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Introduction

O For a coplanar structure there are at most three equilibrium
equations for each part, so that if there 1s a total of n parts and r
force and moment reaction components, we have

r = 3n, statically determinate
r > 3n, statically indeterminate

O This indeterminacy may arise as a result of:-
* Added supports

* Added members
* General form of the structure (eg RC)
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Introduction
Advantages Disadvantages
O The maximum Stress and deflection @ Costly to fabricate joints for statically
of an indeterminate structure are indeterminate.
gen.erally smaller. than those of 1ts O Because redundant support reactions,
statically determinate G . .
e . reat care to prevent differential
O Tendency to redistribute its load to displacement of the supports.
its redundant supports in cases O any deformation, such as that caused

where faulty design or overloading
occurs

O statically indeterminate structures
can support a loading with thinner
members and with increased
stability compared to their statically
determinate counterparts
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by relative support displacement, or
changes in member lengths caused by
temperature or fabrication errors, will
introduce additional stresses in the
structure, which must be considered
when designing indeterminate
structures.
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wer, Introduction

Statically determinate | Statically indeterminate
Equilibrium equations could | Equilibrium equations could

be directly solved, and thus be solved only when
forces could be calculated | coupled with physical law
In an easy way and compatibility equations
Stress state depends only Stress state depends on
on geometry & loading rigidities
Not survivable, moderately | Survivable, widely used In
used in modern aviation modern aviation
(due to damage tolerance | (due to damage tolerance
requirement) property)

Easy to manufacture Hard to manufacture
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wer, Introduction

O Satisfy equilibrium, compatibility, and force-displacement
* Equilibrium:- The reactive forces hold the structure at rest.
* Compatibility:- structure fit together without breaks or overlaps
» Force-displacement:- Structure carries the Load without excessive
displacements
O For a statically indeterminate structure, they are the force or
flexibility method, and the displacement or stiffness method.

Unknowns | Eduations Used Coefficients of
v for Solution the Unknowns
Compatibilit Flexibilit
Force Method Forces ompatibiuly cX1bility

and Force Displacement | Coefficients

Equilibrium Stiffness

Displacement Method | Displacements : ..
5P 'SP and Force Displacement | Coefficients
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wer, Introduction

Small degree
of statical

. . Force method
Indeterminacy

Slope-deflection method

Slope-deflection method
In matrix formulation

Large degree |
of statical Numerical methods

Indeterminacy
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<>, General Compatibility (Force) method

Displacements.
O Consider the beam below

—

actual beam
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O Originally developed by James Clerk Maxwell in 1864 and later
refined by Otto Mohr and Heinrich Miller-Breslau.

O It is also called Flexibility Method or Method of consistent

The beam has 4 unknown reactions
and 3 equilibrium equations. Hence
statically indeterminate to first
degree.

An additional equation 1s necessary
and is obtained by superposition
consider the compatibility of
displacement at one of the supports



General Compatibility (Force) method

O One of the support (a rocker at B) will be temporarily removed and considered
“redundant”. The structure which remains i1s statically determinate and 1t’s a
primary structure.

I

P A’ - B j'c‘.
A ___9BB v/BB
+ @——
B
redundant B, applied
0= —Ap + Ajg B,

With no rocker, the load P will

. By superposition, the unknown reaction
displace B through Ag

B,, will cause B to displace App

@mpatibility Equa@

=" feg The first letter: Where the

B deflection is specified
1 /
Let B), be unit, will cause B to displace fgp (/inear flexibility A BB
coefficient with units m/N). If linearly Elastic, Any B, will \ The Second letter: Where

. . . the unk tion act
cause a proportional increase in fzp. Thus ~ App= By, fpp & HTENOWR TEacton asts
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wpr, General Compatibility (Force) method

O The compatibility Equation will then become
0=-A B + B ny B

O Ajp 1s determined through the deflection methods learnt from the energy
methods.

O The reaction at B is then determined as B, = Ag /fsB

O The other reactions of the primary structure can be determined using
equilibrium equation.
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v/ (General Compatibility (Force) method

O If you declare the moment at A as redundant, then you can replace the fixed
joint with a pin, to remove moment resistant. Stmilar procedure as before.

