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Rigid-Body Assumption

In the previous chapter we defined a rigid body as a system of parti-
cles for which the distances between the particles remain unchanged.
Thus, if each particle of such a body 1s located by a position vector from
reference axes attached to and rotating with the body. there will be no
change in any position vector as measured from these axes. This is, of
course, an ideal case sinece all solid materials change shape to some ex-
tent when forces are applied to them.
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Plane Motion

A rigid body executes plane motion when all parts of the body move
in paraliel planes. For convenience, we generally consider the plane of

maotion to be the plane which contains the mass center, and we treat the
body as a thin slab whose motion is confined to the plane of the slab.
This idealization adequately describes a very large category of rigid-
body motions encountered in engineering,
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‘The plane motion of a rigirl_hnd].r m;-.}.r be divided into several cate-
gories, as represented in Fig. 5/1.

Type of Rigid-Body Plane Motion Example

(@)
Rectilinear
translation

(h)
Curvilinear
translation

{c)
Fixed-axis
rotation

(d)
General
plane motion

\
s B’ | Connecting rod in a
it reciprocating engine

Figure 5/1
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ITransilation 13 defined as any motion in which everv line in the
body remains parallel to its original position at all times. In translation
there i3 no rotation of any line in the body. In rectilinear translation,
part a of Fig. 5/1, all points in the body move in parallel straight lines.
In curvilinear translation, part b, all points move on congruent curves.
We note that in each of the two cases of transiation, the motion of the
body is completely specified by the motion of any point in the body, since
all puints have the same motion. Thus, our earlier study of the motion of
a point iparticle) in Chapter 2 enabies us to describe completely the
translation of a rigid body.
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Rotativn about a fixed axis, part ¢ of Fig. 5/1, is the angular motion
about the axis. It follows that all particles in a rigid body move in circu-
lar paths about the axis of rotation, and all lines in the body which are
perpendicular to the axis of rotation (including those which do not pass
through the axis) rotate through the same angle in the same time.
Again, our digcussion in Chapter 2 on the circular motion of a point en-

ables us to describe the motion of a rotating rigid body, which is treated
in the next article.

General plane motion of a rigid body, part d of Fig. 5/1, 18 a com-
hination of translation and rotation. We will utilize the principlea of rel
ative motion covered in Art. 2/8 to describe general plane motion.
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Note that in each of the examples cited, the actual paths of all parti-

clea in the body are projected onto the single plane of motion as repre-
sented in each figure.

Analysis of the plane motion of rigid bodies is accomplished either
by directly calculating the absolute displacements and their time deriva-
tives [rom Lhe geometry involved or by utidzing the principles of refative
motion. Each method is important and useful and will be covered in
turn in the articles which follow,
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5/2 ROTATION

Figure 5/2

The rotation of a rigid body is described by its angular motion.
Figure 5/2 shows a rigid body which is rotating as it undergoes plane
motion in the plane of the figure. The angular positions of any two
lines 1 and 2 attached to the body are specified by ¢, and #, measured
from any convenient fixed reference direction. Because the angle £ is
invariant, the relation 6; = 0, + 8 upon differentiation with respect
to time gives #, = 6, and A, = 8, or, during a finite interval, A8, = A#,.

Thus, ali lines on a rigid body tn ils plane of motion have the same an-
gular displacement, the same angular velocity, and the same angular
acceleration.
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Angular-Motion Relations

The angular velocity @ and angular aceeleration a of a rigid body in
plane rotation are, respectively, the first and second time derivatives of

the angular position coordinate # of any line in the plane of motion of
the body. These definitions give

i d6 i
w=—t—= f
2
a=%=w or a=%§=0
Lan:iw=‘a:d0 or 0db = édﬂl
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For rotation with constant angular acceleration, the integrals of
Eqs. 5/1 becomes

w = wy + at

0=, wd + .iatz

Here A and wq are the values of the angular position coordinate and an-
gular velocity, respectively, at ¢ = 0, and f is the duration of the motion
considered. You should be able to carry out these integrations easily, as
they are completely analogous to the corresponding equations for recti-
linear motion with constant acceleration covered in Art. 2/2.

