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« In this lesson we shall look at the integration of the equation of
motion with respect to time rather than displacement

* | This approach leads to the equations of impulse and
momentum

UNZA., Department of Mechanical Engineering



Linear Impuilse and linear Momentum

P to
" I
a*
IF — mwv % (arw) or (2/25)
0
We now write the ﬁ'l]:‘E'E! scalar components of Eq. 3/2b as .
sF,=G, F,=G, IF, =0, (3/26)

These equations may be applied independently of one another.
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The Linear Impulse-Momentum Principle

LF dt = dG,

fa
f IF4f -0, - Q) - AQ (2/27)
¢

1

— Alternativeiy, we may write Eq. 3/27 as

¢
G, + | zFdi=@, (3/27a)

H
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Under these conditions, it will be necessary to express XF and G in com-

ponent form and then combine the integrated components. The compo-
nents of Eq. 3/27a are the scalar equations

!

m(v,), + | -ZFA. dt = miv,),
ty

ts
m(vy), + J- IF,dt = m(vy), (3/27b)

ty

by
m(v,). + f IF_dt = m(v,)

LN

-
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These three scalar impulse-momentum equations are completely
independent.
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We now introduce the concept of the impulse-momenium diagram.

Once the body to be analyzed has been clearly identified and isolated, we
construct three drawings of the body as shown in Fig. 3/12. In the first
drawing, we show the initial momentum my,, or components thereof. In

‘l
[
3

G, =mv,

a— + =

the second or middle drawimg, we show all the external linear impulses
(or components thereof). In the final drawing, we show the final linear
momentum mv, (or its components). The writing of the impulse-momen-
tum equations 3/276 then follows directly from these drawings, with a
clear one-to-one correspondence between diagrams and equation terms.
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Conservation of Linear Momentum

If the resultant force on a particle is zero during an interval of time,
we see that Eq. 3/25 requires that its linear momentum G remain con-
stant. In this case, the linear momentum of the particle is said to be con-
served. Linear momentum may be conserved in one coordinate direction,
such as x, but not necessarily in the y- or z-direction. A careful examina-
tion of the impulse-momentum diagram of the particle will disclose
whether the total linear impulse on the particle in a particular direction
iz zero, I it ig, the corvesponding lincar momentum is unchanged (con
served) in that direction.
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Conservation of Linear Momentum

Consider now the motion of two particles a and b which interact
during an interval of time. If the interactive forces F and ~F between
them are the only unbalanced forces acting on the particles during the
interval, it follows that the linear impulse on particle ¢ is the negative of
the linear impulse on particle 6. Therefore, from Eq. 3/27, the change
in linear momentum AG, of particle ¢ is the negative of the change
AG, in hnear momentum of particle b. So we have AG, = —AG; or
A(G, + Gy) = 0. Thus, the total linear momentum G = G, + G, for the
system of the two particles remains constant during the interval, and we
write

[AG TG GzJ (3/28)

Equation 3/28 expresses the principle of conservaiion of linear momentum.
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3/10

Consider

ANGULAR IMPULSE AND ANGULAR MOMENTUM

Ho=rxmyv

(ex)

fixed coordinates x-y-z. The velocity of the particle 1s v = r, and its linear
momentum is G = mv. The moment of the linear momentum vector mv
about the origin O is defined as the angular momentum Hg, of P about O
and is given by the cross-product relation for the moment of a vector

(HO =r X va (3/29)
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The angular momentum then is a vector perpendicular to the plane A
defined by ¥ and v. The sense of Hy i3 clearly defined bv the right-hand

rule for cross products.