P

A
B =
actual beam

O Where a, 4 1s the angular flexibility coefficient

(7] i 840 =M,x
A primary structure AA AftAA

redundant M, applied

6:414 — MAaAA 0 = HA + MAaAA MA — _QA/aAA
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wz», General Compatibility (Force) method

O The beam 1s indeterminate to the second degree and therefore two compatibility
equations will be necessary for the solution.

—— —_—

A'pgp = B_;fﬁl?_“ﬁrcs = B,fcn
primary structure redundant B, applied

(b) (c) (d)

0= Ap + B,fgz + C,fpc

0=Aq-+ BnyB T C}-‘fCC
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The following procedure provides a general method for determining
the reactions or internal loadings of statically indeterminate struc-
tures using the force or flexibility method of analysis.

Principle of Superposition

Determine the number of degrees n to which the structure is
indeterminate. Then specify the n unknown redundant forces or
moments that must be removed from the structure in order to make
it statically determinate and stable. Using the principle of superposi-
tion, draw the statically indeterminate structure and show it to be
equal to a series of corresponding statically determinate structures.
The primary structure supports the same external loads as the stati-
cally indeterminate structure, and each of the other structures added
to the primary structure shows the structure loaded with a separate
redundant force or moment. Also, sketch the elastic curve on each
structure and indicate symbolically the displacement or rotation at
the point of each redundant force or moment.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

Compeatibility Equations

Write a compatibility equation for the displacement or rotation at each
point where there is a redundant force or moment. These equations
should be expressed in terms of the unknown redundants and their cor-
responding flexibility coefficients obtained from unit loads or unit cou-
ple moments that are collinear with the redundant forces or moments.
Determine all the deflections and flexibility coefficients using the
table on the inside front cover or the methods of Chapter 8 or 9.*
Substitute these load-displacement relations into the compatibility
equations and solve for the unknown redundants. In particular, if a
numerical value for a redundant is negative, it indicates the redundant
acts opposite to its corresponding unit force or unit couple moment.

Equilibrium Equations

Draw a free-body diagram of the structure. Since the redundant forces
and/or moments have been calculated, the remaining unknown reac-
tions can be determined from the equations of equilibrium.

It should be realized that once all the support reactions have been
obtained, the shear and moment diagrams can then be drawn, and
the deflection at any point on the structure can be determined using the
same methods outlined previously for statically determinate structures.

CEE 3222: THEORY OF STRUCTURES 13



( )

Classification
. of the problem

J

4 )

Basic system

\. J/

. unity states

J

4 )

Canonical
L equations

[Total stress stateJ
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r

Redundant cantraints are

JJ—. removed

)

In loaded state, external load is

applied. In unity states, unit force

\

J

. ﬂ is applied instead of constraint.
Loaded and —

\___determined for each state

(Displacements corresponding to

 — removed constraints are

J

. . )
Forces in removed constraints

are determined

/
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Maxwell’s Theorem of Reciprocal Displacements;
Betti’s Law

O The theorem of reciprocal displacements states that the displacement
of a point B on a structure due to a unit load acting at point A is equal to the
displacement of point A when the unit load is acting at point B, that is,

fBa = faB

1
A ! : B
e — e TN e N == - T
fag iy

mampg Mg 4
— dx = —
faB / I, / I, dx = fpa

O The theorem also applies for reciprocal rotations, and may be stated as follows: the rotation at point B on a
structure due to a unit couple moment acting at point A is equal to the rotation at point A when the unit
couple moment 1s acting at point B.

O Furthermore, using a unit force and unit couple moment, applied at separate points on the structure, we
may also state: The rotation in radians at point B on a structure due to a unit load acting at point A 1s equal

to the displacement at point A when a unit couple moment is acting at point B.
Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 15




Maxwell’s Theorem of Reciprocal Displacements;
Betti’s Law

O When the theorem of reciprocal displacements 1s formalized in a more general
sense, 1t 1s referred to as Betti’s law.

