PRESENTATION: CE 4412 LECTURES

ONSITE SANITATION AND FAECAL SLUDGE MANAGEMENT

By

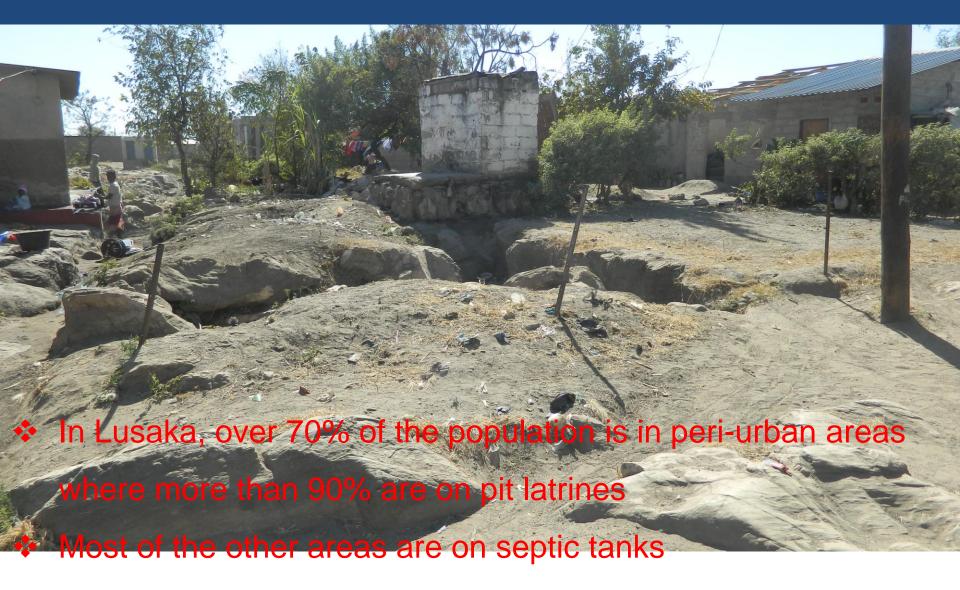
J. M. Tembo

SEPTEMBER 2021

Objectives

- Introduce students to OSS
- Introduce students to FSM

Definition


❖ A system where the treatment of excreta or sewage or wastewater takes place at the site of generation

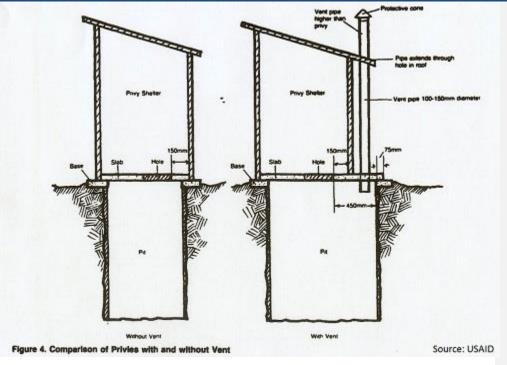
It is also referred to as decentralised sanitation system

Significance

- Appropriate system where the per capita investment in terms of off-site is too high (Example-farm areas with spaced housing units)
- Also may be the only feasible sanitation means in poor communities (In poor countries)
- May be the only feasible sanitation means in areas with a hostile geology

Significance

❖ Sewered area are less than 20%

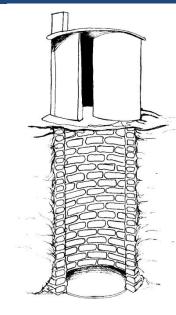

On-site Sanitation Systems

- Conventional On-Site Systems (Drop and Store)
- Resource Oriented Sanitation ROSA (Ecological Sanitation)

Types of Conventional On-site Systems

- Simple Pit Latrines
- Ventilated Improved Pit (VIP) latrines
- Water flush toilets connected to septic tanks
- Aqua-privies
- Cesspools
- Cartage or Conservancy or bucket Latrines

Conventional Pit Latrines




- ❖ WHAT IS IT?
- Simplest method of sanitation.

- An on-site disposal system without any effluent-Only seepage
- Used in villages and peri-urban areas

Conventional Pit Latrines: Construction and Operation aspects

- Consists of a pit in the ground with some superstructure for privacy.
- Hole can be lined (unstable soils)
- At least, the bottom should not be lined to allow for seepage
- Should normally be constructed in areas where:
 - ✓ The geology is not rocky
 - ✓ Groundwater table is not high
 - ✓ Water sources are not in the immediate vicinity (>15 to 30m down hill of a water source????)

