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Introduction

All energy methods are based on the conservation of energy

principle, which states that the work done by all external forces

acting on the structure, 𝑈𝑒, is transformed into internal work or

strain energy. 𝑈𝑖 , developed in the members when the structure

deforms.

𝑈𝑒 = 𝑈𝑖

3
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Strain Energy: definition

4

 Strain energy is a form of potential energy.

 Strain energy is defined as the increase in energy
associated with the deformation of the member.

 Strain energy is equal to the work done by slowly
increasing load applied to the member.

 Work done to distort an elastic member is stored
as strain energy.

 Some energy may be lost in plastic deformation of
the member and some may be converted into heat
instead of stored as strain energy, but the rest is
recoverable.

 A spring is an example of a storage device for
strain energy.
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External Work and Strain Energy 

 External Work—Force. When a force F

undergoes a displacement 𝑑𝑥 in the same

direction as the force, the work done is

𝑑𝑈𝑒 = 𝐹𝑑𝑥. If the total displacement is 𝑥,

the work becomes

5

𝑼𝒆 =
𝟏

𝟐
𝑷∆

 Strain Energy — Force. When an axial force 𝐹 is applied gradually to the bar

it will strain the material such that the external work done by 𝐹 will be

converted into strain energy. Hookes law is obeyed for linear elastic. Thus

∆=
𝑭𝑳

𝑨𝑬

𝝈 = 𝑬𝝐

𝝈 =
𝑭

𝑨

𝝐 =
∆

𝑳

𝑈𝑖 =
𝑵𝟐𝑳

𝟐𝑨𝑬

𝑭 = 𝑷
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External Work and Strain Energy 

 In summary, then, when a force P is applied

to the bar, followed by application of the

force 𝐹′, the total work done by both forces

is represented by the triangular area ACE.

 The triangular area ABG represents the

work of P that is caused by its displacement

∆.

 The triangular area BCD represents the

work of 𝐹′ since this force causes a

displacement ∆′.

 The shaded rectangular area BDEG

represents the additional work done by P

(𝑼′𝒆 = 𝑷∆′) when displaced ∆′ as caused by

𝐹′.

6

𝑼′𝒆 = 𝑷∆′
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Strain Energy Density

7

• A uniform rod is subjected to a slowly increasing load

• The elementary work done by the load P as the rod 

elongates by a small dx is

which is equal to the area of width dx under the load-

deformation diagram.

workelementarydxPdU  

• The total work done by the load for a deformation x1,

which results in an increase of strain energy in the 

rod.

energystrainworktotaldxPU

x

 
1

0

112
12

12
1

0

1

xPkxdxkxU

x

 

• In the case of a linear elastic deformation,
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Strain Energy Density

8

• The strain-energy density of a material is defined as the strain 

energy per unit volume.

• To eliminate the effects of size, evaluate the strain- energy per 

unit volume,

densityenergy straindu

L

dx

A

P

V

U

x

x









1

1

0

0





• As the material is unloaded, the stress returns to zero but there 

is a permanent deformation.  Only the strain energy 

represented by the triangular area is recovered.

• Remainder of the energy spent in deforming the material is 

dissipated as heat.

• The total strain energy density resulting from the deformation 

is equal to the area under the curve to e1.
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Strain-Energy Density

9

• The strain energy density resulting from setting e1 = eR is 

the modulus of  toughness.

• The energy per unit volume required to cause the 

material to rupture is related to its ductility as well as its 

ultimate strength.

• If the stress remains within the proportional limit,

E

E
dEu x

22

2
1

2
1

0

1

1






 

• The strain energy density resulting from setting s1 = sY is 

the modulus of  resilience.

resilience of modulus
E

u Y
Y 

2

2
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Strain Energy under Axial Loading

10

• In an element with a nonuniform stress distribution,

energystrain   totallim
0





 


dVuU

dV

dU

V

U
u

V

• For values of u < uY , i.e., below the proportional limit,

energy strainelasticdV
E

U x   
2

2

 


• Under axial loading, dxAdVAPx 


L

dx
AE

P
U

0

2

2

AE

LP
U

2

2



• For a rod of uniform cross-section,
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Comparison of Energy Stored in Straight and Stepped bars

11

AE

LP
U

2

2










 




n

n

AE

LP

nAE

LP

AE

LP
U

2

1

2

2

2/

2

2/

2

22

Note for n=2; case (b) has U=            which is 3/4 of case (a)
AE

LP

24

3 2

(a) (b)
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Example 1

12

One of the two bolts need to support a sudden tensile loading. To choose it is

necessary to determine the greatest amount of strain energy each bolt can

absorb. Bolt A has a diameter of 20 mm for 50 mm length and a root diameter

of 18 mm for 6 mm length. Bolt B has 18 mm diameter throughout the length.

