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4/1 INTRODUCTION

In the previous two chapters, we have applied the principles of dy-
namics to the motion of a particle. Although we focused primarily on the
kinetics of a single particle in Chapter 3, we mentioned the motion of
two particles, considered together as a system, when we discussed work-
energy and impulse-momentum.

Our next major step in the development of dynamics is to extend
these principles, which we applied to a single particle, to describe the
motion of a general system of particles. This extension will unify the re-
maining topics of dynamics and enable us to treat the motion of both
rigid bodies and nonrigid systems.
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Recall that a rigid body is a solid system of particles wherein the
distances between particles remain essentially unchanged. The overall
motions found with machines, land and air vehicles, rockets and space-
craft, and many moving structures provide examples of rigid-body prob-
lems. On the other hand, we may need to study the time-dependent
changes in the shape of a nonrigid, but solid, body due to elastic or in-
elastic deformations. Another example of a nonrigid body is a defined
mass of liquid or gaseous particles flowing at a specified rate. Examples
are the air and fuel flowing through the turbine of an aircraft engine,

the burned gases issuing from the nozzle of a rocket motor, or the water

passing through a rotary pump.
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4/2 GENERALIZED NEWTON'S SECOND LAwW

We now extend Newton’s second law of motion to cover a general
mass system which we model by considering n mass particles bounded
by a closed surface in space, Fig. 4/1. This bounding envelope, for ex-
ample, may be the exterior surface of a given rigid body, the bounding
surface of an arbitrary portion of the body, the exterior surface of a
rocket containing both rigid and flowing particles, or a particular vol-
ume of fluid particles. In each case, the system to be considered is the
mass within the envelope, and that mass must be clearly defined and
isolated.
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Figure 4/1 shows a representative particle of mass mn; of the svstem
isolated with forces F,, F;, F;. . . . acting on m; from sources external to

'II.].'.LE ETITE].HPE, EI]'.II:] FHI'EEH IF]_, f!, f."l-:l A ﬂEtinE I Iy Fl'ﬂ].'l'.l HOUrCe-s IEF'!-f'I'EF'I'!-I:I-EI
to the system boundary. The external forees are due to contact with ex-
lernal bodies or o exlernal pravilational, electric, or magnelic ellecls.
The internal forces are forees of reaction with other mass particles
within the boundary. The particle of mass m; is located by its position
vector r; measured from the nonaccelerating origin O of a Newtonian

set of reference axes.* The center of mass ¢ of the isolated system of
particles i3 located by the position vector r which, from the definition of
the mass center as covered in statics, is given by

mr = Im.r,

where the total system mass is m = Zm,. The summation sign I repre-
sents the summation ', over all n particles,

L]
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Newton's second law, Eq. 3/3, when applied to m, gives
F,+F,+Fy+ -+, +E+6+ -~ =mi;

where ¥, is the acceleration of m;. A similar equation may be written for
each of the particles of the system. If these equations written for all par-
ticles of the system are added together, the result is

ZF + Zf = Zmr,

The term IF then becomes the vector sum of e/l forces acting on all
particles of the isolated system from sources external to the system, and

Ef becomes the vector sum of all forces on all particles produced by the
internal actions and reactions between particles. This last sum is identi-
cally zero since all internal forces occur in pairs of equal and opposite
actions and reactions. By differentiating the equation defining r twice
with time, we have mr = Em ¥, where m has a zero time derivative as
long as masg is not entering or leaving the system.® Substitution into
the summation of the equations of motion gives

(EF = mr or 3IF = mi] (4/1)

where a is the acceleration T of the center of mass of the system.
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Equation 4/1 is the generalized Newton’s second law of motion for a
mass system and is called the equation of motion of m. The equation
states that the resultant of the external forces on any system of masses
equals the total mass of the system times the acceleration of the center
of mass. This law expresses the so-called principle of motion of the mass
cender.

Observe that a is the acceleration of the mathematical point which
represents instantaneously the position of the mass center for the given
n particles. For a nonrigid body, this acceleration need not represent the
acceleration of any particular particle. Note also that Eq. 4/1 holds for
each instant of time and is therefore an instantaneous relationship.
Equation 4/1 for the mass system had to be proved, as it cannot be in-
ferred directly from Eq. 3/3 for a single particle.
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Equation 4/1 may be expressed in component form using x-y-z coor-
dinates or whatever coordinate system is most convenient for the prob-
lem at hand. Thus,

IF = ma, IF, = ma, XF, = ma, (4/1a)

Although Eq. 4/1, as a vector equation, requires that the accelera-
tion vector a have the same direction as the resultant external force LF,
it does not follow that XF necessarily passes through G. In general, in
fact, XF does not pass through G, as will be shown later.

