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Introduction

e In this chapter we will show how to determine the elastic
deflections of a beam using the method of double
integration and two 1mportant geometrical methods,
namely, the moment-area theorems and the conjugate-
beam method. Double integration i1s used to obtain
equations which define the slope and the elastic curve.
The geometric methods provide a way to obtain the slope
and deflection at specific points on the beam. Each of
these methods has particular advantages or disadvantages,
which will be discussed when each method 1s presented.
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Deflection Curves
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Deflection curves

e Deflections of structures can occur from various sources,
such as loads, temperature, fabrication errors, or
settlement.

e Deflections must be limited in order to provide integrity
and stability of roofs, and prevent cracking of attached
brittle materials such as concrete, plaster or glass.

e A structure must not vibrate or deflect severely 1n order to
“appear” safe for its occupants.

e Deflections at specified points in a structure must be

determined to analyze statically indeterminate structures.
4
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Deflection curves

e We consider having linear elastic material response.

e For beams and frames, deflections are most often caused
by internal bending

e Internal axial forces cause the deflections of a truss.

e The deflection diagram represents the elastic curve or
locus of points which defines the displaced position of the
centroid of the cross section along the members.

e Supports that resist a force, such as a pin, restrict
displacement; and those that resist moment, such as a
fixed wall, restrict rotation.
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Deflection curves

e If the shape of the moment diagram ™
is known, it will be easy to construct 4 2 |
the elastic curve and vice versa. P,

beam

e In this particular beam, there must be
an inflection point at the point where
the curve changes from concave down /’\ .
to concave up, since this 1s a point of
Zero moment.

moment diagram

inflection point
positive moment, negative moment,
concave upward concave downward —M \Q/Ah

deflection curve  + M
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w=v/, Deflection curves

e The deflection curve
also helps engineers in
locating  the  steel
needed to reinforce a weinforcing
concrete beam,
column, or wall.

e In concrete, they are V] lj:lj_]‘l
.._--—ﬂ—*—-\*z')‘

used to determine the IREL..
location and quantity
Of reinfOI'Cing I'OdS overhang beam

( tension

cracks

simply supported beam
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Deflection curves

(1)

A=10
roller or rocker

.=

(3) |

|

A=10
#=10
fixed support
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Elastic Beam Theory
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Elastic-Beam Theory

O We create the relationship between the internal v
moment and the displacement and slope of its p
elastic curve.

O From the figure, the strain at the neutral axisi1s 4 = B
given by - —
ds'—ds (p—y)dd — pd6 y o
€E = — —_—
ds pdo
ET1n this equation
O Bute =o/E and o = —My/I is referred to as the 40
1 M d thus do 1/ 40 M flexural rigidity
— = — and thus df = = — ol \p
o EI PEY = Fl -
| P/ dx> M d*v /dx? }_ i:::i M(E dx )M
P [1 + (dv/dx?]? EL 1+ (dv/dx)? |
assume d’l)/ dx = 0 @ —_— E before after
CU rvature ds = \ ,«"dxﬂ + d*u?' — ‘\/1 + (d,u/dx)z dx = dx IiIE E_.i' deformation deformation
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Double Integration Method
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Double Integration Method

O M 1s expressed as a function of
position X, then successive

integrations yields

6= tang = —
= tan ==

Thus

J

M
g

= [ [ zraxa
V= 7y dx dx

O positive deflection, v is upward, and as a result, the
positive slope angle @ will be measured counterclockwise

from the x axis.

O If the beam is supported by a roller or pin, then it is required  +v
that the displacement be zero at these points. Also, at a fixed
support the slope and displacement are both zero.
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O it is important to

]

+dv

use the proper
sign for M

D
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-,.~_—T

il g/ WD

=upr, Double Integration Method

O If the beam is supported by a roller or pin, then it is required that the displacement be

zero at these points. Also, at a fixed support the slope and displacement are both
ZEero.