Take E = 210 GPa and y= 310 Mpa.
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Solution
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External Work and Strain Energy 

 External Work—Moment. The work of a

moment is defined by the product of the

magnitude of the moment 𝑀 and the angle

𝑑𝜃 through which it rotates, that is, 𝑑𝑼𝒆 =
𝑀 𝑑𝜃. Hookes law holds. After integration

 If the moment is already applied to the

structure and other loadings further distort

the structure by an amount 𝜃′, then M

rotates 𝜃′, and the work is

14

𝑼𝒆 =
𝟏

𝟐
𝑀𝜃

𝑼′𝒆 = 𝑀𝜃′
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External Work and Strain Energy 

 Strain Energy—Bending. The loads P and

w create an internal moment 𝑀 in the

beam at a section located a distance 𝑥 from

the left support. The rotation is given by

𝑑𝜃 = 𝑀/𝐸𝐼 𝑑x. Thus the strain energy is

 Consequently, the strain energy, or work

stored in the entire beam, is determined as

15
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Strain Energy in Bending

16

• For a beam subjected to a bending load,

  dV
EI

yM
dV

E
U x

2

222

22



• Setting  dV = dA dx,

dx
EI

M

dxdAy
EI

M
dxdA

EI

yM
U

L

L

A

L

A



  


















0

2

0

2
2

2

0
2

22

2

22

• For an end-loaded cantilever beam,

EI

LP
dx

EI

xP
U

PxM

L

62

32

0

22







I

yM
x 
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Example 2

a) Taking into account only the normal

stresses due to bending, determine the

strain energy of the beam for the loading

shown.

b) Evaluate the strain energy knowing that

the beam is a W250x67, P = 160kN, L =

3.6m, a = 0.9m, b = 2.7m, and E =

200GPa.

SOLUTION:

• Determine the reactions at A and B

from a free-body diagram of  the 

complete beam.

• Integrate over the volume of  the beam 

to find the strain energy.

• Apply the particular given conditions 

to evaluate the strain energy.

• Develop a diagram of  the bending 

moment distribution.
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Solution

18

SOLUTION:

• Determine the reactions at A and B from 

a free-body diagram of  the complete 

beam.

L

Pa
R

L

Pb
R BA 

• Develop a diagram of  the bending 

moment distribution.

v
L

Pa
Mx

L

Pb
M  21
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Solution 

19

v
L

Pa
M

x
L

Pb
M





2

1

BD,portion  Over the

AD,portion  Over the

46 mm 10104IGPa200E

2.7mbm9.0a

3.6mL160kNP







• Integrate over the volume of the beam to find the 

strain energy.

 ba
EIL

baPbaab

L

P

EI

dvv
L

Pa

EI
dxx

L

Pb

EI

dv
EI

M
dx

EI

M
U

ba

ba




































2

2223232

2

2

0

2

0

2

0

2

2

0

2

1

6332

1

2

1

2

1

22

EIL

baP
U

6

222



     
   3.6mm10104Pa 102006

2.7mm9.0N10160
U

469

2223






Nm336U 
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Example 3

4 -

20

Determine the elastic strain energy due to the bending of the

cantilevered beam if the beam is subjected to a uniform

distributed load 𝑤. 𝐸𝐼 is constant.
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Solution:

4 - 21



CEE  3222: THEORY OF STRUCTURESMr. MWABA MSc, B.Eng., R.Eng., PEIZ, 

Determine the bending strain energy in the A-36 structural steel

𝑊250 × 18 beam. Obtain the answer using the cooordinaes

𝑎 𝑥1 𝑎𝑛𝑑 𝑥4 and 𝑏 𝑥2 𝑎𝑛𝑑 𝑥3. 𝐸 = 210 𝐺𝑃𝑎.

11 - 22

Example 4
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4 - 23

Solution

 Finding the support reactions

 Finding the internal moment 
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4 - 24

Solution (Contd.)
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4 - 25

Example 5

Determine the total axial and bending strain energy in the A-36

structural steel beam. 𝐴 = 2300 𝑚𝑚2, 𝐼 = 9.5 × 106 𝑚𝑚4, 𝐸 =
210 𝐺𝑃𝑎.
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4 - 26

Solution
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4 - 27

Example 6
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4 - 28

Solution
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Principle of Virtual Work

29

 We can use the principle of work

and energy can be applied to

determine the displacement at a

point on a structure.

