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KINEMATICS — Position, Velocity, Acceleration and time

2.1 Introduction to kinematics of particles

 We start our study of kinematics by first discussing the motions of
points or particles

« There are a number of ways in which a particle can be described

« The choice of the most convenient or appropriate method depends
largely on experience

UNZA., Department of Mechanical Engineering 2



KINEMATICS - Position, Velocity, Acceleration and time

Introduction to Kinematics of particles continued ..

« To get an overview of several methods developed in this lesson
refer to the figure below. P is a particle moving along some
general path.

Figure 2/1

UNZA., Department of Mechanical Engineering 3



KINEMATICS — Position, Velocity, Acceleration and time

Introduction to Kinematics of particles continued ..

« The position of particle P at any time t can be described by

specifying:
* its rectangular coordinates NN E
« Its cylindrical coordinates T, 8,z
* Or its spherical coordinates R,8,¢

« It may also be described by measurements along the tangent t and
the normal n to the curve

UNZA., Department of Mechanical Engineering 4



KINEMATICS — Position, Velocity, Acceleration

Introduction to kinematic of particles continued..

 When there are physical guides to the motion, the motion is said to be
constrained

« Without physical guides the motion is unconstrained

A small rock tied to the end of a string and whirled in a circle undergoes
constrained motion

« Motion described by coordinates measured from a fixed reference frame
Is said to be absolute motion analysis

* Motion described by coordinates measured from moving frame is said to
be relative motion analysis

UNZA., Department of Mechanical Engineering 5



KINEMATICS — Plane Motion

PLANE MOTION

« With the conceptual picture from figure 2/1 we now restrict our attention in the first
part to PLANE MOTION

« Here all movement occur in a single plane

» We begin with rectilinear motion

UNZA., Department of Mechanical Engineering 6



KINEMATICS — Plane Motion: Rectilinear Motion continued....

2.2 RECTILINEAR MOTION.

* Consider a particle along a straight line ) -
As » s P — 5 —=— Ay A{
in the limit = lim — , = - !
v Ar—=0 AL at h l
. . . . = ﬂﬁ
* Average acceleration in the limit @ = lim -=
dv d?s
a Lo or @ 5

* Removing dt from the above equations results in

vdv = ads or Lae = 5&5

UNZA., Department of Mechanical Engineering 7



KINEMATICS — Plane Motion: Rectilinear Motion

Rectilinear motion continued ...
* Area under the v-t curve
] T
f ds = f vdt
=y £y

52— 5y = (area under v — t curve

As = /udr

d

area under

diﬁplﬂﬂﬁmﬂn[ = U~ g]‘aph

UNZA., Department of Mechanical Engineering

(b)



KINEMATICS — Plane Motion: Rectilinear Motion

Rectilinear motion continued ...

e Area under the a-t curve

vy Bz
f dr = {r adt
vy Ej_

v, — 1y = (area under a — t curve / (a)

Av = /ﬂ'df o |80
change in _ area under vt
velocity —  a—t graph n ‘
(b)

UNZA., Department of Mechanical Engineering 9
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KINEMATICS — Plane Motion: Rectilinear Motion

Rectilinear motion continued ...

e Area under the a-s curve

v if you are given v = f(s) ora = g(s),
you can use  ads = vdv
vy sg
f vdv = f ads or
vy &y
5 1
fb—s— 5 (v9* — 14%) = (area under a — s curve

(a)

a = vdv/ds)

5

P—s—
UNZA., bepartment of Mechanical Engineering

s,
floads—; (v,2 — vp)

3

(a)

|

Yy

5

10



KINEMATICS — Plane Motion: Rectilinear Motion

Rectilinear motion continued ...

e Constant acceleration

Velocity as a Function of Time. Integrate a, = dv/dt, assuming
thatinitially v = u, whent = 0.

A !
/ do = / a, dr
Wy JU

= vy + a
j_; ()] () ¢ n
(=) Constant Acceleration (12-4)

UNZA., Department of Mechanical Engineering 11



KINEMATICS — Plane Motion: Rectilinear Motion

Rectilinear motion continued ...

e Constant acceleration

Position as a Function of Time. Integrate v = ds/dt = v, + a.t,
assuming that initially s = sowhen = 0.