- 0 If asingle x coordinate cannot be used R P
to express the equation for the beam’s

1l == b .-_-l

B \

slope or the elastic curve, then
continuity conditions must be used to
evaluate some of the integration
constants.
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MK

<zzv, Double Integration Method

“

,—-b‘_"
LIy

. Load or Moment Function
Procedure for Analysis

¢ For each region in which there is an x coordinate, express the
The following procedure provides a method for determining the internal moment M as a function of x.
slope and deflection of a beam (or shaft) using the method of double : e :
integration. It should be realized that this method is suitable only for ~ © “A/ays assume that M acts in the positive direction when applying
elastic deflections for which the beam’s slope is very small. Furthermore, the equation of moment equilibripm &y determine M = fix),
the method considers only deflections due to bending. Additional

Slope and Elastic Curve
deflection due to shear generally represents only a few percent of the

hﬁndjng dﬂﬂﬁﬂﬁﬂﬂ, and soitis 115113]13; ﬂﬂglﬁﬂ[ﬁd n Eﬂgi.[lﬂf:l'jﬂg pl'ﬂ[:tlﬂf: ¢ Provided E/1is constant, ﬂpply the moment ﬁql]ﬂtiﬂﬂ Efdlt:firz =
. M(x), which requires two integrations. For each integration it is
Elastic Curve important to include a constant of integration. The constants are

determined using the boundary conditions for the supports and
the continuity conditions that apply to slope and displacement at
points where two functions meet.

* Draw an exaggerated view of the beam’s elastic curve. Recall
that points of zero slope and zero displacement occur at a fixed
support, and zero displacement occurs at pin and roller supports.

* Once the integration constants are determined and substituted
back into the slope and deflection equations, the slope and
displacement at specific points on the elastic curve can be
determined. The numerical values obtained can be checked

» [fseveral discontinuous loads are present, establish x coordinates that graphically by comparing them with the sketch of the elastic curve.
are valid for each region of the beam between the discontinuities.

® FEstablish the x and v coordinate axes. The x axis must be parallel
to the undeflected beam and its origin at the left side of the beam,
with a positive direction to the right.

® Positive values for slope are counterclockwise and positive
* Inall cases, the associated positive v axis should be directed upward. displacement is upward.
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wzr, Example 3.1

O Determine the equations for the slope and deflection of the beam
shown 1n the figure below by the direct integration method. Also,
compute the slope at each end and the deflection at the midspan of
the beam. EI 1s constant.
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Solution 3.1

Reactions. See Fig. 6.2(b).

+>YF. =0 A =0

+C XM, =0
L)_ _wL
—Ay(L)+w(L)(5)—O A== T
+TYF =0
(W—L]—(WL)-I-B 0 B =21
2 ! )

fl

”ltg"' .

Pt

——e | i

Equation for Bending Moment. To determine the equation for bending moment for the beam, we pass a section at a distance
x from support A, as shown in Fig. 6.2(b). Considering the free body to the left of this section, we obtain

WL (X _wo
M="E () (wx)[z) (L= %)

Equation for M/EI. The flexural rigidity, EI, of the beam is constant, so the equation for M/EI can be written as

dz)’:M w

= Lx — x°
dx* EI 2EI( )

Eng. Denis MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES

18



Solution 3.1 cont.

Equations for Slope and Deflection. The equation for the slope of the elastic curve of the beam can be obtained by integrating
the equation for M/EI as

Integrating once more, we obtain the equation for deflection as

3 4
=_W L_x—x_ —|—C1x—|—C2
2EI\ 6 12

The constants of integration, C, and C,, are evaluated by applying the following boundary conditions:

Atend A, x =0, y=0
Atend B, x=1L, y=0

By applying the first boundary condition—that is, by setting x = 0 and y = 0 in the equation for y—we obtain C, = 0. Next, by
using the second boundary condition—that is, by setting x = L and y = 0 in the equation for y—we obtain

w (L' L'
:ﬁ(ra) e
from which
wl?
' T 4Er
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Solution 3.1 cont.

Thus, the equations for slope and deflection of the beam are

— W P L (1) Ans
2EI\ 2 3 12) '
3 3
y=— (Lxl—i—i (2) Ans.
12E1 2 2)

Slopes at Ends A and B. By substituting x =0 and L, respectively, into Eq. (1), we obtain

wl? wi? 3
=— or f,= Ans.
A 24 El A 24Er
wi? wi?
0 = 6 = C Ans.
s om0 "R T aEr <

Deflection at Midspan. By substituting x = L/2 into Eq. (2), we obtain

4 g4
Swl o _ Swil ¢ ms.