 For a cantilever, we determine the

displacement at the end as  It will be noted that only one load may be

applied to the structure, since if more than

one load were applied, there would be an

unknown displacement under each load,

and yet it is possible to write only one

“work” equation for the beam.

 Furthermore, only the displacement under

the force can be obtained, since the

external work depends upon both the

force and its corresponding displacement.



CEE  3222: THEORY OF STRUCTURESMr. MWABA MSc, B.Eng., R.Eng., PEIZ, 

Principle of Virtual Work

The external and internal displacements must be related by

the compatibility of the displacements.

The principle was developed by John Bernoulli in 1717 and

is sometimes referred to as the unit-load method.

 Applying a series of external loads P to it, it will cause

internal loads u at points throughout the structure. It is

necessary that the external and internal loads be related by

the equations of equilibrium.

30
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Principle of Virtual Work

 Suppose it is necessary to determine the displacement ∆ of  point 𝐴
on the body caused by the “real loads” 𝑃1, 𝑃2, 𝑎𝑛𝑑 𝑃3. 

31

 Since no external load acts on the

body at 𝐴 and in the direction of ∆,

the displacement ∆ can be

determined by first placing on the

body a “virtual” load such that this

force 𝑃′ = 1 acts in the same

direction as ∆.

 The unit load (𝑃′) does not exist in

reality, create an internal virtual load

u in a representative element or fiber

of the body.
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Principle of Virtual Work

 Point A will be displaced an amount ∆, causing the element to deform 

an amount 𝑑𝐿. 

32

 As a result, the external

virtual force 𝑃′ and internal

virtual load 𝑢 “ride along”

by ∆ and 𝑑𝐿 , respectively,

therefore perform external

virtual work of 1 × ∆ on the

body and internal virtual

work of σ𝑢 × 𝒅𝑳 on the

element.

 The external virtual work is

equal to the internal virtual

work done

1 × ∆=෍𝑢 × 𝒅𝑳

External 

Work
Internal 

virtual Work
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Method of Virtual Work: Trusses

 Consider the vertical displacement ∆ of  joint 𝐵 of  the truss

 If  the applied loadings 𝑃1 and 𝑃2 cause a linear elastic 

material response, then this element deforms an amount 

∆𝐿 = 𝑁𝐿/𝐴𝐸, where 𝑁 is the normal or axial force in the 

member, caused by the loads.

 The virtual-work equation for the truss.

 1 = external virtual unit load acting on the truss joint in the stated 

direction of  ∆.

n = internal virtual normal force in a truss member caused by the

external virtual unit load.

∆ = external joint displacement caused by the real loads on the truss.

N = internal normal force in a truss member caused by the real loads.

L = length of  a member.

A = cross-sectional area of  a member.

E = modulus of  elasticity of  a member

33

𝟏 × ∆=෍
𝒏𝑵𝑳

𝑨𝑬

Due to external 

loading 



CEE  3222: THEORY OF STRUCTURESMr. MWABA MSc, B.Eng., R.Eng., PEIZ, 

Example 7

Determine the vertical displacement of  joint C of  the steel truss 

shown in the figure. The cross-sectional area of  each member is 𝐴 =
0.5 𝑖𝑛2 and 𝐸 = 29(103) 𝑘𝑠𝑖.

34
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Solution 7

35
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Method of Virtual Work: Trusses

 In some cases, truss members may change their length due to 

temperature. 

 If  𝛼 is the coefficient of  thermal expansion for a member and ∆𝑇 is the 

change in its temperature, the change in length of  a member is ∆ 𝐿 =
𝜶∆𝑇 𝐿.

 The virtual-work equation for the truss due to temperature is.

 1 = external virtual unit load acting on the truss joint in the stated direction of  ∆.

n = internal virtual normal force in a truss member caused by the

external virtual unit load.

∆ = external joint displacement caused by the real loads on the truss. 

𝛼 = coefficient of  thermal expansion of  member.

∆T = change in temperature of  member.

L = length of  member.

36

𝟏 × ∆=෍𝒏𝜶𝑳∆𝑻

Due to 

Temperature
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Example 8

Determine the vertical 

displacement of  joint C of  the 

steel truss shown in the figure. 

Due to radiant heating from 

the wall, member AD is 

subjected to an increase in 

temperature of  ∆𝑇 = +120°𝐹. 

Take

α = 0.6(10−5)/°𝐹 and 𝐸 =
29(103) 𝑘𝑠𝑖. The cross-

sectional area of  each member 

is indicated in the figure. 