O Briefly stated:

O The virtual work dU 45 done by a system of forces ), Pg that undergo a displacement
caused by a system of forces Y, P, is equal to the virtual work dUg 4 caused by the
forces), Pawhen the structure deforms due to the system of forces ), Pg. In other words,
dUsp =dUpg4.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 16



\

———
|

ws, General Compatibility (Force) method-Generalised

O When computing the flexibility coefficients, f;; (or a;;), for the structure, it will
be noticed that they depend only on the material and geometrical properties of
the members and not on the loading of the primary structure. Hence these
values, once determined, can be used to compute the reactions for any loading.

O For a structure having n redundant reactions, R,,, we can write n compatibility
equations, namely:

Ay +fuRy + foRy + -0 + R, =0 B L L

Ay + R + Ry + - + R, =0 fu fh o fa || R A

i fo oo o S || R _ | A

&n-'-f;mlRl +Jﬂ12R2 + - +f:rmRn:D : :
_f;rl fn? e f.rm_ _Rn_ _ﬁn_

In particular.note that £, = .. ( f;» = f>,, etc. )
P s f:_; f_u (fli le ) or Slmply
fR = —-A
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%Ev General Compatibility (Force) method- symmetry

O The analysis of a statically - o
indeterminate structure can be } PITT
simplified if the structure has
symmetry of material, geometry,
and loading about its central

axis. In particular, structures T teym W
having an asymmetric loading LQ#J:L_J_LL_%L
can be replaced with a ymmetric loading
superposition of a symmetric +
. . 4 kN 1 kN/m
and antisymmetric load. ‘ | ‘ ‘ ‘ ‘
t f
1 kN/m 4 kN

antisymmetric loading

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 18



v, Force Method for beams

O Consider a trussed cantilever
bridge, such as the one shown 1n
the photo.

O It consists of two cantilevered
sections AB and CD and a center
suspended span BC that was
floated out and lifted 1n place.

O The span BC was pinned at B and
suspended from C by a primary
vertical member CE.

A
Ay R, D

A

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES



Force Method for beams

W W W W
YV Y Y VY YV Y Y YV Y YY VY YVYY BEREEEE
. | ] J e ~
bt — =1 P—AL———L
_J_M M
0.125 wi? J 0.025 wL?
, W C oos ng} A{WE\ /\ x
@) 0.10 wL> \/ a \/
O Although this is a 25% reduction in the ~gas
maximum moment, unfortunately any slight (b)
settlement of one of the bridge piers would u
introduce larger reactions at the supports, EL * Yy _i_ *;. v i _i_ * vy _i_
and also larger moments in the beam E F

O The beam then becomes statically determinate by introducing pins in the span at point E and
F as shown and yet continuity of the span 1s maintained.

O In this case any settlement of a support would not affect the reactions. The cantilevered bridge
span works on the same principle.
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wpr, Example 1

O Determine the reaction at the roller support B of the beam shown
in the figure. EI 1s constant.

actual beam

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES



Solution 1

By inspection, the beam 1s statically indeterminate to the first degree. The
redundant will be taken as By so that this force can be determined directly

50 kN S0kN
A C B Jp—
‘g — 2 ===818"s5 = B, /55
T - _ 1 - i f
——6m 6 m— B
actual beam primary structure redundant B, applied g

0= _AB + BnyB

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES



Solution 1

Compatibility Equation. Taking positive displacement as upward,

By 1nspection, Fig. 10-95, we have

the beam 1s (+1) 0= —Ap + B, fus (1)
Statlcally The terms Ay and fy are easily obtained using the table on the inside
indeterminate front cover. In particular, note that Ay = A¢ + 6(6 m). Thus,
to the first A - P2 P2 (L
B T3E T 2E0 \2
degree. The
3 2 L3
redundant _ (S0kN)(6 m) i (50 kN) (6 m) 6m) = 9000 kN - m ! 344 KN frﬂ*kN
. 3EI 2EI EI (1 |
Wlll be taken 3 PL3 B 1(12 I'ﬂ}3 B 576 m3 112 kN-m 6m ! 6111—-1
as By so that v =g = sm - E 156N
this force can Substituting these results into Eq. (1) yields (c)
be determined (,y) (o M0, () L 5o am
directly MaNm)

If this reaction is placed on the free-body diagram of the beam, the
reactions at A can be obtained from the three equations of equilibrium,
Fig. 10-9c.

