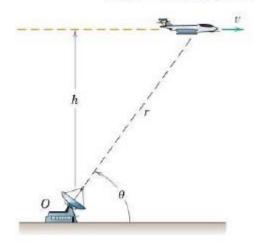
MEC3705 – DYNAMICS

KINEMATICS OF PARTICLES

PLANE MOTION

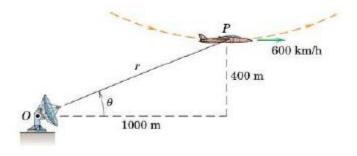

ASSIGNMENT 3: Due: Monday 2nd August, 2021

INSTRUCTIONS: Please show your working clearly and use the SI units for all your calculations.

Question 1

2/149 A jet plane flying at a constant speed v at an altitude h=10 km is being tracked by radar located at O directly below the line of flight. If the angle θ is decreasing at the rate of 0.020 rad/s when $\theta=60^{\circ}$, determine the value of \ddot{r} at this instant and the magnitude of the velocity $\bf v$ of the plane.

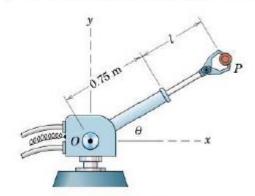
Ans. $\ddot{r} = 4.62 \text{ m/s}^2$, v = 960 km/h



Problem 2/149

Question 2

2/153 At the bottom of a loop in the vertical (r-θ) plane at an altitude of 400 m, the airplane P has a horizontal velocity of 600 km/h and no horizontal acceleration. The radius of curvature of the loop is 1200 m. For the radar tracking at O, determine the recorded values of \ddot{r} and $\ddot{\theta}$ for this instant.


Ans. $\ddot{r} = 12.15 \text{ m/s}^2$, $\ddot{\theta} = 0.0365 \text{ rad/s}^2$

Problem 2/153

Question 3

2/162 The robot arm is elevating and extending simultaneously. At a given instant, $\theta = 30^{\circ}$, $\dot{\theta} = 10$ deg/s = constant, l = 0.5 m, $\dot{l} = 0.2 \text{ m/s}$, and $\ddot{l} = -0.3 \text{ m/s}^2$. Compute the magnitudes of the velocity v and acceleration a of the gripped part P. In addition, express v and a in terms of the unit vectors i and j.

Problem 2/162