A !
/d.s' = /('vo + a.) dt
S JU

($) s=s0+vot+%actz
Constant Acceleration

(12-5)

UNZA., Department of Mechanical Engineering 12



KINEMATICS — Plane Motion: Rectilinear Motion

Rectilinear motion continued ...

e Constant acceleration

Velocity as a Function of Position. Either solve for tin Eq. 124
and substitute into Eq. 12-5, or integrate v dv = a, ds, assuming that

initially v = vyats = 5.
¢ ¥
/ vde = /a(. ds
T Sy

v2=v(2)+2"c(5_30)

Constant Acceleration

(5) (12-6)

UNZA., Department of Mechanical Engineering 13



for constant acceleration only. A common mistake is to
use these equations for problems involving variable ac-
koalc:l-a'timl. where they do not apply.

~

-
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KINEMATICS — Plane Motion: Rectilinear Motion

Rectilinear motion continued ...
e Rockets

During the time this rocket under goes rectilinear
motion, its altitude as a function of time can be
measured and expressed as 5 = s(r). Its velocity
can then be found using v = ds/dr, and its
acceleration can be determined from a = dv/dr.

UNZA., Department of Mechanical Engineering 15



KINEMATICS — Plane Motion: Rectilinear Motion

Rectilinear motion continued ...

* Acceleration given as a function of time, a=f(t)

(1

« pbecause .:1=E=1: then

Jrav= [ fdt  or  v=wvy+ [, flt)dt

« Velocity as a function of time

_[1:1 ds = f;vdt

E
s=su+fu1.:‘dt

UNZA., Department of Mechanical Engineering
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KINEMATICS — Plane Motion: Rectilinear Motion

Rectilinear motion continued ...

* Acceleration given as a function of velocity, a=f(v)

« But ;= ? =¢ f(v) =dv/dt -> separating variables
t

— dt=dv/f(v) therefore

tzj:dtzj;:%

« Alternatively vdv=f(v)ds resulting into

2 pdv ] v pde
pﬂﬁ—fgﬂds or s—su+f__,ﬂm

UNZA., Department of Mechanical Engineering 17



KINEMATICS — Plane Motion: Rectilinear Motion

Rectilinear motion continued ...

* Acceleration given as a function of displacement, a=f(s)
« Substituting into vdv=ads and integrating

j:::iv = f;f(s}ds or v =1t + Ej:;f(s}r:is

Next we solve for v to give v=g(s), a function of s
Now we can substitute ds/dt for v and separate variables and integrate

or

g d= E 2 ds
Lngts}_f“ dt b= oo

UNZA., Department of Mechanical Engineering 18



Sample Problem 2/1

The position coordinate of a particle whieh is confined to move along a
straight line is given by s = 2/° — 24f + 6, where s is measured in meters from a
convenient origin and £ ig in seconds. Determine (a) the time required for the
particle to reach a velocity of 72 m/s from its initial condition at ¢ = 0, (b) the ac-
celeration of the particle when v = 30 m/s, and (¢) the net displacement of the
particle during the interval fromt = 1stot = 4 5.

19



Solution. The velocity and acceleration are obtained by successive differentia-
tion of s with respect to the time. Thus,

[v = §]) v = 62 - 24 m/s

I

[a = U] a = 12{ m/s*

20



(a) Substituting v = 72 m/s into the expression for v gives us 72 = 62 — 24, from
which f — =4 a. The negntive roeat degerthea a mathematical salutiaon far ¢ hefare

1) the initiation of motion, so this root is of no physical interest. Thus, the desired
result is

=48 Ans.

{b) Substituting v = 30 m/s into the expression for v gives 30 = 62 — 24, from
which the positive root is ¢ = 3 8, and the corresponding acceleration is

a = 12(3) = 36 m/s? Ans.

21



fc) The net displacement during the specified interval is

As = 8, — 8 or
As = [2(4%) — 24(4) + 6] — [2(13) — 24(1) + 6]
= Hd m Ans.