UNZA., Department of Mechanical Engineering



4/3 WoRK-ENERGY

In Art. 3/6 we developed the work-energy relation for a single parti-
cle, and we noted that it applies to a system of two joined particles,
Now consider the general system of Fig. 4/1, where the work-energy re-
lation for the representative particle of mass m, 18 (U, ), = AT,. Here
(U7,.5); is the work done on in; during an interval of motion by all forces
F,+F, +F,; +--+ applied from sources external to the system and by
all forcesf, + £, + £, +--- applied from sources internal to the system.
The kinetic energy of m; 1s T, = ém v.% where v, is the magnitude of the

[ Sot 00
particle velocity v, = r,.
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Work-Energy Relation

For the entire system, the sum of the work-energy equations writ-
ten for all particles is Z(U, ,); = ZAT,, which may be represented by the
same expressions as Eqgs. 3/15 and 3/15a of Art. 3/6, namely,

[Um SAP dr meih e Tz) (4/2)

where U, ; = Z(U, ;);, the work done by all forces, external and internal,
on aii particies, and AT 18 the change in the totai RKinetic energy T = LT,
of the system.
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For a rigid body or a system of rigid bodies joined by idea! friction-
less connections, no net work is done by the internal interacting forces
or moments in the connections. We see that the work done by all pairs
of internal forces, labeled here as f; and —f, at a typical connection, Fig.

/2, in the system is zero since thair points of application have identical
digplacement components while the forces are equal but opposite. For
this situation U, , becomes the work done on the system by the external
forces only.

Figure 4/2
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For a nonrigid mechanical system which includes elastic members
capable of storing energy, a part of the work done by the external forces
goes into changing the internal elastic potential energy V.. Also, if the
work done by the gravity forces 18 excluded from the work term and is
accounted for instead by the changes in gravitational potential energy
V., then we may equate the work U} , done on the system during an in-
terval of motion to the change AE in the total mechanical energy of the
system. Thus, U], = AE or

(U;,2 = AT + AV] (4/3)

or

(Tl + Vl -+ U;,Q = T2 + Vz] (4/3(1)

which are the same as Eqgs. 3/21 and 3/21a. Here, as in Chapter 3, V =
V. + V. represents the total potential energy.
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We now examine the expression 7' = £ ; m v,” for the kinetic energy
of the mass system in more detail. By our principle of relative motion
discussed in Art. 2/8, we may write the velocity of the representative
particle as

vi=V+p1

where v is the velocity of the mass center G and p, is the velocity of m,
with respect to a translating reference frame moving with the mass cen-

ter (7. We recall the identity v,” = v, v, and write the kinetic energy of
the system as
T=% mv-v=slm&+p)&+g
B LA SR SRl YLl p;)\v P,)

B Z%m‘.r}z - Z%m,-lﬁ,-!z +Imyv-p,

Because p; 1s measured from the mass center, ¥ p;, = 0 and the third
term is v-Im, p; = Z(m,p,) - 0. Also I o M 2= ;6" Im; = ;mi'"“’.
Therefore, the total kmetlc energy becomes

[ 2mv’ﬂ-rzmlpllz] (4/4)
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This equatian evpreaces the fact that the tatal kinatic anergy nf a maas
system equals the kinetic energy of mass-center translation of the sys-
tem as a whole plus the kinetic energy due to motion of all particles rel-
ative to the mass center.
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4/4 ImpPuLse-MOMENTUM

We now develop the concepts of momentum and impulse as applied
to a system of particles.

Linear Momentum

From our definition in Art. 3/8, the linear momentum of the repre-
sentative particle of the system depicted in Fig. 4/1 1s G; = m;v; where
the velocity of m; is v; = r,.

The linear momentum of the system is defined as the vector sum of
the linear momenta of all of its particles, or G = Tm,v,. By substituting
the relative-velocity relation v, = v + p, and noting again that ¥m p, =
mp = 0, we obtain

< Sm.p,

di

=wviIm, + g—t(ﬂ)

G=IZni(v+p,)=Zmyv+

ar

Thus, the linear momentum of any system of constant mass is the prod-
uct of the mass and the velocity of its center of mass.



The time derivative of G is mv = ma, which by Eq. 4/1 is the resul-
tant external force acting on the system. Thus, we have

o

which has the same form as Eq. 3/25 for a single particle. Equation 4/6
states that the resultant of the external forces on any mass system
equals the time rate of change of the inear momentum of the system. It
is an alternative form of the generalized second law of motion, Eq. 4/1.
As was noted at the end of the last article, £F, in general, does not pass
through the mass center G. In deriving Eq. 4/6, we differentiated with
respect to time and assumed that the total mass is constant. Thus, the
equation does not apply to systems whose mass changes with time.

