11/1/2020

TOPIC 9

Structural Design of Pavements

Part 1

Structural Design of Flexible Pavements

Introduction

- Highway pavements are divided into two main categories:
 - 1. Rigid (Wearing Surface made of PCC)
 - 2. Flexible (Wearing Surface made of Bituminous Materials)
- Wearing Surface of Rigid Pavements acts like a beam over any irregularities in the underlying supporting material.
- ✤ Wearing Surface of flexible pavements remain in contact with the underlying material
- Traffic loads are transferred by the wearing surface to the underlying supporting materials through the interlocking of aggregates, the frictional effect of granular materials, and cohesion of fine materials.
- Flexible pavements are further divided into three subgroups:
- high type Support expected traffic load without visible distress
- ii. Intermediate type range from surface treated to those with qualities just below that of high type
- iii. low type low-cost roads and have wearing surfaces that range from untreated to loose natural materials to surface treated earth.

CEE 4612 – L. H. Kamisa

Soil Stabilization

- Soil stabilization is the treatment of natural soil to improve its engineering properties.
- ***** Two categories:

- 1. Mechanical blending of different grades of soils to obtain a required grade
- 2. Chemical blending of the natural soil with chemical agents
- Commonly used agents are:
 - i. Portland cement,
 - ii. asphalt binders, and
 - iii. lime

Soil Stabilization

Purpose	Soil Type	Recommended Stabilization Methods
1. Subgrade Stabilization		
A. Improved load-carrying and stress-distributing characteristics	Coarse granular Fine granular Clays of low PI Clays of high PI	SA, SC, MB, C SA, SC, MB, C C, SC, CMS, LMS, SL
B. Reduce frost susceptibility	Fine granular Clays of low PI	CMS, SA, SC, LF CMS, SC, SL, CW, LMS
C. Waterproof and improve runoff	Clays of low PI	CMS, SA, CW, LMS, SL
D. Control shrinkage and swell	Clays of low PI	CMS, SC, CW, C, LMS, SL
E. Reduce resiliency	Clays of high PI Clays of high PI Elastic silts and clays	SL SL, LMS SC, CMS
2. Base Course Stabilization		
A. Improve substandard materials	Fine granular Clays of low PI	SC, SA, LF, MB SC, SL
B. Improve load-carrying and stress-distributing characteristics	Coarse granular Fine granular	SA, SC, MB, LF SC, SA, LF, MB
C. Reduce pumping	Fine granular	SC, SA, LF, MB membranes
Shoulders (unsurfaced)		
A. Improve load-carrying ability	All soils	See section 1A above; also MB
B. Improve durability	All soils	See section 1A above
C. Waterproof and improve runoff	Plastic soils	CMS, SL, CW, LMS
D. Control shrinkage and swell	Plastic soils	See section 1E above
Dust Palliative	Fine granular	CMS, CL, SA, oil, or bituminous surface spray
	Plastic soils	CL, CMS, SL, LMS
5. Ditch Lining	Fine granular	PSC, CS, SA
	Plastic soils	PSC, CS
6. Patching and Reconstruction C = Compaction CMS = Cement modified soil	Granular soils LMS = Lime-modified soil MB = Mechanical blending	SC, SA, LF, MB
CL = Chlorides	PSC = Plastic soil cement	
CS = Chemical solidifiers CW = Chemical waterproofers	SA = Soil asphalt SC = Soil cement	
LF = Lime fly ash	SL = Soil lime	

Soil Types and Stabilization Methods Best Suited for Specific Applications

Soil Stabilization

Nori	Normal Range of Cement Requirements						
AASHTO Soil Group	Cement (percentage by weight of soil)	Cement (pounds per cubic foot of compacted soil cement)	Cement (kilograms per cubic meter of compacted soil cement)				
A-1-a	3-5	5-7	80-110				
A-1-b	5-8	7-8	110-130				
A-2-4 A-2-5 A-2-6	5-9	7–9	110-140				
A-2-7							
A-3	7–11	8-11	130-180				
A-4	7–12	8-11	130-180				
A-5	8-13	8-11	130-180				
A-6	9-15	9-13	140 - 210				
A-7	10-16	9-13	140 - 210				

