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KINEMATICS – Position, Velocity, Acceleration and time

2.1  Introduction to kinematics of particles

• We start our study of kinematics by first discussing the motions of 

points or particles

• There are a number of ways in which a particle can be described

• The choice of the most convenient or appropriate method depends 

largely on experience
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Introduction to Kinematics of particles continued ..

• To get an overview of several methods developed in this lesson

refer to the figure below. P is a particle moving along some

general path.
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Introduction to Kinematics of particles continued ..

• The position of particle P at any time t can be described by

specifying:

• its rectangular coordinates

• Its cylindrical coordinates

• Or its spherical coordinates

• It may also be described by measurements along the tangent t and

the normal n to the curve
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Introduction to kinematic of particles continued..

• When there are physical guides to the motion, the motion is said to be

constrained

• Without physical guides the motion is unconstrained

• A small rock tied to the end of a string and whirled in a circle undergoes

constrained motion

• Motion described by coordinates measured from a fixed reference frame

is said to be absolute motion analysis

• Motion described by coordinates measured from moving frame is said to

be relative motion analysis
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PLANE MOTION

• With the conceptual picture from figure 2/1 we now restrict our attention in the first

part to PLANE MOTION

• Here all movement occur in a single plane

• We begin with rectilinear motion
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2.2  RECTILINEAR MOTION.

• Consider a particle along a straight line

in the limit , 

• Average acceleration in the limit

or

• Removing dt from the above equations results in

or
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• Rectilinear motion continued …

• Area under the v-t curve
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• Rectilinear motion continued …

• Area under the a-t curve

or
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• Rectilinear motion continued …

• Area under the a-s curve

if you are given

you can use

or
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• Rectilinear motion continued …

• Constant acceleration
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• Rectilinear motion continued …

• Constant acceleration
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• Rectilinear motion continued …

• Constant acceleration
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• Rectilinear motion continued …

• Rockets
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• Rectilinear motion continued …

• Acceleration given as a function of time, a=f(t)

• because then

or

• Velocity as a function of time
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• Rectilinear motion continued …

• Acceleration given as a function of velocity, a=f(v)

• But f(v) = dv/dt -> separating variables

– dt=dv/f(v) therefore

• Alternatively vdv=f(v)ds resulting into

or
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• Rectilinear motion continued …

• Acceleration given as a function of displacement, a=f(s)

• Substituting into vdv=ads and integrating

or

Next we solve for v to give v=g(s), a function of s

Now we can substitute ds/dt for v and separate variables and integrate

or

18

KINEMATICS – Plane Motion: Rectilinear Motion

UNZA., Department of Mechanical Engineering



19



20



21



22



23



24



25



26



27



28

KINEMATICS – Plane Motion: Curvilinear Motion



29

KINEMATICS – Plane Motion: Curvilinear Motion



Important!
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• Rules for vector differentiation
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• Plane motion choice of coordinates
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Note
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• Examples
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• However
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2.5 Normal and Tangential Coordinates. 

• Sometimes the motion of the particle is constrained on a path that is 

best described using normal and tangential coordinates. 

• For these coordinates the reference coordinate (origin) is moving with 

the particle

• See Figure 2/8 pg 51
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2.5
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These axes can be used such as describing the motion of an aircraft where 
the origin is at the center of mass.

The tangential direction along longitudinal axis of the aircraft
The normal axis along the length of the wings



,

because

therefore

and 

Where the unit vector    now has a derivative because its direction 

changes.
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.

Therefore with

which gives
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.

Therefore

where
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2.5
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2.5

Graphical visualization of the acceleration and the trajectory path
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2.5

Special Case: Circular Motion
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2.5

Sample Problems 2/7

Sample Problems 2/8: Go through
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2.6  Polar Coordinates. 

• We now consider Plane Curvilinear motion using Polar Coordinates. 

• Useful when a motion is constrained through the control of a radial 

distance and an angular position.
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Polar Coordinates continued ...

• We can specify the location of the particle shown in the figure using:

• a radial coordinate r, which extends outward from the fixed origin 0 to the 

particle, and 

• a transverse coordinate Ѳ, which is the counterclockwise angle between a 

fixed reference line and the r axis. 

• The angle is generally measured 

in degrees or radians
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2.6  Polar Coordinates. 

• Position vector of particle

• We differentiate this vector with respect

to time to get              and

• To successfully determine the 

derivatives we need time derivatives 

of both unit vectors

• This is exactly what we did to get 

the derivative of the tangential unit 

vector et
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Polar coordinates continued ..

• The positive directions of the r and coordinates are defined

by the unit vectors and , respectively.

• Here is in the direction of increasing r when is held fixed,

and is in a direction of increasing e when r is held fixed.

• Note that these directions are perpendicular to one another.
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Polar coordinates continued ..

• During time dt the coordinate directions rotate through angle dѲ

• And the unit vectors rotate through same angle

• Note that the vector change is in the plus Ѳ – direction and that

is in the minus r – direction

• Their magnitudes in the limit is unit vector as radius times the angle dѲ in

radians, we may write:
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Polar coordinates continued ..

• We now differentiate giving

• Substituting reduces to:

• where
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Polar coordinates continued ..

• We now differentiate the expression for v ( )

to obtain the acceleration

• thus

• Where

• We may write

particularly useful in angular momentum of particles
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Polar coordinates continued ..

• Magnitude change of Vr

• Direction change of Vr

• Magnitude change of VѲ

• Direction change of VѲ
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Polar coordinates continued ..

• Sample problem 2/9

• Sample problem 2/10
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2.7 Space Curvilinear Motion

• The general case of three-dimensional motion of a particle
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RECTANGULAR COORDINATES

• The extension from plane curvilinear motion offers no particular

difficulty

• Note that r is replaced by R
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CYLINDRICAL COORDINATES

• From polar coordinates description we extend to cylindrical

coordinates with no particular difficulty

where
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• Acceleration is written by adding the z-component from the polar

equation

where

k has no time derivative
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SPHERICAL COORDINATES

• A radial distance and two angles are used to specify the position.

• This is the case in radar measurements

• We designate unit vectors , and

• Resulting expressions are:

where
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SPHERICAL COORDINATES

• Acceleration is:

where
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Sample problem 2/11 solve
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