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KINETICS OF RIGID BODIES

6/1 INTRODUCTION

The kinetics of rigid bodies treais the relationships between the ex-
ternal forces acting on a body and the corresponding translational and
rotational motions of the bady. In Chapter 5 we developed the kinematic
relationships for the plane motion of rigid bodies, and we will use these
relationships extensively in this present chapter, where the effects of
forces on the two-dimensional motion of rigid bodies are examined.

UNZA., Department of Mechanical Engineering 3



KINETICS OF RIGID BODIES

Background for the Study of Kinetics

In Chapter 3 we found that two force equations of motion were re-
quired to define the motion of a particle whose motion 1s confined to a

plane. For the plane motion of a rigid body, an additional equation is
needed to apecify the atate of rotation of the body. Thua, two force equa-

tions and one moment equation or their equivalent are required to de-
termine the state of rigid-body plane motion.
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KINETICS OF RIGID BODIES

The kinetic relationships which form the basis for most of the
analysis of rigid-body motion were developed in Chapter 4 for a general
system of particles. Frequent reference will be made to these equations
as they are further developed in Chapter 6 and applied specifically to the
plane motion of rigid bodies. You should refer to Chapter 4 frequently as
you study Chapter 6. Also, before proceeding make sure that vou have a
firm grasp of the calculation of velocities and accelerations as developed
in Chapter 5 for rigid-body plane motion. Unless you can determine ac-
celerations correctly from the principles of kinematics, yvou frequently
will be unable to apply the force and moment principles of kinetics. Con-
sequently, you should master the necessary Kinematics, including the
calculation of relative accelerations, before proceeding.

UNZA., Department of Mechanical Engineering 5



KINETICS OF RIGID BODIES

In the kineties of rigid bodies which have angular motion, we must
introduce a property of the body which accounts for the radial distribu-
tion of its mass with respect to a particular axis of rotation normal to
the plane of motion. This property is known as the mass moment of iner-
tia of the body, and it is essential that we be able to calculate this prop-
erty in order to solve rotational problems. We assume that you are
familiar with the calculation of mass moments of inertia. Appendix B
treats this topic for those who need instruction or review.
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SECTION A. FORCE, MASS, AND ACCELERATION

6/2 GenerAL EQuATIONS OF MoTION

In Arts. 4/2 and 4/4 we derived the force and moment vector equa-
tions of motion for a general system of mass, We now apply these results
by starting, first, with a general rigid body in three dimensions. The
force equation, Eq. 4/1,

IF = ma [4/1]

tells us that the resultant XF of the external forces acting on the body

equals the mass m of the body times the acceleration a of its mass cen-
tor (7 Tha moment aqmatian taken ahont the mass centar, Fq 4/9,

IM; = H; [4/9]

shows that the resultant moment about the mass center of the external
forces on the body equals the time rate of change of the angular momen-
tum of the body about the mass center,
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Recall from our study of statics that a general system of forces act-
ing on a rigid body may be replaced by a resultant force applied at a cho-
sen point and a corresponding couple. By replacing the external forces
by their equivalent force-couple svstem in which the resultant force acts
through the mass center, we may visualize the action of the forces and
the corresponding dynamic response of the body with the aid of Fig. 6/1.

Mg
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F;
Free-Body Diagram Equivalent Foree- Kinetic Diagram
Couple System
la) (b) {c)
Figure 6/1
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Part a of the figure shows the relevant free-body diagram. Part b of the
figure shows the equivalent force-couple system with the resultant force
applied through G. Part ¢ of the figure is a kinetic dragram, which repre-
sents the resulting dynamic effects as specified by Eqgs. 4/1 and 4/9. The
equivalence between the free-body diagram and the Kinetic diagram en-
ables us to clearly visualize and easily remember the separate transzla-
tional and rotational effects of the forces applied to a rigid body, We will
express this equivalence mathematically as we apply these results to the
treatment of rigid-body plane motion.
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Plane-Motion Equations

We now apply the foregoing relationships to the case of plane mo-
tion. Figure 6/2 represents a rigid body moving with plane motion in
the x-y plane. The mass center (G has an acceleration a, and the body
has an angular velocity @ = wk and an angular acceleration ¢ = ak,

both taken positive in the z-direction. Because the z-direction of both
o and a remains perpendicular to the plane of motion, we may use

scalar notation w and a = o to represent the angular velocity and an-
gular acceleration.
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The angular momentum about the mass center for the general sys-
tem was expressed in Eq. 4/8a as H; = Zp, X m,p, where p, is the posi-
tion vector relative to G of the representative particle of mass m,. For
our rigid body, the velocity of m, relative to G is p;, = w X p;, which has a
magnitude p;m and lies in the plane of motion normal to p;. The product
p;, X p;is then a vector normal to the x-y plane in the sense of @, and its
magnitude is p%w. Thus, the magnitude of H; becomes H;; = Zp,°m,w =
wXp“m,. The summation, which may also be written as [ p° dm, is de-
fined as the mass moment of tnerfia I of the body about the z-axis
through G. (See Appendix B for a discussion of the calculation of mass

moments of inertia.)

Figure 6/2
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We may now write

H, T

|

where I is a constant property of the body. This property i1s a measure of
the rotational inertia, which is the resistance to change in rotational ve-
locity due to the radial distribution of mass around the z-axis through
(;. With this substitution, our moment equation, Eq. 4/9, becomes

My =Hg=Ia = Ia

where a = w is the angular acceleration of the body.
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We may now express the moment equation and the vector form of
the generalized Newton’s second law of motion, Eq. 4/1, as

2F = ma

- 6/1)

Equations 6/1 are the general equations of motion for a rigid body in
plane motion. In applying Eqgs. 6/1, we express the vector force equation

in terms of its two scalar components using x-y, n-t, or r-f coordinates,
whichever is most convenient for the problem at hand.

UNZA., Department of Mechanical Engineering
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Alternative Derivation

It is instructive to use an alternative approach to derive the mo-
ment equation by referring directly to the forces which act on the repre-
sentative particle of mass m;, as shown in Fig. 6/3. The acceleration of
m; equals the vector sum of @ and the relative terms pw® and p;a, where

the mass center (G 1s used as the reference point. It Hllows that the re-
sultant of all forces on m; has the components m;a, mpw”, and mp,a in
the directions shown. The sum of the moments of these force compo-
nents about ¢ in the sense of « becomes

M

L

= mp°a + (m,a sin Bix;, — (m,a cos By
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Similar moment expressions exist for all particles in the body, and
the sum of theae momenta about G for the resultant forcea acting on all

particles may be written as
SMg = Sm,pa + asin 8 Em,x; — acos B Em,y,

But the origin of coordinates is taken at the mass center, so that Im x,
=mx = 0and Zm,y;, = my = 0. Thus, the moment sum becomes

ZM(; = ZIR,[)“:ZO’ = 7&'

as before. The contribution to M, of the forces internal to the body is,
of course, zero since they occur in pairs of equal and opposite forces of
action and reaction between interacting particles. Thus, ZM, as before,
represents the sum of moments about the mass center G of only the ex-

ternal forces acting on the body, as disclosed by the free-body diagram.

