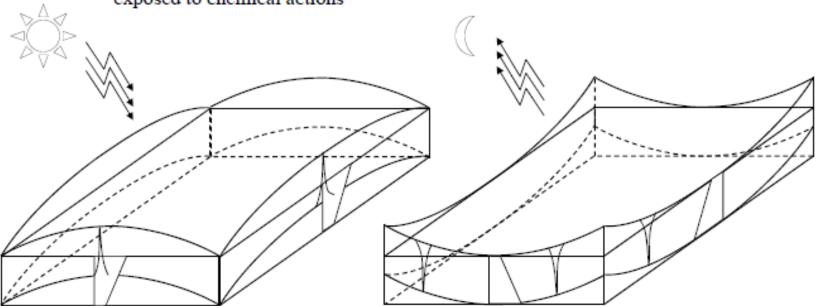

TOPIC 9

Structural Design of Pavements

Part 2

Structural Design of Rigid Pavements

Rigid Pavement



Introduction

Structural Components of a Rigid Pavement

Pavement slab:

- Portland cement concrete (PCC)
- Carries traffic loads through a bending action and distributes it over a large area of the subbase or subgrade
- Designed and constructed for long service lives
- Maintenance costs are less than those for flexible pavements
- Subject to environmental stresses due to temperature or moisture changes
- Can be used for heavy-traffic roads, weak subgrade, and if the pavement surface is exposed to chemical actions

Structural Components of a Rigid Pavement

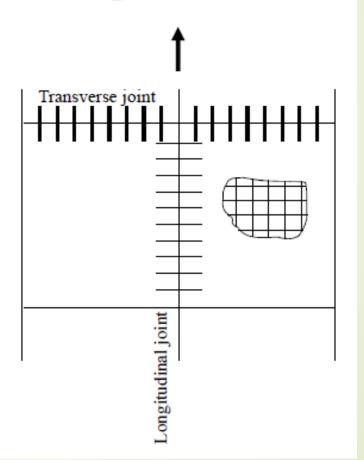
Subbase course:

- A granular or stabilized layer added between the subgrade and the pavement slab
- May or may not be used
- Helps in drainage, controlling capillary rise, and controlling volume changes in the subgrade
- Reduces the subgrade pumping
- Provides a more suitable surface for constructing the pavement slabs
- Subgrade

Structural Components of a Rigid Pavement

Types of Reinforcing Steel

Temperature steel:


- Bar mat
- Does not prevent cracking but controls the crack width
- Amount of steel depends mainly on the dimensions of pavement slab
- Does not add directly to the pavement's flexural strength

Dowel bars:

- Load transfer mechanism across transverse joints between successive slabs
- Large diameters
- At least one end of the bar should be smooth and lubricated to facilitate free expansion

Tie bars:

- Tie adjacent slabs across longitudinal joints
- · Much smaller diameters
- Should be deformed or contain hooks

Types of Rigid Highway Pavements

PCC pavement type depends on the length of pavement slabs

Plain concrete pavement:

- Joints are placed at short distances (10 to 20 ft)
- · No temperature steel
- Usually, no dowel bars

Simply reinforced concrete pavement:

- Joint spacing ranges from 30 to 100 ft
- Temperature steel and dowel bars are used

Continuously reinforced concrete pavement:

- No transverse joints except construction joints or expansion joints where necessary
- High percentage of steel (temperature steel)

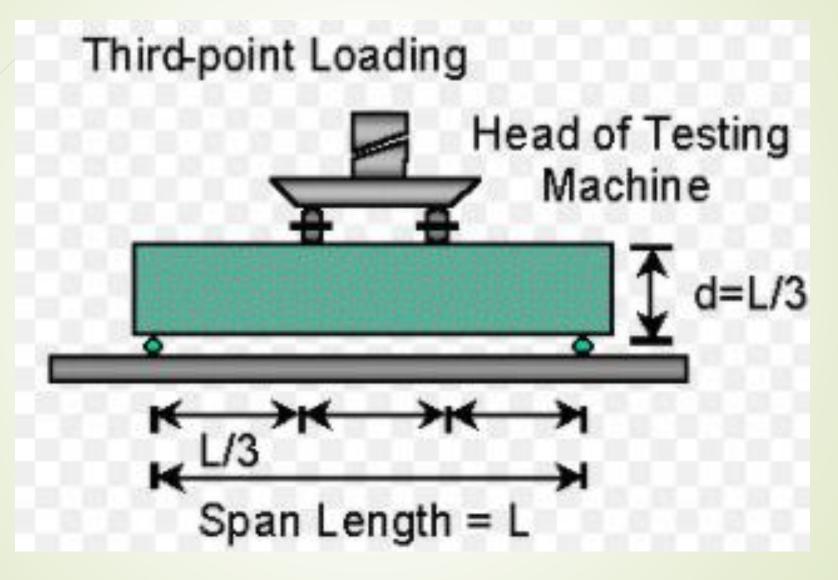
- Design can be empirical or theoretical
- Objective is to determine the minimum thickness of PCC slabs required to control fatigue and erosion

PCA Design Method

- Based on a combination of theoretical studies, test results, and experience
- Applicable to plain, simply reinforced, and continuously reinforced concrete pavements

