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Introduction

O All energy methods are based on the conservation of energy
principle, which states that the work done by all external forces
acting on the structure, U,, 1s transformed into internal work or
strain energy. U;, developed in the members when the structure
deforms.

U = U;
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<ugr, Strain Energy: definition

e Strain energy 1s a form of potential energy.

e Strain energy 1s defined as the increase in energy
associated with the deformation of the member.
e Strain energy is equal to the work done by slowly Figs
increasing load applied to the membuer. 9
e Work done to distort an elastic member is stored
as strain energy. L
e Some energy may be lost in plastic deformation of Hies
the member and some may be converted into heat &

instead of stored as strain energy, but the rest i1s
recoverable.

e A spring 1s an example of a storage device for
strain energy.
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<« External Work and Strain Energy

O External Work—Force. When a force F
undergoes a displacement dx in the same
direction as the force, the work done 1s
dU, = Fdx. If the total displacement is x, L
the work becomes

1 v _
Ue:EPA ]

O Strain Energy — Force. When an axial force F 1s applied gradually to the bar
it will strain the material such that the external work done by F will be
converted into strain energy. Hookes law 1s obeyed for linear elastic. Thus

A
g = Ee 'Ezi\
\ F FL \ NZL
o-:Z A:E .
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<« External Work and Strain Energy

0 In summary, then, when a force P is applied sz &
to the bar, followed by application of the
force F', the total work done by both forces
1s represented by the triangular area ACE.

O The triangular area ABG represents the
work of P that 1s caused by its displacement
A.

O The triangular area BCD represents the
work of F' since this force causes a
displacement A,

O The shaded rectangular area BDEG

represents the additional work done by P U, =PA
(U', = PA") when displaced A" as caused by
F'.
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e Strain Energy Density

A uniform rod is subjected to a slowly increasing load

The elementary work done by the load P as the rod
elongates by a small dx is

dU = Pdx =elementary work
which is equal to the area of width dx under the load-
deformation diagram.
The total work done by the load for a deformation x,,

X1
. U :J dx =total work = strainenergy .
which resultO Fn an increase of strain ene:%);f in the

rod.

In the case of a linear elastic deformation,

X1
U = [kxdx =2lod =1 Rx
0 7
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Strain Energy Density

» The strain-energy density of a material is defined as the strain
energy per unit volume.

» To eliminate the effects of size, evaluate the strain- energy per
unit volume,

U _ P de
Vv 5 AL
&
u= jax de = strainenergy density
0
» The total strain energy density resulting from the deformation

is equal to the area under the curve to e;.

* As the material is unloaded, the stress returns to zero but there
is a permanent deformation. Only the strain energy
represented by the triangular area is recovered.

* Remainder of the energy spent in deforming the material is
dissipated as heat.
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Strain-Energy Density

Modulus
of toughness

Rupture

o
oy
Modulus
. of resilience
O € €
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The strain energy density resulting from setting e, = e, is
the modulus of toughness.

The energy per unit volume required to cause the
material to rupture is related to its ductility as well as its

ultimate strength.

If the stress remains within the proportional limit,

& 2 2
U=IE81 dé‘XZ E81 =Gl
5 2 2E

The strain energy density resulting from setting s, = s is
the modulus of resilience.

o .
Uy = ——=modulus of resilience
2E
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Strain Energy under Axial Loading

* In an element with a nonuniform stress distribution,

. AU dU
u= Ilim =
AV 0 AV dV

U= I u dV =total strain energy

 For values of 4 < uy, i.e., below the proportional limit,

2
(o2 . .
U= X dV =elasticstrainener
IZE gy
* Under axial loading,c, =P/A  dV = Adx
L 52
= I:)—dx
2AE

* For a rod of uniform cross-section,
2
u-PL
2AE
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Comparison of Energy Stored in Straight and Stepped bars

L./2 T L2 4 :
N %
n2A A | | P

\ \

\\\|||

_P’L/2_PL/2
2AE  2nAE

B P°L (1+n
2AE\ 2n

which is 3/4 of case (a)

(b) U

2

_n. _3
Note for n=2; case (b) has U= 1 IAE
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Example 1

One of the two bolts need to support a sudden tensile loading. To choose it is
necessary to determine the greatest amount of strain energy each bolt can
absorb. Bolt A has a diameter of 20 mm for 50 mm length and a root diameter
of 18 mm for 6 mm length. Bolt B has 18 mm diameter throughout the length.
Take E = 210 GPa and 6,= 310 Mpa.