UNZA., Department of Mechanical Engineering
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Rotation about a Fixed Axis

When a rigid body rotates about a fixed axis, all points other than

those on the axis move in concentric circles about the fixed axis. Thus,
for the rigid body in Fig. 6/3 rotating ahout a fined axic normal ta the

plane of the figure through O, any point such as A moves in a circle of
radius 7. From the previous discussion in Art. 2/5, you should already be
familiar with the relationships between the linear motion of A and the
angular motion of the line normal to its path, which is also the angular
motion of the rigid body. With the notation @ = # anda = @ = # for the

angular velocity and angular acceleration, respectively, of the body we
have Eqs. 2/11, rewritten as

[ v =rw j
a, = ro® =uvir = vo (5/2)
ﬂi =S

ey ~
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Rotation about a Fixed Axis

(a)

UNZA., Department of Mechanical Engineering

Figure 5/4
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These quantities may be expressed alternatively using the cross-prod-
uct relationship of vector notation. The vector formulation is especially
important in the analysis of three-dimensional motion. The angular veloc-
ity of the rotating body may be expressed by the vector @ normal to the
planc of retation and having a scnee governed by the right hand rule, as
shown in Fig. 5/4a. From the definition of the vector cross product, we see
that the vector v is obtained by crossing o into r. This cross product gives
the correct magnitude and direction for v and we write

v=r=w@Xr

The order of the vectors to be crossed must be retained. The reverse
order givesr X @ = ~V.

UNZA., Department of Mechanical Engineering
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The acceleration of point A is obtained by differentiating the cross-
product expression for v, which gives

a=v

Here a = @ stands for the
vector equivalents to Egs. 5

=@wXYteoXr
—wXlw@Xr)+toXr

=wXvtaXr

angular acceleration of the body. Thus, the

/2 are

r

-

V=eXr
a ~owXwXr!
a=aXxr

and are shown in Fig. 5/4b.

UNZA., Department of Mechanical Engine
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For three-dimensional motion of a rigid body, the angular-velocity
vector w may change direction as well as magnitude, and in this case,
the angular acceleration, which is the time derivative of angular veloc-
ity, & = @, will no longer be in the same direction as w.

UNZA., Department of Mechanical Engineering
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Sample Problem 5/1

A flywheel rotating freely at 1800 revimin clockwise is subjected to a vari-
able counterclockwise torque which is first applied at time ¢ = 0. The torque pro-
duces a counterclockwise angular acceleration o = 4¢ rad/s®, where 7 is the time
in seconds during which the torque is applied. Determine la) the time required
for the flywheel to reduce its clockwise angular speed to 900 rev/min, (b} the time
required for the flywheel to reverse its direction of rotation, and (c) the total
number of revolutions, clockwise plus counterclockwise, turned by the fiywheel
during the first 14 seconds of torque application.

UNZA., Department of Mechanical Engineering
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Solution. The counterclockwise direction will be taken arbitrarily as positive.

(a) Since a is a known function of the time, we may integrate it to obtain angular
velocity. With the initial angular velocity of —1800(27)/60 = —60x rad’s, we have

w {
[dw = o di] f dw = f 4t di w = —607 + 22
~@0 1]

Substituting the clockwise angular speed of 900 rev/min or @ = —900(27)/60 =
— 307 rad/s gives

-30m = —60m + 2% t2 = 157 t=686s Ans.

(b) The flywheel changes direction when its angular velocity is momentarily
zero, Thus,

0= -60m+ 2 2= 30m t=971s Ans.

UNZA., Department of Mechanical Engineering
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fe) The total number of revolutions through which the flywheel turns during 14
seconds is the number of clockwise turns N, during the first 9.71 seconds, plus
the number of counterclockwise turns N, during the remainder of the interval.
Integrating the expression for w in terms of ¢ gives us the angular displacement
in radians. Thus, for the first interval

4, ~9.71
[d8 = w dt] [ dil = J (—607 + 2¢2) dt
<0 0

B, = |—60at + 2107 = —1220 rad

or N, = 1220/2m = 194.2 revolutions clockwise.
For the second interval

thy 14
df = f (—607 + 2i*) dt
] 971
= 2 g4
0y = [~60at + 5%, =410rad

or N; = 410/27 = 65.3 revolutions counterclockwise. Thus, the total number of
revolutions turned during the 14 seconds is

N=N;+ Ny;=1942 | 65.3 = 259 rev Ans.

We have plotted @ versus # and we see that ¢, is represented by the negative
area and , by the positive area. If we had integrated over the entire interval in
one step, we would have obtained |0, — |8,

UNZA., Department of Mechanical Engineering
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64 .87

6.86 971/ g,

9
~30
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Sample Problem 5/3

The right-angle bar rotates clockwise with an angular velocity which is de-
creasing at the rate of 4 rad/s*. Write the vector expressions for the velocity and
acceleration of point A when « = 2 rad/s.