(2) which represents the net advancement of the particle along the s-axis from the
position it occupied at f = 1 s to its positionat = 4 =,
To help visualize the motion, the values of s, v, and a are plotted against the
time ¢ as shown. Because the area under the v+ curve represents displacement,
(3) we see that the net displacement from ¢ = 18 to{ = 4 g i8 the positive area As, 4
less the negative area As, ..

22
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Sample Problem 2/3

The spring-mounted slider moves in the horizontal guide with negligible
friction and has a velocity vy, in the s-direction as it crosses the mid-position
where s = 0 and ¢ = 0. The two springs together exert a retarding force to the
motion of the slider, which gives it an acceleration proportional to the displace-
ment but oppositely directed and equal to @ = —k"s, where % is constant. (The
constant is arbitrarily squared for later convenience in the form of the expres-
sions.) Determine the expressions for the displacement s and velocity v as func-
tions of the time i.

24



Solution I. Since the acceleration is specified in terms of the displacement, the
differential relation v dv = a ds may be integrated. Thus,

2 22
@ fvdv=f—k23ds+Claconstant, or '-J2—=—12—2-s--4-c1

When s = 0, v = vy, so that C; = v,%2, and the velocity becomes
PRI s =

The plus sign of the radical is taken when v is positive (in the plus s-direction).
This last expression may be integrated by substituting v = ds/dt. Thus,

Helpful Hint:

(1) We have used an indefinite integral
here and evaluated the constant of
integration. For practice, obtain the
same results by using the definite
integral with the appropriate limits,

25



ds J 1. ks
@ —————= | dt + Cobaconstant, or _sin'—=¢f+C
J JuZ — k%2 2 k Uy 2

With the requirement of ¢t = 0 when s = 0, the constant of integration becomes
Cy = 0, and we may solve the equation for s so that

Uy .
g = % sin kt Ans.

The velocity 18 v = s, which gives

U = v, COB AL Ans.

Helpful Hint

(2) Again try the definite integral here
as abhove,

26
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Solution ll. Since a = 5, the given relation may be written at once as
8+k%=0

This 1s an ordinary linear differential equation of second order for which the so-
lution is well known and is

s = A sin Kt + B cos Kt

where A, B, and K are constants. Substitution of this expression into the differ-
ential equation shows that it satisfies the equation, provided that K = &. The ve-
locity isv = §, which becomes

v = Ak cos ki — Bk sin kt

The initial condition v = vy when ¢ = 0 requires that A = vyk, and the condition
s = 0 when{ = 0 gives B = 0. Thus, the solution is

s = % sin ki and v = y,cos kt Ans.

Helpful Hints

(3) This motion is called simple har-
maonie motion and is characteristic of
all oscillations where the restoring
force, and hence the acceleration, is
proportional to the displacement but
opposite 1 sign.

27



KINEMATICS — Plane Motion: Curvilinear Motion

3 PLANE CURVILINEAR MoTION

28



KINEMATICS — Plane Motion: Curvilinear Motion

We now treat the motion of a particle along a curved path which lies
in a single plane. This motion 1s a special case of the more general three-
dimensional motion introduced in Art. 2/1 and illustrated in Fig. 2/1. If we
let the plane of motion be the x-y plane, for instance, then the coordinates
z and ¢ uf Fig. 2/1 are both zero, and R becomes Lhe same as 7. As men-
tioned previously, the vast majority of the motions of points or particles
encountered in engineering practice can be represented as plane motion,

Figure 2/1

29



Important!

Before pursuing the description of plane curvilinear motion in any
specific set of coordinates, we will first use vector analysis to describe
the motion, since the results will be independent of any particular coor-
dinate system. What follows in this article constitutes one of the most
basic concepts in dynamics, namely, the fime derivative of a vector.
Much analysis in dynamics utilizes the time rates of change of vector
quantities. You are therefore well advised to master this topic at the
outset because you will have frequent occasion to use it.