5 —_—— [" ] —
Ye = T 384 Ye = 3gaEr

20
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Example 3.2

O The beam 1n the figure 1s subjected to a load P at its end. Determine
the displacement at C. EI 1s constant.

P
o 1
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®
Solution 3.2
Elastic Curve. The beam deflects into the shape shown in Fig. 8-14a.
Due to the loading, two x coordinates must be considered.
Moment Functions. Using the free-body diagrams shown in Fig. 8-14b,
we have
P
M1=_EI| DEIIEZI'I
P 3P
M;=—%+ 50— 2
= Px, — 3Pa 2a = x, = 3a
| e
Slope and Elastic Curve. Applying Eq. 84, Fll )
vl

ffz'l:'l P 9
f . El— = ——
or x; dx% ZII y

2
[ | l )
B — —fﬁ + C, (1) P 2 o
dx, 4 27 %
P e |

EI'UI — _EI? + Clxl + CE (2)
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Solution 3.2

d*v,
For x-, El——— = Px, — 3Pa
2 dx% 2
dﬂz P
EIE = Ex% — 3Pax, + C3 (3)
Py 3,5
EIU;_; = EI;_; - EPIIIE + C3I2 + C4 [4)

The four constants of integration are determined using three
boundary conditions, namely, v, = Oatx; = 0, v, = 0O atx; = 2a, and
v, = 0 at x, = 2a, and one continuity equation. Here the continuity
of slope at the roller requires dv,/dx;, = dv,/dx, at x; = x, = 2a.
(Note that continuity of displacement at B has been indirectly
considered in the boundary conditions, since »; = v, =0 at
X} = x, = 2a.) Applying these four conditions yields

dv\(2a)  dv,(2a)
de,  dyy

P 2 P 2
—7 Qa7 + €1 = SQa = 3Pa2a) + Cs

Solving, we obtain

Pd’ 10
C, = % G=0 =P’ C=-2p
Substituting C; and Cy into Eq. (4) gives
P s _3Pa, . 10Pa’ 2P4’
Py = X7 — X Xy —
T 6EI'* 2EI'* 3EI T EI

The displacement at C is determined by setting x, = 3a. We get

_ Pa’
v; = 0atx; = 0; 0=0+0+ G ﬂc—-ﬁ Ans.
P 3
v; = 0atx; = 2a; 0= —E{Za} + Cy(2a) + G,
P 3_ 3 2
v, = Datx, = 2a; 0= E(Qa) — EPa(Qa) + C3(2a) + C,
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Moment-Area Theorems
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Moment-Area Theorems

W O Theorem 1: The change 1n slope
Wﬂm between any two points on the elastic

_E—-‘A "' 3—2. curve equals the area of the M/EI
| x . L dx diagram between these two points.
M
i 7 M
do = | — ) dx
El
A| B *
| x - — dx B
M
Og/q = —dx
/A
tan B tan A

The notation 65,4 Is referred to as the angle of the tangent at B measured with respect to the tangent at A. If 8p/4 IS
counterclockwise, M/EI diagram is +ve and vice versa. 65,4 is measured in radians
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w2, Moment-Area Theorems

length of each tangent line by x and the arc ds’ by dr. . . .
© ° Y e Y@ © Theorem 2: The vertical deviation of

X

the tangent at a point (A) on the elastic
curve with respect to the tangent
extended from another point (B) equals
the “moment” of the area under the
dt = xdf db = (M/EI) dx M/EI diagram between the two points
L B (A and B). This moment 1s computed

M . . :
fajg = [ X dx about point A (the point on the elastic
i ) ’ curve), where the deviation t, /g 1s to be

— determined.

O Recall from statics that the
centroid of an area is determined

from % [dA = [xdA. Since

M .
Jodx is an area of the

M /Eldiagram, we can also write
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Moment-Area Theorems

Procedure for An alysl s e If it becomes difficult to draw the general shape of the elastic curve, use the
moment (or M/ EI) diagram. Realize that when the beam is subjected to a positive
moment the beam bends concave up, whereas negative moment bends the beam
concave down. Furthermore, an inflection point or change in curvature occurs
where the moment in the beam (or M /EI) is zero.