UNZA., Department of Mechanical Engineering
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We note that the force component m;pw® has no moment about G
and conclude, therefore, that the angular velocity @ has no influence on
the moment equation about the mass center.

The results embodied in our basic equations of motion for a rigid body
in plane motion, Eqgs. 6/1, are represented diagrammatically in Fig. 6/4,

F

Free-Body Diagram Kinetic Diagram

Figure 6/4
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As previously mentioned, the translational term ma will be ex-
pressed by its x-y, n-¢, or r-8 components once the appropriate inertial
reference system is designated. The equivalence depicted in Fig. 6/4 is
basic to our understanding of the kinetics of plane motion and will be
emploved frequently in the solution of problems.

Representation of the resultants ma and f« will help ensure that
the force and moment sums determined from the free-body diagram are
equated to their proper resultants.

UNZA., Department of Mechanical Engineering
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Alternative Moment Equations

In Art. 4/4 of Chapter 4 on systems of particles, we developed a gen-
eral equation for moments about an arbitrary point P, Eq. 4/11, which is

M, = H, + p X ma [4/11]

where p is the vector from P to the mass center G and a is the mass-cen-
ter acceleration. As we have shown earlier in this article, for a rigid body
in plane motion HG becomes Ia. Also, the cross product p % ma is sim-
ply the moment of magnitude mad of ma about P. Therefore, for the
two-dimensional body illustrated in Fig. 6/5 with its free-body diagram
and kinetic diagram, we may rewrite Eq. 4/11 simply as

[EM,, =Ja + m&d} (6/2)

Clearly, all three terms are positive in the counterclockwise sense for the
example shown, and the choice of P eliminates reference to F, and F.

UNZA., Department of Mechanical Engineering
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If we had wished to eliminate reference to F; and F,, for example,
by choosing their intersection as the reference point, then P would lie
on the opposite side of the ma vector, and the clockwise moment of ma

Free-Body Diagram Kinetic Diagram

Figure 6/5
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about P would be a negative term in the equation. Equation 6/2 is easily
remembered as it i1s merely an expression of the familiar principle of mo-
ments, where the sum of the moments about P equals the combined mo-
ment about P of their sum, expressed by the resultant couple IM; = la
and the resultant force £F = ma.

In Art. 4/4 we also developed an alternative moment equation about

P, Eq. 4/13, which is

M, = (Hp),, + p X map (4/13]

UNZA., Department of Mechanical Engineering
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For rigid-body plane motion, if P is chosen as a point fixed to the body,
then in scalar form (Hp), ., becomes Ipa, where I is the mass moment of
inertia about an axis through P and « is the angular acceleration of the
hody. So we may write the equation as

[ihﬂp"ﬁﬂl| ﬁi‘fﬁﬂp] {6/3)

where the acceleration of P is ap and the position vector from P to G is p.

When p = 0, point P becomes the mass center G, and Eq. 6/3 re-
duces to the sgealar form M, = Ia, previously derived. When point P
becomes a point O fixed in an inertial reference system and attached to
the body (or body extended), then ap = 0, and Eq. 6/3 in scalar form re-
duces to

(w,, = Im] (6/4)

Equation 6/4 then applies to the rotation of a rigid body about a nonac-
celerating point O fixed to the body and is the two-dimensional simplifi-

cation of Eq. 4/7.

UNZA.,

Department of Mechanical Engineering
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Unconstrained and Constrained Motion

The motion of a rigid body may be unconstrained or constrained.
The rocket moving in a vertieal plane, Fig. 6/6¢, i3 an example of uncon-
strained motion as there are no physical confinements to its motion.

L——x

(@) Unconstrained Motion (h) Constrained Motion

Figure 6/6
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The two components a, and a, of the mass-center acceleration and the
angular acceleration o may be determined independently of one another
by direct application of Eqgs. 6/1.

The bar in Fig. 6/6b, on the other hand, undergoes a constrained
motion, where the vertical and horizontal guides for the ends of the
bar impose a Kinematic relationship between the acceleration com-
ponents of the mass center and the angular acceleration of the bar.
Thua, it is nececoosary to determine thia kinematic relationship from
the principles established in Chapter 5 and to combine it with the
force and moment equations of motion before a solution can be car-
ried out.

UNZA., Department of Mechanical Engineering
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In general, dynamies problems which involve physical constraints to
motion require a kinematic analysis relating linear to angular accelera-
tion before the force and moment equations of motion can be solved. It
18 for this reason that an understanding of the prineciples and methods of
Chapter 6 i3 so vital to the work of Chapter 6,

UNZA., Department of Mechanical Engineering
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Systems of Interconnected Bodies

Upon occasion, in problems dealing with two or more connected
rigid bodies whose motions are related kinematically, it is convenient to
analyze the bodies as an entire system.

UNZA., Department of Mechanical Engineering
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Figure 6/7 illustrates two rigid bodies hinged at A and subjected to
the external forces shown. The forces in the connection at A are internal
to the system and are not disclosed. The resultant of all external forces
must equal the vector sum of the two resultants m,a, and m,a,, and the
sum of the moments about some arbitrary point such as P of all external
forces must equal the moment of the resultants, I e, + L, + ma,d, +
motad,. Thus, we may state

IF = Yma

= L (6/5)
XM, = Sla + Imad

P
Free-Body Diagram o Kinetic Diagram
of System of System

Figure 6/7
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where the summations on the right-hand side of the equations repre-
sent as many terms as there are separate bodies,

UNZA., Department of Mechanical Engineering
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If there are more than three remaining unknowns in a system, how-
ever, the three independent sealar equations of motion, when applied to
the system, are not sufficient to solve the problem. In this case, more ad-
vanced methods such as virtual work (Art. 6/7) or Lagrange’s equations
(not discussed in this book™) could be employed, or else the system could
be dismembered and each part analyzed separately with the resulting
equations solved simultaneously.