_— K

UNZA., Department of Mechanical Engineering
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Solution. Using the right-hand rule gives
@ = —2K rad/s and a = +4Kk rad/s”

The velocity and acceleration of A become

lv=wXr] v = =2k X (041 + 0.3)) = 0.61 — 0.8 m/s
la, =@ X (wxr)] a =-2k X (06i— 08j) = —1.6i — 1.2j m/s*
la, = a X r] a = 4k x (0.4i + 0.3)) = —1.2i + 1.6j m/s*
la=a_ +a] = —28i + 0.4j m/s*

The magnitudes of v and a are

b = \-"().63 + 082 =1m/s and @ = J2.8% + 0.4% = 2.83 m/s?

UNZA., Department of Mechanical Engineering
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5/3 ApsoLuTE MoTION

We now develop the approach of absolute-motion analysis to de-
scribe the plane kinematics of rigid bodies. In this approach, we make
use of the geometric relations which define the configuration of the body
involved and then proceed to take the time derivatives of the defining
geometric relations to obtain velocities and accelerations.

The absolute-motion approach to rigid-body kinematics is quite
straightforward, provided the configuration lends itself to a geometric
description wluch is nul uverly complex, If the geumelr e conliguration is
awkward or complex, analysis by the principles of relative motion may be
preferable. Relative-motion analysis is treated in this chapter beginning
with Art. 5/4. The choice between absolute- and relative-motion analyses
is best made after experience has been gained with both approaches.
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The next three sample problems illustrate the application of absolute-
muiion analysis (o three communiy encountered situations. The kine-
matics of a rolling wheel, treated in Sample Problem 5/4, is especially
important and will be useful in much of the problem work because the

rolling wheel in various forms is such a common element in mechanical
systems.

UNZA., Department of Mechanical Engineering
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Sample Problem 5/4

A wheel of radius r rolls on a flat surface without slipping. Determine the
angular motion of the wheel in terms of the linear motion of its center 0. Also
determine the aceeleration of & point on the rim of the wheel as the point comes
into contact with the surface on which the wheel rolls.

UNZA., Department of Mechanical Engineering
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Solution. The figure shows the wheel rolling to the right from the dashed to
the full position without slipping. The linear displacement of the center O is s,
which is also the arc length C'A along the rim on which the wheel rolls. The ra-
dial line CO rotates to the new position ("Q" through the angle ¢, where # 15
measured {from the vertical direction. If the wheel does not slip, the arc C'A must
equal the distance s. Thus, the displacement relationship and its two time deriv-
atives give

s=rd
Ug = r Ans,
ao = ra

wherevy = 8, ap = g = 5, @ = fi,and & = @ = #. The angle 8, of course, must
be in radians. The aceeleration e, will be directed in the sense opposite to that of
vg if the wheel i8 slowing down. In this event, the angular acceleration « will
have the sense opposite Lo that of w.

UNZA., Department of Mechanical Engineering
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The origin of fixed coordinates is taken arbitrarily but conveniently at the
point of contact between C on the rim of the wheel and the ground. When point
C has moved along its cycloidal path to C', its new coordinates and their time de-
rivatives become

X=8§—rsnf =rid —sind) y=r—rcost =ril —cosf)

X =r10(1 - cos ) = v,(1 — cos ) y =rdsin¥ = v, sin 6

.'t'=i'o(1—cosﬂ)+voé sin 0 ¥ = py8in0 + v,yf cos @
=@yl — cos#) + re® sin ¢ = a,sin # + rw® cos d

For the desired instant of contact, § = 0 and

F=0 and ¥ = r? Ans.

UNZA., Department of Mechanical Engineering
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Thus, the acceleration of the point C on the rim at the instant of contact with
the ground depends only on r and w and 1s directed toward the center of the
wheel, If desired, the velocity and acceleration of C at any position # may be ob-
tained by writing the expressions v = xi + yjanda = i + ¥j.

Application of the kinematic relationships for a wheel which rolls without
slipping should be recognized for various configurations of rolling wheels such as
those illustrated on the right. If a wheel slips as it rolls, the foregoing relations
are no longer valid.

UNZA., Department of Mechanical Engineering
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Sample Problem 5/6

Motion of the equilateral triangular plate ABC in ita plane ia controlled by
the hydraulic eylinder D, If the piston rod in the eylinder 1s moving upward at the
constant rate of 0.3 m/s during an interval of its motion, calculate for the instant
when ¢ = 30° the velocity and acceleration of the center of the roller B in the hor-
izontal guide and the angular velocity and angular acceleration of edge CB.