30



Consgider now the continuous motion of a particle along a plane curve
as represented in Fig. 2/5. At time { the particle is at position A, which is
located by the position vecfor r measured from some convenient fixed ori-
gin . If both the magnitude and direction of r are known at time ¢, then
the position of the particle is completely specified. At time ¢ + A/, the par-
ticle is at A’, located by the position vector » + Ar. We note, of course,
that this combination is vector addition and not scalar addition. The dis-
placement of the particle during time Af i1s the vector Ar which represents
the vector change of position and is clearly independent of the choice of
origin. If an origin were choaen at aome different location, the poasition

vector r would be changed, but Ar would be unchanged. The distance ac-
tually traveled by the particle as it moves along the path from A to A’ is
the scalar length As measured along the path. Thus, we distinguish be-
tween the vector displacement Ar and the scalar distance As.

Al

’_."As A'S Av "
4 |
i v’ a '
" \
Y o 4

Figure 2/5
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Velocity

The average velocity of the particle between A and A’ is defined as
V., = Ar/Al, which is a vector whose direction is that of Ar and whose
magnitude is the magnitude of Ar divided by At. The average speed of

FPath of !
particle |

32



the particle between A and A’ 15 the scalar quotient As/Af. Clearly, the
magnitude of the average wvelocity and the speed approach one another
as the interval At decreases and A and A’ become closer together.

The instantaneous velocity v of the particle 15 defined as the limiting
value of the average velocity as the time interval approaches zero. Thus,

R -
W

We observe that the direction of Ay approaches that of the tangent to
the path as At approaches zero and, thus, the velocity v is always a vec-
tor tangent to the path.

We now extend the basic definition of the derivative of a scalar
gquantity to include a vector quantity and write

[v = % 3 1'-] (2/4)

33



The derivative of a vector is itself a vector having both a magnitude and
a direction. The magnitude of v is called the speed and is the scalar

ds _ .

34



At this point we make a careful distinction between the megnitude
of the derivative and the derivative of the magnitude. The magnitude of
the derivative can be written in any one of the several ways |dr/df| =
|¥| = § = |v| = v and represents the magnitude of the velocity, or the
speed, of the particle. On the other hand, the derivative of the magni-
tude is written dlr//di = dr/dt = r, and represents the rate at which the
length of the pooition veetor »r io changing. Thuo, theoe two deorivatives
have two entirely different meanings, and we must be extremely careful
to distinguish between them in our thinking and in our notation. For
this and other reasons, you are urged to adopt a consistent notation for
handwritten work for all vector quantities to distinguish them from
scalar quantities. For simplicity the underline v is recommended. Other
handwritten symbols such as v, v, and ¢ are sometimes used.

35



With the concept of velocity as a vector established, we return to Fig.
2/5 and denote the velocity of the particle at A by the tangent vector v and
the velocity at A’ by the tangent v'. Clearly, there is a vector change in
the velocily during the tuge Al The velovity v at A plus (veclomally ) the
change Av must equal the velocity at A’, so we can write v/ — v = Av. In-
gpection of the vector diagram shows that Av depends both on the change
in magnitude (length) of v and on the change in direction of v. These two
changes are fundamental characteristics of the derivative of a vector.

Figure 2/5
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Acceleration

The average acceleration of the particle between A and A’ 1s defined
as Av/At, which is a vector whose direction is that of Av. The magnitude

of this average acceleration is the magnitude of Av divided by Af.

Figure 2/5

The instantaneous acceleration a of the particle is defined as the
limiting value of the average acceleration as the time interval ap-
proaches zero, Thus,

= i AY
&= A

By definition of the derivative, then, we write

_dv_,
[ = V:] (2/5)
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As the interval A7 becomes smaller and approaches zero, the direction of
the change Av approaches that of the differential change dv and, thus,
of a. The acceleration a, then, includes the effects of both the change in
magnitude of v and the change of direction of v. It i1s apparent, in gen-
eral, that the direction of the acceleration of a particle in curvilinear
motion is neither tangent to the path nor normal to the path. We do ob-
serve, however, that the acceleration component which is normal to the
path points toward the center of curvature of the path.