UNZA., Department of Mechanical Engineering
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Analysis Procedure

In the solution of force-mass-acceleration problems for the plane
motion of rigid bodies, the following steps should be taken once you un-
derstand the conditions and requirements of the problem:

1. Kinematics. First, identily the class of motion and then solve for |

any needed linear and angular accelerations which can be determined
solely from given kinematic information. In the case of constrained
plane motion, it is usually necessary to establish the relation between
the linear acceleration of the mass center and the angular acceleration
of the body by first solving the appropriate relative-velocity and relative-
acceleration equations. Again, we emphasize that success in working
force-mass-acceleration problems in this chapter is contingent on the
ability to describe the necessary kinematics, so that frequent review of
Chapter 5 is recommended.

2. Diagrams. Always draw the complete free-body diagram of the
body to be analyzed. Assign a convenient inertial coordinate system and
label all known and unknown quantities. The kinetic diagram should
also be constructed so as to clarify the equivalence between the applied
forces and the resulting dynamic response.

3. Equations of Motion. Apply the three equations of motion
from Egs. 6/1, being consistent with the algebraic signs in relation to
the choice of reference axes. Equation 6/2 or 6/3 mayv be emploved as
an alternative to the second of Egs. 6/1. Combine these relations with
the results from any needed kinematic analysis. Count the number of
unknowns and be certain that there are an equal number of indepen-
dent equations available. For a solvable rigid-body problem in plane
motion, there can be no more than the five scalar unknowns which can
be determined from the three scalar equations of motion, obtained
from Eqs. 6/1, and the two scalar component relations which come
from the relative-acceleration equation.
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In the following three articles the foregoing developments will be
applied to three cases of motion in a plane: translation, fixed-axts roia-
tion, and general plane motion.

UNZA., Department of Mechanical Engineering
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6/3 TRANSLATION

Rigid-body translation in plane motion was described in Art. 5/1 and
illustrated in Figs. 5/1a and 5/156, where we saw that every line in a trans-
lating body remains parallel to its original position at all times. In recti-
linear translation all points move in straight lines, whereas in curvilinear
translation all points move on congruent curved paths. In either case,
there 1s no angular motion of the translating body, so that both w and «
are zero. Therefore, from the moment relation of Egs. 6/1, we see that all
reference to the moment of inertia is eliminated for a translating body.

Path of G 7/

|

Free-Body Diagram Kinetic Diagram

(1) Reetilinear Tranzlation
=0, =0
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Free-Body Diagram Kinetic Diagram

(b)) Curvilinear Translation
=0, w=0)

Figure 6/8

UNZA., Department of Mechanical Engineering
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For a translating body, then, our general equations for plane mo-
tion, Eqgs. 6/1, may be written

IF = ma

& (6/6)
ma = Ia =

For rectilinear translation, illustrated in Fig. 6/8a, if the x-axis is chosen
in the direction of the acceleration, then the two scalar force equations
become LF, = ma, and £F, = ma, = 0. For curvilinear translation, Fig.

6/8b, if we use n-f coordinates, the two scalar force equations become
¥F, = ma, and XF, = ma, In both cases, M = 0.

UNZA., Department of Mechanical Engineering
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We may also employ the alternative moment equation, Eq. 6/2,
with the aid of the kinetic diagram. For rectilinear translation we see
that TMp = mad and M, = 0. For curvilinear translation the kinetic
diagram permits us to write IM, = ma,d, in the clockwise sense and
IMy = ma,dy in the counterclockwise sense. Thus, we have complete
freedom to choose a convenient moment center.

UNZA., Department of Mechanical Engineering
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Sample Problem 6/1

The pickup truck weighs 3220 1b and reaches a speed of 30 mi/hr from rest
in a distance of 200 {t up the 10-percent incline with constant acceleration. Cal-
culate the normal force under each pair of wheels and the friction force under
the rear driving wheels. The effective coefficient of friction between the tires and
the road is known to be at least 0.8.

UNZA., Department of Mechanical Engineering
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6/4 Fixep-Axi5s ROTATION
Rotation of a rigid body about a fixed axis was described under kinematics

7 For this motion, we saw that all points in
the body describe circles about the rotation axis, and all lines of the
body in the plane of motion have the same angular velocity » and angu-
lar acceleration a.

The acceleration components of the mass center for circular mo-
tion are most easily expressed in n-f coordinates, so we have ¢, = re?

a
= L,
and a, = r«, as shown in Fig. 6/9a for rotation of the rigid body about _— o \‘a,, B
: . . \
the fixed axis through O. o

Fixed-Axis Rotation
()

Figure 6/9
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- Part b of the figure represents the free-body
diagram, and the equivalent kinetic diagram in part ¢ of the figure
shows the force resultant mma in terms of its n- and t-components and
the resultant couple Je.

Fixed-Axis Rotation

Our general equations for plane motion, Egs. 6/1, are directly ap- i3

plicable and are repeated here.

IF = ma
: (6/1] \ix
ZMG o Ia »

Thus, the two scalar components of the force equation become XF, = mro? \G
und LF, — porar, In upplviog thuy momoeni oguation vhouad 7 wo muei we- \
count for the moment of the force applied to the body at O, so this force oy
must not be omitted from the free-body diagram. /0
Free-Body Diagram Kinetic Diagram
(b) (c)
Figure 6/9
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For fixed-axis rotation, it is generally useful to apply a moment
equation directly about the rotation axis 0. We derived this equation
previously as Eq. 6/4, which is repeated here.

( M, = zoa] 16/4]

From the kinetic diagram in Fig. 6/9¢, we may obtain Eq. 6/4 very easily

by evaluating the moment of the resultants about O, which becomes Fixed-Axis Rotation
M, = Ia + ma,r. Application of the parallel-axis theorem for mass mo- (@)

ments of inertia, I, = I + mr? gives IM, = (I — mr2)a + mr?a = I

For the common case of rotation of a rigid body about a fixed axis
through its mass center G, clearly, a = 0, and therefore XF = 0. The re-
sultant of the applied forces then is the couple /a.

Free-Body Diagram Kinetie Diagram
(h) (c)
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We may combine the resultant force component mea, and resultant
couple /o by moving ma, to a parallel position through point @ on line
0G, Fig. 6/10, located by mrag = Ia + mra{r). Using the parallel-axis
theorem and I, = ky%m gives ¢ = ky/r.

Point @ is called the center of percussion and has the unique prop-

erty that the resultant of all forces applied to the body must pass
through it. It follows that the sum of the maments of all forces about the

center of percussion is always zero, XMy, = 0.