Conventional Pit Latrines: Construction and Operation aspects

Will have a superstructure for privacy

Problems With Conventional Pit Latrines

❖Odour, flies

Overflowing pits, no space to dig new pits

Pit latrines have to be outdoors (safety issues)

No means of emptying pits

Groundwater contamination

Pit Latrine Operational aspects

When about 2/3 to 3/4 full, it should be decommissioned.

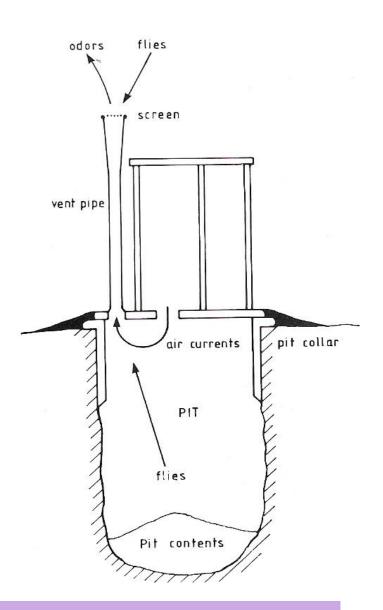
- Should be filled with earth and replaced by a new pit (where land is adequate). Otherwise it should be emptied – Refer to FSM Section
- The opening should be kept covered when the facility is not in use (Awareness required).

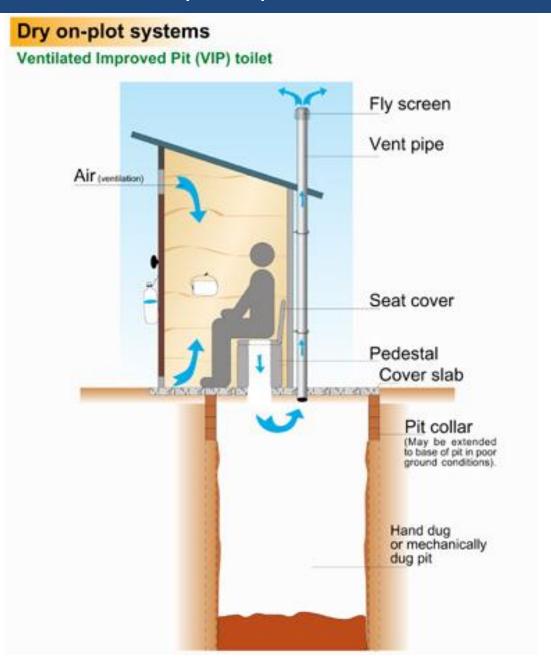
Pit Latrine Operational aspects

- Designing of a latrine:
 - Estimate Sludge Accumulation Rate (SAR) (40 to 60 litres/cap.y)
 - Decide period required before replacement or emptying
 - Demographic data (Household population)
 - Then volume can be computed (Take cognisance of the fact that pit latrines are also receptors of solid waste in most cases

The Ventilated Improved Pit (VIP) Latrine

Has special features to reduce odour and flies

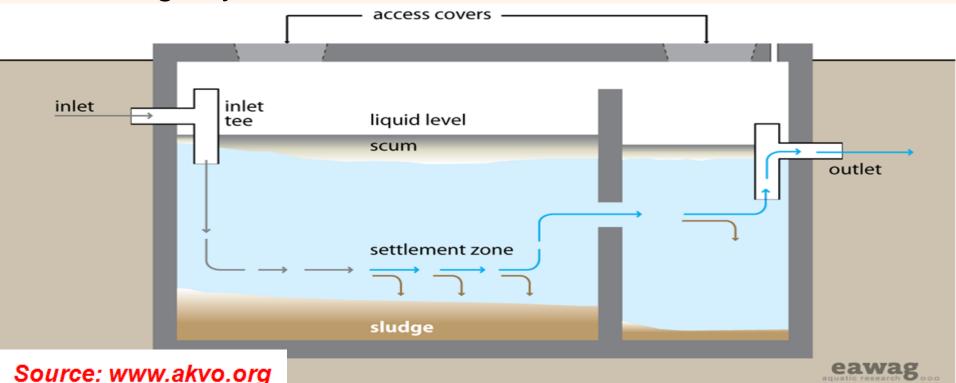

ODOUR REDUCTION


- Vent pipe (Maximum exposure to sun) and above roof level for air movement
- Colour of vent pipe should be black
- Vented door
- No closing of squatting hole

FLY REDUCTION

- Painting of the inside of toilet-Black
- Screen on vent pipe

The Ventilated Improved Pit (VIP) Latrine


SOURCE: GOOGLE IMAGES

VIP Operational aspects (As for pit latrines)

- ❖ When there is no intention to use the accumulated faecal sludge, it should be buried when about 2/3 to 3/4 full.
- Should be filled with earth and replaced by a new pit.
- ❖Should be sited about 30m from water sources like wells
- Where it has to be emptied Refer to FSM Section

Septic Tank: What Is It?

