 8, to determine the

motion of a point distance x from P at time t.
[

u(x, t) = 8

π2

∞∑

n=1

1

n2 sin
nπ

2
sin

nπx

80
cos

nπt

10

]

53.7 The heat conduction equation

The heat conduction equation
∂2u

∂x2 = 1

c2

∂u

∂t
is solved

in a similar manner to that for the wave equa-
tion; the equation differs only in that the right hand
side contains a first partial derivative instead of the
second.

The conduction of heat in a uniform bar depends
on the initial distribution of temperature and on the
physical properties of the bar, i.e. the thermal con-
ductivity, h, the specific heat of the material, σ, and
the mass per unit length, ρ, of the bar. In the above

equation, c2 = h

σρ
With a uniform bar insulated, except at its ends,

any heat flow is along the bar and, at any instant, the
temperature u at a point P is a function of its distance
x from one end, and of the time t. Consider such a

u 
=

f(
x,

 t
)

0

P

u (x, t )

L x
x

Figure 53.4

bar, shown in Fig. 53.4, where the bar extends from
x = 0 to x = L, the temperature of the ends of the
bar is maintained at zero, and the initial temperature
distribution along the bar is defined by f (x).

Thus, the boundary conditions can be expressed as:

u(0, t) = 0

u(L, t) = 0

}

for all t ≥ 0

and u(x, 0) = f (x) for 0 ≤ x ≤ L

As with the wave equation, a solution of the form
u(x, t) = X(x)T (t) is assumed, where X is a function
of x only and T is a function of t only. If the trial
solution is simplified to u = XT , then

∂u

∂x
= X ′T ∂2u

∂x2 = X ′′T and
∂u

∂t
= XT ′

Substituting into the partial differential equation,
∂2u

∂x2 = 1

c2

∂u

∂t
gives:

X ′′T = 1

c2 XT ′

Separating the variables gives:

X′′

X
= 1

c2

T ′

T

Let −p2 = X ′′

X
= 1

c2

T ′

T
where −p2 is a constant.

If −p2 = X ′′

X
then X ′′ = −p2X or X ′′ + p2X = 0,

giving X = A cos px + B sin px

and if −p2 = 1

c2

T ′

T
then

T ′

T
= −p2c2 and integrat-

ing with respect to t gives:
∫

T ′

T
dt =

∫
−p2c2 dt

from which, ln T = −p2c2t + c1
The left hand integral is obtained by an algebraic

substitution (see Chapter 39).
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If ln T = −p2c2t + c1 then
T = e−p2c2t+c1 = e−p2c2t ec1 i.e. T = k e−p2c2t (where
constant k = ec1 ).
Hence, u(x, t) = XT = {A cos px + B sin px}k e−p2c2t

i.e. u(x, t) = {P cos px + Q sin px}e−p2c2t where
P = Ak and Q = Bk.

Applying the boundary conditions u(0, t) = 0
gives: 0={P cos 0+Q sin 0}e−p2c2t =P e−p2c2t from
which, P = 0 and u(x, t) = Q sin px e−p2c2t.

Also, u(L, t) = 0 thus, 0 = Q sin pL e−p2c2t and
since Q �= 0 then sin pL = 0 from which, pL = nπ

or p = nπ

L
where n = 1, 2, 3, . . .

There are therefore many values of u(x, t).
Thus, in general,

u(x, t) =
∞∑

n=1

{
Qn e−p2c2t sin

nπx

L

}

Applying the remaining boundary condition, that
when t = 0, u(x, t) = f (x) for 0 ≤ x ≤ L, gives:

f (x) =
∞∑

n=1

{
Qn sin

nπx

L

}

From Fourier series, Qn = 2 × mean value of

f (x) sin
nπx

L
from x to L.

Hence, Qn = 2

L

∫ L

0
f (x) sin

nπx

L
dx

Thus, u(x, t) =
2

L

∞∑

n=1

{(∫ L

0
f (x) sin

nπx

L
dx

)

e−p2c2t sin
nπx

L

}

This method of solution is demonstrated in the
following worked problem.

Problem 6. A metal bar, insulated along its
sides, is 1 m long. It is initially at room tem-
perature of 15◦C and at time t = 0, the ends are
placed into ice at 0◦C. Find an expression for the
temperature at a point P at a distance x m from
one end at any time t seconds after t = 0.

The temperature u along the length of bar is shown
in Fig. 53.5.

The heat conduction equation is
∂2u

∂x2 = 1

c2

∂u

∂t
and

the given boundary conditions are:

u(0, t) = 0, u(1, t) = 0 and u(x, 0) = 15

u
(x

, t
)

u
(x

,0
)

0

0

1

1

x (m)

x (m)

15

u (x, t )

P

x

Figure 53.5

Assuming a solution of the form u = XT , then, from
above,

X = A cos px + B sin px

and T = k e−p2c2t.

Thus, the general solution is given by:

u(x, t) = {P cos px + Q sin px}e−p2c2t

u(0, t) = 0 thus 0 = P e−p2c2t

from which, P = 0 and u(x, t) = {Q sin px}e−p2c2t .
Also, u(1, t) = 0 thus 0 = {Q sin p}e−p2c2t .
Since Q �= 0, sin p = 0 from which, p = nπ
where n = 1, 2, 3, . . .

Hence, u(x, t) =
∞∑

n=1

{
Qn e−p2c2t sin nπx

}

The final initial condition given was that at t = 0,
u = 15, i.e. u(x, 0) = f (x) = 15.

Hence, 15 =
∞∑

n=1

{Qn sin nπx} where, from Fourier

coefficients, Qn = 2 ×mean value of 15 sin nπx from
x = 0 to x = 1,

i.e. Qn = 2

1

∫ 1

0
15 sin nπx dx = 30

[
− cos nπx

nπ

]1

0

= − 30

nπ
[cos nπ − cos 0]
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= 30

nπ
(1 − cos nπ)

= 0 (when n is even) and
60

nπ
(when n is odd)

Hence, the required solution is:

u(x, t) =
∞∑

n=1

{
Qn e−p2c2t sin nπx

}

= 60
π

∞∑

n(odd)=1

1
n

(sin nπx) e−n2π2c2t

Now try the following exercise.

Exercise 203 Further problems on the heat
conduction equation

1. A metal bar, insulated along its sides, is 4 m
long. It is initially at a temperature of 10◦C
and at time t = 0, the ends are placed into
ice at 0◦C. Find an expression for the tem-
perature at a point P at a distance x m from
one end at any time t seconds after t = 0.
⎡

⎣u(x, t) = 40

π

∞∑

n(odd)=1

1

n
e− n2π2c2 t

16 sin
nπx

4

⎤

⎦

2. An insulated uniform metal bar, 8 m long,
has the temperature of its ends maintained
at 0◦C, and at time t = 0 the temperature
distribution f (x) along the bar is defined by
f (x) = x(8 − x). If c2 = 1, solve the heat con-

duction equation
∂2u

∂x2 = 1

c2

∂u

∂t
to determine

the temperature u at any point in the bar at
time t.
⎡

⎣u(x, t) =
(

8

π

)3 ∞∑

n(odd)=1

1

n3 e− n2π2 t
64 sin

nπx

8

⎤

⎦

3. The ends of an insulated rod PQ, 20 units
long, are maintained at 0◦C. At time t = 0,
the temperature within the rod rises uniformly
from each end reaching 4◦C at the mid-point
of PQ. Find an expression for the temperature
u(x, t) at any point in the rod, distant x from
P at any time t after t = 0. Assume the heat

conduction equation to be
∂2u

∂x2 = 1

c2

∂u

∂t
and

take c2 = 1.
⎡

⎣u(x, t) = 320

π2

∞∑

n(odd)=1

1

n2
sin

nπ

2
sin

nπx

20
e
−
(

n2π2 t
400

)
⎤

⎦

53.8 Laplace’s equation

The distribution of electrical potential, or tempera-
ture, over a plane area subject to certain boundary
conditions, can be described by Laplace’s equation.
The potential at a point P in a plane (see Fig. 53.6)
can be indicated by an ordinate axis and is a function
of its position, i.e. z = u(x, y), where u(x, y) is the
solution of the Laplace two-dimensional equation
∂2u

∂x2 + ∂2u

∂y2 = 0.

The method of solution of Laplace’s equation is
similar to the previous examples, as shown below.

Figure 53.7 shows a rectangle OPQR bounded
by the lines x = 0, y = 0, x = a, and y = b, for which
we are required to find a solution of the equation
∂2u

∂x2 + ∂2u

∂y2 = 0. The solution z = (x, y) will give, say,

y

P

0 x

z

Figure 53.6

0 x = a

y = b

x

u
(x

,y
)

R

y

Q

P

z

Figure 53.7
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the potential at any point within the rectangle OPQR.
The boundary conditions are:

u = 0 when x = 0 i.e. u(0, y) = 0 for 0 ≤ y ≤ b

u = 0 when x = a i.e. u(a, y) = 0 for 0 ≤ y ≤ b

u = 0 when y = b i.e. u(x, b) = 0 for 0 ≤ x ≤ a

u = f (x) when y = 0 i.e. u(x, 0) = f (x)
for 0 ≤ x ≤ a

As with previous partial differential equations, a
solution of the form u(x, y) = X(x)Y (y) is assumed,
where X is a function of x only, and Y is a function
of y only. Simplifying to u = XY , determining par-

tial derivatives, and substituting into
∂2u

∂x2 + ∂2u

∂y2 = 0

gives: X ′′Y + XY ′′ = 0

Separating the variables gives:
X ′′

X
= −Y ′′

Y
Letting each side equal a constant, −p2, gives the two
equations:

X ′′ + p2 X = 0 and Y ′′ − p2Y = 0

from which, X = A cos px + B sin px and
Y = C epy + D e−py or Y = C cosh py + D sinh py
(see Problem 5, page 478 for this conversion).

This latter form can also be expressed as:
Y = E sinh p(y + φ) by using compound angles.

Hence u(x, y) = XY

= {A cos px + B sin px}{E sinh p(y + φ)}

or u(x, y)

= {P cos px + Q sin px}{sinh p(y + φ)}

where P = AE and Q = BE.

The first boundary condition is: u(0, y) = 0, hence
0 = P sinh p(y + φ) from which, P = 0. Hence,
u(x, y) = Q sin px sinh p(y + φ).
The second boundary condition is: u(a, y) = 0,
hence 0 = Q sin pa sinh p(y + φ) from which,

sin pa = 0, hence, pa = nπ or p = nπ

a
for

n = 1, 2, 3, . . .
The third boundary condition is: u(x, b) = 0,
hence, 0 = Q sin px sinh p(b + φ) from which,
sinh p(b + φ) = 0 and φ = −b.
Hence, u(x, y) = Q sin px sinh p(y − b) =
Q1 sin px sinh p(b − y) where Q1 = −Q.

Since there are many solutions for integer values of n,

u(x, y) =
∞∑

n=1

Qn sin px sinh p(b − y)

=
∞∑

n=1

Qn sin
nπx

a
sinh

nπ

a
(b − y)

The fourth boundary condition is: u(x, 0) = f (x),

hence, f (x) =
∞∑

n=1

Qn sin
nπx

a
sinh

nπb

a

i.e. f (x) =
∞∑

n=1

(

Qn sinh
nπb

a

)

sin
nπx

a

From Fourier series coefficients,
(

Qn sinh
nπb

a

)

= 2 × the mean value of

f (x) sin
nπx

a
from x = 0 to x = a

i.e. =
∫ a

0
f (x) sin

nπx

a
dx from which,

Qn may be determined.

This is demonstrated in the following worked
problem.

Problem 7. A square plate is bounded by the
lines x = 0, y = 0, x = 1 and y = 1. Apply the

Laplace equation
∂2u

∂x2 + ∂2u

∂y2 = 0 to determine

the potential distribution u(x, y) over the plate,
subject to the following boundary conditions:
u = 0 when x = 0 0 ≤ y ≤ 1,
u = 0 when x = 1 0 ≤ y ≤1,

u = 0 when y = 0 0 ≤ x ≤ 1,
u = 4 when y = 1 0 ≤ x ≤ 1.

Initially a solution of the form u(x, y) = X(x)Y (y)
is assumed, where X is a function of x only, and
Y is a function of y only. Simplifying to u = XY ,
determining partial derivatives, and substituting into
∂2u

∂x2 + ∂2u

∂y2 = 0 gives: X ′′Y + XY ′′ = 0

Separating the variables gives:
X ′′

X
= −Y ′′

Y
Letting each side equal a constant, −p2, gives the
two equations:

X ′′ + p2X = 0 and Y ′′ − p2Y = 0
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from which, X = A cos px + B sin px

and Y = Cepy + De−py

or Y = C cosh py + D sinh py
or Y = E sinh p(y + φ)

Hence u(x, y) = XY

= {A cos px + B sin px}{E sinh p(y + φ)}
or u(x, y)

= {P cos px + Q sin px}{sinh p(y + φ)}
where P = AE and Q = BE.

The first boundary condition is: u(0, y) = 0, hence
0 = P sinh p(y + φ) from which, P = 0.
Hence, u(x, y) = Q sin px sinh p(y + φ).
The second boundary condition is: u(1, y) = 0, hence
0 = Q sin p(1) sinh p(y + φ) from which,
sin p = 0, hence, p = nπ for n = 1, 2, 3, . . .
The third boundary condition is: u(x, 0) = 0, hence,
0 = Q sin px sinh p(φ) from which,
sinh p(φ) = 0 and φ = 0.
Hence, u(x, y) = Q sin px sinh py.
Since there are many solutions for integer values of n,

u(x, y) =
∞∑

n=1

Qn sin px sinh py

=
∞∑

n=1

Qn sin nπx sinh nπy (a)

The fourth boundary condition is: u(x, 1) = 4 = f (x),

hence, f (x) =
∞∑

n = 1

Qn sin nπx sinh nπ(1).

From Fourier series coefficients,

Qn sinh nπ = 2 × the mean value of
f (x) sin nπx from x = 0 to x = 1

i.e. = 2

1

∫ 1

0
4 sin nπx dx

= 8
[
− cos nπx

nπ

]1

0

= − 8

nπ
(cos nπ − cos 0)

= 8

nπ
(1 − cos nπ)

= 0 (for even values of n),

= 16

nπ
(for odd values of n)

Hence, Qn = 16

nπ(sinh nπ)
= 16

nπ
cosech nπ

Hence, from equation (a),

u(x, y) =
∞∑

n=1

Qn sin nπx sinh nπy

= 16
π

∞∑

n(odd)=1

1
n

(cosech nπ sin nπx sinh nπy)

Now try the following exercise.

Exercise 204 Further problems on the
Laplace equation

1. A rectangular plate is bounded by the
lines x = 0, y = 0, x = 1 and y = 3. Apply the

Laplace equation
∂2u

∂x2 + ∂2u

∂y2 = 0 to deter-

mine the potential distribution u(x, y) over
the plate, subject to the following boundary
conditions:
u = 0 when x = 0 0 ≤ y ≤ 2,
u = 0 when x = 1 0 ≤ y ≤ 2,
u = 0 when y = 2 0 ≤ x ≤ 1,
u = 5 when y = 3 0 ≤ x ≤ 1

⎡

⎣u(x, y) = 20

π

∞∑

n(odd)=1

1

n
cosech nπ sin nπx sinh nπ(y − 2)

⎤

⎦

2. A rectangular plate is bounded by the
lines x = 0, y = 0, x = 3, y = 2. Determine the
potential distribution u(x, y) over the rec-
tangle using the Laplace equation
∂2u

∂x2 + ∂2u

∂y2 = 0, subject to the following

boundary conditions:
u(0, y) = 0 0 ≤ y ≤ 2,
u(3, y) = 0 0 ≤ y ≤ 2,
u(x, 2) = 0 0 ≤ x ≤ 3,
u(x, 0) = x(3 − x) 0 ≤ x ≤ 3

⎡

⎣u(x, y) = 216

π3

∞∑

n(odd)=1

1

n3 cosech
2nπ

3
sin

nπx

3
sinh

nπ

3
(2 − y)

⎤

⎦
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Differential equations

Assignment 14

This assignment covers the material contained
in Chapters 50 to 53.

The marks for each question are shown in
brackets at the end of each question.

1. Find the particular solution of the following
differential equations:

(a) 12
d2y

dt2 − 3y = 0 given that when t = 0, y = 3

and
dy

dt
= 1

2

(b)
d2y

dx2 + 2
dy

dx
+ 2y = 10ex given that when

x = 0, y = 0 and
dy

dx
= 1. (20)

2. In a galvanometer the deflection θ satisfies the
differential equation:

d2θ

dt2 + 2
dθ

dt
+ θ = 4

Solve the equation for θ given that when t = 0,

θ = 0 and
dθ

dt
= 0. (12)

3. Determine y(n) when y = 2x3e4x (10)

4. Determine the power series solution of the dif-

ferential equation:
d2y

dx2 + 2x
dy

dx
+ y = 0 using

Leibniz-Maclaurin’s method, given the boundary

conditions that at x = 0, y = 2 and
dy

dx
= 1. (20)

5. Use the Frobenius method to determine the gen-
eral power series solution of the differential

equation:
d2y

dx2 + 4y = 0 (21)

1

0 20 40 x (cm)

u (x,0)

Figure A14.1

6. Determine the general power series solution of
Bessel’s equation:

x2 d2y

dx2 + x
dy

dx
+ (x2 − v2)y = 0

and hence state the series up to and including the
term in x6 when v = +3. (26)

7. Determine the general solution of
∂u

∂x
= 5xy

(2)

8. Solve the differential equation
∂2u

∂x2 = x2(y − 3)

given the boundary conditions that at x = 0,
∂u

∂x
= sin y and u = cos y. (6)

9. Figure A14.1 shows a stretched string of length
40 cm which is set oscillating by displacing its
mid-point a distance of 1 cm from its rest posi-
tion and releasing it with zero velocity. Solve the

wave equation:
∂2u

∂x2 = 1

c2

∂2u

∂t2 where c2 = 1, to

determine the resulting motion u(x, t). (23)
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54

Presentation of statistical data

54.1 Some statistical terminology

Data are obtained largely by two methods:

(a) by counting—for example, the number of stamps
sold by a post office in equal periods of time, and

(b) by measurement—for example, the heights of a
group of people.

When data are obtained by counting and only whole
numbers are possible, the data are called discrete.
Measured data can have any value within certain
limits and are called continuous (see Problem 1).

A set is a group of data and an individual value
within the set is called a member of the set. Thus, if
the masses of five people are measured correct to the
nearest 0.1 kg and are found to be 53.1 kg, 59.4 kg,
62.1 kg, 77.8 kg and 64.4 kg, then the set of masses
in kilograms for these five people is:

{53.1, 59.4, 62.1, 77.8, 64.4}

and one of the members of the set is 59.4.
A set containing all the members is called a pop-

ulation. Some members selected at random from
a population are called a sample. Thus all car
registration numbers form a population, but the reg-
istration numbers of, say, 20 cars taken at random
throughout the country are a sample drawn from that
population.

The number of times that the value of a member
occurs in a set is called the frequency of that mem-
ber. Thus in the set: {2, 3, 4, 5, 4, 2, 4, 7, 9}, member
4 has a frequency of three, member 2 has a fre-
quency of 2 and the other members have a frequency
of one.

The relative frequency with which any member
of a set occurs is given by the ratio:

frequency of member

total frequency of all members

For the set: {2, 3, 5, 4, 7, 5, 6, 2, 8}, the relative fre-
quency of member 5 is 2

9 .

Often, relative frequency is expressed as a per-
centage and the percentage relative frequency is:
(relative frequency × 100)%.

Problem 1. Data are obtained on the topics
given below. State whether they are discrete or
continuous data.

(a) The number of days on which rain falls in a
month for each month of the year.

(b) The mileage travelled by each of a number
of salesmen.

(c) The time that each of a batch of similar
batteries lasts.

(d) The amount of money spent by each of
several families on food.

(a) The number of days on which rain falls in a given
month must be an integer value and is obtained
by counting the number of days. Hence, these
data are discrete.

(b) A salesman can travel any number of miles
(and parts of a mile) between certain limits and
these data are measured. Hence the data are
continuous.

(c) The time that a battery lasts is measured and
can have any value between certain limits. Hence
these data are continuous.

(d) The amount of money spent on food can only
be expressed correct to the nearest pence, the
amount being counted. Hence, these data are
discrete.

Now try the following exercise.

Exercise 205 Further problems on discrete
and continuous data

In Problems 1 and 2, state whether data relating
to the topics given are discrete or continuous.

1. (a) The amount of petrol produced daily, for
each of 31 days, by a refinery.
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(b) The amount of coal produced daily by
each of 15 miners.

(c) The number of bottles of milk delivered
daily by each of 20 milkmen.

(d) The size of 10 samples of rivets produced
by a machine.

[
(a) continuous (b) continuous
(c) discrete (d) continuous

]

2. (a) The number of people visiting an exhibi-
tion on each of 5 days.

(b) The time taken by each of 12 athletes to
run 100 metres.

(c) The value of stamps sold in a day by each
of 20 post offices.

(d) The number of defective items produced
in each of 10 one-hour periods by a
machine.

[
(a) discrete (b) continuous
(c) discrete (d) discrete

]

54.2 Presentation of ungrouped data

Ungrouped data can be presented diagrammatically
in several ways and these include:

(a) pictograms, in which pictorial symbols are used
to represent quantities (see Problem 2),

(b) horizontal bar charts, having data represented
by equally spaced horizontal rectangles (see
Problem 3), and

(c) vertical bar charts, in which data are repre-
sented by equally spaced vertical rectangles (see
Problem 4).

Trends in ungrouped data over equal periods of time
can be presented diagrammatically by a percent-
age component bar chart. In such a chart, equally
spaced rectangles of any width, but whose height
corresponds to 100%, are constructed. The rectan-
gles are then subdivided into values corresponding to
the percentage relative frequencies of the members
(see Problem 5).

A pie diagram is used to show diagrammatically
the parts making up the whole. In a pie diagram, the
area of a circle represents the whole, and the areas
of the sectors of the circle are made proportional to
the parts which make up the whole (see Problem 6).

Problem 2. The number of television sets
repaired in a workshop by a technician in six,
one-month periods is as shown below. Present
these data as a pictogram.

Month Number repaired

January 11
February 6
March 15
April 9
May 13
June 8

Each symbol shown in Fig. 54.1 represents two tele-
vision sets repaired. Thus, in January, 5 1

2 symbols are
used to represent the 11 sets repaired, in February,
3 symbols are used to represent the 6 sets repaired,
and so on.

Figure 54.1

Problem 3. The distance in miles travelled by
four salesmen in a week are as shown below.

Salesmen P Q R S
Distance travelled

(miles) 413 264 597 143

Use a horizontal bar chart to represent these data
diagrammatically.

Equally spaced horizontal rectangles of any width,
but whose length is proportional to the distance trav-
elled, are used. Thus, the length of the rectangle
for salesman P is proportional to 413 miles, and so
on. The horizontal bar chart depicting these data is
shown in Fig. 54.2.
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Figure 54.2

Problem 4. The number of issues of tools or
materials from a store in a factory is observed
for seven, one-hour periods in a day, and the
results of the survey are as follows:

Period 1 2 3 4 5 6 7

Number of
issues 34 17 9 5 27 13 6

Present these data on a vertical bar chart.

In a vertical bar chart, equally spaced vertical rectan-
gles of any width, but whose height is proportional
to the quantity being represented, are used. Thus the
height of the rectangle for period 1 is proportional to
34 units, and so on. The vertical bar chart depicting
these data is shown in Fig. 54.3.

Figure 54.3

Problem 5. The numbers of various types of
dwellings sold by a company annually over a
three-year period are as shown below. Draw per-
centage component bar charts to present these
data.

Year 1 Year 2 Year 3
4-roomed bungalows 24 17 7
5-roomed bungalows 38 71 118
4-roomed houses 44 50 53
5-roomed houses 64 82 147
6-roomed houses 30 30 25

A table of percentage relative frequency values,
correct to the nearest 1%, is the first requirement.
Since,

percentage relative frequency

= frequency of member × 100

total frequency

then for 4-roomed bungalows in year 1:

percentage relative frequency

= 24 × 100

24 + 38 + 44 + 64 + 30
= 12%

The percentage relative frequencies of the other
types of dwellings for each of the three years are
similarly calculated and the results are as shown in
the table below.

Year 1 Year 2 Year 3
(%) (%) (%)

4-roomed bungalows 12 7 2
5-roomed bungalows 19 28 34
4-roomed houses 22 20 15
5-roomed houses 32 33 42
6-roomed houses 15 12 7

The percentage component bar chart is produced by
constructing three equally spaced rectangles of any
width, corresponding to the three years. The heights
of the rectangles correspond to 100% relative fre-
quency, and are subdivided into the values in the
table of percentages shown above.A key is used (dif-
ferent types of shading or different colour schemes)
to indicate corresponding percentage values in the
rows of the table of percentages. The percentage
component bar chart is shown in Fig. 54.4.

Problem 6. The retail price of a product costing
£2 is made up as follows: materials 10 p, labour
20 p, research and development 40 p, overheads
70 p, profit 60 p. Present these data on a pie
diagram.

A circle of any radius is drawn, and the area of the
circle represents the whole, which in this case is £2.
The circle is subdivided into sectors so that the areas
of the sectors are proportional to the parts, i.e. the
parts which make up the total retail price. For the
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Figure 54.4

area of a sector to be proportional to a part, the angle
at the centre of the circle must be proportional to that
part. The whole, £2 or 200 p, corresponds to 360◦.
Therefore,

10 p corresponds to 360 × 10

200
degrees, i.e. 18◦

20 p corresponds to 360 × 20

200
degrees, i.e. 36◦

and so on, giving the angles at the centre of the circle
for the parts of the retail price as: 18◦, 36◦, 72◦, 126◦
and 108◦, respectively.

The pie diagram is shown in Fig. 54.5.

Figure 54.5

Problem 7.

(a) Using the data given in Fig. 54.2 only, cal-
culate the amount of money paid to each
salesman for travelling expenses, if they are
paid an allowance of 37 p per mile.

(b) Using the data presented in Fig. 54.4, com-
ment on the housing trends over the three-
year period.

(c) Determine the profit made by selling 700
units of the product shown in Fig. 54.5.

(a) By measuring the length of rectangle P the
mileage covered by salesman P is equivalent
to 413 miles. Hence salesman P receives a
travelling allowance of

£413 × 37

100
, i.e. £152.81

Similarly, for salesman Q, the miles travelled
are 264 and his allowance is

£264 × 37

100
, i.e. £97.68

Salesman R travels 597 miles and he receives

£597 × 37

100
, i.e. £220.89

Finally, salesman S receives

£143 × 37

100
, i.e. £52.91

(b) An analysis of Fig. 54.4 shows that 5-roomed
bungalows and 5-roomed houses are becom-
ing more popular, the greatest change in the
three years being a 15% increase in the sales of
5-roomed bungalows.

(c) Since 1.8◦ corresponds to 1 p and the profit
occupies 108◦ of the pie diagram, then the profit
per unit is

108 × 1

1.8
, that is, 60 p

The profit when selling 700 units of the
product is

£
700 × 60

100
, that is, £420

Now try the following exercise.

Exercise 206 Further problems on presen-
tation of ungrouped data

1. The number of vehicles passing a stationary
observer on a road in six ten-minute intervals
is as shown. Draw a pictogram to represent
these data.
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Period of
Time 1 2 3 4 5 6
Number of
Vehicles 35 44 62 68 49 41

⎡

⎢
⎢
⎢
⎢
⎢
⎣

If one symbol is used to
represent 10 vehicles,
working correct to the
nearest 5 vehicles,
gives 3 1

2 , 4 1
2 , 6, 7, 5 and 4

symbols respectively.

⎤

⎥
⎥
⎥
⎥
⎥
⎦

2. The number of components produced by a
factory in a week is as shown below:

Day Number of Components

Mon 1580
Tues 2190
Wed 1840
Thur 2385
Fri 1280

Show these data on a pictogram.
⎡

⎢
⎢
⎢
⎢
⎢
⎣

If one symbol represents
200 components, working
correct to the nearest
100 components gives:
Mon 8, Tues 11, Wed 9,
Thurs 12 and Fri 6 1

2 .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

3. For the data given in Problem 1 above, draw
a horizontal bar chart.

⎡

⎢
⎣

6 equally spaced horizontal
rectangles, whose lengths are
proportional to 35, 44, 62,
68, 49 and 41, respectively.

⎤

⎥
⎦

4. Present the data given in Problem 2 above on
a horizontal bar chart.

⎡

⎢
⎢
⎣

5 equally spaced
horizontal rectangles, whose
lengths are proportional to
1580, 2190, 1840, 2385 and
1280 units, respectively.

⎤

⎥
⎥
⎦

5. For the data given in Problem 1 above,
construct a vertical bar chart.

⎡

⎢
⎢
⎣

6 equally spaced vertical
rectangles, whose heights
are proportional to 35, 44,
62, 68, 49 and 41 units,
respectively.

⎤

⎥
⎥
⎦

6. Depict the data given in Problem 2 above on
a vertical bar chart.

⎡

⎢
⎢
⎣

5 equally spaced vertical
rectangles, whose heights are
proportional to 1580, 2190,
1840, 2385 and 1280 units,
respectively.

⎤

⎥
⎥
⎦

7. A factory produces three different types of
components. The percentages of each of
these components produced for three, one-
month periods are as shown below. Show
this information on percentage component
bar charts and comment on the changing trend
in the percentages of the types of component
produced.

Month 1 2 3
Component P 20 35 40
Component Q 45 40 35
Component R 35 25 25
⎡

⎢
⎢
⎢
⎢
⎣

Three rectangles of equal
height, subdivided in the
percentages shown in the
columns above. P increases
by 20% at the expense
of Q and R

⎤

⎥
⎥
⎥
⎥
⎦

8. A company has five distribution centres and
the mass of goods in tonnes sent to each centre
during four, one-week periods, is as shown.

Week 1 2 3 4
Centre A 147 160 174 158
Centre B 54 63 77 69
Centre C 283 251 237 211
Centre D 97 104 117 144
Centre E 224 218 203 194

Use a percentage component bar chart to
present these data and comment on any
trends.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Four rectangles of equal
heights, subdivided as follows:
week 1: 18%, 7%, 35%, 12%,
28% week 2: 20%, 8%, 32%,
13%, 27% week 3: 22%, 10%,
29%, 14%, 25% week 4: 20%,
9%, 27%, 19%, 25%. Little
change in centres A and B, a
reduction of about 8% in C, an
increase of about 7% in D and a
reduction of about 3% in E.

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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9. The employees in a company can be split
into the following categories: managerial 3,
supervisory 9, craftsmen 21, semi-skilled 67,
others 44. Show these data on a pie diagram.

⎡

⎢
⎢
⎢
⎣

A circle of any radius,
subdivided into sectors
having angles of 7 1

2
◦
, 22 1

2
◦
,

52 1
2
◦
, 167 1

2
◦
and110◦,

respectively.

⎤

⎥
⎥
⎥
⎦

10. The way in which an apprentice spent his time
over a one-month period is as follows:

drawing office 44 hours, produc-
tion 64 hours, training 12 hours, at
college 28 hours.

Use a pie diagram to depict this information.

⎡

⎢
⎢
⎣

A circle of any radius,
subdivided into sectors
having angles of 107◦,
156◦, 29◦and 68◦,
respectively.

⎤

⎥
⎥
⎦

11. (a) With reference to Fig. 54.5, determine the
amount spent on labour and materials to
produce 1650 units of the product.

(b) If in year 2 of Fig. 54.4, 1% corresponds
to 2.5 dwellings, how many bungalows
are sold in that year. [(a) £ 495, (b) 88]

12. (a) If the company sell 23500 units per
annum of the product depicted in
Fig. 54.5, determine the cost of their
overheads per annum.

(b) If 1% of the dwellings represented in year
1 of Fig. 54.4 corresponds to 2 dwellings,
find the total number of houses sold in
that year. [(a) £ 16450, (b) 138]

54.3 Presentation of grouped data

When the number of members in a set is small,
say ten or less, the data can be represented dia-
grammatically without further analysis, by means of
pictograms, bar charts, percentage components bar
charts or pie diagrams (as shown in Section 54.2).

For sets having more than ten members, those
members having similar values are grouped together
in classes to form a frequency distribution. To
assist in accurately counting members in the vari-
ous classes, a tally diagram is used (see Problems 8
and 12).

A frequency distribution is merely a table show-
ing classes and their corresponding frequencies (see
Problems 8 and 12).

The new set of values obtained by forming a
frequency distribution is called grouped data.

The terms used in connection with grouped data
are shown in Fig. 54.6(a). The size or range of a class
is given by the upper class boundary value minus
the lower class boundary value, and in Fig. 54.6
is 7.65 − 7.35, i.e. 0.30. The class interval for the
class shown in Fig. 54.6(b) is 7.4 to 7.6 and the class
mid-point value is given by,

(
upper class

boundary value

)

+
(

lower class
boundary value

)

2

and in Fig. 54.6 is
7.65 + 7.35

2
, i.e. 7.5.

Figure 54.6

One of the principal ways of presenting grouped
data diagrammatically is by using a histogram, in
which the areas of vertical, adjacent rectangles are
made proportional to frequencies of the classes (see
Problem 9). When class intervals are equal, the
heights of the rectangles of a histogram are equal to
the frequencies of the classes. For histograms having
unequal class intervals, the area must be proportional
to the frequency. Hence, if the class interval of class
A is twice the class interval of class B, then for equal
frequencies, the height of the rectangle representing
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A is half that of B (see Problem 11). Another method
of presenting grouped data diagrammatically is by
using a frequency polygon, which is the graph pro-
duced by plotting frequency against class mid-point
values and joining the co-ordinates with straight
lines (see Problem 12).

A cumulative frequency distribution is a table
showing the cumulative frequency for each value of
upper class boundary. The cumulative frequency for
a particular value of upper class boundary is obtained
by adding the frequency of the class to the sum of
the previous frequencies. A cumulative frequency
distribution is formed in Problem 13.

The curve obtained by joining the co-ordinates
of cumulative frequency (vertically) against upper
class boundary (horizontally) is called an ogive or
a cumulative frequency distribution curve (see
Problem 13).

Problem 8. The data given below refer to
the gain of each of a batch of 40 transistors,
expressed correct to the nearest whole num-
ber. Form a frequency distribution for these data
having seven classes.

81 83 87 74 76 89 82 84
86 76 77 71 86 85 87 88
84 81 80 81 73 89 82 79
81 79 78 80 85 77 84 78
83 79 80 83 82 79 80 77

The range of the data is the value obtained by tak-
ing the value of the smallest member from that of the
largest member. Inspection of the set of data shows
that, range = 89 − 71 = 18. The size of each class is
given approximately by range divided by the num-
ber of classes. Since 7 classes are required, the size
of each class is 18/7, that is, approximately 3. To
achieve seven equal classes spanning a range of val-
ues from 71 to 89, the class intervals are selected as:
70–72, 73–75, and so on.

To assist with accurately determining the num-
ber in each class, a tally diagram is produced, as
shown in Table 54.1(a). This is obtained by listing the
classes in the left-hand column, and then inspecting
each of the 40 members of the set in turn and allocat-
ing them to the appropriate classes by putting ‘1s’ in
the appropriate rows. Every fifth ‘1’ allocated to the
particular row is shown as an oblique line crossing
the four previous ‘1s’, to help with final counting.

A frequency distribution for the data is shown in
Table 54.1(b) and lists classes and their correspond-
ing frequencies, obtained from the tally diagram.

(Class mid-point value are also shown in the table,
since they are used for constructing the histogram
for these data (see Problem 9)).

Table 54.1(a)

Table 54.1(b)

Class Class mid-point Frequency

70–72 71 1
73–75 74 2
76–78 77 7
79–81 80 12
82–84 83 9
85–87 86 6
88–90 89 3

Problem 9. Construct a histogram for the data
given in Table 54.1(b).

The histogram is shown in Fig. 54.7. The width of
the rectangles correspond to the upper class bound-
ary values minus the lower class boundary values and
the heights of the rectangles correspond to the class
frequencies. The easiest way to draw a histogram is
to mark the class mid-point values on the horizontal
scale and draw the rectangles symmetrically about
the appropriate class mid-point values and touching
one another.

Figure 54.7
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Problem 10. The amount of money earned
weekly by 40 people working part-time in a fac-
tory, correct to the nearest £10, is shown below.
Form a frequency distribution having 6 classes
for these data.

80 90 70 110 90 160 110 80
140 30 90 50 100 110 60 100

80 90 110 80 100 90 120 70
130 170 80 120 100 110 40 110

50 100 110 90 100 70 110 80

Inspection of the set given shows that the majority
of the members of the set lie between £80 and £110
and that there are a much smaller number of extreme
values ranging from £30 to £170. If equal class inter-
vals are selected, the frequency distribution obtained
does not give as much information as one with
unequal class intervals. Since the majority of mem-
bers are between £80 and £100, the class intervals in
this range are selected to be smaller than those out-
side of this range. There is no unique solution and
one possible solution is shown in Table 54.2.

Problem 11. Draw a histogram for the data
given in Table 54.2

When dealing with unequal class intervals, the his-
togram must be drawn so that the areas, (and not
the heights), of the rectangles are proportional to the
frequencies of the classes. The data given are shown

Table 54.3

1 2 3 4 5 6
Class Frequency Upper class boundary Lower class boundary Class range Height of rectangle

20–40 2 45 15 30
2

30
= 1

15

50–70 6 75 45 30
6

30
= 3

15

80–90 12 95 75 20
12

20
= 9

15

100–110 14 115 95 20
14

20
= 10 1

2

15

120–140 4 145 115 30
4

30
= 2

15

150–170 2 175 145 30
2

30
= 1

15

Table 54.2

Class Frequency

20–40 2
50–70 6
80–90 12

100–110 14
120–140 4
150–170 2

in columns 1 and 2 of Table 54.3. Columns 3 and 4
give the upper and lower class boundaries, respec-
tively. In column 5, the class ranges (i.e. upper class
boundary minus lower class boundary values) are
listed. The heights of the rectangles are proportional

to the ratio
frequency

class range
, as shown in column 6. The

histogram is shown in Fig. 54.8.

Problem 12. The masses of 50 ingots in kilo-
grams are measured correct to the nearest 0.1 kg
and the results are as shown below. Produce a
frequency distribution having about 7 classes for
these data and then present the grouped data as
(a) a frequency polygon and (b) a histogram.

8.0 8.6 8.2 7.5 8.0 9.1 8.5 7.6 8.2 7.8
8.3 7.1 8.1 8.3 8.7 7.8 8.7 8.5 8.4 8.5
7.7 8.4 7.9 8.8 7.2 8.1 7.8 8.2 7.7 7.5
8.1 7.4 8.8 8.0 8.4 8.5 8.1 7.3 9.0 8.6
7.4 8.2 8.4 7.7 8.3 8.2 7.9 8.5 7.9 8.0
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Figure 54.8

The range of the data is the member having the
largest value minus the member having the smallest
value. Inspection of the set of data shows that:

range = 9.1 − 7.1 = 2.0

The size of each class is given approximately by

range

number of classes
.

Since about seven classes are required, the size
of each class is 2.0/7, that is approximately 0.3, and
thus the class limits are selected as 7.1 to 7.3, 7.4 to
7.6, 7.7 to 7.9, and so on.

The class mid-point for the 7.1 to 7.3 class is
7.35 + 7.05

2
, i.e. 7.2, for the 7.4 to 7.6 class is

7.65 + 7.35

2
, i.e. 7.5, and so on.

To assist with accurately determining the num-
ber in each class, a tally diagram is produced as
shown in Table 54.4. This is obtained by listing the
classes in the left-hand column and then inspecting
each of the 50 members of the set of data in turn and
allocating it to the appropriate class by putting a ‘1’
in the appropriate row. Each fifth ‘1’ allocated to a
particular row is marked as an oblique line to help
with final counting.

A frequency distribution for the data is shown
in Table 54.5 and lists classes and their correspond-
ing frequencies. Class mid-points are also shown in
this table, since they are used when constructing the
frequency polygon and histogram.

A frequency polygon is shown in Fig. 54.9,
the co-ordinates corresponding to the class mid-
point/frequency values, given in Table 54.5. The
co-ordinates are joined by straight lines and the poly-
gon is ‘anchored-down’ at each end by joining to the
next class mid-point value and zero frequency.

A histogram is shown in Fig. 54.10, the width of
a rectangle corresponding to (upper class boundary
value—lower class boundary value) and height cor-
responding to the class frequency. The easiest way to

Table 54.4

Table 54.5

Class Class mid-point Frequency

7.1 to 7.3 7.2 3
7.4 to 7.6 7.5 5
7.5 to 7.9 7.8 9
8.0 to 8.2 8.1 14
8.1 to 8.5 8.4 11
8.2 to 8.8 8.7 6
8.9 to 9.1 9.0 2

Figure 54.9

Figure 54.10
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draw a histogram is to mark class mid-point values
on the horizontal scale and to draw the rectangles
symmetrically about the appropriate class mid-point
values and touching one another.A histogram for the
data given in Table 54.5 is shown in Fig. 54.10.

Problem 13. The frequency distribution for the
masses in kilograms of 50 ingots is:

7.1 to 7.3 3, 7.4 to 7.6 5, 7.7 to 7.9 9,

8.0 to 8.2 14, 8.3 to 8.5 11, 8.6 to 8.8, 6,

8.9 to 9.1 2,

Form a cumulative frequency distribution for
these data and draw the corresponding ogive.

A cumulative frequency distribution is a table giv-
ing values of cumulative frequency for the value of
upper class boundaries, and is shown in Table 54.6.
Columns 1 and 2 show the classes and their frequen-
cies. Column 3 lists the upper class boundary values
for the classes given in column 1. Column 4 gives the
cumulative frequency values for all frequencies less
than the upper class boundary values given in column
3. Thus, for example, for the 7.7 to 7.9 class shown
in row 3, the cumulative frequency value is the sum
of all frequencies having values of less than 7.95, i.e.
3 + 5 + 9 = 17, and so on. The ogive for the cumu-
lative frequency distribution given in Table 54.6 is
shown in Fig. 54.11. The co-ordinates corresponding
to each upper class boundary/cumulative frequency
value are plotted and the co-ordinates are joined by
straight lines (—not the best curve drawn through
the co-ordinates as in experimental work.) The ogive
is ‘anchored’ at its start by adding the co-ordinate
(7.05, 0).

Table 54.6

1 2 3 4
Class Frequency Upper Class Cumulative

boundary frequency

Less than

7.1–7.3 3 7.35 3
7.4–7.6 5 7.65 8
7.7–7.9 9 7.95 17
8.0–8.2 14 8.25 31
8.3–8.5 11 8.55 42
8.6–8.8 6 8.85 48
8.9–9.1 2 9.15 50

Figure 54.11

Now try the following exercise.

Exercise 207 Further problems on presen-
tation of grouped data

1. The mass in kilograms, correct to the nearest
one-tenth of a kilogram, of 60 bars of metal
are as shown. Form a frequency distribution
of about 8 classes for these data.

39.8 40.3 40.6 40.0 39.6
39.6 40.2 40.3 40.4 39.8
40.2 40.3 39.9 39.9 40.0
40.1 40.0 40.1 40.1 40.2
39.7 40.4 39.9 40.1 39.9
39.5 40.0 39.8 39.5 39.9
40.1 40.0 39.7 40.4 39.3
40.7 39.9 40.2 39.9 40.0
40.1 39.7 40.5 40.5 39.9
40.8 40.0 40.2 40.0 39.9
39.8 39.7 39.5 40.1 40.2
40.6 40.1 39.7 40.2 40.3

⎡

⎢
⎢
⎢
⎢
⎢
⎣

There is no unique solution,
but one solution is:

39.3−39.4 1; 39.5−39.6 5;
39.7−39.8 9; 39.9−40.0 17;
40.1−40.2 15; 40.3−40.4 7;
40.5−40.6 4; 40.7−40.8 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

2. Draw a histogram for the frequency distribu-
tion given in the solution of Problem 1.

⎡

⎢
⎣

Rectangles, touching one another,
having mid-points of 39.35,
39.55, 39.75, 39.95, . . . and
heights of 1, 5, 9, 17, . . .

⎤

⎥
⎦



Ch54-H8152.tex 27/6/2006 10: 20 Page 537

PRESENTATION OF STATISTICAL DATA 537

J

3. The information given below refers to the
value of resistance in ohms of a batch
of 48 resistors of similar value. Form a
frequency distribution for the data, having
about 6 classes, and draw a frequency poly-
gon and histogram to represent these data
diagramatically.

21.0 22.4 22.8 21.5 22.6 21.1 21.6 22.3
22.9 20.5 21.8 22.2 21.0 21.7 22.5 20.7
23.2 22.9 21.7 21.4 22.1 22.2 22.3 21.3
22.1 21.8 22.0 22.7 21.7 21.9 21.1 22.6
21.4 22.4 22.3 20.9 22.8 21.2 22.7 21.6
22.2 21.6 21.3 22.1 21.5 22.0 23.4 21.2

⎡

⎢
⎢
⎢
⎣

There is no unique solution,
but one solution is:

20.5–20.9 3; 21.0–21.4 10;
21.5–21.9 11; 22.0–22.4 13;
22.5–22.9 9; 23.0–23.4 2

⎤

⎥
⎥
⎥
⎦

4. The time taken in hours to the failure of 50
specimens of a metal subjected to fatigue fail-
ure tests are as shown. Form a frequency dis-
tribution, having about 8 classes and unequal
class intervals, for these data.
28 22 23 20 12 24 37 28 21 25
21 14 30 23 27 13 23 7 26 19
24 22 26 3 21 24 28 40 27 24
20 25 23 26 47 21 29 26 22 33
27 9 13 35 20 16 20 25 18 22

⎡

⎢
⎣

There is no unique solution,
but one solution is: 1–10 3;

11–19 7; 20–22 12; 23–25 11;
26–28 10; 29–38 5; 39–48 2

⎤

⎥
⎦

5. Form a cumulative frequency distribution and
hence draw the ogive for the frequency dis-
tribution given in the solution to Problem 3.
[

20.95 3; 21.45 13; 21.95 24;
22.45 37; 22.95 46; 23.45 48

]

6. Draw a histogram for the frequency distribu-
tion given in the solution to Problem 4.

⎡

⎢
⎢
⎢
⎢
⎣

Rectangles, touching one another,
having mid-points of 5.5, 15,
21, 24, 27, 33.5 and 43.5. The
heights of the rectangles (frequency
per unit class range) are 0.3,
0.78, 4. 4.67, 2.33, 0.5 and 0.2

⎤

⎥
⎥
⎥
⎥
⎦

7. The frequency distribution for a batch of
50 capacitors of similar value, measured in
microfarads, is:

[
10.5–10.9 2, 11.0–11.4 7,
11.5–11.9 10, 12.0–12.4 12,
12.5–12.9 11, 13.0–13.4 8

]

Form a cumulative frequency distribution for
these data.
[

(10.95 2), (11.45 9), (11.95 11),
(12.45 31), (12.95 42), (13.45 50)

]

8. Draw an ogive for the data given in the
solution of Problem 7.

9. The diameter in millimetres of a reel of wire
is measured in 48 places and the results are
as shown.

2.10 2.29 2.32 2.21 2.14 2.22
2.28 2.18 2.17 2.20 2.23 2.13
2.26 2.10 2.21 2.17 2.28 2.15
2.16 2.25 2.23 2.11 2.27 2.34
2.24 2.05 2.29 2.18 2.24 2.16
2.15 2.22 2.14 2.27 2.09 2.21
2.11 2.17 2.22 2.19 2.12 2.20
2.23 2.07 2.13 2.26 2.16 2.12

(a) Form a frequency distribution of diame-
ters having about 6 classes.

(b) Draw a histogram depicting the data.

(c) Form a cumulative frequency distribu-
tion.

(d) Draw an ogive for the data.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(a) There is no unique solution,
but one solution is:

2.05–2.09 3; 2.10–21.4 10;
2.15–2.19 11; 2.20–2.24 13;
2.25–2.29 9; 2.30–2.34 2

(b) Rectangles, touching one
another, having mid-points of
2.07, 2.12 . . . and heights of
3, 10, . . .

(c) Using the frequency
distribution given in the
solution to part (a) gives:

2.095 3; 2.145 13; 2.195 24;
2.245 37; 2.295 46; 2.345 48

(d) A graph of cumulative
frequency against upper
class boundary having
the coordinates given
in part (c).

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Measures of central tendency and
dispersion

55.1 Measures of central tendency

A single value, which is representative of a set of
values, may be used to give an indication of the gen-
eral size of the members in a set, the word ‘average’
often being used to indicate the single value.

The statistical term used for ‘average’ is the
arithmetic mean or just the mean.

Other measures of central tendency may be used
and these include the median and the modal values.

55.2 Mean, median and mode for
discrete data

Mean

The arithmetic mean value is found by adding
together the values of the members of a set and divid-
ing by the number of members in the set. Thus, the
mean of the set of numbers: {4, 5, 6, 9} is:

4 + 5 + 6 + 9

4
, i.e. 6

In general, the mean of the set: {x1, x2, x3, . . . , xn} is

x = x1 + x2 + x3 + · · · + xn

n
, written as

∑
x

n

where
∑

is the Greek letter ‘sigma’ and means ‘the
sum of’, and x (called x-bar) is used to signify a mean
value.

Median

The median value often gives a better indication
of the general size of a set containing extreme val-
ues. The set: {7, 5, 74, 10} has a mean value of 24,
which is not really representative of any of the val-
ues of the members of the set. The median value is
obtained by:

(a) ranking the set in ascending order of magni-
tude, and

(b) selecting the value of the middle member for
sets containing an odd number of members, or
finding the value of the mean of the two middle
members for sets containing an even number of
members.

For example, the set: {7, 5, 74, 10} is ranked as
{5, 7, 10, 74}, and since it contains an even number of
members (four in this case), the mean of 7 and 10 is
taken, giving a median value of 8.5. Similarly, the set:
{3, 81, 15, 7, 14} is ranked as {3, 7, 14, 15, 81} and the
median value is the value of the middle member,
i.e. 14.

Mode

The modal value, or mode, is the most commonly
occurring value in a set. If two values occur with
the same frequency, the set is ‘bi-modal’. The set:
{5, 6, 8, 2, 5, 4, 6, 5, 3} has a model value of 5, since
the member having a value of 5 occurs three times.

Problem 1. Determine the mean, median and
mode for the set:

{2, 3, 7, 5, 5, 13, 1, 7, 4, 8, 3, 4, 3}

The mean value is obtained by adding together the
values of the members of the set and dividing by the
number of members in the set.

Thus, mean value,

x =
2 + 3 + 7 + 5 + 5 + 13 + 1
+ 7 + 4 + 8 + 3 + 4 + 3

13
= 65

13
= 5

To obtain the median value the set is ranked, that is,
placed in ascending order of magnitude, and since
the set contains an odd number of members the value
of the middle member is the median value. Ranking
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the set gives:

{1, 2, 3, 3, 3, 4, 4, 5, 5, 7, 7, 8, 13}
The middle term is the seventh member, i.e. 4, thus
the median value is 4. The modal value is the value
of the most commonly occurring member and is 3,
which occurs three times, all other members only
occurring once or twice.

Problem 2. The following set of data refers
to the amount of money in £s taken by a news
vendor for 6 days. Determine the mean, median
and modal values of the set:

{27.90, 34.70, 54.40, 18.92, 47.60, 39.68}

Mean value =
27.90 + 34.70 + 54.40
+ 18.92 + 47.60 + 39.68

6
= £37.20

The ranked set is:

{18.92, 27.90, 34.70, 39.68, 47.60, 54.40}
Since the set has an even number of members, the
mean of the middle two members is taken to give the
median value, i.e.

Median value = 34.70 + 39.68

2
= £37.19

Since no two members have the same value, this set
has no mode.

Now try the following exercise.

Exercise 208 Further problems on mean,
median and mode for discrete data

In Problems 1 to 4, determine the mean, median
and modal values for the sets given.

1. {3, 8, 10, 7, 5, 14, 2, 9, 8}
[mean 7 1

3 , median 8, mode 8]

2. {26, 31, 21, 29, 32, 26, 25, 28}
[mean 27.25, median 27, mode 26]

3. {4.72, 4.71, 4.74, 4.73, 4.72, 4.71, 4.73, 4.72}
[mean 4.7225, median 4.72, mode 4.72]

4. {73.8, 126.4, 40.7, 141.7, 28.5, 237.4, 157.9}
[mean 115.2, median 126.4, no mode]

55.3 Mean, median and mode for
grouped data

The mean value for a set of grouped data is found
by determining the sum of the (frequency × class
mid-point values) and dividing by the sum of the
frequencies,

i.e. mean value x = f1x1 + f2x2 + · · · + fnxn

f1 + f2 + · · · + fn

=
∑

( f x)
∑

f

where f is the frequency of the class having a mid-
point value of x, and so on.

Problem 3. The frequency distribution for the
value of resistance in ohms of 48 resistors is as
shown. Determine the mean value of resistance.

20.5–20.9 3, 21.0–21.4 10,
21.5–21.9 11, 22.0–22.4 13,
22.5–22.9 9, 23.0–23.4 2

The class mid-point/frequency values are:

20.7 3, 21.2 10, 21.7 11, 22.2 13,

22.7 9 and 23.2 2

For grouped data, the mean value is given by:

x =
∑

( f x)
∑

f

where f is the class frequency and x is the class mid-
point value. Hence mean value,

x =
(3 × 20.7) + (10 × 21.2) + (11 × 21.7)
+ (13 × 22.2) + (9 × 22.7) + (2 × 23.2)

48

= 1052.1

48
= 21.919.

i.e. the mean value is 21.9 ohms, correct to 3
significant figures.

Histogram

The mean, median and modal values for grouped
data may be determined from a histogram. In a
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histogram, frequency values are represented verti-
cally and variable values horizontally. The mean
value is given by the value of the variable corre-
sponding to a vertical line drawn through the centroid
of the histogram. The median value is obtained by
selecting a variable value such that the area of the
histogram to the left of a vertical line drawn through
the selected variable value is equal to the area of the
histogram on the right of the line. The modal value is
the variable value obtained by dividing the width of
the highest rectangle in the histogram in proportion
to the heights of the adjacent rectangles. The method
of determining the mean, median and modal values
from a histogram is shown in Problem 4.

Problem 4. The time taken in minutes to
assemble a device is measured 50 times and the
results are as shown. Draw a histogram depicting
this data and hence determine the mean, median
and modal values of the distribution.

14.5–15.5 5, 16.5–17.5 8,

18.5–19.5 16, 20.5–21.5 12,

22.5–23.5 6, 24.5–25.5 3

The histogram is shown in Fig. 55.1. The mean value
lies at the centroid of the histogram. With reference
to any arbitrary axis, say YY shown at a time of
14 minutes, the position of the horizontal value of
the centroid can be obtained from the relationship
AM =∑(am), where A is the area of the histogram,

Figure 55.1

M is the horizontal distance of the centroid from the
axis YY , a is the area of a rectangle of the histogram
and m is the distance of the centroid of the rectangle
from YY . The areas of the individual rectangles are
shown circled on the histogram giving a total area of
100 square units. The positions, m, of the centroids
of the individual rectangles are 1, 3, 5, . . . units from
YY . Thus

100M = (10 × 1) + (16 × 3) + (32 × 5)

+ (24 × 7) + (12 × 9) + (6 × 11)

i.e. M = 560

100
= 5.6 units from YY

Thus the position of the mean with reference to the
time scale is 14 + 5.6, i.e. 19.6 minutes.

The median is the value of time corresponding to a
vertical line dividing the total area of the histogram
into two equal parts. The total area is 100 square
units, hence the vertical line must be drawn to give
50 units of area on each side. To achieve this with
reference to Fig. 55.1, rectangle ABFE must be split
so that 50 − (10 + 16) units of area lie on one side
and 50 − (24 + 12 + 6) units of area lie on the other.
This shows that the area of ABFE is split so that
24 units of area lie to the left of the line and 8 units
of area lie to the right, i.e. the vertical line must pass
through 19.5 minutes. Thus the median value of the
distribution is 19.5 minutes.

The mode is obtained by dividing the line AB,
which is the height of the highest rectangle, pro-
portionally to the heights of the adjacent rectangles.
With reference to Fig. 55.1, this is done by joining
AC and BD and drawing a vertical line through the
point of intersection of these two lines. This gives
the mode of the distribution and is 19.3 minutes.

Now try the following exercise.

Exercise 209 Further problems on mean,
median and mode for grouped data

1. The frequency distribution given below refers
to the heights in centimetres of 100 people.
Determine the mean value of the distribution,
correct to the nearest millimetre.

150–156 5, 157–163 18,

164–170 20, 171–177 27,

178–184 22, 185–191 8

[171.7 cm]
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2. The gain of 90 similar transistors is measured
and the results are as shown.

83.5–85.5 6, 86.5–88.5 39,

89.5–91.5 27, 92.5–94.5 15,

95.5–97.5 3

By drawing a histogram of this frequency dis-
tribution, determine the mean, median and
modal values of the distribution.

[mean 89.5, median 89, mode 88.2]

3. The diameters, in centimetres, of 60 holes
bored in engine castings are measured and
the results are as shown. Draw a histogram
depicting these results and hence determine
the mean, median and modal values of the
distribution.

2.011–2.014 7, 2.016–2.019 16,

2.021–2.024 23, 2.026–2.029 9,

2.031–2.034 5
⎡

⎣
mean 2.02158 cm,
median 2.02152 cm,
mode 2.02167 cm

⎤

⎦

55.4 Standard deviation

(a) Discrete data

The standard deviation of a set of data gives an indi-
cation of the amount of dispersion, or the scatter, of
members of the set from the measure of central ten-
dency. Its value is the root-mean-square value of the
members of the set and for discrete data is obtained
as follows:

(a) determine the measure of central tendency, usu-
ally the mean value, (occasionally the median or
modal values are specified),

(b) calculate the deviation of each member of the
set from the mean, giving

(x1 − x), (x2 − x), (x3 − x), . . .,

(c) determine the squares of these deviations, i.e.

(x1 − x)2, (x2 − x)2, (x3 − x)2, . . .,

(d) find the sum of the squares of the deviations,
that is

(x1 − x)2 + (x2 − x)2 + (x3 − x)2, . . .,

(e) divide by the number of members in the set, n,
giving

(x1 − x)2 + (x2 − x)2 + (x3 − x)2 + · · ·
n

(f) determine the square root of (e).

The standard deviation is indicated by σ (the Greek
letter small ‘sigma’) and is written mathemati-
cally as:

Standard deviation, σ =
√√
√
√
{∑

(x − x)2

n

}

where x is a member of the set, x is the mean value of
the set and n is the number of members in the set. The
value of standard deviation gives an indication of the
distance of the members of a set from the mean value.
The set: {1, 4, 7, 10, 13} has a mean value of 7 and a
standard deviation of about 4.2. The set {5, 6, 7, 8, 9}
also has a mean value of 7, but the standard devi-
ation is about 1.4. This shows that the members of
the second set are mainly much closer to the mean
value than the members of the first set. The method
of determining the standard deviation for a set of
discrete data is shown in Problem 5.

Problem 5. Determine the standard devia-
tion from the mean of the set of numbers:
{5, 6, 8, 4, 10, 3} correct to 4 significant figures.

The arithmetic mean,

x =
∑

x

n
= 5 + 6 + 8 + 4 + 10 + 3

6
= 6

Standard deviation, σ =
√{∑

(x − x )2

n

}

The (x − x)2 values are: (5 − 6)2, (6 − 6)2, (8 − 6)2,
(4 − 6)2, (10 − 6)2 and (3 − 6)2.

The sum of the (x − x)2 values,

i.e.
∑

(x − x)2 = 1 + 0 + 4 + 4 + 16 + 9 = 34

and

∑
(x − x)2

n
= 34

6
= 5.6̇

since there are 6 members in the set.



Ch55-H8152.tex 23/6/2006 15: 14 Page 542

542 STATISTICS AND PROBABILITY

Hence, standard deviation,

σ =
√{∑

(x − x)2

n

}

= √
5.6

= 2.380, correct to 4 significant figures

(b) Grouped data

For grouped data, standard deviation

σ =
√√
√
√
{∑{ f (x − x)2}

∑
f

}

where f is the class frequency value, x is the class
mid-point value and x is the mean value of the
grouped data. The method of determining the stan-
dard deviation for a set of grouped data is shown in
Problem 6.

Problem 6. The frequency distribution for the
values of resistance in ohms of 48 resistors is
as shown. Calculate the standard deviation from
the mean of the resistors, correct to 3 significant
figures.

20.5–20.9 3, 21.0–21.4 10,

21.5–21.9 11, 22.0–22.4 13,

22.5–22.9 9, 23.0–23.4 2

The standard deviation for grouped data is given by:

σ =
√{∑{ f (x − x)2}

∑
f

}

From Problem 3, the distribution mean value,
x = 21.92, correct to 4 significant figures.

The ‘x-values’ are the class mid-point values, i.e.
20.7, 21.2, 21.7, . . .

Thus the (x − x)2 values are (20.7 − 21.92)2,
(21.2 − 21.92)2, (21.7 − 21.92)2, . . .

and the f (x − x)2 values are 3(20.7 − 21.92)2,
10(21.2 − 21.92)2, 11(21.7 − 21.92)2, . . .

The
∑

f (x − x)2 values are

4.4652 + 5.1840 + 0.5324 + 1.0192 + 5.4756

+ 3.2768 = 19.9532
∑{

f (x − x)2
}

∑
f

= 19.9532

48
= 0.41569

and standard deviation,

σ =
√√
√
√
{∑{

f (x − x)2
}

∑
f

}

= √
0.41569

= 0.645, correct to 3 significant figures

Now try the following exercise.

Exercise 210 Further problems on standard
deviation

1. Determine the standard deviation from the
mean of the set of numbers:

{35, 22, 25, 23, 28, 33, 30}
correct to 3 significant figures. [4.60]

2. The values of capacitances, in microfarads,
of ten capacitors selected at random from a
large batch of similar capacitors are:

34.3, 25.0, 30.4, 34.6, 29.6, 28.7, 33.4,

32.7, 29.0 and 31.3

Determine the standard deviation from the
mean for these capacitors, correct to 3 sig-
nificant figures. [2.83 µF]

3. The tensile strength in megapascals for 15
samples of tin were determined and found
to be:

34.61, 34.57, 34.40, 34.63, 34.63,

34.51, 34.49, 34.61, 34.52, 34.55,

34.58, 34.53, 34.44, 34.48 and 34.40

Calculate the mean and standard deviation
from the mean for these 15 values, correct
to 4 significant figures.

[
mean 34.53 MPa, standard

deviation 0.07474 MPa

]

4. Determine the standard deviation from the
mean, correct to 4 significant figures, for the
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heights of the 100 people given in Problem 1
of Exercise 209, page 540. [9.394 cm]

5. Calculate the standard deviation from the
mean for the data given in Problem 3 of Exer-
cise 209, page 541, correct to 3 significant
figures. [0.00544 cm]

55.5 Quartiles, deciles and percentiles

Other measures of dispersion which are sometimes
used are the quartile, decile and percentile values.
The quartile values of a set of discrete data are
obtained by selecting the values of members which
divide the set into four equal parts. Thus for the set:
{2, 3, 4, 5, 5, 7, 9, 11, 13, 14, 17} there are 11 mem-
bers and the values of the members dividing the set
into four equal parts are 4, 7, and 13. These values are
signified by Q1, Q2 and Q3 and called the first, sec-
ond and third quartile values, respectively. It can be
seen that the second quartile value, Q2, is the value
of the middle member and hence is the median value
of the set.

For grouped data the ogive may be used to deter-
mine the quartile values. In this case, points are
selected on the vertical cumulative frequency val-
ues of the ogive, such that they divide the total
value of cumulative frequency into four equal parts.
Horizontal lines are drawn from these values to cut
the ogive. The values of the variable corresponding
to these cutting points on the ogive give the quartile
values (see Problem 7).

When a set contains a large number of members,
the set can be split into ten parts, each containing
an equal number of members. These ten parts are
then called deciles. For sets containing a very large
number of members, the set may be split into one
hundred parts, each containing an equal number of
members. One of these parts is called a percentile.

Problem 7. The frequency distribution given
below refers to the overtime worked by a group
of craftsmen during each of 48 working weeks
in a year.

25–29 5, 30–34 4, 35–39 7,

40–44 11, 45–49 12, 50–54 8,

55–59 1

Draw an ogive for this data and hence determine
the quartile values.

The cumulative frequency distribution (i.e. upper
class boundary/cumulative frequency values) is:

29.5 5, 34.5 9, 39.5 16, 44.5 27,
49.5 39, 54.5 47, 59.5 48

The ogive is formed by plotting these values on a
graph, as shown in Fig. 55.2. The total frequency is
divided into four equal parts, each having a range of
48/4, i.e. 12. This gives cumulative frequency val-
ues of 0 to 12 corresponding to the first quartile,
12 to 24 corresponding to the second quartile, 24 to
36 corresponding to the third quartile and 36 to 48
corresponding to the fourth quartile of the distribu-
tion, i.e. the distribution is divided into four equal
parts. The quartile values are those of the variable
corresponding to cumulative frequency values of 12,
24 and 36, marked Q1, Q2 and Q3 in Fig. 55.2. These
values, correct to the nearest hour, are 37 hours,
43 hours and 48 hours, respectively. The Q2 value
is also equal to the median value of the distribution.
One measure of the dispersion of a distribution is
called the semi-interquartile range and is given by
(Q3 − Q1)/2, and is (48 − 37)/2 in this case, i.e.
5 1

2 hours.

Figure 55.2

Problem 8. Determine the numbers contained
in the (a) 41st to 50th percentile group, and
(b) 8th decile group of the set of numbers shown
below:

14 22 17 21 30 28 37 7 23 32
24 17 20 22 27 19 26 21 15 29
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The set is ranked, giving:

7 14 15 17 17 19 20 21 21 22 22 23

24 26 27 28 29 30 32 37

(a) There are 20 numbers in the set, hence the first
10% will be the two numbers 7 and 14, the sec-
ond 10% will be 15 and 17, and so on. Thus the
41st to 50th percentile group will be the numbers
21 and 22.

(b) The first decile group is obtained by splitting the
ranked set into 10 equal groups and selecting
the first group, i.e. the numbers 7 and 14. The
second decile group are the numbers 15 and 17,
and so on. Thus the 8th decile group contains
the numbers 27 and 28.

Now try the following exercise.

Exercise 211 Further problems on quar-
tiles, deciles and percentiles

1. The number of working days lost due to acci-
dents for each of 12 one-monthly periods are
as shown. Determine the median and first and
third quartile values for this data.

27 37 40 28 23 30 35 24 30 32 31 2

[30, 25.5, 33.5 days]

2. The number of faults occurring on a produc-
tion line in a nine-week period are as shown

below. Determine the median and quartile
values for the data.

30 27 25 24 27 37 31 27 35

[27, 26, 33 faults]

3. Determine the quartile values and semi-
interquartile range for the frequency distri-
bution given in Problem 1 of Exercise 209,
page 540.