UNZA., Department of Mechanical Engineering
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Sample Problem 6/3

The concrete block weighing 644 |b is elevated by the hoisting mechanism
shown, where the cables are securely wrapped around the regpective drums. The
drums, which are fastened together and turn as a single unit about their mass cen-
ter at O, have a combined weight of 322 Ib and a radius of gyration about O of 18 in.
If a constant tension P of 400 Ib is maintained by the power unit at A, determine
the vertical acceleration of the hlock and the resultant force on the bearing at O.

UNZA., Department of Mechanical Engineering
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Sample Problem 6/4

The pendulum has a mass of 7.5 kg with center of mass at G and has a ra-
dius of gyration about the pivot O of 295 mm. If the pendulum is released from
rest at 8 = 0, determine the total force supported by the bearing at the instant
when # = 60°. Friction in the bearing is negligible.

Helpful Hints
(1) The acceleration components of G
are, of course, a, = re“and a, = re,

Solution. The free-body diagram of the pendulum in a general position is
shown along with the corresponding kinetie diagram, where the components of
the resultant forece have been drawn through G.

UNZA., Department of Mechanical Engineering
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The normal component O, is found from a force equation in the n-direction,
which involves the normal acceleration rew®. Since the angular velocity @ of the
pendulum is found from the integral of the angular acceleration and since O, de-
pends on the tangential acceleration ra, it follows that a should be obtained first.
To this end with I, = k,*m, the moment equation about O gives

(i') [XMO = Ioa] 7.5(9.81)0.25) cos # = (0.295)%(7.65)x
e = 28.2 cos ¢ rad/s*
and for ¢ = 60°

w w3
[wdw = a df] f w der = f 28.2 cos # db
0 0

w® = 48.8 (rad/s)*

The remaining two equations of motion applied to the 60° position yield

(2) Review the theory again and satisfy

[XF, =mra?] O, — 7.5(9.81) sin 60° = 7.5(0.25)(48.8) S e
@;:’ O" = 1565.2N (3) Note especially here that the force
. summations are taken in the posi-
IZFI = mf-a] —O’ + 7.5(9.81) cos 60° = 7.5(0.25)(28.2) cos 60° Eive rhn-.(-.(inn‘ of the aecceloration
components of the mass center G,
0,=1037N
O = J(155.2)% + (10.37)% = 155.6 N Ans.
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6/5 GENERAL PLANE MoTION

The dynamics of a rigid body in general plane motion combines
translation and rotation. In Art. 6/2 we represented such a body in Fig.
6/4 with its free-body diagram and its kinetic diagram, which discloses
the dynamic resultants of the applied forces. Figure 6/4 and Eqgs. 6/1,
which apply to general plane motion, are repeated here for convenient
reference.

*F = ma

e [6/1]
mo = la

Direct application of these equations expresses the equivalence between
the externally applied forces, as disclosed by the free-body diagram, and

their force and moment resultants, as represented by the kinetic diagram.

Free-Body Diagram Kinetic Diagram

Figure 6/4, repeated
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Solving Plane-Motion Problems

Keep in mind the following considerations when golving plane-
motion problems.

Choice of Coordinate System. The force equation of Eq. 6/1 should
be expressed in whatever coordinate system most readily describes the
acceleration of the mass center. You should consider rectangular, nor-
mal-tangential, and polar coordinates.

Choice of Moment Equation. In Art. 6/2 we also showed, with the
aid of Fig. 6/5, the application of the alternative relation for moments
about any point P, Eq. 6/2. This figure and this equation are also re-

peated here for easy reference.

[YMP - in + mfld) [6/21]

In some instances, it may be more convenient to use the alternative mo-
ment relation of Eq. 6/3 when moments are taken about a point P whose
acceleration is known. Note also that the equation for moments about a

UNZA., Department of Mechanical Engineering
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Free-Body Diagram Kinetic Diagram

Figure 6/5, repeated

nonaccelerating point 0 on the hody, Eq. 6/4, constitutes still another
alternative moment relation and at times may be used to advantage.

UNZA., Department of Mechanical Engineering
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Constrained versus Unconstrained Motion. In working a problem
in general plane motion, we first observe whether the motion is uncon-
strained or constrained, as illustrated in the examples of Fig. 6/6. If the
motion is constrained, we must account for the kinematic relationship
between the linear and the angular accelerations and incorporate it into
our force and moment equations of motion. If the motion is uncon-
strained, the accelerations can be determined independently of one an-
other by direct application of the three motion equations, Egs. 6/1.

Number of Unknowns. In order for a rigid-body problem to be
solvable, the number of unknowns cannot exceed the number of inde-
pendent equations available to describe them, and a check on the suffi-
ciency of the relationships should always be made. At the most, for
plane motion we have three scalar equations of motion and two scalar
components of the vector relative-acceleration equation for constrained
motion. Thus, we can handle as many as five unknowns for each rigid
body.

Identification of the Body or System. We emphasize the impor-
tance of clearly choosing the body te be isolated and representing this
isolation by a correct free-body diagram. Only after this vital step has
been completed can we properly evaluate the equivalence between the
external forces and their resultants.

Kinematics. Of equal importance in the analysis of plane motion is
a clear understanding of the kinematics involved. Very often, the diffi-
culties experienced at this point have to do with kinematics, and a thor-
ough review of the relative-acceleration relations for plane motion will
be most helpful.
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Consistency of Assumptions. In formulating the solution to a
problem, we recognize that the directions of certain forces or accelera-
tions may not be known at the outset, so that it may be necessary to
make initial assumptions whose validity will be proved or disproved
when the solution is carried out. It 1s essential, however, that all as-
sumptions made be consistent with the principle of action and reaction

and with any kinematic requirements, which are also called conditions
of constraint.

Thus, for example, if a wheel is rolling on a horizontal surface, its cen-
ter is constrained to move on a horizontal line. Furthermore, if the un-
known linear acceleration a of the center of the wheel is assumed positive
to the right, then the unknown angular acceleration a will be positive in a
clockwise sense in order that @ = +ra, if we assume the wheel does not
alip. Also, we note that, for a wheel which rolls without shipping, the static
friction foree between the wheel and its supporting surface is generally less
than its maximum value, so that ¥ # u N. But if the wheel slips as it rolls,
a # ra, and a kinetic friction force is generated which is given by F' = u.N.
It may be necessary to test the validity of either assumption, slipping or no
slipping, in a given problem. The difference between the coefficients of sta-
tic and kinetic friction, u, and g, 1s sometimes ignored, in which case, u 1s
used for either or both coefficients.

UNZA., Department of Mechanical Engineering
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Look ahead to Prob. 6/107 to see a special-case problem involving a crash-
test dummy such as the one shown here.