7

- Surface course (wearing surface):
 - The top layer of pavement directly in contact with traffic
 - A mixture of mineral aggregates and asphaltic materials
 - Main functions:
 - Transmits the wheel loads to the underlying layers within acceptable limits
 - Resists abrasive forces due to traffic
 - Provides skid-resistant driving surface and reduces tractive resistance to traffic
 - Provides water and climatic protection to underlying layers
- Base course:

8

- Usually granular materials such as crushed stone, crushed or uncrushed gravel or slag, and sand
- Strict specifications for plasticity, gradation, and strength
- Can be stabilized using portland cement, asphalt, or lime when a higher strength is required or when the available materials do not meet the specifications
- Main functions:
 - Acts as a foundation to the surface course
 - Distributes the stresses on the subbase into a large area
 - Protects the surface course against volume changes that may take place in the subgrade
 - Prevents the effect of capillary rise

Subbase course:

- A layer of granular materials that is located between the subgrade and base course
- Quality of materials is superior to that of the subgrade but inferior to that of the base course
- Can be omitted if the quality of the subgrade material meets the requirements of the subbase
- Specifications are in terms of plasticity, gradation, and strength
- Main functions:
 - Reduces the stresses applied on the subgrade
 - Serves in water drainage
 - Protects the base course against volume changes of the subgrade
 - Prevents the rise of capillary water
- Subgrade:
 - The natural material located along the horizontal alignment of the pavement
 - Serves as a foundation of the pavement structure

10

Design Me	thods of Flexible	Pavement
Theoretical Method (Mechanistic) - Boussinesq Theory (one – layer) (Stiffness Factor)	Empirical Method (Field Observations) - Group Index (GI) - Corps of Engineering (CBR method). - National Crushed Stone Association (NCSA method) (CBR).	Empirical-Mechanistic Empirical-Theoretical - Asphalt Institute method (AI method)
Design inputs: Material Characteriza	- AASHTO method ation, Traffic Characterizat	ion, Environment, and Failure Thickness

11

- In theoretical analysis, the pavement structure is usually considered a multilayered elastic system
- New analytical methods can model the plastic and viscous characteristics
- Pavement design should account not only to the stresses and strains resulting from load application but also to the fatigue resulting from load repetitions
- Objective: is to determine the minimum thickness of pavement layers that is enough to:
 - Avoid overloading or overstressing the subgrade
 - Avoid overloading or overstressing any one or more of the pavement layers

CEE 4612 – L. H. Kamisa

 Maintain good serviceability performance along the pavement design life

AASHTO Design Method

- Mainly empirical, based on the AASHO Road Test:
 - Test site was in Ottawa, Illinois
 - Straight portion of the track became part of I-80
 - Timeline:
 - Construction: August 1956 -September 1958
 - Test Traffic: October 1958 -November 1960
 - Special Studies: Spring and early summer 1961
 - Test facilities:
 - Six 2-lane test loops
 - Loop 1 = not subject to traffic, used to test environmental effects
 - Loops 2 through 6 = subject to traffic
 - A total of 836 test sections including 16 short-span bridges

• Pavement structure required on top of a specific layer is expressed in terms of Structural Number (SN)

14

The factors considered in the AASHTO procedure for the design of flexible pavement as presented in the 1993 guide are:

- Pavement performance
- Traffic

- Roadbed soils (subgrade material)
- Materials of construction
- Environment
- Drainage
- Reliability

Pavement Performance:

- Structural and functional performance
- Present Serviceability Index (PSI):
 - Quantifies pavement performance based on its roughness and distress
 - Ranges from 0 (lowest) to 5 (highest)
 - Immediately after construction $- p_i = 4.2$ to 4.5
 - At the end of the pavement design life:
 - $-p_{t} =$
 - » 2.5 to 3.0 for major highways
 - » 2.0 for highways with lower classification