38



Visualization of Motion

A further approach to the visualization of acceleration i1s shown in
Fig. 2/6, where the position vectors to three arbitrary positions on the
path of the particle are shown for illustrative purpose. There is a velocity
vector tangent to the path corresponding to each position vector, and the
relation is v = ¥, If these velocity vectors are now plotted from some ar-
bitrary point C, a curve, called the hodograph, 1s formed. The derivatives
of these velocity vectors will be the acceleration vectors a = v which are
tangent to the hodograph. We see that the acceleration has the same re-
lation to the velocity as the velocity has to the position vector.

Figure 2/6

39



 Rules for vector differentiation

The geometric portrayal of the derivatives of the position vector r
and velocity vector v in Fig. 2/5 can be used to deseribe the derivative of
any vector quantity with respect to ¢ or with respect to any other scalar
variable. Now that we have used the definitions of velocity and accelera-
tion to introduce the concept of the derivative of a vector, it is important
to establish the rules (ur differentiaiing vector quantities, These rules

are the same as for the differentiation of scalar quantities, except for the
case of the cross product where the order of the terms must be pre-

served. These rules are covered in Art. C/7 of Appendix C and should be
reviewed at this point.

9. Derivatives of vectors obey the same rules as they do for scalars,

dpP
dt

d(Pu)
dt

diP-Q) . 3
dr ~-P-Q+P-Q

—P=Di+Pj+Pk

— P | Dre

diP x Q)

% -PxQ+PxQ

40



KINEMATICS — Plane Motion: Curvilinear Motion Analysis

* Plane motion choice of coordinates

Three different coordinate gystems are commonly used for describing
the vector relationshipa for curvilinear motion of a particle in a plane: rec-
tangular coordinates, normal and tangential coordinates, and polar coor-
dinates. An important lesson to be learned from the study of these
coordinate systems is the proper choice of a reference system for a given
problem. This choice i1s usually revealed by the manner in which the mo-
tion is generated or by the form in which the data are specified. Each of
the three coordinate systems will now be developed and illustrated.

41



2/4 REecTANGULAR COORDINATES (X-y)

Thus systemr of covrdigates s partivalarly useful for describing -
tions where the x- and y-components of acceleration are independently
generated or determined. The resulting curvilinear motion 1s then ob-
tained by a vector combination of the x- and y-components of the posi-
tion vector, the velocity, and the acceleration.

xi

Figure 2/7
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Vector Representation

The particle path of Fig. 2/5 is shown again in Fig. 2/7 along with
x- and y-axes. The position vector r, the velocity v, and the acceleration
a of the particle as developed in Art. 2/3 are represented in Fig. 2/7 to-
gether with their x- and y-components. With the aid of the unit vectors

i and j, we can write the vectors r, v, and a in terms of their x- and
y-components. Thus,

& A
r=uxi+yj
v = =k (2/6)
a=v=r=uxl+yj
\ J

43



As we differentiate with respect to time, we observe that the time deriv-
atives of the unit vectors are zero because their magnitudes and direc-
tions remain constant. The scalar values of the components of v and a
are merely v, = %, v, = y and e, = 0, = X, @, = v, = ¥. (As drawn in
Fig. 2/7, a, is in the negative x-direction. so that ¥ would be a negative
number.)

44



As observed previously, the direction of the velocity 1s always tan-

gent to the path, and from the figure it is clear that

v
. S LR, i el 2 Y
=yl U v=Ju" +uo, tanf)—v

X

a“=a’ + a a=Jal+ar

If the angle 4 is measured counterclockwise from the x-axis to v for the

configuration of axes shown, then we can also observe that dy/dx
tan ¢ = v, /v,.
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If the coordinates x and y are known independently as functions of
time, x = f{{) and y = f,(f), then for any value of the time we can com-
bine them to obtain r. Similarly, we combine their first derivatives x
and y to obtain v and their second derivatives X and y to obtain a. On
the other hand, if the acceleration components a, and a, are given as
functions of the time, we can integrate each one separately with re-
spect to time, once to obtain v, and v, and again to obtain x = f,(#) and
y = fu(f). Elimination of the time / between these last two parametric
equations gives the equation of the curved path y = f(x).

