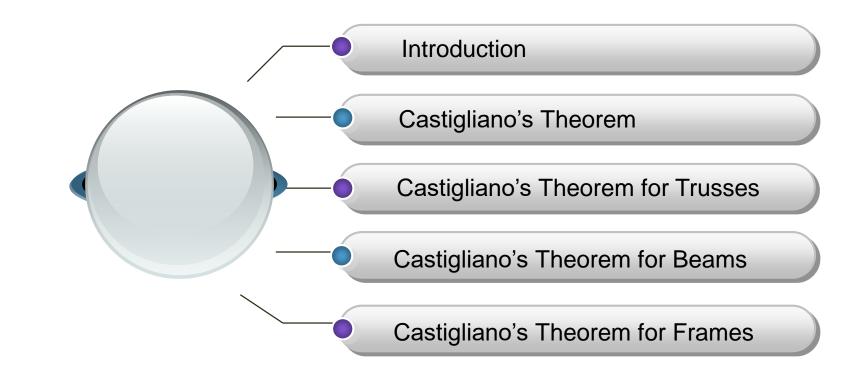
UNIVERSITY OF ZAMBIA School of Engineering Department of Civil & Environmental Eng.

CEE 3222: THEORY OF STRUCTURES Lecture 3.3

ENERGY METHODS -CASTIGLIANO's THEOREMS

Contents



Introduction

• All energy methods are based on the conservation of energy principle, which states that the work done by all external forces acting on the structure, U_e , is transformed into internal work or strain energy. U_i , developed in the members when the structure deforms.

$$U_e = U_i$$

Castigliano's Theorem

- This method is also called *Castigliano's second theorem*, or the **method of least work.**
- It states that the displacement (slope) of a point is equal to the first partial derivative of the strain energy in the structure with respect to a force (couple moment) acting at the point and in the direction of displacement

$$\Delta_i = \frac{\partial U_i}{\partial P_i}$$

Assumptions on structures.

- 1. constant temperature
- 2. unyielding supports
- 3. linear elastic material response.
- The equation is a statement regarding the structure's compatibility.
- The above derivation requires that only conservative forces be considered for the analysis.
- These forces do work that is independent of the path and therefore create no energy loss.

Castigliano's Theorem for Trusses

• Recall that the strain energy for an axial force is given by

$$U_i = \frac{N^2 L}{2AE}$$

• Substituting this in $\Delta_i = \frac{\partial U_i}{\partial P_i}$

• We get formula using the theorem

$$\Delta = \sum N\left(\frac{\partial N}{\partial P}\right)\frac{L}{AE}$$

• Each member force N must be expressed as a function of P.

where

- $\Delta =$ external joint displacement of the truss.
- P = external force applied to the truss joint in the direction of Δ .
- N = internal force in a member caused by *both* the force *P* and the loads on the truss.
- L = length of a member.
- A = cross-sectional area of a member.
- E = modulus of elasticity of a member.

Castigliano's Theorem for Trusses

Procedure for Analysis

The following procedure provides a method that may be used to determine the displacement of any joint of a truss using Castigliano's theorem.

External Force P

Place a force P on the truss at the joint where the desired displacement is to be determined. This force is assumed to have a *variable magnitude* in order to obtain the change ∂N/∂P. Be sure **P** is directed along the line of action of the displacement.

Internal Forces N

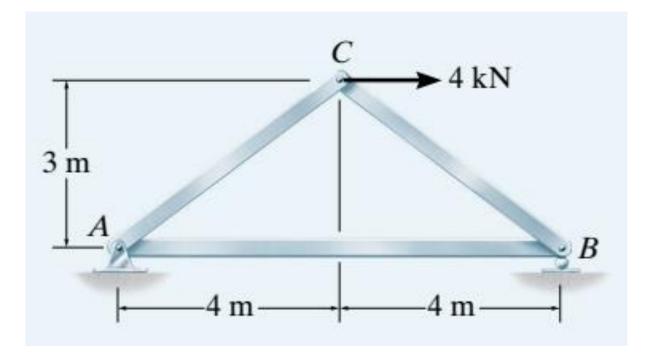
- Determine the force N in each member caused by both the real (numerical) loads and the variable force P. Assume tensile forces are positive and compressive forces are negative.
- Compute the respective partial derivative $\partial N/\partial P$ for each member.

