

GEE 4812: Principles of Geomatics

Angular Measurements

- LECTURER : Mr. TWATAIZYA MINANGO
- EMAIL : <u>twataizya.minango@unza.zm</u>
- OFFICE : B.Eng. Main Building, 1st Floor, Former Zagis Offices, Room 2

Content

- Theodolite
- Unit of Measurement
- Face Left and Face Right Orientation
- Horizontal Angles and Vertical Angles
- Angle Booking

Angular Measurements

- Angles are one of the basic measurements in surveying.
- By angles, it is referred to both horizontal and vertical angles.
- The basic instrument is the theodolite.
- Although there are number of varieties produced by different manufacturers, all instruments have the same basic concepts arranged in the same geometric relationship.

Angular Measurements

- ANT CONTRACTOR OF THE PARTY OF
- Theodolites are normally classified by the precision to which they resolve the angles and vary from say 0.1 seconds (0.1") to 1 second (1") and more.
- The choice of which depends on the accuracy specifications for the work to be done.
- At the moment there are latest electronic theodolites which measure the angles automatically as opposed to conventional ones.

Principle of Angle Measurement

Principle of Angle Measurement

• The figure on the next page shows two points S and T and a theodolite set up on point

R.

- The horizontal angle at L between S and T is angle MLN, where M and N are the vertical projections of S and T on to the horizontal plane through L.
- The vertical angles to S and T from L are angle SLM (and angle of elevation) and angle TLN (an angle of depression).

Principle of Angle Measurement

Features of the Theodolite

Features of the Theodolite

Features of the Theodolite

- a. The Vertical axis, V
- b. The Horizontal, Trunnion or Transit axis, T
- c. The Line of Collimation axis, C
- d. The Plate Level axis P, which is the tangent to the top of the plate level tube.
- e. The line of Collimation of the optical plummet or the Optical Plummet axis, O

Unit of Measurement

- Angles are measured in Angles e.g 100.5025 degrees (decimal degrees).
- Usually presented in Sexagesimal Notation i.e degrees, minutes, seconds.

Degrees.Minutes.Seconds = ddd.mm.ss

 $100.5025 \ degrees = 100^{\circ}30'09''$

Unit of Measurement

Vertical and Horizontal Angle readings

Digital Theodolite

Analog Theodolite

Field Procedures

- In some cases we want to have our angles with a relatively high order of accuracy, so that we must try to minimise the effects of certain systematic errors and of random errors as much as possible.
- In such cases we should adopt the following rules;
- Measure in both faces and use the values for calculation of the average.
- Several types of possible systematic errors are eliminated in this way.

Field Procedures

- Take more than one direction to each target point. This will reduce the effect of random errors.
- Spread the observations over the horizontal circle, i.e. use all parts of the circle. In this way any small residual graduation errors may be compensated.
- These rules are applied in the so-called Bessel-rounds. Each round consists of one set of Face Left and one set of the Face Right readings to the targets, transiting the instrument the instrument in between.

Face Left and Face Right Orientation

Face Left and Face Right Orientation

• When observing e.g. 3 targets from station point A, the sequence for one round is as

follows:

Horizontal Angles

Horizontal Angles

- The mean horizontal circle readings are obtained by averaging the FL and FR readings.
 To simplify these calculations, the degrees of the FL readings are carried through and only the minutes and the seconds values are averaged.
- The final horizontal angles are obtained by meaning the values obtained from each round.

Horizontal Angles

• Theodolite set up at LS498.

FACE RIGHT

Horizontal Angles: Face Left Readings

FACE LEFT

Stn	Object		Face Left	_		Face Right	t	Si	mple Mea	an	Reduced Mean			
Sth	Object	0	I	"	•	1		0	1	"	0	I	"	
LS498	LS497	000	00	00										
	TP1	89	17	52										

Horizontal Angles: Face Right Readings

FACE RIGHT

Stn	Ohiast		Face Left			Face Right	t	Si	mple Mea	an	Reduced Mean			
500		0	I	"	0	I	"	0	I	"	0	I	"	
LS498	LS497	000	00	00	180	00	07							
	TP1	89	17	52	269	18	01							

Horizontal Angles: Simple Mean

- Adopt the Face Left degree value.
- Then find the average of the FL and FR minutes and seconds.