The scalar components of angular momentum may be obtamed

from the expansion

Hy=rxmv=m(vy—v,zi+myz—-uvx)j+muvx—uvyk

i j k
Hyo=mx y =z (3/30)
v, U, U,

so that
H, =mv,y — v,2) H, =m({v,z - v,x) H, = mw,x - v.y)
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Rate of Change of Angular Momentum s the vector cross product

IM,y,=r X IF =1 X mv the moment My

Obtained by differentiation

Ho=TrXmv+rXxmv=vXmv+rXmv

The term v X mwv is zero since the cross product of parallel vectors is
identically zero. Substitution into the expression for XM, gives

[zMo = Ho] (3/31)
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Rate of Change of Angular Momentum

Equation 3/31 is a vector equation with scalar components

EM'Q — Hf}; E.I.Fl‘ff{}.l = Hﬂr E.I."A'_'fﬂ‘ — Hﬂl‘
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The Angular Impulse-Momentum Principle

Equation 3/31 gives the instantaneous relation between the mo-
ment and the time rate of change of angular momentum. To vbiain the
effect of the moment EM, on the angular momentum of the particle
over a finite period of time, we integrate Eq. 3/31 from time {, to time #,.
Multiplying the equation by dt gives M, dt = dH,, which we integrate

to obtain

by

ZMO dt - (H‘)}z (H())l — AHO (3/33)

t

where (Hg)s = ry X mvz and (Hg); = ry X mv;. The product of moment
and time is defined as angular impulse, and Eq. 3/33 states that the
total angular impulse on m about the fixed point O equals the corre-
sponding change in angular momentum of m about O,
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Alternatively, we may write Eq. 3/33 as

2
(Hy), + L M, d = (Hy), (3/33a)
1

which states that the initial angular momentum of the particle plus
the angular impulse applied to it equals its final angular momentum.
The units of angular impulse are clearly those of angular momentum,
which are N-m-s or kg-m?®’s in Sl units and lb-ft-sec in U.S. custom-
ary units.
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As in the case of linear impulse and linear momentum, the equation
of angular impulse and angular momentum is a vector equation where
changes in direction as well as magnitude may occur during the interval
of integration. Under these conditions, it is necessary to express IM,

and H, in component form and then combine the integrated compo-
nents. The x-component of Eq. 3/33a is

iy
(HOA)I + f XMO" dt = (HO“)Z
t

>
or miv,y —vy2), + IMg dt = mlv,y — v,2), (3/33b)

4

where the subscripts 1 and 2 refer to the values of the respective quantities

at times #; and f,. Similar expressions exist for the y- and z-components of
the angular impulse-momentum equation.
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Conservation of Angular Momentum

If the resultant moment about a fixed point O of all forces acting on
a particle is zero during an interval of time, Eq. 3/31 requires that its
angular momentum H, about that point remain constant. In this case,
the angular momentum of the particle is said to be conserved. Angular
momentum may be conserved about one axis but not about another
axis, A careful examination of the free-body diagram of the particle will
disclose whether the moment of the resultant force on the particle about

a fixed point is zero, in which case, the angular momentum about that
paint i unchanged (consorved),

UNZA., Department of Mechanical Engineering
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Conservation of Angular Momentum

Consider now the motion of two particles ¢ and b which interact
during an interval of time. If the interactive forces F and —F between
them are the only unbalanced forces acting on the particles during the
interval, it follows that the moments of the equal and opposite forces

about any fixed point O not on their line of action are equal and oppo-
site. If we apply Eq. 3/35 to particle a and then to particle b and add the

two equations, we obtain AH, + AH; = 0 (where all angular momenta
are referred to point 0). Thus, the total angular momentum for the sys-
tem of the two particles remains constant during the interval, and we
write

(A‘HO =0 or (Hp),= (Ho)gJ (3/34)

which expresses the principle of conservation of angular momentum.
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SECTION D. SPECIAL APPLICATIONS

3/12 ImpPACT

The principles of impulse and momentum have important use in de-
acribing the behavior of colliding bodies. Impaet refers to the collision
between two bodies and is characterized by the generation of relatively
large contact forces which act over a very short interval of time. It is im-
portant to realize that an impact is a verv complex event involving ma-
terial deformation and recovery and the generation of heat and sound.