B

18 mm
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Solution

Bolr A. If the bolt is subjected to its maximum tension, the maximum
stress of oy = 310 N/mm? will occur within the 6 mm region. This
tension force is

2
P = oA =310 N/mmz[rr( 18 ;“m ) ] — 78886 N = 78.89 kN

Applying Eq. 14-16 to each region of the bolt, we have

NZL
Ui=2. %24F
__ (7889 x 10°N)*S0mm) (78.89 X 10° N)*(6 mm)
2[7(20 mm/2)?][210(10%) N/mm?] 2[m(18 mm/2)?][210(10%) N/mm?]
=2707.8 N-mm = 2.708 N-m = 2.708 J Ans.

Bolr B. Here the bolt is assumed to have a uniform diameter of
18 mm throughout its 56 mm length. Also, from the calculation above,
it can support a maximum tension force of P, = 78.89 kN. Thus,

T N’L  (78.89 X 10° N)*(56 mm)
‘" 24E  2[m(18 mm/2)?][210(10%) N/mm?]
=3261.0N-mm =326 N-m = 326 Ans.

By comparison, bolt B can absorb 20% more elastic energy than bolt
A, even though it has a smaller cross section along its shank.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES
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<« External Work and Strain Energy

O External Work—Moment. The work of a
moment 1s defined by the product of the
magnitude of the moment M and the angle
df through which it rotates, that 1s, dU, =

M df. Hookes law holds. After integration 40
Ue =M

O If the moment is already applied to the
structure and other loadings further distort M
the structure by an amount 08', then M
rotates 0', and the work is

U, =M

14
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v, External Work and Strain Energy

O Strain Energy—Bending. The loads P and
w create an Internal moment M 1n the

W
beam at a section located a distance x from \ I
the left support. The rotation 1s given by i
X

df = M/EI dx. Thus the strain energy is

M? dx
dUi —
2E1

O Consequently, the strain energy, or work
stored 1n the entire beam, 1s determined as

. “M? dx
‘), 2EI
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sz, Strain Energy in Bending

* For a beam subjected to a bending load,
2 2

U= j dV IZEIZdV

» Setting dV =dA dx,

_L M2y2 _L M 2 5
u_(J;/{ZEIZdAdx_gZEIZL{y dAde

LM2

= | ——dx

(J;ZEI

M = —Px
_ijzxz B P23
5 2El 6El
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Example 2

P SOLUTION:
i  Determine the reactions at A and B
e from a free-body diagram of the
l , complete beam.
a * Develop a diagram of the bending
I moment distribution.

* Integrate over the volume of the beam

a) Taking into account only the normal ,
to find the strain energy.

stresses due to bending, determine the
strain energy of the beam for the loading

shown. * Apply the particular given conditions

. to evaluate the strain energy.
b) Evaluate the strain energy knowing that

the beam 1s a W250x67, P = 160kN, L =
3.6m, a = 09m, b = 2.7m, and E =
200GPa.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES
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Solution

. SOLUTION:
A D B e Determine the reactions at 4 and B from
T a free-body diagram of the complete
¢ ”IL‘ . 1 beam.
’h | Pa
R,=2 | Rp= 2 RA_P_b RB—E
|

* Develop a diagram of the bending

M, Mz\ X moment distribution.
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Over the portion AD,
Pb
M; =—X
7L
Over the portion BD,
Pa
My =—V
27 L

P =160kN L=3.6m
a=0.9m b=2.7m
E =200GPa 1=104x10° mm*

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

* Integrate over the volume of the beam to find the
strain energy.

U =z M, dx+I M, dv

2El 2El

a 2 b 2
= 1 J'[Pb xj dx + 1 I(Pavj dv
2El L 2El1 3 L

0

1 P?(b%® N a’b®) P%a’b? (a
2EI 2\ 3 3 ) BEIL
P2a2b2

" BEIL

~ (160x10°N)(0.9m (2.7m)’
~ 6(200x10° Pa)104x10°m* (3.6m)

U =336Nm

CEE 3222: THEORY OF STRUCTURES
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40 Example 3

O Determine the elastic strain energy due to the bending of the
cantilevered beam 1f the beam 1s subjected to a uniform
distributed load w. EI 1s constant.