CEE 4612 – L. H. Kamisa

Traffic:

- Traffic input
 - AADT
 - Percentage of commercial vehicles
- · Sources of data
 - Regional traffic office
 - Commercial vehicle surveys (CVS)
 - Weigh-in-motion (WIM) stations
 - Vehicle inspection stations (shorter scales)
- Traffic Loads are expressed in terms of the number of repetitions of an 18 kips single-axle load, referred to as Equivalent Single Axle Load (ESAL)

- Load equivalency factors (LEF):
 - In general∷

 Equivalency factors for single and tandem axles are available based on SN

CEE 4612 – L. H. Kamisa

Single Axle with Single Tires

Single Axle with Dual Tires

Tandem Axles with Dual Tires

- Truck Factor (TF) can be calculated as the ESAL for a specific truck category
 - TF = Sum of LEFs for all the axles

20

Axle Type (lbs)	Type (lbs) Axle Load		Load Equivalency Factor (from AASHTO, 1993)		
	(kN)	(lbs)	Flexible	Rigid	
Single axle	8.9	2,000	0.0003	0.0002	
	44.5	10,000	0.118	0.082	
	62.3	14,000	0.399	0.341	
	80.0	18,000	1.000	1.000	
	89.0	20,000	1.4	1.57	
	133.4	30,000	7.9	8.28	
Tandem axle	8.9	2,000	0.0001	0.0001	
	44.5	10,000	0.011	0.013	
	62.3	14,000	0.042	0.048	
	80.0	18,000	0.109	0.133	
	89.0	20,000	0.162	0.206	
	133.4	30,000	0.703	1.14	
	151.2	34,000	1.11	1.92	
	177.9	40,000	2.06	3.74	
	222.4	50,000	5.03	9.07	

Some Typical Load Equivalency Factors

		Pavement Structural Number (SN)						
Axle Load (kips)	1	2	3	4	5	6		
2	.0004	.0004	.0003	.0002	.0002	.0002		
4	.003	.004	.004	.003	.002	.002		
6	.011	.017	.017	.013	.010	.009		
8	.032	.047	.051	.041	.034	.031		
10	.078	.102	.118	.102	.088	.080		
12	.168	.198	.229	.213	.189	.176		
14	.328	.358	.399	.388	.360	.342		
16	.591	.613	.646	.645	.623	.606		
18	1.00	1.00	1.00	1.00	1.00	1.00		
20	1.61	1.57	1.49	1.47	1.51	1.55		
22	2.48	2.38	2.17	2.09	2.18	2.30		
24	3.69	3.49	3.09	2.89	3.03	3.27		
26	5.33	4.99	4.31	3.91	4.09	4.48		
28	7.49	6.98	5.90	5.21	5.39	5.98		
30	10.3	9.5	7.9	6.8	7.0	7.8		
32	13.9	12.8	10.5	8.8	8.9	10.0		
34	18.4	16.9	13.7	11.3	11.2	12.5		
36	24.0	22.0	17.7	14.4	13.9	15.5		
38	30.9	28.3	22.6	18.1	17.2	19.0		
40	39.3	35.9	28.5	22.5	21.1	23.0		
42	49.3	45.0	35.6	27.8	25.6	27.7		
44	61.3	55.9	44.0	34.0	31.0	33.1		
46	75.5	68.8	54.0	41.4	37.2	39.3		
48	92.2	83.9	65.7	50.1	44.5	46.5		
50	112.0	102.0	79.0	60.0	53.0	55.0		

Ayle Load Equivalance	Footors f	or Elovible	Devements	Cingle Ayle	and n of 2 F
Axie Load Equivalency	Factors I	or Flexible	ravements,	Single Axle	s, and p_t or 2.5