C
3 d\\
b %
b_—
2]
x__._ g —m | By, 4
B!
5
X

UNZA., Department of Mechanical Engineering
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Solution. With the x-v coordinates chosen as shown, the given motion of A is
va =y =03misanda, = y = 0. The accompanying motion of B is given by x and
its time derivatives, which may be obtained from x2 + ¥* = &% Differentiating gives

Rty =0 d=-%j

¥

e B AN R i, o
X +x2+yy+yi=0 X z g

x
Withy = bsinf,x = bcos ¢, and ¥ = 0, the expressions become

Ug =X =-uAtan9

- Ua ’
ag =% = ———sec’ 0

Substituting the numerical values v, = 0.3 m/s and # = 30° gives

vg = -0.3(%_-) = —0.1732 m/s Ans,

\!3

12 [ "’— 3
ag = — lg?}—o{i"@ !- = —().693 m/s* Ans.
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The negative signs indicate that the velocity and acceleration of B are both to
the right since x and its derivatives are positive to the left.

The angular motion of CB is the same as that of every line on the plate, in-
cluding AB. Differentiating y = b sin 0 gives

) X . Uy
v =50 cos w=0=?sec0
The angular acceleration is
. Up - Uﬂg .
a=@="f@secftanf? = . sec’d tan 6
b b2
Substitution of the numerical values gives
w=23 2 _ 1732 rads Ans.
0.2 /3
212 \2
o= LO“‘S)- (“2’) ’—{.:: = 1732 md)'sz Ans.
0.2)2\./3/ /3

Both w and « are counterclockwise since their signs are positive in the sense of
the positive measurement of 4.
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5/4 _RELATIVE VELOCITY

The second approach to rigid-body kinematics is to use the principles
of relative motion. In Art. 2/8 we developed these principles for motion
relative to translating axes and applied the relative-velocity equation

Vy=Vp + vA"B [2/20]

to the motions of two particles A and B.

UNZA., Department of Mechanical Engineering
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Relative Velocity Due to Rotation

We now choose two points on the same rigid body for our two parti-
cles. The consequence of this choice is that the motion of one point as
seen by an observer translating with the other point must be circular

since the radial distance to the observed point from the reference point
doea not change. This chservation 1s the key to the successful under-

standing of a large majority of problems in the plane motion of rigid
bodies.

UNZA., Department of Mechanical Engineering
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This concept is illustrated in Fig. 5/5a, which shows a rigid body
moving in the plane of the figure from position AR to A'B' during time
At. This movement may be visualized as occurring in two parts, First,
tho body tranclatos te the parallel pesition A"R’ with the displacomoent
Arg. Second, the body rotates about B’ through the angle A¢. From the
nonrotating reference axes x'-y’ attached to the reference point B', you
can see that this remaining motion of the body is one of simple rotation
about B’, giving rise to the displacement Ar .z of A with respect to B. To
the nonrotating observer attached to B, the body appears to undergo
fixed-axis rotation about B with A executing circular motion as empha-
sized in Fig. 5/56. Therefore, the relationships developed for circular
motion in Arts. 2/5 and 5/2 and cited as Egs. 2/11 and 5/2 (or 5/3) de-

scribe the relative portion of the motion of point A.

UNZA., Department of Mechanical Engineering
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Motion relative to B
() (b)

Figure 5/5

UNZA., Department of Mechanical Engineering

Motion relative to A
(c)
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With B as the reference point, we see from Fig. 5/6a that the total
displacement of A 18

ﬁ.l'ﬁ = all'_" -+ ﬂrr,-!_-ﬂ

where Ar,, has the magnitude rA¢ as A¢ approaches zero. We note that
the relative linear motion Ar,p is accompanied by the absolute angular
motion A6, as seen from the translating axes x'-y". Dividing the expres-
sion for Ar, by the corresponding time interval Af and passing to the
limit, we obtain the relative-veloeity equation

(VA =wvg + vNB] (5/4)

UNZA., Department of Mechanical Engineering
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Thia expresaion ia the same as Eq. 2/20, with the one restriction that the
distance r between A and B remains constant. The magnitude of the rel-
ative velocity is thus seen to be vyp = hm (|Aryp)/At) = hm (rA6/At)
which, with @ = 8, becomes

(vNB = rwJ (5/5)

Using r to represent the vector ryp from the first of Egs. 5/3, we may
write the relative velocity as the vector

(VA,B = w X rJ (5/6)

where @ io the angular velocity vector normal to the planc of the motion
in the sense determined by the right-hand rule. A eritical observation
seen from Figs. 5/56 and ¢ is that the relative linear velocity is always
perpendicular to the line joining the two points in question,

UNZA., Department of Mechanical Engineering

37



Interpretation of the Relative-Velocity Equation

We can better understand the application of Eq. 5/4 by visualizing
the separate translation and rotation components of the eguation.
These components are emphasized in Fig. 5/6, which shows a rigid body

Figure 5/6
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in plane motion. With B chosen as the reference point, the velocity of A
1s the vector sum of the translational portion vy, plus the rotational por-
tion vyp = @ X r, which has the magnitude v,z = rw, where |w| = 6,
the absolute angular velocity of AB. The fact that the relative linear ve-
locity 18 always perpendrcular to the line joining the two points in ques-
tion is an important key to the solution of many problems. To reinforce
your understanding of this concept, you should draw the equivalent dia-
gram where point A 1s used as the reference point rather than B.