—
—
—
 —

[
Pra—
—
—
Pra—
pram—
——
—
 —
Sed
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Solution:

The internal moment in the beam is determined by establishing the x

coordinate with origin at the left side. The left segment of the beam
is shown in Fig. 14-10b. We have

CES My o — O M + wx(%) =0
_ xz)
M = w(z

Applying Eq. 14-17 yields

17 — M dx sz [—w(x?/2))? dx _ow IL
“* Jo 2EI 0 2EI S8EI

x* dx
(§)

wx

I 1o =
i

1
I
I
I
I

<

=
1 B __|
<
\A
S

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES



wpr, Example 4

O Determine the bending strain energy in the A-36 structural steel

W250 X 18 beam. Obtain the answer using the cooordinaes
(a) x; and x, and (b) x, and x5. E = 210 GPa.

4 m N 2m——
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<=, Solution
|

e Finding the support reactions 30 kN

- 4m Jrzm 4‘7 4m. : K—’ |

1 | 15 kN 45 kN
15 kN 45kN -
L : 2E1 30 kN
e Finding the internal moment '
M3 = 30):.'3 — 60
M, = [5x -60 (
M, = 45x, - 30{(x, + 2) = 15x, - 60 Il‘ ; .‘
4 X 1 2 m
U - r (15x, ~60)°dx, | J.z (30x, - 60)" dx, o
Tk 2E] 0 2E] o
_ J"* (225x; —1800x, + 3600)dx, . J'2 (900x2 — 3600x, + 3600)dx,
0 2E] 0 2EI
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<z Solution (Contd.)

i 3 2
1 225[ -4—-] _ 1300( iz-) +3600(4)

2EI L 3
2 7?2 |
+ 900(—) - 3600(—) + 3600(2)
3 2 |
3600 kKN? -m’
= 62 ) Ans

21010°)(22.5)(10°) /
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Example 5

O Determine the total axial and bending strain energy in the A-36
structural steel beam. A = 2300 mm?, I = 9.5 X 10° mm?, E =
210 GPa.

1.5 kN/m

Y EERREEENRRENY
15kN

\ -
~ 10 m -




Solution

15 KM/m _
(173 /s Bending
X LM*dx 1 (0
f= — . 03 -~{). 1 2.2
v T W =[5 = =] 10900 k-07500) s
LS X

Ners™ = — [ 156.2500% + 562,510 ~ 112510

g
M=7swl - Sooxt 15
| 0.9375(10°)
ial load : Up); = = 493.4210]
Axialload G = 065005
Wy, = JLde _NL
T 2EA 2EA U:=2(U,);+(U;); =2.4456+493.4210=496) Ans
2
WLy = AONWAD) __, 406 )
2200)(10° X2 3)(10°)
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e} Example 6

Determine the total axial and bending strain energy
in the A-36 structural steel W200 x 86 beam. E = 210 GPa.

20 kN

o

- 3m - 3m -I 12kN
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Solution

Axial load :
0KN LNL  N'L
2 (Ua)iz J. =
o 2AE  2AE
3442
0332 kN = [10.39200916)  _ 6140 N-m=0.147J
30" 2(11 000)(107°)(210)(10%)
12 kN
10 kN 16 kN Bending :
L Mdx 2
- = 10(10%)x]? dx
=[5 = 557 ), oo
6 &
0392 KN N=10392 K1 S 200d0) _ 00A9) 4506 N-m=4526]
' El 210(10°)(94.7)(107%)

Ay, 12 kN
Myix) = 10x, 16 kN

Total strain energy :

U; = (Up; + (Us);
=0.14 + 45.26
=454] Ans
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s« Principle of Virtual Work

O We can use the principle of work
and energy can be applied to

M
determine the displacement at a e — ul
: \

point on a structure. : L

P P

|

O For a cantilever, we determine the
displacement at the end as O It will be noted that OIlly one load may be

applied to the structure, since if more than

e one load were applied, there would be an

. ‘M2 dx /L(—Px}zdx _ 1P unknown displacement under each load,

- Jo 2EI o 2EI 6 EI and yet it is possible to write only one
U, =U, “work” equation for the beam.