UNZA., Department of Mechanical Engineering
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Angular Momentum

We now determine the angular momentum of our general mass
system about the fixed point O, about the mass center (7, and about an
arbitrary point P, shown in Fig. 4/3, which may have an acceleration
ap = i'p.

About a Fixed Point 0. The angular momentum of the mass system
about the point O, fixed in the Newtonian reference system, is defined
as the vector sum of the moments of the inear momenta about O of all
particles of the system and is

H, = 2(r; X myv,)

The time derivative of the vevior produet is flO = XiF; X mvy) +
Lir, X m;v,). The first summation vanishes since the cross product of two
parallel vectors r; and m,v, is zero. The second summation is X(r; X ma,) =
X{r; X F,), which is the vector sum of the moments about O of all forces
acting on all particles of the system. This moment sum IM, represents
only the moments of forces external to the system, since the internal
forces cancel one another and their moments add up to zero. Thus, the
moment sum 1s

[zmo = ﬁo] (4/7)

which has the same form as Eq. 3/31 for a single particle.
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Equation 4/7 states that the resultant vector moment about any
fixed point of all external forces on any svatem of mass equals the time
rate of change of angular momentum of the system about the fizxed
point. As In the lincar-momentum case, Eg. 4/7 does net apply if the
total mass of the system i3 changing with time.

About the Mass Center G. The angular momentum of the mass
system about the mass center (7 1s the sum of the moments of the linear
momenta about (7 of all particles and is

Hy = Zp. X m.x; (4/8)
We may write the absolute velocity ¥, as (¥ + p,) so that H; becomes
H; = 5p, x mr + p;) =Ep, x m;r + Ep, X m;p,
The first term on the right side of this equation may be rewritten as

—1 % Im,p,, which is zero because Zmn,p, = 0 by definition of the mass
center. Thus, we have

H = p, X m,p; (4/8a)

UNZA., Department of Mechanical Engineering
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The expression of Eq. 4/8 is called the absolute angular momentum
because the absolute velocity r, is used. The expression of Eq. 4/8a is
called the relative angular momentum because the relative velocity p; is
used. With the mass center (¢ as a reference, the absolute and relative
angular momenta are seen to be identical. We will see that this identity
does not hold for an arbitrary reference point P; there is no distinction
for a fixed reference point O.

UNZA., Department of Mechanical Engineering
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Differentiating Eq. 4/8 with respect to time gives
H,=Xp, x mr + p,) + Zp, X m,¥,

The first summation is expanded as £p, X m,r + £p, X m;p,. The first
term may be rewritten as —r X Im;p; = —r X (‘;{ ¥m,p;, which is zero
from the definition of the masa eenter. The second term io 2ero beeausce
the cross product of parallel vectors is zero. With F, representing the
sum of all external forces acting on m, and f, the sum of all internal
forces acting on m,, the second summation by Newton's second law be-
comes Zp; X (F; | £) = Zp, x F;, = EM;;, the sum of all external mo-
ments about point (7. Recall that the sum of all internal moments Xp, x f,
is zero. Thus, we are left with

(mc - HG] (4/9)

where we may use either the absolute or the relative angular momentum.

UNZA., Department of Mechanical Engineering
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Equations 4/7 and 4/9 are among the most poweri'ul of the govern-
ing equations in dyvnamics and apply to any defined system of constant
mass—rigid or nonrigid.
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About an Arbitrary Point P. The angular momentum about an ar-
bitrary point P (which may have an acceleration rp) will now be ex-
pressed with the notation of Fig. 4/3. Thus,

Hp = Zp, X m;r, = X(p + p;) X m;T,

The first term may be written as p X Emr;, = p X Em;v, = p X mv. The
second term is Zp; X m;r; = Hg;. Thus, rearranging gives

[HP=HG+EXm€'] (4/10)

Equation 4/10 states that the absolute angular momentum about any
point P equals the angular momentum about & plus the moment about P
of the linear momentum mv of the system considered concentrated at GG.

UNZA., Department of Mechanical Engineering 23



IM; = Hg

B We now make use of the principle of moments developed in our
study of statics where we represented a force system by a resultant force
| through any point, such as (¢, and a corresponding couple. Figure 4/4
. represents the resultants of the external forces acting on the system ex-
P pressed in terms of the resultant force EF through (¢ and the corre-
Fi sponding couple EM;. We =ee that the sum of the moments about F of
igure 4/4 ;

all forces external to the system must equal the moment of their resul-

tants. Therefore, we may write

SM, = M, + p X XF

which, by Eqs. 4/9 and 4/6, becomes

[EMP=I:IG+,-3HMEJ (4/11)
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Equation 4/11 enables us to write the moment equation about any con-
venient moment center P and is easily visualized with the aid of Fig. 4/4.
This eyuativn (Urs a rigurvus basis [ wuch vf vur lreatinent vl pla-

nar rigid-body kinetics in Chapter 6.
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We may also develup similar momenium refativonships by using the
momentum relative to P. Thus, from Fig. 4/3