UNZA., Department of Mechanical Engineering
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6/107 In a study of head injury against the instrument
panel of a car during sudden or crash stops where lap
belts without shoulder straps or airbags are used, the
segmented human model shown in the figure is ana-
Ivzed. The hip joint O 1s assumed to remain fixed rel-
ative to the car, and the torso above the hip is treated
as a rigid body of mass m freely pivoted at O. The
center of mass of the torso is at G with the initial po-
sition of OG taken as vertical. The radius of gyration
of the torso about Q is &,. If the car is brought to a
sudden stop with o constant deceleration a, deter-
mine the velocity v relative to the car with which the
model’s head strikes the instrument panel. Substi-
tute the values m = 50 kg, r = 450 mm, r = 800 mm,

5 = RN ) = 4K8° = ™ ' U
k 0 590 mm, ¢ 4%, anda lOg and compuie v, Look ahead to Prob. 6/107 to see a special-case problem involving a crash-
Ans.v = 11,73 m/s test dummy such as the one shown here.
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Sample Problems/s |

The drum A is given a constant angular acceleration o, of 3 rad/s* and
causes the 70-kg spool B to roll on the horizontal surface by means of the con-
necting cable, which wraps around the inner hub of the spool. The radius of
gyration k of the spool about its mass center (¢ is 2560 mm, and the coefficient
of static friction between the spool and the horizontal surface is 0.25. Deter-
mine the tension T in the cable and the friction force F exerted by the hori-
zontal surface on the spool.
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Solution. The free-body diagram and the kinetic diagram of the spool are
drawn as shown. The correct direction of the friction force may be assigned in
this problem by observing from both diagrams that with counterclockwise angu-
lar acceleration, a moment sum about point G (and also about point D) must be
counterclockwise. A point on the connecting cable has an acceleration ¢, = ra =
0.25(3) = 0.75 m/s°, which is also the horizontal component of the acceleration of
point D on the spool. It will be assumed initially that the spool rolls without
slipping, in which case it has a counterclockwise angular acceleration o« =
lay) /DC = 0.75/0.30 = 2.5 rad/s®. The acceleration of the mass center G is,
therefore, @ = ra = 0.45(2.5) = 1.125 m/s”.

With the kinematics determined, we now apply the three equations of mo-

tion, Eqs. 6/1,

|EF, = ma,] F —T = 70{—1.125) (@)
[LF, = ma,] N-70(981)=0 N =687N
(EM; = la) F(0.450) — T(0.150) = 70(0.250)%(2.5) (h)

Solving (@) and () simultaneously gives

F="T58N and T =1546N Ans.

UNZA., Department of Mechanical Engineering

Helpful Hints

(1) The relation between a and « is the
Kinematic constraint which accom-
panies the assumption that the spool
rolls without shpping.

(2) Be careful not to make the mistake

ol using ,l,mr: for I of the spool,
which is not a uniform circular disk.
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Tao establish the validity of our assumption of no slipping, we see that the sur-
faces are capable of supporting a maximum friction foree F,,.. = puN =
0.25(687) = 171.7 N. Since only 75.8 N of friction force is required, we conclude
that our assumption of rolling without shipping is valid.

If the coefficient of static friction had been 0.1, for example, then the fric-
tion force would have been limited to 0.1(687) = 68.7 N, which is less than 75.8
N, and the spool would slip. In this event, the kinematic relation ¢ = ra would
no longer hold. With (ap), known, the angular acceleration would be &« = [a —
(@), J/GD. Using this relation along with F = wN = 68.7 N, we would then re-
solve the three equations of mation for the unknowns 7, ¢, and «.

Alternatively, with point €' as a moment center in the case of pure rolling,

we may use Eq. 6/2 and obtain T directly. Thus,

[EM(. = Ia + mar] 0.3T = 70¢0.25)%(2.5) + 70(1.125)(0.45)
T=1546N Ans.

where the previous kinematic results for no slipping have been incorporated. We
could also write & moment equation about point 2 to obtain F directly.

UNZA., Department of Mechanical Engineering

@ Our principles of relative accelera-
tion are a necessity here, Hence, the
relation (agpl; GDa should be
recognized.

@) The Hexibility in the choice of mo-
ment centers provided by the Kinetie
diagram can usually be employed to
simplify the analysis.
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Sample Problem 6/8

A car door is inadvertently left slightly open when the brakes are applied to |

give the car a constant rearward acceleration a. Derive expressions for the angu-
lar velocity of the door as it swings past the 90° position and the components of
the hinge reactions for any value of #. The mass of the door is m, its mass center
is a distance 5 from the hinge axis O, and the radius of gyration about O 1s &,

UNZA., Department of Mechanical Engineering
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Helpful Hints

(1) Point O is chosen hecause it is the
only point on the door whose accel-
eration is known.

Solution. Because the angular velocity w increases with #, we need io find how
the angular acceleration a varies with # so that we may integrate it over the in-
terval to obtain @w. We obtain ¢ from a moment equation about 0. First, we draw
the free-body diagram of the door in the horizontal plane for a general position ¢.
The only forces in this plane are the components of the hinge reaction shown
here in the x- and y-directions. On the kinetic diagram. in addition to the resul-
tant couple e shown in the sense of a, we represent the resultant force ma in
terms of its components by using an equation of relative acceleration with re-
(1) spect to O. This equation becornes the kinematie equation of constraint and is

a=ag = ag + (agp), + (aggh

The magnitudes of the ma components are then

(2) Be careful to place mra in the sense

@ mag = ma m(aGfO)u = mrw? miagip) = mro of positive « with respect to rotation
' ' ahout 0,

whereow = f anda = 4,
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For a given angle #, the three unknowns are a, O,, and 0,. We can eliminate

0, and O, by a moment equation about O, which gives
@) [EMp = Ia + Emad]l 0 = miko? — Pa + mrair) — ma(F sin 0)

(4) Solving for o gives = ’-:—J.Esin f
o

Now we integrate « first to a general position and get

m B
lwdw = adf| wdw = a—':asinﬂdﬂ
0 0 kg
m2=:—“’-2-(1—cosm
0
For 6 = =1 24
or A =m/2, w = E; J2ar

UNZA., Department of Mechanical Engineering

Ans.

3

&

The free-body diagram shows that
there is zero moment about O, We
use the transfer-of-axis theorem
here and substitute k,* = &% + 7= If
this relation is not totally familiar,
review Art. B/l in Appendix B

We may also use Eq. 6/3 with O as a
moment center
IM, = I,a + p X ma,

where the scalar values of the terms
are Ipw = mky“a and p X mag be-
comes —7ma sin 0.
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(5) The kinetic diagram ghows clearly the
terms which make up ma, and mao_.