L _1PL O Furthermore, only the displacement under

- 6 EI the force can be obtained, since the

Ao PP external work depends upon both the

3EI force and 1ts corresponding displacement.
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Principle of Virtual Work

the compatibility of the displacements.

O The principle was developed by John Bernoulli in 1717 and
1S sometimes referred to as the unit-load method.

O Applying a series of external loads P to 1t, 1t will cause
internal loads u at points throughout the structure. It 1s
necessary that the external and internal loads be related by

the equations of equilibrium.
2 PA — > ud

Work of Work of
External Loads Internal Loads

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 30
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<z, Principle of Virtual Work

O Suppose it 1s necessary to determine the displacement A of point A
on the body caused by the “real loads” P;, P,, and P;.

y

e \
ey ‘./’

O Since no external load acts on the
body at A and in the direction of A,

the displacement A can be

determined by first placing on the -
body a “virtual” load such that this P
force P'=1 acts in the same e S

(a)
direction as A.

O The unit load (P') does not exist in
reality, create an internal virtual load
u 1n a representative element or fiber
Of the bO dy Apply real loads P;, P,, P;

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 3 1
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s« Principle of Virtual Work

O Point A will be displaced an amount A, causing the element to deform
an amount dL.

O As a result, the external
virtual force P’ and internal 1xA= ) uxdL

virtual load u “ride along” / \
by A and dL, respectively,

External
therefore perform external Internal
. Work virtual Work
virtual work of 1 X A on the
body and internal virtual
work of Y u X dL on the where
element. P'" = 1 = external virtual unit load acting in the direction of A.

. . u = internal virtual load acting on the element in the direction of dL.
O The external virtual work is .

. i A = external displacement caused by the real loads.
equal to the internal virtual dL = internal deformation of the element caused by the real loads.

work done

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 32



v, Method of Virtual Work: Trusses

O Consider the vertical displacement A of joint B of the truss Due to external

O If the applied loadings P; and P, cause a linear elastic loading
material response, then this element deforms an amount
AL = NL/AE, where N is the normal or axial force in the
member, caused by the loads.

O The virtual-work equation for the truss.

1A nNL B
X A= —_— 1
AE , +
Apply virtual unit load to B
O 1 = external virtual unit load acting on the truss joint in the stated P,

direction of A.

n = internal virtual normal force in a truss member caused by the
external virtual unit load.

A = external joint displacement caused by the real loads on the truss.
N = internal normal force in a truss member caused by the real loads.
L = length of a member.

A = cross-sectional area of a member.

E = modulus of elasticity of a member Apply real loads Py, P,

#
==BL7
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Example 7

O Determine the vertical displacement of joint C of the steel truss

shown 1n the figure. The cross-sectional area of each member i1s A =
0.5in?and E = 29(103) ksi.

N 10 ft
A & i _B, - C . D |
p o o
—10 ft 10 ft 10 ftg-‘
4 k 4k
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Solution 7

Member n (k) N (k) L (ft) nNL (k2 ft) _
AB 0.333 4 10 13.33
BC 0.667 4 10 26.67
CD 0.667 4 10 26.67
DE —0.943 —5.66 14.14 75.42
FE —0.333 —4 10 13.33 G (&
EB —0.471 0 14.14 0 T 0.333k 0.667 k l 0.667 k T
BF 0.333 4 10 13.33
AF —0.471 —5.66 14.14 37.71 0333k 1k 0.667 k
e 1 4 10 40 virtual forces n
3.246.47

nNL 24647 k> ft
1k-Ac = =
c, = 2 AE AE
(246.47 k* - ft) (12 in. /ft)
* (0.5in%)(29(10°) k/in*)

‘&C = (0.204 1n. real forces N

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 35
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Method of Virtual Work: Trusses

O In some cases, truss members may change their length due to Due to
temperature. Temperature

O If «a 1s the coefficient of thermal expansion for a member and AT 1s the
change 1n its temperature, the change 1n length of a memberis A L =
aAT L.

O The virtual-work equation for the truss due to temperature is.

