## PRESENTATION: CE 4412 LECTURES

#### **ONSITE SANITATION AND FAECAL SLUDGE MANAGEMENT**

By J. M. Tembo

**UNZA-SEPTEMBER 2020** 

#### Objectives

- Introduce students to OSS
- Introduce students to FSM

#### Definition

A system where the treatment of excreta or sewage or wastewater takes place at the site of generation

It is also referred to as decentralised sanitation

## Significance

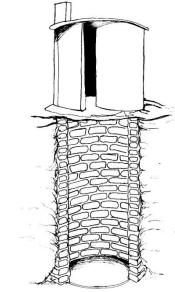
- Appropriate system where the per capita investment in terms of off-site is too high (Example-farm areas with spaced housing units)
- Also may be the only feasible sanitation means in poor communities (In poor countries)
- In Lusaka, over 70% of the population is in peri-urban areas where more than 90% are on pit latrines
- Most of the other areas are on septic tanks
- Sewered area may be less than 20%

#### **On-site Sanitation Systems**

- Conventional On-Site Systems (Drop and Store)
- Resource Oriented Sanitation ROSA (Ecological Sanitation)

#### Types of Conventional On-site Systems

- Simple Pit Latrines
- Ventilated Improved Pit (VIP) latrines
- Water flush toilets connected to septic tanks
- Aqua-privies
- Cesspools
- Cartage or Conservancy or bucket Latrines


### **Conventional Pit Latrines**

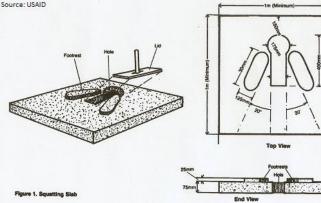


- ✤ WHAT IS IT?
- Simplest method of sanitation.
- An on-site disposal system without any effluent-Only seepage
- Used in villages and peri-urban areas

## Conventional Pit Latrines: Construction and Operation aspects

- Consists of a pit in the ground with some superstructure for privacy.
- Hole can be lined (unstable soils)
- At least, the bottom should not be lined to allow for seepage
- Should normally be constructed in areas where:
  - The geology is not rocky
  - Groundwater table is not high
  - Water sources are not in the immediate vicinity (>15 to 30m down hill of a water source???)






# Conventional Pit Latrines: Construction and Operation aspects

Will have a superstructure for privacy



#### Should have a squatting slab or pedestal Hazard







### **Problems With Conventional Pit Latrines**



Odour, flies

Overflowing pits, no space to dig new pits

Pit latrines have to be outdoors (safety issues)

No means of emptying pits

Groundwater contamination

## Pit Latrine Operational aspects

- When about 2/3 to 3/4 full, it should be decommissioned.
- Should be filled with earth and replaced by a new pit (where land is adequate). Otherwise it should be emptied – Refer to FSM Section
- The opening should be kept covered when the facility is not in use (Awareness required).

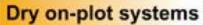
## Pit Latrine Operational aspects

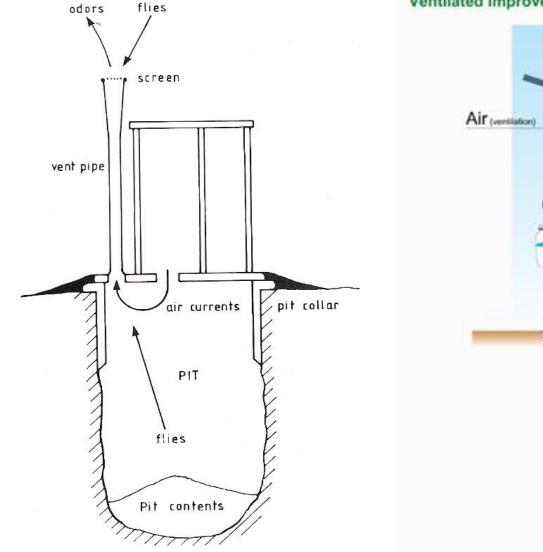
- Designing of a latrine:
  - Estimate SAR (40 to 60 litres/cap.y)
  - Decide period required before replacement or emptying
  - Demographic data
  - Then volume can be computed (Take cognisance of the fact that pit latrines are also receptors of solid waste in most cases