The following procedure provides a method that may be used to determine the
displacement and slope at a point on the elastic curve of a beam using the
moment-area theorems.

® The displacement and slope to be determined should be indicated on the curve.

M/El Diagram Since the moment-area theorems apply only between two tangents, attention

® Determine the support reactions and draw the beam’s M/ EI diagram.

e If the beam is loaded with concentrated forces, the M/EI diagram will consist of
a series of straight line segments, and the areas and their moments required for
the moment-area theorems will be relatively easy to compute.

If the loading consists of a series of concentrated forces and distributed loads, it
may be simpler to compute the required M/EI areas and their moments by
drawing the M/ EI diagram in parts, using the method of superposition as discussed
in Sec. 4.5. In any case, the M/EI diagram will consist of parabolic or perhaps
higher-order curves, and it is suggested that the table on the inside back cover be
used to locate the area and centroid under each curve.

Elastic Curve

¢ Draw an exaggerated view of the beam’s elastic curve. Recall that points of zero

slope occur at fixed supports and zero displacement occurs at all fixed, pin, and
roller supports.

Eng. Denis MWABA MSc, B.Eng., R.Eng., PEIZ,

should be given as to which tangents should be constructed so that the angles or
deviations between them will lead to the solution of the problem. In this regard, the
tangents at the points of unknown slope and displacement and at the supports should
be considered, since the beam usually has zero displacement and/or zero slope at
the supports.

Moment-Area Theorems

* Apply Theorem 1 to determine the angle between two tangents, and Theorem 2 to
determine vertical deviations between these tangents.

* Realize that Theorem 2 in general will not yield the displacement of a point on
the elastic curve. When applied properly, it will only give the vertical distance or
deviation of a tangent at point A on the elastic curve from the tangent at B.

* After applying either Theorem 1 or Theorem 2, the algebraic sign of the answer
can be verified from the angle or deviation as indicated on the elastic curve.
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Example 3.3

Determine the slope at points B and C of the beam shown
Take E = 29(10%) ksi and I = 600in*.
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Solution 3.3

M/ El Diagram. This diagram is shown in Fig. 8-16b. It is easier to
solve the problem in terms of E/ and substitute the numerical data as
a last step.

Elastic Curve. The 2-k load causes the beam to deflect as shown in
Fig. 8-16c. (The beam is deflected concave down, since M/EI is [
negative.) Here the tangent at A (the support) is always horizontal. EI (hY
The tangents at B and C are also indicated. We are required to find 65
and 6. By the construction, the angle between tan A and tan B, that 1s,
tlg/4, 1s equivalent to 6.

O = Op/a
Also,

Bc = Oc/a

Moment-Area Theorem. Applying Theorem 1, 63/, is equal to the
area under the M/ EI diagram between points A and B; that is,

30k fi 1(60k-ft _ 30k-ft
O = g0 = — 15 ft) — ~ - 15f0)
g ( EI ){ : 2( El El ){ ! &
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Solution 3.3

Substituting numerical data for E and /, and converting feet to inches,

we have
o —675 k- ft*(144 in* /1 ft*)
¥ 29(10%) k/in%(600 in*)
= —0.00559 rad Ans.
The negative sign indicates that the angle 1s measured clockwise from
A, Fig. 8-16¢.

In a similar manner, the area under the M /EI diagram between
points A and C equals 6;,. We have

O = Ben = l(_ﬁ[] k.ﬂ)(?:ﬂ fi) = ~900k- ft*
2 El Ei
Substituting numerical values for £/, we have
o —900 k - ft*( 144 in” /ft*)
€ 29(10%) k/in%(600 in*)
= —0.00745 rad Ans.
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90 kN

l

A , .
B

C
Sm —3m—

[=25%10° mm* I=1.25x 10° mm?#
E =200 GPa
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Solution 3.4

A B 4
| 135
|

Jlf
270
— 360
270 = =
M . kKN -m _. _ 9 4
-720 (c) Y73 Diagram ( — with 7 = 1.25 x 10° mm*)