		I	avement Struct	ural Number (S	SN)	
Axle Load (kips)	1	2	3	4	5	б
2	.0001	.0001	.0001	.0000	.0000	.0000
4	.0005	.0005	.0004	.0003	.0003	.0002
6	.002	.002	.002	.001	.001	.001
8	.004	300.	.005	.004	.003	.003
10	.008	.013	.011	.009	.007	.006
12	.015	.024	.023	.018	.014	.013
14	.026	.041	.042	.033	.027	.024
16	.044	.065	.070	.057	.047	.043
18	.070	.097	.109	.092	.077	.070
20	.107	.141	.162	.141	.121	.110
22	.160	.198	.729	.207	.180	.166
24	.231	.273	.315	.292	.260	242
26		2570	.420	.401	.364	342
28	.401	.493	.348	.034	.490	.470
30	.011	.048	.705	CW0.	.008	.003
34	1.00	1.02	1.11	.007	1.00	1.02
24	1.00	1.05	1.11	1.11	1.09	1.00
20	1.20	1.20	1.30	1.00	1.30	1.30
40	2.21	216	2.06	2.03	2.08	214
40	2.76	2.10	2.00	2.03	2.00	2.14
44	2.70	2.07	2.49	7.82	2.00	2.01
46	418	3.08	2.58	3.40	3.55	3 70
48	5.08	4.80	4.25	3.08	4.17	4.49
50	612	5.76	5.03	4.64	4.86	528
52	733	6.87	5.93	538	5.63	617
54	8 72	814	6.95	6.22	6.47	715
56	10.3	9.6	8.1	7.2	7.4	82
58	12.1	11.3	9.4	8.2	8.4	9.4
60	14.2	13.1	10.9	9.4	9.6	10.7
62	16.5	15.3	12.6	10.7	10.8	12.1
64	19.1	17.6	14.5	12.2	12.2	13.7
66	22.1	20.3	16.6	13.8	13.7	15.4
68	25.3	23.3	18.9	15.6	15.4	17.2
70	29.0	26.6	21.5	17.6	17.2	19.2
72	33.0	30.3	24.4	19.8	19.2	21.3
74	37.5	34.4	27.6	22.2	21.3	23.6
76	42.5	38.9	31.1	24.8	23.7	26.1
78	48.0	43.9	35.0	27.8	26.2	28.8
80	54.0	49.4	39.2	30.9	29.0	31.7
82	60.6	55.4	43.9	34.4	32.0	34.8
84	67.8	61.9	49.0	38.2	35.3	38.1
86	75.7	69.1	54.5	42.3	38.8	41.7
88	84.3	76.9	60.6	46.8	42.6	45.6
90	93.7	85.4	67.1	51.7	46.8	49.7

Axle Load Equivalency Factors for Flexible Pavements, Tandem Axles, and pt of 2.5

 $\text{ESAL}_i = f_d \times G_{rn} \times \text{AADT}_i \times 365 \times N_i \times F_{Ei}$

where

26

 $\begin{aligned} \text{ESAL}_i &= \text{equivalent accumulated 18,000-lb (80 kN) single-axle load for the} \\ & \text{axle category } i \\ f_d &= \text{design lane factor} \\ G_{rn} &= \text{growth factor for a given growth rate } r \text{ and design period } n \\ \text{AADT}_i &= \text{first year annual average daily traffic for axle category } i \\ N_i &= \text{number of axles on each vehicle in category } i \\ F_{Ei} &= \text{load equivalency factor for axle category } i \end{aligned}$

Note: When using Truck Factor, drop Ni from this equation

27

 $G_{rn} = [(1+r)^n - 1]/r$

where

 $r = \frac{l}{100}$ and is not zero. If annual growth is zero, growth factor = design period i = growth rate n = design life, yrs