1 X A= 2 nalLAT

O 1 = external virtual unit load acting on the truss joint in the stated direction of A.
n = internal virtual normal force in a truss member caused by the
external virtual unit load.
A = external joint displacement caused by the real loads on the truss.

a = coefficient of thermal expansion of member.
AT = change in temperature of member.
L = length of member.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 36
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Sy Example 8

O Determine the vertical |
displacement of joint C of the wall | |
steel truss shown 1n the figure.
Due to radiant heating from
the wall, member AD 1s
subjected to an increase in
temperature of AT = +120°F.
Take
a= 0.6(107>)/°Fand E = _

29(103) ksi. The cross- 4 4 9}-
sectional area of each member '
1s indicated in the figure.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 37



Solution 8

1k 1k
O Since the n forces 1n . Stj‘k N | 1
members AB and BC are 120k ok
zero, the N forces 1n these o am Ik 7
members do not have to be S &
COmPUted. Why7 60 k —m: . j, 075k —sl
0
80k

real forces N )
virtual forces n

nNL
1:Ac, = >, ap T EnaATL

_ (0.75)120)6)(12)  (1(0)8)(12)
2[29(10%) | 2[29(10°) ]
(—1.25)(—100)(10)(12)

1.5[29(10%) ]

Ac = 0.658 in. Ans.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 38
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<« Method of Virtual Work: Trusses

O In some cases truss members must be made slightly longer or Due to
shorter 1n order to give the truss a camber. Fabrication

0 In some cases, errors in fabricating the lengths of the members Errors
of a truss may occur

O If a truss member 1s shorter or longer than intended

1XA=ZnAL

O 1 = external virtual unit load acting on the truss joint in the stated direction of A.
n = internal virtual normal force in a truss member caused by the
external virtual unit load.
A = external joint displacement caused by the real loads on the truss.
AL = difference in length of the member from its intended size as caused by a
fabrication error.

39

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES



Sjec] Example 9

O The cross-sectional area of
each member of the truss
shown in the figure s A =
400 mm?and E = 200 GPa.
If no loads act on the truss,
what would be the vertical
displacement of joint C if
member AB were 5 mm too
short?

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 40
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Solution 9

O Note that AL = 0.005m

1-A =2n AL

lkN'ﬁCU

Ac

it

(0.667 kKN)(—0.005 m)
—0.00333 m = —3.33 mm

O The negative sign indicates joint
C 1s displaced upward, opposite
to the 1-kN vertical load

O If the deflection is as a result of
both external loading and errors,
the sum of both 1s necessary

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

0.5kN

1 kN
5
s a
’bbe’/ //)\ \\ \ (53?3
Ans > .
3. 9 ‘/ “ S B
0.667 kN \f
0.5 kN 0.5 kN
0.833 kN 0.833 kN
s 3N
n 4
0.667 kN 0.667 kN B
virtual forces n 0.5 kN
41
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Method of Virtual Work: Beams and Frames

O Deflection Interms of Displacement: Note: Strains due to bending are the
primary cause of beam or frame deflections,

O Consider the beam shown in the
figure. Here the displacement A
of point A 1s to be determined.
To compute A a virtual unit load
acting in the direction of A 1is
placed on the beam at A, and the
internal virtual moment m 1is
determined by the method of
sections at an arbitrary location
x from the left support

do = m(M/EI) dx

1><A—fLde
~ ), EI ™

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

Apply virtual unit load to point A

Apply real load w

where
1 = external virtual unit load acting on the beam or frame in the

m =

A
M =

E =

I =

direction of A.

internal virtual moment in the beam or frame, expressed as a
function of x and caused by the external virtual unit load.

external displacement of the point caused by the real loads acting
on the beam or frame.

internal moment in the beam or frame, expressed as a function of x
and caused by the real loads.

modulus of elasticity of the material.

moment of inertia of cross-sectional area, computed about the
neutral axis.