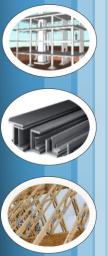
• After *N* and $\partial N/\partial P$ have been determined, assign *P* its numerical value if it has replaced a real force on the truss. Otherwise, set *P* equal to zero.

Castigliano's Theorem

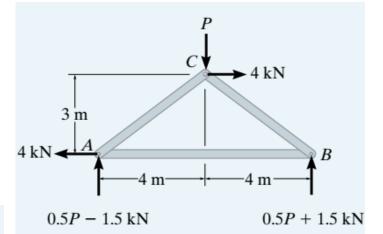
- Apply Castigliano's theorem to determine the desired displacement Δ . It is important to retain the algebraic signs for corresponding values of N and $\partial N/\partial P$ when substituting these terms into the equation.
- If the resultant sum $\sum N(\partial N/\partial P)L/AE$ is positive, Δ is in the same direction as *P*. If a negative value results, Δ is opposite to *P*.

• Determine the vertical displacement of joint *C* of the truss shown in the figure. The cross-sectional area of each member is $A = 400mm^2$ and E = 200 GPa





- A vertical force P is applied to the truss at joint C, since this is where the vertical displacement is to be determined
- Since P does not actually exist as a real load on the truss, we require P = 0 in the table below



 $N_{AB} = 0.667P + 2 \text{ kN}$

 $N_{AB} = 0.667P +$

 $N_{BC} = 0.833P + 2.5 \text{ kN}$

0.5P + 1.5 kN

 $N_{AC} = 0.833P - 2.5 \text{ kN}$

0.5P - 1.5 kN

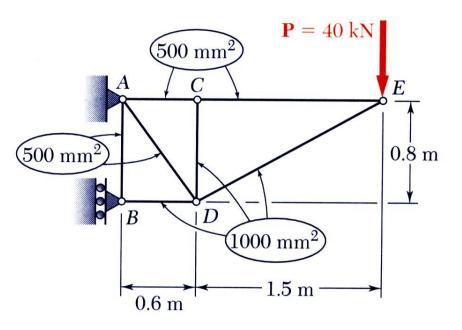
4 kN

Member	Ν	$\frac{\partial N}{\partial P}$	N(P = 0)	L	$N\left(\frac{\partial N}{\partial P}\right)L$	
AB	0.667P + 2	0.667	2	8	10.67	
AC	-(0.833P - 2.5)	-0.833	2.5	5	-10.42	
BC	-(0.833P + 2.5)	-0.833	-2.5	5	10.42	
		$\Sigma =$	10.67 kN • m			
$\Delta_{C_v} = \sum N \left(\frac{\partial N}{\partial P} \right) \frac{L}{AE} = \frac{10.67 \text{ kN} \cdot \text{m}}{AE}$						

$$\Delta_{C_v} = \frac{10.67(10^3) \,\mathrm{N} \cdot \mathrm{m}}{400(10^{-6}) \,\mathrm{m}^2(200(10^9) \,\mathrm{N/m^2})} = 0.000133 \,\mathrm{m} = 0.133 \,\mathrm{mm} \quad Ans.$$

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

Example 2 + Solution



Members of the truss shown consist of sections of aluminum pipe with the cross-sectional areas indicated. Using E = 73 GPa, determine the vertical deflection of the joint *C* caused by the load *P*.

SOLUTION:

- For application of Castigliano's theorem, introduce a dummy vertical load Q at C. Find the reactions at A and B due to the dummy load from a freebody diagram of the entire truss.
- Apply the method of joints to determine the axial force in each member due to Q.
- evaluate the derivative with respect to Q of the strain energy of the truss due to the loads P and Q.

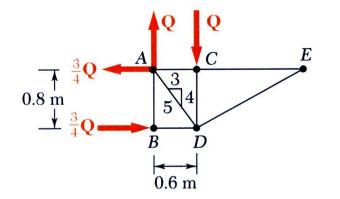
• Setting Q = 0, evaluate the derivative which is equivalent to the desired displacement at C.

SOLUTION:

• Find the reactions at A and B due to a dummy load Q at C from a free-body diagram of the entire truss.

$$A_x = -\frac{3}{4}Q \qquad A_y = Q \qquad B = \frac{3}{4}Q$$

• Apply the method of joints to determine the axial force in each member due to Q.