46



From the foregoing discussion we can see that the rectangular-
coordinate representation of curvilinear motion is merely the superposi-
tion of the components of two simultaneous rectilinear motions in the
x- and y-directions. Therefore, everything covered in Art. 2/2 on rectilin-
ear motion can be applied separately to the x-motion and to the y-motion.

a7



e Examples
Projectile Motion

An important application ol two-dimensional kinematic theory is
the problem of projectile motion. For a first treatment of the subject,
we neglect aerodynamic drag and the curvature and rotation of the
earth, and we assume that the altitude change 1s small enough so that
the acceleration due to gravity can be considered constant. With these
assumptions, rectangular coordinates are useful for the trajectory
analysis,

(LYI)Q. =ty cos 0

Figure 2/8
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For the axes shown in Fig. 2/8, the acceleration components are
a, =0 Oy =<8

Integration of these accelerations follows the results obtained previ-
ously in Art. 2/2a for constant acceleration and yields

v, = (UJg vy = )y — &t
X = xg + (v, )yt Y =Yo T ()l — ;gt‘g
v)‘2 e (vy)l)z — 280y — yo

In all these expressions, the subscript zero denotes initial conditions,
frequently taken as those at launch where, for the case illustrated,

g = ¥y = 0. Note that the quantity g is taken to be positive throughout
this text.
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We can see that the x- and y-motions are independent for the simple
projectile conditions under consideration. Elimination of the time ¢ be-
tween the x- and y-displacement equations shows the path to be parabolic
(see Sample Problem 2/6). If we were to introduce a drag force which de-
pends on the speed squared (for example), then the x- and y-motions would
be coupled (interdependent), and the trajectory would be nonparabolic.

 However

When the projectile motion involves large velocitieg and high alti-
tudes, to obtain accurate results we must account for the shape of the
projectile, the variation of g with altitude, the variation of the air den-
sity with altitude, and the rotation of the earth. These factors introduce
considerable complexity into the motion equations, and numerical inte-
gration of the acceleration equations is usually necessary.
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Herman Eisenbeiss/Photo Researchers, Inc.

This stcoboscopic photogeaph of a bouncing ping-pong bali suggests not
vauly the parabulic nature ul the path, but alsu the facl that the speed is
lower near the apex.
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Sample Problem 2/5

The curvilinear motion of a particle is defined by v, = 50 - 167 and y =
100 — 422, where v, is in meters per second, y is in meters, and ¢ is in seconds.
It is also known that x = 0 when ¢ = 0. Plot the path of the particle and deter-
mine its velocity and acceleration when the position ¥ = 0 is reached.

52



Solution. The x-coordinate is obtained by integrating the expression for v,,

and the x-component of the acceleration is obtained by differentiating v,. Thus,

[de= fv,dt] f;dxzjo'ﬂm— 16¢) dt r =50t — 8*m

a, = 0©,] a, = d (50 — 16¢) a, = —16 m/s®

dt

The y-components of velocity and acceleration are

[v, =yl vy=%(100—412) v, = —8 m/s
- d [ B
la, = 0] a, = 1 (—8t) a, = -8 m/s*
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We now calculate corresponding values of x and y for various values of t and
plot x against y to obtain the path as shown.
Wheny = 0,0 = 100 — 472, s0 ¢ = 5 3. For this value of the time, we have

v, = 50 — 16(6) = —30 m/s
v, = —8(B)= —40m/s
p = J(—30)% + (—40)® = 50 m/s

a= J[—16)2 + (—8)% = 17.89 m/s?
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The velocity and acceleration components and their resultants are shown on the

separate diagrams for point A, where y = 0. Thus, for this condition we may
write
v = —30i — 40j m/s Ans.
a = —16i — 8j m/s? Ans.
1=0
100 f\?\\\i
80
Helpful Hint
60
We observe that the velocity vector liea i
along the tangent to the path as it o
should, but that the acceleration vector 20 /
is not tangent to the path. Note espe- ' imbil]
cially that the acceleration vector has a 0 20 40 4 60 B0
xr.m
compenent that points toward the in-
side of the curved path. We concluded Path Path
from our diagram in Fig. 2/5 that it is 7 /
impossible for the aceeleration to have a / &

component that points toward the out-
gide of the curve,

a=17.89 ms®

v, =-40 m/s
55



KINEMATICS — Position, Velocity, Acceleration and time

2.5 Normal and Tangential Coordinates.

« Sometimes the motion of the particle is constrained on a path that is
best described using normal and tangential coordinates.