UNZA., Department of Mechanical Engineering

18



45 >~ | &)
Direct Central Impact < >
(a) Before = e
impact

—3 '0

{6) Maximum
deformation - m :
during impact
t.ll < 1'2.
(c) After impact - «Q a -

Figure 3/17

As an introduction to impact, we consider the collinear motion of
two spheres of masses m, and my, Fig. 3/17a, traveling with velocities v,
and v,. If v, is greater than v,, collision occurs with the contact forces di-
rected along the line of centers. This condition 1s called direci ceniral

impact.
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g R
Direct Central Impact (@) Before Q 0 L
impact

—3 '0

{6) Maximum
deformation - m :
during impact
t.ll < 1,20
(c) After impact - «Q a -

Following initial contact, a short period of increasing deformation Figure 3/17
takes place nuntil the econtact area hetween the spheres ceases to in-

crease. At this instant, both spheres, Fig. 3/175, are moving with the
same velocity v,. During the remainder of contact, a period of restora-
tion occurs during which the contact area decreases to zero. In the final
condition shown in part ¢ of the figure, the spheres now have new veloc-
ities vy’ and v,', where v," must be less than v,". All velocities are arbi-
trarily assumed positive to the right, so that with this scalar notation a
velocity to the left would carry a negative sign.
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Direct Central Impact

Because the contact forces are equal and opposite during impact,
the linear momentum of the system remains unchanged, as discussed in
Art. 3/9. Thus, we apply the law of conservation of linear momentum
and write

MU + Molly = MUy + Maty' (3/35)
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Direct Central Impact

Coefficient of Restitution

For given masses and initial conditions, the momentum equation
contains two unknowns, v,’ and v,’. Clearly, we need an additional rela-
tionship to find the final velocities. This relationship must reflect the ca-
pacity of the contacting bodies to recover from the impact and can be
expressed by the raiio ¢ of the magnitude of Lhe restoracion impulse w
the magnitude of the deformation impulse. This ratio is called the coeffi-
ctent of restitution.

UNZA., Department of Mechanical Engineering
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Direct Central Impact

Deformation
period

Restoration

period

Figure 3/18
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Direct Central Impact

Let F,. and F; represent the magnitudes of the contact forces dur-
ing the restoration and deformation periods, respectively, as shown in
Fig. 3/18. For particle 1 the definition of e together with the impulse-
momentum equation give us

{
J. F_dt :
t my[—v," —(—uvy)]l vy—u,
L) _—— —_— a—

ta myl=ve = (=vy)] vy —v
11Uy 1 1~ Vg
F,di
0

Similarly, for particle 2 we have

!
‘Fr dt ' ’
to mals’ — Ug) U — Vg
e=—"="—"-""—"——"=T ————
rlo my(Vg — Us) Vg — U,
2890 2 0 2
| Fa
0
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Direct Central Impact

We are careful in these equations to express the change of momentum
(and therefore Av) in the same direction as the impulse (and thus the
foree). The time for the deformation is taken as /, and the total time of
contact is . Eliminating v, between the two expressions for ¢ gives us

ve' —uvy" |relative velocity of separation|
e = =

< . , (3/36)
vy — Uy |relative velocity of approach|

If the two initial veloeities v and v, and the ecoefficient of restitution

e are known, then Egs. 3/35 and 3/36 give us two equations in the two
unknown final velocities v," and v,’.

UNZA., Department of Mechanical Engineering
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Direct Central Impact

Energy Loss During Impact

Impact phenomena are almost always accompanied by energy loss,
which may be calculated by subtracting the kinetic energy of the system
just after impact from that just before impact. Energy is lost through
the generation of heat during the localized inelastic deformation of the
material, through the generation and dissipation of elastic stress waves
within the bodies, and through the generation of sound energy.

UNZA., Department of Mechanical Engineering
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According to this classical theory of impact, the value e = 1 means
that the capacity of the two particles to recover equals their tendency to
deform. This condition is one of elastic impact with no energy loss. The
valuo ¢ — 0, on the other hand, deseriboee inelastic or plastie impact whore
the particles cling together after collision and the loss of energy is a maxi-
mum. All impact conditions lie somewhere between these two extremes.