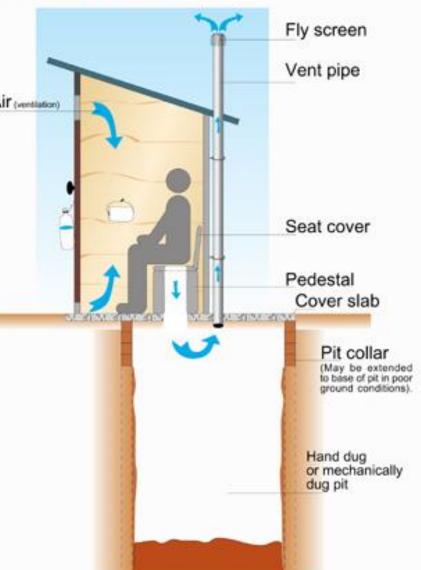
## THE VENTILATED IMPROVED PIT LATRINE

#### Has special features to reduce odour and flies


#### ODOUR REDUCTION


- Vent pipe (Maximum exposure to sun) and above roof level for air movement
- Colour of vent pipe should be black
- Vented door
- No closing of squatting hole

#### FLY REDUCTION


- Painting of the inside of toilet-Black
- Screen on vent pipe

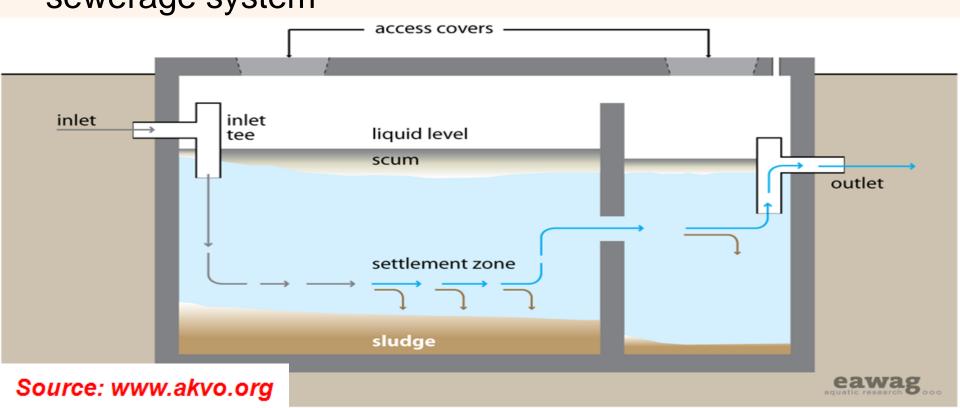
## THE VENTILATED IMPROVED PIT LATRINE





Ventilated Improved Pit (VIP) toilet




#### SOURCE: GOOGLE IMAGES

## VIP Operational aspects (As for pit latrines)

- When there is no intention to use the accumulated faecal sludge, it should be buried when about 2/3 to 3/4 full.
- Should be filled with earth and replaced by a new pit.
   Should be sited about 30m from water sources like wells
- Where it has to be emptied Refer to FSM Section

### Septic Tank: What Is It?

- ✤ A water tight settling tank in which wastes, usually from individual households, are flushed down a short sewer.
- Suitable for areas with adequate water supply but no sewerage system



- To be used in areas with low ground water table and where the geological formation is not porous (Because the effluent from the tank goes to a soakaway for infiltration into the ground
- ✤ To be positioned at least 3m from water pipes
- Suitable in low density areas
- Should be located away from water sources (>30m from water wells; 7m from rivers, 3m from water pipes).....check Water Resourses SI (50m)