CEE 3222: THEORY OF STRUCTURES
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wer, Method of Virtual Work: Beams and Frames

O Deflection Interms of Slope Angle: Note: Strains due to bending are the
primary cause of beam or frame deflections, w

1 A
O If the tangent rotation or slope MA .

angle 6 at a point A on the ——

beam’s elastic curve is to be - \df(
determme:d, a  unit couple Ep L1y] B .
moment is first applied at the . TTL+
point. | v

) . Apply virtual unit couple moment to point A
O The corresponding internal Apply real load w

moments mg have to Dbe
determined. Since the work of
the unit couple 1s 1 X 0, then it
follows that

ngM
1><0=f dx
0

El
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wpr, Method of Virtual Work: Beams and Frames

O If concentrated forces or couple moments act on !

the beam or the distributed load 1s discontinuous, Jﬁ

. . . B C D
a single integration cannot be performed across Hl{c ‘ ‘ t—xaﬂ
the beam’s entire length. '

Apply virtual unit load

O Instead, separate x coordinates will have to be (a)

chosen within regions that have no discontinuity

of loading. Also, 1t 1s not necessary that each x P .

have the same origin; however, the x selected for VY Yy

determining the real moment M in a particular > | B‘ ¢ ‘ b,
: r X9 X 4‘

region must be the same x as that selected for ™ | S

determining the virtual moment m or my within

the same region.

O Fach x coordinate should be selected so that both
M and m (or my) can be easily formulated.

E

Apply real loads
(b)
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wpr, Method of Virtual Work: Beams and Frames

Procedure for Analysis Real Moments

® Using the same x coordinates as those established for m or m,,

The following procedure may be used to determine the displacement determine the internal moments M caused only by the real loads.
and/or the slope at a point on the elastic curve of a beam or frame
using the method of virtual work. e Since m or my was assumed to act in the conventional positive

direction, it is important that positive M acts in this same direction.

Virtual Moments m or m This is necessary since positive or negative internal work depends

® Place a unit load on the beam or frame at the point and in the upon the directional sense of load (defined by +m or +my) and
direction of the desired displacement. displacement (defined by =M dx/EI).
o If the slope is to be determined, place a unit couple moment at  Virtual-Work Equation
the point.
. ® Apply the equation of virtual work to determine the desired
e Establish appropriate x coordinates that are valid within regions diSplaC(?:mE‘,].flt A or l'OtE.ltiOIl 6. It is import:.mt. to retain. Fhe
of the beam or frame where there is no discontinuity of real or algebraic sign of each integral calculated within its specified
virtual load. region.

e With the virtual load in place, and all the real loads removed from e If the algebraic sum of all the integrals for the entire beam or
the beam or frame, calculate the internal moment m or mj as a frame is positive, A or 6 is in the same direction as the virtual unit
function of each x coordinate. load or unit couple moment, respectively. If a negative value

results, the direction of A or € is opposite to that of the unit load

e Assume m or mg acts in the conventional positive direction as .
or unit couple moment.

indicated in Fig. 4-1.
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Example 10

O Determine the displacement A of point B of the steel beam shown 1n
the figure below. Take E = 200 GPa,l = 500(10%)mm*.

12 kN/m

IRERERRERIRNENY

A% B
' 10 m ]
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Solution 10

O Place a virtual unit load at B.

O No need to determine the reactions because x 1s
chosen from B.

O Find the real moments at the same coordinate x.

O Virtual work equation for B 1s

LM 10 —1x) —6x7) dx
lkN-AB=/Gde= G( (EI )
s — 15(10%) kN? - m®

El
or
15(10°) kN - m’?

s = 000109 kN/m?(500(10°) mm*)(10™" m*/mm*)

= (0.150 m = 150 mm Ans.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

CEE 3222: THEORY OF STRUCTURES

' 1kN
"-‘% 1 |7 B
: 10 m R
1kN
m=—1x (T|—T
virtual load Y I'—I —
4 12 kN/m
PANYI YR YYRIY Y YYYerY
5 A B
- 10 m |—x_
=
re==ad|
vV

real load IW x 4'
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swzr, Example 11

O Determine the slope 8 of point B of the steel beam shown 1n the
figure below. Take E = 200 GPa,I = 60(10%)mm*.
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Solution 11

O Place a virtual unit couple moment at B.