	Growth F	actors						
			Ann	ual Grow	th Rate, Pe	ercent (r)		
Design Period, Years (n)	No Growth	2	4	5	6	7	8	10
1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2	2.0	2.02	2.04	2.05	2.06	2.07	2.08	2.10
3	3.0	3.06	3.12	3.15	3.18	3.21	3.25	3.31
4	4.0	4.12	4.25	4.31	4.37	4.44	4.51	4.64
5	5.0	5.20	5.42	5.53	5.64	5.75	5.87	6.11
6	6.0	6.31	6.63	6.80	6.98	7.15	7.34	7.72
7	7.0	7.43	7.90	8.14	8.39	8.65	8.92	9.49
8	8.0	8.58	9.21	9.55	9.90	10.26	10.64	11.44
9	9.0	9.75	10.58	11.03	11.49	11.98	12.49	13.58
10	10.0	10.95	12.01	12.58	13.18	13.82	14.49	15.94
11	11.0	12.17	13.49	14.21	14.97	15.78	16.65	18.53
12	12.0	13.41	15.03	15.92	16.87	17.89	18.98	21.38
13	13.0	14.68	16.63	17.71	18.88	20.14	21.50	24.52
14	14.0	15.97	18.29	19.16	21.01	22.55	24.21	27.97
15	15.0	17.29	20.02	21.58	23.28	25.13	27.15	31.77
16	16.0	18.64	21.82	23.66	25.67	27.89	30.32	35.95
17	17.0	20.01	23.70	25.84	28.21	30.84	33.75	40.55
18	18.0	21.41	25.65	28.13	30.91	34.00	37.45	45.60
19	19.0	22.84	27.67	30.54	33.76	37.38	41.45	51.16
20	20.0	24.30	29.78	33.06	36.79	41.00	45.76	57.28
25	25.0	32.03	41.65	47.73	54.86	63.25	73.11	98.35
30	30.0	40.57	56.08	66.44	79.06	94.46	113.28	164.49
35	35.0	49.99	73.65	90.32	111.43	138.24	172.32	271.02

Example – Calculating ESAL

30

An eight-lane divided highway is to be constructed on a new alignment. Traffic volume forecasts indicate that the average annual daily traffic (AADT) in both directions during the first year of operation will be 12,000 with the following vehicle mix and axle loads.

Passenger cars (1000 lb/axle) = 50% 2-axle single-unit trucks (6000 lb/axle) = 33% 3-axle single-unit trucks (10,000 lb/axle) = 17%

The vehicle mix is expected to remain the same throughout the design life of the pavement. If the expected annual traffic growth rate is 4% for all vehicles, determine the design ESAL, given a design period of 20 years. The percent of traffic on the design lane is 45%, and the pavement has a terminal serviceability index (p_t) of 2.5 and SN of 5.

31

Nobiclo Class		Parameters for Calculating ESAL						
Venicle Class	f _d	G _{rn}	%	AADT _i	N _i	F _{EI}	EJAL	
Passeger Car	0.45	29.78	50%	6000	2	0.0002	1.174E+04	
2-Axle Single Unit Trucks	0.45	29.78	33%	3960	2	0.1	3.874E+06	
3-Axle Single Unit Trucks	0.45	29.78	17%	2040	3	0.88	2.634E+07	
		3.0227E+07						

Example – Calculating ESAL Using Truck Factor

Design Life	25	years					
Design Lane Factor, fd	45%						
(Directional Distribution)							
Growth Rate	7%						
AADT	4000	vpd					
Vahiela Class	Pa	Parameters for Calculating ESAL					
Venicle Class	f _d	G _{rn}	%	AADT _i	TF	ESAL	
Truck	0.45	63.25	30%	1200	0.45	5.610E+06	
	5.61E+06						

32

Road Soils (Subgrade):

- Subgrade strength is expressed in terms of resilient modulus (M_r)
- If only CBR is known:
 - $-M_r = 1500 \text{ CBR}$ (fine grained soils, CBR ≤ 10)

Materials of Construction:

33

- Quality of materials of pavement layers is determined using layer coefficient *a_i*
- *a*₃, *a*₂, and *a*₁ for subbase, base, and wearing surface

 M_r (lb/in²) = 1500 CBR (for fine-grain soils with soaked CBR of 10 or less) M_r (lb/in²) = 1000 + 555 R value (for $R \le 20$)

Resilience Modulus

Environment:

- Effect of varying M_r due to varying water content during a specific period is considered by determining an effective M_r for this period
- To determine an effective *M_r* within a period:
 - For each sub-period, determine the relative damage, u_f , corresponding to the period's M_r
 - Determine the mean relative damage, u_f
 - Determine the effective M_r corresponding to u_f

35

Construction Materials

Chart for Estimating Effective Roadbed Soil Resilient Modulus for Flexible Pavements Designed Using the Serviceability Criteria

Drainage:

 The effect of drainage on the pavement performance is considered by incorporating a factor (m_i) for the base and subbase layer coefficients (a₂ and a₃)

Quality of Drainage		Wate	Water Removed Within*		
Excell	ent	2 h	2 hours		
Good		1 day			
Fair		1 w	eek		
Poor		1 n	onth		
Very j	oor	(wa	ater will not drain)	
OURCE: Based on AAS Recomm	nended m _i Values	of Time Pavement S	tructure Is Expose	ed to	
OURCE: Based on AAS Recomm	mended m _i Values Percent o Moi	of Time Pavement S sture Levels Appro	tructure Is Expose aching Saturation	ed to	
Quality of	nended m _i Values Percent o Moi	of Time Pavement S sture Levels Appro	tructure Is Expose aching Saturation	ed to Greater	
Quality of Drainage	nended m _i Values Percent o Moi Less Than 1 %	of Time Pavement S sture Levels Appro 1 to 5%	tructure Is Expose aching Saturation 5 to 25%	ed to Greater Than 25%	
Quality of Excellent	nended m _i Values Percent o Moi Less Than 1 % 1.40–1.35	of Time Pavement S sture Levels Appro 1 to 5% 1.35–1.30	tructure Is Expose aching Saturation 5 to 25% 1.30–1.20	ed to Greater Than 25% 1.20	
Quality of Drainage Excellent Good	nended m _i Values Percent o Moi Less Than 1 % 1.40–1.35 1.35–1.25	of Time Pavement S sture Levels Appro- I to 5% 1.35–1.30 1.25–1.15	tructure Is Expose aching Saturation 5 to 25% 1.30–1.20 1.15–1.00	ed to Greater Than 25% 1.20 1.00	
Quality of Drainage Excellent Good Fair	nended m _i Values Percent o Moi Less Than 1 % 1.40–1.35 1.35–1.25 1.25–1.15	of Time Pavement S isture Levels Approv 1 to 5% 1.35–1.30 1.25–1.15 1.15–1.05	tructure Is Expose aching Saturation 5 to 25% 1.30–1.20 1.15–1.00 1.00–0.80	Greater Than 25% 1.20 0.80	
Quality of Drainage Excellent Good Fair Poor	1.40–1.35 1.25–1.15 1.15–1.05	of Time Pavement S isture Levels Approv 1 to 5% 1.35–1.30 1.25–1.15 1.15–1.05 1.05–0.80	tructure Is Expose aching Saturation 5 to 25% 1.30–1.20 1.15–1.00 1.00–0.80 0.80–0.60	<i>Greater</i> <i>Than 25%</i> 1.20 1.00 0.80 0.60	

SOURCE: Based on AASHTO Guide for Design of Pavement Structures, 1993, AASHTO, Washington, D.C.