& To find O, and O, for any given value of #, the force equations give

[EF, =ma ]| O, = ma — mrw*cos — mre sin 6

=2 2 3
mla - ﬁ-(l —cos ) cos @ — 2 sin?
kno® ky*

mc[l -LJ,-(I + 2 cos f — 300820)J
ko?

[EF, = ma,J) O, = mracosf — mre®sin 6

= mr " sin 0 cos 0 — mr 227 (1 - cos 0) sin 8
koz k()
-2
=M% (3 c0sf — 2)sin @
ko

UNZA., Department of Mechanical Engineering
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SECTION B. WORK AND ENERGY

Work of Forces and Couples

The work done by a force F has been treated in detail in Art. 3/6
and is given hy

U=jF-dr or U=f(Fcosa-)ds

UNZA., Department of Mechanical Engineering
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We frequently need to evaluate the work done by a couple M which
acts on a rigid body during its motion. Figure 6/11 shows a couple M = Fb
acting on a rigid body which moves in the plane of the couple, During
time df the body rotates through an angle d6, and line AB moves to
A'B’'. Wa may consider this motion in two parts, first a translation to
A'B" and then a rotation d# about A'. We see immediately that during
the translation the work done by one of the forces cancels that done by
the other force, so that the net work done is dU = F(b di) = M d¢ due to
the rotational part of the motion. If the couple acts in the sense opposite Figure 6/11
to the rotation, the work done is negative. During a finite rotation, the
work done by a couple M whose plane is parallel to the plane of motion
is, therefore,

U= [ Mas
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Kinetic Energy

We now use the familiar expression for the kinetic energy of a parti-
cle to develop expressions for the kinetic energy of a rigid body for each
of the three classes of rigid-body plane motion illustrated in Fig. 6/12.

(a) Translation. The translating rigid body of Fig. 6/12a has a mass
m and all of its particles have a common velocnty v. The kinetic energy of
any par ticle of mass m,; of the body is T, = 2 mu?, so for the entire body

= Z o M, v? = ;u‘zZm or
(T = %mvzj (6/7)

This expression holds for both rectilinear and curvilinear translation.

() Translation

UNZA., Department of Mechanical Engineering
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(b) Fixed-axis rotation. The rigid body in Fig. 6/12b rotates with
an angular velocity w about the fixed axis through 0. The kinetic en-
ergy of a repr esentatlve particle of mass m; is T; = ;m (rw)®. Thus,
for the entire body T =  w*Em r;% But the moment of inertia of the body
about Oisl,; = Zmr, ,so

[T = %Iowz] (6/8)

Note the similarity in the forms of the kinetic energy expressions for
translation and rotation. You should verify that the dimensions of the
two expressions are identical.

(b} Fixed-Axis
Hotation

UNZA., Department of Mechanical Engineering
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{T = %maz + ;;iwz] (6/9)

where I is the moment of inertia of the body about its mass center. This
expression for Kinetic energy clearly shows the separate contributions to
the total kinetic energy resulting from the translational velocity v of the
mass center and the rotational velocity w about the mass center.

(¢} General Plane
Motion

Figure 6/12

UNZA., Department of Mechanical Engineering
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The kinetic energy of plane motion may also be expressed in terms of
the rotational velocity about the instantaneous center C of zero velocity.
Because C momentarily has zero velocity, the proof leading to Eq. 6/8 for
the fixed point O holds equally well for point C, so that, alternatively, we
may write the kinetic energy of a rigid body in plane motion as

[T = élcwz] (6/10)

UNZA., Department of Mechanical Engineering
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Potential Energy and the Work-Energy Equation

Gravitational potential energy V, and elastic potential energy V,
were covered in detail in Art. 3/7. Recall that the symbol U (rather than
UJ) is used to denote the work done by all forces except the weight and
elastic forces, which are accounted for in the potential-energy terms.

[T, T - T,] [4/2]

applies to any mechanical system. For application to the motion of a sin-
gle rigid body, the terms T'; and T', must include the effects of transla-
ton and rotation as given by Eqs. 6/7, 6/8, 6/9, or 6/10, and U, is the
work done by all external forces. On the other hand, if we choose to ex-
press the effects of weight and springs by means of potential energy
rather than work, we may rewrite the above equation as

(-T1+V,+U;,2=T2+Vz) [4/3a]

where the prime denotes the work done by all forces other than weight
and spring forces.

UNZA., Department of Mechanical Engineering
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Power

The concept of power was discussed in Art. 3/6, which treated work-
energy for particle motion. Recall that powaer is the time rate at which
work is performed. For a force F acting on a rigid body in plane motion,
the power developed by that force at a given instant is given by Eq. 3/16
and is the rate at which the force is doing work. The power is given by

_dU _ F-dr _

P=0~ &

F-v

where dr and v are, respectively, the ditferential displacement and the
velocity of the point of application of the force.

UNZA., Department of Mechanical Engineering
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mimilarly, for a couple M acting on the body, the power developed by
the couple at a given instant is the rate at which it is doing work, and is
given by

_dU _Mde _

Pdf. dt

Mw

where df! and « are, respectively, the differential angular displacement
and the angular velocity of the body. If the senses of M and w are the
same, the power is positive and energyv is supplied to the hody. Con-
versely, if M and w have opposite senses, the power is negative and en-
ergy 158 removed from the body. If the force F and the couple M act
simultaneously, the total instantaneous power is

P=F:v + Mw

UNZA., Department of Mechanical Engineering
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Sample Problem 6/9

The wheel rolls up the incline on its hubs without slipping and is pulled by
the 100-N force applied to the cord wrapped around its outer rim. If the wheel
starts from rest, compute its angular velocity @ after ite center hags moved a dis-
tance of 3 m up the incline. The wheel has a mass of 40 kg with center of mass at
O and has a centroidal radius of gyvration of 150 mm. Determine the power input
from the 100-N force at the end of the 3-m motion interval.
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Solution. Of the four forces shown on the free-body diagram of the wheel, only

(1) the 100-N pull and the weight of 40(8.81) = 392 N do work. The friction force
does no work as long as the wheel does not slip. By use of the concept of the in-
stantaneous center C of zero velocity, we see that a point A on the cord to which
the 100-N force is applied has a velocity vy = [(200 + 100)/100Jv. Hence, point A
on the cord moves a distance of (200 + 100)/100 = 3 times as far as the center O.
Thus, with the effect of the weight included in the U-term, the work done on the
wheel hecomes

@ Ups = 100 —200—1’501—‘"’ (3) — (392 sin 15°(3) = 595 J

UNZA., Department of Mechanical Engineering
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The wheel has general plane motion, so that the initial and final kinetic en-
ergies are

@ IT=jmut+ lo?] Ty=0 Ty=340(0.100) + } 40(0.15 w?
= (.6500°
The work-energy equation gives
[T; + Ups = T\l 0 + 595 = 0.650w" w = 30.3 rad/s

Alternatively, the kinetic energy of the wheel may be written
@ IT=31c0®l T = 14001015 + (0.10/]w* = 0.6500/7

The power input from the 100-N force when w = 30.3 rad/s is

@ [P=F-v]l P = 10000.3)(30.3) = 908 W Ans.