- ❖ A water tight settling tank in which wastes, usually from individual households, are flushed down a short sewer.
- Suitable for areas with adequate water supply but no sewerage system

Septic Tank: Sitting

- ❖ To be used in areas with low ground water table and where the geological formation is not porous (Because the effluent from the tank goes to a soakaway for infiltration into the ground
- To be positioned at least 3m from water pipes
- Suitable in low density areas
- Should be located away from water sources (>30m from water wells; 7m from rivers, 3m from water pipes).....check Water Resourses SI (50m)

Septic Tank: Design and Operations

- Designed with a retention time of about 3 days which should not go below 1 day
- ❖ Water depth about 1-2m
- Should have at least two compartments in the ratio 2:1
- Inlet pipe (Tee) discharges downwards to avoid short circuiting (And to prevent scum going out)
- Partition wall perforated or open jointed a depth below water surface (This prevents scum from floating into second chamber)
- Discharge pipe is Tee to avoid scum floating to soakaway or drainfields (Avoid clogging)

Septic Tank: Design and Operations

❖ Usually, desludged once in 3 – 5 years (Need to know the average Sludge Accumulation Rate (SAR: 40 to 60 L/C.Year))

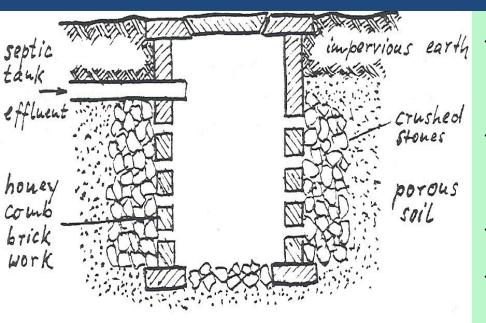
Septic Tank: Treatment Mechanism

- Treats solids anaerobically
- Liquid discharged into the ground via soakaway or drainfields where it gets treated through the process of filtration and other biological processes.

Septic Tank: Design and Operations

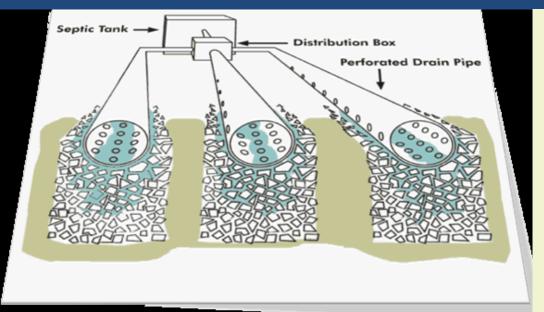
QUESTION:

Design a septic tank for a family of 10 people in Meanwood lbex hill


SOLUTION

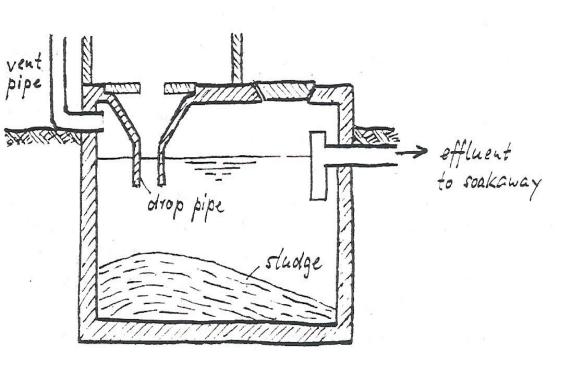
- Compute hydraulic loading
- Choose retention time