UNZA., Department of Mechanical Engineering
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Equation 5/4 may also be used to analyze constrained sliding con-
tact between two links in a mechanism. In this case, we choose points A
and B as coincident points, one on each link, for the instant under con-
sideration. In contrast to the previous example, in this case, the two
points are on different bodies so they are not a fixed distance apart. This
second use of the relative-velocity equation is illustrated in Sample
Problem 5/10.

UNZA., Department of Mechanical Engineering
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Solution of the Relative-Velocity Equation

Solution of the relative-velocity equation may be carried out by
scalar or vector algebra, or a graphical analysis may be employed. A
sketch of the vector polyvgon which represents the vector eguation
should always be made to reveal the physical relationships mvolved.
From thig sketch, you can write sealar component equations by project-
ing the vectors along convenient directions. You can usually avoid solv-
ing simultaneous equations by a careful choice of the projections.
Alternatively, each term in the relative-motion equation may be written
in terms of its i- and j-components, from which you will obtain two
scalar equations when the equality 1s apphed, separately, to the coeffi-
cients of the i- and j-terms.
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Sample Problem 5/7

The wheel of radius r = 300 mm rolls to the right without slipping and has a
velocity vy = 3 m/s of its center O. Calculate the velocity of point A on the wheel
for the instant represented.

UNZA., Department of Mechanical Engineering
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Solution I (Scalar-Geometric). The center O is chosen as the reference point
for the relative-velocity equation since its motion is given. We therefore write

VA =V + vA,'O

where the relative-velocity term is observed from the translating axes x-y at-
tached to O. The angular velocity of AO is the same as that of the wheel which,
from Sample Problem 5/4, is @ = vo/r = 3/0.3 = 10 rad/s. Thus, from Eq. 5/6 we
have

[UA)O = roé] Vao = 0.2(10) = 2 my/s

which is normal to AO as shown. The vector sum v, iz shown on the diagram
and may be calculated from the law of cosines. Thus,

ve? =32 + 22 + 2(3)2) cos 6(° = 19 (m/s)* vy = 4.36 m/s Ans.

The contact point C' momentarily has zero velocity and can be used alterna-
tively as the reference point, in which case, the relative-velocity equation be-
comes V4 = Vo + Vo = Vyc Where

Vsio = ACw = 13—(0’ v = g—%g (3) = 4.36 m/s Uy = Uy = 436 m/s

The distance AC = 436 mm is calculated separately. We see that v, is normal to
AC since A is momentarily rotating about point C.

UNZA., Department of Mechanical Engineering
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Solution Il (Vector). We will now use Eq. 5/6 and write
VAa=Vp+ Yy =Vp+@Xn,
where
w = — 10K rad/s
rg = 02(—icos 30° + j sin 30") = —0.1732i + 0.1]j m
Vo = Jims
We now solve the vector equation

i J k
vy, =3i+ 0 0 -—-10|=3i+1.732) +1
-01732 01 O

= 4i + 1.732) m/s Ans.

The magnitude vy = 42 + (1.732)? = (19 = 4.36 m/s and direction agree with
the previous solution,

UNZA., Department of Mechanical Engineering
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Sample Problem 5/8

Crank CB oscillates about C through a limited are, causing crank OA to os-
cillate about 0. When the linkage passes the position shown with CB horizontal
and OA vertical, the angular velocity of CB is 2 rad/s eounterclockwise. For this
instant, determine the angular velocities of OA and AB.
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Solution I (Vector). The relative-velocity equation v = vy + V, 5 is rewritten as

Wop X Ty = Wop X ¥+ @ XXy,
where

W, = oK wog = 2k rad/s W, =~ Wk
r, = 100j mm ry = —75i mm ryg = —1751 + 50j mm
Substitution gives
wok X 100§ = 2k X (—751) + w, gk X (—17561 + 50j)
—100w 0 = —150f — 175w 5] — 50w 4l
Mateching coefficients of the respective i- and j-terms givea
100w, + 50w, = 0 256 + Twypy) = 0

the solutions of which are

wyp = —6/7 rad/s and wgs = —37 rad/s Ans.