Coefficient of
restitution, e
18 Perfectly elastic
' © Glasson glass
~ Steelon steel
__Leadonlead
FPeifeclly plastic
o2

0 Relative impact velocity

Figure 3/19
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Oblique Central Impact

We now extend the relationships developed for direct central impact
to the case where the initial and final velocities are not parallel, Fig.
3/20. Here spherical particles of mass m, and m, have initial velocities
v, and v; in the same plane and approach each other on a collision
course, as shown in part a of the figure. The directions of the velocity
vectors are measured from the direction tangent to the contacting
surfaces, Fig. 3/206. Thus, the initial velocity components along the
{- and n-axes are (v,), = —u; 8in 8y, (uy), = vy cos Ay, (Uy), = Uy SN s,

|F|
F |
|
) I
|
|
0 |
| 0 & ¢
| Time, ¢
(@) h () () e

Figure 3/20
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3/14 ReLAaTivE MoTiON

Relative-Motion Equation

We now consider a particle A of mass m, Fig. 3/25, whose motion is
observed from a set of axes x-y-z which translate with respect to a fixed
reference frame X-Y-Z. Thus, the x-y-z directions always remain paraliel
to the X-Y-Z directions. We postpone discussion of motion relative to a
rotating reference system until Arts. 5/7 and 7/7. The acceleration of the
origin B of x-y-z is ap. The acceleration of A as observed from or relative
to x-y-z 1s a,, = a4y = Ty, and by the relative-motion principle of Art.
2/8, the absolute acceleration of A is

a, = ap + a,

Thus, Newton’s second law XF = ma, becomes

XF = m(ag + a,.) (3/50)
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3/14 ReLAaTivE MoTiON

D'Alembert’s Principle

The particle acceleration we measure from a fixed set of axes X-Y-Z,
¥ a Fig. 3/26a, is its absolute acceleration a. In this case the familiar rela-
j 4 tion £F = ma applies. When we observe the particle from a moving
|

,?{———x system x-y-z attached to the particle, Fig. 3/266, the particle necessar-

ily appears to be at rest or in equilibrium in x-y-z. Thus, the observer

L e B X who is accelerating with x-y-z concludes that a force —ma acts on the

(@) ®) particle to balance IF. This point of view, which allows the treatment

of a dynamics problem by the methods of statics, was an outgrowth of

the work of D’Alembert contained in his Traiié de Dynamique pub-
lished in 1743.

Figure 3/26

This approach merely amounts to rewriting the equation of motion
as IF — ma = 0, which assumes the form of a zero force summation if
—ma is treated as a force. This fictitious force is known as the inertia
force, and the artificial state of equilibrium created is known as dynamic
equilibrium. The apparent transformation of a problem in dynamics to
one in statics has become known as I’Alemberi’s principle.
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3/14 ReLAaTivE MoTiON

Constant-Velocity, Nonrotating Systems

In discussing particle motion relative to moving reference systems,
we should note the special case where the reference system has a con-
stant velocity and no rotation. If the x-y-z axes of Fig. 3/25 have a con-
stant velocity, then aiy = 0 and the acceleration of the particle is a, =
a,,. Therefore, we may write Eq. 3/50 as

(Z‘.F = mam,) (3/51)

which Lells us Lhal Newloua's secund law hulds (ur measurements mmade
in a system moving with a constant velocity. Such a system 1s known as
an inertial system or as a Newtonian frame of reference. Observers in
the moving system and in the fixed system will also agree on the desig-
nation of the resultant force acting on the particle from their identical
free-body diagrams, provided they avoid the use of any so-called “inertia
forces.”

UNZA., Department of Mechanical Engineering
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3/14 ReLAaTivE MoTiON

IF

Path relative
Lo I-_VTZ

Figure 3/28

We will now examine the parallel question concerning the vahdity of
the work-energy equation and the impulse-momentum equation relative to
a constant-velocity, nonrotating system. Again. we take the x-y-z axes of
Fig. 3/25 to be moving with a constant velocity vy = rj relative to the fixed
axes X-Y-Z. The path of the particle A relative to x-v-z is governed by r,,
and i8 represented schematically in Fig. 3/28. The work done by XF rela-
tive to x-y-z is dU,y = ZF -dr . But ZF = ma, = ma,, since ag = 0. Also
a  dr. = v dv, for the same reason that a, ds = v dv in Art. 2/5 on
curvilinear motion. Thus, we have