(b) Bending Moment Diagram (kN - m)

M/EI Diagram. As indicated in Fig. 6.5(a), the values of the moment of inertia of the segments AB and BC of the beam are
2.5 % 10° mm* and 1.25 X 10° mm", respectively. Using [ = I, =1.25% 10" mm" as the reference moment of inertia, we express
I, Interms of [ as

1,,=25%10" mm* =2(1.25 X 10° mm"*) =2/

which indicates that in order to obtain the M/EI diagram in terms of EI, we must divide the bending moment diagram for segment
AB by 2, as shown in Fig. 6.5(c).
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Solution 3.4

Elastic Curve. The elastic curve for the beam is shown in Fig. 6.5(d). Note that because the M/EI diagram is negative, the beam
bends concave downward. Since the support at A is fixed, the slope at A is zero (8, = 0); that is, the tangent to the elastic curve

at A is horizontal, as shown in the figure.

Slope at B. With the slope at A known, we can determine the slope at B by evaluating the change in slope 6, between A and B
(which is the angle between the tangents to the elastic curve at points A and B, as shown in Fig. 6.5(d)). According to the first
moment-area theorem, 6,, = area of the M/EI diagram between A and B. This area can be conveniently evaluated by dividing

the M/EI diagram into triangular and rectangular parts, as shown in Fig. 6.5(c). Thus,

1,237.5kN -m?
EI

1 1
0,, = E[“?’S)(S) +5(225)(5)] =

From Fig. 6.5(d), we can see that because the tangent at A is horizontal (in the direction of the undeformed axis of the beam),

the slope at B(6,) is equal to the angle #,, between the tangents at A and B; that is,

~ 1,237.5kN-m’
EI

0, =0,

Substituting the numerical values of E =200 X 10° kN/ m>and I =1.25 X 10" m", we obtain

B 1,237.5 B
% = oox10%) (125 x107) 4 T 000 R

0, = 00049 rad ~~)
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Tangent at C

(d) Elastic Curve
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Solution 3.4

Deflection at B. From Fig. 6.5(d), it can be seen that the deflection of B with respect to the undeformed axis of the beam is
equal to the tangential deviation of B from the tangent at A; that is,

A, =4y,
According to the second moment-area theorem,

A,, = moment of the area of the M/EI diagram between A and B about B

| 1 10 3562.5kN-m’ 1 .
=—(135)(5)2.5) +—=(225)(5)| — | |= angent at B
EI[( )(3)(2.5) 2( ) J(SJ] T )
Therefore,
1'14
3562.5kN-m’ )
A=A, =
EI gac
Tangent at C
- 2025 _0.01425m e
(200 X 10 )(125 x 10 ) (d) Elastic Curve
Ap=1425mm | Ans.
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Solution 3.4

Slope at C. From Fig. 6.5(d), we can see that

0. =0,
where
6., = area of the M/EI diagram between A and C
| 1 1 1642.5kN - m*
=—1 (135)(5) + —=(225)(5) + —=(270)(3) | =
EI[( ) 2( () 2( X )] =
Therefore, Tangent at B
A
1642.5kN -m”
0, =0, = £l
)
= 1:_54 2 — =0.0066 rad
(200 X10°)(1.25X107) %C
0. =0.0066rad Tangentat €
¢ (d) Elastic Curve

35
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Solution 3.4

Deflection at C. It can be seen from Fig. 6.5(d) that

L=
where
A_, = moment of the area of the M/EI diagram between A and C about C
= E—[(ISS)(S)(Z 5+3)+ —(225) (5)( a + 3) +—=(270)(3) (2)]
8085 kN-m’
= Tangent at B
EI 4
Therefore,
8085 kN -m’ )
A=A, = =
8085

=0.032 m

T (200 X 10°)(1.25 X 107)
A.=32mm |

Eng. Denis MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES

C SE‘HC
Tangent at C

(d) Elastic Curve

Ans.
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Example 3.5

Determine the deflection at C of the beam shown in Fig. 8-20a. Take
E = 29(10°) ksi, I = 21 in*.

|

5 k-ftfv =
A

‘x . B
—_—t)
121t *‘l’* 7 ¢ o]
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Solution 3.5