UNZA., Department of Mechanical Engineering
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Solution Il (Scalar-Geometric). Solution by the scalar geometry of the vector
triangle is particularly simple here since v, and v are at right angles for this

special position of the linkages. First, we compute vy, which is

v = rwl vy = 0.075(2) = 0.150 m/s

and represent it in its correct direction as shown. The vector v,z must be per-
pendicular to AB, and the angle § between v, ; and vy is also the angle made by

AB with the horizontal direction. This angle is given by

_100—-50 _2
PR U T

The horizontal veetor vy completes the triangle for which we have

vag = vg'cos 8 = 0.150/cos 8
Ug = vgtan ¢ = 0.15002/7) = 0.30/7 m/s
The angular velocities become

[w = vir] Orn = Yas _ 0.150 cos @
AB = = = cos# 0.250 — 0.075

= §/7 rad/s CW

Ua 030 1
[w = wir] s B e B e e 32 317 TR/ CW
0A OA 7 0.

UNZA., Department of Mechanical Engineering
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5/5 INSTANTANEOUS CENTER OF ZErO VELOCITY

In the previous article, we determined the velocity of a point on a
rigid body in plane motion by adding the relative velocity due to rotation
about a convenient reference point to the velocity of the reference point.
We now solve the problem by choosing a unique reference point which
momentarily has zero velocity. As far as velocities are concerned, the
body may be considered to be in pure rotation about an axis, normal to
the plane of motion, passing through this point. This axis is called the
instantaneous axis of zero velocity, and the intersection of this axis with
the plane of motion is known as the instantaneous center of zero velocity.
This approach provides us with a valuable means for visualizing and an-
alyzing velocities in plane motion.

UNZA., Department of Mechanical Engineering
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Locating the Instantaneous Center

The coxietence of the instantancous contor 1= cosidy shown. For the
body in Fig. 5/7, assume that the directions of the absolute velocities of
any two pomnte A and B on the bady are knewn and are not paeallel, I
there i8 a point about which A has absolute circular motion at the in-
stant considered, this point must lie on the normal to v, through A.
Similar reasoning applies to B, and the intersection of the two perpen-
diculars fulfills the requirement for an absclute center of rotation af the
instant considered. Point ' is the instantaneous center of zero velocity
and may lie on or off the body. If it lieg off the body. it may be visualized
as lying on an imaginary extension of the body. The instantaneous cen-
ter need not be a fixed point in the body or a fixed point in the plane.

UNZA., Department of Mechanical Engineering
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(b)

Figure 5/7

(e)
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If we also know the magnitude of the velocity of one of the points,
say, v4, we may easily obtain the angular velocity @ of the body and the
linear velocity of every point in the body. Thus, the angular velocity of
the body, Fig. 5/7a, is

which, of course, is also the angular velocity of every line in the body.
Therefore, the velocity of B is vy = rpgew = (rpiryvs. Once the instanta-
neous center is located, the direction of the instantaneous velocity of

every point in the body is readily found since it must be perpendicular to
the radial line joiming the point in question with C.

UNZA., Department of Mechanical Engineering
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Motion of the Instantaneous Center

As the body changes its position, the instantaneous center C also
changes its position both in space and on the body. The locus of the in-
stantaneous centers in space is known as the space cenfrode, and the
locus of the positions of the instantaneous centers on the body is known
as the body cenirode. At the instant considered, the two curves are tan-
gent at the position of point C. It can be shown that the body-centrode
curve rolls on the space-centrode curve during the motion of the body,
as indicated schematically in Fig. 5/8.

Although the instantaneous center of zero velocity 1z momentarily
at rest, its acceleration generally is nof zero. Thus, this point may nof be
used as an instantaneous center of zero acceleration in a manner analo-
gous to its use for finding velocity. An instantaneous center of zero ac-
celeration does exist for bodies in general plane motion, but its location
and use represent a specialized topie in mechanism kinematies and will
not be treated here.
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Body centrode

- -

Space centrode

Figure 5/8

UNZA., Department of Mechanical Engineering

53



Sample Problem 5/11

The wheel of Sample Problem 5/7, shown again here, rolls to the right with-
out slipping, with its ecenter O having a veloeity v, = 8 m/s. Locate the instanta-
neous center of zero velocity and use it to find the velocity of point A for the
position indicated.

r

A
A@;m

w0
12003{
\ (0.300 m
l
\
{C
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Solution. The point on the rim of the wheel in contact with the ground has no
velocity if the wheel is not slipping; it is, therefore, the instantaneous center C of
zero velocity, The angular veloeity of the wheel becomes

lw = vir] w = va/0C = 3/0.300 = 10 rad/s
The distance from A to C'is

AC = J(0.300) + (0.200)* — 2(0.300)(0.200) cos 120° = 0.436 m

The velocity of A becomes

v = rw) vy = ACw = 0436(10) = 4.36 m/s Ans.

