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KINEMATICS – Position, Velocity, Acceleration and time

2.1  Introduction to kinematics of particles

• We start our study of kinematics by first discussing the motions of 

points or particles

• There are a number of ways in which a particle can be described

• The choice of the most convenient or appropriate method depends 

largely on experience
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Introduction to Kinematics of particles continued ..

• To get an overview of several methods developed in this lesson

refer to the figure below. P is a particle moving along some

general path.
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Introduction to Kinematics of particles continued ..

• The position of particle P at any time t can be described by

specifying:

• its rectangular coordinates

• Its cylindrical coordinates

• Or its spherical coordinates

• It may also be described by measurements along the tangent t and

the normal n to the curve
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Introduction to kinematic of particles continued..

• When there are physical guides to the motion, the motion is said to be

constrained

• Without physical guides the motion is unconstrained

• A small rock tied to the end of a string and whirled in a circle undergoes

constrained motion

• Motion described by coordinates measured from a fixed reference frame

is said to be absolute motion analysis

• Motion described by coordinates measured from moving frame is said to

be relative motion analysis
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PLANE MOTION

• With the conceptual picture from figure 2/1 we now restrict our attention in the first

part to PLANE MOTION

• Here all movement occur in a single plane

• We begin with rectilinear motion
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2.2  RECTILINEAR MOTION.

• Consider a particle along a straight line

in the limit , 

• Average acceleration in the limit

or

• Removing dt from the above equations results in

or
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• Rectilinear motion continued …

• Area under the v-t curve
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• Rectilinear motion continued …

• Area under the a-t curve

or
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• Rectilinear motion continued …

• Area under the a-s curve

if you are given

you can use

or
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• Rectilinear motion continued …

• Constant acceleration
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• Rectilinear motion continued …

• Constant acceleration
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• Rectilinear motion continued …

• Constant acceleration
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• Rectilinear motion continued …

• Rockets
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• Rectilinear motion continued …

• Acceleration given as a function of time, a=f(t)

• because then

or

• Velocity as a function of time
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• Rectilinear motion continued …

• Acceleration given as a function of velocity, a=f(v)

• But f(v) = dv/dt -> separating variables

– dt=dv/f(v) therefore

• Alternatively vdv=f(v)ds resulting into

or
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• Rectilinear motion continued …

• Acceleration given as a function of displacement, a=f(s)

• Substituting into vdv=ads and integrating

or

Next we solve for v to give v=g(s), a function of s

Now we can substitute ds/dt for v and separate variables and integrate

or
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Important!
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• Rules for vector differentiation
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• Plane motion choice of coordinates
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Note
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
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• Examples

48



49



• However
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2.5 Normal and Tangential Coordinates. 

• Sometimes the motion of the particle is constrained on a path that is 

best described using normal and tangential coordinates. 

• For these coordinates the reference coordinate (origin) is moving with 

the particle

• See Figure 2/8 pg 51
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2.5
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These axes can be used such as describing the motion of an aircraft where 
the origin is at the center of mass.

The tangential direction along longitudinal axis of the aircraft
The normal axis along the length of the wings



,

because

therefore

and 

Where the unit vector    now has a derivative because its direction 

changes.
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.

Therefore with

which gives
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.

Therefore

where
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2.5
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2.5

Graphical visualization of the acceleration and the trajectory path
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2.5

Special Case: Circular Motion
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Sample Problems 2/7

Sample Problems 2/8: Go through
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2.6  Polar Coordinates. 

• We now consider Plane Curvilinear motion using Polar Coordinates. 

• Useful when a motion is constrained through the control of a radial 

distance and an angular position.
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Polar Coordinates continued ...

• We can specify the location of the particle shown in the figure using:

• a radial coordinate r, which extends outward from the fixed origin 0 to the 

particle, and 

• a transverse coordinate Ѳ, which is the counterclockwise angle between a 

fixed reference line and the r axis. 

• The angle is generally measured 

in degrees or radians

67UNZA., Department of Mechanical Engineering

KINEMATICS – PLANE CURVILINEAR MOTION: POLAR COORDINATES



2.6  Polar Coordinates. 

• Position vector of particle

• We differentiate this vector with respect

to time to get              and

• To successfully determine the 

derivatives we need time derivatives 

of both unit vectors

• This is exactly what we did to get 

the derivative of the tangential unit 

vector et
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Polar coordinates continued ..

• The positive directions of the r and coordinates are defined

by the unit vectors and , respectively.

• Here is in the direction of increasing r when is held fixed,

and is in a direction of increasing e when r is held fixed.

• Note that these directions are perpendicular to one another.
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Polar coordinates continued ..

• During time dt the coordinate directions rotate through angle dѲ

• And the unit vectors rotate through same angle

• Note that the vector change is in the plus Ѳ – direction and that

is in the minus r – direction

• Their magnitudes in the limit is unit vector as radius times the angle dѲ in

radians, we may write:
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Polar coordinates continued ..

• We now differentiate giving

• Substituting reduces to:

• where
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Polar coordinates continued ..

• We now differentiate the expression for v ( )

to obtain the acceleration

• thus

• Where

• We may write

particularly useful in angular momentum of particles
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Polar coordinates continued ..

• Magnitude change of Vr

• Direction change of Vr

• Magnitude change of VѲ

• Direction change of VѲ

UNZA., Department of Mechanical Engineering

KINEMATICS – PLANE CURVILINEAR: POLAR COORDINATES

73



Polar coordinates continued ..

• Sample problem 2/9

• Sample problem 2/10
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2.7 Space Curvilinear Motion

• The general case of three-dimensional motion of a particle
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RECTANGULAR COORDINATES

• The extension from plane curvilinear motion offers no particular

difficulty

• Note that r is replaced by R

UNZA., Department of Mechanical Engineering

KINEMATICS – SPACE CURVILINEAR, RECTANGULAR COORDINATES

76



CYLINDRICAL COORDINATES

• From polar coordinates description we extend to cylindrical

coordinates with no particular difficulty

where
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• Acceleration is written by adding the z-component from the polar

equation

where

k has no time derivative
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SPHERICAL COORDINATES

• A radial distance and two angles are used to specify the position.

• This is the case in radar measurements

• We designate unit vectors , and

• Resulting expressions are:

where
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SPHERICAL COORDINATES

• Acceleration is:

where
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Sample problem 2/11 solve
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