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KINETICS — WORK AND ENERGY

SECTION B. WORK AND ENERGY

3/6 Work AND KINETIC ENERGY

There are two general classes of problems in which the cumulative
effects of unbalanced forces acting on a particle are of interest to us.
These cases involve (1) integration of the forces with respect to the dis-
placement of the particle and (2) intagration of the forces with respert ta
the time they are applied. We may incorporate the results of these inte-
grations directly into the governing equations of motion so that it be-
comes unnecessary to solve directly for the acceleration. Integration with
respect to dispiacement leads w the equations of work and energy, which
are the subject of this article. Integration with respect to time leads to
the equations of impulse and momentum, discussed in Section C.
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Definition of Work -

We now develop the quantitative meaning of the term “work.”* Fig-
ure 3/2a shows a force F acting on a particle at A which moves along the
path shown. The position vector r measured from some convenient ori-
gin O locates the particle as it passes point A, and dr is the differential
displacement associated with sn infinitesimal movement from A to A',
The work done by the force F during the displacement dr is defined as

r+dr

dU = F+dr

F '-",/
« Work done is equal to dot product of the force \\\’;"\“N

vector and the displacement vector \ e~ Rt
()

Figure 3/2
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The magnitude of this dot product is dU = F ds cos «, where a is the
angle between F and dr and where ds is the magnitude of dr. This ex-
pression may be interpreted as the displacement multiplied by the force
component F, = F cos a in the direction of the displacement, as repre-
sented by the dashed lines 1n Fig. 3/2b. Alternatively, the work dU may
be interpreted as the force multiplied by the displacement component
ds cos a in the direction of the force, as represented by the full lines in
Fig. 3/2b.

With this definition of work, it should be noted that the component

F, = F sin « normal to the displacement does no work. Thus, the work
dU may be written as

dU = F, ds

Work is positive if the working component F; is in the direction of the
s placeent and eegertive 01k 1 10 Lhe oppuosilbe dicection.
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Calculation of Work

During a finite movement of the point of application of a force, the
force does an amount of work equal to

2 2
U=f F-dr=f (F,dx + F,dy + F.d2)
1 1 >
or

Ha
U=f F.ds
gy

&

Figure 3/3
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Examples of Work
When work must be calculated, we may always begin with the defin-

ition of work, U7 - f I’ dr, insert appropriate vector expreasiona for the

force F and the differential displacement vector dr, and carry out the re-
quired integration. With some experience, simple work calculations,
such as those associated with constant forces, may be performed by 1n-
spection. We now formally compute the work associated with three fre-

quently occurring forces: constant forces, spring forces, and weights.

Figure 3/4
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y
|
|
IR P

Figure 3/4

(1) Work Associated with a Constant External Force. Consider
the constant force P applied to the body as it moves from position 1 to
position 2, Fig. 3/4. With the force P and the differential displacement
dr written as vectors, the work done on the body by the force 1s

U|-2=J

2 2
( F-dr=j [(P cos a)i + (P sin a)jl-dxi
1 1

ot

/

Pceosadx =Pcosalx, — x) =PLcosa (3/9)

X

As previcusly discussed, this work expression may be intorpreted ag the
force component P cos « times the distance L traveled. Should « be be-
tween 90° and 270°, the work would be negative. The force component
P sin a normal to the displacement does no work.
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(2) Work Associated with a Spring Force. We consider here the
common linear spring of stiffness £ where the force required to stretch
or compress the spring is proportional to the deformation x, as shown in
Fig. 3/5a. We wish to determine the work done on the body by the spring
force as the body undergoes an arbitrary displacement from an initial
position x; to a final position x,. The force exerted by the spring on the
body is F = —kxi, as shown in Fig. 3/56. From the definition of work, we

have

2 2 X,
5 - L F-dr = f] (k) ol = —f, kede = Lhin? - x,2) (3710
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(a)

Undeformed

(h)

UNZA., Department of Mechanical Engineering



KINETICS — WORK AND ENERGY

The expression F' = kxa is actually a static relationship which is true
only when elements of the spring have no acceleration. The dynamic be-
havior of a spring when its mass 1s accounted for 1s a fairly complex
problem which will not be treated here. We shall assume that the mass
of the spring is small compared with the masses of other accelerating
parts of the system, in which case the linear static relationship will not
involve appreciable error.
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(3) Work Associated with Weight. Case (a) g = constant. If the al-
titude variation is sufficiently small so that the acceleration of gravity g
may be considered constant, the work done by the weight mg of the

body shown in Fig. 3/6a as the body is displaced from an arbitrary alti-
tude y, to a final altitude v, is