The direction of v, is perpendicular to AC as shown.
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5/6 RELATIVE ACCELERATION.

- A—

Consider the equation vy = vy + vy, which describes the relative
velocities of two points A and B in plane motion in terms of nonrotating
reference axes. By differentiating the equation with respect to time, we
may obtain the relative-acceleration equation, whichisv, = v + v or

(&A —ag T aA/BJ (5/7)

In words, Eq. 5/7 states that the acceleration of point A equals the vec-
tor sum of the acceleration of point B and the acceleration which A ap-
pears to have to a nonrotating observer moving with B,
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Relative Acceleration Due to Rotation

If points A and B are located on the same rigid body and in the
plane of motion, the distance r between them remains constant so that
the observer moving with B perceives A Lo have circular motion about 5,
as we saw in Art. 5/4 with the relative-velocity relationship. Because the
relative motion 1s circular, it follows that the relative-acceleration term
will have both a normal component directed from A toward B due to the
change of direction of v, and a tangential component perpendicular to
AB due to the change in magnitude of v, ;. These acceleration compo-
nents for circular motion, cited in Eqs. 5/2, were covered earlier in Art.

/5 and should be thoroughly familiar by now.
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Thus we may write

(“A - ag I (wyp), | <um]

where the magnitudes of the relative-acceleration components are

(aA/B)n i UA{ler = ro®

(@yp); = Vg =ra
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In vector notation the acceleration components are

(aypl, =@ X {wXr)
(5/9a)

In these relationships, @ is the angular velocity and a is the angular ac-
celeration of the body. The vector locating A from B is r. It is important
to observe that the relative acceleration terms depend on the respective
absolute angular velocity and absolute angular acceleration.
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Alternatively, we may express the acceleration of B in terms of the

acceleration of A, which puts the nonrotating reference axes on A rather
than B, This order gives

Ap = A4 + Ag,
Here ag 4 and its n- and f-components are the negatives of a,z and its

n- and f~-components. To understand this analysis better, you should
make a sketch corresponding to Fig. 5/9 for this choice of terms.

UNZA., Department of Mechanical Engineering

60



Solution of the Relative-Acceleration Equation

As 1n the case of the relative-velocity equation, we can handle the
solution to Eq. 5/8 in three different ways, namely, by scalar algebra and
geometry, by vector algebra, or by graphical construction. It is helpful to
be familiar with all three techniques. You should make a sketch of the
vector polvgon representing the vector equation and pay close attention
to the head-to-tail combination of vectors so that it agrees with the
equation. Known vectors should be added first, and the unknown vec-
tors will become the closing legs of the vector polygon. It is vital that
vou visualize the vectors in their geometrical sense, as only then can you
understand the full significance of the acceleration equation.

UNZA., Department of Mechanical Engineering

61



Sample Problem 5/13

The wheel of radius r rolls to the lefi without slipping and, at the instant con-
sidered, the center O has a velocity v, and an acceleration ag to the lefi. Deter-
mine the acceleration of points A and C on the wheel for the instant considered,
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Solution. From our previous analysis of Sample Problem 5/4, we know that -

the angular velocity and angular acceleration of the wheel are XA/O’F’M’
A
3 ] ‘ \ ?‘.". (a.‘ ) =r,ad
W = U(}Ir and == aofl' \ 0 \\ ‘g im0
\\
. > . : . . )
The acceleration of A is written in terms of the given acceleration of O. Thus, - W
woh\ —o = g,

-~ (aAIO’n
a, —a8g+ a0 — 8+ (8,0), T {8,,0) ar” 0
The relative-acceleration terms are viewed as though O were fixed, and for this Iy
relative circular motion they have the magnitudes

i o
Jla(.m)" =T®

<y — =i
C lapp), =1

y vo 2
(@p0)) = Towz =To =) Ceh=Te
A
a @000, =rm? ac.=rm2
: 0
l@qp) = Fget = I (—') {
r 2 a,=re

(1) and the directions shown.
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Wl

Ay
(ay,0) =1,

A

\
\

Adding the vectors head-to-tail gives as as shown. In a numerical problem, ‘m%

we may obtain the combination algebraically or graphically. The algebraic ex- -~ @uroh

n/

\ o B\ 8 )

pression for the magnitude of &, is found from the gquare root of the sum of the -3
squares of its components. If we use n- and ¢-directions, we have LA
} Ao tply =T
& O R BT ~Set
= Jlag cos B + (ay0),1* + lag sin 8 + (@) ) Coioh=ra
= Jra cos 6 + row?)? + (ra sin 0 + rya)? Ans. @), =ro’
2 ag=ra
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-~