Q

$$\mathbf{F}_{AD} = Q$$

$$\mathbf{F}_{CD} = Q$$

$$\mathbf{F}_{CD} = Q$$

$$\mathbf{F}_{BD} = \frac{3}{4}Q$$

$$\mathbf{F}_{BD} = \frac{3}{4}Q$$

$$F_{CE} = F_{DE} = 0$$

$$F_{AC} = 0; F_{CD} = -Q$$

$$F_{AB} = 0; F_{BD} = -\frac{3}{4}Q$$

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

$\mathbf{P} = 40 \text{ kN}$	Member	F,	∂ F ı/∂ Q	<i>L_i,</i> m	<i>A_i,</i> m ²	$\left(\frac{\boldsymbol{F_i}\boldsymbol{L_i}}{\boldsymbol{A_i}}\right)\frac{\partial \boldsymbol{F_i}}{\partial \boldsymbol{Q}}$
500 mm^2 B D 0.6 m D 1.5 m D D D D D D D D D D	AB AC AD BD CD CE DE	$0 \\ +15P/8 \\ +5P/4 + 5Q/4 \\ -21P/8 - 3Q/4 \\ -Q \\ +15P/8 \\ -17P/8$	$ \begin{array}{c} 0 \\ 0 \\ -\frac{5}{4}3}{-1} \\ -1 \\ 0 \\ 0 \end{array} $	0.8 0.6 1.0 0.6 0.8 1.5 1.7	$\begin{array}{c} 500 \times 10^{-6} \\ 500 \times 10^{-6} \\ 500 \times 10^{-6} \\ 1000 \times 10^{-6} \\ 1000 \times 10^{-6} \\ 500 \times 10^{-6} \\ 1000 \times 10^{-6} \end{array}$	$0 \\ 0 \\ + 3125P + 3125Q \\ + 1181P + 338Q \\ + 800Q \\ 0 \\ 0 \\ 0 \end{bmatrix}$

• Combine with the results of Sample Problem 11.4 to evaluate the derivative with respect to *Q* of the strain energy of the truss due to the loads *P* and *Q*.

$$y_C = \sum \left(\frac{F_i L_i}{A_i E}\right) \frac{\partial F_i}{\partial Q} = \frac{1}{E} \left(4306P + 4263Q\right)$$

• Setting Q = 0, evaluate the derivative which is equivalent to the desired displacement at C.

$$y_C = \frac{4306(40 \times 10^3 N)}{73 \times 10^9 \text{ Pa}}$$
 $y_C = 2.36 \text{ mm} \downarrow$

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

Castigliano's Theorem for Beams and Frames 🕖

• The internal bending strain energy for a beam or frame is given by $U_i = \int M^2 dx/2EI$. Substituting this equation into $\Delta_i = \partial U_i/\partial P_i$ and omitting the subscript *i*, we have

$$\Delta = \frac{\partial}{\partial P} \int_0^L \frac{M^2 \, dx}{2EI}$$

$$\Delta = \int_0^L M\left(\frac{\partial M}{\partial P}\right) \frac{dx}{EI}$$

where

- Δ = external displacement of the point caused by the real loads acting on the beam or frame.
- P = external force applied to the beam or frame in the direction of Δ .
- M = internal moment in the beam or frame, expressed as a function of x and caused by both the force P and the real loads on the beam.
- E =modulus of elasticity of beam material.
- I = moment of inertia of cross-sectional area computed about the neutral axis.

Castigliano's Theorem for Beams and Frames 🕖

If the slope θ at a point is to be determined, we must find the partial derivative of the internal moment M with respect to an external couple moment M' acting at the point.

$$\theta = \int_0^L M\left(\frac{\partial M}{\partial M'}\right) \frac{dx}{EI}$$

• For shear and torsion, we have the following and their partial derivative.

$$U_{s} = K \int_{0}^{L} \frac{V^{2} dx}{2AG} \quad \frac{\partial U_{s}}{\partial P} = \int_{0}^{L} \frac{V}{AG} \left(\frac{\partial V}{\partial P}\right) dx$$
$$U_{t} = \int_{0}^{L} \frac{T^{2} dx}{2JG} \quad \frac{\partial U_{t}}{\partial P} = \int_{0}^{L} \frac{T}{JG} \left(\frac{\partial T}{\partial P}\right) dx$$

Castigliano's Theorem for Beams and Frames

Procedure for Analysis

The following procedure provides a method that may be used to determine the deflection and/or slope at a point in a beam or frame using Castigliano's theorem.