### Septic Tank: Design and Operations

- Designed with a retention time of about 3 days which should not go below 1 day
- Water depth about 1-2m
- Should have at least two compartments in the ratio 2:1
- Inlet pipe (Tee) discharges downwards to avoid short circuiting (And to prevent scum going out)
- Partition wall perforated or open jointed a depth below water surface (This prevents scum from floating into second chamber)
- Discharge pipe is Tee to avoid scum floating to soakaway or drainfields (Avoid clogging)

#### Septic Tank: Design and Operations

Usually, desludged once in 3 – 5 years (Need to know the average Sludge Accumulation Rate (SAR: 40 to 60 L/C.Year))

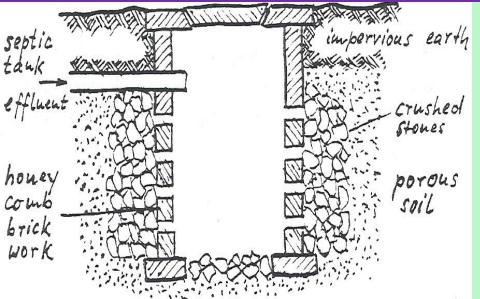
#### Septic Tank: Treatment Mechanism

- Treats solids anaerobically
- Liquid discharged into the ground via soakaway or drainfields where it gets treated through the process of filtration and other biological processes.

## Septic Tank: Design and Operations

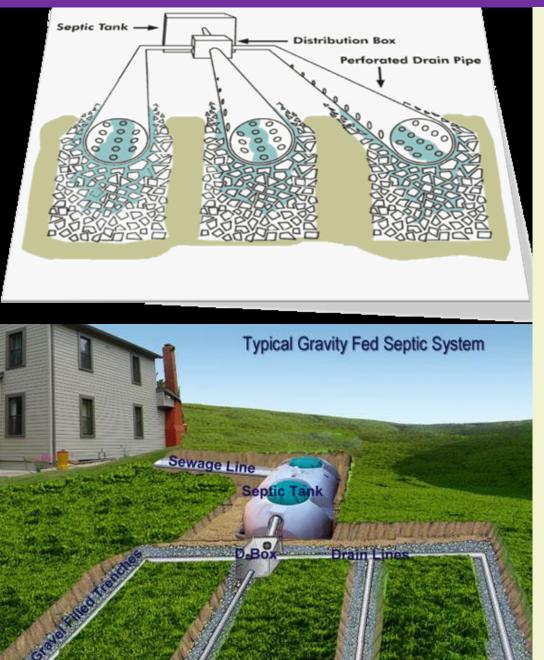
#### QUESTION:

Design a septic tank for a family of 20 people in Meanwood Ibex hill


#### SOLUTION

- Compute hydraulic loading
- Choose retention time

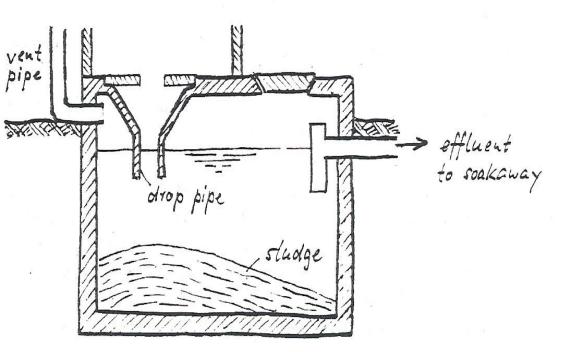
#### WHEN TO DESLUDGE


- ✤ SAR = 40 to 60 liters/c.year
- Decide minimum hydraulic retention time at time of desludging – Usually one day