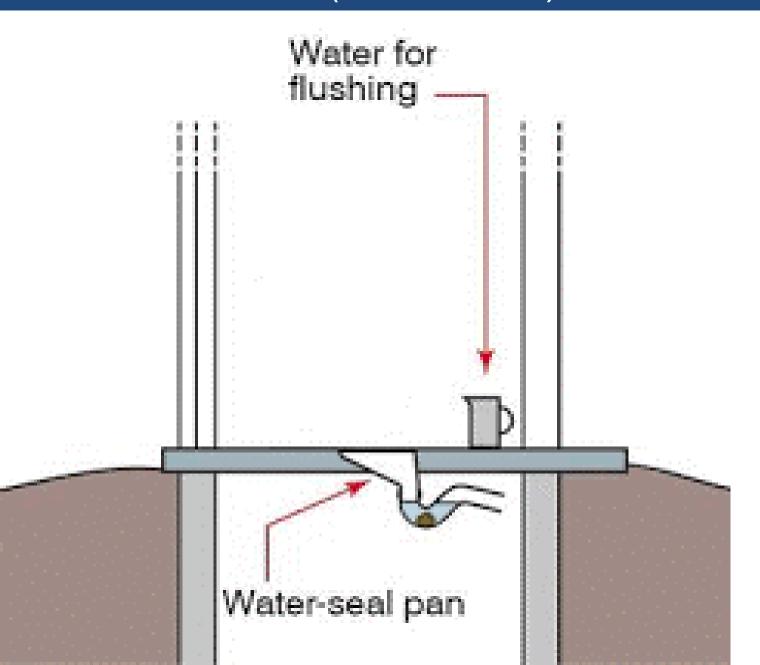
WHEN TO DESLUDGE


- ❖ SAR = 40 to 60 liters/c.year
- Decide minimum hydraulic retention time at time of desludging – Usually one day

Soakaway

- Purpose is to aid infiltration of wastewater into the natural ground
- Consists of a circular or square walled-up hole in the ground
- ❖ Top 0.3-0.5m should be water-tight
- Lower part should be an openjointed wall.
- Performance is dependant on soil characteristics and efficiency of the Septic Tank (Percolation test result: 15 to 100 seconds/mm drop)

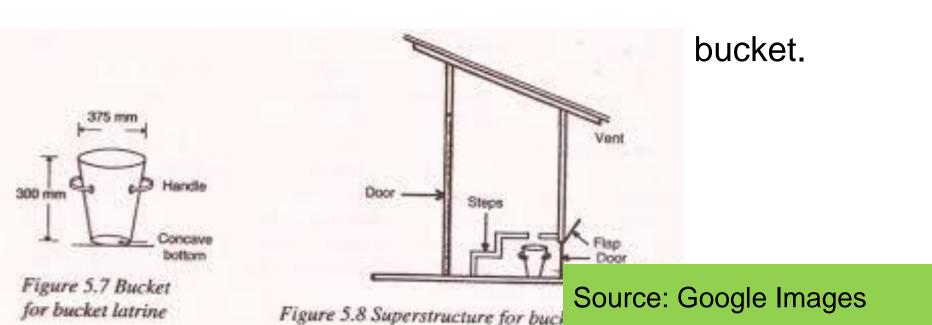

Drain fields


- Consists of trenches in series and parallel arrangement
- Each trench consists of an open jointed pipe
- Pipes are laid on rock fill or gravel fill then covered with earth
- Used where quantity of water to be infiltrated is huge (E.g. block of flats)

AQUA-PRIVIES (Pour Flush)

- ❖ A modified septic tank-1-2 m³
- Filled with water and directly below squatting pan.
- consists of a watertight concrete tank
- comparatively lower water requirements as compared to the septic tanks.
- Suited to areas without adequate water supply in the house

AQUA-PRIVIES (Pour Flush)


CESSPOOLS/CESSPIT

A covered chamber with no overflow receiving and storing all the wastewaters from a dwelling or dwellings.

Frequency of emptying is high and as such, this system has high operating costs.

Cartage or Conservancy or Bucket Latrines

- One of the oldest systems for excreta collection
- ❖ A bucket receives the excreta, (nightsoil).
- Bucket usually placed in bucket chamber directly under a squatting slab and is accessible through a back door from the street.

Bucket Latrines: Operational Challenges

- Very difficult to operate in a hygienic way.
- Flies are a problem.
- ❖ Spillage occurs easily when the latrine is used and when the bucket is removed, emptied and replaced.
- Transport and disposal of the excreta may be connected with health hazards.

FAECAL SLUDGE MANAGEMENT

- FSM is the storage, collection, transportation, treatment and safe enduse/disposal of Faecal Sludge (See sanitation service chain below)
- New field that has evolved due to the realisation that OSS are not complete without a functional FSM.
 - ❖ Faecal Sludge: Excreta which comes from onsite facilities and has not been transported through a sewer (Strande et. al., 2014)

Faecal Sludge Management

FSM: Captute and Storage or Containment

Capture is by interface

Interface: Considerations

Needs to be user friendly

Needs to respond to end-use requirements

Source: Google Images

FSM: Emptying and Transportation

Manual-Modified Garden Tools Manually operated mechanical System (Gulper; Diaphram; Mappet etch)