37
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Solution 8

38

 Since the n forces in 

members AB and BC are 

zero, the N forces in these 

members do not have to be 

computed. Why?
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Method of Virtual Work: Trusses

 In some cases truss members must be made slightly longer or 

shorter in order to give the truss a camber.

 In some cases, errors in fabricating the lengths of  the members 

of  a truss may occur

 If  a truss member is shorter or longer than intended

 1 = external virtual unit load acting on the truss joint in the stated direction of  ∆.

n = internal virtual normal force in a truss member caused by the

external virtual unit load.

∆ = external joint displacement caused by the real loads on the truss. 

∆L = difference in length of  the member from its intended size as caused by a 

fabrication error. 

39

𝟏 × ∆=෍𝒏∆𝑳

Due to 

Fabrication 

Errors
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Example 9

 The cross-sectional area of  

each member of  the truss 

shown in the figure is 𝐴 =
400 𝑚𝑚2and 𝐸 = 200 𝐺𝑃𝑎. 

If  no loads act on the truss, 

what would be the vertical 

displacement of  joint C if  

member AB were 5 mm too 

short?

40
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Solution 9

41

Note that ∆𝐿 = 0.005 𝑚

 The negative sign indicates joint 

C is displaced upward, opposite 

to the 1-kN vertical load 

 If  the deflection is as a result of  

both external loading and errors, 

the sum of  both is necessary
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Method of Virtual Work: Beams and Frames

 Deflection Interms of Displacement: Note: Strains due to bending are the 

primary cause of  beam or frame deflections, 

42

 Consider the beam shown in the

figure. Here the displacement ∆
of point A is to be determined.

To compute ∆ a virtual unit load

acting in the direction of ∆ is

placed on the beam at 𝐴, and the

internal virtual moment 𝑚 is

determined by the method of

sections at an arbitrary location

𝑥 from the left support

𝟏 × ∆= න
𝟎

𝑳𝒎𝑴

𝑬𝑰
𝒅𝒙

𝒅𝜽 = 𝒎(𝑴/𝑬𝑰) 𝒅𝒙
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Method of Virtual Work: Beams and Frames

 Deflection Interms of Slope Angle: Note: Strains due to bending are the 

primary cause of  beam or frame deflections, 

43

 If the tangent rotation or slope

angle 𝜃 at a point A on the

beam’s elastic curve is to be

determined, a unit couple

moment is first applied at the

point.

 The corresponding internal

moments 𝑚𝜃 have to be

determined. Since the work of

the unit couple is 1 × 𝜽, then it

follows that

𝟏 × 𝜽 = න
𝟎

𝑳𝑚𝜃𝑴

𝑬𝑰
𝒅𝒙
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Method of Virtual Work: Beams and Frames

 If concentrated forces or couple moments act on

the beam or the distributed load is discontinuous,

a single integration cannot be performed across

the beam’s entire length.

 Instead, separate 𝑥 coordinates will have to be

chosen within regions that have no discontinuity

of loading. Also, it is not necessary that each 𝑥
have the same origin; however, the 𝑥 selected for

determining the real moment 𝑀 in a particular

region must be the same 𝑥 as that selected for

determining the virtual moment 𝑚 or 𝑚𝜃 within

the same region.

 Each x coordinate should be selected so that both

𝑀 and 𝑚 (or 𝑚𝜃) can be easily formulated.

44
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Method of Virtual Work: Beams and Frames

45
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Example 10

Determine the displacement ∆ of  point B of  the steel beam shown in 

the figure below. Take 𝐸 = 200 𝐺𝑃𝑎, 𝐼 = 500(106)𝑚𝑚4.
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Solution 10

 Place a virtual unit load at B.

 No need to determine the reactions because 𝑥 is 

chosen from B.

 Find the real moments at the same coordinate 𝑥.

 Virtual work equation for B is
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Example 11

Determine the slope 𝜃 of  point B of  the steel beam shown in the 

figure below. Take 𝐸 = 200 𝐺𝑃𝑎, 𝐼 = 60(106)𝑚𝑚4.
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Solution 11

 Place a virtual unit couple moment at B.

 2 𝑥 coordinates are needed as shown. No need to

determine the reactions because 𝑥 is chosen from A.

 Find the real moments at the same coordinates.