(«)

A
A \&/ @x 100 =T
The direction of a, can be computed if desired. \ ¢
The acceleration of the instantaneous center C of zero velocity, considered a a,
point on the wheel, is obtained from the expression ) _ =
(e
(ay, o),
a(' = aO + aC.‘O n- 3 0

where the components of the relative-acceleration term are (ac), = ro® di-
rected from C to O and (agyg), = ra directed to the right because of the counter- J'a‘"’ Pure!
elockwise angular acceleration of line CO about O. The terms are added together

-~

X S I C (ap,), =1
in the lower diagram and it is seen that L
&) =Ta
G = rw® Ans.
@000, =rm?
: ao =ra
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5/7 MoTtioN RELATIVE TO ROTATING AXES

In our discussion of the relative motion of particles in Art. 2/8 and
in our use of the relative-motion equations for the plane motion of rigid
bodies in this present chapter, we have used nonrofating reference axes
to describe relative velocity and relative acceleration. Use of rotating
reference axes greatly facilitates the solution of many problems in kine-
matics where motion is generated within a system or observed from a
system which itself 1s rotating. An example of such a motion is the
movement of a fluid particle along the curved vane of a centrifugal
pump, where the path rclative to the vanca of the impeller becomea an
important design consideration.
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We begin the description of motion using rotating axes by consider-

ing the plane motion of two particles A and B in the fixed X-¥ plane, Fig.
5/10a. For the time being, we will consider A and B to be moving inde-
pendently of one ancther for the sake of generality. We observe the mo-
tion of A from a moving reference frame x-y which has its origin
attached to B and which rotates with an angular velocity w = #. We
may write this angular velocity as the vector @ = wk = fk, where the
vector 18 normal to the plane of motion and where 1ts positive sense 15 in
the positive z-direction (out from the paper), as estahlished by the right-
hand rule. The absolute position vector of A is given by

r,=rp tr=rp+ (xi + 3j) (5/10)

where 1 and j are unit vectors attached to the x-y frame and r = xi + ¥j
stands for r 4, the position vector of A with respect to B.
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Time Derivatives of Unit Vectors

To abtain the wvalocity and acceloration equations wo must succos-
sively differentiate the position-vector equation with respect to time. In
contrast to the case of translating axes treated in Art. 2/8, the unit vec-
tors i and j are now rotating with the x-y axes and, therefore, have time
derivatives which must be evaluated. These derivatives may be seen
from Fig. 5/106, which shows the infinitesimal change in each unit vec-
tor during time d¢ as the reference axes rotate through an angle dé¢ =
w df. The differential change in i is i, and it has the direction of j and a
magnitude equal to the angle dfl times the length of the vector i, which
is umty. Thus, di = d# j.

Similarly, the unit vector j has an infinitesimal change dj which
points in the negative x-direction, so that dj = —d# i. Dividing by dt and
replacing di/di by i, dj/dt by j, and d#/dt by é = w result in

I =wi and j = —wi
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By using the cross product, we can see from Fig. 5/10c that @ X i = wj

and @ X j = —wi. Thus, the time derivatives of the unit vectors may be
written as

[i=wxi and j=wij (5/11)
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Relative Velocity

We now use the expressions of Eqs. 5/11 when taking the time de-
rivative of the position-vector equation for A and B to obtain the rela-
tive-velocity relation. Differentiation of Eq. 5/10 gives

iy = g + L + )
=¥y + (xi +yj) + (zi + ¥j)

But xi +yj =@ Xxi + @ Xyj = o X (xi + yj) = @ % r. Also, since the
observer in x-y measures velocity components ¥ and y, we see that
xi + yj = v, which is the velocity relative to the x-y frame of refer-
ence. Thus, the relative-velocity equation becomes

(VA=VB+axr+v,elj (5/12)
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Comparison of Eq. 5/12 with Eqg. 2/20 for nonrotating reference axes
shows that vy = @ X r + v, from which we conclude that the term

w X T is the difference between the relative velocities as measured from
nonrotating and rotating axes.
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The following comparison will help establish the equivalence of, and
clarify the differences between, the relative-velocity equations written
for rotating and nonrotating reference axes:

VA;VB FwXrY "Vrr]

Va=Vp+ Vpp +V
A B P/B AP
(5/12a)
VA = VP + VA.' P
VA=V ™ Vain
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