FSM: Transportation

Emptying and Transportation: Considerations

- Accessibility of sites (Where inaccessible, then manual means are appropriate)
- Quality of faecal sludge (High Solid waste content results in desludging difficulties, Rheological properties: The thicker the sludge, the more difficult it is to pump out)

FSM: Treatment

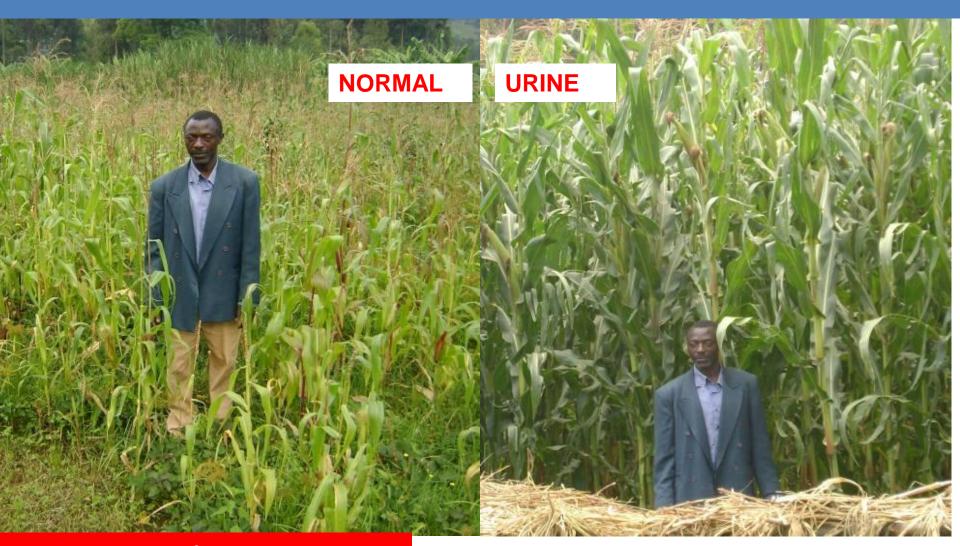
- Faecal sludge will be highly concentrated
- Mostly anaerobic treatment systems are employed (Suitable for strong sludge)
- Drying beds (Unplanted and Planted) can be also be used separately or in combination
- Co-treatment at conventional plants can also be used (Need to take care not to over load treatment plants)

FSM: Reuse and Disposal/Resource Oriented Sanitation – The Omni Processor

Products from an Omni Processor

- Characteristics of an Omni Processor Plant
 - ➤ Treats up to 16.8t/day sludge with MC =0.4g/g dry sludge
 - Produces up to 3.6MW of electricity in 24 hours
 - Produces 26.4m³ of water/day (demineralised)
 - > Produces 9.6m³ of ash in 24 hours


FSM: Reuse and Disposal/Resource Oriented Sanitation



Black Soldier Flies

Reuse Of Faecal Sludge/Excreta Products Comparative Results

Pictorial Evidence: Rwanda

(Source: Håkan, 2004)

The fertigative effects of urine

Plant, growth period and number of repetitions	Unfertilized plants g	Fertilized, 3:1 water/urine application 3x per week	Relative yield fertilized to unfertilized
Lettuce, 30 days (n = 3)	230	500	2.2
Lettuce, 33 days (n = 3)	120	345	2.9
Spinach, 30 days (n = 3)	52	350	6.7
Covo, 8 weeks (n = 3)	135	545	4.0
Tomato, 4 months (n = 9)	1680	6084	3.6

(grams fresh weight) in plant trials with urine as a fertiliser to vegetables in Zimbabwe (Morgan, 2003)

Fertigative effects of excreta compost

Plant, soil type and number of repetitions	Growth period	Fresh weight topsoil only	Fresh weight 50/50 topsoil/ FA*soil	Relative yield fertilized to unfertilized
		g	9	
Spinach, Epworth soil (n = 6)	30 days	72	546	7 .6
Covo, Epworth soil (n = 3)	30 days	20	161	8 .1
Covo 2, Epworth soil (n = 6)	30 days	81	357	4 .4
Lettuce, Epworth soil (n = 6)	30 days	122	912	7 .5
Onion, Ruwa soil (n = 9)	4 months	141	391	2 .8
Green pepper, Ruwa soil (n = 1)	4 months	19	89	4.7
Tomato, Ruwa soil	3 months	73	735	10 .1

^{*} Fossa altema soil

Average yields (grams fresh weight) in plant trials comparing growing in poor topsoil only, with growing in a mixture consisting of 50% topsoil and 50% Fossa alterna compost (Morgan, 2003)

THANK YOU