#### Soakaway



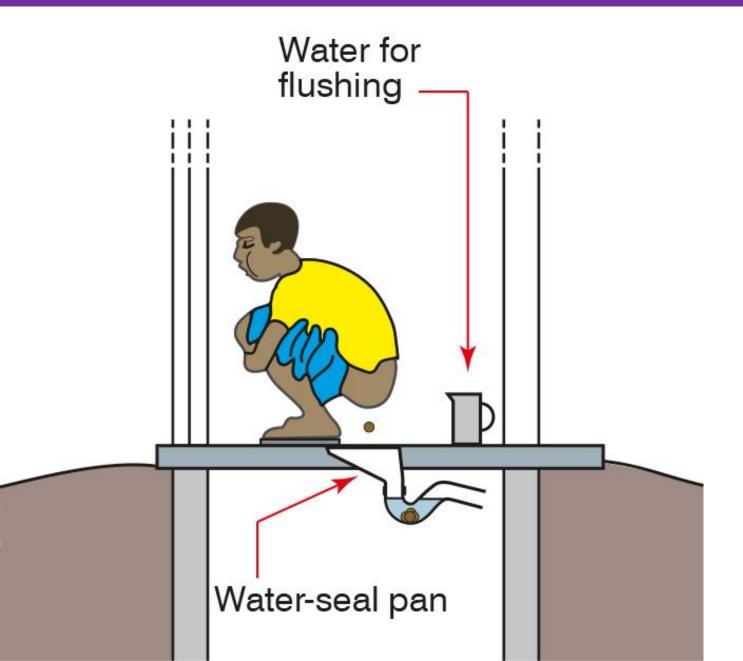
- Purpose is to aid infiltration of wastewater into the natural ground
- Consists of a circular or square walled-up hole in the ground
- Top 0.3-0.5m should be water-tight
- Lower part should be an openjointed wall.
- Performance is dependant on soil characteristics and efficiency of the Septic Tank (Percolation test result: 15 to 100 seconds/mm drop)


#### Drain fields



Consists of trenches in series and parallel arrangement

- Each trench consists of an open jointed pipe
- Pipes are laid on rock fill or gravel fill then covered with earth
- Used where quantity of water to be infiltrated is huge (E.g. block of flats)


## AQUA-PRIVIES (Pour Flush)

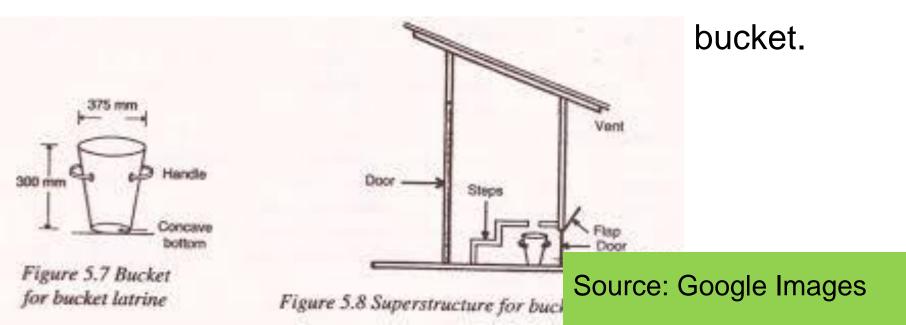


A modified septic tank 1-2 m<sup>3</sup>

- Filled with water and directly below squatting pan.
- consists of a watertight concrete tank
- comparatively lower
   water requirements as
   compared to the septic
   tanks.
- Suited to areas without adequate water supply in the house

## AQUA-PRIVIES (Pour Flush)




## CESSPOOLS/CESSPIT

A covered chamber with no overflow receiving and storing all the wastewaters from a dwelling or dwellings.

Frequency of emptying is high and as such, this system has high operating costs.