Design Considerations

Flexural Strength of Concrete:


- Determined in terms of modulus of rupture (M_r)
- M_r is obtained by the third-point method

Subgrade and Subbase Support:

- Determined in terms of modulus of subgrade reaction (K)
- If a subbase is used, K is increased according to Table 20.22

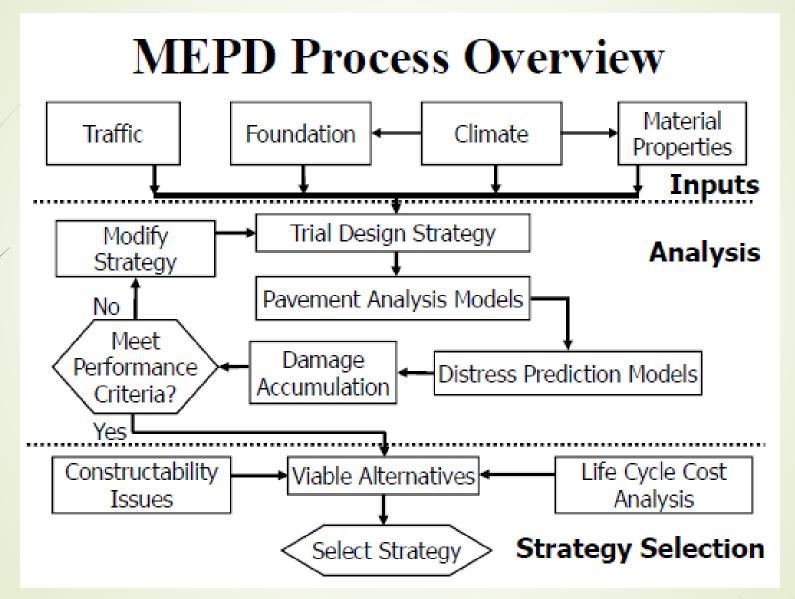
(a) Untreated Granular Subbases				
	Subbase k Value (lb/in.3)			
Subgrade k Value (lb/in.2)	4 in.	6 in.	9 in.	12 in.
50	65	75	85	110
100	130	140	160	190
200	220	230	270	320
300	320	330	370	430
	(b) Cement-T	reated Subbases		
	Subbase k Value (lb/in.3)			
Subgrade k Value (lb/in.²)	4 in.	6 in.	9 in.	12 in
50	170	230	310	390
100	280	400	520	640
200	470	640	830	_

SOURCE: R.G. Packard, Thickness Design for Concrete Highway and Street Pavements, American Concrete Pavement Association, 1984. Used with permission.

Traffic Loads:

- Computed in terms of the cumulated number of single and tandem axles of different loads projected for the pavement design period
- Axle loads are magnified by a load safety factor (LSF) taken as:
 - 1.2 → interstate and multilane highways (high truck volumes)
 - $-1.1 \rightarrow$ arterials (moderate truck volumes)
 - $-1.0 \rightarrow$ roads and residential streets (low truck volumes)

Design Procedure


- Determine the cumulated number of repetitions of each axle load, and the LSF
- Determine the K of subgrade-subbase based on K (subgrade) and the type and thickness of the subbase
- Determine the concrete M_{rr} and select a trial thickness
- Fatigue Analysis:
 - Determine the equivalent stress values for single and tandem axles
 - Determine the stress ratio factors
 - For each axle, determine the allowable repetitions percent
 - Summation of all fatigue percents ≯ 100%
- · Erosion Analysis:
 - Determine the erosion factors for single and tandem axles
 - For each axle, determine the allowable repetitions damage percent
 - Summation of all damage percents ≯ 100%

and the

and the fatigue

Example - Design of Rigid Pavements

- Up to 1993, AASHTO design method was based on empirical performance data and equations based on the AASHO Road Test
- In 2002, NCHRP Project 1-37A had a goal to develop a design guide utilizing existing mechanistic models and data
- The Mechanistic-Empirical Pavement Design Guide (MEPDG) was then completed in 2004 and released to the public for review and evaluation
- A number of revisions and improvements were incorporated into the 2008 Mechanistic-Empirical Pavement Design Guide, Interim Edition: A Manual of Practice
- The MEPD method is more accurately an analysis method
 - Provides the amount of distress over time
 - An iterative design method

- Three main stages:
 - Input (evaluation)
 - Traffic
 - Foundation
 - Climate
 - Material properties
 - Analysis
 - Flexible pavements
 - » Fatigue cracking
 - » Thermal cracking
 - » Longitudinal cracking
 - » Rutting
 - » Smoothness (IRI)
 - Rigid pavement
 - » Transverse slab cracking (JPCP)
 - » Transverse joint faulting (JPCP)
 - » CRCP punchouts
 - » Smoothness (IRI)
 - Strategy Selection

- As a design procedure, follow five basic steps:
 - Select a trial design (trial pavement structure)
 - Select appropriate performance indicator criteria (threshold values) and design reliability level for the design
 - Obtain all inputs for the trial pavement structure
 - Evaluate the trial design
 - Revise the trial design as needed

Thank You!!!