M/ El Diagram. Fig. 8-20b. M
Elastic Curve. Here we are required to find A, Fig. 8-20c. This is not 5 =
necessarily the maximum deflection of the beam, since the loading and EI
hence the elastic curve are not symmetric. Also indicated in Fig. 8 20c¢ 25
are the tangents at A, B (the supports), and C. If 1, /5 is determined, then El
A’ can be found from proportional triangles, thatis, A" /12 = 1, /24 or
A’ = 1,5 /2. From the construction in Fig. 8-20c, we have
X
La/p
Ar=——— 1
ST L) 12 fi 12 fi —-‘

Moment-Area Theorem. We will apply Theorem 2 to determine
tasp and fcsp. Here 1, 5 1s the moment of the M /E[I diagram between
A and B about point A,

tass = {1(24 ®| [1(24 ft)(s k'ﬁ)] _ 480k-fC
A% 3 12 El ]| EI 17 § 12 f
_— 1 l4|

and 7¢g is the moment of the M/ EI diagram between C and B about C. n A B

L [l(lzﬁ)'[l“zﬂ)(z.sk-ft)] _ 60k-f? Ac

B |3 112 EI ~ EI Al e
Substituting these results into Eq. (1) yields tan C f{‘fﬂ

A _L(480k-ft3) 60k-f* 180 k- ft tas -
€ 2 EI El  EI
Working in units of kips and inches, we have
180 k - fi3( 1728 in/f13)

€~ 729(10%) k/in?(21 in®)

= (0.511 in. Ans. 38
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Example 3.6

Determine the slope at the roller B of the double overhang beam
shown in Fig. 8-22a. Take E = 200 GPa, I = 18(10°) mm".

30/kN-m 10 lkN
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Solution 3.6

M/ El Diagram. The M/EI diagram can be simplified by drawing it
in parts as discussed in Sec. 4.5. Here we will consider the M/EI

diagrams for the three loadings each acting on a cantilever beam fixed
at D, Fig. 8-22b. (The 10-kN load is not considered since it produces

no moment about D.)

Elastic Curve. If tangents are drawn at B and C, Fig. 8-22¢, the
slope B can be determined by finding 7¢, and for small angles,

Ieis
By = —
F  9m

(1)

M
£l
2 4 6
D
=0
El
+

M
El 10 =

o+
Moment Area Theorem. To determine iy we apply the moment M
area theorem by finding the moment of the M/EI diagram between El 10
BC about point C. This only involves the shaded area under two of the | e El
diagrams in Fig. 8-22b. Thus, | 3 6 x
o = (1 }[il ](—EI}kN'm)] N (Zm)l.lm ](mkN-m”
ce = LIS W El 3 )12 E B
_ 5333kN-m’ o5 .
_ = 93\ C/B
n
Substituting the positive value into Eq. (1), N
tan C
0 53.33kN-m’
B 2 m)[200(10°) kN/m® | [ 18(10°)(107%) m*] an B 2m
= (0.00741 rad Ans.
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Conjugate Beam Method
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Conjugate Beam Method

L

real beam

M
El

| L

conjugate beam

Eng. Denis MWABA MSc, B.Eng., R.Eng., PEIZ,

B

O This method was developed by Muller
Breslau and relies only on the principles
of statics.

o fra | [

! !

=@ | e flY(E)]

O Shear V compares with the slope 8, the moment
M compares with the displacement v, and the
external load w compares with the M /E[ diagram.

O Thus a beam having the same length as the real
beam, but referred to here as the “conjugate
beam,”

O M/EI diagram derived from the load w on the real
beam.
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Conjugate Beam Method

O Theorem 1: The slope at a point in the Real Beam Conjugate Beam
real beam is numerlcally equa! to .the ) , o y ==
shear at the corresponding point in the A=0 . M=0 .

conjugate beam.