« For these coordinates the reference coordinate (origin) is moving with
the particle

Changein
direction of
velocity

Increasing )
N

L

Change in
U magnitude of

: 56
velocity



KINEMATICS — PLANE CURVILINEAR MOTION (n -t Coordinates)

Radius of curvature

(b)

Velocity
()

UNZA., Department of Mechanical Engineering 57



KINEMATICS — PLANE CURVILINEAR MOTION (n -t Coordinates)

»These axes can be used such as describing the motion of an aircraft where
the origin is at the center of mass.

v'The tangential direction along longitudinal axis of the aircraft
v'The normal axis along the length of the wings

UNZA., Department of Mechanical Engineering 58



IAVEVIEEE velocity and Acceleration [N R e ol s

because ds = pdp
therefore

v=ve, =pfie,

and

‘ _ d _ d(ve,)
’’ "4 dr

= ve, +ve,

Where the unit vector Bow has a derivative because its direction
changes.

UNZA., Department of Mechanical Engineering 59



KINEMATICS — PLANE CURVILINEAR MOTION (n - t Coordinates)

de, = e, dff

lde,| = |e.|df = dfS

e. = fe,
e e .
Therefore a="— (ve.) _ ve, + vewith v=ve, =pfie
dt dt £ g
vz
which gives |a= Feﬂ + e,

UNZA., Department of Mechanical Engineering
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KINEMATICS — PLANE CURVILINEAR MOTION (n - t Coordinates)

v
Therefore a=—e, +7e,
fol
where 5
" o
a, =—=pf* =vf
il

UNZA., Department of Mechanical Engineering 61



KINEMATICS — PLANE CURVILINEAR MOTION (n - t Coordinates)

2.5

Normal Acceleration.

® The normal component of acceleration is the result of the time
rate of change in the direction of the velocity. This component is
always directed toward the center of curvature of the path, i.e.,
along the positive n axis.

¢ The magnitude of this component is determined from

iJ'1

a, = —

o If the path is expressed as v = f(.x). the radius of curvature p at
any point on the path is determined from the equation

[1 + (dv/dx)" )"
\d?y/dx?]
The derivation of this result is given in any standard calculus text.

p—_‘

UNZA., Department of Mechanical Engineering 62



KINEMATICS — PLANE CURVILINEAR MOTION (n - t Coordinates)

2.5
Graphical visualization of the acceleration and the trajectory path

UNZA., Department of Mechanical Engineering 63



KINEMATICS — PLANE CURVILINEAR MOTION (n - t Coordinates)
2.5

Special Case: circular motion

UNZA., Department of Mechanical Engineering 64



KINEMATICS — PLANE CURVILINEAR MOTION (n -t Coordinates)
2.5
Sample Problems 2/7
Sample Problems 2/8: Go through
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KINEMATICS — PLANE CURVILINEAR MOTION: POLAR COORDINATES

2.6 Polar Coordinates.

«  We now consider Plane Curvilinear motion using Polar Coordinates.

 Useful when a motion is constrained through the control of a radial
distance and an angular position.
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KINEMATICS — PLANE CURVILINEAR MOTION: POLAR COORDINATES

Polar Coordinates continued ...
«  We can specify the location of the particle shown in the figure using:

* aradial coordinate r, which extends outward from the fixed origin O to the
particle, and

* a transverse coordinate 6, which is the counterclockwise angle between a
fixed reference line and the r axis.

« The angle is generally measured
in degrees or radians
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KINEMATICS — PLANE CURVILINEAR MOTION: POLAR COORDINATES

2.6 Polar Coordinates.

Position vector of particle r=re

« We differentiate this vector with respect
totimetoget wv=4+ and a=1v

* To successfully determine the
derivatives we need time derivatives e Path
of both unit vectors

« This is exactly what we did to get
the derivative of the tangential unit

vector et
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KINEMATICS — PLANE CURVILINEAR MOTION: POLAR COORDINATES

Polar coordinates continued ..