[
Q1 = 164.5 cm, Q2 = 172.5 cm,
Q3 = 179 cm, 7.25 cm

]

4. Determine the numbers contained in the 5th
decile group and in the 61st to 70th percentile
groups for the set of numbers:

40 46 28 32 37 42 50 31 48 45
32 38 27 33 40 35 25 42 38 41

[37 and 38; 40 and 41]

5. Determine the numbers in the 6th decile
group and in the 81st to 90th percentile group
for the set of numbers:

43 47 30 25 15 51 17 21
36 44 33 17 35 58 51 35

37 33 44 56 40 49 22
44 40 31 41 55 50 16

[40, 40, 41; 50, 51, 51]
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Statistics and probability

56

Probability

56.1 Introduction to probability

The probability of something happening is the
likelihood or chance of it happening. Values of prob-
ability lie between 0 and 1, where 0 represents an
absolute impossibility and 1 represents an absolute
certainty. The probability of an event happening
usually lies somewhere between these two extreme
values and is expressed either as a proper or decimal
fraction. Examples of probability are:

that a length of copper wire
has zero resistance at 100◦C 0

that a fair, six-sided dice will
stop with a 3 upwards 1

6 or 0.1667
that a fair coin will land with

a head upwards 1
2 or 0.5

that a length of copper wire has
some resistance at 100◦C 1

If p is the probability of an event happening and q
is the probability of the same event not happening,
then the total probability is p + q and is equal to
unity, since it is an absolute certainty that the event
either does or does not occur, i.e. p + q = 1

Expectation

The expectation, E, of an event happening is defined
in general terms as the product of the probability p
of an event happening and the number of attempts
made, n, i.e. E = pn.

Thus, since the probability of obtaining a 3
upwards when rolling a fair dice is 1

6 , the expec-
tation of getting a 3 upwards on four throws of the
dice is 1

6 × 4, i.e. 2
3

Thus expectation is the average occurrence of an
event.

Dependent event

A dependent event is one in which the probability of
an event happening affects the probability of another
event happening. Let 5 transistors be taken at random

from a batch of 100 transistors for test purposes, and
the probability of there being a defective transistor,
p1, be determined. At some later time, let another 5
transistors be taken at random from the 95 remaining
transistors in the batch and the probability of there
being a defective transistor, p2, be determined. The
value of p2 is different from p1 since batch size has
effectively altered from 100 to 95, i.e. probability p2
is dependent on probability p1. Since 5 transistors are
drawn, and then another 5 transistors drawn without
replacing the first 5, the second random selection is
said to be without replacement.

Independent event

An independent event is one in which the probability
of an event happening does not affect the probability
of another event happening. If 5 transistors are taken
at random from a batch of transistors and the prob-
ability of a defective transistor p1 is determined and
the process is repeated after the original 5 have been
replaced in the batch to give p2, then p1 is equal to p2.
Since the 5 transistors are replaced between draws,
the second selection is said to be with replacement.

Conditional probability

Conditional probability is concerned with the prob-
ability of say event B occurring, given that event A
has already taken place.

If A and B are independent events, then the fact
that event A has already occurred will not affect the
probability of event B.

If A and B are dependent events, then event
A having occurred will effect the probability of
event B.

56.2 Laws of probability

The addition law of probability

The addition law of probability is recognized by the
word ‘or’ joining the probabilities. If pA is the prob-
ability of event A happening and pB is the probability
of event B happening, the probability of event A or
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event B happening is given by pA+ pB (provided
events A and B are mutually exclusive, i.e. A and
B are events which cannot occur together). Simi-
larly, the probability of events A or B or C or . . . N
happening is given by

pA + pB + pC + · · · + pN

The multiplication law of probability

The multiplication law of probability is recognized
by the word ‘and’ joining the probabilities. If pA
is the probability of event A happening and pB is
the probability of event B happening, the proba-
bility of event A and event B happening is given
by pA× pB. Similarly, the probability of events
A and B and C and . . . N happening is given by

pA × pB × pC × · · · × pN

56.3 Worked problems on probability

Problem 1. Determine the probabilities of
selecting at random (a) a man, and (b) a woman
from a crowd containing 20 men and 33 women.

(a) The probability of selecting at random a man,
p, is given by the ratio

number of men

number in crowd
,

i.e. p = 20

20 + 33
= 20

53
or 0.3774

(b) The probability of selecting at random a women,
q, is given by the ratio

number of women

number in crowd
,

i.e. q = 33

20 + 33
= 33

53
or 0.6226

(Check: the total probability should be equal
to 1;

p = 20

53
and q = 33

53
,

thus the total probability,

p + q = 20

53
+ 33

53
= 1

hence no obvious error has been made).

Problem 2. Find the expectation of obtaining
a 4 upwards with 3 throws of a fair dice.

Expectation is the average occurrence of an event
and is defined as the probability times the number
of attempts. The probability, p, of obtaining a 4
upwards for one throw of the dice is 1

6 .
Also, 3 attempts are made, hence n = 3 and the

expectation, E, is pn, i.e. E = 1
6 × 3 = 1

2 or 0.50

Problem 3. Calculate the probabilities of
selecting at random:

(a) the winning horse in a race in which 10
horses are running,

(b) the winning horses in both the first and sec-
ond races if there are 10 horses in each
race.

(a) Since only one of the ten horses can win, the
probability of selecting at random the winning

horse is
number of winners

number of horses
, i.e.

1
10

or 0.10

(b) The probability of selecting the winning horse
in the first race is 1

10 . The probability of select-
ing the winning horse in the second race is 1

10 .
The probability of selecting the winning horses
in the first and second race is given by the
multiplication law of probability, i.e.

probability = 1

10
× 1

10

= 1
100

or 0.01

Problem 4. The probability of a component
failing in one year due to excessive tempera-

ture is
1

20
, due to excessive vibration is

1

25

and due to excessive humidity is
1

50
. Determine

the probabilities that during a one-year period
a component: (a) fails due to excessive tem-
perature and excessive vibration, (b) fails due
to excessive vibration or excessive humidity,
and (c) will not fail because of both excessive
temperature and excessive humidity.
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Let pA be the probability of failure due to excessive
temperature, then

pA = 1

20
and pA = 19

20

(where pA is the probability of not failing).

Let pB be the probability of failure due to excessive
vibration, then

pB = 1

25
and pB = 24

25

Let pC be the probability of failure due to excessive
humidity, then

pC = 1

50
and pC = 49

50

(a) The probability of a component failing due to
excessive temperature and excessive vibration
is given by:

pA × pB = 1

20
× 1

25
= 1

500
or 0.002

(b) The probability of a component failing due to
excessive vibration or excessive humidity is:

pB + pC = 1

25
+ 1

50
= 3

50
or 0.06

(c) The probability that a component will not fail
due to excessive temperature and will not fail
due to excess humidity is:

pA × pC = 19

20
× 49

50
= 931

1000
or 0.931

Problem 5. A batch of 100 capacitors con-
tains 73 which are within the required tolerance
values, 17 which are below the required toler-
ance values, and the remainder are above the
required tolerance values. Determine the proba-
bilities that when randomly selecting a capacitor
and then a second capacitor: (a) both are within
the required tolerance values when selecting
with replacement, and (b) the first one drawn
is below and the second one drawn is above
the required tolerance value, when selection is
without replacement.

(a) The probability of selecting a capacitor within the

required tolerance values is
73

100
. The first capac-

itor drawn is now replaced and a second one is
drawn from the batch of 100. The probability of

this capacitor being within the required tolerance

values is also
73

100
.

Thus, the probability of selecting a capacitor
within the required tolerance values for both the
first and the second draw is

73

100
× 73

100
= 5329

10000
or 0.5329

(b) The probability of obtaining a capacitor below the

required tolerance values on the first draw is
17

100
.

There are now only 99 capacitors left in the batch,
since the first capacitor is not replaced. The prob-
ability of drawing a capacitor above the required

tolerance values on the second draw is
10

99
,

since there are (100 − 73 − 17), i.e. 10 capacitors
above the required tolerance value. Thus, the
probability of randomly selecting a capacitor
below the required tolerance values and followed
by randomly selecting a capacitor above the
tolerance’ values is

17

100
× 10

99
= 170

9900
= 17

990
or 0.0172

Now try the following exercise.

Exercise 212 Further problems on proba-
bility

1. In a batch of 45 lamps there are 10 faulty
lamps. If one lamp is drawn at random, find
the probability of it being (a) faulty and
(b) satisfactory.

⎡

⎢
⎢
⎣

(a)
2

9
or 0.2222

(b)
7

9
or 0.7778

⎤

⎥
⎥
⎦

2. A box of fuses are all of the same shape and
size and comprises 23 2A fuses, 47 5A fuses
and 69 13A fuses. Determine the probability
of selecting at random (a) a 2A fuse, (b) a 5A
fuse and (c) a 13A fuse.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(a)
23

139
or 0.1655

(b)
47

139
or 0.3381

(c)
69

139
or 0.4964

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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3. (a) Find the probability of having a 2 upwards
when throwing a fair 6-sided dice. (b) Find
the probability of having a 5 upwards when
throwing a fair 6-sided dice. (c) Determine
the probability of having a 2 and then a 5 on
two successive throws of a fair 6-sided dice.

[

(a)
1

6
(b)

1

6
(c)

1

36

]

4. Determine the probability that the total score
is 8 when two like dice are thrown.

[
5

36

]

5. The probability of event A happening is 3
5

and the probability of event B happening is 2
3 .

Calculate the probabilities of (a) both A and
B happening, (b) only event A happening, i.e.
event A happening and event B not happening,
(c) only event B happening, and (d) either A,
or B, or A and B happening.

[

(a)
2

5
(b)

1

5
(c)

4

15
(d)

13

15

]

6. When testing 1000 soldered joints, 4 failed
during a vibration test and 5 failed due to
having a high resistance. Determine the prob-
ability of a joint failing due to (a) vibration,
(b) high resistance, (c) vibration or high resis-
tance and (d) vibration and high resistance.

⎡

⎢
⎢
⎣

(a)
1

250
(b)

1

200

(c)
9

1000
(d)

1

50000

⎤

⎥
⎥
⎦

56.4 Further worked problems on
probability

Problem 6. A batch of 40 components contains
5 which are defective. A component is drawn
at random from the batch and tested and then
a second component is drawn. Determine the
probability that neither of the components is
defective when drawn (a) with replacement, and
(b) without replacement.

(a) With replacement

The probability that the component selected on the

first draw is satisfactory is
35

40
, i.e.

7

8
. The component

is now replaced and a second draw is made.The prob-

ability that this component is also satisfactory is
7

8
.

Hence, the probability that both the first compo-
nent drawn and the second component drawn are
satisfactory is:

7

8
× 7

8
= 49

64
or 0.7656

(b) Without replacement

The probability that the first component drawn is

satisfactory is
7

8
. There are now only 34 satisfactory

components left in the batch and the batch number
is 39. Hence, the probability of drawing a satisfac-

tory component on the second draw is
34

39
. Thus the

probability that the first component drawn and the
second component drawn are satisfactory, i.e. neither
is defective, is:

7

8
× 34

39
= 238

312
or 0.7628

Problem 7. A batch of 40 components contains
5 which are defective. If a component is drawn at
random from the batch and tested and then a sec-
ond component is drawn at random, calculate the
probability of having one defective component,
both with and without replacement.

The probability of having one defective component
can be achieved in two ways. If p is the probability
of drawing a defective component and q is the prob-
ability of drawing a satisfactory component, then
the probability of having one defective component
is given by drawing a satisfactory component and
then a defective component or by drawing a defec-
tive component and then a satisfactory one, i.e. by
q × p + p × q

With replacement:

p = 5

40
= 1

8

and q = 35

40
= 7

8
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Hence, probability of having one defective compo-
nent is:

1

8
× 7

8
+ 7

8
× 1

8

i.e.

7

64
+ 7

64
= 7

32
or 0.2188

Without replacement:

p1 = 1

8
and q1 = 7

8
on the first of the two draws.

The batch number is now 39 for the second draw,
thus,

p2 = 5

39
and q2 = 35

39

p1q2 + q1p2 = 1

8
× 35

39
+ 7

8
× 5

39

= 35 + 35

312

= 70

312
or 0.2244

Problem 8. A box contains 74 brass washers,
86 steel washers and 40 aluminium washers.
Three washers are drawn at random from the box
without replacement. Determine the probability
that all three are steel washers.

Assume, for clarity of explanation, that a washer
is drawn at random, then a second, then a third
(although this assumption does not affect the results
obtained). The total number of washers is 74 + 86 +
40, i.e. 200. The probability of randomly selecting a

steel washer on the first draw is
86

200
. There are now

85 steel washers in a batch of 199. The probability
of randomly selecting a steel washer on the second

draw is
85

199
. There are now 84 steel washers in a

batch of 198. The probability of randomly selecting

a steel washer on the third draw is
84

198
. Hence the

probability of selecting a steel washer on the third

draw is
84

198
. Hence the probability of selecting a

steel washer on the first draw and the second draw
and the third draw is:

86

200
× 85

199
× 84

198
= 614040

7880400
= 0.0779

Problem 9. For the box of washers given in
Problem 8 above, determine the probability that
there are no aluminium washers drawn, when
three washers are drawn at random from the box
without replacement.

The probability of not drawing an aluminium washer

on the first draw is 1 −
(

40

200

)

, i.e.
160

200
. There are

now 199 washers in the batch of which 159 are not
aluminium washers. Hence, the probability of not
drawing an aluminium washer on the second draw

is
159

199
. Similarly, the probability of not drawing an

aluminium washer on the third draw is
158

198
. Hence

the probability of not drawing an aluminium washer
on the first and second and third draws is

160

200
× 159

199
× 158

198
= 4019520

7880400
= 0.5101

Problem 10. For the box of washers in Prob-
lem 8 above, find the probability that there are
two brass washers and either a steel or an alu-
minium washer when three are drawn at random,
without replacement.

Two brass washers (A) and one steel washer (B) can
be obtained in any of the following ways:

1st draw 2nd draw 3rd draw

A A B
A B A
B A A

Two brass washers and one aluminium washer (C)
can also be obtained in any of the following ways:

1st draw 2nd draw 3rd draw

A A C
A C A
C A A



Ch56-H8152.tex 19/7/2006 17: 59 Page 550

550 STATISTICS AND PROBABILITY

Thus there are six possible ways of achieving the
combinations specified. If A represents a brass
washer, B a steel washer and C an aluminium
washer, then the combinations and their probabili-
ties are as shown:

Draw Probability

First Second Third

A A B
74

200
× 73

199
× 86

198
=0.0590

A B A
74

200
× 86

199
× 73

198
=0.0590

B A A
86

200
× 74

199
× 73

198
=0.0590

A A C
74

200
× 73

199
× 40

198
=0.0274

A C A
74

200
× 40

199
× 73

198
=0.0274

C A A
40

200
× 74

199
× 73

198
=0.0274

The probability of having the first combination or
the second, or the third, and so on, is given by the
sum of the probabilities,

i.e. by 3 × 0.0590 + 3 × 0.0274, that is, 0.2592.

Now try the following exercise.

Exercise 213 Further problems on
probability

1. The probability that component A will oper-
ate satisfactorily for 5 years is 0.8 and that
B will operate satisfactorily over that same
period of time is 0.75. Find the probabilities
that in a 5 year period: (a) both components
operate satisfactorily, (b) only component
A will operate satisfactorily, and (c) only
component B will operate satisfactorily.

[(a) 0.6 (b) 0.2 (c) 0.15]

2. In a particular street, 80% of the houses have
telephones. If two houses selected at random
are visited, calculate the probabilities that
(a) they both have a telephone and (b) one
has a telephone but the other does not have
telephone. [(a) 0.64 (b) 0.32]

3. Veroboard pins are packed in packets of 20
by a machine. In a thousand packets, 40 have
less than 20 pins. Find the probability that
if 2 packets are chosen at random, one will
contain less than 20 pins and the other will
contain 20 pins or more. [0.0768]

4. A batch of 1 kW fire elements contains 16
which are within a power tolerance and 4
which are not. If 3 elements are selected at
random from the batch, calculate the proba-
bilities that (a) all three are within the power
tolerance and (b) two are within but one is not
within the power tolerance.

[(a) 0.4912 (b) 0.4211]

5. An amplifier is made up of three transistors,
A, B and C. The probabilities of A, B or C

being defective are
1

20
,

1

25
and

1

50
, respec-

tively. Calculate the percentage of amplifiers
produced (a) which work satisfactorily and
(b) which have just one defective transistor.

[
(a) 89.38%
(b) 10.25%

]

6. A box contains 14 40 W lamps, 28 60 W
lamps and 58 25 W lamps, all the lamps being
of the same shape and size. Three lamps are
drawn at random from the box, first one, then
a second, then a third. Determine the proba-
bilities of: (a) getting one 25 W, one 40 W and
one 60 W lamp, with replacement, (b) get-
ting one 25 W, one 40 W and one 60 W lamp
without replacement, and (c) getting either
one 25 W and two 40 W or one 60 W and two
40 W lamps with replacement.

[(a) 0.0227 (b) 0.0234 (c) 0.0169]
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Assignment 15

This assignment covers the material contained
in Chapters 54 to 56.

The marks for each question are shown in
brackets at the end of each question.

1. A company produces five products in the follow-
ing proportions:

Product A 24 Product B 16 Product C 15
Product D 11 Product E 6

Present these data visually by drawing (a) a verti-
cal bar chart (b) a percentage component bar chart
(c) a pie diagram. (13)

2. The following lists the diameters of 40 compo-
nents produced by a machine, each measured
correct to the nearest hundredth of a centimetre:

1.39 1.36 1.38 1.31 1.33 1.40 1.28
1.40 1.24 1.28 1.42 1.34 1.43 1.35
1.36 1.36 1.35 1.45 1.29 1.39 1.38
1.38 1.35 1.42 1.30 1.26 1.37 1.33
1.37 1.34 1.34 1.32 1.33 1.30 1.38
1.41 1.35 1.38 1.27 1.37

(a) Using 8 classes form a frequency distribution
and a cumulative frequency distribution.

(b) For the above data draw a histogram, a
frequency polygon and an ogive. (21)

3. Determine for the 10 measurements of lengths
shown below:

(a) the arithmetic mean, (b) the median, (c) the
mode, and (d) the standard deviation.

28 m, 20 m, 32 m, 44 m, 28 m, 30 m, 30 m, 26 m,
28 m and 34 m (10)

4. The heights of 100 people are measured correct to
the nearest centimetre with the following results:

150–157 cm 5 158–165 cm 18
166–173 cm 42 174–181 cm 27
182–189 cm 8

Determine for the data (a) the mean height and
(b) the standard deviation. (12)

5. Draw an ogive for the data of component mea-
surements given below, and hence determine the
median and the first and third quartile values for
this distribution.

Class Frequency Cumulative
intervals (mm) frequency

1.24–1.26 2 2
1.27–1.29 4 6
1.30–1.32 4 10
1.33–1.35 10 20
1.36–1.38 11 31
1.39–1.41 5 36
1.42–1.44 3 39
1.45–1.47 1 40

(10)
6. Determine the probabilities of:

(a) drawing a white ball from a bag containing
6 black and 14 white balls

(b) winning a prize in a raffle by buying 6 tickets
when a total of 480 tickets are sold

(c) selecting at random a female from a group of
12 boys and 28 girls

(d) winning a prize in a raffle by buying 8 tickets
when there are 5 prizes and a total of 800
tickets are sold. (8)

7. The probabilities of an engine failing are given
by: p1, failure due to overheating; p2, failure due
to ignition problems; p3, failure due to fuel block-

age. When p1 = 1

8
, p2 = 1

5
and p3 = 2

7
, determine

the probabilities of:

(a) all three failures occurring
(b) the first and second but not the third failure

occurring
(c) only the second failure occurring
(d) the first or the second failure occurring but

not the third. (12)

8. In a box containing 120 similar transistors 70 are
satisfactory, 37 give too high a gain under normal
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operating conditions and the remainder give too
low a gain.

Calculate the probability that when drawing two
transistors in turn, at random, with replacement,
of having

(a) two satisfactory,

(b) none with low gain,
(c) one with high gain and one satisfactory,
(d) one with low gain and none satisfactory.

Determine the probabilities in (a), (b) and (c)
above if the transistors are drawn without
replacement. (14)
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57

The binomial and Poisson distributions

57.1 The binomial distribution

The binomial distribution deals with two numbers
only, these being the probability that an event will
happen, p, and the probability that an event will
not happen, q. Thus, when a coin is tossed, if p
is the probability of the coin landing with a head
upwards, q is the probability of the coin landing with
a tail upwards. p + q must always be equal to unity.
A binomial distribution can be used for finding, say,
the probability of getting three heads in seven tosses
of the coin, or in industry for determining defect
rates as a result of sampling. One way of defining a
binomial distribution is as follows:

‘if p is the probability that an event will happen and q
is the probability that the event will not happen, then the
probabilities that the event will happen 0, 1, 2, 3, . . . , n
times in n trials are given by the successive terms of the
expansion of (q + p)n, taken from left to right’.

The binomial expansion of (q + p)n is:

qn + nqn−1p + n(n − 1)

2! qn−2p2

+ n(n − 1)(n − 2)

3! qn−3p3 + · · ·
from Chapter 7.

This concept of a binomial distribution is used in
Problems 1 and 2.

Problem 1. Determine the probabilities of
having (a) at least 1 girl and (b) at least 1 girl
and 1 boy in a family of 4 children, assuming
equal probability of male and female birth.

The probability of a girl being born, p, is 0.5 and the
probability of a girl not being born (male birth), q,
is also 0.5. The number in the family, n, is 4. From
above, the probabilities of 0, 1, 2, 3, 4 girls in a
family of 4 are given by the successive terms of the
expansion of (q + p)4 taken from left to right. From
the binomial expansion:

(q + p)4 = q4 + 4q3p + 6q2p2 + 4qp3 + p4

Hence the probability of no girls is q4,

i.e. 0.54 = 0.0625

the probability of 1 girl is 4q3p,

i.e. 4 × 0.53 × 0.5 = 0.2500

the probability of 2 girls is 6q2p2,

i.e. 6 × 0.52 × 0.52 = 0.3750

the probability of 3 girls is 4qp3,

i.e. 4 × 0.5 × 0.53 = 0.2500

the probability of 4 girls is p4,

i.e. 0.54 = 0.0625

Total probability, (q + p)4 = 1.0000

(a) The probability of having at least one girl is the
sum of the probabilities of having 1, 2, 3 and 4
girls, i.e.

0.2500 + 0.3750 + 0.2500 + 0.0625 = 0.9375

(Alternatively, the probability of having at least
1 girl is: 1 − (the probability of having no
girls), i.e. 1−0.0625, giving 0.9375, as obtained
previously.)

(b) The probability of having at least 1 girl and
1 boy is given by the sum of the probabilities
of having: 1 girl and 3 boys, 2 girls and 2 boys
and 3 girls and 2 boys, i.e.

0.2500 + 0.3750 + 0.2500 = 0.8750

(Alternatively, this is also the probability of
having 1 − (probability of having no girls +
probability of having no boys), i.e.
1 − 2 × 0.0625 = 0.8750, as obtained
previously.)

Problem 2. A dice is rolled 9 times. Find the
probabilities of having a 4 upwards (a) 3 times
and (b) less than 4 times.

Let p be the probability of having a 4 upwards.
Then p = 1/6, since dice have six sides.
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Let q be the probability of not having a 4 upwards.
Then q = 5/6. The probabilities of having a 4
upwards 0, 1, 2, . . . , n times are given by the succes-
sive terms of the expansion of (q + p)n, taken from
left to right. From the binomial expansion:

(q + p)9 = q9 + 9q8p + 36q7p2 + 84q6p3 + · · ·

The probability of having a 4 upwards no times is

q9 = (5/6)9 = 0.1938

The probability of having a 4 upwards once is

9q8p = 9(5/6)8(1/6) = 0.3489

The probability of having a 4 upwards twice is

36q7p2 = 36(5/6)7(1/6)2 = 0.2791

The probability of having a 4 upwards 3 times is

84q6p3 = 84(5/6)6(1/6)3 = 0.1302

(a) The probability of having a 4 upwards 3 times
is 0.1302.

(b) The probability of having a 4 upwards less than
4 times is the sum of the probabilities of having
a 4 upwards 0, 1, 2, and 3 times, i.e.

0.1938 + 0.3489 + 0.2791 + 0.1302 = 0.9520

Industrial inspection

In industrial inspection, p is often taken as the proba-
bility that a component is defective and q is the
probability that the component is satisfactory. In this
case, a binomial distribution may be defined as:

‘the probabilities that 0, 1, 2, 3, …, n components are defec-
tive in a sample of n components, drawn at random from
a large batch of components, are given by the successive
terms of the expansion of (q + p)n, taken from left to right’.

This definition is used in Problems 3 and 4.

Problem 3. A machine is producing a large
number of bolts automatically. In a box of these
bolts, 95% are within the allowable tolerance
values with respect to diameter, the remainder
being outside of the diameter tolerance values.
Seven bolts are drawn at random from the box.
Determine the probabilities that (a) two and
(b) more than two of the seven bolts are outside
of the diameter tolerance values.

Let p be the probability that a bolt is outside of the
allowable tolerance values, i.e. is defective, and let
q be the probability that a bolt is within the toler-
ance values, i.e. is satisfactory. Then p = 5%, i.e.
0.05 per unit and q = 95%, i.e. 0.95 per unit. The
sample number is 7.

The probabilities of drawing 0, 1, 2, . . . , n defec-
tive bolts are given by the successive terms of the
expansion of (q + p)n, taken from left to right. In
this problem

(q + p)n = (0.95 + 0.05)7

= 0.957 + 7 × 0.956 × 0.05

+ 21 × 0.955 × 0.052 + · · ·
Thus the probability of no defective bolts is

0.957 = 0.6983

The probability of 1 defective bolt is

7 × 0.956 × 0.05 = 0.2573

The probability of 2 defective bolts is

21 × 0.955 × 0.052 = 0.0406, and so on.

(a) The probability that two bolts are outside of the
diameter tolerance values is 0.0406.

(b) To determine the probability that more than
two bolts are defective, the sum of the proba-
bilities of 3 bolts, 4 bolts, 5 bolts, 6 bolts and
7 bolts being defective can be determined. An
easier way to find this sum is to find 1 − (sum
of 0 bolts, 1 bolt and 2 bolts being defective),
since the sum of all the terms is unity. Thus, the
probability of there being more than two bolts
outside of the tolerance values is:

1 − (0.6983 + 0.2573 + 0.0406), i.e. 0.0038

Problem 4. A package contains 50 similar
components and inspection shows that four
have been damaged during transit. If six com-
ponents are drawn at random from the contents
of the package determine the probabilities that
in this sample (a) one and (b) less than three are
damaged.

The probability of a component being damaged, p,
is 4 in 50, i.e. 0.08 per unit. Thus, the probability
of a component not being damaged, q, is 1 − 0.08,
i.e. 0.92.
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The probability of there being 0, 1, 2, . . . , 6
damaged components is given by the successive
terms of (q + p)6, taken from left to right.

(q + p)6 = q6 + 6q5p + 15q4p2 + 20q3p3 + · · ·
(a) The probability of one damaged component is

6q5p = 6 × 0.925 × 0.08 = 0.3164

(b) The probability of less than three damaged com-
ponents is given by the sum of the probabilities
of 0, 1 and 2 damaged components.

q6 + 6q5p + 15q4p2

= 0.926 + 6 × 0.925 × 0.08

+ 15 × 0.924 × 0.082

= 0.6064 + 0.3164 + 0.0688 = 0.9916

Histogram of probabilities

The terms of a binomial distribution may be repre-
sented pictorially by drawing a histogram, as shown
in Problem 5.

Problem 5. The probability of a student suc-
cessfully completing a course of study in three
years is 0.45. Draw a histogram showing the
probabilities of 0, 1, 2, . . . , 10 students success-
fully completing the course in three years.

Let p be the probability of a student successfully
completing a course of study in three years and q be
the probability of not doing so. Then p = 0.45 and
q = 0.55. The number of students, n, is 10.

The probabilities of 0, 1, 2, . . . , 10 students suc-
cessfully completing the course are given by the
successive terms of the expansion of (q+p)10, taken
from left to right.

(q + p)10 = q10 + 10q9p + 45q8p2 + 120q7p3

+ 210q6p4 + 252q5p5 + 210q4p6

+ 120q3p7 + 45q2p8 + 10qp9 + p10

Substituting q = 0.55 and p = 0.45 in this expan-
sion gives the values of the successive terms as:
0.0025, 0.0207, 0.0763, 0.1665, 0.2384, 0.2340,
0.1596, 0.0746, 0.0229, 0.0042 and 0.0003. The
histogram depicting these probabilities is shown in
Fig. 57.1.
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Figure 57.1

Now try the following exercise.

Exercise 214 Further problems on the bino-
mial distribution

1. Concrete blocks are tested and it is found
that, on average, 7% fail to meet the required
specification. For a batch of 9 blocks, deter-
mine the probabilities that (a) three blocks
and (b) less than four blocks will fail to meet
the specification. [(a) 0.0186 (b) 0.9976]

2. If the failure rate of the blocks in Problem 1
rises to 15%, find the probabilities that (a) no
blocks and (b) more than two blocks will
fail to meet the specification in a batch of
9 blocks. [(a) 0.2316 (b) 0.1408]

3. The average number of employees absent
from a firm each day is 4%. An office within
the firm has seven employees. Determine
the probabilities that (a) no employee and
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(b) three employees will be absent on a
particular day. [(a) 0.7514 (b) 0.0019]

4. A manufacturer estimates that 3% of his
output of a small item is defective. Find the
probabilities that in a sample of 10 items
(a) less than two and (b) more than two items
will be defective. [(a) 0.9655 (b) 0.0028]

5. Five coins are tossed simultaneously. Deter-
mine the probabilities of having 0, 1, 2, 3, 4
and 5 heads upwards, and draw a histogram
depicting the results.

⎡

⎢
⎢
⎣

Vertical adjacent rectangles,
whose heights are proportional to
0.0313, 0.1563, 0.3125, 0.3125,
0.1563 and 0.0313

⎤

⎥
⎥
⎦

6. If the probability of rain falling during a par-
ticular period is 2/5, find the probabilities of
having 0, 1, 2, 3, 4, 5, 6 and 7 wet days in a
week. Show these results on a histogram.

⎡

⎢
⎢
⎢
⎢
⎣

Vertical adjacent rectangles,
whose heights are proportional
to 0.0280, 0.1306, 0.2613,
0.2903, 0.1935, 0.0774,
0.0172 and 0.0016

⎤

⎥
⎥
⎥
⎥
⎦

7. An automatic machine produces, on average,
10% of its components outside of the toler-
ance required. In a sample of 10 components
from this machine, determine the probabil-
ity of having three components outside of the
tolerance required by assuming a binomial
distribution. [0.0574]

57.2 The Poisson distribution

When the number of trials, n, in a binomial distri-
bution becomes large (usually taken as larger than
10), the calculations associated with determining the
values of the terms becomes laborious. If n is large
and p is small, and the product np is less than 5, a
very good approximation to a binomial distribution
is given by the corresponding Poisson distribution,
in which calculations are usually simpler.

The Poisson approximation to a binomial distri-
bution may be defined as follows:

‘the probabilities that an event will happen 0, 1, 2, 3, …,
n times in n trials are given by the successive terms of the
expression

e−λ

(

1 + λ + λ2

2!
+ λ3

3!
+ · · ·

)

taken from left to right’.

The symbol λ is the expectation of an event happen-
ing and is equal to np.

Problem 6. If 3% of the gearwheels produced
by a company are defective, determine the
probabilities that in a sample of 80 gearwheels
(a) two and (b) more than two will be defective.

The sample number, n, is large, the probability of a
defective gearwheel, p, is small and the product np
is 80 × 0.03, i.e. 2.4, which is less than 5.

Hence a Poisson approximation to a binomial dis-
tribution may be used. The expectation of a defective
gearwheel, λ = np = 2.4.

The probabilities of 0, 1, 2, . . . defective gear-
wheels are given by the successive terms of the
expression

e−λ

(

1 + λ + λ2

2! + λ3

3! + · · ·
)

taken from left to right, i.e. by

e−λ, λe−λ,
λ2e−λ

2! , . . .

Thus probability of no defective gearwheels is

e−λ = e−2.4 = 0.0907

probability of 1 defective gearwheel is

λe−λ = 2.4e−2.4 = 0.2177

probability of 2 defective gearwheels is

λ2e−λ

2! = 2.42e−2.4

2 × 1
= 0.2613

(a) The probability of having 2 defective gearwheels
is 0.2613.

(b) The probability of having more than 2 defective
gearwheels is 1 − (the sum of the probabilities
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of having 0, 1, and 2 defective gearwheels), i.e.

1 − (0.0907 + 0.2177 + 0.2613),

that is, 0.4303

The principal use of a Poisson distribution is to
determine the theoretical probabilities when p, the
probability of an event happening, is known, but
q, the probability of the event not happening is
unknown. For example, the average number of goals
scored per match by a football team can be calcu-
lated, but it is not possible to quantify the number
of goals which were not scored. In this type of
problem, a Poisson distribution may be defined as
follows:

‘the probabilities of an event occurring 0, 1, 2, 3, …
times are given by the successive terms of the expression

e−λ

(

1 + λ + λ2

2!
+ λ3

3!
+ · · ·

)

,

taken from left to right’

The symbol λ is the value of the average occurrence
of the event.

Problem 7. A production department has 35
similar milling machines. The number of break-
downs on each machine averages 0.06 per week.
Determine the probabilities of having (a) one,
and (b) less than three machines breaking down
in any week.

Since the average occurrence of a breakdown is
known but the number of times when a machine did
not break down is unknown, a Poisson distribution
must be used.

The expectation of a breakdown for 35 machines
is 35 × 0.06, i.e. 2.1 breakdowns per week. The
probabilities of a breakdown occurring 0, 1, 2, . . .
times are given by the successive terms of the
expression

e−λ

(

1 + λ + λ2

2! + λ3

3! + · · ·
)

,

taken from left to right.

Hence probability of no breakdowns

e−λ = e−2.1 = 0.1225

probability of 1 breakdown is

λe−λ = 2.1e−2.1 = 0.2572

probability of 2 breakdowns is

λ2e−λ

2! = 2.12e−2.1

2 × 1
= 0.2700

(a) The probability of 1 breakdown per week is
0.2572.

(b) The probability of less than 3 breakdowns per
week is the sum of the probabilities of 0, 1, and
2 breakdowns per week,

i.e. 0.1225 + 0.2572 + 0.2700, i.e. 0.6497

Histogram of probabilities

The terms of a Poisson distribution may be repre-
sented pictorially by drawing a histogram, as shown
in Problem 8.

Problem 8. The probability of a person having
an accident in a certain period of time is 0.0003.
For a population of 7500 people, draw a his-
togram showing the probabilities of 0, 1, 2, 3, 4,
5 and 6 people having an accident in this period.

The probabilities of 0, 1, 2, . . . people having an
accident are given by the terms of expression

e−λ

(

1 + λ + λ2

2! + λ3

3! + · · ·
)

,

taken from left to right.
The average occurrence of the event, λ, is

7500 × 0.0003, i.e. 2.25.

The probability of no people having an accident is

e−λ = e−2.25 = 0.1054

The probability of 1 person having an accident is

λe−λ = 2.25e−2.25 = 0.2371

The probability of 2 people having an accident is

λ2e−λ

2! = 2.252e−2.25

2! = 0.2668

and so on, giving probabilities of 0.2001, 0.1126,
0.0506 and 0.0190 for 3, 4, 5 and 6 respectively hav-
ing an accident. The histogram for these probabilities
is shown in Fig. 57.2.
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Figure 57.2

Now try the following exercise.

Exercise 215 Further problems on the
Poisson distribution

1. In problem 7 of Exercise 214, page 556,
determine the probability of having three
components outside of the required tolerance
using the Poisson distribution. [0.0613]

2. The probability that an employee will go to
hospital in a certain period of time is 0.0015.
Use a Poisson distribution to determine the
probability of more than two employees
going to hospital during this period of time
if there are 2000 employees on the payroll.

[0.5768]

3. When packaging a product, a manufacturer
finds that one packet in twenty is under-
weight. Determine the probabilities that in a

box of 72 packets (a) two and (b) less than
four will be underweight.

[(a) 0.1771 (b) 0.5153]

4. A manufacturer estimates that 0.25% of his
output of a component are defective. The
components are marketed in packets of 200.
Determine the probability of a packet con-
taining less than three defective components.

[0.9856]

5. The demand for a particular tool from a
store is, on average, five times a day and the
demand follows a Poisson distribution. How
many of these tools should be kept in the
stores so that the probability of there being
one available when required is greater than
10%? ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

The probabilities of the demand
for 0, 1, 2, . . . tools are
0.0067, 0.0337, 0.0842, 0.1404,
0.1755, 0.1755, 0.1462, 0.1044,
0.0653, . . . This shows that the
probability of wanting a tool
8 times a day is 0.0653, i.e.
less than 10%. Hence 7 should
be kept in the store

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6. Failure of a group of particular machine
tools follows a Poisson distribution with a
mean value of 0.7. Determine the probabil-
ities of 0, 1, 2, 3, 4 and 5 failures in a week
and present these results on a histogram.⎡

⎢
⎢
⎣

Vertical adjacent rectangles
having heights proportional
to 0.4966, 0.3476, 0.1217,
0.0284, 0.0050 and 0.0007

⎤

⎥
⎥
⎦
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The normal distribution

58.1 Introduction to the normal
distribution

When data is obtained, it can frequently be consid-
ered to be a sample (i.e. a few members) drawn at
random from a large population (i.e. a set having
many members). If the sample number is large, it is
theoretically possible to choose class intervals which
are very small, but which still have a number of mem-
bers falling within each class. A frequency polygon
of this data then has a large number of small line
segments and approximates to a continuous curve.
Such a curve is called a frequency or a distribution
curve.

An extremely important symmetrical distribution
curve is called the normal curve and is as shown
in Fig. 58.1. This curve can be described by a math-
ematical equation and is the basis of much of the
work done in more advanced statistics. Many natu-
ral occurrences such as the heights or weights of a
group of people, the sizes of components produced
by a particular machine and the life length of certain
components approximate to a normal distribution.

Variable

F
re

qu
en

cy

Figure 58.1

Normal distribution curves can differ from one
another in the following four ways:

(a) by having different mean values
(b) by having different values of standard deviations
(c) the variables having different values and differ-

ent units and
(d) by having different areas between the curve and

the horizontal axis.

A normal distribution curve is standardized as
follows:

(a) The mean value of the unstandardized curve is
made the origin, thus making the mean value,
x, zero.

(b) The horizontal axis is scaled in standard devia-

tions. This is done by letting z = x − x

σ
, where

z is called the normal standard variate, x is
the value of the variable, x is the mean value of
the distribution and σ is the standard deviation
of the distribution.

(c) The area between the normal curve and the
horizontal axis is made equal to unity.

When a normal distribution curve has been stan-
dardized, the normal curve is called a standardized
normal curve or a normal probability curve, and
any normally distributed data may be represented by
the same normal probability curve.

The area under part of a normal probability curve
is directly proportional to probability and the value of
the shaded area shown in Fig. 58.2 can be determined
by evaluating:

∫
1√
(2π)

e

(
z2

2

)

dz, where z = x − x

σ

Probability
density

Standard deviations
z1 z20 z-value

Figure 58.2

To save repeatedly determining the values of
this function, tables of partial areas under the
standardized normal curve are available in many
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mathematical formulae books, and such a table is
shown in Table 58.1, on page 561.

Problem 1. The mean height of 500 people
is 170 cm and the standard deviation is 9 cm.
Assuming the heights are normally distributed,
determine the number of people likely to have
heights between 150 cm and 195 cm.

The mean value, x, is 170 cm and corresponds to
a normal standard variate value, z, of zero on the
standardized normal curve. A height of 150 cm has

a z-value given by z = x − x

σ
standard deviations,

i.e.
150 − 170

9
or −2.22 standard deviations. Using

a table of partial areas beneath the standardized
normal curve (see Table 58.1), a z-value of −2.22
corresponds to an area of 0.4868 between the mean
value and the ordinate z = −2.22. The negative
z-value shows that it lies to the left of the z = 0
ordinate.

This area is shown shaded in Fig. 58.3(a). Simi-

larly, 195 cm has a z-value of
195 − 170

9
that is 2.78

standard deviations. From Table 58.1, this value of z
corresponds to an area of 0.4973, the positive value
of z showing that it lies to the right of the z = 0 ordi-
nate. This area is shown shaded in Fig. 58.3(b). The
total area shaded in Figs. 58.3(a) and (b) is shown in
Fig. 58.3(c) and is 0.4868 + 0.4973, i.e. 0.9841 of
the total area beneath the curve.

However, the area is directly proportional to prob-
ability. Thus, the probability that a person will have a
height of between 150 and 195 cm is 0.9841. For a
group of 500 people, 500 × 0.9841, i.e. 492 peo-
ple are likely to have heights in this range. The
value of 500 × 0.9841 is 492.05, but since answers
based on a normal probability distribution can only
be approximate, results are usually given correct to
the nearest whole number.

Problem 2. For the group of people given in
Problem 1, find the number of people likely to
have heights of less than 165 cm.

A height of 165 cm corresponds to
165 − 170

9
i.e. −0.56 standard deviations.

The area between z = 0 and z = −0.56 (from
Table 58.1) is 0.2123, shown shaded in Fig. 58.4(a).

0 z -value−2.22
(a)

0 z -value2.78
(b)

0 z -value2.78−2.22
(c)

Figure 58.3

The total area under the standardized normal curve
is unity and since the curve is symmetrical, it follows
that the total area to the left of the z = 0 ordinate is
0.5000. Thus the area to the left of the z = −0.56
ordinate (‘left’ means ‘less than’, ‘right’ means
‘more than’) is 0.5000 − 0.2123, i.e. 0.2877 of the
total area, which is shown shaded in Fig 58.4(b).
The area is directly proportional to probability and
since the total area beneath the standardized normal
curve is unity, the probability of a person’s height
being less than 165 cm is 0.2877. For a group of 500
people, 500 × 0.2877, i.e. 144 people are likely to
have heights of less than 165 cm.

Problem 3. For the group of people given in
Problem 1 find how many people are likely to
have heights of more than 194 cm.

194 cm corresponds to a z-value of
194 − 170

9
that is,

2.67 standard deviations. From Table 58.1, the area
between z = 0, z = 2.67 and the standardized nor-
mal curve is 0.4962, shown shaded in Fig. 58.5(a).
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Table 58.1 Partial areas under the standardized normal curve

z0

z = x − x

σ
0 1 2 3 4 5 6 7 8 9

0.0 0.0000 0.0040 0.0080 0.0120 0.0159 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0678 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1388 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2086 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2760 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3451 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4430 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4762 0.4767
2.0 0.4772 0.4778 0.4783 0.4785 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4980 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998
3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.9 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
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0 z -value−0.56

0 z -value−0.56

(a)

(b)

Figure 58.4

Since the standardized normal curve is symmetri-
cal, the total area to the right of the z = 0 ordinate is
0.5000, hence the shaded area shown in Fig. 58.5(b)
is 0.5000 − 0.4962, i.e. 0.0038. This area represents
the probability of a person having a height of more
than 194 cm, and for 500 people, the number of peo-
ple likely to have a height of more than 194 cm is
0.0038 × 500, i.e. 2 people.

0 z -value2.67

(a)

0 z -value2.67

(b)

Figure 58.5

Problem 4. A batch of 1500 lemonade bot-
tles have an average contents of 753 ml and
the standard deviation of the contents is 1.8 ml.
If the volumes of the contents are normally
distributed, find

(a) the number of bottles likely to contain less
than 750 ml,

(b) the number of bottles likely to contain
between 751 and 754 ml,

(c) the number of bottles likely to contain more
than 757 ml, and

(d) the number of bottles likely to contain
between 750 and 751 ml.

(a) The z-value corresponding to 750 ml is given by
x − x

σ
i.e.

750 − 753

1.8
= −1.67 standard devia-

tions. From Table 58.1, the area between z = 0
and z = −1.67 is 0.4525. Thus the area to the left
of the z = −1.67 ordinate is 0.5000 − 0.4525
(see Problem 2), i.e. 0.0475. This is the prob-
ability of a bottle containing less than 750 ml.
Thus, for a batch of 1500 bottles, it is likely that
1500 × 0.0475, i.e. 71 bottles will contain less
than 750 ml.

(b) The z-value corresponding to 751 and 754 ml

are
751 − 753

1.8
and

754 − 753

1.8
i.e. −1.11 and

0.56 respectively. From Table 58.1, the areas
corresponding to these values are 0.3665 and
0.2123 respectively. Thus the probability of a
bottle containing between 751 and 754 ml is
0.3665 + 0.2123 (see Problem 1), i.e. 0.5788.
For 1500 bottles, it is likely that 1500 × 0.5788,
i.e. 868 bottles will contain between 751 and
754 ml.

(c) The z-value corresponding to 757 ml is
757 − 753

1.8
, i.e. 2.22 standard deviations. From

Table 58.1, the area corresponding to a z-value
of 2.22 is 0.4868. The area to the right of the
z = 2.22 ordinate is 0.5000 − 0.4868 (see Prob-
lem 3), i.e. 0.0132. Thus, for 1500 bottles, it is
likely that 1500 × 0.0132, i.e. 20 bottles will
have contents of more than 757 ml.

(d) The z-value corresponding to 750 ml is −1.67
(see part (a)), and the z-value corresponding
to 751 ml is −1.11 (see part (b)). The areas
corresponding to these z-values are 0.4525 and
0.3665 respectively, and both these areas lie on
the left of the z = 0 ordinate. The area between
z = −1.67 and z = −1.11 is 0.4525 − 0.3665,
i.e. 0.0860 and this is the probability of a bot-
tle having contents between 750 and 751 ml.
For 1500 bottles, it is likely that 1500 × 0.0860,
i.e. 129 bottles will be in this range.
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Now try the following exercise.

Exercise 216 Further problems on the
introduction to the normal distribution

1. A component is classed as defective if it has a
diameter of less than 69 mm. In a batch of 350
components, the mean diameter is 75 mm and
the standard deviation is 2.8 mm. Assuming
the diameters are normally distributed,
determine how many are likely to be classed
as defective. [6]

2. The masses of 800 people are normally dis-
tributed, having a mean value of 64.7 kg and a
standard deviation of 5.4 kg. Find how many
people are likely to have masses of less than
54.4 kg. [22]

3. 500 tins of paint have a mean content of
1010 ml and the standard deviation of the
contents is 8.7 ml. Assuming the volumes of
the contents are normally distributed, calcu-
late the number of tins likely to have contents
whose volumes are less than (a) 1025 ml
(b) 1000 ml and (c) 995 ml.

[(a) 479 (b) 63 (c) 21]

4. For the 350 components in Problem 1, if those
having a diameter of more than 81.5 mm are
rejected, find, correct to the nearest compo-
nent, the number likely to be rejected due to
being oversized. [4]

5. For the 800 people in Problem 2, determine
how many are likely to have masses of more
than (a) 70 kg and (b) 62 kg.

[(a) 131 (b) 553]

6. The mean diameter of holes produced by a
drilling machine bit is 4.05 mm and the stan-
dard deviation of the diameters is 0.0028 mm.
For twenty holes drilled using this machine,
determine, correct to the nearest whole num-
ber, how many are likely to have diame-
ters of between (a) 4.048 and 4.0553 mm
and (b) 4.052 and 4.056 mm, assuming the
diameters are normally distributed.

[(a) 15 (b) 4]

7. The intelligence quotients of 400 children
have a mean value of 100 and a standard devi-
ation of 14.Assuming that I.Q.’s are normally
distributed, determine the number of children

likely to have I.Q.’s of between (a) 80 and 90,
(b) 90 and 110 and (c) 110 and 130.

[(a) 65 (b) 209 (c) 89]

8. The mean mass of active material in tablets
produced by a manufacturer is 5.00 g and the
standard deviation of the masses is 0.036 g.
In a bottle containing 100 tablets, find how
many tablets are likely to have masses of
(a) between 4.88 and 4.92 g, (b) between 4.92
and 5.04 g and (c) more than 5.04 g.

[(a) 1 (b) 85 (c) 13]

58.2 Testing for a normal distribution

It should never be assumed that because data is con-
tinuous it automatically follows that it is normally
distributed. One way of checking that data is nor-
mally distributed is by using normal probability
paper, often just called probability paper. This is
special graph paper which has linear markings on
one axis and percentage probability values from 0.01
to 99.99 on the other axis (see Figs. 58.6 and 58.7).
The divisions on the probability axis are such that
a straight line graph results for normally distributed
data when percentage cumulative frequency values
are plotted against upper class boundary values. If
the points do not lie in a reasonably straight line,
then the data is not normally distributed. The method
used to test the normality of a distribution is shown
in Problems 5 and 6. The mean value and standard
deviation of normally distributed data may be deter-
mined using normal probability paper. For normally
distributed data, the area beneath the standardized
normal curve and a z-value of unity (i.e. one stan-
dard deviation) may be obtained from Table 58.1.
For one standard deviation, this area is 0.3413,
i.e. 34.13%. An area of ±1 standard deviation is
symmetrically placed on either side of the z = 0
value, i.e. is symmetrically placed on either side of
the 50% cumulative frequency value. Thus an area
corresponding to ±1 standard deviation extends
from percentage cumulative frequency values of
(50 + 34.13)% to (50 − 34.13)%, i.e. from 84.13%
to 15.87%. For most purposes, these values are taken
as 84% and 16%. Thus, when using normal probabil-
ity paper, the standard deviation of the distribution
is given by:
(

variable value for 84% cumulative frequency −
variable value for 16% cumulative frequency

)

2
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Figure 58.6

Problem 5. Use normal probability paper to
determine whether the data given below, which
refers to the masses of 50 copper ingots, is
approximately normally distributed. If the data
is normally distributed, determine the mean and
standard deviation of the data from the graph
drawn.

Class mid-point value (kg) Frequency

29.5 2
30.5 4
31.5 6
32.5 8
33.5 9
34.5 8
35.5 6
36.5 4
37.5 2
38.5 1

To test the normality of a distribution, the upper class
boundary/percentage cumulative frequency values
are plotted on normal probability paper. The upper
class boundary values are: 30, 31, 32, …, 38, 39.
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Figure 58.7

The corresponding cumulative frequency values (for
‘less than’ the upper class boundary values) are:
2, (4 + 2) = 6, (6 + 4 + 2) = 12, 20, 29, 37, 43, 47,
49 and 50. The corresponding percentage cumulative

frequency values are
2

50
× 100 = 4,

6

50
× 100 = 12,

24, 40, 58, 74, 86, 94, 98 and 100%.
The co-ordinates of upper class boundary/percen-

tage cumulative frequency values are plotted as
shown in Fig. 58.6. When plotting these values, it
will always be found that the co-ordinate for the
100% cumulative frequency value cannot be plotted,
since the maximum value on the probability scale is
99.99. Since the points plotted in Fig. 58.6 lie very
nearly in a straight line, the data is approximately
normally distributed.

The mean value and standard deviation can be
determined from Fig. 58.6. Since a normal curve
is symmetrical, the mean value is the value of the
variable corresponding to a 50% cumulative fre-
quency value, shown as point P on the graph. This
shows that the mean value is 33.6 kg. The standard
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deviation is determined using the 84% and 16%
cumulative frequency values, shown as Q and R
in Fig. 58.6. The variable values for Q and R are
35.7 and 31.4 respectively; thus two standard devi-
ations correspond to 35.7 − 31.4, i.e. 4.3, showing
that the standard deviation of the distribution is

approximately
4.3

2
i.e. 2.15 standard deviations.

The mean value and standard deviation of the
distribution can be calculated using

mean, x =
(∑

fx
)

(∑
f
)

and standard deviation,

σ =
√√
√
√
{(∑

[f (x − x̄)2]
)

(∑
f
)

}

where f is the frequency of a class and x is the class
mid-point value. Using these formulae gives a mean
value of the distribution of 33.6 (as obtained graphi-
cally) and a standard deviation of 2.12, showing that
the graphical method of determining the mean and
standard deviation give quite realistic results.

Problem 6. Use normal probability paper to
determine whether the data given below is nor-
mally distributed. Use the graph and assume a
normal distribution whether this is so or not,
to find approximate values of the mean and
standard deviation of the distribution.

Class mid-point values Frequency

5 1
15 2
25 3
35 6
45 9
55 6
65 2
75 2
85 1
95 1

To test the normality of a distribution, the upper class
boundary/percentage cumulative frequency values
are plotted on normal probability paper. The upper
class boundary values are: 10, 20, 30, …, 90 and 100.
The corresponding cumulative frequency values are
1, 1 + 2 = 3, 1 + 2 + 3 = 6, 12, 21, 27, 29, 31, 32 and

33. The percentage cumulative frequency values are
1

33
× 100 = 3,

3

33
× 100 = 9, 18, 36, 64, 82, 88, 94,

97 and 100.
The co-ordinates of upper class boundary

values/percentage cumulative frequency values
are plotted as shown in Fig. 58.7. Although six of
the points lie approximately in a straight line, three
points corresponding to upper class boundary values
of 50, 60 and 70 are not close to the line and indicate
that the distribution is not normally distributed.
However, if a normal distribution is assumed, the
mean value corresponds to the variable value at a
cumulative frequency of 50% and, from Fig. 58.7,
point A is 48. The value of the standard deviation
of the distribution can be obtained from the variable
values corresponding to the 84% and 16% cumula-
tive frequency values, shown as B and C in Fig. 58.7
and give: 2σ = 69 − 28, i.e. the standard deviation
σ = 20.5. The calculated values of the mean and
standard deviation of the distribution are 45.9 and
19.4 respectively, showing that errors are introduced
if the graphical method of determining these values
is used for data which is not normally distributed.

Now try the following exercise.

Exercise 217 Further problems on testing
for a normal distribution

1. A frequency distribution of 150 measure-
ments is as shown:

Class mid-point value Frequency

26.4 5
26.6 12
26.8 24
27.0 36
27.2 36
27.4 25
27.6 12

Use normal probability paper to show that
this data approximates to a normal distribu-
tion and hence determine the approximate
values of the mean and standard deviation of
the distribution. Use the formula for mean
and standard deviation to verify the results
obtained.

⎡

⎣
Graphically, x = 27.1, σ = 0.3;
by calculation, x = 27.079,

σ = 0.3001

⎤

⎦
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2. A frequency distribution of the class mid-
point values of the breaking loads for 275
similar fibres is as shown below:

Load (kN) 17 19 21 23 25 27 29 31
Frequency 9 23 55 78 64 28 14 4

Use normal probability paper to show that
this distribution is approximately normally

distributed and determine the mean and stan-
dard deviation of the distribution (a) from the
graph and (b) by calculation.

[
(a) x = 23.5 kN, σ = 2.9 kN

(b) x = 23.364 kN, σ = 2.917 kN

]
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59

Linear correlation

59.1 Introduction to linear correlation

Correlation is a measure of the amount of asso-
ciation existing between two variables. For linear
correlation, if points are plotted on a graph and all
the points lie on a straight line, then perfect lin-
ear correlation is said to exist. When a straight
line having a positive gradient can reasonably be
drawn through points on a graph positive or direct
linear correlation exists, as shown in Fig. 59.1(a).
Similarly, when a straight line having a negative gra-
dient can reasonably be drawn through points on a
graph, negative or inverse linear correlation exists,
as shown in Fig. 59.1(b). When there is no appar-
ent relationship between co-ordinate values plotted
on a graph then no correlation exists between the
points, as shown in Fig. 59.1(c). In statistics, when
two variables are being investigated, the location of
the co-ordinates on a rectangular co-ordinate system
is called a scatter diagram—as shown in Fig. 59.1.

59.2 The product-moment formula for
determining the linear correlation
coefficient

The amount of linear correlation between two vari-
ables is expressed by a coefficient of correlation,
given the symbol r. This is defined in terms of
the deviations of the co-ordinates of two vari-
ables from their mean values and is given by the
product-moment formula which states:

coefficient of correlation,

r =
∑

xy
√{(∑

x2
) (∑

y2
)} (1)

where the x-values are the values of the devia-
tions of co-ordinates X from X, their mean value
and the y-values are the values of the deviations
of co-ordinates Y from Y , their mean value. That
is, x = (X − X) and y = (Y − Y ). The results of
this determination give values of r lying between
+1 and −1, where +1 indicates perfect direct

y

y

y

x

x

x

Positive linear correlation

(a)

Negative linear correlation

(b)

No correlation

(c)

Figure 59.1
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correlation, −1 indicates perfect inverse correlation
and 0 indicates that no correlation exists. Between
these values, the smaller the value of r, the less is
the amount of correlation which exists. Generally,
values of r in the ranges 0.7 to 1 and −0.7 to −1
show that a fair amount of correlation exists.

59.3 The significance of a coefficient
of correlation

When the value of the coefficient of correlation has
been obtained from the product moment formula,
some care is needed before coming to conclusions
based on this result. Checks should be made to
ascertain the following two points:

(a) that a ‘cause and effect’ relationship exists
between the variables; it is relatively easy, math-
ematically, to show that some correlation exists
between, say, the number of ice creams sold in
a given period of time and the number of chim-
neys swept in the same period of time, although
there is no relationship between these variables;

(b) that a linear relationship exists between the
variables; the product-moment formula given
in Section 59.2 is based on linear correlation.
Perfect non-linear correlation may exist (for
example, the co-ordinates exactly following the
curve y = x3), but this gives a low value of coef-
ficient of correlation since the value of r is
determined using the product-moment formula,
based on a linear relationship.

59.4 Worked problems on linear
correlation

Problem 1. In an experiment to determine
the relationship between force on a wire and
the resulting extension, the following data is
obtained:

Force (N) 10 20 30 40 50 60 70
Extension
(mm) 0.22 0.40 0.61 0.85 1.20 1.45 1.70

Determine the linear coefficient of correlation
for this data.

Let X be the variable force values and Y be the depen-
dent variable extension values. The coefficient of

correlation is given by:

r =
∑

xy
√{(∑

x2
) (∑

y2
)}

where x = (X − X) and y = (Y − Y ), X and Y being
the mean values of the X and Y values respectively.
Using a tabular method to determine the quantities
of this formula gives:

X Y x = (X − X) y = (Y − Y )

10 0.22 −30 −0.699
20 0.40 −20 − 0.519
30 0.61 −10 −0.309
40 0.85 0 −0.069
50 1.20 10 0.281
60 1.45 20 0.531
70 1.70 30 0.781

∑
X = 280, X = 280

7
= 40

∑
Y = 6.43, Y = 6.43

7
= 0.919

xy x2 y2

20.97 900 0.489
10.38 400 0.269

3.09 100 0.095
0 0 0.005
2.81 100 0.079

10.62 400 0.282
23.43 900 0.610

∑
xy = 71.30

∑
x2 = 2800

∑
y2 = 1.829

Thus r = 71.3√
[2800 × 1.829]

= 0.996

This shows that a very good direct correlation
exists between the values of force and extension.

Problem 2. The relationship between expen-
diture on welfare services and absenteeism for
similar periods of time is shown below for a
small company.

Expenditure
(£′000) 3.5 5.0 7.0 10 12 15 18

Days lost 241 318 174 110 147 122 86

Determine the coefficient of linear correlation
for this data.
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Let X be the expenditure in thousands of pounds and
Y be the days lost.

The coefficient of correlation,

r =
∑

xy
√{(∑

x2
) (∑

y2
)}

where x = (X − X) and y = (Y − Y ), X and Y being
the mean values of X and Y respectively. Using a
tabular approach:

X Y x = (X − X) y = (Y − Y )

3.5 241 −6.57 69.9
5.0 318 −5.07 146.9
7.0 174 −3.07 2.9

10 110 −0.07 −61.1
12 147 1.93 −24.1
15 122 4.93 −49.1
18 86 7.93 −85.1

∑
X = 70.5, X = 70.5

7
= 10.07

∑
Y = 1198, Y = 1198

7
= 171.1

xy x2 y2

−459.2 43.2 4886
−744.8 25.7 21580

−8.9 9.4 8
4.3 0 3733

−46.5 3.7 581
−242.1 24.3 2411
−674.8 62.9 7242

∑
xy = −2172

∑
x2 = 169.2

∑
y2 = 40441

Thus

r = −2172√
[169.2 × 40441]

= −0.830

This shows that there is fairly good inverse corre-
lation between the expenditure on welfare and days
lost due to absenteeism.

Problem 3. The relationship between monthly
car sales and income from the sale of petrol for
a garage is as shown:

Cars sold 2 5 3 12 14 7 3 28 14 7 3 13
Income from
petrol sales
(£′000) 12 9 13 21 17 22 31 47 17 10 9 11

Determine the linear coefficient of correlation
between these quantities.

Let X represent the number of cars sold and Y the
income, in thousands of pounds, from petrol sales.
Using the tabular approach:

X Y x = (X − X) y = (Y − Y )

2 12 −7.25 −6.25
5 9 −4.25 −9.25
3 13 −6.25 −5.25

12 21 2.75 2.75
14 17 4.75 −1.25

7 22 −2.25 3.75
3 31 −6.25 12.75

28 47 18.75 28.75
14 17 4.75 −1.25

7 10 −2.25 −8.25
3 9 −6.25 −9.25

13 11 3.75 −7.25

∑
X = 111, X = 111

12
= 9.25

∑
Y = 219, Y = 219

12
= 18.25

xy x2 y2

45.3 52.6 39.1
39.3 18.1 85.6
32.8 39.1 27.6

7.6 7.6 7.6
−5.9 22.6 1.6
−8.4 5.1 14.1

−79.7 39.1 162.6
539.1 351.6 826.6
−5.9 22.6 1.6
18.6 5.1 68.1
57.8 39.1 85.6

−27.2 14.1 52.6
∑

xy = 613.4
∑

x2 = 616.7
∑

y2 = 1372.7
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The coefficient of correlation,

r =
∑

xy
√{(∑

x2
) (∑

y2
)}

= 613.4√{(616.7)(1372.7)} = 0.667

Thus, there is no appreciable correlation between
petrol and car sales.

Now try the following exercise.

Exercise 218 Further problems on linear
correlation

In Problems 1 to 3, determine the coefficient
of correlation for the data given, correct to 3
decimal places.

1. X 14 18 23 30 50
Y 900 1200 1600 2100 3800

[0.999]

2. X 2.7 4.3 1.2 1.4 4.9
Y 11.9 7.10 33.8 25.0 7.50

[−0.916]

3. X 24 41 9 18 73
Y 39 46 90 30 98

[0.422]

4. In an experiment to determine the relation-
ship between the current flowing in an electri-
cal circuit and the applied voltage, the results
obtained are:

Current
(mA) 5 11 15 19 24 28 33

Applied
voltage (V) 2 4 6 8 10 12 14

Determine, using the product-moment for-
mula, the coefficient of correlation for these
results. [0.999]

5. A gas is being compressed in a closed
cylinder and the values of pressures and

corresponding volumes at constant temper-
ature are as shown:

Pressure (kPa) Volume (m3)
160 0.034
180 0.036
200 0.030
220 0.027
240 0.024
260 0.025
280 0.020
300 0.019

Find the coefficient of correlation for these
values. [−0.962]

6. The relationship between the number of miles
travelled by a group of engineering salesmen
in ten equal time periods and the correspond-
ing value of orders taken is given below.
Calculate the coefficient of correlation using
the product-moment formula for these values.

Miles Orders taken
travelled (£′000)

1370 23
1050 17

980 19
1770 22
1340 27
1560 23
2110 30
1540 23
1480 25
1670 19

[0.632]

7. The data shown below refers to the number
of times machine tools had to be taken out of
service, in equal time periods, due to faults
occurring and the number of hours worked by
maintenance teams. Calculate the coefficient
of correlation for this data.

Machines
out of
service: 4 13 2 9 16 8 7

Maintenance
hours: 400 515 360 440 570 380 415

[0.937]
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60

Linear regression

60.1 Introduction to linear regression

Regression analysis, usually termed regression, is
used to draw the line of ‘best fit’through co-ordinates
on a graph. The techniques used enable a mathemat-
ical equation of the straight line form y = mx + c to
be deduced for a given set of co-ordinate values,
the line being such that the sum of the deviations of
the co-ordinate values from the line is a minimum,
i.e. it is the line of ‘best fit’. When a regression analy-
sis is made, it is possible to obtain two lines of best fit,
depending on which variable is selected as the depen-
dent variable and which variable is the independent
variable. For example, in a resistive electrical cir-
cuit, the current flowing is directly proportional to
the voltage applied to the circuit. There are two ways
of obtaining experimental values relating the current
and voltage. Either, certain voltages are applied to the
circuit and the current values are measured, in which
case the voltage is the independent variable and the
current is the dependent variable; or, the voltage can
be adjusted until a desired value of current is flowing
and the value of voltage is measured, in which case
the current is the independent value and the voltage
is the dependent value.

60.2 The least-squares regression lines

For a given set of co-ordinate values, (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) let the X values be the inde-
pendent variables and the Y -values be the dependent
values. Also let D1, . . . , Dn be the vertical distances
between the line shown as PQ in Fig. 60.1 and the
points representing the co-ordinate values. The least-
squares regression line, i.e. the line of best fit, is the
line which makes the value of D2

1 + D2
2 + · · · + D2

n
a minimum value.

The equation of the least-squares regression line
is usually written as Y = a0 + a1X, where a0 is the
Y -axis intercept value and a1 is the gradient of
the line (analogous to c and m in the equation
y = mx + c). The values of a0 and a1 to make the
sum of the ‘deviations squared’ a minimum can be

(X1, Y1)

D1

P

(X2, Y2)

D2

H3

H4

Dn

(Xn, Yn) Q
Y

X

Figure 60.1

obtained from the two equations:
∑

Y = a0N + a1

∑
X (1)

∑
(XY ) = a0

∑
X + a1

∑
X2 (2)

where X and Y are the co-ordinate values, N is the
number of co-ordinates and a0 and a1 are called the
regression coefficients of Y on X. Equations (1) and
(2) are called the normal equations of the regres-
sion lines of Y on X. The regression line of Y on
X is used to estimate values of Y for given values
of X. If the Y -values (vertical-axis) are selected as
the independent variables, the horizontal distances
between the line shown as PQ in Fig. 60.1 and the
co-ordinate values (H3, H4, etc.) are taken as the
deviations. The equation of the regression line is of
the form: X = b0 + b1Y and the normal equations
become:

∑
X = b0N + b1

∑
Y (3)

∑
(XY ) = b0

∑
Y + b1

∑
Y2 (4)

where X and Y are the co-ordinate values, b0 and b1
are the regression coefficients of X on Y and N is
the number of co-ordinates. These normal equations
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are of the regression line of X on Y , which is slightly
different to the regression line of Y on X. The regres-
sion line of X on Y is used to estimated values of X
for given values of Y . The regression line of Y on X
is used to determine any value of Y corresponding to
a given value of X. If the value of Y lies within the
range of Y -values of the extreme co-ordinates, the
process of finding the corresponding value of X is
called linear interpolation. If it lies outside of the
range of Y -values of the extreme co-ordinates than
the process is called linear extrapolation and the
assumption must be made that the line of best fit
extends outside of the range of the co-ordinate values
given.

By using the regression line of X on Y , values of
X corresponding to given values of Y may be found
by either interpolation or extrapolation.

60.3 Worked problems on linear
regression

Problem 1. In an experiment to determine the
relationship between frequency and the induc-
tive reactance of an electrical circuit, the fol-
lowing results were obtained:

Frequency Inductive reactance
(Hz) (ohms)

50 30
100 65
150 90
200 130
250 150
300 190
350 200

Determine the equation of the regression line
of inductive reactance on frequency, assuming a
linear relationship.

Since the regression line of inductive reactance on
frequency is required, the frequency is the indepen-
dent variable, X, and the inductive reactance is the
dependent variable, Y . The equation of the regression
line of Y on X is:

Y = a0 + a1X

and the regression coefficients a0 and a1 are obtained
by using the normal equations

∑
Y = a0N + a1

∑
X

and
∑

XY = a0
∑

X + a1
∑

X2

(from equations (1) and (2))

A tabular approach is used to determine the summed
quantities.