2 2
Uz = | Fedr= | (-mgi)-(dsi + dy
1 1
Ya
M
|
: 02
’
f
~dr
Ya mi/"l'
el l
N ."fl e L ——x
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T r) 2
1
dr
Ya Gy .'ll'
' >
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We see that horizontal movement does not contribute to this work. We
also note that if the body rises {perhaps due to other forces not shown),
then ( y; — 3,) = 0 and this work is negative. If the body falls, (y; — y,) < 0
and the work is positive.

Case (b) g # constani. If large changes in altitude occur, then the
weight (gravitational force) 1s no longer constant. We must therefore
use the gravitational law (Eq. 1/2) and express the weight as a variable

Gm,m

force of magnitude ¥ = P as indicated in Fig. 3/6b. Using the radial

coordinate shown in the figure allows the work to be expressed as

2 s rs
U,,=] F-dr= f G:;a,m e dre, = -Gm,m] éf
1 1 r ok 3
- gtz <
- Gm,m(rz "1) mg'Rz(r2 "1) (3/12)
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Work and Curvilinear Motion

We now consider the work done on a particle of mass m, Fig. 3/7,
moving along a curved path under the action of the force F, which
stands for the resultant XF of all forces acting on the particle. The posi-
tion of 21 i3 specified by the position vector r, and its displacement along
its path during the time d! is represented by the change dr in its posi- z
tion vector. The work done by F during a finite movement of the parti- b F,
cle from point 1 to point 2 is

T flgr-dp f:’F,ds

where the limits specify the initial and final end points of the motion,

Figure 3/7
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When we substitute Newton’s second law F = ma, the expression
for the work of all forces becomes

2 2
U, =f F-dr =f ma-dr
1 1

But a-dr = a,ds. where @, 1s the tangential component of the accelera-
tion of m. In terms of the velocity v of the particle, Eq. 2/3 gives a; ds =
v dv. Thus, the expression for the work of F becomes

P) v,
Uip=| Fear=[ modv=imw2-v®  (313)
l l.'l

where the integration is carried out between points 1 and 2 along the
curve, at which points the velocities have the magnitudes v, and v,
respectively.
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Principle of Work and Kinetic Energy
The kinetic energy T of the particle is defined as

[T =~§;mu*‘] (3/14)

and is the total work which must be done on the particle to bring it from
a state of rest to a velocity v. Kinetic energy 7' is a scalar quantity with
the units of N-m or joules (J) in SI units and ft-1b in U.S. customary
units. Kinetic energy is always positive, regardless of the direction of
the velocity.
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Equation 3/13 may be restated as

Upy=T,— Ty =AT (3/15)

which is the| work-energy equation for a particle.| The equation states
that the foial work done by all forces acting on a particle as it moves
from point 1 to point 2 equals the corresponding change in kinetic en-
ergy of the particle. Although T is always positive, the change AT may

be positive, negative, or zero. When written in this concise form, Eq.
3/15 tells us that the work always results in a changye of kinetic energy.

Alternatively, the work-energy relation may be expressed as the ini-
tial kinetic energy 7', plus the work done U7, ; equals the final kinetic en-

ergy T2a or

[T’, - U‘,-,.a.:.Tz] (3/15a)

When written in this form, the terms correspond to the natural se-
quence of events. Clearly, the two forms 3/15 and 3/15a are equivalent.
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Advantages of the Work-Energy Method

We now see from Eq. 3/15 that a major advantage of the method of
work and energy is that it avoids the necessity of computing the acceler-
ation and leads directly to the velocity changes as functions of the forces
which do work. Further, the work-energy equation involves only those

forces which do work and thus give rise to changes in the magnitude of
the velocities.
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We consider now a system of two particles joined together by a con-
nection which is frictionless and incapable of any deformation. The
forces in the connection are equal and oppogite, and their points of ap-
plication necessarily have identical displacement components in the di-
rection of the forces. Therefore, the net work done by these internal
forces is zero during anv movement of the system. Thus, Eq. 3/15 is ap-
plicable to the entire system, where U, is the total or net work done on
the system by forces external to it and AT is the change, T, — T, in the
total kinetic energy of the system. The total kinetic energy is the sum of
the kinetic energies of both elements of the system. We thus see that
another advantage of the work-energy method is that it enables us to
analyze a system of particles joined in the manner described without
dismembering the system.