. o
O 2 x coordinates are needed as shown. No need to 1 1;1;4;1 s
determine the reactions because x 1s chosen from A. Aam:a
O Find the real moments at the same coordinates. E—— I o
O Virtual work equation for slope at B is
L mﬂM ! i ) My, = 0 .
-6, = / ——dx X v
o EI | |
s . 1 kN-m
0)(—3x;) dx D[=3(5 + x,)] dx B
zf()( x1) 1+f()[( )] dx; | L | Y
0 El o El N o
I I
o — —112.5kN - m*
=
EI 3 kN 3kN
. s 1 B cly % l )
—112.5 kN“*m Am?:& My =—3x%,
1kN-m)-6, = 35 [#=3n)
( I 200(10°) kN/m*[ 60(10°) mm* ] (107"? m*/mm*) ]  — e v real load
6 = —0.00938 rad Ans. 31” YRy
B
The negative sign indicates 65 is opposite to the direction ! : il )
of the virtual couple moment shown above ! Sm ——x !‘5
49
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v/ Solution 11 B

We can also evaluate the integrals f mgM dx eraphically o

O Since there 1s no moment m for 0 < x < 5m, we
use only the shaded rectangular and trapezoidal mgy (KN -m)
areas to evaluate the integral.

1
5 10 x (m)
10 3KN :
/ meM dx = ¥ mg(M; + My)L = 3(1)(—15 — 30)5 Al ; ck
s PR
= —112.5 kNE . II13 }7114 szal c
M (KN -m)
—112.5kN?*+ m’
1kN-m)-6, = 5 10
(1KN*m)-6p 200(10°) kN/m?[ 60(10°) mm*] (10~ m*/mm*) x (m)
Az = —0.00938 rad Ans. —15
—30
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s Example 12

O Determine the horizontal displacement of point C on the frame
figure below. Take E = 29000 ksi,I = 600 in*.

10 ft
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v, Solution 12
my = 1255 4, My =25x,
n; 1k N
|‘—12 vV |'—Iz
2
125k 25k
TP T | 8 ft |
| 8 ft | N eum —f
125k I
2 [ 25k
[Ml = 4&1’1 — le | |
1] |
10 ft Ni |
my = 1x A 40k —To» |
~.
e 1 ﬁ"‘"’l :
| T I
X1 4 5! | | St
X I
1'|':'" j1_ |
1k e i 40 k= 40 k<—%
virtual load real load
Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 52




e/, Solution 12

oA flﬂdr _ [Pax)(40x, - 2)dy, /3(1.25@)(25@)%
|, EI ; El ; EI
83333 53333  13666.7 k- ft
“ T El EI El
e 13 666.7 k - ft°
“ [29(10%) k/in?((12)2in2/£2) | [ 600 in (ft*/(12)*in*) ]
= 0.113 ft = 1.36 in. Ans.
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O Axial Load. Frame members can be subjected to axial loads, and the virtual
strain energy caused by these loadings has been established. For members
having a constant cross-sectional area, we have

where
aNL n = internal virtual axial load caused by the external virtual unit load.
— N = internal axial force in the member caused by the real loads.
" AE E = modulus of elasticity for the material.

A = cross-sectional area of the member.
L = member’s length.
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Method of Virtual Work: Beams and Frames

O Shear. In order to determine the virtual strain —
energy in a beam due to shear, we will consider
the beam element dx shown in the figure. The
shearing distortion dy of the element as caused by \
the real loads 1s dy = y dx wherey = t/G and 1 = “'u]'f_ﬁj dy
K(WV/A). dUs; =vdy = v(KV/GA) dx . e

where
v = internal virtual shear in the member, expressed as a function of x

and caused by the external virtual unit load.
V = internal shear in the member, expressed as a function of x and
L vV caused by the real loads.
U? — / K(—) dx A = cross-sectional area of the member.
‘ 0 K = form factor for the cross-sectional area:
K = 1.2 for rectangular cross sections.
K = 10/9 for circular cross sections.

K = 1 for wide-flange and I-beams, where A is the area of the web.
G = shear modulus of elasticity for the material.

25
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Method of Virtual Work: Beams and Frames

O Torsion. If the member has a circular cross-sectional
area, no warping of its cross section will occur when it 1s

loaded. The applied torque T to an element dx will
cause shear strain of Y = (cd0)/dx . Provided linear
elastic, y =1t/G, T =Tc/], after manipulations, df =
(T/G])dx. Thus, U, = td8 = t(T/G])dx.

where
t = internal virtual torque caused by the external virtual unit load.
T = internal torque in the member caused by the real loads.
G = shear modulus of elasticity for the material.
J = polar moment of inertia for the cross section, J = mc*/2, where c is
the radius of the cross-sectional area.
L = member’s length.
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< Example 13

O Determine the horizontal
displacement of point C on the

frame shown in the figure. Take s fe

E = 29(10%)ksi, G = i
12(103)ksi, I = 600 in*, and =18

A = 80 in? for both members.