Frequency, X Inductive X2

reactance, Y
50 30 2500

100 65 10000
150 90 22500
200 130 40000
250 150 62500
300 190 90000
350 200 122500

∑
X = 1400

∑
Y = 855

∑
X2 = 350000

XY Y2

1500 900
6500 4225

13500 8100
26000 16900
37500 22500
57000 36100
70000 40000

∑
XY = 212000

∑
Y2 = 128725

The number of co-ordinate values given, N is 7.
Substituting in the normal equations gives:

855 = 7a0 + 1400a1 (1)

212000 = 1400a0 + 350000a1 (2)

1400 × (1) gives:

1197000 = 9800a0 + 1960000a1 (3)

7 × (2) gives:

1484000 = 9800a0 + 2450000a1 (4)

(4) − (3) gives:

287000 = 0 + 490000a1

from which, a1 = 287000

490000
= 0.586
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Substituting a1 = 0.586 in equation (1) gives:

855 = 7a0 + 1400(0.586)

i.e. a0 = 855 − 820.4

7
= 4.94

Thus the equation of the regression line of inductive
reactance on frequency is:

Y = 4.94 + 0.586 X

Problem 2. For the data given in Problem 1,
determine the equation of the regression line of
frequency on inductive reactance, assuming a
linear relationship.

In this case, the inductive reactance is the indepen-
dent variable X and the frequency is the dependent
variable Y . From equations 3 and 4, the equation of
the regression line of X on Y is:

X = b0 + b1Y

and the normal equations are
∑

X = b0N + b1

∑
Y

and
∑

XY = b0

∑
Y + b1

∑
Y2

From the table shown in Problem 1, the simultaneous
equations are:

1400 = 7b0 + 855b1

212000 = 855b0 + 128725b1

Solving these equations in a similar way to that in
Problem 1 gives:

b0 = −6.15
and b1 = 1.69, correct to 3 significant figures

Thus the equation of the regression line of frequency
on inductive reactance is:

X = −6.15 + 1.69 Y

Problem 3. Use the regression equations cal-
culated in Problems 1 and 2 to find (a) the value
of inductive reactance when the frequency is
175 Hz and (b) the value of frequency when

the inductive reactance is 250 ohms, assuming
the line of best fit extends outside of the given
co-ordinate values. Draw a graph showing the
two regression lines.

(a) From Problem 1, the regression equation of
inductive reactance on frequency is
Y= 4.94 + 0.586 X. When the frequency, X , is
175 Hz, Y= 4.94 + 0.586(175) = 107.5, correct
to 4 significant figures, i.e. the inductive reac-
tance is 107.5 ohms when the frequency is
175 Hz.

(b) From Problem 2, the regression equation of fre-
quency on inductive reactance is
X = −6.15 + 1.69 Y . When the inductive reac-
tance, Y , is 250 ohms,
X = −6.15 + 1.69(250) = 416.4 Hz, correct to 4
significant figures, i.e. the frequency is 416.4 Hz
when the inductive reactance is 250 ohms.

The graph depicting the two regression lines is
shown in Fig. 60.2. To obtain the regression line
of inductive reactance on frequency the regression
line equation Y= 4.94 + 0.586X is used, and X (fre-
quency) values of 100 and 300 have been selected
in order to find the corresponding Y values. These
values gave the co-ordinates as (100, 63.5) and (300,
180.7), shown as points A and B in Fig. 60.2. Two
co-ordinates for the regression line of frequency on
inductive reactance are calculated using the equa-
tion X = −6.15 + 1.69Y , the values of inductive
reactance of 50 and 150 being used to obtain the
co-ordinate values. These values gave co-ordinates
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(78.4, 50) and (247.4, 150), shown as points C and
D in Fig. 60.2.

It can be seen from Fig. 60.2 that to the scale
drawn, the two regression lines coincide. Although
it is not necessary to do so, the co-ordinate values
are also shown to indicate that the regression lines
do appear to be the lines of best fit. A graph showing
co-ordinate values is called a scatter diagram in
statistics.

Problem 4. The experimental values relating
centripetal force and radius, for a mass travelling
at constant velocity in a circle, are as shown:

Force (N) 5 10 15 20 25 30 35 40
Radius (cm) 55 30 16 12 11 9 7 5

Determine the equations of (a) the regression
line of force on radius and (b) the regression line
of radius on force. Hence, calculate the force at
a radius of 40 cm and the radius corresponding
to a force of 32 newtons.

Let the radius be the independent variable X , and the
force be the dependent variable Y . (This decision is
usually based on a ‘cause’ corresponding to X and
an ‘effect’ corresponding to Y ).

(a) The equation of the regression line of force on
radius is of the form Y= a0 + a1X and the con-
stants a0 and a1 are determined from the normal
equations:

∑
Y = a0N + a1

∑
X

and
∑

XY = a0
∑

X + a1
∑

X2

(from equations (1) and (2))

Using a tabular approach to determine the values
of the summations gives:

Radius, X Force, Y X2

55 5 3025
30 10 900
16 15 256
12 20 144
11 25 121

9 30 81
7 35 49
5 40 25

∑
X = 145

∑
Y = 180

∑
X2 = 4601

XY Y2

275 25
300 100
240 225
240 400
275 625
270 900
245 1225
200 1600

∑
XY= 2045

∑
Y2 = 5100

Thus 180 = 8a0 + 145a1

and 2045 = 145a0 + 4601a1

Solving these simultaneous equations gives
a0 = 33.7 and a1 = −0.617, correct to 3 signifi-
cant figures. Thus the equation of the regression
line of force on radius is:

Y = 33.7 − 0.617X

(b) The equation of the regression line of radius on
force is of the form X= b0 + b1Y and the con-
stants b0 and b1 are determined from the normal
equations:

∑
X = b0N + b1

∑
Y

and
∑

XY = b0
∑

Y + b1
∑

Y2

(from equations (3) and (4))

The values of the summations have been
obtained in part (a) giving:

145 = 8b0 + 180b1

and 2045 = 180b0 + 5100b1

Solving these simultaneous equations gives
b0 = 44.2 and b1 = −1.16, correct to 3 signifi-
cant figures. Thus the equation of the regression
line of radius on force is:

X = 44.2 − 1.16Y

The force, Y , at a radius of 40 cm, is obtained
from the regression line of force on radius, i.e.
y = 33.7 − 0.617(40) = 9.02,

i.e. the force at a radius of 40 cm is 9.02 N.

The radius, X, when the force is 32 newtons is
obtained from the regression line of radius on
force, i.e. X = 44.2 − 1.16(32) = 7.08,

i.e. the radius when the force is 32N is 7.08cm.
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Now try the following exercise.

Exercise 219 Further problems on linear
regression

In Problems 1 and 2, determine the equation
of the regression line of Y on X, correct to 3
significant figures.

1. X 14 18 23 30 50

Y 900 1200 1600 2100 3800

[Y= −256 + 80.6X]

2. X 6 3 9 15 2 14 21 13

Y 1.3 0.7 2.0 3.7 0.5 2.9 4.5 2.7

[Y= 0.0477 + 0.216X]

In Problems 3 and 4, determine the equations of
the regression lines of X on Y for the data stated,
correct to 3 significant figures.

3. The data given in Problem 1

[X= 3.20 + 0.0124Y ]

4. The data given in Problem 2

[X= −0.056 + 4.56Y ]

5. The relationship between the voltage applied
to an electrical circuit and the current flowing
is as shown:

Current (mA) Applied voltage (V)
2 5
4 11
6 15
8 19

10 24
12 28
14 33

Assuming a linear relationship, determine
the equation of the regression line of applied
voltage, Y , on current, X, correct to 4 signif-
icant figures.

[Y = 1.142 + 2.268X]

6. For the data given in Problem 5, determine
the equation of the regression line of current

on applied voltage, correct to 3 significant
figures.

[X = −0.483 + 0.440Y ]

7. Draw the scatter diagram for the data given
in Problem 5 and show the regression lines
of applied voltage on current and current on
applied voltage. Hence determine the values
of (a) the applied voltage needed to give a
current of 3 mA and (b) the current flowing
when the applied voltage is 40 volts, assum-
ing the regression lines are still true outside
of the range of values given.

[(a) 7.92V (b) 17.1 mA]

8. In an experiment to determine the relation-
ship between force and momentum, a force X,
is applied to a mass, by placing the mass on an
inclined plane, and the time, Y , for the veloc-
ity to change from u m/s to v m/s is measured.
The results obtained are as follows:

Force (N) Time (s)
11.4 0.56
18.7 0.35
11.7 0.55
12.3 0.52
14.7 0.43
18.8 0.34
19.6 0.31

Determine the equation of the regression line
of time on force, assuming a linear rela-
tionship between the quantities, correct to 3
significant figures.

[Y = 0.881 − 0.0290X]

9. Find the equation for the regression line of
force on time for the data given in Problem 8,
correct to 3 decimal places.

[X = 30.194 − 34.039Y ]

10. Draw a scatter diagram for the data given in
Problem 8 and show the regression lines of
time on force and force on time. Hence find
(a) the time corresponding to a force of 16 N,
and (b) the force at a time of 0.25 s, assuming
the relationship is linear outside of the range
of values given. [(a) 0.417 s (b) 21.7 N]
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Assignment 16

This assignment covers the material contained
in chapters 57 to 60.

The marks for each question are shown in
brackets at the end of each question.

1. A machine produces 15% defective components.
In a sample of 5, drawn at random, calculate,
using the binomial distribution, the probability
that:

(a) there will be 4 defective items

(b) there will be not more than 3 defective items

(c) all the items will be non-defective

Draw a histogram showing the probabilities of
0, 1, 2, . . ., 5 defective items. (20)

2. 2% of the light bulbs produced by a company are
defective. Determine, using the Poisson distribu-
tion, the probability that in a sample of 80 bulbs:
(a) 3 bulbs will be defective, (b) not more than
3 bulbs will be defective, (c) at least 2 bulbs will
be defective. (13)

3. Some engineering components have a mean
length of 20 mm and a standard deviation of
0.25 mm. Assume that the data on the lengths
of the components is normally distributed.

In a batch of 500 components, determine the
number of components likely to:

(a) have a length of less than 19.95 mm
(b) be between 19.95 mm and 20.15 mm
(c) be longer than 20.54 mm (15)

4. In a factory, cans are packed with an average of
1.0 kg of a compound and the masses are nor-
mally distributed about the average value. The
standard deviation of a sample of the contents
of the cans is 12 g. Determine the percentage of

cans containing (a) less than 985 g (b) more than
1030 g (c) between 985 g and 1030 g. (10)

5. The data given below gives the experimental val-
ues obtained for the torque output, X, from an
electric motor and the current, Y , taken from the
supply.

Torque X Current Y
0 3
1 5
2 6
3 6
4 9
5 11
6 12
7 12
8 14
9 13

Determine the linear coefficient of correlation
for this data. (18)

6. Some results obtained from a tensile test on a
steel specimen are shown below:

Tensile force (kN) Extension (mm)
4.8 3.5
9.3 8.2

12.8 10.1
17.7 15.6
21.6 18.4
26.0 20.8

Assuming a linear relationship:

(a) determine the equation of the regression line
of extension on force

(b) determine the equation of the regression line
of force on extension

(c) estimate (i) the value of extension when the
force is 16 kN, and (ii) the value of force
when the extension is 17 mm. (24)
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61

Sampling and estimation theories

61.1 Introduction

The concepts of elementary sampling theory and
estimation theories introduced in this chapter will
provide the basis for a more detailed study of inspec-
tion, control and quality control techniques used in
industry. Such theories can be quite complicated;
in this chapter a full treatment of the theories and
the derivation of formulae have been omitted for
clarity—basic concepts only have been developed.

61.2 Sampling distributions

In statistics, it is not always possible to take into
account all the members of a set and in these cir-
cumstances, a sample, or many samples, are drawn
from a population. Usually when the word sample is
used, it means that a random sample is taken. If each
member of a population has the same chance of being
selected, then a sample taken from that population
is called random. A sample which is not random is
said to be biased and this usually occurs when some
influence affects the selection.

When it is necessary to make predictions about a
population based on random sampling, often many
samples of, say, N members are taken, before the
predictions are made. If the mean value and stan-
dard deviation of each of the samples is calculated,
it is found that the results vary from sample to sam-
ple, even though the samples are all taken from the
same population. In the theories introduced in the
following sections, it is important to know whether
the differences in the values obtained are due to
chance or whether the differences obtained are
related in some way. If M samples of N members
are drawn at random from a population, the mean
values for the M samples together form a set of
data. Similarly, the standard deviations of the M
samples collectively form a set of data. Sets of data
based on many samples drawn from a population are
called sampling distributions. They are often used
to describe the chance fluctuations of mean values
and standard deviations based on random sampling.

61.3 The sampling distribution of
the means

Suppose that it is required to obtain a sample of two
items from a set containing five items. If the set is
the five letters A, B, C, D and E, then the different
samples which are possible are:

AB, AC, AD, AE, BC, BD, BE,
CD, CE and DE,

that is, ten different samples. The number of possible

different samples in this case is given by
5 × 4

2 × 1
i.e.

10. Similarly, the number of different ways in which
a sample of three items can be drawn from a set hav-

ing ten members can be shown to be
10 × 9 × 8

3 × 2 × 1
i.e.

120. It follows that when a small sample is drawn
from a large population, there are very many dif-
ferent combinations of members possible. With so
many different samples possible, quite a large varia-
tion can occur in the mean values of various samples
taken from the same population.

Usually, the greater the number of members in
a sample, the closer will be the mean value of the
sample to that of the population. Consider the set of
numbers 3, 4, 5, 6, and 7. For a sample of 2 members,

the lowest value of the mean is
3 + 4

2
, i.e. 3.5; the

highest is
6 + 7

2
, i.e. 6.5, giving a range of mean

values of 6.5 − 3.5 = 3.

For a sample of 3 members, the range is
3 + 4 + 5

3

to
5 + 6 + 7

3
that is, 2. As the number in the sample

increases, the range decreases until, in the limit, if
the sample contains all the members of the set, the
range of mean values is zero. When many samples
are drawn from a population and a sample distri-
bution of the mean values of the sample is formed,
the range of the mean values is small provided the
number in the sample is large. Because the range is
small it follows that the standard deviation of all the
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mean values will also be small, since it depends on
the distance of the mean values from the distribution
mean. The relationship between the standard devi-
ation of the mean values of a sampling distribution
and the number in each sample can be expressed as
follows:

Theorem 1 ‘If all possible samples of size N are
drawn from a finite population, Np, without replace-
ment, and the standard deviation of the mean values
of the sampling distribution of means is determined
then:

σx = σ√
N

√(
Np − N

Np − 1

)

where σx is the standard deviation of the sampling
distribution of means and σ is the standard deviation
of the population’.

The standard deviation of a sampling distribution
of mean values is called the standard error of the
means, thus

standard error of the means,

σx = σ√
N

√(
Np − N

Np − 1

)

(1)

Equation (1) is used for a finite population of size
Np and/or for sampling without replacement. The
word ‘error’ in the ‘standard error of the means’
does not mean that a mistake has been made but
rather that there is a degree of uncertainty in pre-
dicting the mean value of a population based on
the mean values of the samples. The formula for
the standard error of the means is true for all val-
ues of the number in the sample, N . When Np is
very large compared with N or when the popula-
tion is infinite (this can be considered to be the
case when sampling is done with replacement), the

correction factor

√(
Np − N

Np − 1

)

approaches unit and

equation (1) becomes

σx = σ√
N

(2)

Equation (2) is used for an infinite population and/or
for sampling with replacement.

Problem 1. Verify Theorem 1 above for the
set of numbers {3, 4, 5, 6, 7} when the sample
size is 2.

The only possible different samples of size 2 which
can be drawn from this set without replacement are:

(3, 4), (3, 5), (3, 6), (3, 7), (4, 5),
(4, 6), (4, 7), (5, 6), (5, 7) and (6, 7)

The mean values of these samples form the following
sampling distribution of means:

3.5, 4, 4.5, 5, 4.5, 5, 5.5, 5.5, 6 and 6.5

The mean of the sampling distributions of means,

µx =

(
3.5 + 4 + 4.5 + 5 + 4.5 + 5

+ 5.5 + 5.5 + 6 + 6.5

)

10
= 50

10
= 5

The standard deviation of the sampling distribution
of means,

σx =

√√
√
√
√
√
√

⎡

⎢
⎢
⎣

(3.5 − 5)2 + (4 − 5)2 + (4.5 − 5)2

+ (5 − 5)2 + · · · + (6.5 − 5)2

10

⎤

⎥
⎥
⎦

=
√

7.5

10
= ±0.866

Thus, the standard error of the means is 0.866.
The standard deviation of the population,

σ =

√√
√
√
√
√
√

⎡

⎢
⎢
⎣

(3 − 5)2 + (4 − 5)2 + (5 − 5)2

+ (6 − 5)2 + (7 − 5)

5

⎤

⎥
⎥
⎦

= √
2 = ±1.414

But from Theorem 1:

σx = σ√
N

√(
Np − N

Np − 1

)

and substituting for Np, N andσ in equation (1) gives:

σx = ±1.414√
2

√(
5 − 2

5 − 1

)

=
√

3

4
= ±0.866,

as obtained by considering all samples from the
population. Thus Theorem 1 is verified.

In Problem 1 above, it can be seen that the mean of
the population,

(
3 + 4 + 5 + 6 + 7

5

)
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is 5 and also that the mean of the sampling distribu-
tion of means, µx is 5. This result is generalized in
Theorem 2.

Theorem 2 ‘If all possible samples of size N are
drawn from a population of size Np and the mean
value of the sampling distribution of means µx is
determined then

µx = µ (3)

where µ is the mean value of the population’.

In practice, all possible samples of size N are not
drawn from the population. However, if the sample
size is large (usually taken as 30 or more), then the
relationship between the mean of the sampling dis-
tribution of means and the mean of the population is
very near to that shown in equation (3). Similarly, the
relationship between the standard error of the means
and the standard deviation of the population is very
near to that shown in equation (2).

Another important property of a sampling distri-
bution is that when the sample size, N , is large, the
sampling distribution of means approximates to a
normal distribution, of mean value µx and standard
deviation σx. This is true for all normally distributed
populations and also for populations which are not
normally distributed provided the population size
is at least twice as large as the sample size. This
property of normality of a sampling distribution
is based on a special case of the ‘central limit the-
orem’, an important theorem relating to sampling
theory. Because the sampling distribution of means
and standard deviations is normally distributed, the
table of the partial areas under the standardized
normal curve (shown in Table 58.1 on page 561)
can be used to determine the probabilities of a
particular sample lying between, say, ±1 standard
deviation, and so on. This point is expanded in
Problem 3.

Problem 2. The heights of 3000 people are
normally distributed with a mean of 175 cm and
a standard deviation of 8 cm. If random sam-
ples are taken of 40 people, predict the standard
deviation and the mean of the sampling distri-
bution of means if sampling is done (a) with
replacement, and (b) without replacement.

For the population: number of members, Np = 3000;
standard deviation, σ = 8 cm; mean, µ = 175 cm.

For the samples: number in each sample, N = 40.

(a) When sampling is done with replacement,
the total number of possible samples (two or
more can be the same) is infinite. Hence, from
equation (2) the standard error of the mean
(i.e. the standard deviation of the sampling
distribution of means)

σx = σ√
N

= 8√
40

= 1.265 cm

From equation (3), the mean of the sampling
distribution

µx = µ = 175 cm

(b) When sampling is done without replacement,
the total number of possible samples is finite and
hence equation (1) applies. Thus the standard
error of the means

σx = σ√
N

√(
Np − N

Np − 1

)

= 8√
40

√(
3000 − 40

3000 − 1

)

= (1.265)(0.9935) = 1.257 cm

As stated, following equation (3), provided the
sample size is large, the mean of the sam-
pling distribution of means is the same for
both finite and infinite populations. Hence, from
equation (3),

µx = 175 cm

Problem 3. 1500 ingots of a metal have a
mean mass of 6.5 kg and a standard deviation of
0.5 kg. Find the probability that a sample of 60
ingots chosen at random from the group, with-
out replacement, will have a combined mass of
(a) between 378 and 396 kg, and (b) more than
399 kg.

For the population: numbers of members, Np = 1500;
standard deviation, σ = 0.5 kg; mean µ = 6.5 kg.
For the sample: number in sample, N = 60.
If many samples of 60 ingots had been drawn from
the group, then the mean of the sampling distribu-
tion of means, µx would be equal to the mean of the
population. Also, the standard error of means is
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given by

σx = σ√
N

√(
Np − N

Np − 1

)

In addition, the sample distribution would have
been approximately normal. Assume that the sample
given in the problem is one of many samples. For
many (theoretical) samples:

the mean of the sampling distribution of means,
µx = µ = 6.5 kg.

Also, the standard error of the means,

σx = σ√
N

√(
Np − N

Np − 1

)

= 0.5√
60

√(
1500 − 60

1500 − 1

)

= 0.0633 kg

Thus, the sample under consideration is part of a nor-
mal distribution of mean value 6.5 kg and a standard
error of the means of 0.0633 kg.

(a) If the combined mass of 60 ingots is between
378 and 396 kg, then the mean mass of each of

the 60 ingots lies between
378

60
and

396

60
kg, i.e.

between 6.3 kg and 6.6 kg.

Since the masses are normally distributed, it is
possible to use the techniques of the normal
distribution to determine the probability of the
mean mass lying between 6.3 and 6.6 kg. The
normal standard variate value, z, is given by

z = x − x

σ
,

hence for the sampling distribution of means,
this becomes,

z = x − µx

σx

Thus, 6.3 kg corresponds to a z-value of
6.3 − 6.5

0.0633
= −3.16 standard deviations.

Similarly, 6.6 kg corresponds to a z-value of
6.6 − 6.5

0.0633
= 1.58 standard deviations.

Using Table 58.1 (page 561), the areas corre-
sponding to these values of standard deviations
are 0.4992 and 0.4430 respectively. Hence the
probability of the mean mass lying between
6.3 kg and 6.6 kg is 0.4992 + 0.4430 = 0.9422.

(This means that if 10 000 samples are drawn,
9422 of these samples will have a combined
mass of between 378 and 396 kg.)

(b) If the combined mass of 60 ingots is 399 kg, the

mean mass of each ingot is
399

60
, that is, 6.65 kg.

The z-value for 6.65 kg is
6.65 − 6.5

0.0633
, i.e.

2.37 standard deviations. From Table 58.1
(page 561), the area corresponding to this z-
value is 0.4911. But this is the area between the
ordinate z = 0 and ordinate z = 2.37. The ‘more
than’ value required is the total area to the right
of the z = 0 ordinate, less the value between
z = 0 and z = 2.37, i.e. 0.5000 − 0.4911. Thus,
since areas are proportional to probabilities for
the standardized normal curve, the probability
of the mean mass being more than 6.65 kg
is 0.5000 − 0.4911, i.e. 0.0089. (This means
that only 89 samples in 10000, for example, will
have a combined mass exceeding 399 kg.)

Now try the following exercise.

Exercise 220 Further problems on the
sampling distribution of means

1. The lengths of 1500 bolts are normally dis-
tributed with a mean of 22.4 cm and a stan-
dard deviation of 0.0438 cm. If 30 samples
are drawn at random from this population,
each sample being 36 bolts, determine the
mean of the sampling distribution and stan-
dard error of the means when sampling is
done with replacement.

[µx = 22.4 cm, σx = 0.0080 cm]

2. Determine the standard error of the means
in Problem 1, if sampling is done without
replacement, correct to four decimal places.

[σx = 0.0079 cm]

3. A power punch produces 1800 washers per
hour. The mean inside diameter of the wash-
ers is 1.70 cm and the standard deviation is
0.013 cm. Random samples of 20 washers are
drawn every 5 minutes. Determine the mean
of the sampling distribution of means and the
standard error of the means for the one hour’s
output from the punch, (a) with replacement
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and (b) without replacement, correct to three
significant figures.

⎡

⎢
⎣

(a) µx = 1.70 cm,
σx = 2.91 × 10−3 cm

(b) µx = 1.70 cm,
σx = 2.89 × 10−3 cm

⎤

⎥
⎦

A large batch of electric light bulbs have a
mean time to failure of 800 hours and the
standard deviation of the batch is 60 hours.
Use this data and also Table 58.1 on page 561
to solve Problems 4 to 6.

4. If a random sample of 64 light bulbs is drawn
from the batch, determine the probability that
the mean time to failure will be less than
785 hours, correct to three decimal places.

[0.023]

5. Determine the probability that the mean time
to failure of a random sample of 16 light bulbs
will be between 790 hours and 810 hours,
correct to three decimal places. [0.497]

6. For a random sample of 64 light bulbs, deter-
mine the probability that the mean time to
failure will exceed 820 hours, correct to two
significant figures. [0.0038]

7. The contents of a consignment of 1200 tins
of a product have a mean mass of 0.504 kg
and a standard deviation of 92 g. Deter-
mine the probability that a random sam-
ple of 40 tins drawn from the consignment
will have a combined mass of (a) less than
20.13 kg, (b) between 20.13 kg and 20.17 kg,
and (c) more than 20.17 kg, correct to three
significant figures.

[(a) 0.0179 (b) 0.740 (c) 0.242]

61.4 The estimation of population
parameters based on a large
sample size

When a population is large, it is not practical to deter-
mine its mean and standard deviation by using the
basic formulae for these parameters. In fact, when a
population is infinite, it is impossible to determine
these values. For large and infinite populations the
values of the mean and standard deviation may be

estimated by using the data obtained from samples
drawn from the population.

Point and interval estimates

An estimate of a population parameter, such as mean
or standard deviation, based on a single number is
called a point estimate. An estimate of a popula-
tion parameter given by two numbers between which
the parameter may be considered to lie is called an
interval estimate. Thus if an estimate is made of
the length of an object and the result is quoted as
150 cm, this is a point estimate. If the result is quoted
as 150 ± 10 cm, this is an interval estimate and indi-
cates that the length lies between 140 and 160 cm.
Generally, a point estimate does not indicate how
close the value is to the true value of the quantity and
should be accompanied by additional information on
which its merits may be judged. A statement of the
error or the precision of an estimate is often called
its reliability. In statistics, when estimates are made
of population parameters based on samples, usually
interval estimates are used. The word estimate does
not suggest that we adopt the approach ‘let’s guess
that the mean value is about . . .,’ but rather that a
value is carefully selected and the degree of confi-
dence which can be placed in the estimate is given
in addition.

Confidence intervals

It is stated in Section 61.3 that when samples are
taken from a population, the mean values of these
samples are approximately normally distributed, that
is, the mean values forming the sampling distribution
of means is approximately normally distributed. It is
also true that if the standard deviations of each of the
samples is found, then the standard deviations of all
the samples are approximately normally distributed,
that is, the standard deviations of the sampling dis-
tribution of standard deviations are approximately
normally distributed. Parameters such as the mean
or the standard deviation of a sampling distribu-
tion are called sampling statistics, S. Let µs be the
mean value of a sampling statistic of the sampling
distribution, that is, the mean value of the means
of the samples or the mean value of the standard
deviations of the samples. Also let σs be the stan-
dard deviation of a sampling statistic of the sampling
distribution, that is, the standard deviation of the
means of the samples or the standard deviation of the
standard deviations of the samples. Because the sam-
pling distribution of the means and of the standard
deviations are normally distributed, it is possible to
predict the probability of the sampling statistic lying
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in the intervals:

mean ±1 standard deviation,
mean ±2 standard deviations,

or mean ±3 standard deviations,

by using tables of the partial areas under the stan-
dardized normal curve given in Table 58.1 on
page 561. From this table, the area corresponding
to a z-value of +1 standard deviation is 0.3413, thus
the area corresponding to ±1 standard deviation
is 2 × 0.3413, that is, 0.6826. Thus the percentage
probability of a sampling statistic lying between the
mean ±1 standard deviation is 68.26%. Similarly,
the probability of a sampling statistic lying between
the mean ±2 standard deviations is 95.44% and
of lying between the mean ±3 standard deviations
is 99.74%.

The values 68.26%, 95.44% and 99.74% are
called the confidence levels for estimating a sam-
pling statistic. A confidence level of 68.26% is
associated with two distinct values, these being,
S − (1 standard deviation), i.e. S − σs and
S + (1 standard deviation), i.e. S + σs. These two
values are called the confidence limits of the esti-
mate and the distance between the confidence limits
is called the confidence interval.A confidence inter-
val indicates the expectation or confidence of finding
an estimate of the population statistic in that interval,
based on a sampling statistic. The list in Table 61.1
is based on values given in Table 58.1, and gives
some of the confidence levels used in practice and
their associated z-values; (some of the values given
are based on interpolation). When the table is used
in this context, z-values are usually indicated by ‘zc’
and are called the confidence coefficients.

Table 61.1

Confidence level, % Confidence coefficient, zc

99 2.58
98 2.33
96 2.05
95 1.96
90 1.645
80 1.28
50 0.6745

Any other values of confidence levels and their asso-
ciated confidence coefficients can be obtained using
Table 58.1.

Problem 4. Determine the confidence coef-
ficient corresponding to a confidence level
of 98.5%.

98.5% is equivalent to a per unit value of 0.9850.
This indicates that the area under the standardized
normal curve between −zc and +zc, i.e. correspond-
ing to 2zc, is 0.9850 of the total area. Hence the

area between the mean value and zc is
0.9850

2
i.e.

0.4925 of the total area. The z-value correspond-
ing to a partial area of 0.4925 is 2.43 standard
deviations from Table 58.1. Thus, the confidence
coefficient corresponding to a confidence limit of
98.5% is 2.43.

(a) Estimating the mean of a population when the
standard deviation of the population is known

When a sample is drawn from a large population
whose standard deviation is known, the mean value
of the sample, x, can be determined. This mean
value can be used to make an estimate of the mean
value of the population, µ. When this is done, the
estimated mean value of the population is given as
lying between two values, that is, lying in the con-
fidence interval between the confidence limits. If a
high level of confidence is required in the estimated
value of µ, then the range of the confidence interval
will be large. For example, if the required confidence
level is 96%, then from Table 61.1 the confidence
interval is from −zc to +zc, that is, 2 × 2.05 = 4.10
standard deviations wide. Conversely, a low level
of confidence has a narrow confidence interval and a
confidence level of, say, 50%, has a confidence inter-
val of 2 × 0.6745, that is 1.3490 standard deviations.
The 68.26% confidence level for an estimate of the
population mean is given by estimating that the pop-
ulation mean, µ, is equal to the same mean, x, and
then stating the confidence interval of the estimate.
Since the 68.26% confidence level is associated with
‘±1 standard deviation of the means of the sampling
distribution’, then the 68.26% confidence level for
the estimate of the population mean is given by:

x ± 1σx

In general, any particular confidence level can be
obtained in the estimate, by using x ± zcσx, where
zc is the confidence coefficient corresponding to the
particular confidence level required. Thus for a 96%
confidence level, the confidence limits of the pop-
ulation mean are given by x ± 2.05σx. Since only
one sample has been drawn, the standard error of the
means, σx, is not known. However, it is shown in
Section 61.3 that

σx = σ√
N

√(
Np − N

Np − 1

)
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Thus, the confidence limits of the mean of the
population are:

x ± zcσ√
N

√(
Np − N

Np − 1

)

(4)

for a finite population of size Np.
The confidence limits for the mean of the

population are:

x ± zcσ√
N

(5)

for an infinite population.
Thus for a sample of size N and mean x, drawn

from an infinite population having a standard devi-
ation of σ, the mean value of the population is
estimated to be, for example,

x ± 2.33σ√
N

for a confidence level of 98%. This indicates that the
mean value of the population lies between

x − 2.33σ√
N

and x + 2.33σ√
N

with 98% confidence in this prediction.

Problem 5. It is found that the standard devi-
ation of the diameters of rivets produced by a
certain machine over a long period of time is
0.018 cm. The diameters of a random sample of
100 rivets produced by this machine in a day
have a mean value of 0.476 cm. If the machine
produces 2500 rivets a day, determine (a) the
90% confidence limits, and (b) the 97% confi-
dence limits for an estimate of the mean diameter
of all the rivets produced by the machine in a day.

For the population:

standard deviation, σ = 0.018 cm

number in the population, Np = 2500

For the sample:

number in the sample, N = 100

mean, x = 0.476 cm

There is a finite population and the standard devia-
tion of the population is known, hence expression (4)

is used for determining an estimate of the confidence
limits of the population mean, i.e.

x ± zcσ√
N

√(
Np − N

Np − 1

)

(a) For a 90% confidence level, the value of zc, the
confidence coefficient, is 1.645 from Table 61.1.
Hence, the estimate of the confidence limits of
the population mean, µ, is

0.476 ±
(

(1.645)(0.018)√
100

)√(
2500 − 100

2500 − 1

)

i.e. 0.476 ± (0.00296)(0.9800)

= 0.476 ± 0.0029 cm

Thus, the 90% confidence limits are 0.473 cm
and 0.479 cm.
This indicates that if the mean diameter of a sam-
ple of 100 rivets is 0.476 cm, then it is predicted
that the mean diameter of all the rivets will be
between 0.473 cm and 0.479 cm and this pre-
diction is made with confidence that it will be
correct nine times out of ten.

(b) For a 97% confidence level, the value of zc has
to be determined from a table of partial areas
under the standardized normal curve given in
Table 58.1, as it is not one of the values given
in Table 61.1. The total area between ordinates
drawn at −zc and +zc has to be 0.9700. Because
the standardized normal curve is symmetrical,

the area between zc = 0 and zc is
0.9700

2
, i.e.

0.4850. From Table 58.1 an area of 0.4850 corre-
sponds to a zc value of 2.17. Hence, the estimated
value of the confidence limits of the population
mean is between

x ± zcσ√
N

√(
Np − N

Np − 1

)

= 0.476 ±
(

(2.17)(0.018)√
100

)√(
2500 − 100

2500 − 1

)

= 0.476 ± (0.0039)(0.9800)

= 0.476 ± 0.0038

Thus, the 97% confidence limits are 0.472 cm
and 0.480 cm.
It can be seen that the higher value of confi-
dence level required in part (b) results in a larger
confidence interval.
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Problem 6. The mean diameter of a long length
of wire is to be determined. The diameter of the
wire is measured in 25 places selected at ran-
dom throughout its length and the mean of these
values is 0.425 mm. If the standard deviation of
the diameter of the wire is given by the manu-
facturers as 0.030 mm, determine (a) the 80%
confidence interval of the estimated mean diam-
eter of the wire, and (b) with what degree of
confidence it can be said that ‘the mean diameter
is 0.425 ± 0.012 mm’.

For the population: σ = 0.030 mm
For the sample: N = 25, x = 0.425 mm

Since an infinite number of measurements can
be obtained for the diameter of the wire, the pop-
ulation is infinite and the estimated value of the
confidence interval of the population mean is given
by expression (5).

(a) For an 80% confidence level, the value of zc is
obtained from Table 61.1 and is 1.28.
The 80% confidence level estimate of the confi-
dence interval of

µ = x ± zcσ√
N

= 0.425 ± (1.28)(0.030)√
25

= 0.425 ± 0.0077 mm

i.e. the 80% confidence interval is from
0.417 mm to 0.433 mm.
This indicates that the estimated mean diameter
of the wire is between 0.417 mm and 0.433 mm
and that this prediction is likely to be correct
80 times out of 100.

(b) To determine the confidence level, the given data
is equated to expression (5), giving

0.425 ± 0.012 = x ± zc
σ√
N

But x = 0.425 therefore

±zc
σ√
N

= ±0.012

i.e. zc = 0.012
√

N

σ
= ± (0.012)(5)

0.030
= ±2

Using Table 58.1 of partial areas under the
standardized normal curve, a zc value of 2
standard deviations corresponds to an area of
0.4772 between the mean value (zc = 0) and +2
standard deviations. Because the standardized
normal curve is symmetrical, the area between

the mean and ±2 standard deviations is
0.4772 × 2, i.e. 0.9544.
Thus the confidence level corresponding to
0.425 ± 0.012 mm is 95.44%.

(b) Estimating the mean and standard deviation of
a population from sample data

The standard deviation of a large population is not
known and, in this case, several samples are drawn
from the population. The mean of the sampling dis-
tribution of means, µx and the standard deviation of
the sampling distribution of means (i.e. the standard
error of the means), σx, may be determined. The con-
fidence limits of the mean value of the population,
µ, are given by

µx ± zcσx (6)

where zc is the confidence coefficient corresponding
to the confidence level required.

To make an estimate of the standard deviation, σ,
of a normally distributed population:

(i) a sampling distribution of the standard devia-
tions of the samples is formed, and

(ii) the standard deviation of the sampling distribu-
tion is determined by using the basic standard
deviation formula.

This standard deviation is called the standard error
of the standard deviations and is usually signified by
σs. If s is the standard deviation of a sample, then
the confidence limits of the standard deviation of the
population are given by:

s ± zcσs (7)

where zc is the confidence coefficient corresponding
to the required confidence level.

Problem 7. Several samples of 50 fuses
selected at random from a large batch are tested
when operating at a 10% overload current and
the mean time of the sampling distribution
before the fuses failed is 16.50 minutes. The
standard error of the means is 1.4 minutes. Deter-
mine the estimated mean time to failure of the
batch of fuses for a confidence level of 90%.

For the sampling distribution: the mean, µx = 16.50,
the standard error of the means, σx = 1.4.

The estimated mean of the population is based on
sampling distribution data only and so expression
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(6) is used, i.e. the confidence limits of the estimated
mean of the population are µx ± zcσx.

For an 90% confidence level, zc = 1.645 (from
Table 61.1), thus,

µx ± zcσx = 16.50 ± (1.645)(1.4)
= 16.50 ± 2.30 m.

Thus, the 90% confidence level of the mean time
to failure is from 14.20 minutes to 18.80 minutes.

Problem 8. The sampling distribution of ran-
dom samples of capacitors drawn from a large
batch is found to have a standard error of
the standard deviations of 0.12 µF. Determine
the 92% confidence interval for the estimate
of the standard deviation of the whole batch,
if in a particular sample, the standard devi-
ation is 0.60 µF. It can be assumed that the
values of capacitance of the batch are normally
distributed.

For the sample: the standard deviation, s = 0.60 µF.
For the sampling distribution: the standard error of
the standard deviations,

σs = 0.12 µF

When the confidence level is 92%, then by using
Table 58.1 of partial areas under the standardized
normal curve,

area = 0.9200

2
= 0.4600,

giving zc as ±1.751 standard deviations (by
interpolation).

Since the population is normally distributed,
the confidence limits of the standard deviation of
the population may be estimated by using expres-
sion (7), i.e. s ± zcσs = 0.60 ± (1.751)(0.12) =
0.60 ± 0.21 µF.

Thus, the 92% confidence interval for the esti-
mate of the standard deviation for the batch is
from 0.39 µF to 0.81 µF.

Now try the following exercise.

Exercise 221 Further problems on the
estimation of population parameters based
on a large sample size

1. Measurements are made on a random sample
of 100 components drawn from a popula-
tion of size 1546 and having a standard

deviation of 2.93 mm. The mean measure-
ment of the components in the sample is
67.45 mm. Determine the 95% and 99% con-
fidence limits for an estimate of the mean of
the population. [

66.89 and 68.01 mm,
66.72 and 68.18 mm

]

2. The standard deviation of the masses of
500 blocks is 150 kg. A random sample of
40 blocks has a mean mass of 2.40 Mg.

(a) Determine the 95% and 99% confidence
intervals for estimating the mean mass of
the remaining 460 blocks.

(b) With what degree of confidence can it be
said that the mean mass of the remaining
460 blocks is 2.40 ± 0.035 Mg?⎡

⎣
(a) 2.355 Mg to 2.445 Mg;

2.341 Mg to 2.459 Mg

(b) 86%

⎤

⎦

3. In order to estimate the thermal expansion
of a metal, measurements of the change of
length for a known change of temperature
are taken by a group of students. The sam-
pling distribution of the results has a mean
of 12.81 × 10−4 m ◦C−1 and a standard error
of the means of 0.04 × 10−4 m ◦C−1. Deter-
mine the 95% confidence interval for an
estimate of the true value of the thermal
expansion of the metal, correct to two decimal
places.

[
12.73 × 10−4 m ◦C−1 to
12.89 × 10−4 m ◦C−1

]

4. The standard deviation of the time to failure
of an electronic component is estimated as
100 hours. Determine how large a sample of
these components must be, in order to be 90%
confident that the error in the estimated time
to failure will not exceed (a) 20 hours and
(b) 10 hours.

[(a) at least 68 (b) at least 271]

5. A sample of 60 slings of a certain diameter,
used for lifting purposes, are tested to destruc-
tion (that is, loaded until they snapped). The
mean and standard deviation of the break-
ing loads are 11.09 tonnes and 0.73 tonnes
respectively. Find the 95% confidence inter-
val for the mean of the snapping loads of all
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the slings of this diameter produced by this
company. [10.91 t to 11.27 t]

6. The time taken to assemble a servo-
mechanism is measured for 40 operatives and
the mean time is 14.63 minutes with a stan-
dard deviation of 2.45 minutes. Determine the
maximum error in estimating the true mean
time to assemble the servo-mechanism for all
operatives, based on a 95% confidence level.

[45.6 seconds]

61.5 Estimating the mean of a
population based on a small
sample size

The methods used in Section 61.4 to estimate the
population mean and standard deviation rely on a rel-
atively large sample size, usually taken as 30 or more.
This is because when the sample size is large the sam-
pling distribution of a parameter is approximately
normally distributed. When the sample size is small,
usually taken as less than 30, the techniques used for
estimating the population parameters in Section 61.4
become more and more inaccurate as the sample size
becomes smaller, since the sampling distribution no
longer approximates to a normal distribution. Inves-
tigations were carried out into the effect of small
sample sizes on the estimation theory byW. S. Gosset
in the early twentieth century and, as a result of his
work, tables are available which enable a realistic
estimate to be made, when sample sizes are small.
In these tables, the t-value is determined from the
relationship

t = (x − µ)

s

√
(N − 1)

where x is the mean value of a sample, µ is the
mean value of the population from which the sample
is drawn, s is the standard deviation of the sample
and N is the number of independent observations in
the sample. He published his findings under the pen
name of ‘Student’, and these tables are often referred
to as the ‘Student’s t distribution’.

The confidence limits of the mean value of a pop-
ulation based on a small sample drawn at random
from the population are given by

x ± tcs√
(N − 1)

(8)

In this estimate, tc is called the confidence coeffi-
cient for small samples, analogous to zc for large
samples, s is the standard deviation of the sample, x
is the mean value of the sample and N is the num-
ber of members in the sample. Table 61.2 is called
‘percentile values for Student’s t distribution’. The
columns are headed tp where p is equal to 0.995,
0.99, 0.975, . . . , 0.55. For a confidence level of, say,
95%, the column headed t0.95 is selected and so on.
The rows are headed with the Greek letter ‘nu’, ν,
and are numbered from 1 to 30 in steps of 1, together
with the numbers 40, 60, 120 and ∞. These numbers
represent a quantity called the degrees of freedom,
which is defined as follows:

‘the sample number, N, minus the number of pop-
ulation parameters which must be estimated for the
sample’.

When determining the t-value, given by

t = (x − µ)

s

√
(N − 1)

it is necessary to know the sample parameters x and
s and the population parameter µ. x and s can be
calculated for the sample, but usually an estimate
has to be made of the population mean µ, based on
the sample mean value. The number of degrees of
freedom, ν, is given by the number of independent
observations in the sample, N , minus the number of
population parameters which have to be estimated,
k, i.e. ν = N − k. For the equation

t = (x − µ)

s

√
(N − 1),

only µ has to be estimated, hence k = 1, and
ν = N − 1.

When determining the mean of a population based
on a small sample size, only one population param-
eter is to be estimated, and hence ν can always be
taken as (N − 1). The method used to estimate the
mean of a population based on a small sample is
shown in Problems 9 to 11.

Problem 9. A sample of 12 measurements of
the diameter of a bar are made and the mean of
the sample is 1.850 cm. The standard deviation
of the sample is 0.16 mm. Determine (a) the 90%
confidence limits and (b) the 70% confidence
limits for an estimate of the actual diameter of
the bar.



Ch61-H8152.tex 23/6/2006 15: 15 Page 587

SAMPLING AND ESTIMATION THEORIES 587

J

Table 61.2 Percentile values (tp) for Student’s t distribution with ν degrees of freedom
(shaded area = p)

tp

ν t0.995 t0.99 t0.975 t0.95 t0.90 t0.80 t0.75 t0.70 t0.60 t0.55

1 63.66 31.82 12.71 6.31 3.08 1.376 1.000 0.727 0.325 0.158
2 9.92 6.96 4.30 2.92 1.89 1.061 0.816 0.617 0.289 0.142
3 5.84 4.54 3.18 2.35 1.64 0.978 0.765 0.584 0.277 0.137
4 4.60 3.75 2.78 2.13 1.53 0.941 0.741 0.569 0.271 0.134
5 4.03 3.36 2.57 2.02 1.48 0.920 0.727 0.559 0.267 0.132
6 3.71 3.14 2.45 1.94 1.44 0.906 0.718 0.553 0.265 0.131
7 3.50 3.00 2.36 1.90 1.42 0.896 0.711 0.549 0.263 0.130
8 3.36 2.90 2.31 1.86 1.40 0.889 0.706 0.546 0.262 0.130
9 3.25 2.82 2.26 1.83 1.38 0.883 0.703 0.543 0.261 0.129

10 3.17 2.76 2.23 1.81 1.37 0.879 0.700 0.542 0.260 0.129
11 3.11 2.72 2.20 1.80 1.36 0.876 0.697 0.540 0.260 0.129
12 3.06 2.68 2.18 1.78 1.36 0.873 0.695 0.539 0.259 0.128
13 3.01 2.65 2.16 1.77 1.35 0.870 0.694 0.538 0.259 0.128
14 2.98 2.62 2.14 1.76 1.34 0.868 0.692 0.537 0.258 0.128
15 2.95 2.60 2.13 1.75 1.34 0.866 0.691 0.536 0.258 0.128
16 2.92 2.58 2.12 1.75 1.34 0.865 0.690 0.535 0.258 0.128
17 2.90 2.57 2.11 1.74 1.33 0.863 0.689 0.534 0.257 0.128
18 2.88 2.55 2.10 1.73 1.33 0.862 0.688 0.534 0.257 0.127
19 2.86 2.54 2.09 1.73 1.33 0.861 0.688 0.533 0.257 0.127
20 2.84 2.53 2.09 1.72 1.32 0.860 0.687 0.533 0.257 0.127
21 2.83 2.52 2.08 1.72 1.32 0.859 0.686 0.532 0.257 0.127
22 2.82 2.51 2.07 1.72 1.32 0.858 0.686 0.532 0.256 0.127
23 2.81 2.50 2.07 1.71 1.32 0.858 0.685 0.532 0.256 0.127
24 2.80 2.49 2.06 1.71 1.32 0.857 0.685 0.531 0.256 0.127
25 2.79 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
26 2.78 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
27 2.77 2.47 2.05 1.70 1.31 0.855 0.684 0.531 0.256 0.127
28 2.76 2.47 2.05 1.70 1.31 0.855 0.683 0.530 0.256 0.127
29 2.76 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127
30 2.75 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127
40 2.70 2.42 2.02 1.68 1.30 0.851 0.681 0.529 0.255 0.126
60 2.66 2.39 2.00 1.67 1.30 0.848 0.679 0.527 0.254 0.126

120 2.62 2.36 1.98 1.66 1.29 0.845 0.677 0.526 0.254 0.126
∞ 2.58 2.33 1.96 1.645 1.28 0.842 0.674 0.524 0.253 0.126

For the sample: the sample size, N = 12; mean,
x = 1.850 cm; standard deviation s = 0.16 mm =
0.016 cm.

Since the sample number is less than 30, the small
sample estimate as given in expression (8) must be
used. The number of degrees of freedom, i.e. sample
size minus the number of estimations of population
parameters to be made, is 12 − 1, i.e. 11.

(a) The percentile value corresponding to a confi-
dence coefficient value of t0.90 and a degree of

freedom value of ν = 11 can be found by using
Table 61.2, and is 1.36, that is, tc = 1.36. The
estimated value of the mean of the population is
given by

x ± tcs√
(N − 1)

= 1.850 ± (1.36)(0.016)√
11

= 1.850 ± 0.0066 cm

Thus, the 90% confidence limits are 1.843 cm
and 1.857 cm.
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This indicates that the actual diameter is likely
to lie between 1.843 cm and 1.857 cm and that
this prediction stands a 90% chance of being
correct.

(b) The percentile value corresponding to t0.70 and
to ν = 11 is obtained from Table 61.2, and is
0.540, that is, tc = 0.540.

The estimated value of the 70% confidence
limits is given by:

x ± tcs√
(N − 1)

= 1.850 ± (0.540)(0.016)√
11

= 1.850 ± 0.0026 cm

Thus, the 70% confidence limits are 1.847 cm
and 1.853 cm, i.e. the actual diameter of the bar
is between 1.847 cm and 1.853 cm and this result
has an 70% probability of being correct.

Problem 10. A sample of 9 electric lamps are
selected randomly from a large batch and are
tested until they fail. The mean and standard
deviations of the time to failure are 1210 hours
and 26 hours respectively. Determine the confi-
dence level based on an estimated failure time
of 1210 ± 6.5 hours.

For the sample: sample size, N = 9; standard devia-
tion, s = 26 hours; mean, x = 1210 hours. The confi-
dence limits are given by:

x ± tcs√
(N − 1)

and these are equal to 1210 ± 6.5
Since x = 1210 hours,

then ± tcs√
(N − 1)

= ±6.5

i.e. tc = ±6.5
√

(N − 1)

s
= ± (6.5)

√
8

26
= ±0.707

From Table 61.2, a tc value of 0.707, having a ν value
of N − 1, i.e. 8, gives a tp value of t0.75

Hence, the confidence level of an estimated fail-
ure time of 1210 ± 6.5 hours is 75%, i.e. it is likely
that 75% of all of the lamps will fail between 1203.5
and 1216.5 hours.

Problem 11. The specific resistance of some
copper wire of nominal diameter 1 mm is esti-
mated by determining the resistance of 6 sam-
ples of the wire. The resistance values found (in
ohms per metre) were:

2.16, 2.14, 2.17, 2.15, 2.16 and 2.18

Determine the 95% confidence interval for the
true specific resistance of the wire.

For the sample: sample size, N = 6, and mean,

x = 2.16 + 2.14 + 2.17 + 2.15 + 2.16 + 2.18

6
= 2.16 � m−1

standard deviation,

s =

√√
√
√
√
√
√
√
√
√
√

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2.16 − 2.16)2 + (2.14 − 2.16)2

+ (2.17 − 2.16)2 + (2.15 − 2.16)2

+ (2.16 − 2.16)2 + (2.18 − 2.16)2

6

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=
√

0.001

6
= 0.0129 � m−1

The percentile value corresponding to a confidence
coefficient value of t0.95 and a degree of freedom
value of N −1, i.e. 6−1 = 5 is 2.02 from Table 61.2.
The estimated value of the 95% confidence limits is
given by:

x ± tcs√
(N − 1)

= 2.16 ± (2.02)(0.0129)√
5

= 2.16 ± 0.01165 � m−1

Thus, the 95% confidence limits are 2.148 
 m−1

and 2.172 
 m−1 which indicates that there is a 95%
chance that the true specific resistance of the wire lies
between 2.148 � m−1 and 2.172 � m−1.

Now try the following exercise.

Exercise 222 Further problems on estimat-
ing the mean of population based on a small
sample size

1. The value of the ultimate tensile strength of
a material is determined by measurements on
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10 samples of the materials. The mean and
standard deviation of the results are found
to be 5.17 MPa and 0.06 MPa respectively.
Determine the 95% confidence interval for
the mean of the ultimate tensile strength of
the material.

[5.133 MPa to 5.207 MPa]

2. Use the data given in Problem 1 above to
determine the 97.5% confidence interval for
the mean of the ultimate tensile strength of
the material.

[5.125 MPa to 5.215 MPa]

3. The specific resistance of a reel of German
silver wire of nominal diameter 0.5 mm is
estimated by determining the resistance of

7 samples of the wire. These were found to
have resistance values (in ohms per metre) of:

1.12, 1.15, 1.10, 1.14, 1.15, 1.10 and 1.11

Determine the 99% confidence interval for
the true specific resistance of the reel of wire.

[1.10 � m−1 to 1.15 � m−1]

4. In determining the melting point of a metal,
five determinations of the melting point are
made. The mean and standard deviation of the
five results are 132.27◦C and 0.742◦C. Calcu-
late the confidence with which the prediction
‘the melting point of the metal is between
131.48◦C and 133.06◦C’ can be made.

[95%]
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Significance testing

62.1 Hypotheses

Industrial applications of statistics is often con-
cerned with making decisions about populations
and population parameters. For example, decisions
about which is the better of two processes or deci-
sions about whether to discontinue production on a
particular machine because it is producing an eco-
nomically unacceptable number of defective com-
ponents are often based on deciding the mean
or standard deviation of a population, calculated
using sample data drawn from the population.
In reaching these decisions, certain assumptions
are made, which may or may not be true. The
assumptions made are called statistical hypothe-
ses or just hypotheses and are usually concerned
with statements about probability distributions of
populations.

For example, in order to decide whether a dice
is fair, that is, unbiased, a hypothesis can be made
that a particular number, say 5, should occur with a
probability of one in six, since there are six numbers
on a dice. Such a hypothesis is called a null hypoth-
esis and is an initial statement. The symbol H0 is
used to indicate a null hypothesis. Thus, if p is the
probability of throwing a 5, then H0: p = 1

6 means,
‘the null hypothesis that the probability of throw-
ing a 5 is 1

6 ’. Any hypothesis which differs from a
given hypothesis is called an alternative hypothe-
sis, and is indicated by the symbol H1. Thus, if after
many trials, it is found that the dice is biased and
that a 5 only occurs, on average, one in every seven
throws, then several alternative hypotheses may be
formulated. For example: H1: p = 1

7 or H1: p < 1
6 or

H1: p > 1
8 or H1: p �= 1

6 are all possible alternative
hypotheses to the null hypothesis that p = 1

6 .
Hypotheses may also be used when comparisons

are being made. If we wish to compare, say, the
strength of two metals, a null hypothesis may be for-
mulated that there is no difference between the
strengths of the two metals. If the forces that the two
metals can withstand are F1 and F2, then the null
hypothesis is H0: F1 = F2. If it is found that the
null hypothesis has to be rejected, that is, that the

strengths of the two metals are not the same, then the
alternative hypotheses could be of several forms. For
example, H1: F1 > F2 or H1: F2 > F1 or H1: F1 �= F2.
These are all alternative hypotheses to the original
null hypothesis.

62.2 Type I and Type II errors

To illustrate what is meant by type I and type II errors,
let us consider an automatic machine producing, say,
small bolts. These are stamped out of a length of
metal and various faults may occur. For example, the
heads or the threads may be incorrectly formed, the
length might be incorrect, and so on. Assume that,
say, 3 bolts out of every 100 produced are defec-
tive in some way. If a sample of 200 bolts is drawn
at random, then the manufacturer might be satisfied
that his defect rate is still 3% provided there are 6
defective bolts in the sample. Also, the manufacturer
might be satisfied that his defect rate is 3% or less
provided that there are 6 or less bolts defective in
the sample. He might then formulate the following
hypotheses:

H0: p = 0.03 (the null hypothesis that
the defect rate is 3%)

The null hypothesis indicates that a 3% defect rate is
acceptable to the manufacturer. Suppose that he also
makes a decision that should the defect rate rise to
5% or more, he will take some action. Then the
alternative hypothesis is:

H1: p ≥ 0.05 (the alternative hypothesis that
the defect rate is equal to or
greater than 5%)

The manufacturer’s decisions, which are related to
these hypotheses, might well be:

(i) a null hypothesis that a 3% defect rate is accept-
able, on the assumption that the associated num-
ber of defective bolts is insufficient to endanger
his firm’s good name;



Ch62-H8152.tex 23/6/2006 15: 15 Page 591

SIGNIFICANCE TESTING 591

J

(ii) if the null hypothesis is rejected and the defect
rate rises to 5% or over, stop the machine and
adjust or renew parts as necessary; since the
machine is not then producing bolts, this will
reduce his profit.

These decisions may seem logical at first sight, but by
applying the statistical concepts introduced in previ-
ous chapters it can be shown that the manufacturer
is not necessarily making very sound decisions. This
is shown as follows.

When drawing a random sample of 200 bolts from
the machine with a defect rate of 3%, by the laws of
probability, some samples will contain no defective
bolts, some samples will contain one defective bolt,
and so on.

A binomial distribution can be used to determine
the probabilities of getting 0, 1, 2, . . ., 9 defective
bolts in the sample. Thus the probability of getting 10
or more defective bolts in a sample, even with a 3%
defect rate, is given by: 1 − (the sum of probabilities
of getting 0, 1, 2, . . ., 9 defective bolts). This is an
extremely large calculation, given by:

1 −
(

0.97200 + 200 × 0.97199 × 0.03

+ 200 × 199

2
× 0.97198 × 0.032 to 10 terms

)

An alternative way of calculating the required prob-
ability is to use the normal approximation to the
binomial distribution. This may be stated as follows:

‘if the probability of a defective item is p and a non-
defective item is q, then if a sample of N items is drawn
at random from a large population, provided both Np and
Nq are greater than 5, the binomial distribution approxi-
mates to a normal distribution of mean Np and standard
deviation

√
(Npq)’

The defect rate is 3%, thus p = 0.03. Since q = 1 − p,
q = 0.97. Sample size N = 200. Since Np and Nq
are greater than 5, a normal approximation to the
binomial distribution can be used.

The mean of the normal distribution,

x = Np = 200 × 0.03 = 6

The standard deviation of the normal distribution

σ = √(Npq)

= √[(200)(0.03)(0.97)] = 2.41

The normal standard variate for 10 bolts is

z = variate − mean

standard deviation

= 10 − 6

2.41
= 1.66

Table 58.1 on page 561 is used to determine the
area between the mean and a z-value of 1.66, and
is 0.4515.

The probability of having 10 or more defective
bolts is the total area under the standardised nor-
mal curve minus the area to the left of the z = 1.66
ordinate, i.e. 1 − (0.5 + 0.4515), i.e., 1 − 0.9515 =
0.0485 ≈ 5%. Thus the probability of getting 10 or
more defective bolts in a sample of 200 bolts, even
though the defect rate is still 3%, is 5%. It follows
that as a result of the manufacturer’s decisions, for
5 times in every 100 the number of defects in the
sample will exceed 10, the alternative hypothesis
will be adopted and the machine will be stopped
(and profit lost) unnecessarily. In general terms:

‘a hypothesis has been rejected when it should have
been accepted’.

When this occurs, it is called a type I error, and, in
this example, the type I error is 5%.

Assume now that the defect rate has risen to 5%,
i.e. the expectancy of a defective bolt is now 10. A
second error resulting from this decisions occurs,
due to the probability of getting less than 10 defec-
tive bolts in a random sample, even though the defect
rate has risen to 5%. Using the normal approxima-
tion to a binomial distribution: N = 200, p = 0.05,
q = 0.95. Np and Nq are greater than 5, hence a nor-
mal approximation to a binomial distribution is a
satisfactory method. The normal distribution has:

mean, x = Np = (200)(0.05) = 10

standard deviation,

σ = √(Npq)

= √[(200)(0.05)(0.95)] = 3.08

The normal standard variate for 9 defective bolts,

z = variate − mean

standard deviation

= 9 − 10

3.08
= −0.32
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Using Table 58.1 of partial areas under the stan-
dardised normal curve given on page 561, a z-value
of −0.32 corresponds to an area between the mean
and the ordinate at z = −0.32 to 0.1255. Thus, the
probability of there being 9 or less defective bolts
in the sample is given by the area to the left of
the z = 0.32 ordinate, i.e. 0.5000 − 0.1255, that is,
0.3745. Thus, the probability of getting 9 or less
defective bolts in a sample of 200 bolts, even though
the defect rate has risen to 5%, is 37%. It follows
that as a result of the manufacturer’s decisions, for
37 samples in every 100, the machine will be left
running even though the defect rate has risen to 5%.
In general terms:

‘a hypothesis has been accepted when it should have
been rejected’.

When this occurs, it is called a type II error, and,
in this example, the type II error is 37%.

Tests of hypotheses and rules of decisions should
be designed to minimise the errors of decision. This
is achieved largely by trial and error for a particular
set of circumstances. Type I errors can be reduced by
increasing the number of defective items allowable
in a sample, but this is at the expense of allowing a
larger percentage of defective items to leave the fac-
tory, increasing the criticism from customers. Type II
errors can be reduced by increasing the percent-
age defect rate in the alternative hypothesis. If a
higher percentage defect rate is given in the alter-
native hypothesis, the type II errors are reduced very
effectively, as shown in the second of the two tables
below, relating the decision rule to the magnitude
of the type II errors. Some examples of the magni-
tude of type I errors are given below, for a sample
of 1000 components being produced by a machine
with a mean defect rate of 5%.

Decision rule Type I error
Stop production if the number (%)
of defective components is
equal to or greater than:

52 38.6
56 19.2
60 7.35
64 2.12
68 0.45

The magnitude of the type II errors for the output of
the same machine, again based on a random sample
of 1000 components and a mean defect rate of 5%,
is given below.

Decision rule Type II error
Stop production when (%)
the number of defective
components is 60, when the
defect rate is (%):

5.5 75.49
7 10.75
8.5 0.23

10 0.00

When testing a hypothesis, the largest value of
probability which is acceptable for a type I error is
called the level of significance of the test. The level
of significance is indicated by the symbol α (alpha)
and the levels commonly adopted are 0.1, 0.05, 0.01,
0.005 and 0.002. A level of significance of, say, 0.05
means that 5 times in 100 the hypothesis has been
rejected when it should have been accepted.

In significance tests, the following terminology is
frequently adopted:

(i) if the level of significance is 0.01 or less, i.e.
the confidence level is 99% or more, the results
are considered to be highly significant, i.e. the
results are considered likely to be correct,

(ii) if the level of significance is 0.05 or between
0.05 and 0.01, i.e. the confidence level is 95% or
between 95% and 99%, the results are consid-
ered to be probably significant, i.e. the results
are probably correct,

(iii) if the level of significance is greater than 0.05,
i.e. the confidence level is less than 95%, the
results are considered to be not significant, that
is, there are doubts about the correctness of the
results obtained.

This terminology indicates that the use of a level of
significance of 0.05 for ‘probably significant’ is, in
effect, a rule of thumb. Situations can arise when the
probability changes with the nature of the test being
done and the use being made of the results.

The example of a machine producing bolts, used
to illustrate type I and type II errors, is based on a
single random sample being drawn from the output
of the machine. In practice, sampling is a continu-
ous process and using the data obtained from several
samples, sampling distributions are formed. From
the concepts introduced in Chapter 61, the means
and standard deviations of samples are normally
distributed, thus for a particular sample its mean
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and standard deviation are part of a normal distri-
bution. For a set of results to be probably significant
a confidence level of 95% is required for a particular
hypothesis being probably correct. This is equivalent
to the hypothesis being rejected when the level of sig-
nificance is greater than 0.05. For this to occur, the
z-value of the mean of the samples will lie between
−1.96 and +1.96 (since the area under the stan-
dardised normal distribution curve between these
z-values is 95%). The shaded area in Fig. 62.1 is
based on results which are probably significant, i.e.
having a level of significance of 0.05, and represents
the probability of rejecting a hypothesis when it is
correct. The z-values of less than −1.96 and more
than 1.96 are called critical values and the shaded
areas in Fig. 62.1 are called the critical regions or
regions for which the hypothesis is rejected. Having
formulated hypotheses, the rules of decision and a
level of significance, the magnitude of the type I
error is given. Nothing can now be done about type
II errors and in most cases they are accepted in the
hope that they are not too large.

−1.96 1.96

95% of total area
Critical region
(2.5% of 
total area)

Critical region 
(2.5% of 
total area)

z

Figure 62.1

When critical regions occur on both sides of the
mean of a normal distribution, as shown in Fig. 62.1,
they are as a result of two-tailed or two-sided tests.
In such tests, consideration has to be given to val-
ues on both sides of the mean. For example, if it is
required to show that the percentage of metal, p, in a
particular alloy is x%, then a two-tailed test is used,
since the null hypothesis is incorrect if the percent-
age of metal is either less than x or more than x. The
hypothesis is then of the form:

H0: p = x% H1: p �= x%

However, for the machine producing bolts, the man-
ufacturer’s decision is not affected by the fact that
a sample contains say 1 or 2 defective bolts. He is
only concerned with the sample containing, say, 10
or more effective bolts. Thus a ‘tail’ on the left of the
mean is not required. In this case a one tailed test
or a one-sided test is really required. If the defect
rate is, say, d and the per unit values economically

acceptable to the manufacturer are u1 and u2, where
u1 is an acceptable defect rate and u2 is the maxi-
mum acceptable defect rate, then the hypotheses in
this case are of the form:

H0: d = u1 H1: d > u2

and the critical region lies on the right-hand side of
the mean, as shown in Fig. 62.2(a). A one-tailed test
can have its critical region either on the right-hand
side or on the left-hand side of the mean. For exam-
ple, if lamps are being tested and the manufacturer
is only interested in those lamps whose life length
does not meet a certain minimum requirement, then
the hypotheses are of the form:

H0: l = h H1: l < h

where l is the life length and h is the number of
hours to failure. In this case the critical region lies
on the left-hand side of the mean, as shown in
Fig. 62.2(b).

Critical region
(5% of 
total area)

95% of total area

1.645 z

Critical region
(5% of 
total area)

95% of total area

−1.645
(b)

(a)

Figure 62.2

The z-values for various levels of confidence are
given are given in Table 61.1 on page 582. The cor-
responding levels of significance (a confidence level
of 95% is equivalent to a level of significance of 0.05
in a two-tailed test) and their z-values for both one-
tailed and two-tailed tests are given in Table 62.1. It
can be seen that two values of z are given for one-
tailed tests, the negative value for critical regions
lying to the left of the mean and a positive value for
critical regions lying to the right of the mean.
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Table 62.1

Level of Significance, α 0.1 0.05 0.01 0.005 0.002

z-value, one-tailed test −1.28 −1.645 −2.33 −2.58 −2.88{

or 1.28 or 1.645 or 2.33 or 2.58 or 2.88

z-value, two-tailed test −1.645 −1.96 −2.58 −2.81 −3.08{

and 1.645 and 1.96 and 2.58 and 2.81 and 3.08

The problem of the machine producing 3% defec-
tive bolts can now be reconsidered from a signi-
ficance testing point of view. A random sample of
200 bolts is drawn, and the manufacturer is interested
in a change in the defect rate in a specified direc-
tion (i.e. an increase), hence the hypotheses tests are
designed accordingly. If the manufacturer is willing
to accept a defect rate of 3%, but wants adjustments
made to the machine if the defect rate exceeds 3%,
then the hypotheses will be:

(i) a null hypothesis such that the defect rate, p, is
equal to 3%,

i.e. H0: p = 0.03, and

(ii) an alternative hypothesis such that the defect
rate is greater than 3%,

i.e. H1: p > 0.03

The first rule of decision is as follows: let the level
of significance, α, be 0.05; this will limit the type I
error, that is, the error due to rejecting the hypothe-
sis when it should be accepted, to 5%, which means
that the results are probably correct. The second
rule of decision is to decide the number of defec-
tive bolts in a sample for which the machine is
stopped and adjustments are made. For a one-tailed
test, a level of significance of 0.05 and the crit-
ical region lying to the right of the mean of the
standardised normal distribution, the z-value from
Table 62.1 is 1.645. If the defect rate p is 0.03%,
the mean of the normal distribution is given by
Np = 200 × 0.03 = 6 and the standard deviation
is

√
(Npq) = √

(200 × 0.03 × 0.97) = 2.41, using
the normal approximation to a binomial distribu-

tion. Since the z-value is
variate − mean

standard deviation
, then

1.645 = variate − 6

2.41
giving a variate value of 9.96.