Having determined all the reactions, the moment diagram can be
constructed as shown in Fig. 10-9d.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES
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Example 2

O Draw the shear and moment diagrams for the beam shown in the
figure. The support at B settles 1.5 in. Take E = 29(103) ksi,] =
750 in*.

l‘lz ft~|-—12 ft—- 24 ft

actual beam

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 24



Solution 2

O By inspection, the beam is indeterminate to the first degree. The center support B will be chosen
as the redundant, so that the roller at B is removed. Here B,, is assumed to act downward on the

beam.

F-r"
]'Hft;! 12 fi ! 24 fit T

actual beam primary structure redundant B, applied

Compatibility Equation. With reference to point B in Fig.
using units of inches, we require

(+1) 1.5in. = Ag + B, fp (1)

We will use the table on the inside front cover. Note that for Ay the

equation for the deflection curve requires 0 < x < a.Since x = 24 ft,
then a = 36 ft. Thus,

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 25



Solution 2

_Pbx 15 _ o 2y 200D o 0w _ oay2
Ag 5 (L2 — B2 — x?) T [(48)2 — (12)2 — (24)?]

31,680 k- fi}

B EIl

_ PL* 148 2304 f®
P8 A8EI  48EI  EI

Substituting these values into Eq. (1), we get
1.5 in.(29(10°) k/in?)(750 in*)
= 31,680 k- f’(12in./ft)* + B,(2304 ft’)(12 in./ft)’

B, = —5.56 k

The negative sign indicates that B, acts upward on the beam.

Equilibrium Equations. From the free-body diagram shown in
Fig. 10-10c we have

C+3IM, = 0; —20(12) + 5.56(24) + C,(48) = 0
C, =222k

+13F, = 0; A, — 20 + 5.56 + 222 =0
A, = 1222k

¥

Using these results, verify the shear and moment diagrams shown in
Fig. 10-10d.

20k

}

Tﬂ—l—u ﬂ—LM fi —T

A, =1222k 556k C, =222k
(c)
Vi(k)
12.22
12 24 B
—7.78 —— -2.22
M (k-ft)
146.7
53.3
L L ﬂ
12 24 s~
(d)

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES
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s Example 3

O Determine the reactions at the supports for the beam shown 1n
Figure. EI 1s constant.

120 Ib/ft 500 1b

AgTT?lTTTTi
B_éu_

'lr —R C
et sased]

actual beam

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 27



Solution 3

Principle of Superposition. By inspection, the beam is
indeterminate to the first degree. Here, for the sake of illustration, we
will choose the internal moment at support B as the redundant.
Consequently, the beam 1s cut open and end pins or an internal hinge
are placed at B in order to release only the capacity of the beam to
resist moment at this point, Fig. 10-12b. The internal moment at B 1s
applied to the beam in Fig. 10-12c¢.

Compatibility Equations. From Fig. 10-12a we require the relative
rotation of one end of one beam with respect to the end of the other
beam to be zero, that 1s,

(C+) 0p + Mpagg = 0
where

0 = 0 + 03
and

_ ] "
app = app T agp

120 Ib/ft 500 Ib

‘é‘HHHl}gL J

I

12 ft l 5ft | 5ft4|

actual beam
(a)
]

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES

primary structure
(b)
—+

’
MBa BB MBa”BB

redundant My applied
(c)
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Solution 3

The slopes and angular flexibility coefficients can be determined
from the table on the inside front cover, that is,

wL®  120(12)° 8640 Ib - f?