External Force P or Couple Moment M'

- Place a force **P** on the beam or frame at the point and in the direction of the desired displacement.
- If the slope is to be determined, place a couple moment **M**' at the point.
- It is assumed that both P and M' have a variable magnitude in order to obtain the changes $\partial M / \partial P$ or $\partial M / \partial M'$.

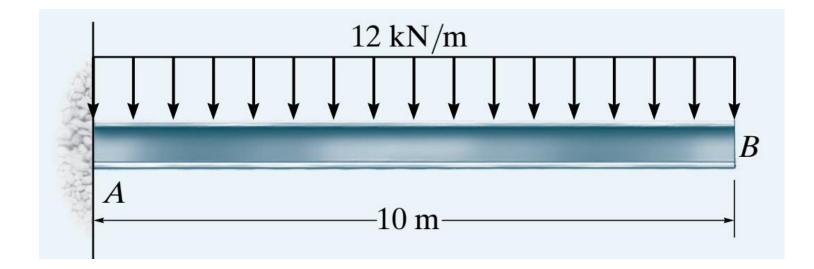
Internal Moments M

- Establish appropriate x coordinates that are valid within regions of the beam or frame where there is no discontinuity of force, distributed load, or couple moment.
- Calculate the internal moment M as a function of P or M' and each x coordinate. Also, compute the partial derivative $\partial M / \partial P$ or $\partial M / \partial M'$ for each coordinate x.
- After M and $\partial M/\partial P$ or $\partial M/\partial M'$ have been determined, assign P or M' its numerical value if it has replaced a real force or couple moment. Otherwise, set P or M' equal to zero.

Castigliano's Theorem

- Apply Eq. 9–28 or 9–29 to determine the desired displacement Δ or slope θ . It is important to retain the algebraic signs for corresponding values of M and $\partial M / \partial P$ or $\partial M / \partial M'$.
- If the resultant sum of all the definite integrals is positive, Δ or θ is in the same direction as **P** or **M**'.

• Determine the displacement of point B of the beam shown in the figure. Take E = 200GPa, $I = 500(10^6)mm^4$.



• A vertical force P is placed on the beam at B as shown in the figure.

Internal Moments M. A single x coordinate is needed for the solution, since there are no discontinuities of loading between A and B. Using the method of sections,

$$\zeta + \Sigma M = 0; \qquad -M - (12x) \left(\frac{x}{2}\right) - Px = 0$$
$$M = -6x^2 - Px \quad \frac{\partial M}{\partial P} = -x$$

Setting P = 0, its actual value, yields

$$M = -6x^2 \quad \frac{\partial M}{\partial P} = -x$$

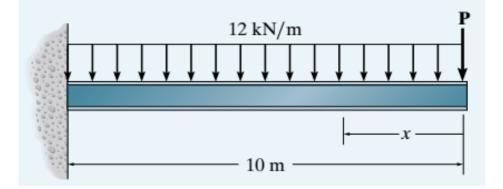
Castigliano's Theorem. Applying Eq. 9–28, we have

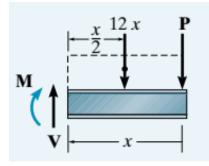
$$\Delta_B = \int_0^L M\left(\frac{\partial M}{\partial P}\right) \frac{dx}{EI} = \int_0^{10} \frac{(-6x^2)(-x) dx}{EI} = \frac{15(10^3) \text{ kN} \cdot \text{m}^3}{EI}$$

or

$$\Delta_B = \frac{15(10^3) \text{ kN} \cdot \text{m}^3}{200(10^6) \text{ kN/m}^2 [500(10^6) \text{ mm}^4](10^{-12} \text{ m}^4/\text{mm}^4)}$$

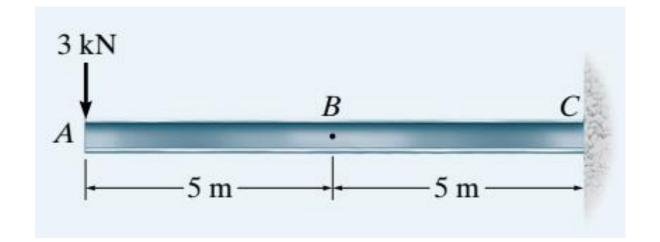
= 0.150 m = 150 mm Ans.