UNZA., Department of Mechanical Engineering

Helpful Hints

0

@

©

@

@

Since the velocityv of the instanta-
neous center (7 on the wheel is zero,
it follows that the rate at which the
friction force does work is continu-
ously zero. Hence, ¥ does no work as
long as the wheel does not alip, If
the wheel were rolling on a moving
platform, however, the friction force
would do work, even if the wheel
were not slipping.

Note that the component of the
weight down the plane does negative
work,

Be careful to use the correct radius
in the expression ¢ = rw for the ve-
locity of the center of the wheel.

Recall that I, = I + mOC®, where
I=1I5=mkg*

The velocity here is that of the appli-
cation point of the 100-N force.
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6/145 A small experimental vehicle has a total mass m of
500 kg including wheels and driver. Each of the four
wheels has a muss of 40 &g and a centroidal radius of
gyration of 400 mm. Total frictional resistance R to
motion is 400 N and is measured by towing the vehi-
cle at a constant speed on a level road with engine
disengaged. Determine the power output of the en-
gine for a speed of 72 kmw/h up the 10-pervent grade
(@) with zero acceleration and (b) with an accelera-
tion of 3 m/s?. (Hint: Power equals the time rate of
increase of the total energy of the vehicle plus the
rate at which frictional work is overcome.!

Ans. (a) P = 17.76 kW, (b) P = 52.0 kW

Problem 6/145

UNZA., Department of Mechanical Engineering



6/7 ACCELERATION FROM WORK-ENERGY;
VirTuAaL WoORK

In addition to using the work-energy equation to determine the veloc-
ities due to the action of forces acting over finite displacements, we may
also uge the equation to establigh the instantaneous accelerations of the
members of a system of interconnected bodies as a result of the active
forces applied. We may also modify the equation to determine the configu-
ration of such a system when it undergoes a constant acceleration.

UNZA., Department of Mechanical Engineering

72



Work-Energy Equation for Differential Motions

For an infinitesimal interval of motion, Eq. 4/3 becomes
dU' =dT + dV

The term dU’ represents the total work done by all active nonpotential
forces acting on the system under consideration during the infinitesimal
displacement of the system. The work of potential forces i1s included in
the dV-term. If we use the subscript i to denote a representative body of
the interconnected system, the differential change in kinetic energy T
for the entire system becomes

dT = d(_Zém.,Ei?‘ + Z;I w5 =Emu, dv, + Xl 0, dw,

where dv, and dw; are the respective changes in the magnitudes of the
velocities and where the summation is taken over all bodies of the sys-
tem. But for each body, muv, dv, = ma,-ds, and lw,dw, = La,df,,
where ds, represents the infinitesimal linear displacement of the center
of mass and where dé, represents the infinitesimal angular displacement
of the body in the plane of motion. We note that a,-ds, is identical to
(a;), ds;, where (a;), is the component of a; along the tangent to the curve
deseribed by the mass center of the body in question. Also o, represents
f ;» the angular acceleration of the representative body. Consequently,
for the entire system

dT = Ym,a,-ds, + Sla, db,

UNZA., Department of Mechanical Engineering
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This change may also be written as

dT = XR,-ds; + EM; -d,

where R; and M; are the resultant force and resultant couple acting on
body ¢ and where d8; = do;k. These last two equations merely show us
that the differential change in kinetic energy equals the differential
work done on the system by the resultant forces and resultant couples
acting on all the bodies of the system.

The term dV represents the differential change in the total gravita-
tional potential energy V, and the total elastic potential energy V, and
has the form

dV = d(Zmgh, + Z%ijjz‘) = Zmg dh; + Ik;x, dx,

where A, represents the vertical distance of the center of mass of the

representative body of mass m, above any convenient datum plane and

where x; stands for the deformation, tensile or compressive, of a repre-

sentative elastic member of the system (spring! whose stiffness is &;.
The complete expression for dU”" may now be written as

(dU’ =Im,a, ds; + ﬂ.‘“x‘ df; + Tmg dh; + Tk, ‘ixj] (6/11)

UNZA., Department of Mechanical Engineering

74



Virtual Work

In Eq. 6/11 the differential motions are differential changes in the
real or actual displacements which occur. For a mechanical system
which assumes a steady-state configuration during constant accelera-
tion, we often find it convenient to introduce the concept of virtual
work. The concepts of virtual work and virtual displacoment wore intro-
duced and used to establish equilibrium configurations for static sys-
toma of intorconneotod bodics (see Chaptor 7 of Val. I Slaties).

A virtual displacement is any assumed and arbitrary displacement,
linear or angular, away from the natural or actual position. For a sys-
tem of connected bodies, the virtual displacements must be consistent
with the constraints of the systenn Fur example, when voe end of a link
is hinged about a fixed pivot, the virtual displacement of the other end
must be normal to the line joining the two ends. SBuch requirements tor
digplacements consistent with the constraints are purely kinematic and
provide what are known as the equations of consiraint.

UNZA., Department of Mechanical Engineering
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If a set of virtual displacements satisfying the equations of con-
straint and therefore consistent with the constraints is assumed for a
mechanical system, the proper relationship between the coordinates
which specify the configuration of the system will be determined by ap-
plying the work-energy relationship of Eq. 6/11, expressed in terms of
virtual changes. Thus,

oU" = Zma, 88, + ZI-,-tr,; 86, + Tm,g 6h, + Thx; bx;  (6/11a)
It is customary to use the differential symbol d to refer to differential
changes in the real displacements, whereas the symbol & is used to sig-

nify virtual changes, that is, differential changes which are assumed
rather than real.

UNZA., Department of Mechanical Engineering
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Sample Problem 6/12

The movable rack A has a mass of 3 kg, and rack B is fixed. The gear has a
mass of 2 kg and a radius of gyration of 60 mm. In the pesition shown, the
spring, which has a stiffness of 1.2 kN/m, is stretched a distance of 40 mm. For
the instant represented, determine the acceleration a of rack A under the action
of the 80-N force. The plane of the figure is vertical.