Application of the work-energy method requires isolation of the par-
ticle or system under consideration. For a single particle you should
draw a free-body diagram showing all externally applied forces. For a
system of particles rigidly connected without springs, draw an active-
foree diagram showing only those external forees which do work (active
forces) on the entire system.*
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Power

The capacity of a machine is measured by the time rate at which it
can do work or deliver energy. The total work or energy output is not a
measure of this capacity since a mofor, no matter how small, can deliver
a large amount of energy if given sufficient time. On the other hand, a
large and powerful machine is required to deliver a large amount of en-
ergy in a short period of time. Thus, the capacity of a machine 1s rated
by its power, which is defined as the ftme rate of doing work,
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Efficiency

The ratio of the work done hy a machine to the work done on the

machine during the same time interval is called the mechanical effi-
ciency e, of the machine, This dehinition assumes that the machine op-

erates uniformly so that there is no accumulation or depletion of energy
within it. Efficiency is always less than unity since every device operates
with snme logs of energy and sinee energy cannot he ereatod within the
machine. In mechanical devices which involve moving parts, there will
always be some loss of energy due to the negative work of kinetic fric-
tion forces. This work is converted to heat energy which, in turn, is dis-
sipated to the surroundings. The mechanical efficiency at any instant of
time may be expressed in terms of mechanical power P by

r
e, = —2 (3/17)
P input
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In addition to energy loss by mechanical friction, there may also be
aleetricel and thermal onergy laog, in which case, the olecdrmical officicney
e, and thermal efficiency e; are also involved. The overall efficiency e in
such mstances 18

& = entm;
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3/7 POTENTIAL ENERGY

In the previous article on work and kinetic energy, we isolated a
particle or a combination of joined particleg and determined the work
done by gravity forces, spring forces, and other externally applied forces
acting on the particle or system. We did this to evaluate U7 in the work-
energy equation, In the present article we will introduce the concept of
poteniial energy to treat the work done by gravity forces and by spring
forces. This concept will simplify the analysis of many problems.
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Gravitational Potential Energy

We consider first the motion of a particle of mass /2 in close proxim- \

ity to the surface of the earth, where the gravitational attraction

(weight) mg is essentially constant, Fig. 3/8a. The gravitational poten- r_ el
tial energy V, of the particle is defined as the work mgh done against the Rx :
gravitational field to elevate the particle a distance A above some arbi- mg

\
trary reference plane (called a datum), where V, is taken to be zero. r\;, J_ V=0
Thus, we write the potential energy as :

[V‘ - m&hJ (3/18)

This work is called potential energy because it may be converted
into energy if the particle is allowed to do work on a supporting body
while it returns to its lower original datum plane. In going from one
level at A = h; to a higher level at A = h,, the change in potential energy
becomes

AV, = mglh, — h;) = mgAh
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The corresponding work done by the gravitational force on the particle
is —mgAh, Thus, the work done by the gravitational force is the nega-
tive of the change in potential energy.

UNZA., Department of Mechanical Engineering
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When large changes in altitude in the field of the earth are encoun-
tered, Fig. 3/8b, the gravitational force Gmm, /r* = mgR*/r* is no longer
constant. The work done ageainst this force to change the radial position
of the particle from r, to r; is the change (V,), — (V,); in gravitational
potential energy, which is

2
j mgR* ig. = mgR> (l = l) = (Ve — (V)
ry r rl r2

It is customary to take (V,); = 0 when r, = =, so that with this
datum we have

(3/19)

UNZA., Department of Mechanical Engineering
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In going from ry to ry, the corresponding change in potential energy 13

Fy. g

AV, = mgR? (L - l)

which, again, is the negafive of the work done by the gravitational force.
We note that the potential energy of a given particle depends only on its

position, & or r, and not on the particular path it followed in reaching
that position.