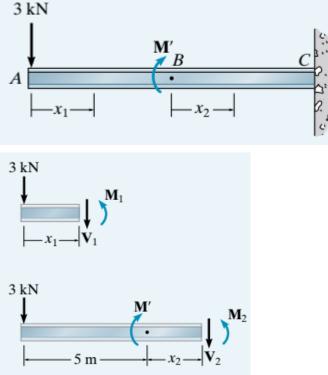


Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

• Determine the slope at point B of the beam shown in the figure. Take E = 200GPa, $I = 60(10^6)mm^4$.



• Since the slope at point B is to be determined, an external couple *M*' is placed on the beam at this point. Two coordinates, x_1 and x_2 , must be used to determine the internal moments within the beam since there is a discontinuity, M', at B.



Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

Castigliano's Theorem. Setting M' = 0, its actual value, and applying Eq. 9–29, we have

 $\zeta + \Sigma M = 0;$

 $\zeta + \Sigma M = 0$:

For x_2 :

 $M_1 + 3x_1 = 0$

 $M_2 - M' + 3(5 + x_2) = 0$

 $M_2 = M' - 3(5 + x_2)$

 $M_1 = -3x_1$

 $\frac{\partial M_1}{\partial M'} = 0$

 $\frac{\partial M_2}{\partial M'} = 1$

$$\partial_B = \int_0^L M\left(\frac{\partial M}{\partial M'}\right) \frac{dx}{EI} \\ = \int_0^5 \frac{(-3x_1)(0) \, dx_1}{EI} + \int_0^5 \frac{-3(5 + x_2)(1) \, dx_2}{EI} = -\frac{112.5 \, \text{kN} \cdot \text{m}^2}{EI}$$

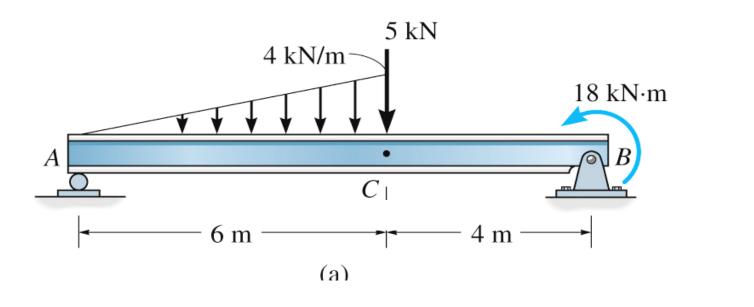
or

$$\theta_B = \frac{-112.5 \text{ kN} \cdot \text{m}^2}{200(10^6) \text{ kN/m}^2 [60(10^6) \text{ mm}^4](10^{-12} \text{ m}^4/\text{mm}^4)}$$

= -0.00938 rad Ans

The negative sign indicates that θ_B is opposite to the direction of the couple moment **M**'. Note the similarity between this solution and that

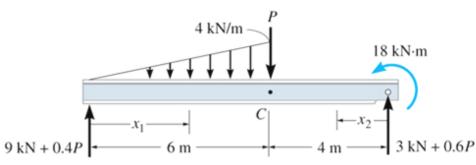
Determine the vertical displacement of point *C* of the steel beam shown in Fig. 14–44*a*. Take $E_{st} = 200$ GPa, $I = 125(10^{-6})$ m⁴.



SOLUTION

(b)

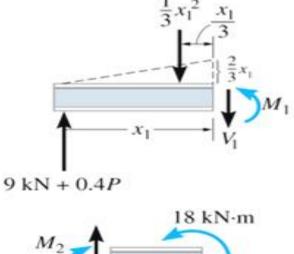
External Force **P**. A vertical force **P** is applied at point *C*, Fig. 14–44*b*. Later this force will be set equal to the fixed value of 5 kN.



Internal Moments M. In this case two x coordinates are needed for the integration since the load is discontinuous at C. Using the method of sections, Fig. 14–44c, the internal moments and partial derivatives are determined as follows: For x_1 ,

٠

$${}^{+}\Sigma M_{NA} = 0; \quad M_1 + \frac{1}{3} x_1{}^2 \left(\frac{x_1}{3}\right) - (9 + 0.4P)x_1 = 0$$
$$M_1 = (9 + 0.4P)x_1 - \frac{1}{9} x_1{}^3$$
$$\frac{\partial M_1}{\partial P} = 0.4x_1$$



For x_2 ,

$$\Delta^{+} \Sigma M_{NA} = 0;$$
 $-M_2 + 18 + (3 + 0.6P)x_2 = 0$
 $M_2 = 18 + (3 + 0.6P)x_2$