O Theorem 2: The displacement of a point 2’ e =~
in the real beam is numerically equal to roller roller
the moment at the corresponding point

. . 3 "= — Y20 e
in the conjugate beam. A=0 fed M=o
O The shear and moment developed at the
. 4) o —— 4 ]
supports of the conjugate beam account A e M iy
for the corresponding slope and
. PONCING 510D . 5 0 ey v
displacement of the real beam at its amo M=o e
mnternal pim mge
supports
. . . g oy 1%
O neglecting axial force, statically K .. pno S
determinate real beams have statically
1 1 . 7) f 4
determinate conjugate beams; and ' "-‘-:?-gcij .

internal roller

statically indeterminate real beams
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Conjugate Beam Method

. Procedure for Analysis

The following procedure provides a method that may be used to determine
the displacement and slope at a point on the elastic curve of a beam using the
conjugate-beam method.

Conjugate Beam H— i 1

® Draw the conjugate beam for the real beam. This beam has the same length

as the real beam and has corresponding supports as listed in Table 8.2. b:_ .

e In general, if the real support allows a slope, the conjugate support must
develop a shear; and if the real support allows a displacement, the conjugate
support must develop a moment.

e The conjugate beam is loaded with the real beam’s M/EI diagram. This
loading 1s assumed to be distributed over the conjugate beam and 1s directed F:-_:ﬂL I ,
upward when M /EI is positive and downward when M /EI is negative. In - -
other words, the loading always acts away from the beam.

Equilibrium E—ﬂk [ — A

* Using the equations of equilibrium, determine the reactions at the conjugate
beam’s supports. real beam

conjugate beam

® Section the conjugate beam at the point where the slope 6 and displacement
A of the real beam are to be determined. At the section show the unknown
shear V' and moment M’ acting in their positive sense.

¢ Determine the shear and moment using the equations of equilibrium. V' and
M' equal # and A, respectively, for the real beam. In particular, if these values
are positive, the slope is counterclockwise and the displacement is upward.
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Example 3.7

Determine the slope and deflection at point B of the steel beam shown
in Fig. 825a. The reactions have been computed. E = 29(10%) ksi,
I = 800 in*.

5k
Sk 4 l
Q T P —— /3
Dkt 15 ft } 15 ft -
real beam
(a)
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Example 3.7

Conjugate Beam. The conjugate beam is shown in Fig. 8-25b.
The supports at A" and B’ correspond to supports A and B on the
real beam, Table 8.2. It is important to understand why this is so. The
M/ EI diagram is negative, so the distributed load acts downward, i.e.,
away from the beam.

Equilibrium. Since 6; and Ay are to be determined, we must
compute V- and My in the conjugate beam, Fig. 8-25c¢.

15 ft i 15 ft
A’ B’
75
El conjugate beam
(b)
|
|-5 fit 25 ft ™,
F : m | )
, -
N P Vi
Ly
562.5
El _
reactions

(c)

. £12
s =S L R
b = 7 = — 2020 k- ft*
EI
- —562.5 k - ft*
29(10%) k/in?(144 in?/£2)800 in*(1 ft*/(12)* in*)
= —0.00349 rad Ans.
CSM, = 6; 56%;"&2(25 f) + My = 0
Ay = By = —LA062 k- ft’ R
EI
_ —14062.5k - ft* 1
29(10%)(144) k/f2[ 800/(12)*] fie*
= —0.0873 ft = —1.05 in. Ans.

The negative signs indicate the slope of the beam is measured
clockwise and the displacement is downward, Fig. 8-25d.
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Example 3.8

Determine the maximum deflection of the steel beam shown in Fig. 8-26a.
The reactions have been computed. E = 200 GPa, I = 60(10°) mm*.

8 kN
7. =B
|..[ Om -<——3m
2 kN 6 kN

real beam
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Example 3.8

Conjugate Beam. The conjugate beam loaded with the M/EI
diagram is shown in Fig. 8-26b. Since the M /EI diagram is positive,
the distributed load acts upward (away from the beam).