This variate is the umber of defective bolts in a
sample such that when this number is reached or
exceeded the null hypothesis is rejected. For 95 times

out of 100 this will be the correct thing to do. The
second rule of decision will thus be ‘reject H0 if
the number of defective bolts in a random sample is
equal to or exceeds 10, otherwise accept H ′

0. That is,
the machine is adjusted when the number of defec-
tive bolts in a random sample reaches 10 and this
will be the correct decision for 95% of the time. The
type II error can now be calculated, but there is lit-
tle point, since having fixed the sample number and
the level of significance, there is nothing that can be
done about it.

A two-tailed test is used when it is required to test
for changes in an unspecified direction. For exam-
ple, if the manufacturer of bolts, used in the previous
example, is inspecting the diameter of the bolts, he
will want to know whether the diameters are too large
or too small. Let the nominal diameter of the bolts
be 2 mm. In this case the hypotheses will be:

H0: d = 2.00 mm H1: d �= 2.00 mm,

where d is the mean diameter of the bolts. His first
decision is to set the level of significance, to limit
his type I error. A two-tailed test is used, since
adjustments must be made to the machine if the
diameter does not lie within specified limits. The
method of using such a significance test is given in
Section 62.3.

When determining the magnitude of type I and
type II errors, it is often possible to reduce the
amount of work involved by using a normal or
a Poisson distribution rather than binomial distri-
bution. A summary of the criteria for the use of
these distributions and their form is given below,
for a sample of size N , a probability of defective
components p and a probability of non-defective
components q.

Binomial distribution

From Chapter 57, the probability of having 0, 1, 2,
3, . . . defective components in a random sample of
N components is given by the successive terms of
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the expansion of (q + p)N , taken from the left. Thus:

Number of Probability
defective

components

0 qN

1 NqN−1p

2
N(N − 1)

2! qN−2p2

3
N(N − 1)(N − 2)

3! qN−3p3 . . .

Poisson approximation to a binomial distribution

When N ≥ 50 and Np < 5, the Poisson distribution is
approximately the same as the binomial distribution.
In the Poisson distribution, the expectation λ = Np
and from Chapter 57, the probability of 0, 1, 2, 3, . . .
defective components in a random sample of N
components is given by the successive terms of

e−λ

(

1 + λ + λ2

2! + λ3

3! + · · ·
)

taken from the left. Thus,

Number of defective 0 1 2 3
components

Probability e−λ λe−λ λ2e−λ

2!
λ3e−λ

3!

Normal approximation to a binomial distribution

When both Np and Nq are greater than 5, the nor-
mal distribution is approximately the same as the
binomial distribution, The normal distribution has a
mean of Np and a standard deviation of

√
(Npq).

Problem 1. Wood screws are produced by
an automatic machine and it is found over a
period of time that 7% of all the screws pro-
duced are defective. Random samples of 80
screws are drawn periodically from the output of
the machine. If a decision is made that produc-
tion continues until a sample contains more than
7 defective screws, determine the type I error
based on this decision for a defect rate of 7%.
Also determine the magnitude of the type II error
when the defect rate has risen to 10%.

N = 80, p = 0.07, q = 0.93

Since both Np and Nq are greater than 5, a normal
approximation to the binomial distribution is used.

Mean of the normal distribution,

Np = 80 × 0.07 = 5.6

Standard deviation of the normal distribution,
√

(Npq) = √(80 × 0.07 × 0.93) = 2.28

A type I error is the probability of rejecting a
hypothesis when it is correct, hence, the type I error
in this problem is the probability of stopping the
machine, that is, the probability of getting more than
7 defective screws in a sample, even though the
defect rate is still 7%. The z-value corresponding
to 7 defective screws is given by:

variate − mean

standard deviation
= 7 − 5.6

2.28
= 0.61

Using Table 58.1 of partial areas under the stan-
dardised normal curve given on page 561, the area
between the mean and a z-value of 0.61 is 0.2291.
Thus, the probability of more than 7 defective screws
is the area to the right of the z ordinate at 0.61, that is,

[total area − (area to the left of mean
+ area between mean and z = 0.61)]

i.e. 1 − (0.5 + 0.2291). This gives a probability of
0.2709. It is usual to express type I errors as a
percentage, giving

type I error = 27.1%

A type II error is the probability of accepting a
hypothesis when it should be rejected. The type II
error in this problem is the probability of a sample
containing less than 7 defective screws, even though
the defect rate has risen to 10%. The values are now:

N = 80, p = 0.1, q = 0.9

As Np and Nq are both greater than 5, a normal
approximation to a binomial distribution is used, in
which the mean Np is 80 × 0.1 = 8 and the standard
deviation

√
(Npq) = √

(80 × 0.1 × 0.9) = 2.68.

The z-value for a variate of 7 defective screws is
7 − 8

2.68
= −0.37.

Using Table 58.1 of partial areas given on
page 561, the area between the mean and z = −0.37
is 0.1443. Hence, the probability of getting less than
7 defective screws, even though the defect rate is
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10% is (area to the left of mean − area between mean
and a z-value of −0.37), i.e. 0.5 − 0.1443 = 0.3557.
It is usual to express type II errors as a percentage,
giving

type II error = 35.6%

Problem 2. The sample size in Problem 1 is
reduced to 50. Determine the type I error if the
defect rate remains at 7% and the type II error
when the defect rate rises to 9%. The decision
is now to stop the machine for adjustment if a
sample contains 4 or more defective screws.

N = 50, p = 0.07

When N ≥ 50 and Np < 5, the Poisson approxima-
tion to a binomial distribution is used. The expecta-
tion λ = Np = 3.5. The probabilities of 0, 1, 2, 3, . . .

defective screws are given by e−λ, λe−λ,
λ2e−λ

2! ,

λ3e−λ

3! , . . . Thus,

probability of a sample containing
no defective screws, e−λ = 0.0302

probability of a sample containing
1 defective screw, λe−λ = 0.1057

probability of a sample containing

2 defective screws,
λ2e−λ

2! = 0.1850

probability of a sample containing

3 defective screws,
λ3e−λ

3
= 0.2158

probability of a sample containing
0, 1, 2, or 3 defective screws is 0.5367

Hence, the probability of a sample containing 4 or
more defective screws is 1 − 0.5367 = 0.4633. Thus
the type I error, that is, rejecting the hypothesis
when it should be accepted or stopping the machine
for adjustment when it should continue running,
is 46.3%.

When the defect rate has risen to 9%, p = 0.09 and
Np = λ = 4.5. Since N ≥ 50 and Np < 5, the Poisson
approximation to a binomial distribution can still be
used. Thus,

probability of a sample containing
no defective screws, e−λ = 0.0111

probability of a sample containing
1 defective screw, λe−λ = 0.0500

probability of a sample containing

2 defective screws,
λ2e−λ

2! = 0.1125

probability of a sample containing

3 defective screws,
λ3e−λ

3! = 0.1687

probability of a sample containing
0, 1, 2, or 3 defective screws is 0.3423

That is, the probability of a sample containing less
than 4 defective screws is 0.3423. Thus, the type
II error, that is, accepting the hypothesis when it
should have been rejected or leaving the machine
running when it should be stopped, is 34.2%.

Problem 3. The sample size in Problem 1 is
now reduced to 25. Determine the type I error
if the defect rate remains at 7%, and the type II
error when the defect rate rises to 10%. The deci-
sion is now to stop the machine for adjustment
if a sample contains 3 or more defective screws.

N = 25, p = 0.07, q = 0.93

The criteria for a normal approximation to a binomial
distribution and for a Poisson approximation to a
binomial distribution are not met, hence the binomial
distribution is applied.

Probability of no defective screws in a sample,

qN = 0.9325 = 0.1630

Probability of 1 defective screw in a sample,

NqN−1p = 25 × 0.9324 × 0.07 = 0.3066

Probability of 2 defective screws in a sample,
N(N − 1)

2
qN−2p2

= 25 × 24

2
× 0.9323 × 0.072 = 0.2770

Probability of 0, 1, or 2 defective screws
in a sample = 0.7466

Thus, the probability of a type I error, i.e. stop-
ping the machine even though the defect rate is still
7%, is 1 − 0.7466 = 0.2534. Hence, the type I error
is 25.3%.

When the defect rate has risen to 10%:

N = 25, p = 0.1, q = 0.9
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Probability of no defective screws in a sample,

qN = 0.925 = 0.0718

Probability of 1 defective screw in a sample,

NqN−1P = 25 × 0.924 × 0.1 = 0.1994

Probability of 2 defective screws in a sample,

N(N − 1)

2
qN−2p2

= 25 × 24

2
× 0.923 × 0.12 = 0.2659

Probability of 0, 1, or 2 defective screws
in a sample = 0.5371

That is, the probability of a type II error, i.e. leaving
the machine running even though the defect rate has
risen to 10%, is 53.7%.

Now try the following exercise.

Exercise 223 Further problems on type I
and type II errors

Problems 1 and 2 refer to an automatic machine
producing piston rings for car engines. Random
samples of 1000 rings are drawn from the output
of the machine periodically for inspection pur-
poses. A defect rate of 5% is acceptable to the
manufacturer, but if the defect rate is believed to
have exceeded this value, the machine producing
the rings is stopped and adjusted.

In Problem 1, determine the type I errors which
occur for the decision rules stated.

1. Stop production and adjust the machine if a
sample contains (a) 54 (b) 62 and (c) 70 or
more defective rings.

[
(a) 28.1% (b) 4.09%
(c) 0.19%

]

In Problem 2, determine the type II errors which
are made if the decision rule is to stop production
if there are more than 60 defective components
in the sample.

2. When the actual defect rate has risen to (a) 6%
(b) 7.5% and (c) 9%.

[(a) 55.2% (b) 4.65% (c) 0.07%]

3. A random sample of 100 components is
drawn from the output of a machine whose
defect rate is 3%. Determine the type I error
if the decision rule is to stop production when
the sample contains: (a) 4 or more defec-
tive components, (b) 5 or more defective
components, and (c) 6 or more defective
components.

[(a) 35.3% (b) 18.5% (c) 8.4%]

4. If there are 4 or more defective components
in a sample drawn from the machine given in
problem 3 above, determine the type II error
when the actual defect rate is: (a) 5% (b) 6%
(c) 7%.

[(a) 26.5% (b) 15.1% (c) 8.18%]

62.3 Significance tests for population
means

When carrying out tests or measurements, it is often
possible to form a hypothesis as a result of these tests.
For example, the boiling point of water is found to
be: 101.7◦C, 99.8◦C, 100.4◦C, 100.3◦C, 99.5◦C and
98.9◦C, as a result of six tests. The mean of these
six results is 100.1◦C. Based on these results, how
confidently can it be predicted, that at this particular
height above sea level and at this particular baromet-
ric pressure, water boils at 100.1◦C? In other words,
are the results based on sampling significantly dif-
ferent from the true result? There are a variety of
ways of testing significance, but only one or two of
these in common use are introduced in this section.
Usually, in significance tests, some predictions about
population parameters, based on sample data, are
required. In significance tests for population means,
a random sample is drawn from the population and
the mean value of the sample, x, is determined. The
testing procedure depends on whether or not the
standard deviation of the population is known.

(a) When the standard deviation of the
population is known

A null hypothesis is made that there is no differ-
ence between the value of a sample mean x and that
of the population mean, µ, i.e. H0: x = µ. If many
samples had been drawn from a population and a
sampling distribution of means had been formed,
then, provided N is large (usually taken as N ≥ 30)
the mean value would form a normal distribution,
having a mean value of µx and a standard deviation
or standard error of the means (see Section 61.3).
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The particular value of x of a large sample drawn
for a significance test is therefore part of a normal
distribution and it is possible to determine by how
much x is likely to differ from µx in terms of
the normal standard variate z. The relationship is

z = x − µx

σx
.

However, with reference to Chapter 61, page 578,

σx = σ√
N

√(
Np − N

Np − 1

)

for finite populations,

= σ√
N

for infinite populations, and µx = µ

where N is the sample size, Np is the size of the
population, µ is the mean of the population and σ
the standard deviation of the population.

Substituting for µx and σx in the equation for z
gives:

z = x − µ
σ√
N

for infinite populations, (1)

z = x − µ

σ√
N

√(
Np − N

Np − 1

) (2)

for populations of size Np

In Table 62.1 on page 594, the relationship bet-
ween z-values and levels of significance for both
one-tailed and two-tailed tests are given. It can be
seen from this table for a level of significance of,
say, 0.05 and a two-tailed test, the z-value is +1.96,
and z-values outside of this range are not signifi-
cant. Thus, for a given level of significance (i.e. a
known value of z), the mean of the population, µ, can
be predicted by using equations (1) and (2) above,
based on the mean of a sample x. Alternatively, if the
mean of the population is known, the significance of
a particular value of z, based on sample data, can be
established. If the z-value based on the mean of a ran-
dom sample for a two-tailed test is found to be, say,
2.01, then at a level of significance of 0.05, that is, the
results being probably significant, the mean of the
sampling distribution is said to differ significantly
from what would be expected as a result of the null
hypothesis (i.e. that x = µ), due to the result of the
test being classed as ‘not significant’ (see page 592).
The hypothesis would then be rejected and an alter-
native hypothesis formed, i.e. H1: x �= µ. The rules

of decision for such a test would be:

(i) reject the hypothesis at a 0.05 level of signifi-
cance, i.e. if the z-value of the sample mean is
outside of the range −1.96 to +1.96.

(ii) accept the hypothesis otherwise.

For small sample sizes (usually taken as N < 30),
the sampling distribution is not normally distributed,
but approximates to Student’s t-distributions (see
Section 61.5). In this case, t-values rather than
z-values are used and the equations analogous to
equations (1) and (2) are:

|t| = x − µ
σ√
N

for infinite populations (3)

|t| = x − µ

σ√
N

√(
Np − N

Np − 1

) (4)

for populations of size Np

where |t| means the modulus of t, i.e. the positive
value of t.

(b) When the standard deviation of the
population is not known

It is found, in practice, that if the standard devia-
tion of a sample is determined, its value is less than
the value of the standard deviation of the population
from which it is drawn. This is as expected, since
the range of a sample is likely to be less than the
range of the population. The difference between the
two standard deviations becomes more pronounced
when the sample size is small. Investigations have
shown that the variance, s2, of a sample of N items
is approximately related to the variance, σ2, of the
population from which it is drawn by:

s2 =
(

N − 1

N

)

σ2

The factor

(
N − 1

N

)

is known as Bessel’s cor-

rection. This relationship may be used to find the
relationship between the standard deviation of a
sample, s, and an estimate of the standard deviation
of a population, σ̂, and is:

σ̂2 = s2
(

N

N − 1

)

i.e. σ̂ = s

√(
N

N − 1

)
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For large samples, say, a minimum of N being 30, the

factor

√(
N

N − 1

)

is

√
30

29
which is approximately

equal to 1.017. Thus, for large samples s is very

nearly equal to σ̂ and the factor

√(
N

N − 1

)

can be

omitted without introducing any appreciable error. In
equations (1) and (2), s can be written for σ, giving:

z = x − µ
s√
N

for infinite populations (5)

and z = x − µ

s√
N

√(
Np − N

Np − 1

) (6)

for populations of size Np

For small samples, the factor

√(
N

N − 1

)

cannot

be disregarded and substituting σ = s

√(
N

N − 1

)

in

equations (3) and (4) gives:

|t| = x − µ

s

√(
N

N − 1

)

√
N

= (x − µ)
√

(N − 1)

s
(7)

for infinite populations, and

|t| = x − µ

s

√√
√
√
(

N

N − 1

)

√
N

√(
Np − N

Np − 1

)

= (x − µ)
√

(N − 1)

s

√(
Np − N

Np − 1

) (8)

for populations of size Np.

The equations given in this section are parts of
tests which are applied to determine population
means. The way in which some of them are used
is shown in the following worked problems.

Problem 4. Sugar is packed in bags by an auto-
matic machine. The mean mass of the contents
of a bag is 1.000 kg. Random samples of 36
bags are selected throughout the day and the
mean mass of a particular sample is found to
be 1.003 kg. If the manufacturer is willing to
accept a standard deviation on all bags packed
of 0.01 kg and a level of significance of 0.05,
above which values the machine must be stopped
and adjustments made, determine if, as a result
of the sample under test, the machine should be
adjusted.

Population mean µ = 1.000 kg, sample mean
x = 1.003 kg, population standard deviation
σ = 0.01 kg and sample size, N = 36.

A null hypothesis for this problem is that the sam-
ple mean and the mean of the population are equal,
i.e. H0: x = µ.

Since the manufacturer is interested in deviations
on both sides of the mean, the alternative hypothesis
is that the sample mean is not equal to the population
mean, i.e. H1: x �= µ.

The decision rules associated with these hypothe-
ses are:

(i) reject H0 if the z-value of the sample mean
is outside of the range of the z-values cor-
responding to a level of significance of 0.05
for a two-tailed test, i.e. stop machine and
adjust, and

(ii) accept H0 otherwise, i.e. keep the machine
running.

The sample size is over 30 so this is a ‘large sample’
problem and the population can be considered to be
infinite. Because values of x, µ, σ and N are all
known, equation (1) can be used to determine the
z-value of the sample mean,

i.e. z = x − µ
σ√
N

= 1.003 − 1.000
0.01√

36

= ± 0.003

0.0016

= ±1.8

The z-value corresponding to a level of significance
of 0.05 for a two-tailed test is given in Table 62.1
on page 594 and is ±1.96. Since the z-value of the
sample is within this range, the null hypothesis is
accepted and the machine should not be adjusted.
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Problem 5. The mean lifetime of a random
sample of 50 similar torch bulbs drawn from
a batch of 500 bulbs is 72 hours. The stan-
dard deviation of the lifetime of the sample is
10.4 hours. The batch is classed as inferior if the
mean lifetime of the batch is less than the popu-
lation mean of 75 hours. Determine whether, as
a result of the sample data, the batch is consid-
ered to be inferior at a level of significance of
(a) 0.05 and (b) 0.01.

Population size, Np = 500, population mean, µ = 75
hours, mean of sample, x = 72 hours, standard devi-
ation of sample, s = 10.4 hours, size of sample,
N = 50.

The null hypothesis is that the mean of the sample
is equal to the mean of the population, i.e. H0: x = µ.

The alternative hypothesis is that the mean of the
sample is less than the mean of the population, i.e.
H1: x < µ.

(The fact that x = 72 should not lead to the con-
clusion that the batch is necessarily inferior. At a
level of significance of 0.05, the result is ‘probably
significant’, but since this corresponds to a confi-
dence level of 95%, there are still 5 times in every 100
when the result can be significantly different, that
is, be outside of the range of z-values for this data.
This particular sample result may be one of these
5 times.)

The decision rules associated with the hypo-
theses are:

(i) reject H0 if the z-value (or t-value) of the sample
mean is less than the z-value (or t-value) corre-
sponding to a level of significance of (a) 0.05
and (b) 0.01, i.e. the batch is inferior,

(ii) accept H0 otherwise, i.e. the batch is not
inferior.

The data given is N , Np, x, s and µ. The alterna-
tive hypothesis indicates a one-tailed distribution
and since N > 30 the ‘large sample’ theory applies.

From equation (6),

z = x − µ

s√
N

√(
Np − N

Np − 1

) = 72 − 75

10.4√
50

√(
500 − 50

500 − 1

)

= −3

(1.471)(0.9496)
= −2.15

(a) For a level of significance of 0.05 and a one-
tailed test, all values to the left of the z-ordinate
at −1.645 (see Table 62.1 on page 594) indi-
cate that the results are ‘not significant’, that is,
they differ significantly from the null hypoth-
esis. Since the z-value of the sample mean is
−2.15, i.e. less than −1.645, the batch is con-
sidered to be inferior at a level of significance
of 0.05.

(b) The z-value for a level of significance of 0.01
for a one-tailed test is −2.33 and in this case,
z-values of sample means lying to the left of the
z-ordinate at −2.33 are ‘not significant’. Since
the z-value of the sample lies to the right of this
ordinate, it does not differ significantly from the
null hypothesis and the batch is not considered
to be inferior at a level of significance of 0.01.

(At first sight, for a mean value to be signifi-
cant at a level of significance of 0.05, but not
at 0.01, appears to be incorrect. However, it is
stated earlier in the chapter that for a result to
be probably significant, i.e. at a level of signifi-
cance of between 0.01 and 0.05, the range of
z-values is less than the range for the result to
be highly significant, that is, having a level of
significance of 0.01 or better. Hence the results
of the problem are logical.)

Problem 6. An analysis of the mass of carbon
in six similar specimens of cast iron, each of
mass 425.0 g, yielded the following results:

17.1 g, 17.3 g, 16.8 g, 16.9 g,
17.8 g, and 17.4 g

Test the hypothesis that the percentage of carbon
is 4.00% assuming an arbitrary level of signifi-
cance of (a) 0.2 and (b) 0.1.

The sample mean,

x = 17.1 + 17.3 + 16.8 + 16.9 + 17.8 + 17.4

6
= 17.22

The sample standard deviation,

s =

√√
√
√
√
√
√

⎧
⎪⎪⎨

⎪⎪⎩

(17.1 − 17.22)2 + (17.3 − 17.22)2

+ (16.8 − 17.22)2 + · · · + (17.4 − 17.22)2

6

⎫
⎪⎪⎬

⎪⎪⎭

= 0.334
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The null hypothesis is that the sample and population
means are equal, i.e. H0: x = µ.

The alternative hypothesis is that the sample and
population means are not equal, i.e. H1: x �= µ.

The decision rules are:

(i) reject H0 if the z- or t-value of the sample mean
is outside of the range of the z- or t-value corre-
sponding to a level of significance of (a) 0.2 and
(b) 0.1, i.e. the mass of carbon is not 4.00%,

(ii) accept H0 otherwise, i.e. the mass of carbon is
4.00%.

The number of tests taken, N , is 6 and an infi-
nite number of tests could have been taken, hence
the population is considered to be infinite. Because
N < 30, a t-distribution is used.

If the mean mass of carbon in the bulk of the metal
is 4.00%, the mean mass of carbon in a specimen is
4.00% of 425.0, i.e. 17.00 g, thus µ = 17.00.

From equation (7),

|t| = (x − µ)
√

(N − 1)

s

= (17.22 − 17.00)
√

(6 − 1)

0.334

= 1.473

In general, for any two-tailed distribution there is
a critical region both to the left and to the right of the
mean of the distribution. For a level of significance
of 0.2, 0.1 of the percentile value of a t-distribution
lies to the left of the mean and 0.1 of the percentile
value lies to the right of the mean. Thus, for a level
of significance of α, a value t(

1−α
2

), is required for

a two-tailed distribution when using Table 61.2 on
page 587. This conversion is necessary because the
t-distribution is given in terms of levels of confidence
and for a one-tailed distribution. The row t-value
for a value of α of 0.2 is t(

1− 0.2
2

), i.e. t0.90. The

degrees of freedom ν are N − 1, that is 5. From
Table 61.2 on page 587, the percentile value corre-
sponding to (t0.90, ν = 5) is 1.48, and for a two-tailed
test, ±1.48. Since the mean value of the sample is
within this range, the hypothesis is accepted at a level
of significance of 0.2.

The t-value for α = 0.1 is t(
1− 0.1

2

), i.e. t0.95. The

percentile value corresponding to t0.95, ν = 5 is 2.02
and since the mean value of the sample is within

the range ±2.02, the hypothesis is also accepted at
this level of significance. Thus, it is probable that
the mass of metal contains 4% carbon at levels of
significance of 0.2 and 0.1.

Now try the following exercise.

Exercise 224 Further problems on signifi-
cance tests for population means

1. A batch of cables produced by a manufacturer
have a mean breaking strength of 2000 kN
and a standard deviation of 100 kN. A sample
of 50 cables is found to have a mean break-
ing strength of 2050 kN. Test the hypothesis
that the breaking strength of the sample is
greater than the breaking strength of the pop-
ulation from which it is drawn at a level of
significance of 0.01.

⎡

⎢
⎢
⎢
⎢
⎣

z (sample) = 3.54, zα = 2.58,
hence hypothesis is rejected,
where zα is the z-value
corresponding to a level of
significance of α

⎤

⎥
⎥
⎥
⎥
⎦

2. Nine estimations of the percentage of copper
in a bronze alloy have a mean of 80.8% and
standard deviation of 1.2%. Assuming that
the percentage of copper in samples is nor-
mally distributed, test the null hypothesis that
the true percentage of copper is 80% against
an alternative hypothesis that it exceeds 80%,
at a level of significance of 0.1.

[
t0.95, ν8 = 1.86, |t| = 1.88, hence

null hypothesis rejected

]

3. The internal diameter of a pipe has a mean
diameter of 3.0000 cm with a standard devi-
ation of 0.015 cm. A random sample of 30
measurements are taken and the mean of the
samples is 3.0078 cm. Test the hypothesis that
the mean diameter of the pipe is 3.0000 cm at
a level of significance of 0.01.

[
z (sample) = 2.85, zα = ±2.58,

hence hypothesis is rejected

]

4. A fishing line has a mean breaking strength
of 10.25 kN. Following a special treatment on
the line, the following results are obtained for
20 specimens taken from the line.
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Breaking strength Frequency
(kN)

9.8 1
10 1
10.1 4
10.2 5
10.5 3
10.7 2
10.8 2
10.9 1
11.0 1

Test the hypothesis that the special treatment
has improved the breaking strength at a level
of significance of 0.1.

⎡

⎣
x = 10.38, s = 0.33,

t0.95ν19 = 1.73, |t| = 1.72,
hence hypothesis is accepted

⎤

⎦

5. A machine produces ball bearings having
a mean diameter of 0.50 cm. A sample of
10 ball bearings is drawn at random and the
sample mean is 0.53 cm with a standard devi-
ation of 0.03 cm. Test the hypothesis that
the mean diameter is 0.50 cm at a level of
significance of (a) 0.05 and (b) 0.01.

⎡

⎢
⎢
⎢
⎣

|t| = 3.00,
(a) t0.975ν9 = 2.26, hence

hypothesis rejected,
(b) t0.995ν9 = 3.25, hence

hypothesis is accepted

⎤

⎥
⎥
⎥
⎦

6. Six similar switches are tested to destruction
at an overload of 20% of their normal max-
imum current rating. The mean number of
operations before failure is 8200 with a stan-
dard deviation of 145. The manufacturer of
the switches claims that they can be operated
at least 8000 times at a 20% overload current.
Can the manufacturer’s claim be supported at
a level of significance of (a) 0.1 and (b) 0.2?

⎡

⎢
⎢
⎢
⎣

|t| = 3.08,
(a) t0.95ν5 = 2.02, hence claim

supported,
(b) t0.99ν5 = 3.36, hence claim

not supported

⎤

⎥
⎥
⎥
⎦

62.4 Comparing two sample means

The techniques introduced in Section 62.3 can be
used for comparison purposes. For example, it may

be necessary to compare the performance of, say, two
similar lamps produced by different manufacturers
or different operators carrying out a test or tests on
the same items using different equipment. The null
hypothesis adopted for tests involving two different
populations is that there is no difference between
the mean values of the populations.

The technique is based on the following theorem:

If x1 and x2 are the means of random samples of size N1
and N2 drawn from populations having means of µ1 and
µ2 and standard deviations of σ1 and σ2, then the sampling
distribution of the differences of the means, (x1 − x2), is
a close approximation to a normal distribution, having a

mean of zero and a standard deviation of

√(
σ2

1

N1
+ σ2

2

N2

)

.

For large samples, when comparing the mean val-
ues of two samples, the variate is the difference in
the means of the two samples, x1 − x2; the mean of
sampling distribution (and hence the difference in
population means) is zero and the standard error of

the sampling distribution σx is

√√
√
√

(
σ2

1

N1
+ σ2

2

N2

)

.

Hence, the z-value is

(x1 − x2) − 0
√√
√
√

(
σ2

1

N1
+ σ2

2

N2

) = x1 − x2√√
√
√

(
σ2

1

N1
+ σ2

2

N2

) (9)

For small samples, Student’s t-distribution values
are used and in this case:

|t| = x1 − x2√√
√
√

(
σ2

1

N1
+ σ2

2

N2

) (10)

where |t| means the modulus of t, i.e. the positive
value of t.

When the standard deviation of the population
is not known, then Bessel’s correction is applied
to estimate it from the sample standard devia-
tion (i.e. the estimate of the population variance,

σ2 = s2
(

N

N − 1

)

(see page 598). For large popu-

lations, the factor

(
N

N − 1

)

is small and may be

neglected. However, when N< 30, this correction
factor should be included. Also, since estimates of
both σ1 and σ2 are being made, the k factor in the
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degrees of freedom in Student’s t-distribution tables
becomes 2 and ν is given by (N1 + N2 − 2). With
these factors taken into account, when testing the
hypotheses that samples come from the same popu-
lation, or that there is no difference between the mean
values of two populations, the t-value is given by:

|t| = x1 − x2

σ

√(
1

N1
+ 1

N2

) (11)

An estimate of the standard deviation σ is based on
a concept called ‘pooling’. This states that if one
estimate of the variance of a population is based

on a sample, giving a result of σ2
1 = N1s2

1

N1 − 1
and

another estimate is based on a second sample, giving

σ2
2 = N2s2

2

N2 − 1
, then a better estimate of the population

variance, σ2, is given by:

σ2 = N1s2
1 + N2s2

2

(N1 − 1) + (N2 − 1)

i.e. σ =
√√
√
√
(

N1s2
1 + N2s2

2

N1 + N2 − 2

)

(12)

Problem 7. An automatic machine is produc-
ing components, and as a result of many tests the
standard deviation of their size is 0.02 cm. Two
samples of 40 components are taken, the mean
size of the first sample being 1.51 cm and the
second 1.52 cm. Determine whether the size has
altered appreciably if a level of significance of
0.05 is adopted, i.e. that the results are probably
significant.

Since both samples are drawn from the same pop-
ulation, σ1 = σ2 = σ = 0.0 2 cm. Also N1 = N2 = 40
and x1 = 1.51 cm, x2 = 1.52 cm.
The level of significance, α = 0.05.
The null hypothesis is that the size of the com-
ponent has not altered, i.e. x1 = x2, hence it is
H0: x1 − x2 = 0.
The alternative hypothesis is that the size of the
components has altered, i.e. that x1 �= x2, hence it is
H1: x1 − x2 �= 0.

For a large sample having a known standard devi-
ation of the population, the z-value of the difference
of means of two samples is given by equation (9), i.e.,

z = x1 − x2√√
√
√

(
σ2

1

N1
+ σ2

2

N2

)

Since N1 = N2 = say, N , and σ1 = σ2 = σ, this equa-
tion becomes

z = x1 − x2

σ

√(
2

N

) = 1.51 − 1.52

0.02

√(
2

40

) = −2.236

Since the difference between x1 and x2 has no spec-
ified direction, a two-tailed test is indicated. The
z-value corresponding to a level of significance of
0.05 and a two-tailed test is +1.96 (see Table 62.1,
page 594). The result for the z-value for the differ-
ence of means is outside of the range +1.96, that is,
it is probable that the size has altered appreciably
at a level of significance of 0.05.

Problem 8. The electrical resistances of two
products are being compared. The parameters
of product 1 are:

sample size 40, mean value of sample
74 ohms, standard deviation of whole of
product 1 batch is 8 ohms

Those of product 2 are:

sample size 50, mean value of sample
78 ohms, standard deviation of whole of
product 2 batch is 7 ohms

Determine if there is any significant differ-
ence between the two products at a level of
significance of (a) 0.05 and (b) 0.01.

Let the mean of the batch of product 1 be µ1, and
that of product 2 be µ2.
The null hypothesis is that the means are the same,
i.e. H0: µ1 − µ2 = 0.
The alternative hypothesis is that the means are not
the same, i.e. H1: µ1 − µ2 �= 0.
The population standard deviations are known, i.e.
σ1 = 8 ohms and σ2 = 7 ohms, the sample means
are known, i.e. x1 = 74 ohms and x2 = 78 ohms.
Also the sample sizes are known, i.e. N1 = 40 and
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N2 = 50. Hence, equation (9) can be used to deter-
mine the z-value of the difference of the sample
means. From equation (9),

z = x1 − x2√√
√
√

(
σ2

1

N1
+ σ2

2

N2

) = 74 − 78
√(

82

40
+ 72

50

)

= −4

1.606
= −2.49

(a) For a two-tailed test, the results are probably
significant at a 0.05 level of significance when
z lies between −1.96 and +1.96. Hence the
z-value of the difference of means shows there
is ‘no significance’, i.e. that product 1 is signif-
icantly different from product 2 at a level of
significance of 0.05.

(b) For a two-tailed test, the results are highly signif-
icant at a 0.01 level of significance when z lies
between −2.58 and +2.58. Hence there is no
significant difference between product 1 and
product 2 at a level of significance of 0.01.

Problem 9. The reaction time in seconds of two
people, A and B, are measured by electrodermal
responses and the results of the tests are as shown
below.

Person A (s) 0.243 0.243 0.239
Person B (s) 0.238 0.239 0.225

Person A (s) 0.232 0.229 0.241
Person B (s) 0.236 0.235 0.234

Find if there is any significant difference
between the reaction times of the two people
at a level of significance of 0.1.

The mean, x, and standard deviation, s, of the
response times of the two people are determined.

xA =
0.243 + 0.243 + 0.239 + 0.232

+ 0.229 + 0.241

6

= 0.2378 s

xB =
0.238 + 0.239 + 0.225 + 0.236

+ 0.235 + 0.234

6

= 0.2345 s

sA =

√√
√
√
√
√
√

⎡

⎢
⎢
⎣

(0.243 − 0.2378)2 + (0.243 − 0.2378)2

+ · · · + (0.241 − 0.2378)2

6

⎤

⎥
⎥
⎦

= 0.00543 s

sB =

√√
√
√
√
√
√

⎡

⎢
⎢
⎣

(0.238 − 0.2345)2 + (0.239 − 0.2345)2

+ · · · + (0.234 − 0.2345)2

6

⎤

⎥
⎥
⎦

= 0.00457 s

The null hypothesis is that there is no difference
between the reaction times of the two people, i.e.
H0: xA − xB = 0.

The alternative hypothesis is that the reaction
times are different, i.e. H1: xA − xB �= 0 indicating
a two-tailed test.

The sample numbers (combined) are less than 30
and a t-distribution is used. The standard deviation of
all the reaction times of the two people is not known,
so an estimate based on the standard deviations of the
samples is used. Applying Bessel’s correction, the
estimate of the standard deviation of the population,

σ2 = s2
(

N

N − 1

)

gives σA = (0.00543)

√(
6

5

)

= 0.00595

and σB = (0.00457)

√(
6

5

)

= 0.00501

From equation (10), the t-value of the difference of
the means is given by:

|t| = xA − xB√√
√
√

(
σ2

A

NA
+ σ2

B

NB

)

= 0.2378 − 0.2345
√(

0.005952

6
+ 0.005012

6

)

= 1.039
For a two-tailed test and a level of significance
of 0.1, the column heading in the t-distribution of
Table 61.2 (on page 587) is t0.95 (refer to Problem 6).
The degrees of freedom due to k being 2 is ν =
N1 + N2 − 2, i.e. 6 + 6 − 2 = 10. The corresponding
t-value from Table 61.2 is 1.81. Since the t-value
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of the difference of the means is within the range
±1.81, there is no significant difference between
the reaction times at a level of significance of 0.1.

Problem 10. An analyst carries out 10 analyses
on equal masses of a substance which is found
to contain a mean of 49.20 g of a metal, with a
standard deviation of 0.41 g. A trainee operator
carries out 12 analyses on equal masses of the
same substance which is found to contain a mean
of 49.30 g, with a standard deviation of 0.32 g.
Is there any significance between the results of
the operators?

Let µ1 and µ2 be the mean values of the amounts of
metal found by the two operators.

The null hypothesis is that there is no difference
between the results obtained by the two operators,
i.e. H0: µ1 = µ2.

The alternative hypothesis is that there is a differ-
ence between the results of the two operators, i.e.
H1: µ1 �= µ2.

Under the hypothesis H0 the standard deviations
of the amount of metal, σ, will be the same, and from
equation (12)

σ =
√√
√
√
(

N1s2
1 + N2s2

2

N1 + N2 − 2

)

=
√(

(10)(0.41)2 + (12)(0.32)2

10 + 12 − 2

)

= 0.3814

The t-value of the results obtained is given by
equation (11), i.e.,

|t| = x1 − x2

σ

√(
1

N1
+ 1

N2

) = 49.20 − 49.30

(0.3814)

√(
1

10
+ 1

12

)

= −0.612

For the results to be probably significant, a two-tailed
test and a level of significance of 0.05 is taken. H0 is
rejected outside of the range t−0.975 and t0.975. The
number of degrees of freedom is N1 + N2 − 2. For
t0.975, ν = 20, from Table 61.2 on page 587, the range
is from −2.09 to +2.09. Since the t-value based on

the sample data is within this range, there is no sig-
nificant difference between the results of the two
operators at a level of significance of 0.05.

Now try the following exercise.

Exercise 225 Further problems on compar-
ing two sample means

1. A comparison is being made between batter-
ies used in calculators. Batteries of type A
have a mean lifetime of 24 hours with a stan-
dard deviation of 4 hours, this data being
calculated from a sample of 100 of the bat-
teries. A sample of 80 of the type B batteries
has a mean lifetime of 40 hours with a stan-
dard deviation of 6 hours. Test the hypothesis
that the type B batteries have a mean lifetime
of at least 15 hours more than those of type A,
at a level of significance of 0.05.

⎡

⎢
⎢
⎢
⎢
⎣

Take x as 24 + 15,
i.e. 39 hours, z = 1.28, z0.05,
one-tailed test = 1.645,
hence hypothesis is
accepted

⎤

⎥
⎥
⎥
⎥
⎦

2. Two randomly selected groups of 50 opera-
tives in a factory are timed during an assem-
bly operation. The first group take a mean
time of 112 minutes with a standard deviation
of 12 minutes. The second group take a mean
time of 117 minutes with a standard devia-
tion of 9 minutes. Test the hypothesis that the
mean time for the assembly operation is the
same for both groups of employees at a level
of significance of 0.05.

⎡

⎢
⎢
⎣

z = 2.357, z0.05,
two-tailed test = ±1.96,
hence hypothesis is
rejected

⎤

⎥
⎥
⎦

3. Capacitors having a nominal capacitance of
24 µF but produced by two different compa-
nies are tested. The values of actual capaci-
tance are:

Company 1 21.4 23.6 24.8 22.4 26.3
Company 2 22.4 27.7 23.5 29.1 25.8

Test the hypothesis that the mean capacitance
of capacitors produced by company 2 are
higher than those produced by company 1 at
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a level of significance of 0.01.(

Bessel’s correction is σ̂2 = s2N

N − 1

)

.

⎡

⎢
⎢
⎢
⎣

x1 = 23.7, s1 = 1.73,
σ1 = 1.93, x2 = 25.7,
s2 = 2.50, σ2 = 2.80,
|t| = 1.62, t0.995ν8 = 3.36,

hence hypothesis is accepted

⎤

⎥
⎥
⎥
⎦

4. A sample of 100 relays produced by manufac-
turer A operated on average 1190 times before
failure occurred, with a standard deviation of
90.75. Relays produced by manufacturer B,
operated on average 1220 times before failure
with a standard deviation of 120. Determine
if the number of operations before failure are
significantly different for the two manufac-
turers at a level of significance of (a) 0.05
and (b) 0.1.

⎡

⎢
⎢
⎢
⎣

z (sample) = 1.99,
(a) z0.05, two-tailed test = ±1.96,

no significance,

(b) z0.1, two-tailed test = ±1.645,
significant difference

⎤

⎥
⎥
⎥
⎦

5. A sample of 12 car engines produced
by manufacturer A showed that the mean
petrol consumption over a measured dis-
tance was 4.8 litres with a standard devia-
tion of 0.40 litres. Twelve similar engines

for manufacturer B were tested over the
same distance and the mean petrol consump-
tion was 5.1 litres with a standard deviation
of 0.36 litres. Test the hypothesis that the
engines produced by manufacturer A are
more economical than those produced by
manufacturer B at a level of significance of
(a) 0.01 and (b) 0.1.

⎡

⎢
⎢
⎢
⎢
⎣

Assuming null hypothesis of no
difference, σ = 0.397, |t| = 1.85,

(a) t0.995, ν22 = 2.82, hypothesis
rejected,

(b) t0.95, ν22 = 1.72, hypothesis
accepted

⎤

⎥
⎥
⎥
⎥
⎦

6. Four-star and unleaded petrol is tested in
5 similar cars under identical conditions. For
four-star petrol, the cars covered a mean
distance of 21.4 kilometres with a standard
deviation of 0.54 kilometres for a given
mass of petrol. For the same mass of
unleaded petrol, the mean distance covered
was 22.6 kilometres with a standard devia-
tion of 0.48 kilometres. Test the hypothesis
that unleaded petrol gives more kilometres
per litre than four-star petrol at a level of
significance of 0.1.

[
σ = 0.571, |t| = 3.32, t0.95,
ν8 = 1.86, hence hypothesis

is rejected

]
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63

Chi-square and distribution-free tests

63.1 Chi-square values

The significance tests introduced in Chapter 62 rely
very largely on the normal distribution. For large
sample numbers where z-values are used, the mean
of the samples and the standard error of the means of
the samples are assumed to be normally distributed
(central limit theorem). For small sample numbers
where t-values are used, the population from which
samples are taken should be approximately normally
distributed for the t-values to be meaningful. Chi-
square tests (pronounced KY and denoted by the
Greek letter χ), which are introduced in this chapter,
do not rely on the population or a sampling statistic
such as the mean or standard error of the means being
normally distributed. Significance tests based on z-
and t-values are concerned with the parameters of a
distribution, such as the mean and the standard devi-
ation, whereas Chi-square tests are concerned with
the individual members of a set and are associated
with non-parametric tests.

Observed and expected frequencies

The results obtained from trials are rarely exactly
the same as the results predicted by statistical the-
ories. For example, if a coin is tossed 100 times, it
is unlikely that the result will be exactly 50 heads
and 50 tails. Let us assume that, say, 5 people each
toss a coin 100 times and note the number of, say,
heads obtained. Let the results obtained be as shown
below.

Person A B C D E
Observed frequency 43 54 60 48 57
Expected frequency 50 50 50 50 50

A measure of the discrepancy existing between
the observed frequencies shown in row 2 and the
expected frequencies shown in row 3 can be deter-
mined by calculating the Chi-square value. The
Chi-square value is defined as follows:

χ2 =
∑{

(o − e)2

e

}

,

where o and e are the observed and expected
frequencies respectively.

Problem 1. Determine the Chi-square value
for the coin-tossing data given above.

The χ2 value for the given data may be calculated
by using a tabular approach as shown below.

Person Observed Expected
frequency, frequency,

o e
A 43 50
B 54 50
C 60 50
D 48 50
E 57 50

o − e (o − e)2 (o − e)2

e

−7 49 0.98
4 16 0.32

10 100 2.00
−2 4 0.08

7 49 0.98

χ2 = ∑
{

(o − e)2

e

}

= 4.36

Hence the Chi-square value χ2 = 4.36.

If the value of χ2 is zero, then the observed and
expected frequencies agree exactly. The greater the
difference between the χ2-value and zero, the greater
the discrepancy between the observed and expected
frequencies.

Now try the following exercise.

Exercise 226 Problems on determining Chi-
square values

1. A dice is rolled 240 times and the observed
and expected frequencies are as shown.



Ch63-H8152.tex 11/7/2006 13: 11 Page 608

608 STATISTICS AND PROBABILITY

Face Observed Expected
frequency frequency

1 49 40
2 35 40
3 32 40
4 46 40
5 49 40
6 29 40

Determine the χ2-value for this distribution.
[10.2]

2. The numbers of telephone calls received by
the switchboard of a company in 200 five-
minute intervals are shown in the distribution
below.

Number of Observed Expected
calls frequency frequency

0 11 16
1 44 42
2 53 52
3 46 42
4 24 26
5 12 14
6 7 6
7 3 2

Calculate the χ2-value for this data.
[3.16]

63.2 Fitting data to theoretical
distributions

For theoretical distributions such as the binomial,
Poisson and normal distributions, expected frequen-
cies can be calculated. For example, from the theory
of the binomial distribution, the probability of hav-
ing 0, 1, 2, . . ., n defective items in a sample of n
items can be determined from the successive terms
of (q + p)n, where p is the defect rate and q = 1 − p.
These probabilities can be used to determine the
expected frequencies of having 0, 1, 2, . . ., n defec-
tive items. As a result of counting the number of
defective items when sampling, the observed fre-
quencies are obtained. The expected and observed
frequencies can be compared by means of a Chi-
square test and predictions can be made as to whether
the differences are due to random errors, due to
some fault in the method of sampling, or due to the
assumptions made.

As for normal and t distributions, a table is avail-
able for relating various calculated values of χ2 to

those likely because of random variations, at vari-
ous levels of confidence. Such a table is shown in
Table 63.1. In Table 63.1, the column on the left
denotes the number of degrees of freedom, ν, and
when the χ2-values refer to fitting data to theoreti-
cal distributions, the number of degrees of freedom
is usually (N − 1), where N is the number of rows
in the table from which χ2 is calculated. How-
ever, when the population parameters such as the
mean and standard deviation are based on sample
data, the number of degrees of freedom is given
by ν = N − 1 − M, where M is the number of esti-
mated population parameters. An application of
this is shown in Problem 4.

The columns of the table headed χ2
0.995, χ2

0.99,
. . . give the percentile of χ2-values corresponding
to levels of confidence of 99.5%, 99%, . . . (i.e. lev-
els of significance of 0.005, 0.01, . . .). On the far
right of the table, the columns headed . . . , χ2

0.01,
χ2

0.005 also correspond to levels of confidence of . . .
99%, 99.5%, and are used to predict the ‘too good
to be true’ type results, where the fit obtained is so
good that the method of sampling must be suspect.
The method in which χ2-values are used to test the
goodness of fit of data to probability distributions is
shown in the following problems.

Problem 2. As a result of a survey carried out
of 200 families, each with five children, the dis-
tribution shown below was produced. Test the
null hypothesis that the observed frequencies
are consistent with male and female births being
equally probable, assuming a binomial distribu-
tion, a level of significance of 0.05 and a ‘too
good to be true’ fit at a confidence level of 95%.

Number of boys (B) Number of
and girls (G) families

5B, 0G 11
4B, 1G 35
3B, 2G 69
2B, 3G 55
1B, 4G 25
OB, 5G 5

To determine the expected frequencies

Using the usual binomial distribution symbols, let p
be the probability of a male birth and q = 1 − p be
the probability of a female birth. The probabilities
of having 5 boys, 4 boys, . . ., 0 boys are given by the
successive terms of the expansion of (q + p)n. Since
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Table 63.1 Chi-square distribution

χp
2

Percentile values (χ2
p) for the Chi-square distribution with ν degrees of freedom

ν χ2
0.995 χ2

0.99 χ2
0.975 χ2

0.95 χ2
0.90 χ2

0.75 χ2
0.50 χ2

0.25 χ2
0.10 χ2

0.05 χ2
0.025 χ2

0.01 χ2
0.005

1 7.88 6.63 5.02 3.84 2.71 1.32 0.455 0.102 0.0158 0.0039 0.0010 0.0002 0.0000
2 10.6 9.21 7.38 5.99 4.61 2.77 1.39 0.575 0.211 0.103 0.0506 0.0201 0.0100
3 12.8 11.3 9.35 7.81 6.25 4.11 2.37 1.21 0.584 0.352 0.216 0.115 0.072
4 14.9 13.3 11.1 9.49 7.78 5.39 3.36 1.92 1.06 0.711 0.484 0.297 0.207

5 16.7 15.1 12.8 11.1 9.24 6.63 4.35 2.67 1.61 1.15 0.831 0.554 0.412
6 18.5 16.8 14.4 12.6 10.6 7.84 5.35 3.45 2.20 1.64 1.24 0.872 0.676
7 20.3 18.5 16.0 14.1 12.0 9.04 6.35 4.25 2.83 2.17 1.69 1.24 0.989
8 22.0 20.1 17.5 15.5 13.4 10.2 7.34 5.07 3.49 2.73 2.18 1.65 1.34
9 23.6 21.7 19.0 16.9 14.7 11.4 8.34 5.90 4.17 3.33 2.70 2.09 1.73

10 25.2 23.2 20.5 18.3 16.0 12.5 9.34 6.74 4.87 3.94 3.25 2.56 2.16
11 26.8 24.7 21.9 19.7 17.3 13.7 10.3 7.58 5.58 4.57 3.82 3.05 2.60
12 28.3 26.2 23.3 21.0 18.5 14.8 11.3 8.44 6.30 5.23 4.40 3.57 3.07
13 29.8 27.7 24.7 22.4 19.8 16.0 12.3 9.30 7.04 5.89 5.01 4.11 3.57
14 31.3 29.1 26.1 23.7 21.1 17.1 13.3 10.2 7.79 6.57 5.63 4.66 4.07

15 32.8 30.6 27.5 25.0 22.3 18.2 14.3 11.0 8.55 7.26 6.26 5.23 4.60
16 34.3 32.0 28.8 26.3 23.5 19.4 15.3 11.9 9.31 7.96 6.91 5.81 5.14
17 35.7 33.4 30.2 27.6 24.8 20.5 16.3 12.8 10.1 8.67 7.56 6.41 5.70
18 37.2 34.8 31.5 28.9 26.0 21.6 17.3 13.7 10.9 9.39 8.23 7.01 6.26
19 38.6 36.2 32.9 30.1 27.2 22.7 18.3 14.6 11.7 10.1 8.91 7.63 6.84

20 40.0 37.6 34.4 31.4 28.4 23.8 19.3 15.5 12.4 10.9 9.59 8.26 7.43
21 41.4 38.9 35.5 32.7 29.6 24.9 20.3 16.3 13.2 11.6 10.3 8.90 8.03
22 42.8 40.3 36.8 33.9 30.8 26.0 21.3 17.2 14.0 12.3 11.0 9.54 8.64
23 44.2 41.6 38.1 35.2 32.0 27.1 22.3 18.1 14.8 13.1 11.7 10.2 9.26
24 45.6 43.0 39.4 36.4 33.2 28.2 23.3 19.0 15.7 13.8 12.4 10.9 9.89

25 46.9 44.3 40.6 37.7 34.4 29.3 24.3 19.9 16.5 14.6 13.1 11.5 10.5
26 48.3 45.9 41.9 38.9 35.6 30.4 25.3 20.8 17.3 15.4 13.8 12.2 11.2
27 49.6 47.0 43.2 40.1 36.7 31.5 26.3 21.7 18.1 16.2 14.6 12.9 11.8
28 51.0 48.3 44.5 41.3 37.9 32.6 27.3 22.7 18.9 16.9 15.3 13.6 12.5
29 52.3 49.6 45.7 42.6 39.1 33.7 28.3 23.6 19.8 17.7 16.0 14.3 13.1

30 53.7 50.9 47.7 43.8 40.3 34.8 29.3 24.5 20.6 18.5 16.8 15.0 13.8
40 66.8 63.7 59.3 55.8 51.8 45.6 39.3 33.7 29.1 26.5 24.4 22.2 20.7
50 79.5 76.2 71.4 67.5 63.2 56.3 49.3 42.9 37.7 34.8 32.4 29.7 28.0
60 92.0 88.4 83.3 79.1 74.4 67.0 59.3 52.3 46.5 43.2 40.5 37.5 35.5

70 104.2 100.4 95.0 90.5 85.5 77.6 69.3 61.7 55.3 51.7 48.8 45.4 43.3
80 116.3 112.3 106.6 101.9 96.6 88.1 79.3 71.1 64.3 60.4 57.2 53.5 51.2
90 128.3 124.1 118.1 113.1 107.6 98.6 89.3 80.6 73.3 69.1 65.6 61.8 59.2

100 140.2 135.8 129.6 124.3 118.5 109.1 99.3 90.1 82.4 77.9 74.2 70.1 67.3

there are 5 children in each family, n = 5, and

(q + p)5 = q5 + 5q4p + 10q3p2 + 10q2p3

+ 5qp4 + p5

When q = p = 0.5, the probabilities of 5 boys,
4 boys, . . ., 0 boys are

0.03125, 0.15625, 0.3125, 0.3125,
0.15625 and 0.3125

For 200 families, the expected frequencies, rounded
off to the nearest whole number are: 6, 31, 63, 63,
31 and 6 respectively.

To determine the χ2 value

Using a tabular approach, the χ2-value is calculated

using χ2 = ∑
{

(o − e)2

e

}
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Number of Observed Expected
boys (B) frequency, frequency,
and girls (G) o e

5B, 0G 11 6
4B, 1G 35 31
3B, 2G 69 63
2B, 3G 55 63
1B, 4G 25 31
0B, 5G 5 6

o − e (o − e)2 (o − e)2

e

5 25 4.167
4 16 0.516
6 36 0.571

−8 64 1.016
−6 36 1.161
−1 1 0.167

χ2 = ∑
{

(o − e)2

e

}

= 7.598

To test the significance of the χ2-value

The number of degrees of freedom is given by
ν = N − 1 where N is the number of rows in the
table above, thus ν = 6 − 1 = 5. For a level of sig-
nificance of 0.05, the confidence level is 95%, i.e.
0.95 per unit. From Table 63.1 for the χ2

0.95, ν = 5
value, the percentile value χ2

p is 11.1. Since the calcu-
lated value of χ2 is less than χ2

p the null hypothesis
that the observed frequencies are consistent with
male and female births being equally probable is
accepted.

For a confidence level of 95%, the χ2
0.05, ν = 5

value from Table 63.1 is 1.15 and because the cal-
culated value of χ2 (i.e. 7.598) is greater than this
value, the fit is not so good as to be unbelievable.

Problem 3. The deposition of grit particles
from the atmosphere is measured by counting
the number of particles on 200 prepared cards
in a specified time. The following distribution
was obtained.

Number of
particles 0 1 2 3 4 5 6

Number
of cards 41 69 44 27 12 6 1

Test the null hypothesis that the deposition of grit
particles is according to a Poisson distribution at
a level of significance of 0.01 and determine if
the data is ‘too good to be true’ at a confidence
level of 99%.

To determine the expected frequency

The expectation or average occurrence is given by:

λ = total number of particles deposited

total number of cards

= 69 + 88 + 81 + 48 + 30 + 6

200
= 1.61

The expected frequencies are calculated using
a Poisson distribution, where the probabili-
ties of there being 0, 1, 2, . . ., 6 particles
deposited are given by the successive terms of

e−λ

(

1 + λ + λ2

2! + λ3

3! + · · ·
)

taken from left to

right,

i.e. e−λ, λe−λ,
λ2e−λ

2! ,
λ3e−λ

3! · · ·
Calculating these terms for λ = 1.61 gives:

Number of
particles Expected
deposited Probability frequency

0 0.1999 40
1 0.3218 64
2 0.2591 52
3 0.1390 28
4 0.0560 11
5 0.0180 4
6 0.0048 1

To determine the χ2-valve

The χ2-value is calculated using a tabular method as
shown below.

Number of Observed Expected
grit particles frequency, o frequency, e

0 41 40
1 69 64
2 44 52
3 27 28
4 12 11
5 6 4
6 1 1
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o − e (o − e)2 (o − e)2

e

1 1 0.0250
5 25 0.3906

−8 64 1.2308
−1 1 0.0357

1 1 0.0909
2 4 1.0000
0 0 0.0000

χ2 = ∑
{

(o − e)2

e

}

= 2.773

To test the significance of the χ2-value

The number of degrees of freedom is ν = N − 1,
where N is the number of rows in the table above,
giving ν = 7 − 1 = 6. The percentile value of χ2 is
determined from Table 63.1, for (χ2

0.99, ν = 6), and
is 16.8. Since the calculated value of χ2 (i.e. 2.773)
is smaller than the percentile value, the hypothesis
that the grit deposition is according to a Poisson
distribution is accepted. For a confidence level
of 99%, the (χ2

0.01, ν = 6) value is obtained from
Table 63.1, and is 0.872. Since the calculated value
of χ2 is greater than this value, the fit is not ‘too
good to be true’.

Problem 4. The diameters of a sample of 500
rivets produced by an automatic process have the
following size distribution.

Diameter Frequency
(mm)
4.011 12
4.015 47
4.019 86
4.023 123
4.027 107
4.031 97
4.035 28

Test the null hypothesis that the diameters of
the rivets are normally distributed at a level of
significance of 0.05 and also determine if the
distribution gives a ‘too good’ fit at a level of
confidence of 90%.

To determine the expected frequencies

In order to determine the expected frequencies, the
mean and standard deviation of the distribution
are required. These population parameters, µ and

σ, are based on sample data, x̄ and s, and an
allowance is made in the number of degrees of free-
dom used for estimating the population parameters
from sample data.
The sample mean,

x̄ =
12(4.011) + 47(4.015) + 86(4.019) + 123(4.023)

+107(4.027) + 97(4.031) + 28(4.035)

500

= 2012.176

500
= 4.024

The sample standard deviation s is given by:

s =

√√
√
√
√
√
√

⎡

⎢
⎢
⎣

12(4.011 − 4.024)2 + 47(4.015 − 4.024)2

+ · · · + 28(4.035 − 4.024)2

500

⎤

⎥
⎥
⎦

=
√

0.017212

500
= 0.00587

The class boundaries for the diameters are 4.009
to 4.013, 4.013 to 4.017, and so on, and are shown
in column 2 of Table 63.2. Using the theory of the
normal probability distribution, the probability for
each class and hence the expected frequency is
calculated as shown in Table 63.2.

In column 3, the z-values corresponding to the

class boundaries are determined using z = x − x̄

s
which in this case is z = x − 4.024

0.00587
. The area

between a z-value in column 3 and the mean of the
distribution at z = 0 is determined using the table of
partial areas under the standardized normal distribu-
tion curve given in Table 58.1 on page 561, and is
shown in column 4. By subtracting the area between
the mean and the z-value of the lower class boundary
from that of the upper class boundary, the area and
hence the probability of a particular class is obtained,
and is shown in column 5. There is one exception
in column 5, corresponding to class boundaries of
4.021 and 4.025, where the areas are added to give
the probability of the 4.023 class. This is because
these areas lie immediately to the left and right of the
mean value. Column 6 is obtained by multiplying the
probabilities in column 5 by the sample number, 500.
The sum of column 6 is not equal to 500 because
the area under the standardized normal curve for
z-values of less than −2.56 and more than 2.21 are
neglected. The error introduced by doing this is 10
in 500, i.e. 2%, and is acceptable in most problems
of this type. If it is not acceptable, each expected
frequency can be increased by the percentage error.
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Table 63.2

1 2 3 4 5 6
Class Class z-value for Area from Area for Expected

mid-point boundaries, x class boundary 0 to z class frequency

4.009 −2.56 0.4948
4.011 0.0255 13

4.013 −1.87 0.4693
4.015 0.0863 43

4.017 −1.19 0.3830
4.019 0.1880 94

4.021 −0.51 0.1950
4.023 0.2628 131

4.025 0.17 0.0678
4.027 0.2345 117

4.029 0.85 0.3023
4.031 0.1347 67

4.033 1.53 0.4370
4.035 0.0494 25

4.037 2.21 0.4864
Total: 490

To determine the χ2-value

The χ2-value is calculated using a tabular method
as shown below.

Diameter Observed Expected,
of rivets frequency, o frequency, e

4.011 12 13
4.015 47 43
4.019 86 94
4.023 123 131
4.027 107 117
4.031 97 67
4.035 28 25

o − e (o − e)2 (o − e)2

e

−1 1 0.0769
4 16 0.3721

−8 64 0.6809
−8 64 0.4885

−10 100 0.8547
30 900 13.4328

3 9 0.3600

χ2 = ∑
{

(o − e)2

e

}

= 16.2659

To test the significance of the χ2-value

The number of degrees of freedom is given by
N − 1 − M, where M is the number of estimated

parameters in the population. Both the mean and the
standard deviation of the population are based on
the sample value, M = 2, hence ν = 7 − 1 − 2 = 4.
From Table 63.1, the χ2

p-value corresponding to χ2
0.95

and ν4 is 9.49. Hence the null hypothesis that the
diameters of the rivets are normally distributed
is rejected. For χ2

0.10, ν4, the χ2
p-value is 1.06, hence

the fit is not ‘too good’. Since the null hypothesis
is rejected, the second significance test need not be
carried out.

Now try the following exercise.

Exercise 227 Further problems on fitting
data to theoretical distributions

1. Test the null hypothesis that the observed data
given below fits a binomial distribution of the
form 250(0.6 + 0.4)7 at a level of significance
of 0.05.
Observed

frequency 8 27 62 79 45 24 5 0

Is the fit of the data ‘too good’ at a level of
confidence of 90%?

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Expected frequencies:
7, 33, 65, 73, 48, 19, 4, 0;
χ2-value = 3.62, χ2

0.95,
ν7 = 14.1, hence hypothesis
accepted. χ2

0.10, ν7 = 2.83,
hence data is not ‘too good’

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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2. The data given below refers to the num-
ber of people injured in a city by accidents
for weekly periods throughout a year. It is
believed that the data fits a Poisson distri-
bution. Test the goodness of fit at a level of
significance of 0.05.

Number of Number of
people injured weeks

in the week
0 5
1 12
2 13
3 9
4 7
5 4
6 2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ = 2.404; expected
frequencies: 11, 27, 33, 26, 16, 8, 3
χ2-value = 42.24;
χ2

0.95, ν6 = 12.6, hence the data
does not fit a Poisson distribution
at a level of significance of 0.05

⎤

⎥
⎥
⎥
⎥
⎥
⎦

3. The resistances of a sample of carbon resis-
tors are as shown below.

Resistance Frequency
(M�)
1.28 7
1.29 19
1.30 41
1.31 50
1.32 73
1.33 52
1.34 28
1.35 17
1.36 9

Test the null hypothesis that this data corre-
sponds to a normal distribution at a level of
significance of 0.05.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̄ = 1.32, s = 0.0180; expected
frequencies, 6, 17, 36, 55, 65,
55, 36, 17, 6; χ2-value = 5.98;
χ2

0.95, ν6 = 12.6, hence the
null hypothesis is accepted, i.e.
the data does correspond to a
normal distribution

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

4. The quality assurance department of a firm
selects 250 capacitors at random from a large
quantity of them and carries out various tests
on them. The results obtained are as follows:

Number of Number of
tests failed capacitors

0 113
1 77
2 39
3 16
4 4
5 1

6 and over 0

Test the goodness of fit of this distribution to a
Poisson distribution at a level of significance
of 0.05.

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ = 0.896; expected
frequencies are 102, 91, 41,
12, 3, 0, 0; χ2-value = 5.10.

χ2
0.95, ν6 = 12.6, hence this

data fits a Poisson distribution
at a level of significance of 0.05

⎤

⎥
⎥
⎥
⎥
⎥
⎦

5. Test the hypothesis that the maximum load
before breaking supported by certain cables
produced by a company follows a normal dis-
tribution at a level of significance of 0.05,
based on the experimental data given below.
Also test to see if the data is ‘too good’ at a
level of significance of 0.05.

Maximum Number of
load (MN) cables

8.5 2
9.0 5
9.5 12

10.0 17
10.5 14
11.0 6
11.5 3
12.0 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̄ = 10.09 MN; σ = 0.733 MN;
expected frequencies, 2, 5, 12,
16, 14, 8, 3, 1; χ2-value = 0.563;
χ2

0.95, ν5 = 11.1. Hence
hypothesis accepted. χ2

0.05,
ν5 = 1.15, hence the results are
‘too good to be true’

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

63.3 Introduction to distribution-free
tests

Sometimes, sampling distributions arise from pop-
ulations with unknown parameters. Tests that deal
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with such distributions are called distribution-free
tests; since they do not involve the use of parameters,
they are known as non-parametric tests. Three such
tests are explained in this chapter—the sign test in
Section 63.4 following, the Wilcoxon signed-rank
test in Section 63.5 and the Mann-Whitney test in
Section 63.6.

63.4 The sign test

The sign test is the simplest, quickest and oldest of
all non-parametric tests.

Procedure

(i) State for the data the null and alternative
hypotheses, H0 and H1.

(ii) Know whether the stated significance level, α,
is for a one-tailed or a two-tailed test. Let, for
example, H0: x = φ, then if H1: x �= φ then a
two-tailed test is suggested because x could
be less than or more than φ (thus use α2 in

Table 63.3 Critical values for the sign test

α1 = 5% 2 1
2 % 1% 1

2 % α1 = 5% 2 1
2 % 1% 1

2 %
n α2 = 10% 5% 2% 1% n α2 = 10% 5% 2% 1%

1 — — — — 26 8 7 6 6
2 — — — — 27 8 7 7 6
3 — — — — 28 9 8 7 6
4 — — — — 29 9 8 7 7
5 0 — — — 30 10 9 8 7
6 0 0 — — 31 10 9 8 7
7 0 0 0 — 32 10 9 8 8
8 1 0 0 0 33 11 10 9 8
9 1 1 0 0 34 11 10 9 9

10 1 1 0 0 35 12 11 10 9
11 2 1 1 0 36 12 11 10 9
12 2 2 1 1 37 13 12 10 10
13 3 2 1 1 38 13 12 11 10
14 3 2 2 1 39 13 12 11 11
15 3 3 2 2 40 14 13 12 11
16 4 3 2 2 41 14 13 12 11
17 4 4 3 2 42 15 14 13 12
18 5 4 3 3 43 15 14 13 12
19 5 4 4 3 44 16 15 13 13
20 5 5 4 3 45 16 15 14 13
21 6 5 4 4 46 16 15 14 13
22 6 5 5 4 47 17 16 15 14
23 7 6 5 4 48 17 16 15 14
24 7 6 5 5 49 18 17 15 15
25 7 7 6 5 50 18 17 16 15

Table 63.3), but if say H1: x < φ or H1: x > φ
then a one-tailed test is suggested (thus use α1
in Table 63.3).

(iii) Assign plus or minus signs to each piece of
data—compared with φ (see Problems 5 and 6)
or assign plus and minus signs to the difference
for paired observations (see Problem 7).

(iv) Sum either the number of plus signs or the
number of minus signs. For the two-tailed test,
whichever is the smallest is taken; for a one-
tailed test, the one which would be expected to
have the smaller value when H1 is true is used.
The sum decided upon is denoted by S.

(v) Use Table 63.3 for given values of n, and α1 or
α2 to read the critical region of S. For exam-
ple, if, say, n = 16 and α1 = 5%, then from
Table 63.3, S ≤ 4. Thus if S in part (iv) is greater
than 4 we accept the null hypothesis H0 and
if S is less than or equal to 4 we accept the
alternative hypothesis H1.

This procedure for the sign test is demonstrated in
the following Problems.
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Problem 5. A manager of a manufacturer is
concerned about suspected slow progress in
dealing with orders. He wants at least half of the
orders received to be processed within a work-
ing day (i.e. 7 hours). A little later he decides to
time 17 orders selected at random, to check if
his request had been met. The times spent by the
17 orders being processed were as follows:

4 3
4 h 9 3

4 h 15 1
2 h 11 h 8 1

4 h 6 1
2 h

9 h 8 3
4 h 10 3

4 h 3 1
2 h 8 1

2 h 9 1
2 h

15 1
4 h 13 h 8 h 7 3

4 h 6 3
4 h

Use the sign test at a significance level of 5%
to check if the managers request for quicker
processing is being met.