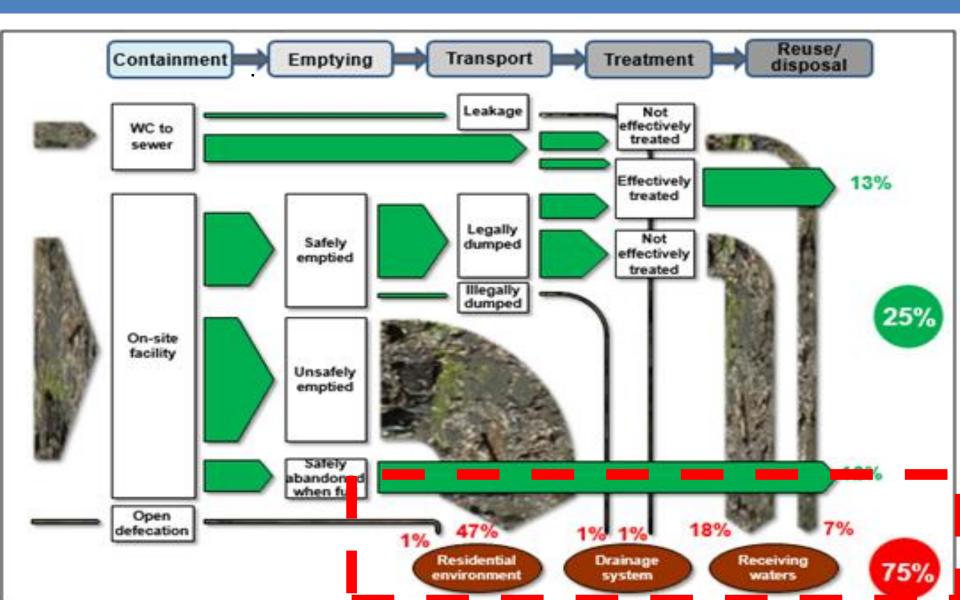
#### Cartage or Conservancy or Bucket Latrines

- One of the oldest systems for excreta collection
- ✤ A bucket receives the excreta, (nightsoil).
- Sucket usually placed in bucket chamber directly under a squatting slab and is accessible through a back door from the street.



#### Bucket Latrines: Operational Challenges

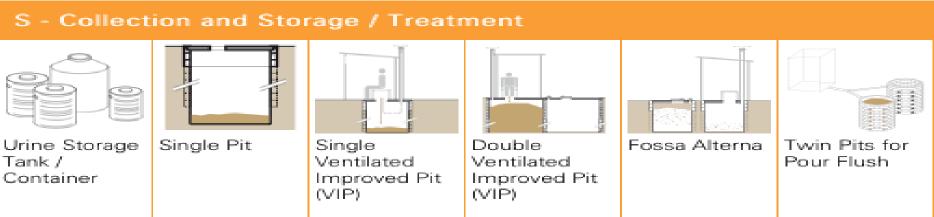
- Very difficult to operate in a hygienic way.
- ✤ Flies are a problem.
- Spillage occurs easily when the latrine is used and when the bucket is removed, emptied and replaced.
  Transport and disposal of the excreta may be
  - connected with health hazards.


#### Faecal Sludge Management

- FSM is the storage, collection, transportation, treatment and safe enduse/disposal of Faecal Sludge (See sanitation service chain below)
- New field that has evolved due to the realisation that OSS are not complete without a functional FSM.
  - Faecal Sludge: Excreta which comes from onsite facilities and has not been transported through a sewer (Strande et. al., 2014)

#### Faecal Sludge Management





## How to design intervention measures-Th e Shit Flow Diagram (SFD)



#### FSM: Captute and Storage or Containment

- Capture is by interface
- Needs to be user friendly





#### Interface: Considerations

Need to be user friendly



#### Need to respond to end-use requirements





Source: Google Images

#### FSM Challenges WHEN LATRINE GETS FULL – WHAT NEXT

#### CONSEQUENCIES IF INAPPROPRIATE -Degraded living conditions -High morbidity and mortality rates

#### FSM: Emptying and Transportation



#### Manual-Modified Garden Tools

Manually operated mechanical System (Gulper; Diaphram; Mappet etch)