Equilibrium. The external reactions on the conjugate beam are
determined first and are indicated on the free-body diagram in
Fig. 8-26¢. Maximum deflection of the real beam occurs at the point
where the slope of the beam is zero. This corresponds to the same
point in the conjugate beam where the shear 1s zero. Assuming this
point acts within the region ) = x = 9m from A ', we can isolate the
section shown in Fig. 8-26d. Note that the peak of the distributed
loading was determined from proportional triangles, that is,
w/x = (18/EI)/9. We require V' = 0 so that

45 1(2&)
—+-(=hk=0
El 2\ El

x=67lm (0 =x =9m) 0K

+1ZF, = 0;

Using this value for x, the maximum deflection in the real beam
corresponds to the moment M'. Hence,

45 1 2{6.?[]) 1
+3IM = 0; —(6.71) = | = 6.71 |=(6.71) + M’ = 0
C+Z = 67D lz( = L{ )
A = _ _2012kN-m?
El
3 —-201.2kN +m’
[200(10°) kN/m? ] [ 60(10°) mm*(1 m*/(10%)* mm*) ]
= =(.0168 m = —16.8 mm Ans.

The negative sign indicates the deflection is downward.
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| 9m

conjugate beam

18rxy - 2x 45

3m |

81 =t 427

.--"'E-FL HFP-F iﬂ '\E

- 1 ~
f o
* 6 m I 4 m Ilm
63
El El

JEI\8) T E

e M

x iv"-u

45
El

mternal reactions
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Example 3.9

Determine the displacement of the pin at B and the slope of each
beam segment connected to the pin for the compound beam shown in

Fig. 8-28a. E = 29(10°) ksi, 7 = 30 in”.

—I2 ft 12 ft 15 ft——

real beam
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Example 3.9

8k Conjugate Beam. The elastic curve for the beam is shown in

‘ Fig. 8-28b in order to identify the unknown displacement Ay and

- E\ 30 k-ft the slopes (63);, and (A); to the left and right of the pin. Using

A Ap C Table 8.2, the conjugate beam is shown in Fig. 8-28¢. For simplicity in

(08)r VB\L(HE)L calculation, the M/EI diagram has been drawn in parts using the

principle of superposition as described in Sec. 4.5. Here the beam

1s cantilevered from the left support, A. The moment diagrams for

the 8-k load, the reactive force C, = 2k, and the 30-k-ft loading

are given. Notice that negative regions of this diagram develop a

downward distributed load and positive regions have a distributed
load that acts upward.

elastic curve

1521
iRy r~=-~__ EI
ET | | Tk
| ! —11 ft—
225 225 5h ! | ‘:‘un
I "-“-‘_‘1
EIL EI | B -
] 1™~ 3.6 A" ,—4{6\‘ C' r A
—l —l =2 -
v FOELERLLT .
I ) -7 | —
l-—]Sft Mg ! 15 ft o Er | ! ' | S i vV Er
( Tg—i 1* | ol
A [ % | I ’ El Y !
(VB')R R T Vede] 1. I -IT ! = 20 ft -
| 75 ftl 286 75 fti 1 L"i e
@ ETl @ | 12 ft 12 ft 5—?6
Er El b - ET
conjugate beam external reactions
(e) ()
(c) (d)
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Example 3.9

Equilibrium. The external reactions at B’ and C’ are calculated first
and the results are indicated in Fig. 8-28d. In order to determine (6),
the conjugate beam is sectioned just to the right of B' and the shear
force (V') 1s computed, Fig. 8-28e. Thus,

225 450 3.6 _

+13F, = 0; Ve + 5 = ~ g = 0
) = (V) _ 228.6k-ft?
B/R — B')JR — El
_ 228.6 k - ft*
[29(10%)(144) k/f* | [ 30/(12)* ] £t
= 0.0378 rad Ans.

The internal moment at B’ yields the displacement of the pin. Thus,

225 450 3.6

C+IMy = 0; —My, + E{S) - E(T.S) - E(IS) =0
A, = My = 2304 k- ft’
EI
3 —2304 k - ft’
- [29(10%)(144) k /2] [ 30/(12)*] £t
= —0.381 ft = —4.58 in. Ans.

Eng. Denis MWABA MSc, B.Eng., R.Eng., PEIZ,

The slope (f3), can be found from a section of beam just to the left
of B', Fig. 8-28f. Thus,

228.6 . 225 450 3.6 .
EI EI EI  EI

@) = (Vg) =0 Ans.

+13F, =0 (Vg +

Obviously, Ay = My for this segment is the same as previously
calculated, since the moment arms are only slightly different in
Figs. 8-28e and 8-28f.
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