Using the above procedure:

(i) The hypotheses are H0: t = 7 h and H: t > 7 h,
where t is time.

(ii) Since H1 is t > 7 h, a one-tail test is assumed,
i.e. α1 = 5%.

(iii) In the sign test each value of data is assigned
a + or − sign. For the above data let us assign
a + for times greater than 7 hours and a − for
less than 7 hours. This gives the following
pattern:

− + + + + − + + +
− + + + + + + −

(iv) The test statistic, S, in this case is the number of
minus signs (− if H0 were true there would be
an equal number of + and − signs). Table 63.3
gives critical values for the sign test and is given
in terms of small values; hence in this case S is
the number of − signs, i.e. S = 4.

(v) From Table 63.3, with a sample size n = 17, for
a significance level of α1 = 5%, S ≤ 4.
Since S = 4 in our data, the result is significant
at α1 = 5%, i.e. the alternative hypothesis
is accepted—it appears that the managers
request for quicker processing of orders is
not being met.

Problem 6. The following data represents the
number of hours that a portable car vacuum
cleaner operates before recharging is required.

Operating
time (h) 1.4 2.3 0.8 1.4 1.8 1.5

1.9 1.4 2.1 1.1 1.6

Use the sign test to test the hypothesis, at a 5%
level of significance, that this particular vacuum
cleaner operates, on average, 1.7 hours before
needing a recharge.

Using the procedure:

(i) Null hypothesis H0: t = 1.7 h
Alternative hypothesis H1: t �= 1.7 h.

(ii) Significance level, α2 = 5% (since this is a
two-tailed test).

(iii) Assuming a + sign for times >1.7 and a − sign
for times <1.7 gives:

− + − − + − + − + − −
(iv) There are 4 plus signs and 7 minus signs; taking

the smallest number, S = 4.

(v) From Table 63.3, where n = 11 and α2 = 5%,
S ≤ 1.

Since S = 4 falls in the acceptance region (i.e. in
this case in greater than 1), the null hypothesis
is accepted, i.e. the average operating time is
not significantly different from 1.7 h.

Problem 7. An engineer is investigating two
different types of metering devices, A and B, for
an electronic fuel injection system to determine
if they differ in their fuel mileage performance.
The system is installed on 12 different cars, and
a test is run with each metering system in turn
on each car. The observed fuel mileage data (in
miles/gallon) is shown below:

A 18.7 20.3 20.8 18.3 16.4 16.8
B 17.6 21.2 19.1 17.5 16.9 16.4

A 17.2 19.1 17.9 19.8 18.2 19.1
B 17.7 19.2 17.5 21.4 17.6 18.8

Use the sign test at a level of significance of
5% to determine whether there is any difference
between the two systems.

Using the procedure:

(i) H0: FA = FB and H1: FA �= FB where FA and
FB are the fuels in miles/gallon for systems A
and B respectively.

(ii) α2 = 5% (since it is a two-tailed test).

(iii) The difference between the observations is
determined and a + or a − sign assigned to
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each as shown below:

(A − B) +1.1 −0.9 +1.7 +0.8
−0.5 +0.4 −0.5 −0.1
+0.4 −1.6 +0.6 +0.3

(iv) There are 7 ‘+ signs’ and 5 ‘− signs’. Taking
the smallest number, S = 5.

(v) From Table 63.3, with n = 12 and α2 = 5%,
S ≤ 2.

Since from (iv), S is not equal or less than 2,
the null hypothesis cannot be rejected, i.e.
the two metering devices produce the same
fuel mileage performance.

Now try the following exercise.

Exercise 228 Further problems on the sign
test

1. The following data represent the number of
hours of flight training received by 16 trainee
pilots prior to their first solo flight:

11.5 h 20 h 9 h 12.5 h 15 h 19 h

11 h 10.5 h 13 h 22 h 14.5 h 16.5 h

17 h 18 h 14 h 12 h

Use the sign test at a significance level of 2%
to test the claim that, on average, the trainees
solo after 15 hours of flight training.

⎡

⎣
H0: t = 15 h, H1: t �= 15 h

S = 6. From Table 63.3,

S ≤ 2, hence accept H0

⎤

⎦

2. In a laboratory experiment, 18 measurements
of the coefficient of friction, µ, between metal
and leather gave the following results:

0.60 0.57 0.51 0.55 0.66 0.56

0.52 0.59 0.58 0.48 0.59 0.63

0.61 0.69 0.57 0.51 0.58 0.54

Use the sign test at a level of significance
of 5% to test the null hypothesis µ = 0.56
against an alternative hypothesis µ �= 0.56.

[
S = 6. From Fig. 63.3, S ≤ 4, hence

null hypothesis accepted

]

3. 18 random samples of two types of 9V batter-
ies are taken and the mean lifetime (in hours)
of each are:

Type A 8.2 7.0 11.3 13.9 9.0
13.8 16.2 8.6 9.4 3.6

7.5 6.5 18.0 11.5 13.4
6.9 14.2 12.4

Type B 15.3 15.4 11.2 16.1 18.1
17.1 17.7 8.4 13.5 7.8

9.8 10.6 16.4 12.7 16.8
9.9 12.9 14.7

Use the sign test, at a level of significance of
5%, to test the null hypothesis that the two
samples come from the same population.

⎡

⎢
⎣

H0: meanA = meanB,
H1: meanA �= meanB, S = 4
From Table 63.3, S ≤ 4,
hence H1 is accepted

⎤

⎥
⎦

63.5 Wilcoxon signed-rank test

The sign test represents data by using only plus and
minus signs, all other information being ignored. The
Wilcoxon signed-rank test does make some use of
the sizes of the differences between the observed
values and the hypothesized median. However, the
distribution needs to be continuous and reasonably
symmetric.

Procedure

(i) State for the data the null and alternative
hypotheses, H0 and H1.

(ii) Know whether the stated significance level, α,
is for a one-tailed or a two-tailed test (see (ii)
in the procedure for the sign test on page 614).

(iii) Find the difference of each piece of data
compared with the null hypothesis (see Prob-
lems 8 and 9) or assign plus and minus signs
to the difference for paired observations (see
Problem 10).

(iv) Rank the differences, ignoring whether they are
positive or negative.

(v) The Wilcoxon signed-rank statistic T is
calculated as the sum of the ranks of
either the positive differences or the negative
differences—whichever is the smaller for a
two-tailed test, and the one which would be
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Table 63.4 Critical values for the Wilcoxon signed-rank test

α1 = 5% 2 1
2 % 1% 1

2 % α1 = 5% 2 1
2 % 1% 1

2 %

n α2 = 10% 5% 2% 1% n α2 = 10% 5% 2% 1%

1 — — — — 26 110 98 84 75
2 — — — — 27 119 107 92 83
3 — — — — 28 130 116 101 91
4 — — — — 29 140 126 110 100
5 0 — — — 30 151 137 120 109
6 2 0 — — 31 163 147 130 118
7 3 2 0 — 32 175 159 140 128
8 5 3 1 0 33 187 170 151 138
9 8 5 3 1 34 200 182 162 148

10 10 8 5 3 35 213 195 173 159

11 13 10 7 5 36 227 208 185 171
12 17 13 9 7 37 241 221 198 182
13 21 17 12 9 38 256 235 211 194
14 25 21 15 12 39 271 249 224 207
15 30 25 19 15 40 286 264 238 220

16 35 29 23 19 41 302 279 252 233
17 41 34 27 23 42 319 294 266 247
18 47 40 32 27 43 336 310 281 261
19 53 46 37 32 44 353 327 296 276
20 60 52 43 37 45 371 343 312 291

21 67 58 49 42 46 389 361 328 307
22 75 65 55 48 47 407 378 345 322
23 83 73 62 54 48 426 396 362 339
24 91 81 69 61 49 446 415 379 355
25 100 89 76 68 50 466 434 397 373

expected to have the smaller value when H1
is true for a one-tailed test.

(vi) Use Table 63.4 for given values of n, and α1 or
α2 to read the critical region of T . For exam-
ple, if, say, n = 16 and α1 = 5%, then from
Table 63.4, T ≤ 35. Thus if T in part (v) is
greater than 35 we accept the null hypothesis
H0 and if T is less than or equal to 35 we accept
the alternative hypothesis H1.

This procedure for the Wilcoxon signed-rank test is
demonstrated in the following Problems.

Problem 8. A manager of a manufacturer is
concerned about suspected slow progress in
dealing with orders. He wants at least half of the
orders received to be processed within a work-
ing day (i.e. 7 hours). A little later he decides to
time 17 orders selected at random, to check if

his request had been met. The times spent by the
17 orders being processed were as follows:

4 3
4 h 9 3

4 h 15 1
2 h 11 h 8 1

4 h 6 1
2 h

9 h 8 3
4 h 10 3

4 h 3 1
2 h 8 1

2 h 9 1
2 h

15 1
4 h 13 h 8 h 7 3

4 h 6 3
4 h

Use the Wilcoxon signed-rank test at a signif-
icance level of 5% to check if the managers
request for quicker processing is being met.

(This is the same as Problem 5 where the sign test
was used).
Using the procedure:

(i) The hypotheses are H0: t = 7 h and H1: t > 7 h,
where t is time.

(ii) Since H1 is t > 7 h, a one-tail test is assumed,
i.e. α1 = 5%.



Ch63-H8152.tex 11/7/2006 13: 11 Page 618

618 STATISTICS AND PROBABILITY

(iii) Taking the difference between the time taken
for each order and 7 h gives:

−2 1
4 h +2 3

4 h +8 1
2 h +4 h +1 1

4 h

− 1
2 h +2 h +1 3

4 h +3 3
4 h −3 1

2 h

+1 1
2 h +2 1

2 h +8 1
4 h +6 h +1 h

+ 3
4 h − 1

4 h

(iv) These differences may now be ranked from 1
to 17, ignoring whether they are positive or
negative:

Rank 1 2 3 4 5 6

Difference − 1
4 − 1

2
3
4 1 1 1

4 1 1
2

Rank 7 8 9 10 11 12

Difference 1 3
4 2 −2 1

4 2 1
2 2 3

4 −3 1
2

Rank 13 14 15 16 17

Difference 3 3
4 4 6 8 1

4 8 1
2

(v) The Wilcoxon signed-rank statistic T is calcu-
lated as the sum of the ranks of the negative
differences for a one-tailed test.
The sum of the ranks for the negative values is:
T = 1 + 2 + 9 + 12 = 24.

(vi) Table 63.4 gives the critical values of T for the
Wilcoxon signed-rank test. For n = 17 and a
significance level α1 = 5%, T ≤ 41.

Hence the conclusion is that since T = 24 the result
is within the 5% critical region. There is therefore
strong evidence to support H1, the alternative
hypothesis, that the median processing time is
greater than 7 hours.

Problem 9. The following data represents the
number of hours that a portable car vacuum
cleaner operates before recharging is required.

Operating
time (h) 1.4 2.3 0.8 1.4 1.8 1.5

1.9 1.4 2.1 1.1 1.6

Use the Wilcoxon signed-rank test to test the
hypothesis, at a 5% level of significance, that this
particular vacuum cleaner operates, on average,
1.7 hours before needing a recharge.

(This is the same as Problem 6 where the sign test
was used).

Using the procedure:

(i) H0: t = 1.7 h and H1: t �= 1.7 h.

(ii) Significance level, α2 = 5% (since this is a two-
tailed test).

(iii) Taking the difference between each operating
time and 1.7 h gives:

−0.3 h +0.6 h −0.9 h −0.3 h

+0.1 h −0.2 h +0.2 h −0.3 h

+0.4 h −0.6 h −0.1 h

(iv) These differences may now be ranked from 1
to 11 (ignoring whether they are positive or
negative).

Some of the differences are equal to each
other. For example, there are two 0.1’s (ignor-
ing signs) that would occupy positions 1 and
2 when ordered. We average these as far as
rankings are concerned i.e. each is assigned a

ranking of
1 + 2

2
i.e. 1.5. Similarly the two 0.2

values in positions 3 and 4 when ordered are

each assigned rankings of
3 + 4

2
i.e. 3.5, and

the three 0.3 values in positions 5, 6, and 7 are

each assigned a ranking of
5 + 6 + 7

3
i.e. 6, and

so on. The rankings are therefore:

Rank 1.5 1.5 3.5 3.5
Difference +0.1 −0.1 −0.2 +0.2

Rank 6 6 6 8
Difference −0.3 −0.3 −0.3 +0.4

Rank 9.5 9.5 11
Difference +0.6 −0.6 −0.9

(v) There are 4 positive terms and 7 negative
terms. Taking the smaller number, the four
positive terms have rankings of 1.5, 3.5, 8
and 9.5. Summing the positive ranks gives:
T = 1.5 + 3.5 + 8 + 9.5 = 22.5.

(vi) From Table 63.4, when n = 11 and α2 = 5%,
T ≤ 10.
Since T = 22.5 falls in the acceptance region
(i.e. in this case is greater than 10), the null
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hypothesis is accepted, i.e. the average oper-
ating time is not significantly different from
1.7 h.

[Note that if, say, a piece of the given data was 1.7 h,
such that the difference was zero, that data is ignored
and n would be 10 instead of 11 in this case.]

Problem 10. An engineer is investigating two
different types of metering devices, A and B, for
an electronic fuel injection system to determine
if they differ in their fuel mileage performance.
The system is installed on 12 different cars, and
a test is run with each metering system in turn
on each car. The observed fuel mileage data (in
miles/gallon) is shown below:

A 18.7 20.3 20.8 18.3 16.4 16.8
B 17.6 21.2 19.1 17.5 16.9 16.4

A 17.2 19.1 17.9 19.8 18.2 19.1
B 17.7 19.2 17.5 21.4 17.6 18.8

Use the Wilcoxon signed-rank test, at a level
of significance of 5%, to determine whether
there is any difference between the two
systems.

(This is the same as Problem 7 where the sign test
was used)

Using the procedure:

(i) H0: FA = FB and H1: FA �= FB where FA and
FB are the fuels in miles/gallon for systems A
and B respectively.

(ii) α2 = 5% (since it is a two-tailed test).

(iii) The difference between the observations is
determined and a + or a − sign assigned to
each as shown below:

(A − B) +1.1 −0.9 +1.7 +0.8

−0.5 +0.4 −0.5 −0.1

+0.4 −1.6 +0.6 +0.3

(iv) The differences are now ranked from 1 to 12
(ignoring whether they are positive or nega-
tive). When ordered, 0.4 occupies positions 3
and 4; their average is 3.5 and both are assigned
this value when ranked. Similarly 0.5 occupies
positions 5 and 6 and their average of 5.5 is
assigned to each when ranked.

Rank 1 2 3.5 3.5
Difference −0.1 +0.3 +0.4 +0.4

Rank 5.5 5.5 7 8
Difference −0.5 −0.5 +0.6 +0.8

Rank 9 10 11 12
Difference −0.9 +1.1 −1.6 +1.7

(v) There are 7 ‘+ signs’ and 5 ‘− signs’. Taking
the smaller number, the negative signs have
rankings of 1, 5.5, 5.5, 9 and 11.

Summing the negative ranks gives:
T = 1 + 5.5 + 5.5 + 9 + 11 = 32.

(vi) From Table 63.4, when n = 12 and α2 = 5%,
T ≤ 13.

Since from (iv), T is not equal or less than 13,
the null hypothesis cannot be rejected, i.e.
the two metering devices produce the same
fuel mileage performance.

Now try the following exercise.

Exercise 229 Further problems on the
Wilcoxon signed-rank test

1. The time to repair an electronic instrument is
a random variable. The repair times (in hours)
for 16 instruments are as follows:

218 275 264 210 161 374 178 265
150 360 185 171 215 100 474 248

Use the Wilcoxon signed-rank test, at a 5%
level of significance, to test the hypothesis
that the mean repair time is 220 hours.

[
H0: t = 220 h, H1: t �= 220 h,

T = 74. From Table 63.4,
T ≤ 29, hence H0 is accepted

]

2. 18 samples of serum are analyzed for their
sodium content. The results, expressed as
ppm are as follows:

169 151 166 155 149 154
164 151 147 142 168 152
149 129 153 154 149 143
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At a level of significance of 5%, use the
Wilcoxon signed-rank test to test the null
hypothesis that the average value for the
method of analysis used is 150 ppm.

⎡

⎢
⎣

H0: s = 150, H1: s �= 150,
T = 38. From Table 63.4,
T ≤ 40, hence alternative
hypothesis H1 is accepted

⎤

⎥
⎦

3. A paint supplier claims that a new additive
will reduce the drying time of their acrylic
paint. To test his claim, 12 pieces of wood
are painted, one half of each piece with paint
containing the regular additive and the other
half with paint containing the new additive.
The drying time (in hours) were measured as
follows:

New
additive 4.5 5.5 3.9 3.6 4.1 6.3

Regular
additive 4.7 5.9 3.9 3.8 4.4 6.5

New
additive 5.9 6.7 5.1 3.6 4.0 3.0

Regular
additive 6.9 6.5 5.3 3.6 3.9 3.9

Use the Wilcoxon signed-rank test at a sig-
nificance level of 5% to test the hypothesis
that there is no difference, on average, in the
drying times of the new and regular additive
paints.

⎡

⎢
⎢
⎢
⎢
⎣

H0: N = R, H1: N �= R, T = 5
From Table 63.4, with n = 10
(since two differences are zero),
T ≤ 8, Hence there is a
significant difference in the
drying times

⎤

⎥
⎥
⎥
⎥
⎦

63.6 The Mann-Whitney test

As long as the sample sizes are not too large, for
tests involving two samples, the Mann-Whitney test
is easy to apply, is powerful and is widely used.

Procedure

(i) State for the data the null and alternative
hypotheses, H0 and H1.

(ii) Know whether the stated significance level, α,
is for a one-tailed or a two-tailed test (see (ii)
in the procedure for the sign test on page 614).

(iii) Arrange all the data in ascending order whilst
retaining their separate identities.

(iv) If the data is now a mixture of, say, A’s and B’s,
write under each letter A the number of B’s that
precede it in the sequence (or vice-versa).

(v) Add together the numbers obtained from
(iv) and denote total by U. U is defined as
whichever type of count would be expected to
be smallest when H1 is true.

(vi) Use Table 63.5 on pages 622 and 623 for given
values of n1 and n2, and α1 or α2 to read
the critical region of U. For example, if, say,
n1 = 10 and n2 = 16 and α2 = 5%, then from
Table 63.5, U≤ 42. If U in part (v) is greater
than 42 we accept the null hypothesis H0, and
if U is equal or less than 42, we accept the
alternative hypothesis H1.

The procedure for the Mann-Whitney test is demon-
strated in the following problems.

Problem 11. 10 British cars and 8 non-British
cars are compared for faults during their first
10 000 miles of use. The percentage of cars of
each type developing faults were as follows:

Non-British
cars, P 5 8 14 10 15

British
cars, Q 18 9 25 6 21

Non-British
cars, P 7 12 4

British
cars, Q 20 28 11 16 34

Use the Mann-Whitney test, at a level of sig-
nificance of 1%, to test whether non-British
cars have better average reliability than British
models.

Using the above procedure:

(i) The hypotheses are:

H0: Equal proportions of British and non-
British cars have breakdowns.

H1: A higher proportion of British cars have
breakdowns.
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(ii) Level of significance α1 = 1%.

(iii) Let the sizes of the samples be nP and nQ,
where nP = 8 and nQ = 10. The Mann-Whitney
test compares every item in sample P in turn
with every item in sample Q, a record being
kept of the number of times, say, that the item
from P is greater than Q, or vice-versa. In this
case there are nPnQ, i.e. (8)(10) = 80 compar-
isons to be made. All the data is arranged into
ascending order whilst retaining their separate
identities—an easy way is to arrange a linear
scale as shown in Fig. 63.1, on page 624.

From Fig. 63.1, a list of P’s and Q’s can be
ranked giving:

P P Q P P Q P Q P P P Q Q Q

Q Q Q Q

(iv) Write under each letter P the number of Q’s
that precede it in the sequence, giving:

P P Q P P Q P Q P P P Q
0 0 1 1 2 3 3 3

Q Q Q Q Q Q

(v) Add together these 8 numbers, denoting the
sum by U, i.e.

U = 0 + 0 + 1 + 1 + 2 + 3 + 3 + 3 = 13

(vi) The critical regions are of the form U ≤ critical
region.

From Table 63.5, for a sample size 8 and 10 at
significance level α1 = 1% the critical regions
is U ≤ 13.

The value of U in our case, from (v), is 13 which
is significant at 1% significance level.

The Mann-Whitney test has therefore confirmed
that there is evidence that the non-British cars
have better reliability than the British cars in the
first 10 000 miles, i.e. the alternative hypothesis
applies.

Problem 12. Two machines, A and B, are used
to measure vibration in a particular rubber prod-
uct. The data given below are the vibrational
forces, in kilograms, of random samples from
each machine:

A 9.7 10.2 11.2 12.4 14.1 22.3
29.6 31.7 33.0 33.2 33.4 46.2
50.7 52.5 55.4

B 20.6 25.3 29.2 35.2 41.9 48.5
54.1 57.1 59.8 63.2 68.5

Use the Mann-Whitney test at a significance
level of 5% to determine if there is any evidence
of the two machines producing different results.

Using the procedure:

(i) H0: There is no difference in results from the
machines, on average.

H1: The results from the two machines are
different, on average.

(ii) α2 = 5%.

(iii) Arranging the data in order gives:

9.7 10.2 11.2 12.4 14.1 20.6 22.3
A A A A A B A

25.3 29.2 29.6 31.7 33.0 33.2 33.4
B B A A A A A

35.2 41.9 46.2 48.5 50.7 52.5 54.1
B B A B A A B

55.4 57.1 59.8 63.2 68.5
A B B B B

(iv) The number of B’s preceding the A’s in the
sequence is as follows:

A A A A A B A B B
0 0 0 0 0 1

A A A A A B B A B
3 3 3 3 3 5

A A B A B B B B
6 6 7

(v) Adding the numbers from (iv) gives:

U = 0 + 0 + 0 + 0 + 0 + 1 + 3 + 3 + 3 + 3
+ 3 + 5 + 6 + 6 + 7 = 40

(vi) From Table 63.5, for n1 = 11 and n2 = 15, and
α2 = 5%, U ≤ 44.

Since our value of U from (v) is less than
44, H0 is rejected and H1 accepted, i.e. the
results from the two machines are different.
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Table 63.5 Critical values for the Mann-Whitney test

α1 = 5% 2 1
2 % 1% 1

2 % α1 = 5% 2 1
2 % 1% 1

2 %
n1 n2 α2 = 10% 5% 2% 1% n1 n2 α2 = 10% 5% 2% 1%

2 2 — — — — 4 17 15 11 8 6
2 3 — — — — 4 18 16 12 9 6
2 4 — — — — 4 19 17 13 9 7
2 5 0 — — — 4 20 18 14 10 8
2 6 0 — — —
2 7 0 — — — 5 5 4 2 1 0
2 8 1 0 — — 5 6 5 3 2 1
2 9 1 0 — — 5 7 6 5 3 1
2 10 1 0 — — 5 8 8 6 4 2
2 11 1 0 — — 5 9 9 7 5 3
2 12 2 1 — — 5 10 11 8 6 4
2 13 2 1 0 — 5 11 12 9 7 5
2 14 3 1 0 — 5 12 13 11 8 6
2 15 3 1 0 — 5 13 15 12 9 7
2 16 3 1 0 — 5 14 16 13 10 7
2 17 3 2 0 — 5 15 18 14 11 8
2 18 4 2 0 — 5 16 19 15 12 9
2 19 4 2 1 0 5 17 20 17 13 10
2 20 4 2 1 0 5 18 22 18 14 11

5 19 23 19 15 12
3 3 0 — — — 5 20 25 20 16 13
3 4 0 — — —
3 5 1 0 — — 6 6 7 5 3 2
3 6 2 1 — — 6 7 8 6 4 3
3 7 2 1 0 — 6 8 10 8 6 4
3 8 3 2 0 — 6 9 12 10 7 5
3 9 4 2 1 0 6 10 14 11 8 6
3 10 4 3 1 0 6 11 16 13 9 7
3 11 5 3 1 0 6 12 17 14 11 9
3 12 5 4 2 1 6 13 19 16 12 10
3 13 6 4 2 1 6 14 21 17 13 11
3 14 7 5 2 1 6 15 23 19 15 12
3 15 7 5 3 2 6 16 25 21 16 13
3 16 8 6 3 2 6 17 26 22 18 15
3 17 9 6 4 2 6 18 28 24 19 16
3 18 9 7 4 2 6 19 30 25 20 17
3 19 10 7 4 3 6 20 32 27 22 18
3 20 11 8 5 3

7 7 11 8 6 4
4 4 1 0 — — 7 8 13 10 7 6
4 5 2 1 0 — 7 9 15 12 9 7
4 6 3 2 1 0 7 10 17 14 11 9
4 7 4 3 1 0 7 11 19 16 12 10
4 8 5 4 2 1 7 12 21 18 14 12
4 9 6 4 3 1 7 13 24 20 16 13
4 10 7 5 3 2 7 14 26 22 17 15
4 11 8 6 4 2 7 15 28 24 19 16
4 12 9 7 5 3 7 16 30 26 21 18
4 13 10 8 5 3 7 17 33 28 23 19
4 14 11 9 6 4 7 18 35 30 24 21
4 15 12 10 7 5 7 19 37 32 26 22
4 16 14 11 7 5 7 20 39 34 28 24
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Table 63.5 (Continued)

α1 = 5% 2 1
2 % 1% 1

2 % α1 = 5% 2 1
2 % 1% 1

2 %
n1 n2 α2 = 10% 5% 2% 1% n1 n2 α2 = 10% 5% 2% 1%

8 8 15 13 9 7 12 14 51 45 38 34
8 9 18 15 11 9 12 15 55 49 42 37
8 10 20 17 13 11 12 16 60 53 46 41
8 11 23 19 15 13 12 17 64 57 49 44
8 12 26 22 17 15 12 18 68 61 53 47
8 13 28 24 20 17 12 19 72 65 56 51
8 14 31 26 22 18 12 20 77 69 60 54
8 15 33 29 24 20
8 16 36 31 26 22 13 13 51 45 39 34
8 17 39 34 28 24 13 14 56 50 43 38
8 18 41 36 30 26 13 15 61 54 47 42
8 19 44 38 32 28 13 16 65 59 51 45
8 20 47 41 34 30 13 17 70 63 55 49

13 18 75 67 59 53
9 9 21 17 14 11 13 19 80 72 63 57
9 10 24 20 16 13 13 20 84 76 67 60
9 11 27 23 18 16
9 12 30 26 21 18 14 14 61 55 47 42
9 13 33 28 23 20 14 15 66 59 51 46
9 14 36 31 26 22 14 16 71 64 56 50
9 15 39 34 28 24 14 17 77 69 60 54
9 16 42 37 31 27 14 18 82 74 65 58
9 17 45 39 33 29 14 19 87 78 69 63
9 18 48 42 36 31 14 20 92 83 73 67
9 19 51 45 38 33
9 20 54 48 40 36 15 15 72 64 56 51

15 16 77 70 61 55
10 10 27 23 19 16 15 17 83 75 66 60
10 11 31 26 22 18 15 18 88 80 70 64
10 12 34 29 24 21 15 19 94 85 75 69
10 13 37 33 27 24 15 20 100 90 80 73
10 14 41 36 30 26
10 15 44 39 33 29 16 16 83 75 66 60
10 16 48 42 36 31 16 17 89 81 71 65
10 17 51 45 38 34 16 18 95 86 76 70
10 18 55 48 41 37 16 19 101 92 82 74
10 19 58 52 44 39 16 20 107 98 87 79
10 20 62 55 47 42

17 17 96 87 77 70
11 11 34 30 25 21 17 18 102 92 82 75
11 12 38 33 28 24 17 19 109 99 88 81
11 13 42 37 31 27 17 20 115 105 93 86
11 14 46 40 34 30
11 15 50 44 37 33 18 18 109 99 88 81
11 16 54 47 41 36 18 19 116 106 94 87
11 17 57 51 44 39 18 20 123 112 100 92
11 18 61 55 47 42
11 19 65 58 50 45 19 19 123 112 101 93
11 20 69 62 53 48 19 20 130 119 107 99

12 12 42 37 31 27 20 20 138 127 114 105
12 13 47 41 35 31
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SAMPLE P

SAMPLE Q

Figure 63.1

Now try the following exercise.

Exercise 230 Further problems on the
Mann-Whitney test

1. The tar content of two brands of cigarettes (in
mg) was measured as follows:

Brand P 22.6 4.1 3.9 0.7 3.2
Brand Q 3.4 6.2 3.5 4.7 6.3

Brand P 6.1 1.7 2.3 5.6 2.0
Brand Q 5.5 3.8 2.1

Use the Mann-Whitney test at a 0.05 level of
significance to determine if the tar contents
of the two brands are equal.

⎡

⎢
⎢
⎣

H0: TA = TB, H1: TA �= TB,
U = 30. From Table 63.5,
U ≤ 17, hence accept H0,
i.e. there is no difference
between the brands

⎤

⎥
⎥
⎦

2. A component is manufactured by two pro-
cesses. Some components from each process
are selected at random and tested for breaking
strength to determine if there is a difference
between the processes. The results are:

Process A 9.7 10.5 10.1 11.6 9.8
Process B 11.3 8.6 9.6 10.2 10.9

Process A 8.9 11.2 12.0 9.2
Process B 9.4 10.8

At a level of significance of 10%, use the
Mann-Whitney test to determine if there
is a difference between the mean breaking

strengths of the components manufactured by
the two processes.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

H0: B.S.A = B.S.B,
H1: B.S.A �= B.S.B,
α2 = 10%, U = 28. From
Table 63.5, U ≤ 15, hence
accept H0, i.e. there is no
difference between the
processes

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

3. An experiment, designed to compare two pre-
ventive methods against corrosion gave the
following results for the maximum depths of
pits (in mm) in metal strands:

Method
A 143 106 135 147 139 132 153 140

Method
B 98 105 137 94 112 103

Use the Mann-Whitney test, at a level of
significance of 0.05, to determine whether
the two tests are equally effective.

⎡

⎢
⎢
⎢
⎢
⎣

H0: A = B, H1: A �= B,
α2 = 5%, U = 4. From
Table 63.5,U ≤ 8, hence
null hypothesis is rejected,
i.e. the two methods are
not equally effective

⎤

⎥
⎥
⎥
⎥
⎦

4. Repeat Problem 3 of Exercise 228, page 616
using the Mann-Whitney test.

⎡

⎢
⎢
⎢
⎢
⎣

H0: meanA = meanB,
H1: meanA �= meanB,
α2 = 5%, U = 90
From Table 63.5, U ≤ 99,
hence H0 is rejected
and H1 accepted

⎤

⎥
⎥
⎥
⎥
⎦
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Statistics and probability

Assignment 17

This assignment covers the material contained
in Chapters 61 to 63.

The marks for each question are shown in
brackets at the end of each question.

1. 1200 metal bolts have a mean mass of 7.2 g
and a standard deviation of 0.3 g. Determine the
standard error of the means. Calculate also the
probability that a sample of 60 bolts chosen at
random, without replacement, will have a mass
of (a) between 7.1 g and 7.25 g, and (b) more
than 7.3 g. (12)

2. A sample of 10 measurements of the length of
a component are made and the mean of the
sample is 3.650 cm. The standard deviation of
the samples is 0.030 cm. Determine (a) the 99%
confidence limits, and (b) the 90% confidence
limits for an estimate of the actual length of the
component. (10)

3. An automated machine produces metal screws
and over a period of time it is found that 8%
are defective. Random samples of 75 screws are
drawn periodically.

(a) If a decision is made that production con-
tinues until a sample contains more than
8 defective screws, determine the type I
error based on this decision for a defect
rate of 8%.

(b) Determine the magnitude of the type II error
when the defect rate has risen to 12%.

The above sample size is now reduced to
55 screws. The decision now is to stop the
machine for adjustment if a sample contains
4 or more defective screws.

(c) Determine the type I error if the defect rate
remains at 8%.

(d) Determine the type II error when the defect
rate rises to 9%. (22)

4. In a random sample of 40 similar light bulbs
drawn from a batch of 400 the mean lifetime is
found to be 252 hours. The standard deviation of
the lifetime of the sample is 25 hours. The batch is
classed as inferior if the mean lifetime of the batch
is less than the population mean of 260 hours. As
a result of the sample data, determine whether
the batch is considered to be inferior at a level of
significance of (a) 0.05, and (b) 0.01. (9)

5. The lengths of two products are being compared.

Product 1: sample size = 50, mean value of
sample = 6.5 cm, standard devia-
tion of whole of batch = 0.40 cm.

Product 2: sample size = 60, mean value of
sample = 6.65 cm, standard devia-
tion of whole of batch = 0.35 cm.

Determine if there is any significant difference
between the two products at a level of significance
of (a) 0.05, and (b) 0.01. (7)

6. The resistance of a sample of 400 resistors pro-
duced by an automatic process have the following
resistance distribution.

Resistance Frequency
(�)

50.11 9
50.15 35
50.19 61
50.23 102
50.27 89
50.31 83
50.35 21

Calculate for the sample: (a) the mean, and (b) the
standard deviation. (c) Test the null hypothesis
that the resistance of the resistors are normally
distributed at a level of significance of 0.05, and
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determine if the distribution gives a ‘too good’ fit
at a level of confidence of 90%. (25)

7. A fishing line is manufactured by two processes,
A and B. To determine if there is a difference in the
mean breaking strengths of the lines, 8 lines by
each process are selected and tested for breaking
strength. The results are as follows:

Process A 8.6 7.1 6.9 6.5 7.9 6.3 7.8 8.1
Process B 6.8 7.6 8.2 6.2 7.5 8.9 8.0 8.7

Determine if there is a difference between the
mean breaking strengths of the lines manufac-
tured by the two processes, at a significance level
of 0.10, using (a) the sign test, (b) the Wilcoxon
signed-rank test, (c) the Mann-Whitney test.

(15)
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64

Introduction to Laplace transforms

64.1 Introduction

The solution of most electrical circuit problems
can be reduced ultimately to the solution of differ-
ential equations. The use of Laplace transforms
provides an alternative method to those discussed
in Chapters 46 to 51 for solving linear differential
equations.

64.2 Definition of a Laplace transform

The Laplace transform of the function f (t) is defined
by the integral

∫∞
0 e−st f (t) dt, where s is a parameter

assumed to be a real number.

Common notations used for the Laplace transform

There are various commonly used notations for the
Laplace transform of f (t) and these include:

(i) L{ f (t)} or L{ f (t)}
(ii) L( f ) or Lf

(iii) f (s) or f (s)

Also, the letter p is sometimes used instead of s as
the parameter. The notation adopted in this book will
be f (t) for the original function and L{ f (t)} for its
Laplace transform.

Hence, from above:

L{ f (t)} =
∫ ∞

0
e−stf (t) d t (1)

64.3 Linearity property of the
Laplace transform

From equation (1),

L{kf (t)} =
∫ ∞

0
e−stk f (t) dt

= k
∫ ∞

0
e−st f (t) dt

i.e L{k f (t)} = kL{ f (t)} (2)

where k is any constant.

Similarly,

L{a f (t) + bg(t)} =
∫ ∞

0
e−st(a f (t) + bg(t)) dt

= a
∫ ∞

0
e−st f (t) dt

+ b
∫ ∞

0
e−stg(t) dt

i.e. L{a f (t) + bg(t)} = aL{ f (t)} + bL{g(t)}, (3)

where a and b are any real constants.
The Laplace transform is termed a linear opera-

tor because of the properties shown in equations (2)
and (3).

64.4 Laplace transforms of elementary
functions

Using the definition of the Laplace transform in
equation (1) a number of elementary functions may
be transformed. For example:

(a) f (t) = 1. From equation (1),

L{1} =
∫ ∞

0
e−st(1) dt =

[
e−st

−s

]∞

0

= −1

s
[e−s(∞) − e0] = −1

s
[0 − 1]

= 1
s

(provided s > 0)

(b) f (t) = k. From equation (2),

L{k} = kL{1}
Hence L{k} = k

(
1

s

)

= k
s

, from (a) above.

(c) f (t) = eat (where a is a real constant �= 0).
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From equation (1),

L{eat} =
∫ ∞

0
e−st(eat) dt =

∫ ∞

0
e−(s−a)t dt,

from the laws of indices,

=
[

e−(s−a)t

−(s − a)

]∞

0
= 1

−(s − a)
(0 − 1)

= 1
s − a
(provided (s − a) > 0, i.e. s > a)

(d) f (t) = cos at (where a is a real constant).
From equation (1),

L{cos at} =
∫ ∞

0
e−stcos at dt

=
[

e−st

s2 + a2 (a sin at − s cos at)

]∞

0

by integration by parts twice (see page 421),

=
[

e−s(∞)

s2 + a2 (a sin a(∞) − s cos a(∞))

− e0

s2 + a2 (a sin 0 − s cos 0)

]

= s
s2 + a2 ( provided s > 0)

(e) f (t) = t. From equation (1),

L{t} =
∫ ∞

0
e−st t dt =

[
te−st

−s
−
∫

e−st

−s
dt

]∞

0

=
[

te−st

−s
− e−st

s2

]∞

0

by integration by parts,

=
[∞e−s(∞)

−s
− e−s(∞)

s2

]

−
[

0 − e0

s2

]

= (0 − 0) −
(

0 − 1

s2

)

since (∞ × 0) = 0,

= 1
s2 (provided s > 0)

(f) f (t) = tn (where n = 0, 1, 2, 3, …).

By a similar method to (e) it may be shown

that L{t2} = 2

s3 and L{t3} = (3)(2)

s4 = 3!
s4 . These

results can be extended to n being any positive
integer.

Thus L{tn} = n!
sn+1 provided s > 0)

(g) f (t) = sinh at. From Chapter 5,

sinh at = 1

2
(eat − e−at). Hence,

L{sinh at} = L
{

1

2
eat − 1

2
e−at

}

= 1

2
L{eat} − 1

2
L{e−at}

from equations (2) and (3),

= 1

2

[
1

s − a

]

− 1

2

[
1

s + a

]

from (c) above,

= 1

2

[
1

s − a
− 1

s + a

]

= a
s2 − a2 (provided s > a)

A list of elementary standard Laplace transforms are
summarized in Table 64.1.

Table 64.1 Elementary standard Laplace transforms

Function Laplace transforms
f (t) L{f (t)} = ∫∞

0 e−st f (t) dt

(i) 1
1

s

(ii) k
k

s

(iii) eat 1

s − a

(iv) sin at
a

s2 + a2

(v) cos at
s

s2 + a2

(vi) t
1

s2

(vii) t2 2!
s3

(viii) tn (n = 1, 2, 3, . . .)
n!

sn+1

(ix) cosh at
s

s2 − a2

(x) sinh at
a

s2 − a2
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64.5 Worked problems on standard
Laplace transforms

Problem 1. Using a standard list of
Laplace transforms determine the following:

(a) L
{

1 + 2t − 1

3
t4
}

(b) L{5e2t − 3e−t}.

(a) L
{

1 + 2t − 1

3
t4
}

= L{1} + 2L{t} − 1

3
L{t4},

from equations (2) and (3)

= 1

s
+ 2

(
1

s2

)

− 1

3

(
4!

s4+1

)

,

from (i), (vi) and (viii) of Table 64.1

= 1

s
+ 2

s2 − 1

3

(
4 . 3 . 2 . 1

s5

)

= 1
s

+ 2
s2 − 8

s5

(b) L{5e2t − 3e−t} = 5L(e2t) − 3L{e−t},
from equations (2) and (3)

= 5

(
1

s − 2

)

− 3

(
1

s − (−1)

)

,

from (iii) of Table 64.1

= 5

s − 2
− 3

s + 1

= 5(s + 1) − 3(s − 2)

(s − 2)(s + 1)

= 2s + 11
s2 − s − 2

Problem 2. Find the Laplace transforms of:
(a) 6 sin 3t − 4 cos 5t (b) 2 cosh 2θ − sinh 3θ.

(a) L{6 sin 3t − 4 cos 5t}
= 6L{sin 3t} − 4L{cos 5t}

= 6

(
3

s2 + 32

)

− 4

(
s

s2 + 52

)

,

from (iv) and (v) of Table 64.1

= 18
s2 + 9

− 4s
s2 + 25

(b) L{2 cosh 2θ − sinh 3θ}
= 2L{cosh 2θ} − L{sinh 3θ}
= 2

(
s

s2 − 22

)

−
(

3

s2 − 32

)

from (ix) and (x) of Table 64.1

= 2s
s2 − 4

− 3
s2 − 9

Problem 3. Prove that

(a) L{sin at} = a

s2 + a2 (b) L{t2} = 2

s3

(c) L{cosh at} = s

s2 − a2 .

(a) From equation (1),

L{sin at} =
∫ ∞

0
e−stsin at dt

=
[

e−st

s2 + a2 (−s sin at − a cos at)

]∞

0
by integration by parts,

= 1

s2 + a2 [e−s(∞)(−s sin a(∞)

− a cos a(∞)) − e0(−s sin 0
− a cos 0)]

= 1

s2 + a2 [(0) − 1(0 − a)]

= a
s2 + a2 (provided s > 0)

(b) From equation (1),

L{t2} =
∫ ∞

0
e−st t2 dt

=
[

t2e−st

−s
− 2te−st

s2 − 2e−st

s3

]∞

0

by integration by parts twice,
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=
[

(0 − 0 − 0) −
(

0 − 0 − 2

s3

)]

= 2
s3 (provided s > 0)

(c) From equation (1),

L{cosh at} = L
{

1

2
(eat + e−at)

}

,

from Chapter 5

= 1

2
L{eat} + 1

2
L{e−at},

equations (2) and (3)

= 1

2

(
1

s − a

)

+ 1

2

(
1

s − (−a)

)

from (iii) of Table 64.1

= 1

2

[
1

s − a
+ 1

s + a

]

= 1

2

[
(s + a) + (s − a)

(s − a)(s + a)

]

= s
s2 − a2 (provided s > a)

Problem 4. Determine the Laplace transforms
of: (a) sin2 t (b) cosh2 3x.

(a) Since cos 2t = 1 − 2sin2 t then

sin2 t = 1

2
(1 − cos2t). Hence,

L{sin2 t} = L
{

1

2
(1 − cos 2t)

}

= 1

2
L{1} − 1

2
L{cos 2t}

= 1

2

(
1

s

)

− 1

2

(
s

s2 + 22

)

from (i) and (v) of Table 64.1

= (s2 + 4) − s2

2s(s2 + 4)
= 4

2s(s2 + 4)

= 2

s(s2 + 4)

(b) Since cosh 2x = 2 cosh2 x − 1 then

cosh2 x = 1

2
(1 + cosh 2x) from Chapter 5.

Hence cosh2 3x = 1

2
(1 + cosh 6x)

Thus L{cosh2 3x} = L
{

1

2
(1 + cosh 6x)

}

= 1

2
L{1} + 1

2
L{cosh 6x}

= 1

2

(
1

s

)

+ 1

2

(
s

s2 − 62

)

= 2s2 − 36

2s(s2 − 36)
= s2 − 18

s(s2 − 36)

Problem 5. Find the Laplace transform of
3 sin (ωt + α), where ω and α are constants.

Using the compound angle formula for sin(A + B),
from Chapter 18, sin(ωt + α) may be expanded to
(sin ωt cos α + cos ωt sin α). Hence,

L{3sin (ωt + α)}
= L{3(sin ωt cos α + cos ωt sin α)}
= 3 cos αL{sin ωt} + 3 sin αL{cos ωt},

since α is a constant

= 3 cos α

(
ω

s2 + ω2

)

+ 3 sin α

(
s

s2 + ω2

)

from (iv) and (v) of Table 64.1

= 3
(s2 + ω2)

(ω cos α + s sin α)

Now try the following exercise.

Exercise 231 Further problems on an intro-
duction to Laplace transforms

Determine the Laplace transforms in Problems
1 to 9.

1. (a) 2t − 3 (b) 5t2+ 4t − 3
[

(a)
2

s2 − 3

s
(b)

10

s3 + 4

s2 − 3

s

]

2. (a)
t3

24
− 3t + 2 (b)

t5

15
− 2t4 + t2

2
[

(a)
1

4s4 − 3

s2 + 2

s
(b)

8

s6 − 48

s5
+ 1

s3

]
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3. (a) 5e3t (b) 2e−2t
[

(a)
5

s − 3
(b)

2

s + 2

]

4. (a) 4 sin 3t (b) 3 cos 2t
[

(a)
12

s2 + 9
(b)

3s

s2 + 4

]

5. (a) 7 cosh 2x (b)
1

3
sinh 3t

[

(a)
7s

s2 − 4
(b)

1

s2 − 9

]

6. (a) 2 cos2t (b) 3 sin2 2x
[

(a)
2(s2 + 2)

s(s2 + 4)
(b)

24

s(s2 + 16)

]

7. (a) cosh2 t (b) 2 sinh2 2θ

[

(a)
s2 − 2

s(s2 − 4)
(b)

16

s(s2 − 16)

]

8. 4 sin(at + b), where a and b are constants
[

4

s2 + a2 (a cos b + s sin b)

]

9. 3 cos(ωt − α), where ω and α are constants
[

3

s2 + ω2 (s cos α + ω sin α)

]

10. Show that L(cos2 3t − sin2 3t) = s

s2 + 36
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Properties of Laplace transforms

65.1 The Laplace transform of eat f (t)

From Chapter 64, the definition of the Laplace
transform of f (t) is:

L{ f (t)} =
∫ ∞

0
e−st f (t) dt (1)

Thus L{eatf (t)} =
∫ ∞

0
e−st(eatf (t)) dt

=
∫ ∞

0
e−(s−a)f (t) dt (2)

(where a is a real constant)

Hence the substitution of (s − a) for s in the trans-
form shown in equation (1) corresponds to the
multiplication of the original function f (t) by eat .
This is known as a shift theorem.

65.2 Laplace transforms of the form
eat f (t)

From equation (2), Laplace transforms of the form
eatf (t) may be deduced. For example:

(i) L{eat tn}
Since L{tn} = n!

sn+1 from (viii) of Table 64.1,

page 628.

then L{eat tn} = n!
(s − a)n+1 from equation (2)

above (provided s > a).

(ii) L{eat sin ωt}
Since L{sin ωt} = ω

s2 + ω2 from (iv) of

Table 64.1, page 628.

then L{eat sin ωt} = ω

(s − a)2 + ω2
from equa-

tion (2) (provided s > a).

(iii) L{eat cosh ωt}
Since L{cosh ωt} = s

s2 − ω2 from (ix) of

Table 64.1, page 628.

thenL{eat cosh ωt} = s − a

(s − a)2 − ω2
from equa-

tion (2) (provided s > a).

A summary of Laplace transforms of the form eatf (t)
is shown in Table 65.1.

Table 65.1 Laplace transforms of the form eat f (t)

Function eat f (t) Laplace transform
(a is a real constant) L{eat f (t)}

(i) eat tn n!
(s − a)n+1

(ii) eat sin ωt
ω

(s − a)2 + ω2

(iii) eat cos ωt
s − a

(s − a)2 + ω2

(iv) eat sinh ωt
ω

(s − a)2 − ω2

(v) eat cosh ωt
s − a

(s − a)2 − ω2

Problem 1. Determine (a) L{2t4e3t}
(b) L{4e3t cos 5t}.

(a) From (i) of Table 65.1,

L{2t4e3t} = 2L{t4e3t} = 2

(
4!

(s − 3)4+1

)

= 2(4)(3)(2)

(s − 3)5
= 48

(s − 3)5

(b) From (iii) of Table 65.1,

L{4e3t cos 5t} = 4L{e3t cos 5t}

= 4

(
s − 3

(s − 3)2 + 52

)
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= 4(s − 3)

s2 − 6s + 9 + 25

= 4(s − 3)
s2 − 6s + 34

Problem 2. Determine (a) L{e−2t sin 3t}
(b) L{3eθ cosh 4θ}.

(a) From (ii) of Table 65.1,

L{e−2t sin 3t}= 3

(s − (−2))2 + 32 = 3

(s+2)2 + 9

= 3

s2 + 4s + 4 + 9
= 3

s2 + 4s + 13

(b) From (v) of Table 65.1,

L{3eθ cosh 4θ}= 3L{eθ cosh 4θ}= 3(s − 1)

(s − 1)2 − 42

= 3(s − 1)

s2−2s+1−16
= 3(s − 1)

s2 − 2s − 15

Problem 3. Determine the Laplace transforms
of (a) 5e−3t sinh 2t (b) 2e3t(4 cos 2t − 5 sin 2t).

(a) From (iv) of Table 65.1,

L{5e−3t sinh 2t}= 5L{e−3t sinh 2t}

= 5

(
2

(s − (−3))2 − 22

)

= 10

(s + 3)2 − 22 = 10

s2 + 6s+9 − 4

= 10
s2 + 6s + 5

(b) L{2e3t(4 cos 2t − 5 sin 2t)}
= 8L{e3t cos 2t} − 10L{e3t sin 2t}

= 8(s − 3)

(s − 3)2 + 22 − 10(2)

(s − 3)2 + 22

from (iii) and (ii) of Table 65.1

= 8(s − 3) − 10(2)

(s − 3)2 + 22 = 8s − 44
s2 − 6s + 13

Problem 4. Show that

L
{

3e− 1
2 x sin2 x

}

= 48

(2s + 1)(4s2 + 4s + 17)
.

Since cos 2x = 1 − 2 sin2 x, sin2 x = 1

2
(1 − cos 2x).

Hence,

L
{

3e− 1
2 x sin2 x

}

= L
{

3e− 1
2 x 1

2
(1 − cos 2x)

}

= 3

2
L
{

e− 1
2 x
}

− 3

2
L
{

e− 1
2 x cos 2x

}

= 3

2

⎛

⎜
⎜
⎝

1

s −
(

−1

2

)

⎞

⎟
⎟
⎠− 3

2

⎛

⎜
⎜
⎜
⎝

(

s −
(

−1

2

))

(

s −
(

−1

2

))2

+ 22

⎞

⎟
⎟
⎟
⎠

from (iii) of Table 64.1 (page 628) and (iii)

of Table 65.1 above,

= 3

2

(

s + 1

2

) −
3

(

s + 1

2

)

2

[(

s + 1

2

)2

+ 22

]

= 3

2s + 1
− 6s + 3

4

(

s2 + s + 1

4
+ 4

)

= 3

2s + 1
− 6s + 3

4s2 + 4s + 17

= 3(4s2 + 4s + 17) − (6s + 3)(2s + 1)

(2s + 1)(4s2 + 4s + 17)

= 12s2 + 12s + 51 − 12s2 − 6s − 6s − 3

(2s + 1)(4s2 + 4s + 17)

= 48
(2s + 1)(4s2 + 4s + 17)
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Now try the following exercise.

Exercise 232 Further problems on Laplace
transforms of the form eat f (t)

Determine the Laplace transforms of the follow-
ing functions:

1. (a) 2te2t (b) t2et

[

(a)
2

(s − 2)2 (b)
2

(s − 1)3

]

2. (a) 4t3e−2t (b)
1

2
t4e−3t

[

(a)
24

(s + 2)4 (b)
12

(s + 3)5

]

3. (a) et cos t (b) 3e2t sin 2t
[

(a)
s − 1

s2 − 2s + 2
(b)

6

s2 − 4s + 8

]

4. (a) 5e−2t cos 3t (b) 4e−5t sin t
[

(a)
5(s + 2)

s2 + 4s + 13
(b)

4

s2 + 10s + 26

]

5. (a) 2et sin2 t (b)
1

2
e3t cos2 t

⎡

⎢
⎢
⎣

(a)
1

s − 1
− s − 1

s2 − 2s + 5

(b)
1

4

(
1

s − 3
+ s − 3

s2 − 6s + 13

)

⎤

⎥
⎥
⎦

6. (a) et sinh t (b) 3e2t cosh 4t
[

(a)
1

s(s − 2)
(b)

3(s − 2)

s2 − 4s − 12

]

7. (a) 2e−t sinh 3t (b)
1

4
e−3t cosh 2t

[

(a)
6

s2 + 2s − 8
(b)

s + 3

4(s2 + 6s + 5)

]

8. (a) 2et( cos 3t − 3 sin 3t)

(b) 3e−2t( sinh 2t − 2 cosh 2t)
[

(a)
2(s − 10)

s2 − 2s + 10
(b)

−6(s + 1)

s(s + 4)

]

65.3 The Laplace transforms of
derivatives

(a) First derivative

Let the first derivative of f (t) be f ′(t) then, from
equation (1),

L{f ′(t)} =
∫ ∞

0
e−st f ′(t) dt

From Chapter 43, when integrating by parts
∫

u
dv

dt
dt = uv −

∫
v

du

dt
dt

When evaluating
∫∞

0 e−st f ′(t) dt,

let u = e−st and
dv

dt
= f ′(t)

from which,
du

dt
= −se−st and v =

∫
f ′(t) dt = f (t)

Hence
∫ ∞

0
e−st f ′(t) dt

= [e−st f (t)
]∞

0 −
∫ ∞

0
f (t)(−se−st) dt

= [0 − f (0)] + s
∫ ∞

0
e−st f (t) dt

= −f (0) + sL{f (t)}
assuming e−st f (t) → 0 as t → ∞, and f (0) is the
value of f (t) at t = 0. Hence,

L{ f ′(t)} = sL{ f (t)} − f (0)

or L
{

dy
dx

}

= sL{ y} − y(0)

⎫
⎬

⎭
(3)

where y(0) is the value of y at x = 0.

(b) Second derivative

Let the second derivative of f (t) be f ′′(t), then from
equation (1),

L{ f ′′(t)} =
∫ ∞

0
e−st f ′′(t) dt

Integrating by parts gives:
∫ ∞

0
e−st f ′′(t) dt = [e−st f ′(t)

]∞
0 + s

∫ ∞

0
e−st f ′(t) dt

= [0 − f ′(0)] + sL{ f ′(t)}
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assuming e−st f ′(t) → 0 as t → ∞, and f ′(0) is the
value of f ′(t) at t = 0. Hence
{ f ′′(t)} = −f ′(0) + s[s( f (t)) − f (0)], from equation (3),

i.e.

L{ f ′′(t)}
= s2L{ f (t)} − sf (0) − f ′(0)

or L
{

d2y
dx2

}

= s2L{ y} − sy(0) − y′(0)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4)

where y′(0) is the value of
dy

dx
at x = 0.

Equations (3) and (4) are important and are
used in the solution of differential equations (see
Chapter 67) and simultaneous differential equations
(Chapter 68).

Problem 5. Use the Laplace transform of the
first derivative to derive:

(a) L{k} = k

s
(b) L{2t} = 2

s2

(c) L{e−at} = 1

s + a

From equation (3), L{ f ′(t)} = sL{f (t)} − f (0).

(a) Let f (t) = k, then f ′(t) = 0 and f (0) = k.

Substituting into equation (3) gives:

L{0} = sL{k} − k

i.e. k = sL{k}
Hence L{k} = k

s

(b) Let f (t) = 2t then f ′(t) = 2 and f (0) = 0.

Substituting into equation (3) gives:

L{2} = sL{2t} − 0

i.e.
2

s
= sL{2t}

Hence L{2t} = 2
s2

(c) Let f (t) = e−at then f ′(t) = −ae−at and f (0) = 1.

Substituting into equation (3) gives:

L{−ae−at} = sL{e−at} − 1

−aL{e−at} = sL{e−at} − 1

1 = sL{e−at} + aL{e−at}
1 = (s + a)L{e−at}

Hence L{e−at} = 1
s + a

Problem 6. Use the Laplace transform of the
second derivative to derive

L{cos at} = s

s2 + a2

From equation (4),

L{ f ′′(t)} = s2L{ f (t)} − sf (0) − f ′(0)

Let f (t) = cos at, then f ′(t) = −a sin at and
f ′′(t) = −a2 cos at, f (0) = 1 and f ′(0) = 0

Substituting into equation (4) gives:

L{−a2 cos at} = s2{cos at} − s(1) − 0

i.e. −a2L{cos at} = s2L{cos at} − s

Hence s = (s2 + a2)L{cos at}
from which, L{cos at} = s

s2 + a2

Now try the following exercise.

Exercise 233 Further problems on the
Laplace transforms of derivatives

1. Derive the Laplace transform of the first
derivative from the definition of a Laplace
transform. Hence derive the transform

L{1} = 1

s

2. Use the Laplace transform of the first deriva-
tive to derive the transforms:

(a) L{eat} = 1

s − a
(b) L{3t2} = 6

s3

3. Derive the Laplace transform of the second
derivative from the definition of a Laplace
transform. Hence derive the transform

L{sin at} = a

s2 + a2
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4. Use the Laplace transform of the second
derivative to derive the transforms:

(a) L{sinh at} = a

s2 − a2

(b) L{cosh at} = s

s2 − a2

65.4 The initial and final value
theorems

There are several Laplace transform theorems used
to simplify and interpret the solution of certain
problems. Two such theorems are the initial value
theorem and the final value theorem.

(a) The initial value theorem states:

limit
t→0

[ f (t)] = limit
s→∞ [sL{ f (t)}]

For example, if f (t) = 3e4t then

L{3e4t} = 3

s − 4

from (iii) of Table 64.1, page 628.

By the initial value theorem,

limit
t→0

[3e4t] = limit
s→∞

[

s

(
3

s − 4

)]

i.e. 3e0 = ∞
(

3

∞ − 4

)

i.e. 3 = 3, which illustrates the theorem.

Problem 7. Verify the initial value theorem
for the voltage function (5 + 2 cos 3t) volts, and
state its initial value.

Let f (t) = 5 + 2 cos 3t

L{ f (t)} = L{5 + 2 cos 3t} = 5

s
+ 2s

s2 + 9

from (ii) and (v) of Table 64.1, page 628.

By the initial value theorem,

limit
t→0

[ f (t)] = limit
s→∞ [sL{ f (t)}]

i.e. limit
t→0

[5 + 2 cos 3t] = limit
s→∞

[

s

(
5

s
+ 2s

s2 + 9

)]

= limit
s→∞

[

5 + 2s2

s2 + 9

]

i.e. 5 + 2(1) = 5 + 2∞2

∞2 + 9
= 5 + 2

i.e. 7 = 7, which verifies the theorem in this case.

The initial value of the voltage is thus 7 V.

Problem 8. Verify the initial value theorem for
the function (2t − 3)2 and state its initial value.

Let f (t) = (2t − 3)2 = 4t2 − 12t + 9

Let L{ f (t)} =L(4t2 − 12t + 9)

= 4

(
2

s3

)

− 12

s2 + 9

s

from (vii), (vi) and (ii) of Table 64.1, page 628.

By the initial value theorem,

limit
t→0

[(2t − 3)2] = limit
s→∞

[

s

(
8

s3 − 12

s2 + 9

s

)]

= limit
s→∞

[
8

s2 − 12

s
+ 9

]

i.e. (0 − 3)2 = 8

∞2 − 12

∞ + 9

i.e. 9 = 9, which verifies the theorem in this case.

The initial value of the given function is thus 9.

(b) The final value theorem states:

limit
t→∞ [ f (t)] = limit

s→0
[sL{ f (t)}]

For example, if f (t) = 3e−4t then:

limit
t→∞ [3e−4t] = limit

s→0

[

s

(
3

s + 4

)]

i.e. 3e−∞ = (0)

(
3

0 + 4

)

i.e. 0 = 0, which illustrates the theorem.
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Problem 9. Verify the final value theorem for
the function (2 + 3e−2t sin 4t) cm, which repre-
sents the displacement of a particle. State its final
steady value.

Let f (t) = 2 + 3e−2t sin 4t

L{ f (t)} =L{2 + 3e−2t sin 4t}

= 2

s
+ 3

(
4

(s − (−2))2 + 42

)

= 2

s
+ 12

(s + 2)2 + 16

from (ii) of Table 64.1, page 628 and (ii) of Table 65.1
on page 632.

By the final value theorem,

limit
t→∞ [ f (t)] = limit

s→0
[sL{ f (t)}]

i.e. limit
t→∞ [2 + 3e−2t sin 4t]

= limit
s→0

[

s

(
2

s
+ 12

(s + 2)2 + 16

)]

= limit
s→0

[

2 + 12s

(s + 2)2 + 16

]

i.e. 2 + 0 = 2 + 0

i.e. 2 = 2, which verifies the theorem in this case.

The final value of the displacement is thus 2 cm.

The initial and final value theorems are used in pulse
circuit applications where the response of the circuit
for small periods of time, or the behaviour immedi-
ately after the switch is closed, are of interest. The
final value theorem is particularly useful in investi-
gating the stability of systems (such as in automatic
aircraft-landing systems) and is concerned with the
steady state response for large values of time t, i.e.
after all transient effects have died away.

Now try the following exercise.

Exercise 234 Further problems on initial
and final value theorems

1. State the initial value theorem. Verify the
theorem for the functions (a) 3 − 4 sin t
(b) (t − 4)2 and state their initial values.

[(a) 3 (b) 16]

2. Verify the initial value theorem for the voltage
functions: (a) 4 + 2 cos t (b) t − cos 3t and
state their initial values. [(a) 6 (b) −1]

3. State the final value theorem and state a
practical application where it is of use. Verify
the theorem for the function
4 + e−2t( sin t + cos t) representing a
displacement and state its final value. [4]

4. Verify the final value theorem for the function
3t2e−4t and determine its steady state value.

[0]
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Inverse Laplace transforms

66.1 Definition of the inverse Laplace
transform

If the Laplace transform of a function f (t) is F(s),
i.e. L{ f (t)} = F(s), then f (t) is called the inverse
Laplace transform of F(s) and is written as
f (t) = L−1{F(s)}.
For example, since L{1} = 1

s
then L−1

{
1
s

}

= 1.

Similarly, since L{sin at} = a

s2 + a2 then

L−1
{

a
s2 + a2

}

= sin at, and so on.

66.2 Inverse Laplace transforms of
simple functions

Tables of Laplace transforms, such as the tables in
Chapters 64 and 65 (see pages 628 and 632) may be
used to find inverse Laplace transforms.

However, for convenience, a summary of inverse
Laplace transforms is shown in Table 66.1.

Problem 1. Find the following inverse Laplace
transforms:

(a) L−1
{

1

s2 + 9

}

(b) L−1
{

5

3s − 1

}

(a) From (iv) of Table 66.1,

L−1
{

a

s2 + a2

}

= sin at,

Hence L−1
{

1

s2 + 9

}

= L−1
{

1

s2 + 32

}

= 1

3
L−1

{
3

s2 + 32

}

= 1
3

sin 3t

Table 66.1 Inverse Laplace transforms

F(s) = L{ f (t)} L−1{F(s)} = f (t)

(i)
1

s
1

(ii)
k

s
k

(iii)
1

s − a
eat

(iv)
a

s2 + a2
sin at

(v)
s

s2 + a2
cos at

(vi)
1

s2
t

(vii)
2!
s3

t2

(viii)
n!

sn+1
tn

(ix)
a

s2 − a2
sinh at

(x)
s

s2 − a2
cosh at

(xi)
n!

(s − a)n+1
eat tn

(xii)
ω

(s − a)2 + ω2
eat sin ωt

(xiii)
s − a

(s − a)2 + ω2
eat cos ωt

(xiv)
ω

(s − a)2 − ω2
eat sinh ωt

(xv)
s − a

(s − a)2 − ω2
eat cosh ωt

(b) L−1
{

5

3s − 1

}

= L−1

⎧
⎪⎪⎨

⎪⎪⎩

5

3

(

s − 1

3

)

⎫
⎪⎪⎬

⎪⎪⎭

= 5

3
L−1

⎧
⎪⎪⎨

⎪⎪⎩

1
(

s − 1

3

)

⎫
⎪⎪⎬

⎪⎪⎭
= 5

3
e

1
3 t

from (iii) of Table 66.1
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Problem 2. Find the following inverse Laplace
transforms:

(a) L−1
{

6

s3

}

(b) L−1
{

3

s4

}

(a) From (vii) of Table 66.1, L−1
{

2

s3

}

= t2

Hence L−1
{

6

s3

}

= 3L−1
{

2

s3

}

= 3t2.

(b) From (viii) of Table 66.1, if s is to have a power
of 4 then n = 3.

Thus L−1
{

3!
s4

}

= t3 i.e. L−1
{

6

s4

}

= t3

Hence L−1
{

3

s4

}

= 1

2
L−1

{
6

s4

}

= 1
2

t3.

Problem 3. Determine

(a) L−1
{

7s

s2 + 4

}

(b) L−1
{

4s

s2 − 16

}

(a) L−1
{

7s

s2 + 4

}

= 7L−1
{

s

s2 + 22

}

= 7 cos 2t,

from (v) of Table 66.1

(b) L−1
{

4s

s2 − 16

}

= 4L−1
{

s

s2 − 42

}

= 4 cosh 4t,

from (x) of Table 66.1

Problem 4. Find

(a) L−1
{

3

s2 − 7

}

(b) L−1
{

2

(s − 3)5

}

(a) From (ix) of Table 66.1,

L−1
{

a

s2 − a2

}

= sinh at

Thus

L−1
{

3

s2 − 7

}

= 3L−1
{

1

s2 − (
√

7)2

}

= 3√
7
L−1

{ √
7

s2 − (
√

7)2

}

= 3√
7

sinh
√

7t

(b) From (xi) of Table 66.1,

L−1
{

n!
(s − a)n+1

}

= eattn

Thus L−1
{

1

(s − a)n+1

}

= 1

n!e
attn

and comparing with L−1
{

2

(s − 3)5

}

shows that

n = 4 and a = 3.

Hence

L−1
{

2

(s − 3)5

}

= 2L−1
{

1

(s − 3)5

}

= 2

(
1

4!e
3t t4
)

= 1
12

e3tt4

Problem 5. Determine

(a) L−1
{

3

s2 − 4s + 13

}

(b) L−1
{

2(s + 1)

s2 + 2s + 10

}

(a) L−1
{

3

s2 − 4s + 13

}

= L−1
{

3

(s − 2)2 + 32

}

= e2t sin 3t,
from (xii) of Table 66.1

(b) L−1
{

2(s + 1)

s2 + 2s + 10

}

= L−1
{

2(s + 1)

(s + 1)2 + 32

}

= 2e−t cos 3t,
from (xiii) of Table 66.1

Problem 6. Determine

(a) L−1
{

5

s2 + 2s − 3

}

(b) L−1
{

4s − 3

s2 − 4s − 5

}
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(a) L−1
{

5

s2 + 2s − 3

}

= L−1
{

5

(s + 1)2 − 22

}

= L−1

⎧
⎪⎨

⎪⎩

5

2
(2)

(s + 1)2 − 22

⎫
⎪⎬

⎪⎭

= 5
2

e−t sinh 2t,

from (xiv) of Table 66.1

(b) L−1
{

4s − 3

s2 − 4s − 5

}

= L−1
{

4s − 3

(s − 2)2 − 32

}

= L−1
{

4(s − 2) + 5

(s − 2)2 − 32

}

= L−1
{

4(s − 2)

(s − 2)2 − 32

}

+L−1
{

5

(s − 2)2 − 32

}

= 4e2t cosh 3t + L−1

⎧
⎪⎨

⎪⎩

5

3
(3)

(s − 2)2 − 32

⎫
⎪⎬

⎪⎭

from (xv) of Table 66.1

= 4e2t cosh 3t + 5
3

e2t sinh 3t,

from (xiv) of Table 66.1

Now try the following exercise.