 Virtual work equation for slope at B is

49

The negative sign indicates 𝜃𝐵 is opposite to the direction

of the virtual couple moment shown above
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Solution 11 B
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 Since there is no moment 𝑚 for 0 ≤ 𝑥 ≤ 5 𝑚, we 

use only the shaded rectangular and trapezoidal 

areas to evaluate the integral.
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Example 12

Determine the horizontal displacement of  point C on the frame 

figure below. Take 𝐸 = 29000 𝑘𝑠𝑖, 𝐼 = 600 𝑖𝑛4.
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Solution 12
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Solution 12
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Method of Virtual Work: Beams and Frames

Axial Load. Frame members can be subjected to axial loads, and the virtual

strain energy caused by these loadings has been established. For members

having a constant cross-sectional area, we have
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Method of Virtual Work: Beams and Frames

 Shear. In order to determine the virtual strain

energy in a beam due to shear, we will consider

the beam element 𝑑𝑥 shown in the figure. The

shearing distortion 𝑑𝑦 of the element as caused by

the real loads is 𝑑𝑦 = γ 𝑑𝑥 where𝛾 = 𝜏/𝐺 and 𝜏 =
𝐾(𝑉/𝐴). 𝑑𝑈𝑠 = 𝑣𝑑𝑦 = 𝑣(𝐾𝑉/𝐺𝐴) 𝑑𝑥 .

55



CEE  3222: THEORY OF STRUCTURESMr. MWABA MSc, B.Eng., R.Eng., PEIZ, 

Method of Virtual Work: Beams and Frames
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 Torsion. If the member has a circular cross-sectional

area, no warping of its cross section will occur when it is

loaded. The applied torque T to an element 𝑑𝑥 will

cause shear strain of γ = (𝑐𝑑𝜃)/𝑑𝑥 . Provided linear

elastic, 𝛾 = 𝜏/𝐺 , 𝜏 = 𝑇𝑐/𝐽 , after manipulations, 𝑑𝜃 =
(𝑇/𝐺𝐽)𝑑𝑥. Thus, 𝑈𝑡 = 𝑡𝑑𝜃 = 𝑡(𝑇/𝐺𝐽)𝑑𝑥.
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Example 13

Determine the horizontal 

displacement of  point C on the 

frame shown in the figure. Take 

𝐸 = 29 103 𝑘𝑠𝑖, 𝐺 =
12 103 𝑘𝑠𝑖, 𝐼 = 600 𝑖𝑛4, and 

A = 80 𝑖𝑛2 for both members. 

The cross-sectional area is 

rectangular. Include the internal 

strain energy due to axial load 

and shear.
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Solution 13
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Solution 13
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Method of Virtual Work: Beams and Frames
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 Temperature. A structural member can be

subjected to a temperature difference across its depth,

as in the case of the beam shown in figure.
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Example 14

 The beam shown in the figure is used in a building subjected to two 

different thermal environments. If  the temperature at the top surface 

of  the beam is 80°F and at the bottom surface is 160°F, determine 

the vertical deflection of  the beam at its midpoint due to the 

temperature gradient. Take α = 6.5(10−6)/0𝐹.
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Solution 13

62



CEE  3222: THEORY OF STRUCTURESMr. MWABA MSc, B.Eng., R.Eng., PEIZ, 63


	CEE 3222: THEORY OF STRUCTURES  ENERGY METHODS VIRTUAL WORK STRAIN ENERGY METHODS
	Contents
	Introduction
	Strain Energy: definition
	External Work and Strain Energy 
	External Work and Strain Energy 
	Strain Energy Density
	Strain Energy Density
	Strain-Energy Density
	Strain Energy under Axial Loading
	Comparison of Energy Stored in Straight and Stepped bars
	Example 1
	Slide 13 
	External Work and Strain Energy 
	External Work and Strain Energy 
	Strain Energy in Bending
	Example 2
	Solution
	Solution 
	Example 3
	Solution:
	Example 4
	Slide 23 
	Solution (Contd.)
	Example 5
	Solution
	Example 6
	Solution
	Principle of Virtual Work
	Principle of Virtual Work
	Principle of Virtual Work
	Principle of Virtual Work
	Method of Virtual Work: Trusses
	Example 7
	Solution 7
	Method of Virtual Work: Trusses
	Example 8
	Solution 8
	Method of Virtual Work: Trusses
	Example 9
	Solution 9
	Method of Virtual Work: Beams and Frames
	Method of Virtual Work: Beams and Frames
	Method of Virtual Work: Beams and Frames
	Method of Virtual Work: Beams and Frames
	Example 10
	Solution 10
	Example 11
	Solution 11
	Solution 11 B
	Example 12
	Solution 12
	Solution 12
	Method of Virtual Work: Beams and Frames
	Method of Virtual Work: Beams and Frames
	Method of Virtual Work: Beams and Frames
	Example 13
	Solution 13
	Solution 13
	Method of Virtual Work: Beams and Frames
	Example 14
	Solution 13
	Slide 63 