Stn	Ohiast		Face Left	_		Face Right	t	Si	mple Mea	an	Reduced Mean			
Sth	Object	0	I	"	0	I	"	0	I	"	0	I		
LS498	LS497	000	00	00	180	00	07	000	00	04				
	TP1	89	17	52	269	18	01	89	17	58				

Simple Mean = (FL+FR±180°)/2

(+) if FL >180° or FR<180° (-) if FL <180° or FR>180°

Horizontal Angles: Reduced Mean

- Subtract the initial Simple Mean $(00^{\circ}00'04'')$ from the other Simple Means.
- The Reduced mean is the angle between lines LS498-LS497 and LS498-TP1.

Stn	Ohiast	Face Left				Face Right			Simple Mear	ı	Reduced Mean			
Sth	Object	o	•		٥	ı	"	0	ı	"	o	I	"	
LS498	LS497	000	00	00	180	00	07	000	00	04	000	00	00	
	TP1	89	17	52	269	18	01	89	17	58	89	17	52	

Vertical Angles

Vertical Angles: Face Left Readings

Stn	Obiect	Face Left			Face Right			Reduced Face Left			Redu	uced Face I	Right	Final Angle		
Stn	Object	0	I	- 11	0	I		0	•	"	0	I		0	I	
LS498	LS497	88	10	30												
	TP1	89	17	52												
	TP2	92	44	10												

Vertical Angles: Face Right Readings

Sta	Ohiant	Face Left				Face Right	t	Red	uced Face	Left	Reduced Face Right			Final Angle		
Stn	Object	0	I		o	I		o	I		0	•	11	0	ı	
LS498	LS497	88	10	30	271	51	20									
	TP1	89	17	52	270	27	30									
	TP2	92	44	10	267	13	40									

SERVICE AND EXCELLENCE

Vertical Angles: Reduced Face Left

Vertical Angle(FL) = 90° – *Zenith Angle*

Ch.,	Ohio at	Face Left				Face Right	t	Red	uced Face	Left	Redu	iced Face	Right	Final Angle		
Stn	Object	o	I	"	0	I	"	0	I	"	o	I		0	I	"
LS498	LS497	88	10	30	271	51	20	01	49	30						
	TP1	89	17	52	270	27	30	00	27	30						
	TP2	92	44	10	267	13	40	- 02	- 44	- 10						

Positive Angle = Angle of Elevation

Negative Angle = Angle of Depression

Vertical Angles: Reduced Face Right

 $Vertical Angle(FR) = Zenith Angle - 270^{\circ}$

Chu	Ohiset	Face Left				Face Right	t	Red	uced Face	Left	Reduced Face Right			Final Angle		
Stn	Object	0	I		0	I	"	o	I		0	I		o	I	"
LS498	LS497	88	10	30	271	51	20	01	49	30	01	51	20			
	TP1	89	17	52	270	27	30	00	27	30	00	25	10			
	TP2	92	44	10	267	13	40	- 02	- 44	- 10	- 02	- 46	- 20			

Positive Angle = Angle of Elevation

Negative Angle = Angle of Depression

Vertical Angles: Final Angle

 $Final Angle = \frac{Reduced FL + Reduced FR}{2}$

<u></u>		Face Left				Face Right	t	Red	uced Face	Left	Redu	iced Face	Right	Final Angle			
Stn	Object	0	I		0	I	"	0	I	"	0	I		0	I	"	
LS498	LS497	88	10	30	271	51	20	01	49	30	01	51	20	01	50	25	
	TP1	89	17	52	270	27	30	00	27	30	00	25	10	00	26	20	
	TP2	92	44	10	267	13	40	- 02	- 44	- 10	- 02	- 46	- 20	- 02	- 45	- 15	

Positive Angle = Angle of Elevation

Negative Angle = Angle of Depression

END