Exercise 235 Further problems on inverse
Laplace transforms of simple functions

Determine the inverse Laplace transforms of the
following:

1. (a)
7

s
(b)

2

s − 5
[(a) 7 (b) 2e5t]

2. (a)
3

2s + 1
(b)

2s

s2 + 4
[

(a)
3

2
e− 1

2 t (b) 2 cos 2t

]

3. (a)
1

s2 + 25
(b)

4

s2 + 9
[

(a)
1

5
sin 5t (b)

4

3
sin 3t

]

4. (a)
5s

2s2 + 18
(b)

6

s2
[

(a)
5

2
cos 3t (b) 6t

]

5. (a)
5

s3 (b)
8

s4

[

(a)
5

2
t2 (b)

4

3
t3
]

6. (a)
3s

1

2
s2 − 8

(b)
7

s2 − 16

[

(a) 6 cosh 4t (b)
7

4
sinh 4t

]

7. (a)
15

3s2 − 27
(b)

4

(s − 1)3
[

(a)
5

3
sinh 3t (b) 2 et t2

]

8. (a)
1

(s + 2)4 (b)
3

(s − 3)5
[

(a)
1

6
e−2t t3 (b)

1

8
e3t t4

]

9. (a)
s + 1

s2 + 2s + 10
(b)

3

s2 + 6s + 13
[

(a) e−t cos 3t (b)
3

2
e−3t sin 2t

]

10. (a)
2(s − 3)

s2 − 6s + 13
(b)

7

s2 − 8s + 12
[

(a) 2e3t cos 2t (b)
7

2
e4t sinh 2t

]

11. (a)
2s + 5

s2 + 4s − 5
(b)

3s + 2

s2 − 8s + 25
⎡

⎢
⎣

(a) 2e−2t cosh 3t + 1

3
e−2t sinh 3t

(b) 3e4t cos 3t + 14

3
e4t sin 3t

⎤

⎥
⎦

66.3 Inverse Laplace transforms using
partial fractions

Sometimes the function whose inverse is required
is not recognisable as a standard type, such as those
listed in Table 66.1. In such cases it may be possible,
by using partial fractions, to resolve the function into
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simpler fractions which may be inverted on sight.
For example, the function,

F(s) = 2s − 3

s(s − 3)

cannot be inverted on sight from Table 66.1. How-
ever, by using partial fractions,
2s − 3

s(s − 3)
≡ 1

s
+ 1

s − 3
which may be inverted as

1 + e3t from (i) and (iii) of Table 64.1.
Partial fractions are discussed in Chapter 3, and a

summary of the forms of partial fractions is given in
Table 3.1 on page 18.

Problem 7. Determine L−1
{

4s − 5

s2 − s − 2

}

4s − 5

s2 − s − 2
≡ 4s − 5

(s − 2)(s + 1)
≡ A

(s − 2)
+ B

(s + 1)

≡ A(s+1) + B(s−2)

(s − 2)(s + 1)

Hence 4s − 5 ≡ A(s + 1) + B(s − 2).
When s = 2, 3 = 3A, from which, A = 1.
When s = −1, −9 = −3B, from which, B = 3.

Hence L−1
{

4s − 5

s2 − s − 2

}

≡ L−1
{

1

s − 2
+ 3

s + 1

}

= L−1
{

1

s − 2

}

+ L−1
{

3

s + 1

}

= e2t + 3e−t, from (iii) of Table 66.1

Problem 8. Find L−1
{

3s3 + s2 + 12s + 2

(s − 3)(s + 1)3

}

3s3 + s2 + 12s + 2

(s − 3)(s + 1)3

≡ A

s − 3
+ B

s + 1
+ C

(s + 1)2 + D

(s + 1)3

≡

(
A(s + 1)3 + B(s − 3)(s + 1)2

+ C(s − 3)(s + 1) + D(s − 3)

)

(s − 3)(s + 1)3

Hence

3s3 + s2 + 12s + 2 ≡ A(s + 1)3 + B(s − 3)(s + 1)2

+ C(s − 3)(s + 1) + D(s − 3)

When s = 3, 128 = 64A, from which, A = 2.

When s = −1, −12 = −4D, from which, D = 3.

Equating s3 terms gives: 3 = A + B, from which,
B = 1.

Equating constant terms gives:

2 = A − 3B − 3C − 3D,

i.e. 2 = 2 − 3 − 3C − 9,

from which, 3C = −12 and C = − 4

Hence

L−1
{

3s3 + s2 + 12s + 2

(s − 3)(s + 1)3

}

≡ L−1
{

2

s − 3
+ 1

s + 1
− 4

(s + 1)2 + 3

(s + 1)3

}

= 2e3t + e−t − 4e−tt + 3
2

e−tt2,

from (iii) and (xi) of Table 66.1

Problem 9. Determine

L−1
{

5s2 + 8s − 1

(s + 3)(s2 + 1)

}

5s2 + 8s − 1

(s + 3)(s2 + 1)
≡ A

s + 3
+ Bs + C

(s2 + 1)

≡ A(s2 + 1) + (Bs + C)(s + 3)

(s + 3)(s2 + 1)

Hence 5s2 + 8s − 1 ≡ A(s2 + 1) + (Bs + C)(s + 3).

When s = −3, 20 = 10A, from which, A = 2.

Equating s2 terms gives: 5 = A + B, from which,
B = 3, since A = 2.

Equating s terms gives: 8 = 3B + C, from which,
C = −1, since B = 3.
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Hence L−1
{

5s2 + 8s − 1

(s + 3)(s2 + 1)

}

≡ L−1
{

2

s + 3
+ 3s − 1

s2 + 1

}

≡ L−1
{

2

s + 3

}

+ L−1
{

3s

s2 + 1

}

−L−1
{

1

s2 + 1

}

= 2e−3t + 3 cos t − sin t,
from (iii), (v) and (iv) of Table 66.1

Problem 10. Find L−1
{

7s + 13

s(s2 + 4s + 13)

}

7s + 13

s(s2 + 4s + 13)
≡ A

s
+ Bs + C

s2 + 4s + 13

≡ A(s2 + 4s + 13) + (Bs + C)(s)

s(s2 + 4s + 13)

Hence 7s + 13 ≡ A(s2 + 4s + 13) + (Bs + C)(s).

When s = 0, 13 = 13A, from which, A = 1.

Equating s2 terms gives: 0 = A + B, from which,
B = −1.

Equating s terms gives: 7 = 4A + C, from which,
C = 3.

Hence L−1
{

7s + 13

s(s2 + 4s + 13)

}

≡ L−1
{

1

s
+ −s + 3

s2 + 4s + 13

}

≡ L−1
{

1

s

}

+ L−1
{ −s + 3

(s + 2)2 + 32

}

≡ L−1
{

1

s

}

+ L−1
{−(s + 2) + 5

(s + 2)2 + 32

}

≡ L−1
{

1

s

}

− L−1
{

s + 2

(s + 2)2 + 32

}

+L−1
{

5

(s + 2)2 + 32

}

≡ 1 − e−2t cos 3t + 5
3

e−2t sin 3t

from (i), (xiii) and (xii) of Table 66.1

Now try the following exercise.

Exercise 236 Further problems on inverse
Laplace transforms using partial fractions

Use partial fractions to find the inverse Laplace
transforms of the following functions:

1.
11 − 3s

s2 + 2s − 3
[2et− 5e−3t]

2.
2s2 − 9s − 35

(s + 1)(s − 2)(s + 3)
[4e−t − 3e2t + e−3t]

3.
5s2 − 2s − 19

(s + 3)(s − 1)2 [2e−3t + 3et − 4et t]

4.
3s2 + 16s + 15

(s + 3)3 [e−3t(3 − 2t − 3t2)]

5.
7s2 + 5s + 13

(s2 + 2)(s + 1)
[

2 cos
√

2t + 3√
2

sin
√

2t + 5e−t
]

6.
3 + 6s + 4s2 − 2s3

s2(s2 + 3)

[2 + t + √
3 sin

√
3t − 4 cos

√
3t]

7.
26 − s2

s(s2 + 4s + 13)

[2 − 3e−2t cos 3t − 2

3
e−2t sin 3t]

66.4 Poles and zeros

It was seen in the previous section that Laplace trans-

forms, in general, have the form f (s) = φ(s)

θ(s)
. This is

the same form as most transfer functions for engi-
neering systems, a transfer function being one that
relates the response at a given pair of terminals to a
source or stimulus at another pair of terminals.

Let a function in the s domain be given by:

f (s) = φ(s)

(s − a)(s − b)(s − c)
where φ(s) is of less

degree than the denominator.
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Poles: The values a, b, c, … that makes the denomi-
nator zero, and hence f (s) infinite, are called
the system poles of f (s).
If there are no repeated factors, the poles are
simple poles.
If there are repeated factors, the poles are
multiple poles.

Zeros: Values of s that make the numerator φ(s)
zero, and hence f (s) zero, are called the
system zeros of f (s).

For example:
s − 4

(s + 1)(s − 2)
has simple poles at

s = −1 and s = +2, and a zero at s = 4

s + 3

(s + 1)2(2s + 5)
has a simple pole at s = − 5

2
and

double poles at s = −1, and a zero at s = −3

and
s + 2

s(s − 1)(s + 4)(2s + 1)
has simple poles at

s = 0, +1, −4, and −1

2
and a zero at s = −2

Pole-zero diagram

The poles and zeros of a function are values of com-
plex frequency s and can therefore be plotted on the
complex frequency or s-plane. The resulting plot is
the pole-zero diagram or pole-zero map. On the
rectangular axes, the real part is labelled the σ-axis
and the imaginary part the jω-axis.
The location of a pole in the s-plane is denoted by a
cross (×) and the location of a zero by a small circle
(o). This is demonstrated in the following examples.

From the pole-zero diagram it may be determined
that the magnitude of the transfer function will be
larger when it is closer to the poles and smaller when
it is close to the zeros. This is important in under-
standing what the system does at various frequencies
and is crucial in the study of stability and control
theory in general.

Problem 11. Determine for the transfer

function: R(s) = 400 (s + 10)

s (s + 25)(s2 + 10s + 125)
(a) the zero and (b) the poles. Show the poles
and zero on a pole-zero diagram.

(a) For the numerator to be zero, (s + 10) = 0.

Hence, s = −10 is a zero of R(s).

(b) For the denominator to be zero, s = 0 or s = −25
or s2 + 10s + 125 = 0.

Using the quadratic formula.

s = −10 ±√102−4(1)(125)

2
= −10 ± √−400

2

= −10 ± j20

2
= (−5 ± j10)

Hence, poles occur at s = 0, s = −25, (−5 + j10)
and (−5 − j10)
The pole-zero diagram is shown in Figure 66.1.

−25 −20 −15 −10 −5 0 σ

jω

j 10

−j 10

Figure 66.1

Problem 12. Determine the poles and zeros for

the function: F(s) = (s + 3)(s − 2)

(s + 4)(s2 + 2s + 2)

and plot them on a pole-zero map.

For the numerator to be zero, (s + 3) = 0 and
(s − 2) = 0, hence zeros occur at s = −3 and at
s = +2 Poles occur when the denominator is zero,
i.e. when (s + 4) = 0, i.e. s = −4,
and when s2 + 2s + 2 = 0,

i.e. s = − 2 ±√22 − 4(1)(2)

2
= − 2 ± √−4

2

= − 2 ± j2

2
= (−1 + j) or (−1 − j)

The poles and zeros are shown on the pole-zero map
of F(s) in Figure 66.2.
It is seen from these problems that poles and zeros
are always real or complex conjugate.
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−4 −3 −2 0−1 1 2 3 σ

jω

j

−j

Figure 66.2

Now try the following exercise.

Exercise 237 Further problems on poles
and zeros

1. Determine for the transfer function:

R(s) = 50 (s + 4)

s (s + 2)(s2 − 8s + 25)
(a) the zero and (b) the poles. Show the poles
and zeros on a pole-zero diagram.

[
(a) s = −4 (b) s = 0, s = −2,

s = 4 + j3, s = 4 − j3

]

2. Determine the poles and zeros for the func-

tion: F(s) = (s − 1)(s + 2)

(s + 3)(s2 − 2s + 5)
and plot

them on a pole-zero map.
[

poles at s = −3, s = 1 + j2, s = 1 − j2,
zeros at s = +1, s = −2

]

3. For the function G(s) = s − 1

(s + 2)(s2 + 2s + 5)
determine the poles and zeros and show them
on a pole-zero diagram.

[
poles at s = −2, s = −1 + j2,

s = −1 − j2,
zero at s = 1

]

4. Find the poles and zeros for the transfer func-

tion: H(s) = s2 − 5s − 6

s(s2 + 4)
and plot the results

in the s-plane.

[
poles at s = 0, s = + j2, s = −j2,
zeros at s = −1, s = 6

]



Ch67-H8152.tex 23/6/2006 15: 16 Page 645

K

Laplace transforms

67

The solution of differential equations
using Laplace transforms

67.1 Introduction

An alternative method of solving differential equa-
tions to that used in Chapters 46 to 51 is possible by
using Laplace transforms.

67.2 Procedure to solve differential
equations by using Laplace
transforms

(i) Take the Laplace transform of both sides of the
differential equation by applying the formulae
for the Laplace transforms of derivatives (i.e.
equations (3) and (4) of Chapter 65) and, where
necessary, using a list of standard Laplace
transforms, such as Tables 64.1 and 65.1 on
pages 628 and 632.

(ii) Put in the given initial conditions, i.e. y(0)
and y′(0).

(iii) Rearrange the equation to make L{y} the
subject.

(iv) Determine y by using, where necessary, partial
fractions, and taking the inverse of each term
by using Table 66.1 on page 638.

67.3 Worked problems on solving
differential equations using
Laplace transforms

Problem 1. Use Laplace transforms to solve
the differential equation

2
d2y

dx2 + 5
dy

dx
− 3y = 0, given that when

x = 0, y = 4 and
dy

dx
= 9.

This is the same problem as Problem 1 of Chapter 50,
page 476 and a comparison of methods can be made.
Using the above procedure:

(i) 2L
{

d2y

dx2

}

+ 5L
{

dy

dx

}

− 3L{y} =L{0}

2[s2L{y} − sy(0) − y′(0)] + 5[sL{y}
− y(0)] − 3L{y} = 0,

from equations (3) and (4) of Chapter 65.

(ii) y(0) = 4 and y′(0) = 9

Thus 2[s2L{y} − 4s − 9] + 5[sL{y} − 4]

−3L{y} = 0

i.e. 2s2L{y} − 8s − 18 + 5sL{y} − 20

−3L{y} = 0

(iii) Rearranging gives:

(2s2 + 5s − 3)L{y} = 8s + 38

i.e. L{y} = 8s + 38

2s2 + 5s − 3

(iv) y =L−1
{

8s + 38

2s2 + 5s − 3

}

8s + 38

2s2 + 5s − 3
≡ 8s + 38

(2s − 1)(s + 3)

≡ A

2s − 1
+ B

s + 3

≡ A(s + 3) + B(2s − 1)

(2s − 1)(s + 3)

Hence 8s + 38 = A(s + 3) + B(2s − 1).

When s = 1

2
, 42 = 3

1

2
A, from which, A = 12.

When s = −3, 14 = −7B, from which, B = −2.
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Hence y = L−1
{

8s + 38

2s2 + 5s − 3

}

= L−1
{

12

2s − 1
− 2

s + 3

}

= L−1

{
12

2
(
s − 1

2

)

}

− L−1
{

2

s + 3

}

Hence y = 6e
1
2 x − 2e−3x, from (iii) of

Table 66.1.

Problem 2. Use Laplace transforms to solve
the differential equation:

d2y

dx2 + 6
dy

dx
+ 13y = 0, given that when

x = 0, y = 3 and
dy

dx
= 7.

This is the same as Problem 3 of Chapter 50,
page 477. Using the above procedure:

(i) L
{

d2x

dy2

}

+ 6L
{

dy

dx

}

+ 13L{y} =L{0}

Hence [s2L{y} − sy(0) − y′(0)]

+ 6[sL{y} − y(0)] + 13L{y} = 0,

from equations (3) and (4) of Chapter 65.

(ii) y(0) = 3 and y′(0) = 7

Thus s2L{y} − 3s − 7 + 6sL{y}
− 18 + 13L{y} = 0

(iii) Rearranging gives:

(s2 + 6s + 13)L{y} = 3s + 25

i.e. L{y} = 3s + 25

s2 + 6s + 13

(iv) y =L−1
{

3s + 25

s2 + 6s + 13

}

= L−1
{

3s + 25

(s + 3)2 + 22

}

= L−1
{

3(s + 3) + 16

(s + 3)2 + 22

}

= L−1
{

3(s + 3)

(s + 3)2 + 22

}

+L−1
{

8(2)

(s + 3)2 + 22

}

= 3e−3t cos 2t + 8e−3t sin 2t, from (xiii)

and (xii) of Table 66.1

Hence y = e−3t(3 cos 2t + 8 sin 2t)

Problem 3. Use Laplace transforms to solve
the differential equation:
d2y

dx2 − 3
dy

dx
= 9, given that when x = 0, y = 0

and
dy

dx
= 0.

This is the same problem as Problem 2 of Chapter 51,
page 482. Using the procedure:

(i) L
{

d2y

dx2

}

− 3L
{

dy

dx

}

=L{9}

Hence [s2L{y} − sy(0) − y′(0)]

− 3[sL{y} − y(0)] = 9

s
(ii) y(0) = 0 and y′(0) = 0

Hence s2L{y} − 3sL{y} = 9

s
(iii) Rearranging gives:

(s2 − 3s)L{y} = 9

s

i.e. L{y} = 9

s(s2 − 3s)
= 9

s2(s − 3)

(iv) y =L−1
{

9

s2(s − 3)

}

9

s2(s − 3)
≡ A

s
+ B

s2 + C

s − 3

≡ A(s)(s − 3) + B(s − 3) + Cs2

s2(s − 3)

Hence 9 ≡ A(s)(s − 3) + B(s − 3) + Cs2.

When s = 0, 9 = −3B, from which, B = −3.

When s = 3, 9 = 9C, from which, C = 1.
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Equating s2 terms gives: 0 = A + C, from
which, A = −1, since C = 1. Hence,

L−1
{

9

s2(s − 3)

}

= L−1
{

−1

s
− 3

s2 + 1

s − 3

}

= −1 − 3x + e3x, from (i),

(vi) and (iii) of Table 66.1.

i.e. y = e3x − 3x − 1

Problem 4. Use Laplace transforms to solve
the differential equation:

d2y

dx2 − 7
dy

dx
+ 10y = e2x + 20, given that when

x = 0, y = 0 and
dy

dx
= −1

3

Using the procedure:

(i) L
{

d2y

dx2

}

− 7L
{

dy

dx

}

+ 10L{y} =L{ e2x + 20}

Hence [s2L{y} − sy(0) − y′(0)] − 7[sL{y}
− y(0)]+10L{y}= 1

s −2
+ 20

s

(ii) y(0) = 0 and y′(0) = −1

3

Hence s2L{y} − 0 −
(

−1

3

)

− 7sL{y} + 0

+ 10L{y} = 21s − 40

s(s − 2)

(iii) (s2 − 7s + 10)L{y} = 21s − 40

s(s − 2)
− 1

3

= 3(21s − 40) − s(s − 2)

3s(s − 2)

= −s2 + 65s − 120

3s(s − 2)

Hence L{y} = −s2 + 65s − 120

3s(s − 2)(s2 − 7s + 10)

= 1

3

[ −s2 + 65s − 120

s(s − 2)(s − 2)(s − 5)

]

= 1

3

[−s2 + 65s − 120

s(s − 5)(s − 2)2

]

(iv) y = 1

3
L−1

{−s2 + 65s − 120

s(s − 5)(s − 2)2

}

−s2 + 65s − 120

s(s − 5)(s − 2)2

≡ A

s
+ B

s − 5
+ C

s − 2
+ D

(s − 2)2

≡

(
A(s − 5)(s − 2)2 + B(s)(s − 2)2

+ C(s)(s − 5)(s − 2) + D(s)(s − 5)

)

s(s − 5)(s − 2)2

Hence

−s2 + 65s − 120

≡A(s − 5)(s − 2)2 + B(s)(s − 2)2

+ C(s)(s − 5)(s − 2) + D(s)(s − 5)

When s = 0, −120 = −20A, from which, A = 6.

When s = 5, 180 = 45B, from which, B = 4.

When s = 2, 6 = −6D, from which, D = −1.

Equating s3 terms gives: 0 = A + B + C, from
which, C = −10.

Hence
1

3
L−1

{−s2 + 65s − 120

s(s − 5)(s − 2)2

}

= 1

3
L−1

{
6

s
+ 4

s − 5
− 10

s − 2
− 1

(s − 2)2

}

= 1

3
[6 + 4 e5x − 10 e2x − x e2x]

Thus y = 2 + 4
3

e5x − 10
3

e2x − x
3

e2x

Problem 5. The current flowing in an electri-
cal circuit is given by the differential equation
Ri + L(di/dt) = E, where E, L and R are con-
stants. Use Laplace transforms to solve the
equation for current i given that when t = 0,
i = 0.

Using the procedure:

(i) L{Ri} +L
{

L
di

dt

}

=L{E}

i.e. RL{i} + L[sL{i} − i(0)] = E

s
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(ii) i(0) = 0, hence RL{i} + LsL{i} = E

s
(iii) Rearranging gives:

(R + Ls)L{i} = E

s

i.e. L{i} = E

s(R + Ls)

(iv) i =L−1
{

E

s(R + Ls)

}

E

s(R + Ls)
≡ A

s
+ B

R + Ls

≡ A(R + Ls) + Bs

s(R + Ls)

Hence E = A(R + Ls) + Bs

When s = 0, E = AR,

from which, A = E

R

When s = −R

L
, E = B

(

−R

L

)

from which, B = −EL

R

Hence L−1
{

E

s(R + Ls)

}

= L−1
{

E/R

s
+ −EL/R

R + Ls

}

= L−1
{

E

Rs
− EL

R(R + Ls)

}

= L−1

⎧
⎪⎨

⎪⎩

E

R

(
1

s

)

− E

R

⎛

⎜
⎝

1
R

L
+ s

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

= E

R
L−1

⎧
⎪⎪⎨

⎪⎪⎩

1

s
− 1
(

s + R

L

)

⎫
⎪⎪⎬

⎪⎪⎭

Hence current i = E
R

(

1 − e− Rt
L

)

Now try the following exercise.

Exercise 238 Further problems on solving
differential equations using Laplace trans-
forms

1. A first order differential equation involving
current i in a series R−L circuit is given by:
di

dt
+ 5i = E

2
and i = 0 at time t = 0.

Use Laplace transforms to solve for i
when (a) E = 20 (b) E = 40 e−3t and (c)
E = 50 sin 5t.

⎡

⎢
⎢
⎣

(a) i = 2(1 − e−5t)

(b) i = 10( e−3t − e−5t)

(c) i = 5

2
( e−5t − cos 5t + sin 5t)

⎤

⎥
⎥
⎦

In Problems 2 to 9, use Laplace transforms to
solve the given differential equations.

2. 9
d2y

dt2 − 24
dy

dt
+ 16y = 0, given y(0) = 3

and y′(0) = 3.

[

y = (3 − t) e
4
3 t
]

3.
d2x

dt2 + 100x = 0, given x(0) = 2 and

x′(0) = 0. [x = 2 cos 10t]

4.
d2i

dt2 + 1000
di

dt
+ 250000i = 0, given

i(0) = 0 and i′(0) = 100. [i = 100t e−500t]

5.
d2x

dt2 + 6
dx

dt
+ 8x = 0, given x(0) = 4 and

x′(0) = 8. [x = 4(3e−2t − 2e−4t)]

6.
d2y

dx2 − 2
dy

dx
+ y = 3 e4x, given y(0) = −2

3

and y′(0) = 4
1

3 [

y = (4x − 1) ex + 1

3
e4x
]

7.
d2y

dx2 + 16y = 10 cos 4x, given y(0) = 3 and

y′(0) = 4.
[

y = 3 cos 4x + sin 4x + 5

4
x sin 4x

]



Ch67-H8152.tex 23/6/2006 15: 16 Page 649

THE SOLUTION OF DIFFERENTIAL EQUATIONS USING LAPLACE TRANSFORMS 649

K

8.
d2y

dx2 + dy

dx
− 2y = 3 cos 3x − 11 sin 3x,

given y(0) = 0 and y′(0) = 6

[y = ex − e−2x + sin 3x]

9.
d2y

dx2 − 2
dy

dx
+ 2y = 3 ex cos 2x, given

y(0) = 2 and y′(0) = 5
[

y = 3ex( cos x + sin x) − ex cos 2x
]

10. Solve, using Laplace transforms, Problems
4 to 9 of Exercise 188, page 477 and
Problems 1 to 5 of Exercise 189, page 480.

11. Solve, using Laplace transforms, Problems
3 to 6 of Exercise 190, page 483, Problems
5 and 6 of Exercise 191, page 485, Prob-
lems 4 and 7 of Exercise 192, page 487 and
Problems 5 and 6 of Exercise 193, page 490.
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68

The solution of simultaneous
differential equations using
Laplace transforms

68.1 Introduction

It is sometimes necessary to solve simultaneous dif-
ferential equations. An example occurs when two
electrical circuits are coupled magnetically where
the equations relating the two currents i1 and i2 are
typically:

L1
di1
dt

+ M
di2
dt

+ R1i1 = E1

L2
di2
dt

+ M
di1
dt

+ R2i2 = 0

where L represents inductance, R resistance, M
mutual inductance and E1 the p.d. applied to one
of the circuits.

68.2 Procedure to solve simultaneous
differential equations using
Laplace transforms

(i) Take the Laplace transform of both sides of each
simultaneous equation by applying the formu-
lae for the Laplace transforms of derivatives (i.e.
equations (3) and (4) of Chapter 65, page 634)
and using a list of standard Laplace transforms,
as in Table 64.1, page 628 and Table 65.1,
page 632.

(ii) Put in the initial conditions, i.e. x(0), y(0), x′(0),
y′(0).

(iii) Solve the simultaneous equations for L{y} and
L{x} by the normal algebraic method.

(iv) Determine y and x by using, where necessary,
partial fractions, and taking the inverse of
each term.

68.3 Worked problems on solving
simultaneous differential
equations by using Laplace
transforms

Problem 1. Solve the following pair of simul-
taneous differential equations

dy

dt
+ x = 1

dx

dt
− y + 4et = 0

given that at t = 0, x = 0 and y = 0.

Using the above procedure:

(i) L
{

dy

dt

}

+ L{x} = L{1} (1)

L
{

dx

dt

}

− L{y} + 4L{et} = 0 (2)

Equation (1) becomes:

[sL{y} − y(0)] + L{x} = 1

s
(1′)

from equation (3), page 634 and Table 64.1,
page 628.

Equation (2) becomes:

[sL{x} − x(0)] − L{y} = − 4

s − 1
(2′)

(ii) x(0) = 0 and y(0) = 0 hence

Equation (1′) becomes:

sL{y} + L{x} = 1

s
(1′′)
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and equation (2′) becomes:

sL{x} − L{y} = − 4

s − 1

or −L{y} + sL{x} = − 4

s − 1
(2′′)

(iii) 1 × equation (1′′) and s × equation (2′′) gives:

sL{y} + L{x} = 1

s
(3)

−sL{y} + s2L{x} = − 4s

s − 1
(4)

Adding equations (3) and (4) gives:

(s2 + 1)L{x} = 1

s
− 4s

s − 1

= (s − 1) − s(4s)

s(s − 1)

= −4s2 + s − 1

s(s − 1)

from which, L{x} = −4s2 + s − 1

s(s − 1)(s2 + 1)
(5)

Using partial fractions

−4s2 + s − 1

s(s − 1)(s2 + 1)

≡ A

s
+ B

(s − 1)
+ Cs + D

(s2 + 1)

=

(
A(s − 1)(s2 + 1) + Bs(s2 + 1)

+ (Cs + D)s(s − 1)

)

s(s − 1)(s2 + 1)

Hence

−4s2 + s − 1 = A(s − 1)(s2 + 1) + Bs(s2 + 1)
+ (Cs + D)s(s − 1)

When s = 0, −1 = −A hence A = 1
When s = 1, −4 = 2B hence B = −2

Equating s3 coefficients:

0 = A + B + C hence C = 1
(since A = 1 and B = −2)

Equating s2 coefficients:

−4 = −A + D − C hence D = −2
(since A = 1 and C = 1)

Thus L{x} = −4s2 + s − 1

s(s − 1)(s2 + 1)

= 1

s
− 2

(s − 1)
+ s − 2

(s2 + 1)

(iv) Hence

x = L−1
{

1

s
− 2

(s − 1)
+ s − 2

(s2 + 1)

}

= L−1
{

1

s
− 2

(s − 1)
+ s

(s2 + 1)
− 2

(s2 + 1)

}

i.e. x = 1 − 2et + cos t − 2 sin t,

from Table 66.1, page 638
From the second equation given in the question,

dx

dt
− y + 4 et = 0

from which,

y = dx

dt
+ 4 et

= d

dt
(1 − 2 et + cos t − 2 sin t) + 4 et

= −2 et − sin t − 2 cos t + 4 et

i.e. y = 2et − sin t − 2 cos t

[Alternatively, to determine y, return to
equations (1′′) and (2′′)]

Problem 2. Solve the following pair of simul-
taneous differential equations

3
dx

dt
− 5

dy

dt
+ 2x = 6

2
dy

dt
− dx

dt
− y = −1

given that at t = 0, x = 8 and y = 3.

Using the above procedure:

(i) 3L
{

dx

dt

}

− 5L
{

dy

dt

}

+ 2L{x} = L{6} (1)

2L
{

dy

dt

}

−L
{

dx

dt

}

− L{y} = L{−1} (2)
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Equation (1) becomes:

3[sL{x} − x(0)] − 5[sL{y} − y(0)]

+ 2L{x} = 6

s
from equation (3), page 634, and Table 64.1,
page 628.

i.e. 3sL{x} − 3x(0) − 5sL{y}
+ 5y(0) + 2L{x} = 6

s
i.e. (3s + 2)L{x} − 3x(0) − 5sL{y}

+ 5y(0) = 6

s
(1′)

Equation (2) becomes:

2[sL{y} − y(0)] − [sL{x} − x(0)]

−L{y} = −1

s
from equation (3), page 634, and Table 64.1,
page 628,

i.e. 2sL{y} − 2y(0) − sL{x}
+ x(0) − L{y} = −1

s

i.e. (2s − 1)L{y} − 2y(0) − sL{x}
+ x(0) = −1

s
(2′)

(ii) x(0) = 8 and y(0) = 3, hence equation (1′)
becomes

(3s + 2)L{x} − 3(8) − 5sL{y}
+ 5(3) = 6

s
(1′′)

and equation (2′) becomes

(2s − 1)L{y} − 2(3) − sL{x}
+ 8 = −1

s
(2′′)

i.e. (3s + 2)L{x} − 5sL{y} = 6

s
+ 9 (1′′)

(3s + 2)L{x} − 5sL{y}

= 6

s
+ 9 (1′′′)

− sL{x} + (2s − 1)L{y}

= −1

s
− 2 (2′′′)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(A)

(iii) s × equation (1′′′) and (3s+2) × equation (2′′′)
gives:

s(3s + 2)L{x} − 5s2L{y} = s

(
6

s
+ 9

)

(3)

−s(3s + 2)L{x} + (3s + 2)(2s − 1)L{y}

= (3s + 2)

(

−1

s
− 2

)

(4)

i.e. s(3s + 2)L{x} − 5s2L{y} = 6 + 9s (3′)

−s(3s + 2)L{x} + (6s2 + s − 2)L{y}
= −6s − 2

s
− 7 (4′)

Adding equations (3′) and (4′) gives:

(s2 + s − 2)L{y} = −1 + 3s − 2

s

= −s + 3s2 − 2

s

from which, L{y} = 3s2 − s − 2

s(s2 + s − 2)

Using partial fractions

3s2 − s − 2

s(s2 + s − 2)

≡ A

s
+ B

(s + 2)
+ C

(s − 1)

= A(s + 2)(s − 1) + Bs(s − 1) + Cs(s + 2)

s(s + 2)(s − 1)

i.e. 3s2 − s − 2 = A(s + 2)(s − 1)
+ Bs(s − 1) + Cs(s + 2)

When s = 0, −2 = −2A, hence A = 1

When s = 1, 0 = 3C, hence C = 0

When s = −2, 12 = 6B, hence B = 2

Thus L{y} = 3s2 − s − 2

s(s2 + s − 2)
= 1

s
+ 2

(s + 2)

(iv) Hence y = L−1
{

1

s
+ 2

s + 2

}

= 1 + 2e−2t
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Returning to equations (A) to determine L{x} and
hence x:
(2s − 1) × equation (1′′′) and 5s × (2′′′) gives:

(2s − 1)(3s + 2)L{x} − 5s(2s − 1)L{y}

= (2s − 1)

(
6

s
+ 9

)

(5)

and −s(5s)L{x} + 5s(2s − 1)L{y}

= 5s

(

−1

s
− 2

)

(6)

i.e. (6s2 + s − 2)L{x} − 5s(2s − 1)L{y}

= 12 + 18s − 6

s
− 9 (5′)

and −5s2L{x} + 5s(2s − 1)L{y}
= −5 − 10s (6′)

Adding equations (5′) and (6′) gives:

(s2 + s − 2)L{x} = −2 + 8s − 6

s

= −2s + 8s2 − 6

s

from which, L{x} = 8s2 − 2s − 6

s(s2 + s − 2)

= 8s2 − 2s − 6

s(s + 2)(s − 1)

Using partial fractions

8s2 − 2s − 6

s(s + 2)(s − 1)

≡ A

s
+ B

(s + 2)
+ C

(s − 1)

= A(s + 2)(s − 1) + Bs(s − 1) + Cs(s + 2)

s(s + 2)(s − 1)

i.e. 8s2 − 2s − 6 = A(s + 2)(s − 1)

+ Bs(s − 1) + Cs(s + 2)

When s = 0, −6 = −2A, hence A = 3

When s = 1, 0 = 3C, hence C = 0

When s = −2, 30 = 6B, hence B = 5

Thus L{x} = 8s2 − 2s − 6

s(s + 2)(s − 1)
= 3

s
+ 5

(s + 2)

Hence x = L−1
{

3

s
+ 5

s + 2

}

= 3 + 5e−2t

Therefore the solutions of the given simultaneous
differential equations are

y = 1 + 2e−2t and x = 3 + 5e−2t

(These solutions may be checked by substituting the
expressions for x and y into the original equations.)

Problem 3. Solve the following pair of simul-
taneous differential equations

d2x

dt2 − x = y

d2y

dt2 + y = −x

given that at t = 0, x = 2, y = −1,
dx

dt
= 0

and
dy

dt
= 0.

Using the procedure:

(i) [s2L{x} − sx(0) − x′(0)] − L{x} = L{y} (1)

[s2L{y} − sy(0) − y′(0)] + L{y} = −L{x} (2)

from equation (4), page 635

(ii) x(0) = 2, y(0) = −1, x′(0) = 0 and y′(0) = 0

hence s2L{x} − 2s − L{x} = L{y} (1′)
s2L{y} + s + L{y} = −L{x} (2′)

(iii) Rearranging gives:

(s2 − 1)L{x} − L{y} = 2s (3)

L{x} + (s2 + 1)L{y} = −s (4)

Equation (3) × (s2 + 1) and equation (4) × 1
gives:

(s2 + 1)(s2 − 1)L{x} − (s2 + 1)L{y}
= (s2 + 1)2s (5)

L{x} + (s2 + 1)L{y} = −s (6)
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Adding equations (5) and (6) gives:

[(s2 + 1)(s2 − 1) + 1]L{x} = (s2 + 1)2s − s

i.e. s4L{x} = 2s3 + s = s(2s2 + 1)

from which, L{x} = s(2s2 + 1)

s4 = 2s2 + 1

s3

= 2s2

s3 + 1

s3 = 2

s
+ 1

s3

(iv) Hence x = L−1
{

2

s
+ 1

s3

}

i.e. x = 2 + 1
2

t2

Returning to equations (3) and (4) to deter-
mine y:

1 × equation (3) and (s2 − 1) × equation (4)
gives:

(s2 − 1)L{x} − L{y} = 2s (7)

(s2 − 1)L{x} + (s2 − 1)(s2 + 1)L{y}
= −s(s2 − 1) (8)

Equation (7) − equation (8) gives:

[−1 − (s2 − 1)(s2 + 1)]L{y}
= 2s + s(s2 − 1)

i.e. −s4L{y} = s3 + s

and L{y} = s3 + s

−s4 = −1

s
− 1

s3

from which, y = L−1
{

−1

s
− 1

s3

}

i.e. y = −1 − 1
2

t2

Now try the following exercise.

Exercise 239 Further problems on solving
simultaneous differential equations using
Laplace transforms

Solve the following pairs of simultaneous dif-
ferential equations:

1. 2
dx

dt
+ dy

dt
= 5 et

dy

dt
− 3

dx

dt
= 5

given that when t = 0, x = 0 and y = 0
[x = et − t − 1 and y = 2t − 3 + 3et]

2. 2
dy

dt
− y + x + dx

dt
− 5 sin t = 0

3
dy

dt
+ x − y + 2

dx

dt
− et = 0

given that at t = 0, x = 0 and y = 0
[

x = 5 cos t + 5 sin t − e2t − et − 3 and
y = e2t + 2et − 3 − 5 sin t

]

3.
d2x

dt2 + 2x = y

d2y

dt2 + 2y = x

given that at t = 0, x = 4, y = 2,
dx

dt
= 0

and
dy

dt
= 0
[

x = 3 cos t + cos (
√

3 t) and
y = 3 cos t − cos (

√
3 t)

]
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Assignment 18

This assignment covers the material contained
in Chapters 64 to 68.

The marks for each question are shown in
brackets at the end of each question.

1. Find the Laplace transforms of the following
functions:

(a) 2t3 − 4t + 5 (b) 3e−2t − 4 sin 2t

(c) 3 cosh 2t (d) 2t4e−3t

(e) 5e2t cos 3t (f) 2e3t sinh 4t (16)

2. Find the inverse Laplace transforms of the fol-
lowing functions:

(a)
5

2s + 1
(b)

12

s5

(c)
4s

s2 + 9
(d)

5

s2 − 9

(e)
3

(s + 2)4 (f)
s − 4

s2 − 8s − 20

(g)
8

s2 − 4s + 3
(17)

3. Use partial fractions to determine the following:

(a) L−1
{

5s − 1

s2 − s − 2

}

(b) L−1
{

2s2 + 11s − 9

s(s − 1)(s + 3)

}

(c) L−1
{

13 − s2

s(s2 + 4s + 13)

}

(24)

4. In a galvanometer the deflection θ satisfies the
differential equation:

d2θ

dt2 + 2
dθ

dt
+ θ = 4

Use Laplace transforms to solve the equation for

θ given that when t = 0, θ = 0 and
dθ

dt
= 0

(13)

5. Solve the following pair of simultaneous differ-
ential equations:

3
dx

dt
= 3x + 2y

2
dy

dt
+ 3x = 6y

given that when t = 0, x = 1 and y = 3. (20)

6. Determine the poles and zeros for the trans-

fer function: F(s) = (s + 2)(s − 3)

(s + 3)(s2 + 2s + 5)
and plot

them on a pole-zero diagram. (10)
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69

Fourier series for periodic functions of
period 2π

69.1 Introduction

Fourier series provides a method of analysing peri-
odic functions into their constituent components.
Alternating currents and voltages, displacement,
velocity and acceleration of slider-crank mecha-
nisms and acoustic waves are typical practical exam-
ples in engineering and science where periodic
functions are involved and often requiring analysis.

69.2 Periodic functions

A function f (x) is said to be periodic if
f (x + T ) = f (x) for all values of x, where T is some
positive number. T is the interval between two
successive repetitions and is called the period of
the functions f (x). For example, y = sin x is peri-
odic in x with period 2π since sin x = sin (x + 2π)
= sin (x + 4π), and so on. In general, if y = sin ωt
then the period of the waveform is 2π/ω. The func-
tion shown in Fig. 69.1 is also periodic of period 2π
and is defined by:

f (x) =
{−1, when −π < x < 0

1, when 0 < x < π

f (x)

0

1

−1

−π−2π π 2π x

Figure 69.1

If a graph of a function has no sudden jumps or breaks
it is called a continuous function, examples being
the graphs of sine and cosine functions. However,

other graphs make finite jumps at a point or points
in the interval. The square wave shown in Fig. 69.1
has finite discontinuities at x = π, 2π, 3π, and so
on. A great advantage of Fourier series over other
series is that it can be applied to functions which are
discontinuous as well as those which are continuous.

69.3 Fourier series

(i) The basis of a Fourier series is that all functions
of practical significance which are defined in
the interval −π ≤ x ≤ π can be expressed in
terms of a convergent trigonometric series of
the form:

f (x) = a0 + a1 cos x + a2 cos 2x

+ a3 cos 3x + · · · + b1 sin x

+ b2 sin 2x + b3 sin 3x + · · ·
when a0, a1, a2, . . . b1, b2, . . . are real con-
stants, i.e.

f (x) = a0 +
∞∑

n=1
(an cos nx + bn sin nx) (1)

where for the range −π to π:

and

a0 = 1

2π

∫ π

−π

f (x) dx

an = 1

π

∫ π

−π

f (x) cos nx dx

(n = 1, 2, 3, . . . )

bn = 1

π

∫ π

−π

f (x) sin nx dx

(n = 1, 2, 3, . . . )
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(ii) a0, an and bn are called the Fourier coefficients
of the series and if these can be determined,
the series of equation (1) is called the Fourier
series corresponding to f (x).

(iii) An alternative way of writing the series is by
using the a cos x + b sin x = c sin(x + α) rela-
tionship introduced in Chapter 18, i.e.

f (x) = a0 + c1 sin(x + α1) + c2 sin(2x + α2)

+ · · · + cn sin(nx + αn),

where a0 is a constant,

c1 =
√

(a2
1 + b2

1), . . . cn =
√

(a2
n + b2

n)

are the amplitudes of the various components,
and phase angle

αn = arctan
an

bn

(iv) For the series of equation (1): the term
(a1 cos x + b1 sin x) or c1 sin(x + α1) is called
the first harmonic or the fundamental, the
term (a2 cos 2x + b2 sin 2x) or c2 sin(2x + α2)
is called the second harmonic, and so on.

For an exact representation of a complex wave, an
infinite number of terms are, in general, required. In
many practical cases, however, it is sufficient to take
the first few terms only (see Problem 2).

The sum of a Fourier series at a point of dis-
continuity is given by the arithmetic mean of the
two limiting values of f (x) as x approaches the point
of discontinuity from the two sides. For example,
for the waveform shown in Fig. 69.2, the sum of the
Fourier series at the points of discontinuity (i.e. at
π

2
, π, . . . is given by:

8 + (−3)

2
= 5

2
or 2

1

2

f(x)
8

−π −π/2 0

−3

π/2 π 3π/2 x

Figure 69.2

69.4 Worked problems on Fourier
series of periodic functions of
period 2π

Problem 1. Obtain a Fourier series for the
periodic function f (x) defined as:

f (x) =
{−k, when −π < x < 0

+k, when 0 < x < π

The function is periodic outside of this range
with period 2π.

The square wave function defined is shown in
Fig. 69.3. Since f (x) is given by two different expres-
sions in the two halves of the range the integration
is performed in two parts, one from −π to 0 and the
other from 0 to π.

f(x)

0

k

−k

π−π 2π x

Figure 69.3

From Section 69.3(i):

a0 = 1

2π

∫ π

−π

f (x) dx

= 1

2π

[∫ 0

−π

−k dx +
∫ π

0
k dx

]

= 1

2π
{[−kx]0−π + [kx]π0 } = 0

[a0 is in fact the mean value of the waveform over
a complete period of 2π and this could have been
deduced on sight from Fig. 69.3.]

From Section 69.3(i):

an = 1

π

∫ π

−π

f (x) cos nx dx

= 1

π

{∫ 0

−π

−k cos nx dx +
∫ π

0
k cos nx dx

}

= 1

π

{[−k sin nx

n

]0

−π

+
[

k sin nx

n

]π

0

}

= 0
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Hence a1, a2, a3, . . . are all zero (since sin 0 =
sin (−nπ) = sin nπ = 0), and therefore no cosine
terms will appear in the Fourier series.

From Section 69.3(i):

bn = 1

π

∫ π

−π

f (x) sin nx dx

= 1

π

{∫ 0

−π

−k sin nx dx +
∫ π

0
k sin nx dx

}

= 1

π

{[
k cos nx

n

]0

−π

+
[−k cos nx

n

]π

0

}

When n is odd:

bn = k

π

{[(
1

n

)

−
(

−1

n

)]

+
[

−
(

−1

n

)

−
(

−1

n

)]}

= k

π

{
2

n
+ 2

n

}

= 4k

nπ

Hence b1 = 4k

π
, b3 = 4k

3π
, b5 = 4k

5π
, and so on.

When n is even:

bn = k

π

{[
1

n
− 1

n

]

+
[

−1

n
−
(

−1

n

)]}

= 0

Hence, from equation (1), the Fourier series for the
function shown in Fig. 69.3 is given by:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

= 0 +
∞∑

n=1

(0 + bn sin nx)

i.e. f (x) = 4k

π
sin x + 4k

3π
sin 3x + 4k

5π
sin 5x + · · ·

i.e. f (x) = 4k
π

(

sin x + 1
3

sin 3x

+ 1
5

sin 5x + · · ·
)

Problem 2. For the Fourier series of Prob-
lem 1 let k = π. Show by plotting the first three
partial sums of this Fourier series that as the

series is added together term by term the result
approximates more and more closely to the
function it represents.

If k = π in the Fourier series of Problem 1 then:

f (x) = 4(sin x + 1
3 sin 3x + 1

5 sin 5x + · · · )

4 sin x is termed the first partial sum of the Fourier
series of f (x), (4 sin x + 4

3 sin 3x) is termed the
second partial sum of the Fourier series, and
(4 sin x + 4

3 sin 3x + 4
5 sin 5x) is termed the third

partial sum, and so on.

Let P1 = 4 sin x,

P2 = (4 sin x + 4
3 sin 3x

)

and P3 = (4 sin x + 4
3 sin 3x + 4

5 sin 5x
)
.

Graphs of P1, P2 and P3, obtained by drawing up
tables of values, and adding waveforms, are shown
in Figs. 69.4(a) to (c) and they show that the series is
convergent, i.e. continually approximating towards
a definite limit as more and more partial sums are
taken, and in the limit will have the sum f (x) = π.

Even with just three partial sums, the waveform is
starting to approach the rectangular wave the Fourier
series is representing.

Problem 3. If in the Fourier series of Prob-
lem 1, k = 1, deduce a series for

π

4
at the

point x = π

2
.

If k = 1 in the Fourier series of Problem 1:

f (x) = 4

π

(

sin x + 1

3
sin 3x + 1

5
sin 5x + · · ·

)

When x = π

2
, f (x) = 1,

sin x = sin
π

2
= 1,

sin 3x = sin
3π

2
= −1,

sin 5x = sin
5π

2
= 1, and so on.

Hence 1 = 4

π

[

1 + 1

3
(−1) + 1

5
(1) + 1

7
(−1) + · · ·

]

i.e.
π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·
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0 π/2 π−π/2−π

−π
−4

π
4

f (x)

P1

f (x)

x

−π −π/2 0 π/2 π x

P2

P1
f (x)

f (x)

π

−π

4/3 sin 3x

f (x)

π

−π/2

−π π/20 π x
4/5 sin 5x

P2

P3

f (x)

(c)

(b)

(a)

−π

Figure 69.4

Problem 4. Determine the Fourier series for

the full wave rectified sine wave i = 5 sin
θ

2
shown in Fig. 69.5.

i = 5 sin   /2  θ
5

−2π 2π 4π0 θ

i 

Figure 69.5

i = 5 sin
θ

2
is a periodic function of period 2π.

Thus

i = f (θ) = a0 +
∞∑

n=1

(an cos nθ + bn sin nθ)

In this case it is better to take the range 0 to 2π
instead of −π to +π since the waveform is continu-
ous between 0 and 2π.

a0 = 1

2π

∫ 2π

0
f (θ) dθ = 1

2π

∫ 2π

0
5 sin

θ

2
dθ

= 5

2π

[

−2 cos
θ

2

]2π

0

= 5

π

[(

−cos
2π

2

)

− (−cos 0)

]

= 5

π
[(1) − (−1)] = 10

π

an = 1

π

∫ 2π

0
5 sin

θ

2
cos nθ dθ

= 5

π

∫ 2π

0

1

2

{

sin

(
θ

2
+ nθ

)

+ sin

(
θ

2
− nθ

)}

dθ

(see Chapter 40, page 400)

= 5

2π

[
−cos

[
θ
( 1

2 + n
)]

( 1
2 + n

)

− cos
[
θ
( 1

2 − n
)]

( 1
2 − n

)

]2π

0
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= 5

2π

{[
−cos

[
2π
( 1

2 + n
)]

( 1
2 + n

)

− cos
[
2π
( 1

2 − n
)]

( 1
2 − n

)

]

−
[

−cos 0
( 1

2 + n
) − cos 0

( 1
2 − n

)

]}

When n is both odd and even,

an = 5

2π

{[
1

( 1
2 + n

) + 1
( 1

2 − n
)

]

−
[

−1
( 1

2 + n
) − 1

( 1
2 − n

)

]}

= 5

2π

{
2

( 1
2 + n

) + 2
( 1

2 − n
)

}

= 5

π

{
1

( 1
2 + n

) + 1
( 1

2 − n
)

}

Hence

a1 = 5

π

[
1
3
2

+ 1

− 1
2

]

= 5

π

[
2

3
− 2

1

]

= −20

3π

a2 = 5

π

[
1
5
2

+ 1

− 3
2

]

= 5

π

[
2

5
− 2

3

]

= −20

(3)(5)π

a3 = 5

π

[
1
7
2

+ 1

− 5
2

]

= 5

π

[
2

7
− 2

5

]

= −20

(5)(7)π
and so on

bn = 1

π

∫ 2π

0
5 sin

θ

2
sin nθ dθ

= 5

π

∫ 2π

0
−1

2

{

cos

[

θ

(
1

2
+ n

)]

− cos

[

θ

(
1

2
− n

)]}

dθ

from Chapter 40

= 5

2π

[
sin
[
θ
( 1

2 − n
)]

( 1
2 − n

) − sin
[
θ
( 1

2 + n
)]

( 1
2 + n

)

]2π

0

= 5

2π

{[
sin 2π

( 1
2 − n

)

( 1
2 − n

) − sin 2π
( 1

2 + n
)

( 1
2 + n

)

]

−
[

sin 0
( 1

2 − n
) − sin 0

( 1
2 + n

)

]}

When n is both odd and even, bn = 0 since sin (−π),
sin 0, sin π, sin 3π, . . . are all zero. Hence the Fourier
series for the rectified sine wave,

i = 5 sin
θ

2
is given by:

f (θ) = a0 +
∞∑

n=1

(an cos nθ + bn sin nθ)

i.e. i = f (θ) = 10

π
− 20

3π
cos θ − 20

(3)(5)π
cos 2θ

− 20

(5)(7)π
cos 3θ − · · ·

i.e. i = 20
π

(
1
2

− cos θ

(3)
− cos 2θ

(3)(5)
− cos 3θ

(5)(7)
− · · ·

)

Now try the following exercise.

Exercises 240 Further problems on Fourier
series of periodic functions of period 2π

1. Determine the Fourier series for the periodic
function:

f (x) =
{−2, when −π < x < 0

+2, when 0 < x < π

which is periodic outside this range of
period 2π.

⎡

⎢
⎢
⎣

f (x) = 8

π

(

sin x + 1

3
sin 3x

+ 1

5
sin 5x + · · ·

)

⎤

⎥
⎥
⎦

2. For the Fourier series in Problem 1, deduce a
series for

π

4
at the point where x = π

2
[

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

]

3. For the waveform shown in Fig. 69.6 deter-
mine (a) the Fourier series for the function
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and (b) the sum of the Fourier series at the
points of discontinuity.
⎡

⎢
⎢
⎢
⎢
⎢
⎣

(a) f (x) = 1

2
+ 2

π

(

cos x − 1

3
cos 3x

+ 1

5
cos 5x − · · ·

)

(b)
1

2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

f (x)

−3π
2

−π −π
2

π
2

π 3π
2

x0

1

Figure 69.6

4. For Problem 3, draw graphs of the first three
partial sums of the Fourier series and show
that as the series is added together term by
term the result approximates more and more
closely to the function it represents.

5. Find the term representing the third har-
monic for the periodic function of period 2π
given by:

f (x) =
{

0, when −π < x < 0
1, when 0 < x < π

[
2

3π
sin 3x

]

6. Determine the Fourier series for the periodic
function of period 2π defined by:

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, when −π < t < 0

1, when 0 < t <
π

2

−1, when
π

2
< t < π

The function has a period of 2π
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (t) = 2

π

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos t − 1

3
cos 3t

+ 1

5
cos 5t − · · ·

+ sin 2t + 1

3
sin 6t

+ 1

5
sin 10t + · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7. Show that the Fourier series for the periodic
function of period 2π defined by

f (θ) =
{

0, when −π < θ < 0

sin θ, when 0 < θ < π

is given by:

f (θ) = 2

π

(
1

2
− cos 2θ

(3)
− cos 4θ

(3)(5)

− cos 6θ

(5)(7)
− · · ·

)
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Fourier series for a non-periodic
function over range 2π

70.1 Expansion of non-periodic
functions

If a function f (x) is not periodic then it cannot be
expanded in a Fourier series for all values of x. How-
ever, it is possible to determine a Fourier series to
represent the function over any range of width 2π.

Given a non-periodic function, a new function
may be constructed by taking the values of f (x)
in the given range and then repeating them out-
side of the given range at intervals of 2π. Since
this new function is, by construction, periodic with
period 2π, it may then be expanded in a Fourier
series for all values of x. For example, the func-
tion f (x) = x is not a periodic function. However, if a
Fourier series for f (x) = x is required then the func-
tion is constructed outside of this range so that it is
periodic with period 2π as shown by the broken lines
in Fig. 70.1.

For non-periodic functions, such as f (x) = x, the
sum of the Fourier series is equal to f (x) at all points
in the given range but it is not equal to f (x) at points
outside of the range.

For determining a Fourier series of a non-periodic
function over a range 2π, exactly the same for-
mulae for the Fourier coefficients are used as in
Section 69.3(i).

70.2 Worked problems on Fourier
series of non-periodic functions
over a range of 2π

Problem 1. Determine the Fourier series to
represent the function f (x) = 2x in the range
−π to +π.

The function f (x) = 2x is not periodic. The function
is shown in the range −π to π in Fig. 70.2 and is
then constructed outside of that range so that it is
periodic of period 2π (see broken lines) with the
resulting saw-tooth waveform.

f(x)
f(x) = x

2π

−2π 2π 4π0 x

Figure 70.1

f(x)
f(x) = 2x

2π

−2π

0 π 2π 3π x−2π −π

Figure 70.2

For a Fourier series:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

From Section 69.3(i),

a0 = 1

2π

∫ π

−π

f (x) dx

= 1

2π

∫ π

−π

2x dx = 2

2π

[
x2

2

]π

−π

= 0

an = 1

π

∫ π

−π

f (x) cos nx dx = 1

π

∫ π

−π

2x cos nx dx

= 2

π

[
x sin nx

n
−
∫

sin nx

n
dx

]π

−π

by parts (see Chapter 43)
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= 2

π

[
x sin nx

n
+ cos nx

n2

]π

−π

= 2

π

[(
0 + cos nπ

n2

)
−
(

0 + cos n(−π)

n2

)]

= 0

bn = 1

π

∫ π

−π

f (x) sin nx dx = 1

π

∫ π

−π

2x sin nx dx

= 2

π

[−x cos nx

n
−
∫ (−cos nx

n

)

dx

]π

−π

by parts

= 2

π

[−x cos nx

n
+ sin nx

n2

]π

−π

= 2

π

[(−π cos nπ

n
+ sin nπ

n2

)

−
(−(−π) cos n(−π)

n
+ sin n(−π)

n2

)]

= 2

π

[−π cos nπ

n
− π cos (−nπ)

n

]

= −4

n
cos nπ

When n is odd, bn = 4

n
. Thus b1 = 4, b3 = 4

3
,

b5 = 4

5
, and so on.

When n is even, bn = −4

n
. Thus b2 = −4

2
,

b4 = −4

4
, b6 = −4

6
, and so on.

Thus f (x) = 2x = 4 sin x − 4

2
sin 2x + 4

3
sin 3x

− 4

4
sin 4x + 4

5
sin 5x − 4

6
sin 6x + · · ·

i.e. 2x = 4
(

sin x − 1
2

sin 2x + 1
3

sin 3x− 1
4

sin 4x

+ 1
5

sin 5x − 1
6

sin 6x + · · ·
)

(1)

for values of f (x) between −π and π. For values
of f (x) outside the range −π to +π the sum of the
series is not equal to f (x).

Problem 2. In the Fourier series of Problem 1,
by letting x = π/2, deduce a series for π/4.

When x = π/2, f (x) = π from Fig. 70.2.

Thus, from the Fourier series of equation (1):

2
(π

2

)
= 4

(

sin
π

2
− 1

2
sin

2π

2
+ 1

3
sin

3π

2

− 1

4
sin

4π

2
+ 1

5
sin

5π

2

− 1

6
sin

6π

2
+ · · ·

)

π = 4

(

1 − 0 − 1

3
− 0 + 1

5
− 0 − 1

7
− · · ·

)

i.e.
π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

Problem 3. Obtain a Fourier series for the
function defined by:

f (x) =
{ x, when 0 < x < π

0, when π < x < 2π.

The defined function is shown in Fig. 70.3 between
0 and 2π. The function is constructed outside of this
range so that it is periodic of period 2π, as shown by
the broken line in Fig. 70.3.

−2π −π 0 π 3π2π

π

f (x) = xf(x)

x

Figure 70.3

For a Fourier series:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

It is more convenient in this case to take the limits
from 0 to 2π instead of from −π to +π. The value
of the Fourier coefficients are unaltered by this
change of limits. Hence

a0 = 1

2π

∫ 2π

0
f (x) dx = 1

2π

[∫ π

0
x dx +

∫ 2π

π

0 dx

]

= 1

2π

[
x2

2

]π

0
= 1

2π

(
π2

2

)

= π

4
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an = 1

π

∫ 2π

0
f (x) cos nx dx

= 1

π

[∫ π

0
x cos nx dx +

∫ 2π

π

0 dx

]

= 1

π

[
x sin nx

n
+ cos nx

n2

]π

0

(from Problem 1, by parts)

= 1

π

{[
π sin nπ

n
+ cos nπ

n2

]

−
[

0 + cos 0

n2

]}

= 1

πn2 ( cos nπ − 1)

When n is even, an = 0.

When n is odd, an = −2

πn2 .

Hence a1 = −2

π
, a3 = −2

32π
, a5 = −2

52π
, and so on

bn = 1

π

∫ 2π

0
f (x) sin nx dx

= 1

π

[∫ π

0
x sin nx dx −

∫ 2π

π

0 dx

]

= 1

π

[−x cos nx

n
+ sin nx

n2

]π

0

(from Problem 1, by parts)

= 1

π

{[−π cos nπ

n
+ sin nπ

n2

]

−
[

0 + sin 0

n2

]}

= 1

π

[−π cos nπ

n

]

= −cos nπ

n

Hence b1 = −cos π = 1, b2 = −1

2
, b3 = 1

3
, and

so on.

Thus the Fourier series is:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

i.e. f (x) = π

4
− 2

π
cos x − 2

32π
cos 3x

− 2

52π
cos 5x − · · · + sin x

− 1

2
sin 2x + 1

3
sin 3x − · · ·

i.e. f (x)

= π

4
− 2

π

(

cos x + cos 3x
32 + cos 5x

52 + · · ·
)

+
(

sin x − 1
2

sin 2x + 1
3

sin 3x − · · ·
)

Problem 4. For the Fourier series of Prob-
lem 3: (a) what is the sum of the series at the
point of discontinuity (i.e. at x = π)? (b) what
is the amplitude and phase angle of the third
harmonic? and (c) let x = 0, and deduce a series
for π2/8.

(a) The sum of the Fourier series at the point of
discontinuity is given by the arithmetic mean of
the two limiting values of f (x) as x approaches
the point of discontinuity from the two sides.

Hence sum of the series at x = π is
π − 0

2
= π

2
(b) The third harmonic term of the Fourier series is

(

− 2

32π
cos 3x + 1

3
sin 3x

)

This may also be written in the form
c sin (3x + α),

where amplitude, c =
√√
√
√
[( −2

32π

)2

+
(

1

3

)2
]

= 0.341

and phase angle,

α = tan−1

⎛

⎜
⎝

−2

32π
1

3

⎞

⎟
⎠

= −11.98◦ or −0.209 radians

Hence the third harmonic is given by
0.341 sin(3x − 0.209)

(c) When x = 0, f (x) = 0 (see Fig. 70.3).

Hence, from the Fourier series:

0 = π

4
− 2

π

(

cos 0 + 1

32 cos 0 + 1

52 cos 0 + · · ·
)

+ (0)

i.e. − π

4
= − 2

π

(

1 + 1

32 + 1

52 + 1

72 + · · ·
)
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Hence
π2

8
= 1 + 1

32 + 1
52 + 1

72 + · · ·

Problem 5. Deduce the Fourier series for the
function f (θ) = θ2 in the range 0 to 2π.

f (θ) = θ2 is shown in Fig. 70.4 in the range 0 to 2π.
The function is not periodic but is constructed out-
side of this range so that it is periodic of period 2π,
as shown by the broken lines.

−4π −2π 0 2π 4π

4π2 f (θ) = θ2
f (θ)

θ

Figure 70.4

For a Fourier series:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

a0 = 1

2π

∫ 2π

0
f (θ)dθ = 1

2π

∫ 2π

0
θ2 dθ

= 1

2π

[
θ3

3

]2π

0
= 1

2π

[
8π3

3
− 0

]

= 4π2

3

an = 1

π

∫ 2π

0
f (θ) cos nθ dθ

= 1

π

∫ 2π

0
θ2 cos nθ dθ

= 1

π

[
θ2 sin nθ

n
+ 2θ cos nθ

n2 − 2 sin nθ

n3

]2π

0

by parts

= 1

π

[(

0 + 4π cos 2πn

n2 − 0

)

− (0)

]

= 4

n2 cos 2πn = 4

n2 when n = 1, 2, 3, · · ·

Hence a1 = 4

12 , a2 = 4

22 , a3 = 4

32 and so on

bn = 1

π

∫ 2π

0
f (θ) sin nθ dθ = 1

π

∫ 2π

0
θ2 sin nθ dθ

= 1

π

[−θ2 cos nθ

n
+ 2θ sin nθ

n2 + 2 cos nθ

n3

]2π

0

by parts

= 1

π

[(−4π2 cos 2πn

n
+ 0 + 2 cos 2πn

n3

)

−
(

0 + 0 + 2 cos 0

n3

)]

= 1

π

[−4π2

n
+ 2

n3 − 2

n3

]

= −4π

n

Hence b1 = −4π

1
, b2 = −4π

2
, b3 = −4π

3
, and so on.

Thus f (θ) = θ2

= 4π2

3
+

∞∑

n=1

(
4

n2 cos nθ − 4π

n
sin nθ

)

i.e. θ2 =
4π2

3
+ 4

(

cos θ + 1
22 cos 2θ + 1

32 cos 3θ + · · ·
)

− 4π

(

sin θ + 1
2

sin 2θ + 1
3

sin 3θ + · · ·
)

for values of θ between 0 and 2π.

Problem 6. In the Fourier series of Problem 5,

let θ = π and determine a series for
π2

12
.

When θ = π, f (θ) = π2

Hence π2 = 4π2

3
+ 4

(

cos π + 1

4
cos 2π

+ 1

9
cos 3π + 1

16
cos 4π + · · ·

)

− 4π

(

sin π + 1

2
sin 2π

+ 1

3
sin 3π + · · ·

)
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i.e. π2 − 4π2

3
= 4

(

−1 + 1

4
− 1

9

+ 1

16
− · · ·

)

− 4π(0)

−π2

3
= 4

(

−1 + 1

4
− 1

9
+ 1

16
− · · ·

)

π2

3
= 4

(

1 − 1

4
+ 1

9
− 1

16
+ · · ·

)

Hence
π2

12
= 1 − 1

4
+ 1

9
− 1

16
+ · · ·

or
π2

12
= 1 − 1

22 + 1
32 − 1

42 + · · ·

Now try the following exercise.

Exercise 241 Further problems on Fourier
series of non-periodic functions over a range
of 2π

1. Show that the Fourier series for the func-
tion f (x) = x over the range x = 0 to x = 2π
is given by:

f (x) = π − 2
(
sin x + 1

2 sin 2x

+ 1
3 sin 3x + 1

4 sin 4x + · · · )

2. Determine the Fourier series for the function
defined by:

f (t) =
{

1 − t, when −π < t < 0

1 + t, when 0 < t < π

Draw a graph of the function within and
outside of the given range.

⎡

⎢
⎢
⎣

f (t) = π

2
+ 1 − 4

π

(

cos t + cos 3t

32

+ cos 5t

52 + · · ·
)

⎤

⎥
⎥
⎦

3. Find the Fourier series for the function
f (x) = x + π within the range −π < x < π.⎡

⎢
⎢
⎣

f (x) = π + 2

(

sin x − 1

2
sin 2x

+ 1

3
sin 3x − · · ·

)

⎤

⎥
⎥
⎦

4. Determine the Fourier series up to and
including the third harmonic for the
function defined by:

f (x) =
{

x, when 0 < x < π

2π − x, when π < x < 2π

Sketch a graph of the function within and
outside of the given range, assuming the
period is 2π.

⎡

⎢
⎢
⎣

f (x) = π

2
− 4

π

(

cos x + cos 3x

32

+ cos 5x

52 + · · ·
)

⎤

⎥
⎥
⎦

5. Expand the function f (θ) = θ2 in a Fourier
series in the range −π < θ < π.

Sketch the function within and outside of the
given range.⎡

⎢
⎢
⎢
⎣

f (θ) = π2

3
− 4

(

cos θ − 1

22 cos 2θ

+ 1

32 cos 3θ − · · ·
)

⎤

⎥
⎥
⎥
⎦

6. For the Fourier series obtained in Problem 5,

let θ = π and deduce the series for
∞∑

n=1

1

n2

[

1 + 1

22 + 1

32 + 1

42 + 1

52 + · · · = π2

6

]

7. Show that the Fourier series for the triangular
waveform shown in Fig. 70.5 is given by:

y = 8

π2

(

sin θ − 1

32 sin 3θ + 1

52 sin 5θ

− 1

72 sin 7θ + · · ·
)

in the range 0 to 2π.

2ππ0

1

−1

y

θ

Figure 70.5



Ch70-H8152.tex 11/7/2006 13: 4 Page 668

668 FOURIER SERIES

8. Sketch the waveform defined by:

f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + 2x

π
, when −π < x < 0

1 − 2x

π
, when 0 < x < π

Determine the Fourier series in this range.