(b)

Figure 3/8
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Elastic Potential Energy

The accond cxample of potential encrgy occura in the deformation of
an elastic body, such as a spring. The work which is done on the spring to
deform 1t 1s stored in the spring and is called its elastic potential energy V..
This energy is recoverable in the form of work done by the spring on the
body attached to its movable end during the release of the deformation of
the spring. For the one-dimensional linear spring of stiffness %, which we
discussed in Art, 3/6 and illustrated in Fig, 5/5, the forve supported by the
spring at any deformation x, tensile or compressive, from its undeformed
position is F' = ky. Thus, we define the elastic potential energv of the
spring as the work done on it to deform it an amount x, and we have

[V, = f:hdx = %la’] (3/20)
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If the deformation, either tensile or compressive, of a spring in-

creases from x, to x; during the motion, then the change in potential en-
ergy of the spring iz its final value minns its initial value or

AV, = Lk(x,?2 — x,2)
which 1s positive. Conversely, if the deformation of a spring decreases
during the motion interval, then the change in potential energy of the

spring becomes negative. The magnitude of these changes is repre-
sented by the shaded trapezoidal area in the F-x diagram of Fig. 3/5a.
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Work-Energy Equation

With the elastic member included in the system, we now modify the
work-energy equation to account for the potential-energy terms. If U5,
stands for the work of all external forces other than gravitational forces
and spring forces, we may write Eq. 3/15 as U}, + (=AV,) + (—-AV,) =
AT or

U,y = AT +AV (3/21)

where AV is Lthe change in wlal potential energy, gravitational plus elastic,
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Note that Eq. 3/21 may be rewritten in the equivalent form

(Tx* Vit Uis=1T5 +V§;] (3121a)
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Ul-2 = AT

(b

la)

Note that Ea 3/21 may be rewritten in the equivalent form

[13, SV + Uy=T, + v_\a] (3121a)

to B. With the second approach, however, only the initial and final
lengths of the apring are required to evaluate AV,. This greatly simpli-
fies the calculation.

(c)

Figure 3/9
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For problems where the only forces are gravitational, elastic, and
nonworking constraint forcesg, the U'-term of Eq. 3/21a is zero, and the
energy equation becomes

Tl T Vl — Tz I Vz or E] — Ez (3}22)

where £ = T + V is the total mechanical energy of the particle and its
attached spring. When E is constant, we see that transfers of energy be-
tween kinetic and potential may take place as long as the total mechani-
cal energy T' + V does not change. Equation 3/22 expresses the law of
conservation of dynamical energy.
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Conservative Force Fields™*

We have observed that the work done against a gravitational or an
elastic force depends only on the net change of position and not on the
particular path followed in reaching the new position. Forces with this
characteristic are associated with conservative force fields, which possess
an important mathematical property.

y /TZ

l'/ /'

/ o
1

|

I

|

I

|

|

|

I

I

|
XK
Figure 3/10
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Consider a force field where the force F is a function of the coordi-
nates, Fig. 3/10. The work done by F during a displacement dr of its
point of application 1s dU = F-dr. The total work done along its path

from 1to 2is
Y 2
| o
| \ U= [Bede= [, dx + Fydy + F.d2)
l | AF
| dr : The integral f F:dr i3 a line integral which depends, in general, on the
: : / particular path followed between any two points 1 and 2 in space. If,
I '\l 4 however, F-dr is an exact differential’ —dV of some scalar function V of
: / i ’ the coordinates, then
=y v,
/" =~ M U1-2 = f -dV = -(Vz E Vl) (3}23)
- e T Vl
Figure 3/10 which depends only on the end points of the motion and which is thus

independent of the path followed. The minus sign before dV is arbitrary
but is chosen to agree with the customary designation of the sign of po-
tential energy change in the gravity field of the earth.
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Figure 3/10

If V exists, the differential change in ¥V becomes
_d¥ v '
dV—ﬂxdx+&jdy+ azdz

Comparison with —dV = F-dr = F.dx + F,dy + F, dz gives us

AV o W g dV

T ox > ay T gz
The force may also be written as the vector
F=-VV (3/24)
where the symbol V stands for the vector operator “del”, which is

B B
v_lr'i.r+3(7y+k(?z

The quantity V is known as the potential function, and the expression
VVis known as the gradient of the poiential function.

When force components are derivable from a potential as described,
the force is said to be conservative, and the work done by F between any
two points is independent of the path followed.
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Next is impulse and momentum
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