AU, = Ay dr, = mv g dv,,; = dizmy,%)
We define the kinetic energy relative to x-y-z as T, = ;mvm" 30
that we now have
[dv,,, - dT,,,J or ['U,,, = AT,,,] (3/52)

which shows that the work-energy equation holds for measurements

made relative to a constant-velocity, nonrotating system.
Relative to & ¥ &, the impuloe on the particle during time df 10
LF di = mas dt = may dt. But ma dt = m dvy = dimvy) so

IF dt = dimv,,)
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3/14 ReLAaTivE MoTiON

We define the linear momentum of the particle relative to x-y-z as G, =
Ve Which givoe ue XF d¢ — dG,. Dividing by df and intograting give

IF

Path relative
to x-y-z

Figure 3/28

(25':(';,,1] and [ththzAqu

Thus, the impulse-momentum equations for a fixed reference system
also hold for measurements made relative to a constant-velocity, nonro-

tating system.
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(3/53)

33



3/14

ReLaTIVE MoTION

IF

Path relative

Lo x-y-z m
- ——
Z z
| l HA o x‘Il'l»‘l
| l
I =
0 k B
N \
\ \
\ \
X X

Figure 3/28

Finallv, we define the relative angular momentum of the parti-
cle about a point in x-v-z, such as the origin B, as the moment of the

relative linear momentum. Thus, (Hg),, = r,.; X G, . The time derivative
gives (HB)M =P g X Gyt rgX Gml. The first term i1s nothing more
than v, X mv,, = 0, and the second term becomes r,, X XF = XMy, the
sum of the moments about B of all forces on m. Thus, we have

[ZMB - (HB)rd] (3/54)

which shows that the moment-angular momentum relation holds with

respect to a constant-velocity, nonrotating system.

UNZA., Department of Mechanical Engineering
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3/14 ReLAaTivE MoTiON

Although the work-energy and impulse-momentum equations hold
relative to a system translating with a constant velocity, the individual
expressions for work, kinetic energy, and momentum differ between the
fixed and the moving systems. Thus,

(dU = XF-dr,) # (dU, = 3F-dr,,)

IF

1 ‘ 1 ‘
Path relative (T = 3mu,®) # (T = gmv %)

Lo x-y-z

e d}‘n-l Vel (G = mvy) # (G = mv,y)

Figure 3/28

UNZA., Department of Mechanical Engineering

35



~

~

Relative motion is a critical issue during aircraft-carrier landings.
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3/15 CHAPTER REVIEW

In Chapter 3 we have developed the three basic methods of solution to
problems in particle kinetics. This experience is central to the study of dy-
namies and lays the foundation for the subsequent study of rigid-body and
nonrigid-body dynamics. These three methods are summarized as follows:

1. Direct Application of Newton's Second Law

First, we applied Newton’s second law ZF = ma to determine the
instantaneous relation between forces and the acceleration they pro-
duce. With the background of Chapter 2 for identifying the kind of mo-
tion and with the aid of our famihar free-body diagram to be certain
that all forces are accounted for, we were able to solve a large variety of
problems using x-y, n-f, and r-f coordinates for plane-motion problems
and x-y-z, r-8-z, and R-6-¢ coordinates for space problems,

UNZA., Department of Mechanical Engineering
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2. Work-Energy Equations

Next, we integrated the basic equation of motion ZF = ma with re-
spect to displacement and derived the scalar equations for work and en-
ergy. These equations enable us to relate the initial and final velocities to
the work done during an interval by forces external to our defined system.
We expanded this approach to include potential energy, both elastic and
gravitational. With these tools we discovered that the energy approach is
especially valuable for conservative systems, that is, systems wherein the
loss of energy due to friction or other forms of dissipation is negligible.

UNZA., Department of Mechanical Engineering
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3. Impulse-Momentum Equations

Finally, we rewrote Newton’s second law in the form of force equals
time rate of change of linear momentum and moment equals time rate
of change of angular momentum. Then we integrated these relations
with respect to time and derived the impulse and momentum equations.
These equations were then applied to motion intervals where the forces
were functions of time. We also investigated the interactions between
particles under conditions where the linear momentum is conserved and
where the angular momentum is conserved.
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