⎡

⎢
⎢
⎣

f (x) = 8

π2

(

cos x + 1

32 cos 3x

+ 1

52 cos 5x + 1

72 cos 7x + · · ·
)

⎤

⎥
⎥
⎦

9. For the Fourier series of Problem 8, deduce a

series for
π2

8[
π2

8
= 1 + 1

32 + 1

52 + 1

72 + 1

92 + · · ·
]
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71

Even and odd functions and half-range
Fourier series

71.1 Even and odd functions

Even functions

A function y = f (x) is said to be even if f (−x) = f (x)
for all values of x. Graphs of even functions are
always symmetrical about the y-axis (i.e. is a
mirror image). Two examples of even functions
are y = x2 and y = cos x as shown in Fig. 19.25,
page 199.

Odd functions

A function y = f (x) is said to be odd if f (−x) =
−f (x) for all values of x. Graphs of odd functions are
always symmetrical about the origin. Two exam-
ples of odd functions are y = x3 and y = sin x as
shown in Fig. 19.26, page 200.

Many functions are neither even nor odd, two such
examples being shown in Fig. 19.27, page 200.
See also Problems 3 and 4, page 200.

71.2 Fourier cosine and Fourier sine
series

(a) Fourier cosine series

The Fourier series of an even periodic function
f (x) having period 2π contains cosine terms only
(i.e. contains no sine terms) and may contain a
constant term.

Hence f (x) = a0 +
∞∑

n=1

an cos nx

where a0 = 1

2π

∫ π

−π

f (x) dx

= 1
π

∫ π

0
f (x) dx

(due to symmetry)

and an = 1

π

∫ π

−π

f (x) cos nx dx

= 2
π

∫ π

0
f (x) cos nx dx

(b) Fourier sine series

The Fourier series of an odd periodic function f (x)
having period 2π contains sine terms only (i.e.
contains no constant term and no cosine terms).

Hence f (x) =
∞∑

n=1

bn sin nx

where bn = 1

π

∫ π

−π

f (x) sin nx dx

= 2
π

∫ π

0
f (x) sin nx dx

Problem 1. Determine the Fourier series for
the periodic function defined by:

f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2, when −π < x < −π

2

2, when −π

2
< x <

π

2

−2, when
π

2
< x < π.

and has a period of 2π

The square wave shown in Fig. 71.1 is an even
function since it is symmetrical about the f (x) axis.

Hence from para. (a) the Fourier series is given by:

f (x) = a0 +
∞∑

n=1

an cos nx

(i.e. the series contains no sine terms)
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f (x)

2

−3π/2 −π −π/2 π/2 π 3π/2 x0 2π

−2

Figure 71.1

From para. (a),

a0 = 1

π

∫ π

0
f (x) dx

= 1

π

{∫ π/2

0
2 dx +

∫ π

π/2
−2 dx

}

= 1

π

{
[2x]π/2

0 + [−2x]ππ/2

}

= 1

π
[(π) + [(−2π) − (−π)] = 0

an = 2

π

∫ π

0
f (x) cos nx dx

= 2

π

{∫ π/2

0
2 cos nx dx +

∫ π

π/2
−2 cos nx dx

}

= 4

π

{[
sin nx

n

]π/2

0
+
[−sin nx

n

]π

π/2

}

= 4

π

{(
sin (π/2)n

n
− 0

)

+
(

0 − − sin (π/2)n

n

)}

= 4

π

(
2 sin (π/2)n

n

)

= 8

πn

(
sin

nπ

2

)

When n is even, an = 0

When n is odd, an = 8

πn
for n = 1, 5, 9, . . .

and an = −8

πn
for n = 3, 7, 11, . . .

Hence a1 = 8

π
, a3 = −8

3π
, a5 = 8

5π
, and so on.

Hence the Fourier series for the waveform of
Fig. 71.1 is given by:

f (x) = 8
π

(

cos x − 1
3

cos 3x + 1
5

cos 5x

− 1
7

cos 7x + · · ·
)

Problem 2. In the Fourier series of Problem 1
let x = 0 and deduce a series for π/4.

When x = 0, f (x) = 2 (from Fig. 71.1).

Thus, from the Fourier series,

2 = 8

π

(

cos 0 − 1

3
cos 0 + 1

5
cos 0

− 1

7
cos 0 + · · ·

)

Hence
2π

8
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

i.e.
π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

Problem 3. Obtain the Fourier series for the
square wave shown in Fig. 71.2.

2

0

−2

π−π 2π 3π x

f (x)

Figure 71.2

The square wave shown in Fig. 71.2 is an odd
function since it is symmetrical about the origin.

Hence, from para. (b), the Fourier series is
given by:

f (x) =
∞∑

n=1

bn sin nx
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The function is defined by:

f (x) =
{−2, when −π < x < 0

2, when 0 < x < π

From para. (b), bn = 2

π

∫ π

0
f (x) sin nx dx

= 2

π

∫ π

0
2 sin nx dx

= 4

π

[−cos nx

n

]π

0

= 4

π

[(−cos nπ

n

)

−
(

−1

n

)]

= 4

πn
(1 − cos nπ)

When n is even, bn = 0.

When n is odd, bn = 4

πn
(1 − (−1)) = 8

πn

Hence b1 = 8

π
, b3 = 8

3π
, b5 = 8

5π
,

and so on

Hence the Fourier series is:

f (x) = 8
π

(

sin x + 1
3

sin 3x + 1
5

sin 5x

+ 1
7

sin 7x + · · ·
)

Problem 4. Determine the Fourier series for
the function f (θ) = θ2 in the range −π < θ < π.
The function has a period of 2π.

A graph of f (θ) = θ2 is shown in Fig. 71.3 in the range
−π to π with period 2π. The function is symmetrical
about the f (θ) axis and is thus an even function. Thus
a Fourier cosine series will result of the form:

f (θ) = a0 +
∞∑

n=1

an cos nθ

From para. (a),

a0 = 1

π

∫ π

0
f (θ)dθ = 1

π

∫ π

0
θ2 dθ

= 1

π

[
θ3

3

]π

0
= π2

3

θ−2π −π 0 2π

π2

f (θ)

π

f (θ) = θ2

Figure 71.3

and an = 2

π

∫ π

0
f (θ) cos nθ dθ

= 2

π

∫ π

0
θ2 cosnθ dθ

= 2

π

[
θ2 sin nθ

n
+ 2θ cos nθ

n2 − 2 sin nθ

n3

]π

0

by parts

= 2

π

[(

0 + 2π cos nπ

n2 − 0

)

− (0)

]

= 4

n2 cos nπ

When n is odd, an = −4

n2 . Hence a1 = −4

12 ,

a3 = −4

32 , a5 = −4

52 , and so on.

When n is even, an = 4

n2 . Hence a2 = 4

22 , a4 = 4

42 ,

and so on.

Hence the Fourier series is:

f (θ) = θ2=π2

3
− 4

(

cos θ − 1
22 cos 2θ + 1

32 cos 3θ

− 1
42 cos 4θ + 1

52 cos 5θ − · · ·
)

Problem 5. For the Fourier series of Problem 4,

let θ = π and show that
∞∑

n=1

1

n2 = π2

6

When θ = π, f (θ) = π2 (see Fig. 71.3). Hence from
the Fourier series:

π2 = π2

3
− 4

(

cos π − 1

22 cos 2π + 1

32 cos 3π

− 1

42 cos 4π + 1

52 cos 5π − · · ·
)
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i.e.

π2 − π2

3
= −4

(

−1 − 1

22 − 1

32 − 1

42 − 1

52 − · · ·
)

2π2

3
= 4

(

1 + 1

22 + 1

32 + 1

42 + 1

52 + · · ·
)

i.e.
2π2

(3)(4)
= 1 + 1

22 + 1

32 + 1

42 + 1

52 + · · ·

i.e.
π2

6
= 1

12 + 1

22 + 1

32 + 1

42 + 1

52 + · · ·

Hence

∞∑

n=1

1
n2 = π2

6

Now try the following exercise.

Exercise 242 Further problems on Fourier
cosine and Fourier sine series

1. Determine the Fourier series for the function
defined by:

f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1, −π < x < −π

2

1, −π

2
< x <

π

2

−1,
π

2
< x < π

which is periodic outside of this range of
period 2π.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (x) = 4

π

(

cos x − 1

3
cos 3x

+ 1

5
cos 5x

− 1

7
cos 7x + · · ·

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2. Obtain the Fourier series of the function
defined by:

f (t) =
⎧
⎨

⎩

t + π, −π < t < 0

t − π, 0 < t < π

which is periodic of period 2π. Sketch the
given function.

⎡

⎢
⎢
⎢
⎣

f (t) = −2( sin t + 1
2 sin 2t

+ 1
3 sin 3t

+ 1
4 sin 4t + · · · )

⎤

⎥
⎥
⎥
⎦

3. Determine the Fourier series defined by

f (x) =
{

1 − x, −π < x < 0

1 + x, 0 < x < π

which is periodic of period 2π.
⎡

⎢
⎢
⎢
⎢
⎢
⎣

f (x) = π

2
+ 1

− 4

π

(

cos x + 1

32 cos 3x

+ 1

52 cos 5x + · · ·
)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

4. In the Fourier series of Problem 3, let x = 0
and deduce a series for π2/8.

[
π2

8
= 1 + 1

32 + 1

52 + 1

72 + · · ·
]

71.3 Half-range Fourier series

(a) When a function is defined over the range say 0
to π instead of from 0 to 2π it may be expanded
in a series of sine terms only or of cosine terms
only. The series produced is called a half-range
Fourier series.

(b) If a half-range cosine series is required for the
function f (x) = x in the range 0 to π then an even
periodic function is required. In Figure 71.4,
f (x) = x is shown plotted from x = 0 to x = π.
Since an even function is symmetrical about the
f (x) axis the line AB is constructed as shown. If
the triangular waveform produced is assumed to
be periodic of period 2π outside of this range
then the waveform is as shown in Fig. 71.4.
When a half-range cosine series is required then
the Fourier coefficients a0 and an are calculated

−2π 0

B

A

f(x)
f(x) = x

−π π 2π

π

x

Figure 71.4
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as in Section 71.2(a), i.e.

f (x) = a0+
∞∑

n=1

an cos nx

where a0 = 1
π

∫ π

0
f (x) dx

and an = 2
π

∫ π

0
f (x) cos nx dx

(c) If a half-range sine series is required for the
function f (x) = x in the range 0 to π then an
odd periodic function is required. In Figure 71.5,
f (x) = x is shown plotted from x = 0 to x = π.
Since an odd function is symmetrical about the
origin the line CD is constructed as shown. If
the sawtooth waveform produced is assumed to
be periodic of period 2π outside of this range,
then the waveform is as shown in Fig. 71.5.
When a half-range sine series is required then
the Fourier coefficient bn is calculated as in
Section 71.2(b), i.e.

f (x) =
∞∑

n=1

bn sin nx

where bn = 2
π

∫ π

0
f (x) sin nx dx

f(x)
f(x) = x

π

−π

−2π −π 0 2π 3π x
C

π

D

Figure 71.5

Problem 6. Determine the half-range Fourier
cosine series to represent the function f (x) = 3x
in the range 0 ≤ x ≤ π.

From para. (b), for a half-range cosine series:

f (x) = a0 +
∞∑

n=1

an cos nx

When f (x) = 3x,

a0 = 1

π

∫ π

0
f (x)dx = 1

π

∫ π

0
3x dx

= 3

π

[
x2

2

]π

0
= 3π

2

an = 2

π

∫ π

0
f (x) cos nx dx

= 2

π

∫ π

0
3x cos nx dx

= 6

π

[
x sin nx

n
+ cos nx

n2

]π

0
by parts

= 6

π

[(
π sin nπ

n
+ cos nπ

n2

)

−
(

0 + cos 0

n2

)]

= 6

π

(

0 + cos nπ

n2 − cos 0

n2

)

= 6

πn2 (cos nπ − 1)

When n is even, an = 0

When n is odd, an = 6

πn2 (−1 −1) = −12

πn2

Hence a1 = −12

π
, a3 = −12

π32 , a5 = −12

π52 , and so on.

Hence the half-range Fourier cosine series is
given by:

f (x) = 3x = 3π

2
− 12

π

(

cos x + 1
32 cos 3x

+ 1
52 cos 5x + · · ·

)

Problem 7. Find the half-range Fourier sine
series to represent the function f (x) = 3x in the
range 0 ≤ x ≤ π.

From para. (c), for a half-range sine series:

f (x) =
∞∑

n=1

bn sin nx

When f (x) = 3x,

bn = 2

π

∫ π

0
f (x) sin nx dx = 2

π

∫ π

0
3x sin nx dx

= 6

π

[−x cos nx

n
+ sin nx

n2

]π

0
by parts
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= 6

π

[(−π cos nπ

n
+ sin nπ

n2

)

− (0 + 0)

]

= −6

n
cos nπ

When n is odd, bn = 6

n
.

Hence b1 = 6

1
, b3 = 6

3
, b5 = 6

5
and so on.

When n is even, bn = −6

n
.

Hence b2 = −6

2
, b4 = −6

4
, b6 = −6

6
and so on.

Hence the half-range Fourier sine series is given by:

f (x) = 3x = 6
(

sin x − 1
2

sin 2x + 1
3

sin 3x

− 1
4

sin 4x + 1
5

sin 5x − · · ·
)

Problem 8. Expand f (x) = cos x as a half-range
Fourier sine series in the range 0 ≤ x ≤ π, and
sketch the function within and outside of the
given range.

When a half-range sine series is required then an
odd function is implied, i.e. a function symmetrical
about the origin. A graph of y = cos x is shown in
Fig. 71.6 in the range 0 to π. For cos x to be sym-
metrical about the origin the function is as shown
by the broken lines in Fig. 71.6 outside of the given
range.

−π

−1

π0

1

2π x

f (x)

y = cos x

Figure 71.6

From para. (c), for a half-range Fourier sine series:

f (x) =
∞∑

n=1

bn sin nx dx

bn = 2

π

∫ π

0
f (x) sin nx dx

= 2

π

∫ π

0
cos x sin nx dx

= 2

π

∫ π

0

1

2
[ sin (x + nx) − sin (x − nx)] dx

= 1

π

[−cos [x(1 + n)]

(1 + n)
+ cos [x(1 − n)]

(1 − n)

]π

0

= 1

π

[(−cos [π(1 + n)]

(1 + n)
+ cos [π(1 − n)]

(1 − n)

)

−
(−cos 0

(1 + n)
+ cos 0

(1 − n)

)]

When n is odd,

bn = 1

π

[( −1

(1 + n)
+ 1

(1 − n)

)

−
( −1

(1 + n)
+ 1

(1 − n)

)]

= 0

When n is even,

bn = 1

π

[(
1

(1 + n)
− 1

(1 − n)

)

−
( −1

(1 + n)
+ 1

(1 − n)

)]

= 1

π

(
2

(1 + n)
− 2

(1 − n)

)

= 1

π

(
2(1 − n) − 2(1 + n)

1 − n2

)

= 1

π

( −4n

1 − n2

)

= 4n

π(n2 − 1)

Hence b2 = 8

3π
, b4 = 16

15π
, b6 = 24

35π
and so on.

Hence the half-range Fourier sine series for f (x) in
the range 0 to π is given by:

f (x) = 8

3π
sin 2x + 16

15π
sin 4x

+ 24

35π
sin 6x + · · ·
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L

or f (x) = 8
π

(
1
3

sin 2x + 2
(3)(5)

sin 4x

+ 3
(5)(7)

sin 6x + · · ·
)

Now try the following exercise.

Exercise 243 Further problems on half-
range Fourier series

1. Determine the half-range sine series for the
function defined by:

f (x) =
⎧
⎨

⎩

x, 0 < x <
π

2
0,

π

2
< x < π

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f (x) = 2

π

(
sin x + π

4
sin 2x

− 1

9
sin 3x

− π

8
sin 4x + · · ·

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

2. Obtain (a) the half-range cosine series and
(b) the half-range sine series for the function

f (t) =

⎧
⎪⎨

⎪⎩

0, 0 < t <
π

2

1,
π

2
< t < π

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(a) f (t) = 1

2
− 2

π

(

cos t

− 1

3
cos 3t

+ 1

5
cos 5t − · · ·

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(b) f (t) = 2

π

(

sin t − sin 2t

+ 1

3
sin 3t + 1

5
sin 5t

− 1

3
sin 6t + · · ·

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

3. Find (a) the half-range Fourier sine series and
(b) the half-range Fourier cosine series for the
function f (x) = sin2 x in the range 0 ≤ x ≤ π.
Sketch the function within and outside of the
given range.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(a) f (x) = 8

π

(
sin x

(1)(3)
− sin 3x

(1)(3)(5)

− sin 5x

(3)(5)(7)

− sin 7x

(5)(7)(9)
− · · ·

)

(b) f (x) = 1

2
(1 − cos 2x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4. Determine the half-range Fourier cosine
series in the range x = 0 to x = π for the
function defined by:

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x, 0 < x <
π

2

(π − x),
π

2
< x < π

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (x) = π

4
− 2

π

(

cos 2x

+ cos 6x

32

+ cos 10x

52 + · · ·
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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72

Fourier series over any range

72.1 Expansion of a periodic function
of period L

(a) A periodic function f (x) of period L
repeats itself when x increases by L, i.e.
f (x + L) = f (x). The change from functions
dealt with previously having period 2π to func-
tions having period L is not difficult since it may
be achieved by a change of variable.

(b) To find a Fourier series for a function f (x) in

the range −L

2
≤ x ≤ L

2
a new variable u is intro-

duced such that f (x), as a function of u, has

period 2π. If u = 2πx

L
then, when x = −L

2
,

u = −π and when x = L

2
, u = +π. Also, let

f (x) = f

(
Lu

2π

)

= F(u). The Fourier series for

F(u) is given by:

F(u) = a0 +
∞∑

n=1

(an cos nu + bn sin nu),

where a0 = 1

2π

∫ π

−π

F(u) du,

an = 1

π

∫ π

−π

F(u) cos nu du

and bn = 1

π

∫ π

−π

F(u) sin nu du

(c) It is however more usual to change the formula

of para. (b) to terms of x. Since u = 2πx

L
, then

du = 2π

L
dx,

and the limits of integration are −L

2
to +L

2
instead of from −π to +π. Hence the Fourier

series expressed in terms of x is given by:

f (x) = a0 +
∞∑

n=1

[

an cos

(
2πnx

L

)

+ bn sin

(
2πnx

L

)]

where, in the range −L

2
to +L

2
:

and

a0 = 1

L

∫ L
2

−L
2

f (x) dx,

an = 2

L

∫ L
2

−L
2

f (x) cos

(
2πnx

L

)

dx

bn = 2

L

∫ L
2

−L
2

f (x) sin

(
2πnx

L

)

dx

The limits of integration may be replaced by any
interval of length L, such as from 0 to L.

Problem 1. The voltage from a square wave
generator is of the form:

v(t) =
{

0, −4 < t < 0

10, 0 < t < 4
and has a period of 8 ms.

Find the Fourier series for this periodic function.

The square wave is shown in Fig. 72.1. From para.
(c), the Fourier series is of the form:

v(t) = a0 +
∞∑

n=1

[

an cos

(
2πnt

L

)

+ bn sin

(
2πnt

L

)]
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L

v (t )

10

0 4 8−8 −4 12 t (ms)

Period L = 8 ms

Figure 72.1

a0 = 1

L

∫ L
2

−L
2

v(t) dt = 1

8

∫ 4

−4
v(t) dt

= 1

8

{∫ 0

−4
0 dt +

∫ 4

0
10 dt

}

= 1

8
[10t]4

0 = 5

an = 2

L

∫ L
2

−L
2

v(t) cos

(
2πnt

L

)

dt

= 2

8

∫ 4

−4
v(t) cos

(
2πnt

8

)

dt

= 1

4

{∫ 0

−4
0 cos

(
πnt

4

)

dt

+
∫ 4

0
10 cos

(
πnt

4

)

dt

}

= 1

4

⎡

⎢
⎢
⎣

10 sin

(
πnt

4

)

(πn

4

)

⎤

⎥
⎥
⎦

4

0

= 10

πn
[ sin πn − sin 0]

= 0 for n = 1, 2, 3, . . .

bn = 2

L

∫ L
2

−L
2

v(t) sin

(
2πnt

L

)

dt

= 2

8

∫ 4

−4
v(t) sin

(
2πnt

8

)

dt

= 1

4

{∫ 0

−4
0 sin

(
πnt

4

)

dt

+
∫ 4

0
10 sin

(
πnt

4

)

dt

}

= 1

4

⎡

⎢
⎢
⎣

−10 cos

(
πnt

4

)

(πn

4

)

⎤

⎥
⎥
⎦

4

0

= −10

πn
[cos πn − cos 0]

When n is even, bn = 0

When n is odd, b1 = −10

π
(−1 − 1) = 20

π
,

b3 = −10

3π
(−1 − 1) = 20

3π
,

b5 = 20

5π
, and so on.

Thus the Fourier series for the function v(t) is
given by:

v(t) = 5 + 20
π

[

sin
(

πt
4

)

+ 1
3

sin
(

3πt
4

)

+ 1
5

sin
(

5πt
4

)

+ · · ·
]

Problem 2. Obtain the Fourier series for the
function defined by:

f (x) =
⎧
⎨

⎩

0, when −2 < x < −1
5, when −1 < x < 1
0, when 1 < x < 2

The function is periodic outside of this range of
period 4.

The function f (x) is shown in Fig. 72.2 where period,
L = 4. Since the function is symmetrical about the
f (x) axis it is an even function and the Fourier series
contains no sine terms (i.e. bn = 0).

−4 −3 −2 −1 0 1 2 3 4 5

L =  4

f(x )

5

x−5

Figure 72.2

Thus, from para. (c),

f (x) = a0 +
∞∑

n=1

an cos

(
2πnx

L

)

a0 = 1

L

∫ L
2

−L
2

f (x) dx = 1

4

∫ 2

−2
f (x) dx
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= 1

4

{∫ −1

−2
0 dx +

∫ 1

−1
5 dx +

∫ 2

1
0 dx

}

= 1

4
[5x]1−1 = 1

4
[(5) − (−5)] = 10

4
= 5

2

an = 2

L

∫ L
2

−L
2

f (x) cos

(
2πnx

L

)

dx

= 2

4

∫ 2

−2
f (x) cos

(
2πnx

4

)

dx

= 1

2

{∫ −1

−2
0 cos

(πnx

2

)
dx

+
∫ 1

−1
5 cos

(πnx

2

)
dx

+
∫ 2

1
0 cos

(πnx

2

)
dx

}

= 5

2

⎡

⎢
⎣

sin
πnx

2
πn

2

⎤

⎥
⎦

1

−1

= 5

πn

[

sin
(πn

2

)
− sin

(−πn

2

)]

When n is even, an = 0
When n is odd,

a1 = 5

π
(1 − (−1)) = 10

π

a3 = 5

3π
(−1 − 1) = −10

3π

a5 = 5

5π
(1 − (−1)) = 10

5π
and so on.

Hence the Fourier series for the function f (x) is
given by:

f (x) = 5
2

+ 10
π

[

cos
(πx

2

)
− 1

3
cos
(

3πx
2

)

+ 1
5

cos
(

5πx
2

)

− 1
7

cos
(

7πx
2

)

+ · · ·
]

Problem 3. Determine the Fourier series for
the function f (t) = t in the range t = 0 to t = 3.

The function f (t) = t in the interval 0 to 3 is shown
in Fig. 72.3. Although the function is not periodic
it may be constructed outside of this range so that

Period L = 3

3 6 t0−3

f(t )

f(t ) = t

Figure 72.3

it is periodic of period 3, as shown by the broken
lines in Fig. 72.3. From para. (c), the Fourier series
is given by:

f (t) = a0 +
∞∑

n=1

[

an cos

(
2πnt

L

)

+ bn sin

(
2πnt

L

)]

a0 = 1

L

∫ L
2

−L
2

f (t) dx = 1

L

∫ L

0
f (t) dx

= 1

3

∫ 3

0
t dt = 1

3

[
t2

2

]3

0
= 3

2

an = 2

L

∫ L
2

−L
2

f (t) cos

(
2πnt

L

)

dt

= 2

L

∫ L

0
t cos

(
2πnt

L

)

dt

= 2

3

∫ 3

0
t cos

(
2πnt

3

)

dt

= 2

3

⎡

⎢
⎢
⎢
⎣

t sin

(
2πnt

3

)

(
2πn

3

) +
cos

(
2πnt

3

)

(
2πn

3

)2

⎤

⎥
⎥
⎥
⎦

3

0
by parts

= 2

3

⎡

⎢
⎢
⎢
⎣

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 sin 2πn
(

2πn

3

) + cos 2πn
(

2πn

3

)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

−

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 + cos 0
(

2πn

3

)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎤

⎥
⎥
⎥
⎦

= 0
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L

bn = 2

L

∫ L
2

−L
2

f (t) sin

(
2πnt

L

)

dt

= 2

L

∫ L

0
t sin

(
2πnt

L

)

dt

= 2

3

∫ 3

0
t sin

(
2πnt

3

)

dt

= 2

3

⎡

⎢
⎢
⎢
⎣

−t cos

(
2πnt

3

)

(
2πn

3

) +
sin

(
2πnt

3

)

(
2πn

3

)2

⎤

⎥
⎥
⎥
⎦

3

0

by parts

= 2

3

⎡

⎢
⎢
⎢
⎣

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−3 cos 2πn
(

2πn

3

) + sin 2πn
(

2πn

3

)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

−

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 + sin 0
(

2πn

3

)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎤

⎥
⎥
⎥
⎦

= 2

3

⎡

⎢
⎢
⎣

−3 cos 2πn
(

2πn

3

)

⎤

⎥
⎥
⎦ = −3

πn
cos 2πn = −3

πn

Hence b1 = −3

π
, b2 = −3

2π
, b3 = −3

3π
and so on.

Thus the Fourier series for the function f (t) in the
range 0 to 3 is given by:

f (t) = 3
2

− 3
π

[

sin
(

2πt
3

)

+ 1
2

sin
(

4πt
3

)

+ 1
3

sin
(

6πt
3

)

+ · · ·
]

Now try the following exercise.

Exercise 244 Further problems on Fourier
series over any range L

1. The voltage from a square wave generator is
of the form:

v(t) =
{

0, −10 < t < 0
5, 0 < t < 10

and is periodic of period 20. Show that the
Fourier series for the function is given by:

v(t) = 5

2
+ 10

π

[

sin

(
πt

10

)

+ 1

3
sin

(
3πt

10

)

+ 1

5
sin

(
5πt

10

)

+ · · ·
]

2. Find the Fourier series for f (x) = x in the
range x = 0 to x = 5.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (x) = 5

2
− 5

π

[

sin

(
2πx

5

)

+ 1

2
sin

(
4πx

5

)

+ 1

3
sin

(
6πx

5

)

+ · · ·
]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3. A periodic function of period 4 is defined by:

f (x) =
{ −3, −2 < x < 0

+3, 0 < x < 2

Sketch the function and obtain the Fourier
series for the function.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (x) = 12

π

(

sin
(πx

2

)

+ 1

3
sin

(
3πx

2

)

+ 1

5
sin

(
5πx

2

)

+ · · ·
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4. Determine the Fourier series for the half
wave rectified sinusoidal voltage V sin ωt
defined by:

f (t) =

⎧
⎪⎨

⎪⎩

V sin ωt, 0 < t <
π

ω

0,
π

ω
< t <

2π

ω

which is periodic of period
2π

ω
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (t) = V

π
+ V

2
sin ωt

− 2V

π

(
cos 2ωt

(1)(3)

+ cos 4ωt

(3)(5)
+ cos 6ωt

(5)(7)
+ · · ·

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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72.2 Half-range Fourier series for
functions defined over range L

(a) By making the substitution u = πx

L
(see

Section 72.1), the range x = 0 to x = L corre-
sponds to the range u = 0 to u = π. Hence a
function may be expanded in a series of either
cosine terms or sine terms only, i.e. a half-range
Fourier series.

(b) A half-range cosine series in the range 0 to L
can be expanded as:

where

f (x) = a0 +
∞∑

n=1

an cos
(nπx

L

)

a0 = 1
L

∫ L

0
f (x) dx and

an = 2
L

∫ L

0
f (x) cos

(nπx
L

)
dx

(c) A half-range sine series in the range 0 to L can
be expanded as:

f (x) =
∞∑

n=1

bn sin
(nπx

L

)

where bn = 2
L

∫ L

0
f (x) sin

(nπx
L

)
dx

Problem 4. Determine the half-range Fourier
cosine series for the function f (x) = x in the
range 0 ≤ x ≤ 2. Sketch the function within and
outside of the given range.

A half-range Fourier cosine series indicates an even
function. Thus the graph of f (x) = x in the range 0
to 2 is shown in Fig. 72.4 and is extended outside
of this range so as to be symmetrical about the f (x)
axis as shown by the broken lines.
From para. (b), for a half-range cosine series:

f (x) = a0 +
∞∑

n=1

an cos
(nπx

L

)

−4 −2 0 2 4 6 x

2

f(x)
f(x) = x

Figure 72.4

a0 = 1

L

∫ L

0
f (x) dx = 1

2

∫ 2

0
x dx

= 1

2

[
x2

2

]2

0
= 1

an = 2

L

∫ L

0
f (x) cos

(nπx

L

)
dx

= 2

2

∫ 2

0
x cos

(nπx

2

)
dx

=
⎡

⎢
⎣

x sin
(nπx

2

)

(nπ

2

) +
cos
(nπx

2

)

(nπ

2

)2

⎤

⎥
⎦

2

0

=
⎡

⎢
⎣

⎛

⎜
⎝

2 sin nπ
(nπ

2

) + cos nπ
(nπ

2

)2

⎞

⎟
⎠

−
⎛

⎜
⎝0 + cos 0

(nπ

2

)2

⎞

⎟
⎠

⎤

⎥
⎦

=
⎡

⎢
⎣

cos nπ
(nπ

2

)2 − 1
(nπ

2

)2

⎤

⎥
⎦

=
(

2

πn

)2

(cos nπ − 1)

When n is even, an = 0

a1 = −8

π2 , a3 = −8

π232 , a5 = −8

π252 and so on.

Hence the half-range Fourier cosine series for f (x)
in the range 0 to 2 is given by:

f (x) = 1 − 8
π2

[

cos
(πx

2

)
+ 1

32 cos
(

3πx
2

)

+ 1
52 cos

(
5πx

2

)

+ · · ·
]
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L

Problem 5. Find the half-range Fourier sine
series for the function f (x) = x in the range
0 ≤ x ≤ 2. Sketch the function within and outside
of the given range.

A half-range Fourier sine series indicates an odd
function. Thus the graph of f (x) = x in the range 0
to 2 is shown in Fig. 72.5 and is extended outside of
this range so as to be symmetrical about the origin,
as shown by the broken lines.

2 4 6

2

−2

f(x)
f(x) = x

−4 0−2 x

Figure 72.5

From para. (c), for a half-range sine series:

f (x) =
∞∑

n=1

bn sin
(nπx

L

)

bn = 2

L

∫ L

0
f (x) sin

(nπx

L

)
dx

= 2

2

∫ 2

0
x sin

(nπx

L

)
dx

=
⎡

⎢
⎣

−x cos
(nπx

2

)

(nπ

2

) +
sin
(nπx

2

)

(nπ

2

)2

⎤

⎥
⎦

2

0

=
⎡

⎢
⎣

⎛

⎜
⎝

−2 cos nπ
(nπ

2

) + sin nπ
(nπ

2

)2

⎞

⎟
⎠

−
⎛

⎜
⎝0 + sin 0

(nπ

2

)2

⎞

⎟
⎠

⎤

⎥
⎦

= −2 cos nπ
nπ

2

= −4

nπ
cos nπ

Hence b1 = −4

π
(−1) = 4

π

b2 = −4

2π
(1) = −4

2π

b3 = −4

3π
(−1) = 4

3π
and so on.

Thus the half-range Fourier sine series in the range
0 to 2 is given by:

f (x) = 4
π

[

sin
(πx

2

)
− 1

2
sin
(

2πx
2

)

+ 1
3

sin
(

3πx
2

)

− 1
4

sin
(

4πx
2

)

+ · · ·
]

Now try the following exercise.

Exercise 245 Further problems on half-
range Fourier series over range L

1. Determine the half-range Fourier cosine
series for the function f (x) = x in the range
0 ≤ x ≤ 3. Sketch the function within and
outside of the given range.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (x) = 3

2
− 12

π2

{

cos

(
πx

3

)

+ 1

32 cos

(
3πx

3

)

+ 1

52 cos

(
5πx

3

)

+ · · ·
}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2. Find the half-range Fourier sine series
for the function f (x) = x in the range
0 ≤ x ≤ 3. Sketch the function within and
outside of the given range.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (x) = 6

π

(

sin
(πx

3

)
− 1

2
sin

(
2πx

3

)

+ 1

3
sin

(
3πx

3

)

− 1

4
sin

(
4πx

3

)

+ · · ·
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

3. Determine the half-range Fourier sine series
for the function defined by:

f (t) =
{ t, 0 < t < 1

(2 − t), 1 < t < 2
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (t) = 8

π2

(

sin

(
πt

2

)

− 1

32 sin

(
3πt

2

)

+ 1

52 sin

(
5πt

2

)

− · · ·
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4. Show that the half-range Fourier cosine series
for the function f (θ) = θ2 in the range 0 to 4

is given by:

f (θ) = 16

3
− 64

π2

(

cos

(
πθ

4

)

− 1

22 cos

(
2πθ

4

)

+ 1

32 cos

(
3πθ

4

)

− · · ·
)

Sketch the function within and outside of the
given range.
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Fourier series

73

A numerical method of harmonic
analysis

73.1 Introduction

Many practical waveforms can be represented by
simple mathematical expressions, and, by using
Fourier series, the magnitude of their harmonic com-
ponents determined, as shown in Chapters 69 to 72.
For waveforms not in this category, analysis may be
achieved by numerical methods. Harmonic analysis
is the process of resolving a periodic, non-sinusoidal
quantity into a series of sinusoidal components of
ascending order of frequency.

73.2 Harmonic analysis on data given
in tabular or graphical form

The Fourier coefficients a0, an and bn used in
Chapters 69 to 72 all require functions to be
integrated, i.e.

a0 = 1

2π

∫ π

−π

f (x)dx = 1

2π

∫ 2π

0
f (x) dx

= mean value of f (x)

in the range −π to π or 0 to 2π

an = 1

π

∫ π

−π

f (x) cos nx dx

= 1

π

∫ 2π

0
f (x) cos nx dx

= twice the mean value of f (x) cos nx

in the range 0 to 2π

bn = 1

π

∫ π

−π

f (x) sin nx dx

= 1

π

∫ 2π

0
f (x) sin nx dx

= twice the mean value of f (x) sin nx

in the range 0 to 2π

However, irregular waveforms are not usually
defined by mathematical expressions and thus the
Fourier coefficients cannot be determined by using
calculus. In these cases, approximate methods, such
as the trapezoidal rule, can be used to evaluate the
Fourier coefficients.

Most practical waveforms to be analysed are
periodic. Let the period of a waveform be 2π and
be divided into p equal parts as shown in Fig. 73.1.

The width of each interval is thus
2π

p
. Let the ordi-

nates be labelled y0, y1, y2, . . . yp (note that y0 = yp).
The trapezoidal rule states:

Area = (width of interval)

[
1

2
(first + last ordinate)

+ sum of remaining ordinates

]

≈ 2π

p

[
1

2
(y0 + yp) + y1 + y2 + y3 + · · ·

]

Since y0 = yp, then
1

2
(y0 + yp) = y0 = yp

Hence area ≈ 2π

p

p∑

k=1

yk

f (x)
y0 y1 y2 y3 y4

yp

x2ππ0
2π/p

Period = 2π

Figure 73.1
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Mean value = area

length of base

≈ 1

2π

(
2π

p

) p∑

k=1

yk ≈ 1

p

p∑

k=1

yk

However, a0 = mean value of f (x) in the range
0 to 2π

Thus a0 ≈ 1
p

p∑

k=1

yk (1)

Similarly, an = twice the mean value of f (x) cos nx
in the range 0 to 2π,

thus an ≈ 2
p

p∑

k=1

yk cos nxk (2)

and bn = twice the mean value of f (x) sin nx in the
range 0 to 2π,

thus bn ≈ 2
p

p∑

k=1

yk sin nxk (3)

Problem 1. The values of the voltage v volts at
different moments in a cycle are given by:

θ◦ (degrees) V (volts)
30 62
60 35
90 −38

120 −64
150 −63
180 −52
210 −28
240 24
270 80
300 96
330 90
360 70

Draw the graph of voltage V against angle θ and
analyse the voltage into its first three constituent
harmonics, each coefficient correct to 2 decimal
places.

The graph of voltage V against angle θ is shown in
Fig. 73.2. The range 0 to 2π is divided into 12 equal

intervals giving an interval width of
2π

12
, i.e.

π

6
rad

or 30◦. The values of the ordinates y1, y2, y3, . . . are
62, 35, −38, . . . from the given table of values. If a
larger number of intervals are used, results having

y1
y2

y3 y4 y5 y6

y7

y8

y9 y11 y12

y10

270 360  degrees

90 180

80

60

40

20

0
−20

−40

−60

−80

V
ol

ta
ge

 (
vo

lts
)

θ

Figure 73.2

a greater accuracy are achieved. The data is tabulated
in the proforma shown in Table 73.1, on page 685.

From equation (1), a0 ≈ 1

p

p∑

k=1
yk = 1

12
(212)

= 17.67 (since p = 12)

From equation (2), an ≈ 2

p

p∑

k=1
yk cos nxk

hence a1 ≈ 2

12
(417.94) = 69.66

a2 ≈ 2

12
(−39) = −6.50

and a3 ≈ 2

12
(−49) = −8.17

From equation (3), bn ≈ 2

p

p∑

k=1
yk sin nxk

hence b1 ≈ 2

12
(−278.53) = −46.42

b2 ≈ 2

12
(29.43) = 4.91

and b3 ≈ 2

12
(55) = 9.17

Substituting these values into the Fourier series:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

gives: v = 17.67 + 69.66 cos θ − 6.50 cos 2θ

− 8.17 cos 3θ + · · · − 46.42 sin θ

+ 4.91 sin 2θ + 9.17 sin 3θ + · · · (4)
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Table 73.1

Ordin
ates θ◦ V cos θ V cos θ sin θ V sin θ cos 2θ V cos 2θ sin 2θ V sin 2θ cos 3θ V cos 3θ sin 3θ V sin 3θ

y1 30 62 0.866 53.69 0.5 31 0.5 31 0.866 53.69 0 0 1 62
y2 60 35 0.5 17.5 0.866 30.31 −0.5 −17.5 0.866 30.31 −1 −35 0 0
y3 90 −38 0 0 1 −38 −1 38 0 0 0 0 −1 38
y4 120 −64 −0.5 32 0.866 −55.42 −0.5 32 −0.866 55.42 1 −64 0 0
y5 150 −63 −0.866 54.56 0.5 −31.5 0.5 −31.5 −0.866 54.56 0 0 1 −63
y6 180 −52 −1 52 0 0 1 −52 0 0 −1 52 0 0
y7 210 −28 −0.866 24.25 −0.5 14 0.5 −14 0.866 −24.25 0 0 −1 28
y8 240 24 −0.5 −12 −0.866 −20.78 −0.5 −12 0.866 20.78 1 24 0 0
y9 270 80 0 0 −1 −80 −1 −80 0 0 0 0 1 80
y10 300 96 0.5 48 −0.866 −83.14 −0.5 −48 −0.866 −83.14 −1 −96 0 0
y11 330 90 0.866 77.94 −0.5 −45 0.5 45 −0.866 −77.94 0 0 −1 −90
y12 360 70 1 70 0 0 1 70 0 0 1 70 0 0

12∑

k=1
yk = (212)

12∑

k=1
yk cos θk

12∑

k=1
yk sin θk

12∑

k=1
yk cos 2θk

12∑

k=1
yk sin 2θk

12∑

k=1
yk cos 3θk

12∑

k=1
yk sin 3θk

= 417.94 = −278.53 = −39 = 29.43 = −49 = 55
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Note that in equation (4), (−46.42 sin θ + 69.66 cos θ)
comprises the fundamental, (4.91 sin 2θ − 6.50 cos 2θ)
comprises the second harmonic and (9.17 sin 3θ −
8.17 cos 3θ) comprises the third harmonic.
It is shown in Chapter 18 that:

a sin ω t + b cos ω t = R sin(ω t + α)

where a = R cos α, b = R sin α, R = √
a2 + b2 and

α = tan−1 b

a
.

For the fundamental, R =
√

(−46.42)2 + (69.66)2

= 83.71

If a = R cos α, then cos α = a

R
= −46.42

83.71
which is negative,

and if b = R sin α, then sin α = b

R
= 69.66

83.71
which is positive.

The only quadrant where cos α is negative and sin α
is positive is the second quadrant.

Hence α = tan−1 b

a
= tan−1 69.66

−46.42
= 123.68◦ or 2.16 rad

Thus (−46.42 sin θ + 69.66 cos θ )
= 83.71 sin (θ + 2.16)

By a similar method it may be shown that the second
harmonic

(4.91 sin 2θ − 6.50 cos 2θ) = 8.15 sin (2θ − 0.92)

and the third harmonic

(9.17sin 3θ−8.17cos3θ)=12.28sin (3θ−0.73)

Hence equation (4) may be re-written as:

v = 17.67 + 83.71 sin(θ + 2.16)
+ 8.15 sin(2θ − 0.92)
+ 12.28 sin(3θ − 0.73) volts

which is the form used in Chapter 15 with complex
waveforms.

Now try the following exercise.

Exercise 246 Further problems on numeri-
cal harmonic analysis

Determine the Fourier series to represent the
periodic functions given by the tables of val-
ues in Problems 1 to 3, up to and including the
third harmonic and each coefficient correct to 2
decimal places. Use 12 ordinates in each case.

1. Angle θ◦ 30 60 90 120 150 180
Displacement y 40 43 38 30 23 17
Angle θ◦ 210 240 270 300 330 360
Displacement y 11 9 10 13 21 32

⎡

⎣
y = 23.92 + 7.81 cos θ + 14.61 sin θ

+ 0.17 cos 2θ + 2.31 sin 2θ

− 0.33 cos 3θ + 0.50 sin 3θ

⎤

⎦

2. Angle θ◦ 0 30 60 90 120 150
Voltage v −5.0 −1.5 6.0 12.5 16.0 16.5
Angle θ◦ 180 210 240 270 300 330
Voltage v 15.0 12.5 6.5 −4.0 −7.0 −7.5

⎡

⎣
v = 5.00 − 10.78 cos θ + 6.83 sin θ

− 1.96 cos 2θ + 0.80 sin 2θ

+ 0.58 cos 3θ − 1.08 sin 3θ

⎤

⎦

3. Angle θ◦ 30 60 90 120 150 180
Current i 0 −1.4 −1.8 −1.9 −1.8 −1.3
Angle θ◦ 210 240 270 300 330 360
Current i 0 2.2 3.8 3.9 3.5 2.5

⎡

⎣
i = 0.64 + 1.58 cos θ − 2.73 sin θ

− 0.23 cos 2θ − 0.42 sin 2θ

+ 0.27 cos 3θ + 0.05 sin 3θ

⎤

⎦

73.3 Complex waveform
considerations

It is sometimes possible to predict the harmonic
content of a waveform on inspection of particular
waveform characteristics.

(i) If a periodic waveform is such that the area
above the horizontal axis is equal to the area
below then the mean value is zero. Hence a0 = 0
(see Fig. 73.3(a)).

(ii) An even function is symmetrical about the
vertical axis and contains no sine terms (see
Fig. 73.3(b)).

(iii) An odd function is symmetrical about the
origin and contains no cosine terms (see
Fig. 73.3(c)).

(iv) f (x) = f (x + π) represents a waveform which
repeats after half a cycle and only even
harmonics are present (see Fig. 73.3(d)).

(v) f (x) = − f (x + π) represents a waveform for
which the positive and negative cycles are
identical in shape and only odd harmonics are
present (see Fig. 73.3(e)).
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f (x)

0 π 2π x 

ao = 0(a)

π 2π x0−π

Contains no sine terms(b)

−2π −π π0 2π x

Contains no cosine terms(c)

f(x)

−2π

(d)

−π π0 2π x

(e)

f (x)

−π π0 2π x

Contains only odd harmonics

Contains only even harmonics

f (x)

f (x)

Figure 73.3

Problem 2. Without calculating Fourier coef-
ficients state which harmonics will be present in
the waveforms shown in Fig. 73.4.

f (x)
2

−2

0 π−π 2π x

0 π−π 2π x

5

f (x)

(a)

(b)

Figure 73.4

(a) The waveform shown in Fig. 73.4(a) is sym-
metrical about the origin and is thus an odd
function. An odd function contains no cosine
terms. Also, the waveform has the characteristic
f (x) = −f (x + π), i.e. the positive and negative
half cycles are identical in shape. Only odd

harmonics can be present in such a waveform.
Thus the waveform shown in Fig. 73.4(a) con-
tains only odd sine terms. Since the area above
the x-axis is equal to the area below, a0 = 0.

(b) The waveform shown in Fig. 73.4(b) is symmet-
rical about the f (x) axis and is thus an even
function. An even function contains no sine
terms. Also, the waveform has the characteristic
f (x) = f (x + π), i.e. the waveform repeats itself
after half a cycle. Only even harmonics can be
present in such a waveform. Thus the waveform
shown in Fig. 73.4(b) contains only even cosine
terms (together with a constant term, a0).

Problem 3. An alternating current i amperes is
shown in Fig. 73.5. Analyse the waveform into
its constituent harmonics as far as and including
the fifth harmonic, correct to 2 decimal places,
by taking 30◦ intervals.

y1 y2 y3 180 240 300 θ° 

1501209060

5

0−90−150

−180 −120 −60

10

−5

−10

210 270 330
y8 y9

y10

y11

360
y7

30

y4

y5

−30

i

Figure 73.5

With reference to Fig. 73.5, the following character-
istics are noted:

(i) The mean value is zero since the area
above the θ axis is equal to the area below
it. Thus the constant term, or d.c. component,
a0 = 0.

(ii) Since the waveform is symmetrical about the
origin the function i is odd, which means that
there are no cosine terms present in the Fourier
series.

(iii) The waveform is of the form f (θ) = − f (θ + π)
which means that only odd harmonics are
present.

Investigating waveform characteristics has thus
saved unnecessary calculations and in this case the
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Table 73.2

Ordinate θ i sin θ i sin θ sin 3θ i sin 3θ sin 5θ i sin 5θ

y1 30 2 0.5 1 1 2 0.5 1
y2 60 7 0.866 6.06 0 0 −0.866 −6.06
y3 90 10 1 10 −1 −10 1 10
y4 120 7 0.866 6.06 0 0 −0.866 −6.06
y5 150 2 0.5 1 1 2 0.5 1
y6 180 0 0 0 0 0 0 0
y7 210 −2 −0.5 1 −1 2 −0.5 1
y8 240 −7 −0.866 6.06 0 0 0.866 −6.06
y9 270 −10 −1 10 1 −10 −1 10
y10 300 −7 −0.866 6.06 0 0 0.866 −6.06
y11 330 −2 −0.5 1 −1 2 −0.5 1
y12 360 0 0 0 0 0 0 0

12∑

k=1
yk sin θk = 48.24

12∑

k=1
yk sin 3θk = −12

12∑

k=1
yk sin 5θk = −0.24

Fourier series has only odd sine terms present, i.e.
i = b1 sin θ + b3 sin 3θ + b5 sin 5θ + · · ·

A proforma, similar to Table 73.1, but without
the ‘cosine terms’ columns and without the ‘even
sine terms’ columns is shown in Table 73.2 up to,
and including, the fifth harmonic, from which the
Fourier coefficients b1, b3 and b5 can be determined.
Twelve co-ordinates are chosen and labelled y1, y2,
y3, . . . y12 as shown in Fig. 73.5.

From equation (3), Section 73.2,

bn = 2

p

p∑

k=1

ik sin nθk , where p = 12

Hence b1 ≈ 2

12
(48.24) = 8.04,

b3 ≈ 2

12
(−12) = −2.00,

and b5 ≈ 2

12
(−0.24) = −0.04

Thus the Fourier series for current i is given by:

i = 8.04 sin θ − 2.00 sin 3θ − 0.04 sin 5θ

Now try the following exercise.

Exercise 247 Further problems on a num-
erical method of harmonic analysis

1. Without performing calculations, state which
harmonics will be present in the waveforms
shown in Fig. 73.6.

[
(a) only odd cosine terms present
(b) only even sine terms present

]

f (t )
4

0

−4

−π−2π π 2π 4π t

(a)

2π
−π 0

π

y
10

−10
(b)

x

Figure 73.6

2. Analyse the periodic waveform of displace-
ment y against angle θ in Fig. 73.7(a) into
its constituent harmonics as far as and
including the third harmonic, by taking 30◦
intervals.

⎡

⎣
y = 9.4 + 13.2 cos θ − 24.1 sin θ

+ 0.92 cos 2θ − 0.14 sin 2θ

+ 0.83 cos 3θ + 0.67 sin 3θ

⎤

⎦
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Figure 73.7

3. For the waveform of current shown in
Fig. 73.7(b) state why only a d.c. compo-
nent and even cosine terms will appear in the
Fourier series and determine the series, using
π/6 rad intervals, up to and including the sixth
harmonic.

[
I = 4.00 − 4.67 cos 2θ + 1.00 cos 4θ

− 0.66 cos 6θ

]

4. Determine the Fourier series as far as the third
harmonic to represent the periodic function y
given by the waveform in Fig. 73.8. Take 12
intervals when analysing the waveform.

−20
−40
−60
−80

−100

20

40
60
80

100
y

−90° 0 90° 180° 270° 360° θ°

Figure 73.8

⎡

⎣
y = 1.83 − 27.77 cos θ + 83.74 sin θ

− 0.75 cos 2θ − 1.59 sin 2θ

+ 16.00 cos 3θ + 11.00 sin 3θ

⎤

⎦
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74

The complex or exponential form of
a Fourier series

74.1 Introduction

The form used for the Fourier series in Chapters 69 to
73 consisted of cosine and sine terms. However, there
is another form that is commonly used—one that
directly gives the amplitude terms in the frequency
spectrum and relates to phasor notation. This form
involves the use of complex numbers (see Chapters
23 and 24). It is called the exponential or complex
form of a Fourier series.

74.2 Exponential or complex notation

It was shown on page 264, equations (4) and (5) that:

e jθ = cos θ + j sin θ (1)

and e−jθ = cos θ − j sin θ (2)

Adding equations (1) and (2) gives:

e jθ + e−jθ = 2 cos θ

from which, cos θ = e jθ + e−jθ

2
(3)

Similarly, equation (1) – equation (2) gives:

e jθ − e−jθ = 2j sin θ

from which, sin θ = e jθ − e−jθ

2j
(4)

Thus, from page 676, the Fourier series f (x) over
any range L,

f (x) = a0 +
∞∑

n=1

[

an cos

(
2πnx

L

)

+ bn sin

(
2πnx

L

)]

may be written as:

f (x) = a0 +
∞∑

n=1

[

an

(
e j 2πnx

L + e−j 2πnx
L

2

)

+ bn

(
e j 2πnx

L − e−j 2πnx
L

2j

)]

Multiplying top and bottom of the bn term by −j
(and remembering that j2 = −1) gives:

f (x) = a0 +
∞∑

n=1

[

an

(
e j 2πnx

L + e−j 2πnx
L

2

)

− jbn

(
e j 2πnx

L − e−j 2πnx
L

2

)]

Rearranging gives:

f (x) = a0 +
∞∑

n=1

[(
an − jbn

2

)

e j 2πnx
L

+
(

an + jbn

2

)

e−j 2πnx
L

]

(5)

The Fourier coefficients a0, an and bn may be
replaced by complex coefficients c0, cn and c−n such
that

c0 = a0 (6)

cn = an − jbn

2
(7)

and c−n = an + jbn

2
(8)

where c−n represents the complex conjugate of cn
(see page 251).
Thus, equation (5) may be rewritten as:

f (x) = c0 +
∞∑

n=1

cn e j 2πnx
L +

∞∑

n=1

c−n e−j 2πnx
L (9)
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L

Since e0 = 1, the c0 term can be absorbed into the
summation since it is just another term to be added
to the summation of the cn term when n = 0. Thus,

f (x) =
∞∑

n=0

cn e j 2πnx
L +

∞∑

n=1

c−n e−j 2πnx
L (10)

The c−n term may be rewritten by changing the limits
n = 1 to n = ∞ to n = −1 to n = −∞. Since n has
been made negative, the exponential term becomes

e j 2πnx
L and c−n becomes cn. Thus,

f (x) =
∞∑

n=0

cn e j 2πnx
L +

−∞∑

n=−1

cn e j 2πnx
L

Since the summations now extend from −∞ to −1
and from 0 to +∞, equation (10) may be written as:

f (x) =
∞∑

n=−∞
cne j 2πnx

L (11)

Equation (11) is the complex or exponential form
of the Fourier series.

74.3 The complex coefficients

From equation (7), the complex coefficient cn was

defined as: cn = an − jbn

2
However, an and bn are defined (from page 630) by:

an = 2

L

∫ L
2

− L
2

f (x) cos

(
2πnx

L

)

dx and

bn = 2

L

∫ L
2

− L
2

f (x) sin

(
2πnx

L

)

dx

Thus, cn =

⎛

⎜
⎝

2
L

∫ L
2

− L
2

f (x) cos
( 2πnx

L

)
dx

− j 2
L

∫ L
2

− L
2

f (x) sin
( 2πnx

L

)
dx

⎞

⎟
⎠

2

= 1

L

∫ L
2

− L
2

f (x) cos

(
2πnx

L

)

dx

− j
1

L

∫ L
2

− L
2

f (x) sin

(
2πnx

L

)

dx

From equations (3) and (4),

cn = 1

L

∫ L
2

− L
2

f (x)

(
e j 2πnx

L + e−j 2πnx
L

2

)

dx

− j
1

L

∫ L
2

− L
2

f (x)

(
ej 2πnx

L − e−j 2πnx
L

2j

)

dx

from which,

cn = 1

L

∫ L
2

− L
2

f (x)

(
e j 2πnx

L + e−j 2πnx
L

2

)

dx

− 1

L

∫ L
2

− L
2

f (x)

(
e j 2πnx

L − e−j 2πnx
L

2

)

dx

i.e. cn = 1
L

∫ L
2

− L
2

f (x) e−j 2πnx
L dx (12)

Care needs to be taken when determining c0. If n
appears in the denominator of an expression the
expansion can be invalid when n = 0. In such cir-
cumstances it is usually simpler to evaluate c0 by
using the relationship:

c0 = a0 = 1

L

∫ L
2

− L
2

f (x)dx (from page 676). (13)

Problem 1. Determine the complex Fourier
series for the function defined by:

f (x) =
{

0, when −2 ≤ x ≤ −1
5, when −1 ≤ x ≤1
0, when 1 ≤ x ≤ 2

The function is periodic outside this range of
period 4.

This is the same Problem as Problem 2 on page 677
and we can use this to demonstrate that the two forms
of Fourier series are equivalent.

The function f (x) is shown in Figure 74.1, where
the period, L = 4.

From equation (11), the complex Fourier series is
given by:

f (x) =
∞∑

n=−∞
cn e j 2πnx

L
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f (x )

−5 −4 −3 −2 −1 0 1

5

2 3 4 5

L = 4

x

Figure 74.1

where cn is given by:

cn = 1

L

∫ L
2

− L
2

f (x) e−j 2πnx
L dx (from equation 12).

With reference to Figure 74.1, when L = 4,

cn = 1

4

{∫ −1

−2
0 dx +

∫ 1

−1
5 e−j 2πnx

4 dx +
∫ 2

1
0 dx

}

= 1

4

∫ 1

−1
5 e− jπnx

2 dx = 5

4

[
e− jπnx

2

− jπn
2

] 1

−1

= −5

j2πn

[
e− jπnx

2

] 1

−1
= −5

j2πn

(
e− jπn

2 − e
jπn
2

)

= 5

πn

(
e j πn

2 − e−j πn
2

2j

)

= 5

πn
sin

πn

2
(from equation (4)).

Hence, from equation (11), the complex form of the
Fourier series is given by:

f (x) =
∞∑

n=−∞
cn e j 2πnx

L =
∞∑

n=−∞

5
πn

sin
πn
2

e j πnx
2

(14)

Let us show how this result is equivalent to the
result involving sine and cosine terms determined
on page 678.
From equation (13),

c0 = a0 = 1

L

∫ L
2

− L
2

f (x)dx = 1

4

∫ 1

−1
5 dx

= 5

4
[x] 1−1 = 5

4
[1 − (−1)] = 5

2

Since cn = 5

πn
sin

πn

2
, then

c1 = 5

π
sin

π

2
= 5

π

c2 = 5

2π
sin π = 0

(in fact, all even terms will be zero since
sin nπ = 0)

c3 = 5

πn
sin

πn

2
= 5

3π
sin

3π

2
= − 5

3π

By similar substitution,

c5 = 5
5π

c7 = − 5
7π

, and so on.

Similarly,

c−1 = 5

−π
sin

−π

2
= 5

π

c−2 = − 5

2π
sin

−2π

2
= 0 = c−4 = c−6, and so on.

c−3 = − 5

3π
sin

−3π

2
= − 5

3π

c−5 = − 5

5π
sin

−5π

2
= 5

5π
, and so on.

Hence, the extended complex form of the Fourier
series shown in equation (14) becomes:

f (x) = 5

2
+ 5

π
e j πx

2 − 5

3π
e j 3πx

2 + 5

5π
e j 5πx

2

− 5

7π
e j 7πx

2 + · · · + 5

π
e−j πx

2

− 5

3π
e−j 3πx

2 + 5

5π
e−j 5πx

2

− 5

7π
e−j 7πx

2 + · · ·

= 5

2
+ 5

π

(
e j πx

2 + e−j πx
2

)

− 5

3π

(
e j 3πx

2 + e−j 3πx
2

)

+ 5

5π

(
e

5πx
2 + e−j 5πx

2

)
− · · ·
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L

= 5

2
+ 5

π
(2)

(
e j πx

2 + e−j πx
2

2

)

− 5

3π
(2)

(
e j 3πx

2 + e−j 3πx
2

2

)

+ 5

5π
(2)

(
e j 5πx

2 + e−j 5πx
2

2

)

− · · ·

= 5

2
+ 10

π
cos
(πx

2

)
− 10

3π
cos

(
3πx

2

)

+ 10

5π
cos

(
5πx

2

)

− · · ·

(from equation (3))

i.e. f (x) = 5
2

+ 10
π

[

cos
(πx

2

)
− 1

3
cos
(

3πx
2

)

+ 1
5

cos
(

5πx
2

)

− · · ·
]

which is the same as obtained on page 678.

Hence,
∞∑

n=−∞

5
πn

sin
nπ

2
e j πnx

2 is equivalent to

5
2

+ 10
π

[

cos
(πx

2

)
− 1

3
cos
(

3πx
2

)

+ 1
5

cos
(

5πx
2

)

− · · ·
]

Problem 2. Show that the complex Fourier
series for the function f (t) = t in the range t = 0
to t = 1, and of period 1, may be expressed as:

f (t) = 1

2
+ j

2π

∞∑

n=−∞

e j2πnt

n

The saw tooth waveform is shown in Figure 74.2.

From equation (11), the complex Fourier series is
given by:

f (t) =
∞∑

n=−∞
cn e j 2πnt

L

f (t ) f (t ) = t

−1 0 1 2 t

Period L = 1

Figure 74.2

and when the period, L = 1, then:

f (t) =
∞∑

n=−∞
cn e j2πnt

where, from equation (12),

cn = 1

L

∫ L
2

− L
2

f (t) e−j 2πnt
L dt = 1

L

∫ L

0
f (t) e−j 2πnt

L dt

and when L = 1 and f (t) = t, then:

cn = 1

1

∫ 1

0
t e−j 2πnt

1 dt =
∫ 1

0
t e−j2πnt dt

Using integration by parts (see Chapter 43), let u = t,

from which,
du

dt
= 1, and dt = du, and

let dv = e−j2πnt , from which,

v =
∫

e−j2πnt dt = e−j2πnt

−j2πn

Hence, cn =
∫ 1

0
t e−j2πnt = uv −

∫
v du

=
[

t
e−j2πnt

−j2πn

]1

0
−
∫ 1

0

e−j2πnt

−j2πn
dt

=
[

t
e−j2πnt

−j2πn
− e−j2πnt

(−j2πn)2

]1

0

=
(

e−j2πn

−j2πn
− e−j2πn

(−j2πn)2

)

−
(

0 − e0

(−j2πn)2

)
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From equation (2),

cn =
(

cos 2πn − j sin 2πn

−j2πn
− cos 2πn − j sin 2πn

(−j2πn)2

)

+ 1

(−j2πn)2

However, cos 2πn = 1 and sin 2πn = 0 for all posi-
tive and negative integer values of n.

Thus, cn = 1

−j2πn
− 1

(−j2πn)2 + 1

(−j2πn)2

= 1

−j2πn
= 1( j)

−j2πn( j)

i.e. cn = j
2πn

From equation (13),

c0 = a0 = 1

L

∫ L
2

− L
2

f (t) dt

= 1

L

∫ L

0
f (t) dt = 1

1

∫ 1

0
t dt

=
[

t2

2

]1

0
=
[

1

2
− 0

]

= 1
2

Hence, the complex Fourier series is given by:

f (t) =
∞∑

n=−∞
cn e j 2πnt

L from equation (11)

i.e. f (t) = 1

2
+

∞∑

n=−∞

j
2πn

e j2πnt

= 1
2

+ j
2π

∞∑

n=−∞

e j2πnt

n

Problem 3. Show that the exponential form of
the Fourier series for the waveform described
by:

f (x) =
{

0 when −4 ≤ x ≤ 0
10 when 0 ≤ x ≤ 4

and has a period of 8, is given by:

f (x) =
∞∑

n=−∞
5j

nπ
(cos nπ − 1) e j nπx

4

From equation (12),

cn = 1

L

∫ L
2

− L
2

f (x) e−j 2πnx
L dx

= 1

8

[∫ 0

−4
0 e−j πnx

4 dx +
∫ 4

0
10 e −j πnx

4 dx

]

= 10

8

[
e−j πnt

4

−j πn
4

] 4

0

= 10

8

(
4

−jπn

)
[
e−jπn − 1

]

= 5j

−j2πn

(
e−jπn − 1

) = 5j

πn

(
e−jπn − 1

)

From equation (2), e−jθ = cos θ − j sin θ, thus
e−jπn = cos πn − j sin πn = cos πn for all integer
values of n. Hence,

cn = 5j

πn

(
e−jπn − 1

) = 5j

πn
(cos nπ − 1)

From equation (11), the exponential Fourier series
is given by:

f (x) =
∞∑

n=−∞
cn e j 2πnx

L

=
∞∑

n=−∞

5j
nπ

(cos nπ − 1) e j nπx
4

Now try the following exercise.

Exercise 248 Further problems on the com-
plex form of a Fourier series

1. Determine the complex Fourier series for the
function defined by:

f (t) =
{

0, when −π ≤ t ≤ 0
2, when 0 ≤ t ≤ π

The function is periodic outside of this range
of period 2π.
[

f (t) =
∞∑

n=−∞

j

nπ
(cos nπ − 1) e jnt

= 1 − j
2

π

(

e jt + 1

3
e j3t + 1

5
e j5t + . . .

)

+ j
2

π

(

e−jt + 1

3
e−j3t + 1

5
e−j5t + · · ·

)]
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L

2. Show that the complex Fourier series for the
waveform shown in Figure 74.3, that has
period 2, may be represented by:

f (t) = 2 +
∞∑

n=−∞
(n �=0)

j2

πn
(cos nπ − 1) e jπnt

f (t )

4

−1 0 1 2 t

Period L = 2

Figure 74.3

3. Show that the complex Fourier series of
Problem 2 is equivalent to:

f (t) = 2 + 8

π

(

sin πt + 1

3
sin 3πt

+ 1

5
sin 5πt + . . .

)

4. Determine the exponential form of the
Fourier series for the function defined by:
f (t) = e2t when −1 < t < 1 and has period 2.
[

f (t) = 1

2

∞∑

n=−∞

(
e(2−jπn) − e−(2−jπn)

2 − jπn

)

e jπnt

]

74.4 Symmetry relationships

If even or odd symmetry is noted in a function, then
time can be saved in determining coefficients.

The Fourier coefficients present in the complex
Fourier series form are affected by symmetry. Sum-
marising from previous chapters:

An even function is symmetrical about the verti-
cal axis and contains no sine terms, i.e. bn = 0.

For even symmetry,

a0 = 1

L

∫ L

0
f (x)dx and

an = 2

L

∫ L

0
f (x) cos

(
2πnx

L

)

dx

= 4

L

∫ L
2

0
f (x) cos

(
2πnx

L

)

dx

An odd function is symmetrical about the origin and
contains no cosine terms, a0 = an = 0.
For odd symmetry,

bn = 2

L

∫ L

0
f (x) sin

(
2πnx

L

)

dx

= 4

L

∫ L
2

0
f (x) sin

(
2πnx

L

)

dx

From equation (7), page 690, cn = an − jbn

2
Thus, for even symmetry, bn = 0 and

cn = an

2
= 2

L

∫ L
2

0
f (x) cos

(
2πnx

L

)

dx (15)

For odd symmetry, an = 0 and

cn = −jbn

2
= −j

2
L

∫ L
2

0
f (x) sin

(
2πnx

L

)

dx (16)

For example, in Problem 1 on page 691, the func-
tion f (x) is even, since the waveform is symmetrical
about the f (x) axis. Thus equation (15) could have
been used, giving:

cn = 2

L

∫ L
2

0
f (x) cos

(
2πnx

L

)

dx

= 2

4

∫ 2

0
f (x) cos

(
2πnx

4

)

dx

= 1

2

{∫ 1

0
5 cos

(πnx

2

)
dx +

∫ 2

1
0 dx

}

= 5

2

⎡

⎢
⎣

sin
(πnx

2

)

πn

2

⎤

⎥
⎦

1

0

= 5

2

(
2

πn

)(
sin

nπ

2
− 0
)

= 5
πn

sin
nπ

2

which is the same answer as in Problem 1; how-
ever, a knowledge of even functions has produced
the coefficient more quickly.
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Problem 4. Obtain the Fourier series, in com-
plex form, for the square wave shown in
Figure 74.4.

f (x )

x

2

0

−2

2ππ−π 3π

Figure 74.4

Method A

The square wave shown in Figure 74.4 is an odd
function since it is symmetrical about the origin.
The period of the waveform, L = 2π.