9’ p— p—

B oafEr 24ETI EI

o7 — PL*  500(10)>  31251b-ft

B 16Er 16ETl EI

) ML  1(12) 4 ft
a pr— pr— P—

BB — 3ET 3EI EI

, _ ML _1(10)  333ft
T EI

Thus

8640 1b-ft> 3125 1b-ft> (4 ft  3.33 ft)
+ + My +
EI EI EI EI

My = —1604 b - ft

The negative sign indicates Mp acts in the opposite direction to that
shown in Fig. 10-12¢. Using this result, the reactions at the supports
are calculated as shown in Fig. 10-12d. Furthermore, the shear and
moment diagrams are shown in Fig. 10-12e.

500 Ib
120 1b/ft
1604 1b-ft 1604 1b-ft

BB gy (R oy (R

8541b  8541b | 41016 4101b
586 Ib 1264 1b 89.6 1b

B A D (&

V (Ib)
>80 410
17 22
———®
4.89 —89.6
—854
M (Ib-ft)
1432
448
12
! : /I.\ x (ft)
4.89 17 22
—1602

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES
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<z, Force Method of Analysis: Frames

O The force method 1s very useful for solving problems involving statically
indeterminate frames that have a single story and unusual geometry, such as
gabled frames. Problems involving multistory frames, or those with a high
degree of indeterminacy, are best solved using the slope-deflection, moment-
distribution, or the stiffness method discussed 1n later chapters.

30
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Example 4

O The saddle bent shown 1n the photo 1s used to support the bridge
deck. Assuming EI i1s constant, a drawing of it along with the
dimensions and loading 1s shown in the figure. Determine the
horizontal support reaction at A.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 3 1



Solution 4

40 kN/m

BNENE

= A_rf AA

Primary structure Redundant force A, applied

Principle of Superposition. By inspection the frame is statically
indeterminate to the first degree. To obtain a direct solution for A, we
will choose this reaction to be the redundant. Consequently, the pin at
A 1s replaced by a rocker, since a rocker will not constrain A in
the horizontal direction. The principle of superposition applied to the
1dealized model of the frame 1s shown in Fig. 10-135. Notice how
the frame deflects in each case.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 32



Solution 4

Compatibility Equation. Reference to point A in Fig. 10-13b requires
(5) 0= A4+ A fan (1)

The terms A, and f44 will be determined using the method of virtual
work. Because of symmetry of geometry and loading we need only
three x coordinates. These and the internal moments are shown in
Figs. 10-13¢ and 10-134. It is important that each x coordinate be the
same for both the real and virtual loadings. Also, the positive directions
for M and m must be the same.

For A, we require application of real loads, Fig. 10-13¢, and a virtual
unit load at A, Fig. 10-134d. Thus,

A, = EMm e — o fS(O)(lxl)dxl s /5 (200:x,)(—5)dx,
o EI o EI o EI
N 2/5 (1000 + 200x; — 20x3)(—5)dx;
o EI
_ o _ 25000 666667 _ _ 91666.7
ET ET ET

For f,4 we require application of a real unit load and a virtual unit load
acting at A, Fig. 10-13d. Thus,

L mm 3 (1x1)’dx > 3
1 1 2, 2
= —dx =2 — a7 dx, + 2 d
Jas /0 ET * A ET /o B /(; =

_ 58333
ET

Substituting the results into Eq. (1) and solving yields

—91 7 3.33
o — —91666 +Ax(58 )
EI El
A, = 157 kN Ans.

Draw the free-body diagram for the bent and show that A, = B, =
200kN,and B, = A, = 157 kN.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

X1
1
msy = 200(5 + x3) — 4%(%)
200kN | =1000 + 200x; — 20xy | 200 kN
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w, Force Method of Analysis: Trusses

O The degree of indeterminacy of a truss can usually be determined
by inspection; however, if this becomes difficult, b + r > 2j.

O The force method 1s quite suitable for analyzing trusses that are
statically indeterminate to the first or second degree.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 34



Example 5

O Determine the force in member AC of the truss shown in the figure
below. AE 1s the same for all the members

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 35



Solution 5

Principle of Superposition. By inspection the trussisindeterminate
to the first degree.* Since the force in member AC is to be determined,
member AC will be chosen as the redundant. This requires “cutting”
this member so that it cannot sustain a force, thereby making the truss
statically determinate and stable. The principle of superposition

applied to the truss is shown in Fig. 10-15b. Applying Eq. 3-1,b + r > 2j or 6 +3 > 2(4),9 > 8,9 — 8 = Ist degree.