UNZA., Department of Mechanical Engineering
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6/165 The portable work platform is elevated by means of
the two hydraulic cylinders articulated at points C.
The pressure in each eylinder produces a foree F. The
platform, man, and load have a combined mass m,
and the mass of the hinkage is small and may be ne-
glected. Determine the upward acceleration ¢ of the
platform and show that it is independent of both &
and 0.

s
Ans. a am F

Problem 6/165

UNZA., Department of Mechanical Engineering
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SECTION €. ITMPULSE AND MOMENTUM

6/8 ImpuLse-MomeNTUM EQUATIONS

Linear Momentum

G = d(mr)/di = mr, where 1 is the velocity v of the mass center. There-
fore, as before, we find that the linear momentum of any mass system,

rigid or nonrigid, is

Next in Art. 4/4 we rewrote Newton’s generalized second law as Eq.
4/6. This equation and its integrated form are

L.
and [(GIF f ‘IFdt = G, (6/12)
b

Equation 6/12 may be written in its scalar-component form, which, for
plane motion in the x-y plane, gives

- 7 ~
ZF; = éx (Gx]l + : ZFx dt = (Gx)z
. and - (6/12a)
ZFJ == Gy ts
(@), + [ =G,

UNZA., Department of Mechanical Engineering
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Angular Momentum

Angular momentum is defined as the moment of linear momentum.

Because the angular-momentum wvector is always normal to the
plane of motion, vector notation is generally unnecessary, and we may
write the angular momentum about the mass center as the scalar

This angular momentum appears in the moment-angular-momentum
relation, Eq. 4/9, which in scalar notation for plane motion, along with
its integrated form, is

s ¢
IM;=H;| and [(Ha), + j Mg dt = (Hp), | (6/14)
'l

UNZA., Department of Mechanical Engineering

This ice skater can effect a large in-
creose in ongular speed obout a ver-

tical axis by drawing her arms closer
to the center of her body.

DUOMO/COREIS
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With the moments about GG of the linear momenta of all particles ac-
counted for by H; = lw, it follows that we may represent the linear mo-
mentum G = mv as a vector through the mass center (7, as shown In
Fig. 6/14a. Thus, G and H; have vector properties analogous to those of
the resultant force and couple.

With the establishment of the linear- and angular-momentum re-
sultants in Fig. 6/14a, which represents the momentum diagram, the
angular momentum H, about any point O is easily written as

[HO =Iw + msd] (6/15)

This expression holds at any particular instant of time about O, which
may be a fixed or moving point on or off the hody.

(a)

UNZA., Department of Mechanical Engineering
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When a body rotates about a fixed point O on the body or body ex-
tended, as shown in Iig. 6/146, the relations v = rw and d = r may be
substituted into the expression for Hy, giving Hy = (Io + mrw). But

I+ mr? = I, so that

In Art. 4/2 we derived Eq. 4/7, which is the moment-angular-
momentum equation about a fixed point 0. This equation, written in
sealar notation for plane motion along with its integrated form, is

1,
IM =H,| snd |(Hp+ f"zMod:=(Ho)2 (6/17)
1

(B)

Figure 6/14 Note that you should not add linear momentum and angular momentum
for the same reason that force and moment cannot be added directly.

UNZA., Department of Mechanical Engineering
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Interconnected Rigid Bodies

The equations of impulse and momentum may also be used for a

gystem of interconnected rigid bodies since the momentum principles F,
are applicable to any general system of constant mass. Figure 6/15 G,=m,v, Gy=myv,
shows the combined free-body diagram and momentum diagram for two l

interconnected bodies @ and b. Equations 4/6 and 4/7, which are IF = G
and IMp = Hp where O is a fixed reference point, may be written for
each member of the system and added. The sums are

TF =G, + G +
: e (6/18)
EM() - [Ho)u+ (H()}(, 2 s
0
In integrated form for a finite time interval, these expressions become
Figure 6/15

2y s
f SF dr — A, .o f LM, 4l — (AH,,) (6/19)
1, g ¢

“syatem
1

We note that the equal and opposite actions and reactions in the connec-
tions are internal to the system and cancel one another so they are not
involved in the foree and moment summations. Also, point O is one fixed
reference point for the entire system.
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Conservation of Momentum

In Art. 4/5, we expressed the principles of conservation of momen-
tum for a general mass system by Egs. 4/15 and 4/16. These principles
are applicable to either a single rigid body or a system of interconnected
rigid bodies. Thus, if £F = 0 for a given interval of time, then

(4/15]

which says that the linear-momentum vector undergoes no change in the
absence of a resultant linear impulse. For the system of interconnected
rigid bodies, there may be linear-momentum changes of individual parts of
the system during the interval, but there will be no resultant momentum
change for the system as a whole if there is no resultant linear impulse.

UNZA., Department of Mechanical Engineering
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Conservation of Momentum

Similarly, if the resultant moment about a given fixed point O or
about the mass center is zero during a particular interval of time for a
single rigid body or for a system of interconnected rigid bodies, then

[(H,))l = (Ho)z) or ((Ba), - (ne)zj [4/16]

which says that the angular momentum either about the fixed point or
about the mass center undergoes no change in the absence of a corre-
sponding resultant ongular impulse. Again, in the case of the intercon.
nected system, there may be angular-momentum changes of individual
components during the interval, but there will be no resultant angular-
momentum change for the system as a whole if there is no resultant an-
gular impulse about the fixed point or the mass center. Either of Eqs.
4/16 may hold without the other.

UNZA., Department of Mechanical Engineering
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Impact of Rigid Bodies

Courte sy NASA

There are smaii reaction wheels inside the Hubbie Space Teiescope that

make precision attitude control possible. The principles of angular momen-
tum are fundamental to the design and operation of such a control system.

UNZA., Department of Mechanical Engineering
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Sample Problem 6/15

The sheave E of the hoisting rig shown has a mass of 30 kg and a centroidal
radius of gyration of 250 mm. The 40-kg load D which is carried by the sheave
has an initial downward velocity ©; = 1.2 m/s at the instant when a clockwise
torque is applied to the hoisting drum A to maintain essentially a constant force
I = 380 N in the cable at B. Compute the angular velocity ws of the sheave 5 sec-
onds after the torque is applied to the drum and find the tension T in the cable
at O during the interval. Neglect all friction.

UNZA., Department of Mechanical Engineering

ty=1.2mfs
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G

y proper management of the hydraulic cylinders which support and move this flight simulator, a variety of three-
imensional translational and rotational accelerations can be produced.
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