Thus, using equation (16):

cn = −j
2

L

∫ L
2

0
f (x) sin

(
2πnx

L

)

dx

= −j
2

2π

∫ π

0
2 sin

(
2πnx

2π

)

dx

= −j
2

π

∫ π

0
sin nx dx = −j

2

π

[−cos nx

n

]π

0

= −j
2

πn

(
(−cos πn) − (−cos 0)

)

i.e. cn = −j
2

πn
[1 − cosπn] (17)

Method B

If it had not been noted that the function was odd,
equation (12) would have been used, i.e.

cn = 1

L

∫ L
2

− L
2

f (x) e−j 2πnx
L dx

= 1

2π

∫ π

−π

f (x) e−j 2πnx
2π dx

= 1

2π

{∫ 0

−π

−2 e−jnx dx +
∫ π

0
2 e−jnx dx

}

= 1

2π

{[−2e−jnx

−jn

]0

−π

+
[

2e−jnx

−jn

]π

0

}

= 1

2π

(
2

jn

){[
e−jnx]0

−π
− [e−jnx]π

0

}

= 1

2π

(
2

jn

){[
e0 − e+jnπ

]− [e−jnπ − e0]
}

= 1

jπn

{
1 − e jnπ − e−jnπ + 1

}

= 1

jnπ

{

2 − 2

(
e jnπ + e−jnπ

2

)}

by rearranging

= 2

jnπ

{

1 −
(

e jnπ + e−jnπ

2

)}

= 2

jnπ
{1 − cos nπ} from equation (3)

= −j2

−j( jnπ)
{1 − cos nπ}

by multiplying top and bottom by −j

i.e. cn = −j
2

nπ
(1 − cos nπ) (17)

It is clear that method A is by far the shorter of the
two methods.
From equation (11), the complex Fourier series is
given by:

f (x) =
∞∑

n=−∞
cn e j 2πnx

L

=
∞∑

n=−∞
−j

2
nπ

(1 − cos nπ) e jnx (18)

Problem 5. Show that the complex Fourier
series obtained in problem 4 above is equiva-
lent to

f (x) = 8

π

(

sin x + 1

3
sin 3x + 1

5
sin 5x

+ 1

7
sin 7x + · · ·

)

(which was the Fourier series obtained in terms
of sines and cosines in Problem 3 on page 671).
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L

From equation (17) above, cn = −j
2

nπ
(1 − cos nπ)

When n = 1,

c1 = −j
2

(1)π
(1 − cos π)

= −j
2

π

(
1 − (−1)

)
= − j4

π

When n = 2,

c2 = −j
2

2π
(1 − cos 2π) = 0;

in fact, all even values of cn will be zero.

When n = 3,

c3 = −j
2

3π
(1 − cos 3π)

= −j
2

3π
(1 − (−1)) = − j4

3π

By similar reasoning,

c5 = − j4

5π
, c7 = − j4

7π
, and so on.

When n = −1,

c−1 = −j
2

(−1)π
(1 − cos(−π))

= +j
2

π
(1 − (−1)) = + j4

π

When n = −3,

c−3 = −j
2

(−3)π
(1 − cos(−3π))

= +j
2

3π
(1 − (−1)) = + j4

3π

By similar reasoning,

c−5 = + j4

5π
, c−7 = + j4

7π
, and so on.

Since the waveform is odd, c0 = a0 = 0.
From equation (18) above,

f (x) =
∞∑

n=−∞
−j

2

nπ
(1 − cos nπ) e jnx

Hence,

f (x) = − j4

π
e jx − j4

3π
e j3x − j4

5π
e j5x

− j4

7π
e j7x − · · · + j4

π
e−jx + j4

3π
e−j3x

+ j4

5π
e−j5x + j4

7π
e−j7x + · · ·

=
(

− j4

π
e jx + j4

π
e−jx

)

+
(

− j4

3π
e3x + j4

3π
e−3x

)

+
(

− j4

5π
e5x + j4

5π
e−5x

)

+ · · ·

= − j4

π

(
e jx − e−jx)− j4

3π

(
e3x − e−3x)

− j4

5π

(
e5x − e−5x)+ · · ·

= 4

jπ

(
e jx − e−jx)+ 4

j3π

(
e3x − e−3x)

+ 4

j5π

(
e5x − e−5x)+ · · ·

by multiplying top and bottom by j

= 8

π

(
e jx − e−jx

2j

)

+ 8

3π

(
e j3x − e−j3

2j

)

+ 8

5π

(
e j5x − e−j5x

2j

)

+ · · ·

by rearranging

= 8

π
sin x + 8

3π
sin 3x + 8

3x
sin 5x + · · ·

from equation (4), page 690

i.e.

f (x) = 8
π

(

sin x + 1
3

sin 3x + 1
5

sin 5x

+ 1
7

sin 7x + · · ·
)

Hence,

f (x) =
∞∑

n=−∞
−j

2
nπ

(1 − cos n π) e jnx

≡ 8
π

(

sin x + 1
3

sin 3x + 1
5

sin 5x

+ 1
7

sin 7x + · · ·
)
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Now try the following exercise.

Exercise 249 Further problems on symme-
try relationships

1. Determine the exponential form of the
Fourier series for the periodic function
defined by:

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−2, when −π ≤ x ≤ −π

2

2, when −π

2
≤ x ≤ +π

2

−2, when +π

2
≤ x ≤ + π

and has a period of 2π

[

f (x) =
∞∑

n=−∞

(
4

nπ
sin

nπ

2

)

e jnx

]

2. Show that the exponential form of the Fourier
series in problem 1 above is equivalent to:

f (x) = 8

π

(

cos x − 1

3
cos 3x + 1

5
cos5x

− 1

7
cos 7x + · · ·

)

3. Determine the complex Fourier series to rep-
resent the function f (t) = 2t in the range −π
to +π.

[

f (t) =
∞∑

n=−∞

(
j2

n
cos nπ

)

e jnt

]

f (t )

20

0 1−1 t

L = 10

Figure 74.5

4. Show that the complex Fourier series in
problem 3 above is equivalent to:

f (t) = 4

(

sin t − 1

2
sin 2t + 1

3
sin 3t

− 1

4
sin 4t + · · ·

)

74.5 The frequency spectrum

In the Fourier analysis of periodic waveforms seen
in previous chapters, although waveforms physically
exist in the time domain, they can be regarded as
comprising components with a variety of frequen-
cies. The amplitude and phase of these components
are obtained from the Fourier coefficients an and bn;
this is known as a frequency domain. Plots of ampli-
tude/frequency and phase/frequency are together
known as the spectrum of a waveform. A simple
example is demonstrated in Problem 6 following.

Problem 6. A pulse of height 20 and width 2
has a period of 10. Sketch the spectrum of the
waveform.

The pulse is shown in Figure 74.5.
The complex coefficient is given by equation (12):

cn = 1

L

∫ L
2

− L
2

f (t)e−j 2πnt
L dt

= 1

10

∫ 1

−1
20e−j 2πnt

10 dt = 20

10

[
e−j πnt

5

−jπn
5

]1

−1
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L

= 20

10

(
5

−jπn

)[
e−j πn

5 − e j πn
5

]

= 20

πn

[
e j πn

5 − e−j πn
5

2j

]

i.e. cn = 20
πn

sin
nπ

5

from equation (4), page 690.
From equation (13),

c0 = 1

L

∫ L
2

− L
2

f (x) dx = 1

10

∫ 1

−1
20 dt

= 1

10
[20t]1−1 = 1

10
[20 − (−20)] = 4

c1 = 20

π
sin

π

5
= 3.74 and

c−1 = −20

π
sin
(
−π

5

)
= 3.74

Further values of cn and c−n, up to n = 10, are
calculated and are shown in the following table.

n cn c−n

0 4 4
1 3.74 3.74
2 3.03 3.03
3 2.02 2.02
4 0.94 0.94
5 0 0
6 −0.62 −0.62
7 −0.86 −0.86
8 −0.76 −0.76
9 −0.42 −0.42

10 0 0

A graph of |cn| plotted against the number of the
harmonic, n, is shown in Figure 74.6.

Figure 74.7 shows the corresponding plot of cn
against n.

Since cn is real (i.e. no j terms) then the phase
must be either 0◦ or ±180◦, depending on the sign
of the sine, as shown in Figure 74.8.

When cn is positive, i.e. between n = −4 and
n = +4, angle αn = 0◦.

When cn is negative, then αn = ±180◦; between
n = +6 and n = +9, αn is taken as +180◦, and
between n = −6 and n = −9, αn is taken as −180◦.

Figures 74.6 to 74.8 together form the spectrum of
the waveform shown in Figure 74.5.

74.6 Phasors

Electrical engineers in particular often need to anal-
yse alternating current circuits, i.e. circuits con-
taining a sinusoidal input and resulting sinusoidal
currents and voltages within the circuit.

It was shown in chapter 15, page 157, that a
general sinusoidal voltage function can be repre-
sented by:

v = Vm sin (ωt + α) volts (19)

where Vm is the maximum voltage or amplitude
of the voltage v, ω is the angular velocity (=2πf ,
where f is the frequency), and α is the phase angle
compared with v = Vm sin ωt.

Similarly, a sinusoidal expression may also be
expressed in terms of cosine as:

v = Vm cos(ωt + α) volts (20)

It is quite complicated to add, subtract, multiply
and divide quantities in the time domain form of
equations (19) and (20). As an alternative method of
analysis a waveform representation called a phasor
is used. A phasor has two distinct parts—a mag-
nitude and an angle; for example, the polar form
of a complex number, say 5∠π/6, can represent a
phasor, where 5 is the magnitude or modulus, and
π/6 radians is the angle or argument. Also, it was
shown on page 264 that 5∠π/6 may be written as
5 e jπ/6 in exponential form.

In chapter 24, equation (4), page 264, it is shown
that:

e jθ = cos θ + j sin θ (21)

which is known as Euler’s formula.
From equation (21),

e j(ωt+α) = cos(ωt + α) + j sin(ωt + α)

and Vm e j(ωt+α) = Vm cos(ωt + α)

+ j Vm sin(ωt + α)

Thus a sinusoidal varying voltage such as in equa-
tion (19) or equation (20) can be considered to be
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cn

−10 −9 −6 −5 −4 −3 −2 −1−7−8

3

4

2

1

0 21 3 4 5 6 7 8 9 10 n

Figure 74.6

106 7 8 9
0

1
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3

4

−1

1 2 3 4 5 n

cn

−10 −9 −6
−5 −4 −3 −2 −1

−7−8

Figure 74.7

180°

−180°

90°
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Figure 74.8
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either the real or the imaginary part of Vm e j(ωt+α),
depending on whether the cosine or sine function is
being considered.

Vm e j(ωt + α) may be rewritten as Vm e jωt e jα since
am+n = am × an from the laws of indices, page X.

The e jωt term can be considered to arise from
the fact that a radius is rotated with an angu-
lar velocity ω, and α is the angle at which the
radius starts to rotate at time t = 0 (see Chapter 15,
page 157).

Thus, Vm e jωt e jα defines a phasor. In a particular
circuit the angular velocity ω is the same for all the
elements thus the phasor can be adequately described
by Vm∠α, as suggested above.

Alternatively, if

v = Vm cos(ωt + α) volts

and cos θ = 1

2

(
e jϑ + e−jθ)

from equation (3), page 690

then v = Vm

[
1

2

(
e j(ωt+α) + e−j(ωt+α))

]

i.e. v = 1

2
Vm e jωt e jα + 1

2
Vm e−jωt e−jα

Thus, v is the sum of two phasors, each with half
the amplitude, with one having a positive value of
angular velocity (i.e. rotating anticlockwise) and a
positive value of α, and the other having a negative
value of angular velocity (i.e. rotating clockwise)
and a negative value of α, as shown in Figure 74.9.

The two phasors are
1

2
Vm ∠α and

1

2
Vm ∠−α.

Im
ag

in
ar

y 
ax

is

Real axis0

V m

V
m

α
α

ω

ω

1
2

1
2

Figure 74.9

From equation (11), page 691, the Fourier repre-
sentation of a waveform in complex form is:

cn e j 2πnt
L = cne jωnt for positive values of n

(

since ω = 2π

L

)

and cn e−jωnt for negative values of n.

It can thus be considered that these terms represent
phasors, those with positives powers being phasors
rotating with a positive angular velocity (i.e. anti-
clockwise), and those with negative powers being
phasors rotating with a negative angular velocity (i.e.
clockwise).
In the above equations,

n = 0 represents a non-rotating component, since
e0 = 1,
n = 1 represents a rotating component with angular
velocity of 1ω,
n = 2 represents a rotating component with angular
velocity of 2ω, and so on.

Thus we have a set of phasors, the algebraic sum of
which at some instant of time gives the magnitude
of the waveform at that time.

Problem 7. Determine the pair of phasors that
can be used to represent the following voltages:
(a) v = 8 cos 2t (b) v = 8 cos (2t − 1.5)

(a) From equation (3), page 690,

cos θ = 1

2
(e jθ + e−jθ)

Hence,

v = 8 cos 2t = 8

[
1

2

(
e j2t + e−j2t

)]

= 4e j2t + 4e−j2t

This represents a phasor of length 4 rotating anti-
clockwise (i.e. in the positive direction) with an
angular velocity of 2 rad/s, and another phasor
of length 4 and rotating clockwise (i.e. in the
negative direction) with an angular velocity of
2 rad/s. Both phasors have zero phase angle.
Figure 74.10 shows the two phasors.
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Figure 74.10

(b) From equation (3), page 690,

cos θ = 1

2

(
e jθ + e−jθ)

Hence, v = 8 cos(2t − 1.5)

= 8

[
1

2

(
e j(2t−1.5) + e−j(2t−1.5)

)]

= 4e j(2t−1.5) + 4e−j(2t−1.5)

i.e. v = 4e2t e−j 1.5 + 4e−j2t e j1.5

This represents a phasor of length 4 and phase
angle −1.5 radians rotating anticlockwise (i.e. in
the positive direction) with an angular velocity
of 2 rad/s, and another phasor of length 4 and
phase angle +1.5 radians and rotating clockwise
(i.e. in the negative direction) with an angular
velocity of 2 rad/s. Figure 74.11 shows the two
phasors.

Im
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in
ar

y 
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1.5 rad Real axis

4

4

0

Figure 74.11

Problem 8. Determine – the pair of phasors
that can be used to represent the third harmonic

v = 8 cos 3t − 20 sin 3t

Using cos t = 1

2

(
e jt + e−jt)

and sin t = 1

2j

(
e jt − e−jt

)
from page 690

gives: v = 8 cos 3t − 20 sin 3t

= 8

[
1

2

(
e j3t + e−j3t)

]

− 20

[
1

2j

(
e j3t − e−j3t)

]

= 4e j3t + 4e−j3t − 10

j
e j3t + 10

j
e−j3t

= 4e j3t + 4e−j3t − 10( j)

j( j)
e j3t + 10( j)

j( j)
e−j3t

= 4e j3t + 4e−j3t + 10j e j3t − 10j e−j3t

since j2 = −1

= (4 + j10) e j3t + (4 − j10) e−j3t

(4 + j10) =
√

42 + 102∠ tan−1
(

10

4

)

= 10.77∠1.19

and (4 − j10)

= 10.77∠−1.19

Hence, v = 10.77 ∠ 1.19 + 10.77 ∠−1.19

Thus v comprises a phasor 10.77∠1.19 rotating anti-
clockwise with an angular velocity if 3 rad/s, and
a phasor 10.77∠−1.19 rotating clockwise with an
angular velocity of 3 rad/s.
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Now try the following exercise.

Exercise 250 Further problems on phasors

1. Determine the pair of phasors that can be used
to represent the following voltages:

(a) v = 4 cos 4t (b) v = 4 cos (4t + π/2)

[(a) 2e j4t + 2e−j4t , 2∠0◦ anticlockwise,
2∠0◦ clockwise, each with ω = 4 rad/s

(b) 2e j4te jπ/2 + 2 e−j4te−jπ/2, 2∠π/2
anticlockwise, 2∠−π/2 clockwise, each
with ω = 4 rad/s]

2. Determine the pair of phasors that can repre-
sent the harmonic given by:
v = 10 cos 2t − 12 sin 2t

[(5 + j6)e j2t + (5 − j6)e−j2t , 7.81∠0.88
rotating anticlockwise, 7.81 ∠−0.88
rotating clockwise, each with ω = 2 rad/s]

3. Find the pair of phasors that can represent the
fundamental current: i = 6 sin t + 4 cos t

[(2 − j3) e jt + (2 + j3) e−jt , 3.61∠−0.98
rotating anticlockwise, 3.61 ∠ 0.98 rotat-
ing clockwise, each with ω = 1 rad/s]
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Assignment 19

This assignment covers the material contained
in Chapters 69 to 74.

The marks for each question are shown in
brackets at the end of each question.

1. Obtain a Fourier series for the periodic function
f (x) defined as follows:

f (x) =
{−1, when − π ≤ x ≤ 0

1, when 0 ≤ x ≤ π

The function is periodic outside of this range with
period 2π. (13)

2. Obtain a Fourier series to represent f (t) = t in
the range −π to +π. (13)

3. Expand the function f (θ) = θ in the range
0 ≤ θ ≤ π into (a) a half range cosine series, and
(b) a half range sine series. (18)

4. (a) Sketch the waveform defined by:

f (x) =
{

0, when −4 ≤ x ≤ −2
3, when −2 ≤ x ≤ 2
0, when 2 ≤ x ≤ 4

and is periodic outside of this range of period 8.

(b) State whether the waveform in (a) is odd,
even or neither odd nor even.

(c) Deduce the Fourier series for the function
defined in (a). (15)

5. Displacement y on a point on a pulley when
turned through an angle of θ degrees is given by:

θ y

30 3.99
60 4.01
90 3.60

120 2.84
150 1.84
180 0.88
210 0.27
240 0.13
270 0.45
300 1.25
330 2.37
360 3.41

Sketch the waveform and construct a Fourier
series for the first three harmonics (23)

6. A rectangular waveform is shown in Figure
A19.1.

(a) State whether the waveform is an odd or even
function.

(b) Obtain the Fourier series for the waveform in
complex form.

(c) Show that the complex Fourier series in (b) is
equivalent to:

f (x) = 20

π

(

sin x + 1

3
sin 3x + 1

5
sin 5x

+ 1

7
sin 7x + · · ·

)

(18)

−2π

−5

2π0

5

3π x

f (x)

−π π

Figure A19.1
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Number and Algebra

Laws of indices:

am × an = am+n am

an
= am−n (am)n = amn

a
m
n = n

√
am a−n = 1

an
a0 = 1

Quadratic formula:

If ax2 + bx + c = 0 then x = −b ± √
b2 − 4ac

2a

Factor theorem

If x = a is a root of the equation f (x) = 0, then
(x − a) is a factor of f (x).

Remainder theorem

If (ax2 + bx + c) is divided by (x − p), the
remainder will be: a p2 + b p + c.

or if (ax3 + bx2 + cx + d) is divided by (x − p), the
remainder will be: a p3 + b p2 + c p + d.

Partial fractions

Provided that the numerator f (x) is of less degree
than the relevant denominator, the following iden-
tities are typical examples of the form of partial
fractions used:

f (x)

(x + a)(x + b)(x + c)

≡ A

(x + a)
+ B

(x + b)
+ C

(x + c)

f (x)

(x + a)3(x + b)

≡ A

(x + a)
+ B

(x + a)2 + C

(x + a)3 + D

(x + b)

f (x)

(ax2 + bx + c)(x + d)

≡ Ax + B

(ax2 + bx + c)
+ C

(x + d)

Definition of a logarithm:

If y = ax then x = loga y

Laws of logarithms:

log (A × B) = log A + log B

log

(
A

B

)

= log A − log B

log An = n × log A

Exponential series:

ex = 1 + x + x2

2! + x3

3! + · · ·

(valid for all values of x)

Hyperbolic functions

sinh x = ex − e−x

2
cosech x = 1

sinh x
= 2

ex − e−x

cosh x = ex + e−x

2
sech x = 1

cosh x
= 2

ex + e−x

tanh x = ex − e−x

ex + e−x
coth x = 1

tanh x
= ex + e−x

ex − e−x

cosh2 x − sinh2 = 1 1 − tanh2 x = sech2 x

coth2 x − 1 = cosech2 x
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Arithmetic progression:

If a = first term and d = common difference, then
the arithmetic progression is: a, a + d, a + 2d, . . .

The n’th term is: a + (n − 1)d

Sum of n terms, Sn = n

2
[2a + (n − 1)d]

Geometric progression:

If a = first term and r = common ratio, then the
geometric progression is: a, ar, ar2, . . .

The n’th term is: arn−1

Sum of n terms, Sn = a(1 − rn)

(1 − r)
or

a(rn − 1)

(r − 1)

If −1 < r < 1, S∞ = a

(1 − r)

Binomial series:

(a + b)n = an + nan−1b + n(n − 1)

2! an−2b2

+ n(n − 1)(n − 2)

3! an−3b3 + · · ·

(1 + x)n = 1 + nx + n(n − 1)

2! x2

+ n(n − 1)(n − 2)

3! x3 + · · ·

Maclaurin’s series

f (x) = f (0) + x f ′(0) + x2

2! f ′′(0)

+ x3

3! f ′′′(0) + · · ·

Newton Raphson iterative method

If r1 is the approximate value for a real root of the
equation f (x) = 0, then a closer approximation to the
root, r2, is given by:

r2 = r1 − f (r1)

f ′(r1)

Boolean algebra

Laws and rules of Boolean algebra

Commutative Laws: A + B = B + A
A · B = B · A

Associative Laws: A + B + C = (A + B) + C
A · B · C = (A · B) · C

Distributive Laws: A · (B + C) = A · B + A · C
A + (B · C) = (A + B) · (A+C)

Sum rules: A + A = 1
A + 1 = 1
A + 0 = A
A + A = A

Product rules: A · A = 0
A · 0 = 0
A · 1 = A
A · A = A

Absorption rules: A + A · B = A
A · (A + B) = A

A + A · B = A + B

De Morgan’s Laws: A + B = A · B

A · B = A + B

Geometry and Trigonometry

Theorem of Pythagoras:

b2 = a2 + c2

Figure FA1

Identities:

sec θ = 1

cos θ
, cosec θ = 1

sin θ
,

cot θ = 1

tan θ
, tan θ = sin θ

cos θ

cos2 θ + sin2 θ = 1 1 + tan2 θ = sec2 θ

cot2 θ + 1 = cosec2 θ
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Triangle formulae:

With reference to Fig. FA2:

Sine rule
a

sin A
= b

sin B
= c

sin C

Cosine rule a2 = b2 + c2 − 2bc cos A

Figure FA2

Area of any triangle

(i) 1
2 × base × perpendicular height

(ii) 1
2 ab sin C or 1

2 ac sin B or 1
2 bc sin A

(iii)
√

[s(s − a)(s − b)(s − c)] where s = a + b + c

2

Compound angle formulae

sin(A ± B) = sin A cos B ± cos A sin B

cos(A ± B) = cos A cos B ∓ sin A sin B

tan(A ± B) = tan A ± tan B

1 ∓ tan A tan B

If R sin (ωt + α) = a sin ωt + b cos ωt,

then a = R cos α, b = R sin α,

R =√(a2 + b2) and α = tan−1 b

a

Double angles

sin 2A = 2 sin A cos A

cos 2A = cos2 A − sin2 A = 2 cos2 A − 1

= 1 − 2 sin2 A

tan 2A = 2 tan A

1 − tan2 A

Products of sines and cosines into sums or differences

sin A cos B = 1
2 [sin(A + B) + sin (A − B)]

cos A sin B = 1
2 [sin(A + B) − sin (A − B)]

cos A cos B = 1
2 [cos(A + B) + cos (A − B)]

sin A sin B = − 1
2 [cos(A + B)−cos (A − B)]

Sums or differences of sines and cosines into products

sin x + sin y = 2 sin

(
x + y

2

)

cos

(
x − y

2

)

sin x − sin y = 2 cos

(
x + y

2

)

sin

(
x − y

2

)

cos x + cos y = 2 cos

(
x + y

2

)

cos

(
x − y

2

)

cos x − cos y = −2 sin

(
x + y

2

)

sin

(
x − y

2

)

For a general sinusoidal function
y = A sin(ωt ± α), then

A = amplitude
ω = angular velocity = 2π f rad/s

2π

ω
= periodic time T seconds

ω

2π
= frequency, f hertz

α = angle of lead or lag (compared with

y = A sin ωt)

Cartesian and polar co-ordinates

If co-ordinate (x, y) = (r, θ) then r =√x2 + y2 and

θ = tan−1 y

x
If co-ordinate (r, θ) = (x, y) then x = r cos θ and
y = r sin θ.

The circle

With reference to Fig. FA3.

Area = πr2 Circumference = 2πr
π radians = 180◦
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s

θ

r

r

Figure FA3

For sector of circle:
s = rθ (θ in rad)

shaded area = 1
2 r2θ (θ in rad)

Equation of a circle, centre at (a, b), radius r:

(x − a)2 + (y − b)2 = r2

Linear and angular velocity

If v = linear velocity (m/s), s = displacement (m),
t = time (s), n = speed of revolution (rev/s),
θ = angle (rad), ω = angular velocity (rad/s),
r = radius of circle (m) then:

v = s

t
ω = θ

t
= 2πn v = ωr

centripetal force = mv2

r

where m = mass of rotating object.

Graphs

Equations of functions

Equation of a straight line: y = mx + c
Equation of a parabola: y = ax2 + bx + c
Circle, centre (a, b), radius r:

(x − a)2 + (y − b)2 = r2

Equation of an ellipse, centre at origin, semi-axes

a and b:
x2

a2 + y2

b2 = 1

Equation of a hyperbola:
x2

a2 − y2

b2 = 1

Equation of a rectangular hyperbola: xy = c2

Irregular areas

Trapezoidal rule

Area ≈
(

width of
interval

)[
1

2

(
first + last
ordinates

)

+
(

sum of remaining
ordinates

)]

Mid-ordinate rule

Area ≈
(

width of
interval

)(
sum of

mid-ordinates

)

Simpson’s rule

Area ≈ 1

3

(
width of
interval

)[(
first + last
ordinate

)

+4

(
sum of even

ordinates

)

+2

(
sum of remaining

odd ordinates

)]

Vector Geometry

If a = a1 i + a2 j + a3 k and b = b1 i + b2 j + b3 k

a · b = a1b1 + a2b2 + a3b3

| a | =
√

a2
1 + a2

2 + a2
3 cos θ = a · b

|a| |b|

a × b =
∣
∣
∣
∣
∣

i j k
a1 a2 a3
b1 b2 b3

∣
∣
∣
∣
∣

| a × b | =
√

[(a · a)(b · b) − (a · b)2]

Complex Numbers

z = a + jb = r(cos θ + j sin θ) = r∠θ = r e jθ where
j2 = −1

Modulus r = |z| =√(a2 + b2)

Argument θ = arg z = tan−1 b

a
Addition: (a + jb) + (c + jd) = (a + c) + j(b + d)

Subtraction: (a + jb) − (c + jd) = (a − c) + j(b − d)
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Complex equations: If m + jn = p + jq then m = p
and n = q

Multiplication: z1 z2 = r1 r2∠(θ1 + θ2)

Division:
z1

z2
= r1

r2
∠(θ1 − θ2)

De Moivre’s theorem:
[r∠θ]n = rn∠nθ = rn(cos nθ + j sin nθ) = rejθ

Matrices and Determinants

Matrices:

If A =
(

a b
c d

)

and B =
(

e f
g h

)

then

A + B =
(

a + e b + f
c + g d + h

)

A − B =
(

a − e b − f
c − g d − h

)

A × B =
(

ae + bg af + bh
ce + dg cf + dh

)

A−1 = 1

ad − bc

(
d −b

−c a

)

If A =
(

a1 b1 c1
a2 b2 c2
a3 b3 c3

)

then A−1 = BT

|A| where

BT = transpose of cofactors of matrix A

Determinants:
∣
∣
∣
∣
a b
c d

∣
∣
∣
∣ = ad − bc

∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
= a1

∣
∣
∣
∣
b2 c2
b3 c3

∣
∣
∣
∣− b1

∣
∣
∣
∣
a2 c2
a3 c3

∣
∣
∣
∣

+ c1

∣
∣
∣
∣
a2 b2
a3 b3

∣
∣
∣
∣

Differential Calculus

Standard derivatives

y or f (x)
dy

dx
or f ′(x)

axn anxn−1

sin ax a cos ax
cos ax −a sin ax

tan ax a sec2 ax
sec ax a sec ax tan ax
cosec ax −a cosec ax cot ax

cot ax −a cosec 2 ax
eax aeax

ln ax
1

x
sinh ax a cosh ax

cosh ax a sinh ax

tanh ax a sech 2 ax

sech ax −a sech ax tanh ax

cosech ax −a cosech ax coth ax

coth ax −a cosech 2ax

sin−1 x

a

1√
a2 − x2

sin−1 f (x)
f ′(x)

√
1 − [ f (x)]2

cos−1 x

a

−1√
a2 − x2

cos−1 f (x)
−f ′(x)

√
1 − [ f (x)]2

tan−1 x

a

a

a2 + x2

tan−1 f (x)
f ′(x)

1 + [ f (x)]2

sec−1 x

a

a

x
√

x2 − a2

sec−1 f (x)
f ′(x)

f (x)
√

[ f (x)]2 − 1

cosec−1 x

a

−a

x
√

x2 − a2
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y or f (x)
dy

dx
or f ′(x)

cosec−1 f (x)
−f ′(x)

f (x)
√

[ f (x)]2 − 1

cot−1 x

a

−a

a2 + x2

cot−1 f (x)
−f ′(x)

1 + [ f (x)]2

sinh−1 x

a

1√
x2 + a2

sinh−1 f (x)
f ′(x)

√
[ f (x)]2 + 1

cosh−1 x

a

1√
x2 − a2

cosh−1 f (x)
f ′(x)

√
[ f (x)]2 − 1

tanh−1 x

a

a

a2 − x2

tanh−1 f (x)
f ′(x)

1 − [ f (x)]2

sech−1 x

a

−a

x
√

a2 − x2

sech−1 f (x)
−f ′(x)

f (x)
√

1 − [ f (x)]2

cosech−1 x

a

−a

x
√

x2 + a2

cosech−1 f (x)
−f ′(x)

f (x)
√

[ f (x)]2 + 1

coth−1 x

a

a

a2 − x2

coth−1 f (x)
f ′(x)

1 − [ f (x)]2

Product rule:

When y = uv and u and v are functions of x then:

dy
dx

= u
dv

dx
+ v

du
dx

Quotient rule:

When y = u

v
and u and v are functions of x then:

dy
dx

=
v

du
dx

− u
dv

dx
v2

Function of a function:

If u is a function of x then:
dy
dx

= dy
du

× du
dx

Parametric differentiation

If x and y are both functions of θ, then:

dy
dx

=
dy
dθ
dx
dθ

and
d2y
dx2 =

d
dθ

(
dy
dx

)

dx
dθ

Implicit function:

d
dx

[ f (y)] = d
dy

[ f (y)] × dy
dx

Maximum and minimum values:

If y = f (x) then
dy
dx

= 0 for stationary points.

Let a solution of
dy

dx
= 0 be x = a; if the value of

d2y

dx2 when x = a is: positive, the point is a minimum,

negative, the point is a maximum.

Velocity and acceleration

If distance x = f (t), then

velocity v = f ′(t) or
dx

dt
and

acceleration a = f ′′(t) or
d2x

dt2
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Tangents and normals

Equation of tangent to curve y = f (x) at the point
(x1, y1) is:

y − y1 = m(x − x1)

where m = gradient of curve at (x1, y1).

Equation of normal to curve y = f (x) at the point
(x1, y1) is:

y − y1 = − 1

m
(x − x1)

Partial differentiation

Total differential

If z = f (u, v, ..), then the total differential,

dz = ∂z

∂u
du + ∂z

∂v
dv + . . . .

Rate of change

If z = f (u, v, ..) and
du

dt
,

dv

dt
, … denote the rate of

change of u, v, .. respectively, then the rate of change
of z,

dz

dt
= ∂z

∂u
· du

dt
+ ∂z

∂v
· dv

dt
+ . . .

Small changes

If z = f (u, v, ..) and δx, δy, .. denote small changes in
x, y, .. respectively, then the corresponding change,

δz ≈ ∂z

∂x
δx + ∂z

∂y
δy + . . . .

To determine maxima, minima and saddle
points for functions of two variables: Given
z = f (x, y),

(i) determine
∂z

∂x
and

∂z

∂y

(ii) for stationary points,
∂z

∂x
= 0 and

∂z

∂y
= 0,

(iii) solve the simultaneous equations
∂z

∂x
= 0

and
∂z

∂y
= 0 for x and y, which gives the

co-ordinates of the stationary points,

(iv) determine
∂2z

∂x2 ,
∂2z

∂y2 and
∂2z

∂x∂y

(v) for each of the co-ordinates of the station-
ary points, substitute values of x and y into
∂2z

∂x2 ,
∂2z

∂y2 and
∂2z

∂x∂y
and evaluate each,

(vi) evaluate

(
∂2z

∂x∂y

)2
for each stationary point,

(vii) substitute the values of
∂2z

∂x2 ,
∂2z

∂y2 and
∂2z

∂x∂y
into

the equation � =
(

∂2z

∂x∂y

)2

−
(

∂2z

∂x2

)(
∂2z

∂y2

)

and evaluate,

(viii) (a) if > 0 then the stationary point is a saddle
point

(b) if  < 0 and
∂2z
∂x2 < 0, then the stationary

point is a maximum point, and

(c) if  < 0 and
∂2z
∂x2 > 0, then the stationary

point is a minimum point



Ess-For-H8152.tex 19/7/2006 18: 2 Page 712

712 ESSENTIAL FORMULAE

Integral Calculus

Standard integrals

y
∫

y dx

axn a
xn+1

n + 1
+ c

(except where n = −1)

cos ax
1

a
sin ax + c

sin ax −1

a
cos ax + c

sec2 ax
1

a
tan ax + c

cosec2 ax −1

a
cot ax + c

cosec ax cot ax −1

a
cosec ax + c

sec ax tan ax
1

a
sec ax + c

eax 1

a
eax + c

1

x
ln x + c

tan ax
1

a
ln ( sec ax) + c

cos2 x
1

2

(

x + sin 2x

2

)

+ c

sin2 x
1

2

(

x − sin 2x

2

)

+ c

tan2 x tan x − x + c

cot2 x −cot x − x + c

1
√

(a2 − x2)
sin−1 x

a
+ c

√
(a2 − x2)

a2

2
sin−1 x

a
+ x

2

√
(a2 − x2) + c

1

(a2 + x2)

1

a
tan−1 x

a
+ c

y
∫

y dx

1
√

(x2 + a2)
sinh−1 x

a
+ c or

ln

[
x +√(x2 + a2)

a

]

+ c

√
(x2 + a2)

a2

2
sinh−1 x

a
+ x

2

√
(x2 + a2) + c

1
√

(x2 − a2)
cosh−1 x

a
+ c or

ln

[
x +√(x2 − a2)

a

]

+ c

√
(x2 − a2)

x

2

√
(x2 − a2) − a2

2
cosh−1 x

a
+ c

t = tan
θ

2
substitution

To determine
∫ 1

a cos θ + b sin θ + c
dθ let

sin θ = 2t

(1 + t2)
cos θ = 1 − t2

1 + t2 and

dθ = 2 dt

(1 + t2)

Integration by parts

If u and v are both functions of x then:

∫
u

dv

dx
dx = uv −

∫
v

du
dx

dx

Reduction formulae
∫

xnex dx = In = xnex − nIn−1

∫
xn cos x dx = In = xn sin x + nxn−1 cos x

−n(n − 1)In−2
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∫ π

0
xn cos x dx = In = −nπn−1 − n(n − 1)In−2

∫
xn sin x dx = In = −xn cos x + nxn−1 sin x

−n(n − 1)In−2
∫

sinn x dx = In = −1

n
sinn−1 x cos x + n − 1

n
In−2

∫
cosn x dx = In = 1

n
cosn−1 sin x + n − 1

n
In−2

∫ π/2

0
sinn x dx =

∫ π/2

0
cosn x dx = In = n − 1

n
In−2

∫
tann x dx = In = tann−1 x

n − 1
− In−2

∫
(ln x)n dx = In = x( ln x)n − nIn−1

With reference to Fig. FA4.

0 x � a x � b x

y

y � f (x)

A

Figure FA4

Area under a curve:

area A =
∫ b

a
y dx

Mean value:

mean value = 1

b − a

∫ b

a
y dx

R.m.s. value:

r.m.s. value =
√√
√
√
{

1

b − a

∫ b

a
y2 dx

}

Volume of solid of revolution:

volume =
∫ b

a
πy2 dx about the x-axis

Centroids

With reference to Fig. FA5:

x̄ =

∫ b

a
xy dx

∫ b

a
y dx

and ȳ =
1
2

∫ b

a
y2 dx

∫ b

a
y dx

Area A

y � f (x)

C

y
x

0 x � a x � b x

y

Figure FA5
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Second moment of area and radius of gyration

Shape Position of axis Second moment Radius of
of area, I gyration, k

Rectangle (1) Coinciding with b
bl3

3

1√
3length l

(2) Coinciding with l
lb3

3

b√
3

breadth b

(3) Through centroid,
bl3

12

1√
12parallel to b

(4) Through centroid,
lb3

12

b√
12parallel to l

Triangle (1) Coinciding with b
bh3

12

h√
6Perpendicular

(2) Through centroid,
bh3

36

h√
18

height h

parallel to basebase b

(3) Through vertex,
bh3

4

h√
2parallel to base

Circle (1) Through centre,
πr4

2

r√
2radius r perpendicular to plane

(i.e. polar axis)

(2) Coinciding with diameter
πr4

4

r

2

(3) About a tangent
5πr4

4

√
5

2
r

Semicircle Coinciding with
πr4

8

r

2radius r diameter

Theorem of Pappus

With reference to Fig. FA5, when the curve is rotated
one revolution about the x-axis between the limits
x = a and x = b, the volume V generated is given by:
V = 2πAȳ.

Parallel axis theorem:

If C is the centroid of area A in Fig. FA6 then

Ak2
BB = Ak2

GG + Ad2 or k2
BB = k2

GG + d2

G B

C

Area A

d

G B

Figure FA6



Ess-For-H8152.tex 19/7/2006 18: 2 Page 715

ESSENTIAL FORMULAE 715

Perpendicular axis theorem:

If OX and OY lie in the plane of area A in Fig. FA7,

then Ak2
OZ = Ak2

OX + Ak2
OY or k2

OZ = k2
OX + k2

OY

Z

Area A

O

X

Y

Figure FA7

Numerical integration

Trapezoidal rule

∫
ydx ≈

(
width of
interval

)[
1

2

(
first + last
ordinates

)

+
(

sum of remaining
ordinates

)]

Mid-ordinate rule

∫
ydx ≈

(
width of
interval

)(
sum of

mid-ordinates

)

Simpson’s rule

∫
ydx ≈ 1

3

(
width of
interval

)[(
first + last
ordinate

)

+ 4

(
sum of even

ordinates

)

+ 2

(
sum of remaining

odd ordinates

)]

Differential Equations

First order differential equations

Separation of variables

If
dy

dx
= f (x) then y =

∫
f (x) dx

If
dy

dx
= f (y) then

∫
dx =

∫
dy

f (y)

If
dy

dx
= f (x) · f (y) then

∫
dy

f (y)
=
∫

f (x) dx

Homogeneous equations

If P
dy

dx
= Q, where P and Q are functions of both

x and y of the same degree throughout (i.e. a
homogeneous first order differential equation) then:

(i) Rearrange P
dy

dx
= Q into the form

dy

dx
= Q

P
(ii) Make the substitution y = vx (where v is a

function of x), from which, by the product rule,

dy

dx
= v(1) + x

dv

dx

(iii) Substitute for both y and
dy

dx
in the equation

dy

dx
= Q

P
(iv) Simplify, by cancelling, and then separate the

variables and solve using the
dy

dx
= f (x) · f (y)

method

(v) Substitute v = y

x
to solve in terms of the original

variables.

Linear first order

If
dy

dx
+ Py = Q, where P and Q are functions of

x only (i.e. a linear first order differential equation),
then

(i) determine the integrating factor, e
∫

P dx

(ii) substitute the integrating factor (I.F.) into
the equation

y (I.F.) =
∫

(I.F.) Q dx

(iii) determine the integral
∫

(I.F.)Q dx
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Numerical solutions of first order differential
equations

Euler’s method: y1 = y0 + h(y′)0

Euler-Cauchy method: yP1 = y0 + h(y′)0

and yC1 = y0 + 1

2
h[(y′)0 + f (x1, yp1 )]

Runge-Kutta method:

To solve the differential equation
dy

dx
= f (x, y) given

the initial condition y = y0 at x = x0 for a range of
values of x = x0(h)xn:

1. Identify x0, y0 and h, and values of x1, x2, x3, . . .

2. Evaluate k1 = f (xn, yn) starting with n = 0

3. Evaluate k2 = f

(

xn + h

2
, yn + h

2
k1

)

4. Evaluate k3 = f

(

xn + h

2
, yn + h

2
k2

)

5. Evaluate k4 = f(xn + h, yn + hk3)

6. Use the values determined from steps 2 to 5 to
evaluate:

yn+1 = yn + h

6
{k1 + 2k2 + 2k3 + k4}

7. Repeat steps 2 to 6 for n = 1, 2, 3, . . .

Second order differential equations

If a
d2y
dx2 + b

dy
dx

+ cy = 0 (where a, b and c are

constants) then:

(i) rewrite the differential equation as
(aD2 + bD + c)y = 0

(ii) substitute m for D and solve the auxiliary
equation am2 + bm + c = 0

(iii) if the roots of the auxiliary equation are:

(a) real and different, say m = α and m = β
then the general solution is

y = Aeαx + Beβx

(b) real and equal, say m = α twice, then the
general solution is

y = (Ax + B)eαx

(c) complex, say m = α ± jβ, then the general
solution is

y = eαx(A cos βx + B sin βx)

(iv) given boundary conditions, constants A and B
can be determined and the particular solution
obtained.

If a
d2y
dx2 + b

dy
dx

+ cy = f (x) then:

(i) rewrite the differential equation as
(aD2 + bD + c)y = 0.

(ii) substitute m for D and solve the auxiliary
equation am2 + bm + c = 0.

(iii) obtain the complimentary function (C.F.), u, as
per (iii) above.

(iv) to find the particular integral, v, first assume a
particular integral which is suggested by f (x),
but which contains undetermined coefficients
(See Table 51.1, page 482 for guidance).

(v) substitute the suggested particular integral into
the original differential equation and equate
relevant coefficients to find the constants
introduced.

(vi) the general solution is given by y = u + v.
(vii) given boundary conditions, arbitrary constants

in the C.F. can be determined and the particular
solution obtained.

Higher derivatives

y y(n)

eax an eax

sin ax an sin
(

ax + nπ

2

)

cos ax an cos
(

ax + nπ

2

)

xa a!
(a − n)!x

a−n

sinh ax
an

2
{[1 + (−1)n] sinh ax

+ [1 − (−1)n] cosh ax}

cosh ax
an

2
{[1 − (−1)n] sinh ax

+[1 + (−1)n] cosh ax}
ln ax (−1)n−1 (n − 1)!

xn
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Leibniz’s theorem

To find the n’th derivative of a product y = uv:

y(n) = (uv)(n) = u(n)v + nu(n−1)v(1)

+n(n − 1)

2! u(n−2)v(2)

+n(n − 1)(n − 2)

3! u(n−3)v(3) + · · ·

Power series solutions of second order differential
equations.

(a) Leibniz-Maclaurin method

(i) Differentiate the given equation n times,
using the Leibniz theorem,

(ii) rearrange the result to obtain the recurrence
relation at x = 0,

(iii) determine the values of the derivatives at
x = 0, i.e. find (y)0 and (y′)0,

(iv) substitute in the Maclaurin expansion for
y = f (x),

(v) simplify the result where possible and apply
boundary condition (if given).

(b) Frobenius method

(i) Assume a trial solution of the form:
y = xc{a0 + a1x + a2x2 + a3x3 + · · · +

arxr + · · · } a0 �= 0,

(ii) differentiate the trial series to find y′
and y′′,

(iii) substitute the results in the given differential
equation,

(iv) equate coefficients of corresponding pow-
ers of the variable on each side of the
equation: this enables index c and coeffi-
cients a1, a2, a3, . . . from the trial solution,
to be determined.

Bessel’s equation

The solution of x2 d2y

dx2 + x
dy

dx
+ (x2 − v2)y = 0

is:

y = Axv

{

1 − x2

22(v + 1)

+ x4

24 × 2!(v + 1)(v + 2)

− x6

26 × 3!(v + 1)(v + 2)(v + 3)
+ · · ·

}

+ Bx−v

{

1 + x2

22(v − 1)
+ x4

24 × 2!(v − 1)(v − 2)

+ x6

26 × 3!(v − 1)(v − 2)(v − 3)
+ · · ·

}

or, in terms of Bessel functions and gamma
functions:

y = AJv(x) + BJ−v(x)

= A
(x

2

)v
{

1

�(v + 1)
− x2

22(1!)�(v + 2)

+ x4

24(2!)�(v + 4)
− · · ·

}

+ B
(x

2

)−v
{

1

�(1 − v)
− x2

22(1!)�(2 − v)

+ x4

24(2!)�(3 − v)
− · · ·

}

In general terms:

Jv(x) =
(x

2

)v ∞∑

k=0

(−1)kx2k

22k(k!)�(v + k + 1)

and J−v(x) =
(x

2

)−v
∞∑

k=0

(−1)kx2k

22k(k!)�(k − v + 1)

and in particular:

Jn(x) =
(x

2

)n
{

1

n! − 1

(n + 1)!
(x

2

)2

+ 1

(2!)(n + 2)!
(x

2

)4 − · · ·
}
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J0(x) = 1 − x2

22(1!)2 + x4

24(2!)2

− x6

26(3!)2 + · · ·

and J1(x) = x

2
− x3

23(1!)(2!) + x5

25(2!)(3!)

− x7

27(3!)(4!) + · · ·

Legendre’s equation

The solution of (1−x2)
d2y

dx2 −2x
dy

dx
+k(k+1)y = 0

is:

y = a0

{

1 − k(k + 1)

2! x2

+ k(k + 1)(k − 2)(k + 3)

4! x4 − · · ·
}

+ a1

{

x − (k − 1)(k + 2)

3! x3

+ (k − 1)(k − 3)(k + 2)(k + 4)

5! x5 − · · ·
}

Rodrigue’s formula

Pn(x) = 1

2nn!
dn(x2 − 1)n

dxn

Statistics and Probability

Mean, median, mode and standard deviation

If x = variate and f = frequency then:

mean x̄ =
∑

fx
∑

f

The median is the middle term of a ranked set of
data.
The mode is the most commonly occurring value in
a set of data.

Standard deviation

σ =
√√
√
√
[∑{

f (x − x̄)2
}

∑
f

]

for a population

Binomial probability distribution

If n = number in sample, p = probability of the
occurrence of an event and q = 1 − p, then the
probability of 0, 1, 2, 3, . . . occurrences is given by:

qn, nqn−1p,
n(n − 1)

2! qn−2p2,

n(n − 1)(n − 2)

3! qn−3p3, . . .

(i.e. successive terms of the (q + p)n expansion).

Normal approximation to a binomial distribution:

Mean = np Standard deviation σ = √
(npq)

Poisson distribution

If λ is the expectation of the occurrence of an event
then the probability of 0, 1, 2, 3, . . . occurrences is
given by:

e−λ, λe−λ, λ2 e−λ

2! , λ3 e−λ

3! , . . .

Product-moment formula for the linear correlation
coefficient

Coefficient of correlation r =
∑

xy
√[(∑

x2
) (∑

y2
)]

where x = X − X and y = Y − Y and (X1, Y1),
(X2, Y2), . . . denote a random sample from a bivari-
ate normal distribution and X and Y are the means
of the X and Y values respectively.

Normal probability distribution

Partial areas under the standardized normal curve —
see Table 58.1 on page 561.

Student’s t distribution

Percentile values (tp) for Student’s t distribution with
ν degrees of freedom — see Table 61.2 on page 587.
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Chi-square distribution

Percentile values (χ2
p) for the Chi-square distribu-

tion with ν degrees of freedom—see Table 63.1 on
page 609.

χ2 = ∑
{

(o − e)2

e

}

where o and e are the observed

and expected frequencies.

Symbols:

Population

number of members Np, mean µ, standard devia-
tion σ.

Sample

number of members N , mean x, standard deviation s.

Sampling distributions

mean of sampling distribution of means µx
standard error of means σx
standard error of the standard deviations σs.

Standard error of the means

Standard error of the means of a sample distribu-
tion, i.e. the standard deviation of the means of
samples, is:

σx = σ√
N

√(
Np − N

Np − 1

)

for a finite population and/or for sampling without
replacement, and

σx = σ√
N

for an infinite population and/or for sampling with
replacement.

The relationship between sample mean and
population mean

µx = µ for all possible samples of size N are drawn
from a population of size Np.

Estimating the mean of a population (σ known)

The confidence coefficient for a large sample size,
(N ≥ 30) is zc where:

Confidence Confidence
level % coefficient zc

99 2.58
98 2.33
96 2.05
95 1.96
90 1.645
80 1.28
50 0.6745

The confidence limits of a population mean based
on sample data are given by:

x ± zcσ√
N

√(
Np − N

Np − 1

)

for a finite population of size Np, and by

x ± zcσ√
N

for an infinite population

Estimating the mean of a population (σ unknown)

The confidence limits of a population mean based
on sample data are given by: µx ± zcσx.

Estimating the standard deviation of a population

The confidence limits of the standard deviation of a
population based on sample data are given by:
s ± zcσs.

Estimating the mean of a population based on a
small sample size

The confidence coefficient for a small sample size
(N < 30) is tc which can be determined using
Table 61.1, page 582. The confidence limits of a
population mean based on sample data is given by:

x ± tcs√
(N − 1)
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Laplace Transforms

Function Laplace transforms
f (t) L{f (t)} = ∫∞

0 e−st f (t) dt

1 1
s

k k
s

eat 1
s−a

sin at a
s2+a2

cos at s
s2+a2

t 1
s2

tn(n = positve integer) n!
sn+1

cosh at s
s2−a2

sinh at a
s2−a2

e−attn n!
(s+a)n+1

e−at sin ωt ω
(s+a)2+ω2

e−at cos ωt s+a
(s+a)2+ω2

e−at cosh ωt s+a
(s+a)2−ω2

e−at sinh ωt ω
(s+a)2−ω2

The Laplace transforms of derivatives

First derivative

L
{

dy
dx

}

= sL{y} − y(0)

where y(0) is the value of y at x = 0.

Second derivative

L
{

dy
dx

}

= s2L{y} − sy(0) − y′(0)

where y′(0) is the value of
dy

dx
at x = 0.

Fourier Series

If f (x) is a periodic function of period 2π then its
Fourier series is given by:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

where, for the range −π to +π:

a0 = 1

2π

∫ π

−π

f (x) dx

an = 1

π

∫ π

−π

f (x) cos nx dx (n = 1, 2, 3, . . . )

bn = 1

π

∫ π

−π

f (x) sin nx dx (n = 1, 2, 3, . . . )

If f (x) is a periodic function of period L then its
Fourier series is given by:

f (x) = a0 +
∞∑

n=1

{
an cos

(
2πnx

L

)
+ bn sin

( 2πnx
L

)}

where for the range −L

2
to +L

2
:

a0 = 1

L

∫ L/2

−L/2
f (x) dx

an = 2
L

∫ L/2

−L/2
f (x) cos

( 2πnx
L

)
dx (n = 1, 2, 3, . . . )

bn = 2
L

∫ L/2

−L/2
f (x) sin

( 2πnx
L

)
dx (n = 1, 2, 3, . . . )

Complex or exponential Fourier series

f (x) =
∞∑

n=−∞
cne j 2πnx

L

where cn = 1

L

∫ L
2

− L
2

f (x)e−j 2πnx
L dx

For even symmetry,

cn = 2

L

∫ L
2

0
f (x) cos

( 2πnx
L

)
dx

For odd symmetry,

cn = −j
2

L

∫ L
2

0
f (x) sin

( 2πnx
L

)
dx
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Adjoint of matrix, 274
Algebra, 1
Algebraic method of successive approximations, 80

substitution, integration, 391
Amplitude, 154, 157
And-function, 94
And-gate, 106
Angle between two vectors, 238

of any magnitude, 148
of depression, 119
of elevation, 119

Angular velocity, 142
Applications of complex numbers, 257

differentiation, 298
rates of change, 298
small changes, 311
tangents and normals, 310
turning points, 302
velocity and acceleration, 299

integration, 374
areas, 374
centroids, 378
mean value, 376
r.m.s. value, 376
second moment of area, 382
volumes, 377

Arc, 137
length, 138

Area of triangle, 125
irregular figures, 216
of sector, 138
under curve, 374

Argand diagram, 250
Argument, 254
Arithmetic mean, 538

progression, 51
Astroid, 314
Asymptotes, 203
Auxiliary equation, 475
Average, 538

value of waveform, 219

Bessel’s correction, 598
equation, 504

Bessel functions, 504, 506, 508
Binary numbers, 86
Binomial distribution, 553, 591, 594

expression, 58
series/theorem, 58, 59

practical problems, 64

Bisection method, 76
Boolean algebra, 94

laws and rules of, 99
Boundary conditions, 444, 512
Brackets, 2

Cardioid, 314
Cartesian complex numbers, 249

co-ordinates, 133
Catenary, 43
Centre of area, 379

gravity, 378
mass, 379

Centripetal acceleration, 144
force, 144

Centroids, 378
Chain rule, 295
Change of limits, 393
Chi-square values, 607, 609
Chord, 137
Circle, 137, 192

equation of, 140, 192
Circumference, 137
Class interval, 532
Coefficient of correlation, 567, 568
Cofactor, 273
Combinational logic networks, 107
Combination of periodic functions, 232
Common difference, 51

logarithms, 24
ratio, 54

Comparing two sample means, 602
Complementary function, 481
Completing the square, 16
Complex numbers, 249

applications of, 257
Cartesian form, 249
coefficients, 691
conjugate, 251
equations, 253
exponential form, 264
form of Fourier series, 690
polar form, 254
powers of, 261
roots of, 262

Complex wave, 160
considerations, 686

Compound angles, 176
Computer numbering systems, 86
Conditional probability, 545
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Confidence coefficients, 582
intervals, 581, 582
levels, 582
limits, 582

Continuous data, 527
function, 199, 657

Contour map, 357
Conversion of a sin ωt + b cos ωt into R sin(ωt + α), 178
Correlation, linear, 567
Cosecant, 116
Cosh, 41

series, 48
Cosh θ substitution, 405
Coshec, 41
Cosine, 116

curves, 152
rule, 124
wave production, 151

Cotangent, 116
Coth, 41
Couple, 102
Cramer’s rule, 283
Critical regions, 593

values, 593
Cross product, 241
Cubic equations, 191
Cumulative frequency distribution, 533, 536
Curve sketching, 209
Cycloid, 314

Deciles, 543
Definite integrals, 371
Degree of differential equation, 444
Degrees of freedom, 586
De Moivre’s theorem, 261
De Morgan’s laws, 101
Denary number, 86
Dependent event, 545
Depression, angle of, 119
Derivatives, 288
Determinant, 267, 271, 273

to solve simultaneous equations, 279
Determination of law, 38
Diameter, 137
Differential coefficient, 288
Differential equations, 444

a
d2x

dy2 + b
dy

dx
+ cy = 0 type, 475

a
d2x

dy2 + b
dy

dx
+ cy = f (x) type, 481

dy

dx
= f (x) type, 444

dy

dx
= f (y) type, 446

dy

dx
= f (x) · f (y) type, 448

dy

dx
+ Py = Q type, 455

P
dy

dx
= Q type, 451

degree of, 444
first order, separation of variables, 444
homogeneous first order, 451
linear first order, 455
partial, 512
power series method, 491
numerical methods, 460
simultaneous, using Laplace transforms, 650
using Laplace transforms, 645

Differentiation, 287, 288
applications, 298
from first principles, 288
function of a function, 295
implicit, 319
inverse hyperbolic function, 338

trigonometric function, 332
logarithmic, 324
methods of, 287
of common functions, 288
of hyperbolic functions, 330
of parametric equations, 314
partial, 343

first order, 343
second order, 346

product, 292
quotient, 293
successive, 296

Direction cosines, 240
Discontinuous function, 199
Discrete data, 527, 541
Distribution-free tests, 613
Dividend, 6
Divisor, 6
D-operator form, 475
Dot product, 238
Double angles, 182

Elastic string, 516
Elevation, angle of, 119
Ellipse, 192, 314
Equations, 3

Bessel’s, 504
complex, 253
heat conduction, 515, 520
hyperbolic, 47
indicial, 26, 498
Laplace, 514, 515, 522
Legendre’s, 509
normal, 310
of circle, 140, 192
quadratic, 5
simple, 3
simultaneous, 4
solving by iterative methods, 76
tangents, 310
transmission, 515
trigonometric, 166, 167
wave, 515, 516
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Euler–Cauchy method, 465
Euler’s formula, 699
Euler’s method, 460
Even function, 43, 199, 669, 686, 695
Expectation, 545
Exponential form of complex number, 264

Fourier series, 690
Exponential function, 28, 193

graphs of, 31, 193
power series, 29

Extrapolation, 572

Factorization, 2, 16
Factor theorem, 8
Family of curves, 443
Final value theorem, 636
First moment of area, 382
Formulae, 3, 705
Fourier coefficients, 658
Fourier series, 160, 657

cosine, 669
exponential form, 690
half range, 672, 680
non-periodic over range 2π, 663
over any range, 676
periodic of period 2π, 657
sine, 669

Frequency, 157, 527
curve, 559
distribution, 532, 533, 535, 559
domain, 698
polygon, 533, 535
relative, 527
spectrum, 698

Frobenius method, 498
Functional notation, 288
Function of a function, 295, 319
Functions of two variables, 355
Fundamental, 658

Gamma function, 506
Gaussian elimination, 284
General solution of a differential equation, 444, 476
Geometric progression, 54
Gradient of a curve, 287
Graphs of exponential functions, 31

hyperbolic functions, 43
inverse functions, 333
logarithmic functions, 27
standard functions, 191
trigonometric functions, 148

Grouped data, 532, 539, 542
Growth and decay laws, 35

Half range Fourier series, 672, 680
Half-wave rectifier, 163
Harmonic analysis, 160, 683
Harmonic synthesis, 160
Heat conduction equation, 515, 520
Hexadecimal number, 90

Higher order differentials, 491
Histogram, 532, 535, 539

of probabilities, 555, 557
Homogeneous, 451, 475
Homogeneous first order differential equations, 451
Horizontal bar chart, 528
Hyperbola, 193, 314

rectangular, 193, 314
Hyperbolic functions, 41, 173

differentiation of, 330
graphs of, 43
inverse, 332
solving equations, 47

Hyperbolic identities, 44, 174
logarithms, 24, 33

Hypotenuse, 115
Hypotheses, 590

Identities, hyperbolic, 44, 174
Identities, trigonometric, 166
Imaginary part, 249
Implicit differentiation, 319
Implicit function, 319
Independent event, 545
Indices, laws of, 1
Indicial equations, 26, 498
Industrial inspection, 554
Inequalities, simple, 12

involving a modulus, 13
involving quotients, 14
involving square functions, 15
quadratic, 16

Initial conditions, 512
Initial value theorem, 636
Integrating factor, 455
Integration, 367

algebraic substitution, 391
applications of, 374

areas, 374
centroids, 378
mean value, 376
r.m.s. value, 376
second moment of area, 382
volumes, 377

by partial fractions, 408
by parts, 418
change of limits, 393
cosh θ substitution, 405
definite, 371
numerical, 71, 433
reduction formulae, 424
sin θ substitution, 401
sinh θ substitution, 403
standard, 367
tan θ substitution, 403
t = tan (θ/2) substitution, 413
trigonometric substitutions, 397

Interpolation, 572
Interval estimate, 581
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Inverse functions, 201, 332
hyperbolic, 332

differentiation of, 338
trigonometric, 202, 332

differentiation of, 332
Inverse Laplace transforms, 638

using partial fractions, 640
Inverse matrix, 272, 274
Invert-gate, 106
Iterative methods, 76

Karnaugh maps, 102

Lagging angle, 154, 157
Lamina, 378
Laplace’s equation, 514, 515, 522
Laplace transforms, 627, 632

common notations, 627
definition, 627
derivatives, 634
for differential equations, 645
for simultaneous differential equations, 650
inverse, 638

using partial fractions, 640
linearity property, 627
of elementary functions, 627, 632

Laws of Boolean algebra, 99
growth and decay, 35
indices, 1
logarithms, 24, 324
probability, 545

Leading angle, 154, 158
Least-squares regression lines, 571
Leibniz notation, 288

theorem, 493
Leibniz–Maclaurin method, 495
Legendre polynomials, 509, 510
Legendre’s equation, 509
Level of significance, 592
L’Hopital’s rule, 73
Limiting values, 72, 288
Linear correlation, 567

first order differential equation, 455
regression, 571
second order differential equation, 475
velocity, 142

Logarithmic differentiation, 324
forms of inverse hyperbolic functions, 337
scale, 38

Logarithms, 24, 324
graphs of, 27, 193
laws of, 24, 324

Logic circuits, 106
universal, 110

Log-linear graph paper, 38
Log-log graph paper, 38
Lower class boundary value, 532

Maclaurin’s series/theorem, 67
numerical integration, 71

Mann–Whitney test, 620
Matrices, 267

to solve simultaneous equations, 277
Matrix, 267

adjoint, 274
determinant of, 267, 271, 273
inverse, 272, 274
reciprocal, 272, 274
unit, 271

Maximum point, 302, 355
practical problems, 306

Mean value, 376, 538
of waveform, 219

Measures of central tendency, 538
Median, 538
Mid-ordinate rule, 216, 435
Minimum point, 302, 355

practical problems, 306
Mode, 538
Modulus, 13, 239, 254
Moment of a force, 244

Nand-gate, 107, 110
Napierian logarithms, 24, 33
Natural logarithms, 24, 33
Newton–Raphson method, 83
Non-homogeneous differential equation, 475
Non-parametric tests, 607, 614
Nor-gate, 107, 110
Norm, 239
Normal, 310

approximation to binomial distribution, 591, 595
curve, 559
distribution, 559
equations, 571
probability paper, 563
standard variate, 559

Nose-to-tail method, 226
Not-function, 94
Not-gate, 106
Numerical integration, 71, 433

methods for first order differential equations, 460
Numerical method of harmonic analysis, 160, 683

Octal numbers, 88
Odd function, 43, 199, 669, 686, 695
Ogive, 533, 536
One-sided test, 593
Order of precedence, 2
Or-function, 94
Or-gate, 106
Osborne’s rule, 44

Pappus theorem, 380
Parabola, 191, 314
Parallel axis theorem, 383
Parallelogram method, 226
Parameter, 314
Parametric equations, 314
Partial differential equations, 512, 513
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Partial differentiation, 343
equations, 512

Partial integration, 512
Partial fractions, 18

inverse Laplace transforms, 640
integration, using, 408
linear factors, 18
quadratic factors, 22
repeated linear factors, 21

Particular solution of differential equation, 444, 476
Particular integral, 481
Pascal’s triangle, 58
Percentage component bar chart, 528
Percentile, 543
Period, 153, 657
Periodic function, 153, 199, 657

combination of, 232
Periodic time, 157
Perpendicular axis theorem, 384
Phasor, 157, 225, 232, 699
Pictogram, 528
Pie diagram, 528
Planimeter, 216
Point of inflexion, 302
Point estimate, 581
Poisson distribution, 556, 595
Polar co-ordinates, 133

curves, 194
form, 254

Poles, 642
Pole-zero diagram, 643
Polynomial division, 6
Polynomial, Legendre’s, 510
Population, 527
Power series for ex , 29

cosh x and sinh x, 48
Power series methods of solving differential

equations, 491
by Frobenius’s method, 498
by Leibniz–Maclaurin method, 495

Power waveforms, 185
Powers of complex numbers, 261
Precedence, 2
Probability, 545

laws of, 545
paper, 563

Product rule of differentiation, 292
Product-moment formula, 567
Pythagoras, theorem of, 115

Quadrant, 137
Quadratic equations, 5

graphs, 191
inequalities, 16

Quartiles, 543
Quotient rule of differentiation, 293

Radian, 138, 158
Radius, 137

of curvature, 317

of gyration, 383
Radix, 86
Rates of change, 298, 350
Reciprocal matrix, 272, 274

ratios, 116
Rectangular co-ordinates, 136
Rectangular hyperbola, 193, 314
Recurrence formula, 495

relation, 495, 505
Reduction formulae, 424

of exponential laws to linear form, 38
Regression, coefficients, 571

linear, 571
Relation between trigonometric and hyperbolic

functions, 173
Relative frequency, 527

velocity, 231
Reliability, 581
Remainder theorem, 10
Resolution of vectors, 227
Right-angled triangles, 118
R.m.s. values, 376
Rodrigue’s formula, 511
Roots of complex numbers, 262
Runge–Kutta method, 469

Saddle point, 355, 356
Sample, 527, 577
Sampling distributions, 577

statistics, 581
Scalar multiplication, 268
Scalar product, 237, 238

application of, 241
Scalar quantity, 225
Scatter diagram, 567, 574
Secant, 116
Sech, 41
Second moment of area, 382
Second order differential equations, 475, 481
Sector, 137

area of, 138
Segment, 137
Semicircle, 137
Semi-interquartile range, 543
Separation of variables, 444, 515
Series, binomial, 58, 59

exponential, 29
Fourier, 657
Maclaurin’s, 67
sinh and cosh, 48

Set, 527
Significance testing, 590, 597

tests, 597
Sign test, 614
Simple equations, 3
Simpson’s rule, 217, 437
Simultaneous differential equations by Laplace

transforms, 650
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Simultaneous equations, 4
by Cramers rule, 283
by determinants, 279
by Gaussian elimination, 284
by matrices, 277

Sine, 116
curves, 152
rule, 124
wave, 220
wave production, 151

Sin θ substitution, 401
Sinh, 41

series, 48
Sinh θ substitution, 403
Sinusoidal form, A sin(ωt ± α), 157
Small changes, 311, 352
Solution of any triangle, 124

right-angled triangles, 118
Space diagram, 231
Spectrum of waveform, 698
Standard curves, 191

derivatives, 289
deviation, 541
error of the means, 578
integration, 367

Stationary points, 302, 357
Statistical tables:

Chi-square, 609
Mann–Whitney, 622, 623
normal curve, 561
sign test, 614
Student’s t, 587
Wilcoxon signed test, 617

Straight line, 191
Student’s t distribution, 586
Sum to infinity, 54
Successive differentiation, 296
Switching circuits, 94
Symmetry relationships, 695

Tables, statistical:
Chi-square, 609
Mann–Whitney, 622, 623
normal curve, 561
sign test, 614
Student’s t, 587
Wilcoxon signed test, 617

Tally diagram, 532, 535
Tangent, 116, 137, 310
Tangential velocity, 244
Tanh, 41
Tan θ substitution, 403

Tan θ
2 substitution, 413

Taylor’s series, 460
Testing for a normal distribution, 563
Theorems:

binomial, 58, 59

factor, 8
Maclaurin’s, 67
Pappus, 380
parallel axis, 383
perpendicular axis, 384
Pythagoras, 115
remainder, 10

Total differential, 349
Transfer function, 642
Transformations, 194
Transmission equation, 515
Transposition of formulae, 3
Trapezoidal rule, 216, 433, 683
Trial solution, 516
Triangle, area of, 125
Trigonometric ratios, 116

evaluation of, 121
functions, 173, 191
and hyperbolic substitutions, integration, 397,

398, 403
equations, 166, 167
identities, 166
inverse function, 202, 332
waveforms, 148

Trigonometry, 115
practical situations, 128

Truth tables, 94
t = tan(θ/2) substitution, 413
Two-state device, 94
Two-tailed tests, 593
Turning points, 302
Type I and II errors, 590

Ungrouped data, 528
Unit matrix, 271
Unit triad, 237
Universal logic gates, 110
Upper class boundary value, 532

Vector addition, 225
nose-to-tail method, 226
parallelogram method, 226

Vector equation of a line, 245
Vector products, 241

applications of, 244
Vector quantities, 225
Vector subtraction, 229
Velocity and acceleration, 299
Vertical bar chart, 528
Volumes of irregular solids, 218

of solids of revolution, 377

Wallis’s formula, 430
Wave equation, 515, 516
Waveform analyser, 160
Wilcoxon signed-rank test, 616
Work done, 241

Zeros (and poles), 643