#### **FSM:** Transportation



## Emptying and Transportation: Considerations

- Accessibility of sites (Where inaccessible, then manual means are appropriate)
   Quality of faecal sludge (Solid waste content,
  - rheological properties)



#### **FSM:** Treatment

- Faecal sludge will be highly concentrated
- Mostly anaerobic treatment systems are employed (Suitable for strong sludge)
- Drying beds (Unplanted and Planted)
- Co-treatment at conventional plants (Need to take care not to over load)



## FSM: Reuse and Disposal/Resource Oriented Sanitation – The Omni Processor



#### Products from an Omni Processor

- Characteristics of an Omni Processor Plant
  - Treats up to 16.8t/day sludge with MC =0.4g/g dry sludge
  - Produces up to 3.6MW of electricity in 24 hours
  - Produces 26.4m<sup>3</sup> of water/day (demineralised)
  - Produces 9.6m<sup>3</sup> of ash in 24 hours

## FSM: Reuse and Disposal/Resource Oriented Sanitation





#### **Black Soldier Flies**

#### Reuse Of Faecal Sludge/Excreta Products Comparative Results

faeces & urine

urine

Source: Hakan, 2004

None

#### Pictorial Evidence: Rwanda



#### (Source: Håkan, 2004)

## The fertigative effects of urine

| Plant, growth period and<br>number of repetitions<br>n | Unfertilized plants<br>g | Fertilized, 3:1 water/urine<br>application 3x per week<br>g | Relative yield<br>fertilized to<br>unfertilized |
|--------------------------------------------------------|--------------------------|-------------------------------------------------------------|-------------------------------------------------|
|                                                        |                          | 8                                                           |                                                 |
| Lettuce, 30 days (n = 3)                               | 230                      | 500                                                         | 2.2                                             |
| Lettuce, 33 days (n = 3)                               | 120                      | 345                                                         | 2.9                                             |
| Spinach, 30 days (n = 3)                               | 52                       | 350                                                         | 6.7                                             |
| Covo, 8 weeks (n = 3)                                  | 135                      | 545                                                         | 4.0                                             |
| Tomato, 4 months (n = 9)                               | 1680                     | 6084                                                        | 3.6                                             |

(grams fresh weight) in plant trials with urine as a fertiliser to vegetables in Zimbabwe (Morgan, 2003)

#### Fertigative effects of excreta compost

| Plant, soil type and number of<br>repetitions | Growth period | Fresh<br>weight<br>topsoil only | Fresh weight<br>50/50 topsoil/<br>FA*soil | Relative yield<br>fertilized to<br>unfertilized |
|-----------------------------------------------|---------------|---------------------------------|-------------------------------------------|-------------------------------------------------|
|                                               |               | g                               | g                                         |                                                 |
| Spinach, Epworth soil (n = 6)                 | 30 days       | 72                              | 546                                       | 7.6                                             |
| Covo, Epworth soil (n = 3)                    | 30 days       | 20                              | 161                                       | 8 .1                                            |
| Covo 2, Epworth soil (n = 6)                  | 30 days       | 81                              | 357                                       | 4.4                                             |
| Lettuce, Epworth soil (n = 6)                 | 30 days       | 122                             | 912                                       | 7.5                                             |
| Onion, Ruwa soil (n = 9)                      | 4 months      | 141                             | 391                                       | 2.8                                             |
| <u>Green pepper, Ruwa soil (n = 1)</u>        | 4 months      | 19                              | 89                                        | 4.7                                             |
| Tomato, Ruwa soil                             | 3 months      | 73                              | 735                                       | 10.1                                            |

\* Fossa alterna soil

Average yields (grams fresh weight) in plant trials comparing growing in poor topsoil only, with growing in a mixture consisting of 50% topsoil and 50% Fossa alterna compost (Morgan, 2003)



#### THANK YOU