Reliability:

- Reliability design level, *R*, is introduced to account for uncertainties in traffic and performance predictions
- Overall standard deviation, S_0 , for flexible pavements = 0.4 - 0.5

Suggested Levels of Reliability for Various Functional classifications					
Recommended Level of Reliability					
Functional Classification	Urban	Rural			
Interstate and other freeways	85-99.9	80-99.9			
Other principal arterials	80-99	75–95			
Collectors	80-95	75–95			
Local	50-80	50-80			

Suggested Levels of Reliability for Various Functional Classifications

Note: Results based on a survey of the AASHTO Pavement Design Task Force.
SOURCE: Based on AASHTO Guide for Design of Pavement Structures, 1993, AASHTO, Washington, D.C.

CEE 4612 – L. H. Kamisa

CEE 4612 – L. H. Kamisa

Structural Design

Objective:

 To determine the minimum thickness of wearing surface, base, and subbase (D₁, D₂, and D₃)

Procedure:

- · Determine the total ESAL for the design period
- Determine the design serviceability loss = ΔPSI = p_i p_t
- Determine the effective M_r (subgrade), M_r for base and subbase, and layer coefficients (a₁, a₂ & a₃)
- Determine the drainage coefficients (m₂ & m₃)
- Select the reliability design level (R) and overall standard deviation (S₀)
- Use M_r of the base to determine SN₁
 - $SN_1 = a_1 D_1 \Longrightarrow get D_1$
 - Check minimum value and determine design value D₁*
- Use M_r of the subbase to determine SN₂
 - $SN_2 = a_1 D_1^* + a_2 D_2 m_2 \Longrightarrow get D_2$
 - Check minimum value (Table 19.11) and determine design value D_2^*
- Use M_r of the subgrade to determine SN₃
 - $SN_3 = a_1 D_1^* + a_2 D_2^* m_2 + a_3 D_3 m_3 \Longrightarrow get D_3$
 - Determine design value D₃*

where

- m_i = drainage coefficient for layer *i*
- $a_1, a_2, a_3 =$ layer coefficients representative of surface, base, and subbase course, respectively
- D_1, D_2, D_3 = actual thickness in inches of surface, base, and subbase courses, respectively

The basic design equation given in the 1993 guide is

$$\log_{10}W_{18} = Z_R S_o + 9.36 \log_{10} (\text{SN} + 1) - 0.20 + \frac{\log_{10} [\Delta \text{PSI}/(4.2 - 1.5)]}{0.40 + [1094/(\text{SN} + 1)^{5.19}]} + 2.32 \log_{10}M_r - 8.07$$

where

 W_{18} = predicted number of 18,000-lb (80 kN) single-axle load applications Z_R = standard normal deviation for a given reliability S_o = overall standard deviation SN = structural number indicative of the total pavement thickness ΔPSI = $p_i - p_t$

40

41

 p_i = initial serviceability index p_t = terminal serviceability index M_r = resilient modulus (lb/in²)

Standard Normal Deviation (Z_R) Values Corresponding to Selected Levels of Reliability

Reliability (R%)	Standard Normal Deviation, Z_R	
50	-0.000	
60	-0.253	
70	-0.524	
75	-0.674	
80	-0.841	
85	-1.037	
90	-1.282	
91	-1.340	
92	-1.405	
93	-1.476	
94	-1.555	
95	-1.645	
96	-1.751	
97	-1.881	
98	-2.054	
99	-2.327	
99.9	-3.090	
99.99	-3.750	

Adapted with permission from AASHTO Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials, Washington, D.C., 1993.

CEE 4612 – L. H. Kamisa

Design Chart for Flexible Pavements Based on Using Mean Values for each Input

Minimum Thickness (in.)		
Asphalt Concrete	Aggregate Base	
1.0 (or surface treatment)	4	
2.0	4	
2.5	4	
3.0	6	
3.5	6	
4.0	6	
	Asphalt Concrete 1.0 (or surface treatment) 2.0 2.5 3.0 3.5 4.0	

AASHTO-Recommended Minimum Thicknesses of Highway Layers

SOURCE: Based on AASHTO Guide for Design of Pavement Structures, 1993, AASHTO, Washington, D.C.

45

Example - Structural Design of Flexible Pavements (Click to see example)