 The positive directions of the r and @coordinates are defined
by the unit vectors €, and €,, respectively.

 Here € is in the direction of increasing r when ¢ is held fixed,
and €, is in a direction of increasing € when r is held fixed.

 Note that these directions are perpendicular to one another.
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KINEMATICS — PLANE CURVILINEAR: POLAR COORDINATES

Polar coordinates continued ..

« During time dt the coordinate directions rotate through angle do

 And the unit vectors rotate through same angle

* Note that the vector change de_is in the plus 6 - direction and that de,
is in the minus r - direction

* Their magnitudes in the limit is unit vector as radius times the angle d© in
radians, we may write:

de, = egdf deg = —e,.df
de, /dt = egdf/dt deg/dt = —e,df/dt _ -~
é'il" == E.EH ég == _E.E'il"
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KINEMATICS — PLANE CURVILINEAR: POLAR COORDINATES

Polar coordinates continued ..

« We now differentiate  r =re, giving wv=1t=r7e,+re,

« Substituting é,=fe; reduces to:

{ v=re, +rfeg ]
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KINEMATICS — PLANE CURVILINEAR: POLAR COORDINATES

Polar coordinates continued ..

- We now differentiate the expression forv (v =re, + rf €g)
to obtain the acceleration

e thus

[ a= {*.F — TE.FE:]E_,_ + I:?'E'Ei + Er‘é)eg ]

« Where a, = #— 16
ag =16 + 278
a=+a,’+ay’

« We may write d
— 2% 24

“ T dt (r°6)

particularly useful in angular momentum of particles
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Polar coordinates continued ..
« Magnitude change of Vr

* Direction change of Vr

 Magnitude change of VO

* Direction change of VO
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KINEMATICS — PLANE CURVILINEAR: POLAR COORDINATES

Polar coordinates continued ..
« Sample problem 2/9
 Sample problem 2/10
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KINEMATICS — SPACE CURVILINEAR

2.7 Space Curvilinear Motion

* The general case of three-dimensional motion of a particle

Figure 2/1
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KINEMATICS — SPACE CURVILINEAR, RECTANGULAR COORDINATES

RECTANGULAR COORDINATES

« The extension from plane curvilinear motion offers no particular
difficulty

R=xi+vj+zk
v=R=3i+7vj+zk

a=v=R=%i+j+%k

* Note thatr is replaced by R
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KINEMATICS — SPACE CURVILINEAR, CYLINDRICAL COORDINATES

CYLINDRICAL COORDINATES

« From polar coordinates description we extend to cylindrical
coordinates with no particular difficulty

R=re.+zk

v=R=re,+rfey; +3k

where . =7
1.:?9 = 1"9
v, =2

UNZA., Department of Mechanical Engineering 77



KINEMATICS — SPACE CURVILINEAR, CYLINDRICAL COORDINATES

» Acceleration is written by adding the z-component from the polar
equation

a=v=R=(F—rb2)e,+ (réd+ 278 ey + 2k

where

a,= ¥ —r@?
L] L] 1d L]
=rd +2¢8 =——(r24
Qg =T F rdt(r )

a, ==

a=+a’+ag’+al

k has no time derivative
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KINEMATICS — SPACE CURVILINEAR, SPHERICAL COORDINATES

SPHERICAL COORDINATES
« Aradial distance and two angles are used to specify the position.
« This is the case in radar measurements

 We designate unit vectors , and
. . €r €g €o
* Resulting expressions are:

V = Vger T Vgeg + V€,

where
Vg = R
vg = Rbcosyp
Ve = R
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KINEMATICS — SPACE CURVILINEAR, SPHERICAL COORDINATES

SPHERICAL COORDINATES
 Acceleration is:

@ =ager +ageg+aye,

where ar =R —Rp? —R8%costyp
€0S@ 4 (R26) — 2R st
Qg = — - si
g R dt @sing
1d .
ap = EE(R @) + RE%singpcosg

UNZA., Department of Mechanical Engineering 80



KINEMATICS — SPACE CURVILINEAR, QUESTIONS

Sample problem 2/11 solve
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