The cross-sectional area 1s 4 k/ft o

rectangular. Include the internal
strain energy due to axial load
and shear. Al

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 57



Mg = 251’1
=1.25
n X3 [1}2 — _1_25| N, =0
ny = 1k
|‘—Iz
1.25k |
—+ 5 —1 k e | .
- 8 ft ? i
1.25k i 25 k
|
ny =125 N, =25 i
m1—]-rl. i"--. 1o M, = 40x — 20" 4 40 k==l
1S FT5[Vi=40—4x]
T k=t 0T 1 fse
X 4xl-f—i--)- jl_ i
\j
1.25k 1.25k 25k 25k
virtual load real load
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Solution 13

Bendinlg. .The virtual strain energy due to bending has been Shear. Applying Eq. 9-25 with K = 1.2 for rectangular cross
detcrminedsin Example 9. 10. There it was shown that sections, and using the shear functions shown in Fig. 9-25b and 9-25c,
we have
"mMadx 136667k -f  13666.7 k- £t (12%in’/1 ft)
= / = = = 1.357in.-k
o EI El [29(10%) k/in? | (600 in*) L /v
o= o)
0 GA
Axial load. From the data in Fig. 9-25b and 9-25¢, we have
B /‘1“1.2(1)(40 —dx)dn | fgl.Z(—l.ZS)(—ZS) dx,
nNL 0 GA 0 GA
U, = >,
AE ) .
540 k~ - ft(12 in. /ft) _
= [12(103} L 2](80' %) = 0.00675 in. -k
. : in in
~ 1.25k(25k)(120 in.) 1 k(0)(96 in.)
e in2 3\ I fin2 2 3) 1 fin2
80 in [29(10 ) k/in ] 80 in [29(10 ) k/in ] Applying the equation of virtual work, we have
= 0.0016161n. -k 1k*Ag, = 1.357in.-k + 0.001616in. -k + 0.00675 in. -k

Ar = 1.37 in. Ans.

h

Including the effects of shear and axial load contributed only a 0.6%
increase in the answer to that determined only from bending.
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Method of Virtual Work: Beams and Frames

ATm - Tl Tm — -Tm -TZ
T,— AT,

: —

WA
T, = n+17y [ 7 /

2 i T
i
I
AN

‘_T;'_—‘1 AT,

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

O Temperature. A structural member can be
subjected to a temperature difference across its depth,
as in the case of the beam shown 1n figure.

pnsilive mtalmn

C C

X ﬁTm dx . Lmﬂ' ATm dx
B = Utemp -
0

)M

=

where

m = internal virtual moment in the beam expressed as a function of x
and caused by the external virtual unit load or unit couple
moment.
coefficient of thermal expansion.
temperature difference between the mean temperature and the
temperature at the top or bottom of the beam.
¢ = mid-depth of the beam.

L=
Ehi 3
Il

CEE 3222: THEORY OF STRUCTURES 60



Example 14

O The beam shown 1n the figure 1s used in a building subjected to two
different thermal environments. If the temperature at the top surface
of the beam 1s 80°F and at the bottom surface 1s 160°F, determine
the vertical deflection of the beam at its midpoint due to the
temperature gradient. Take a = 6.5(107°)/°F.

61
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Solution 13

11b Since the deflection at the center of the beam is to be determined, a
| virtual unit load is placed there and the internal virtual moment in the
| kL l A beam is calculated, Fig. 9-26b.
The mean temperature at the center of the beam s (160° + 80°) /2 =
i 120°F, so that for application of Eq. 9-27 AT,, = 120°F — 80°F =
I—l l_ | 40°F. Also,¢ = 10in./2 = 5 in. Applying the principle of virtual work,
: we have
1 1
2 - 2 Ib " ma AT, dx
l1lb-Ap =
4 0 i
60 in. [ 1 -6
— 1 5x )6.5(107°) /°F(40°F)
Rl o[l
0 3 in.
e ¥
Ac = 0.0936 in. Ans.
lib
The result indicates a very negligible deflection.

virtual load

62
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