(Hp),, = Ep) X m,p!

where p/ is the velocity of m; relative to P. With the substitution
p. =p+p and p. = p+ p. we may write

[HP"rcl = Zp X ,nlb + Zp X "liﬁa + zpi X mlb T Zpi X ’nnpi

The first summation 1s p X mv_,. The second summation is p X (?t im;p,

and the third summation is —p X Zm, p: where both are zero by defini-
tion of the mass center. The fourth summation is (Hg;),.. Rearranging
gives us

(HP)rel - (Hﬁ‘)re] - b X m.Gn_.l (4/12)

UNZA., Department of Mechanical Engineering
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where (H;),, is the same as H; (see Eqgs. 4/8 and 4/8a). Note the simi-
larity of Eqs. 4/12 and 4/10,

The moment equation about P may now be expressed in terms of
the angular momentum relative to P. We differentiate the definition
(Hp),.. = Ip. X m,p, with time and make the substitution ¥, = ¥p + g/
to obtain

(I:IP)M =3p/ X m;p. + 3p. X m;¥, — Ep! X m;p
The first summation is identically zero, and the second summation is the
sum XM, of the moments of all external forces about P. The third summa-
tion becomes Sp, X ma, ~ ~ay X Tnp — —an X mp — p X mau Sub.
stituting and rearranging terms give

(EM,, = (Hp),,, + p X mapj (4/13)

UNZA., Department of Mechanical Engineering
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The form of Eq. 4/13 is convenient when a point P whose acceleration is
known is used as a moment center. The equation reduces to the simpler
form

1. ap = 0 (equivalent to Eq. 4/7)
M, = (Hp)rel if 2. p = 0 (equivalent to Eq. 4/9)
3. pand a are parallel (a, directed
toward or away from ()
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4/5 CONSERVATION OF ENERGY AND MOMENTUM

Under certain common conditions, there is no net change in the
total mechanical energy of a system during an interval of motion. Under
other conditions, there is no net change in the momentum of a system.
These conditions are treated separately as follows.

Conservation of Energy

A mass system is said to be conservative if it does not lose energy by
virtuc of internal friction forces which do negative worle or by virtuc of in
elastic members which dissipate energy upon cycling, If no work is done
vl & cunservablve sysbens during an ulerval of wotivn by eaxternal furces
(other than gravity or other potential forces), then none of the energy of
the system is lost. For this case, U] , = 0 and we may write Eq. 4/3 as

[AT + AV = o] (4/14)

or

[T, +V, =T, + sz (4/14a)

which expresses the law of conservaiion of dynamical energy. The total
energy £ = T + Vis a constant, so that E; = E. This law holds only in
the ideal case where internal kinetic friction is sufficiently small to be

neglected.
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Conservation of Momentum

If, for a certain interval of time, the resultant external force XF act-
ing on a conservative or nonconservative mass system is zero, Eq. 4/6 re-
guires that G = 0, so that during this interval

(6.=¢,] (4/15)

which expresses the principle of conservation of linear momentum.
Thus, in the absence of an external impulge, the linear momentum of a
system remains unchanged.

Similarly, if the resultant moment about a fixed point O or about
the mass center G of all external forces on anv mass system is zero, Eq.
4/7 or 4/9 requires, respectively, that

[(Ho)l = (Hp), or (Hg), = (Ha)zJ (4/16)

UNZA., Department of Mechanical Engineering
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These relations express the principle of conservation of angular momen-
tum for a general mass system in the absence of an angular impulse.
Thus, if there 1s no angular impulse about a fixed point (or about the
mass center), the angular momentum of the system about the fixed
point {or about the mass center) remains unchanged. Bither equation
may hold without the other.
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We proved in Art. 3/14 that the basic laws of Newtonian mechanics
hold for measurements made relative to a set of axes which translate
with a constant velocity. Thua, Eqgs. 4/1 through 4/16 are valid provided
all quantities are expressed relative to the translating axes.

Equations 4/1 through 4/16 are among the most important of the basic
derived laws of mechanics. In this chapter we have derived these laws for
the most general system of constant mass to establish the generality of

these laws, Common applications of these laws are specific mass systems
such as rigid and nonrigid solids and certain fluid systems, which are dis-

cussed in the following articles. Study these laws carefully and compare
them with their more restricted forms encountered earlier in Chapter 3.
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CCHINAPHOTO,Rauters /CORBIS

The principlos of particle-systom kinotics form tha foundation

for the study of the forces associated with the water-spraying
zquipment of these firetighting beats.
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