 M_2 V_2 V_2 X_2 X_2

(c)

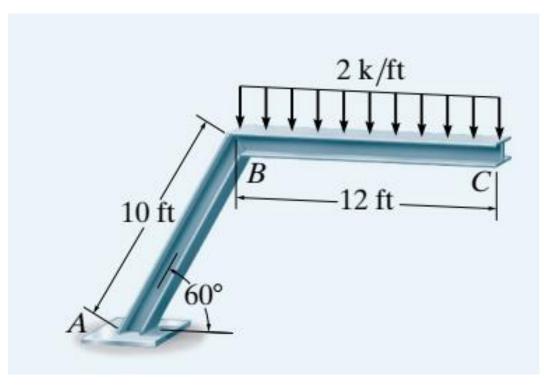
$$\frac{\partial M_2}{\partial P} = 0.6x_2$$

Castigliano's Second Theorem. Setting P = 5 kN and applying Eq. 14–49, we have

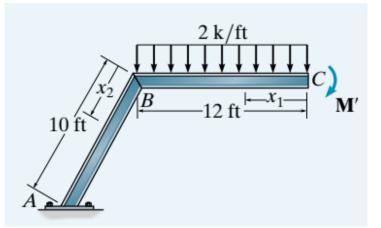
$$\Delta_{C_v} = \int_0^L M\left(\frac{\partial M}{\partial P}\right) \frac{dx}{EI}$$

= $\int_0^6 \frac{(11x_1 - \frac{1}{9}x_1^{-3})(0.4x_1) dx_1}{EI} + \int_0^4 \frac{(18 + 6x_2)(0.6x_2) dx_2}{EI}$
= $\frac{410.9 \text{ kN} \cdot \text{m}^3}{[200(10^6) \text{ kN/m}^2] 125(10^{-6}) \text{m}^4}$
= 0.0164 m = 16.4 mm Ans.

• Determine the slope at point C of the two-member frame shown in the Figure below. The support at A is fixed. Take E = 29000 ksi, $I = 600 \text{ in}^4$.



• A variable moment M' is applied to the fra-me at point C, since the slope at this point is to be determined. Due to the discontinuity of internal loading at B, two coordinates, x_1 and x_2 , are chosen For x_1 : • For x_1 : • $(\zeta + \Sigma M = 0; -M_1 - 2x_1(\frac{x_1}{2}) - M' = 0)$ • $M_1 = -(x_1^2 + M')$ • $\frac{\partial M_1}{\partial M'} = -1$



For x_1 : $M_1 = -(x_1^2 + M')$ $\frac{\partial M_1}{\partial M'} = -1$ For x_2 : $\zeta + \Sigma M = 0;$ $-M_2 - 24(x_2 \cos 60^\circ + 6) - M' = 0$ $M_2 = -24(x_2 \cos 60^\circ + 6) - M'$ $\frac{\partial M_2}{\partial M'} = -1$

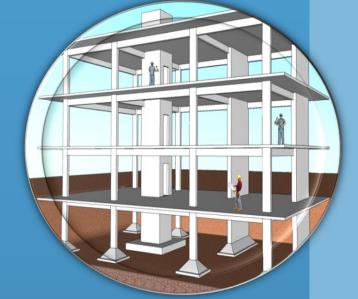
Castigliano's Theorem. Setting M' = 0 and applying Eq. 9–29 yields

$$\theta_{C} = \int_{0}^{L} M\left(\frac{\partial M}{\partial M'}\right) \frac{dx}{EI}$$

$$= \int_{0}^{12} \frac{\left(-x_{1}^{2}\right)(-1) dx_{1}}{EI} + \int_{0}^{10} \frac{-24(x_{2}\cos 60^{\circ} + 6)(-1) dx_{2}}{EI}$$

$$= \frac{576 \text{ k} \cdot \text{ft}^{2}}{EI} + \frac{2040 \text{ k} \cdot \text{ft}^{2}}{EI} = \frac{2616 \text{ k} \cdot \text{ft}^{2}}{EI}$$

$$\theta_{C} = \frac{2616 \text{ k} \cdot \text{ft}^{2}(144 \text{ in}^{2}/\text{ft}^{2})}{29(10^{3}) \text{ k/in}^{2}(600 \text{ in}^{4})} = 0.0216 \text{ rad}$$
Ans.



Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,