Compatibility Equation. With reference to member AC in Fig. 10-155b,

we require the relative displacement A ,, which occurs at the ends of the —

cut member AC due to the 400-Ib load, plus the relative displacement 0 fﬂ-AC T Eﬂl ":f ACAC
E, cfacac caused by the redundant force acting alone, to be equal to zero,

that 1s,

actual truss primary structure redundant F, applied

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 36



Solution 5

Here the flexibility coefficient f, -, ¢ represents the relative displacement
of the cut ends of member AC caused by a “real” unit load acting at the
cut ends of member AC. This term, fyc4c and A, will be computed
using the method of virtual work. The force analysis, using the method of
joints, 1s summarized in Figs. 10-15¢ and 10-15d.

For A, we require application of the real load of 400 Ib, Fig. 10-15c,
and a virtual unit force acting at the cut ends of member AC,
Fig. 10-15d. Thus,

nNL
A=  —
AC AE
_ 2[ (—0-3)(400)(3)} N (—0.6)(0)(6) N (—0.6)(300)(6)
AFE AFE AFE
I (1)(—500)(10) I (1)(0)(10)
AFE AFE
_ 11200
AFE
+400
D[ = _ —0.8 _
(\\::H:\@ ) D J“x X ’,_/_l,:. C
R~ "
+300 >0 W /g{? |
W —0.6 “:;f%(" —-0.6
L O +1 & N
400 le | - = +1“\\\
— P —
\ A e <L| : | :l B
300 Ib 300 Ib —08

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,
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For ficac we require application of real unit forces and virtual unit
forces acting on the cut ends of member AC, Fig. 10-15d. Thus,

2y
facac = Z—E
—_0 Q)2 —0 A2 2
_ 2[( 0.8) (8)] " 2[( 0.6) (6)} H 2[(1) 10}
AE AE AE
3456
~ AE

Substituting the data into Eq. (1) and solving yields

11200 = 34.56
AE AFE

Fic = 3241b (T) Ans.

Since the numerical result 1s positive, AC 1s subjected to tension as
assumed, Fig. 10-15b. Using this result, the forces in the other members
can be found by equilibrium, using the method of joints.
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Example 6

Determine the force in each member of the truss shown in the
figure below. 1f the turnbuckle on member AC is used to
shorten the member by 0.5 1n. Each bar has a cross-sectional
area of 0.2 in?, and E = 29(10°) psi.

8 ft

0
i G
e —— 4 ) Td

actual truss
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Solution 6

2 C
—F
+ L AC
Fac facac
]
actual truss primary structure redundant F,~ applied

(a) (b)
Principle of Superposition. This truss has the same geometry as . 34.56
that in Example 10.7 Since AC has been shortened, we will choose it L, = (s AE Fac

as the redundant, Fig. 10-16b.

Compatibility Equation. Since no external loads act on the primary
structure (truss), there will be no relative displacement between the
ends of the sectioned member caused by load; that is, A~ = 0. The
flexibility coefficient f, ., has been determined in Example 10.7 so

34.56
Jfacac = AE

Assuming the amount by which the bar is shortened 1s positive, the
compatibility equation for the bar is therefore

Realizing that f ~ 4 1s a measure of displacement per unit force, we have
34.56 ft(12 in. /ft)

05mm. =0+
(0.2in%)[29(10°) Ib/in?] €

Thus,
Fic = 6993 1b = 6.99 k (T) Ans.

Since no external forces act on the truss, the external reactions are
zero. Therefore, using F,~ and analyzing the truss by the method of
joints yields the results shown in Fig. 10-16c¢.
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v/ Composite Structures

‘ 1 Composite structures are composed of some members
subjected only to axial force, while other members are
subjected to bending.

U If the structure 1s statically indeterminate, the force method
can conveniently be used for its analysis. The following
example 1llustrates the procedure.
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Example 7

The simply supported queen-post trussed beam shown in the photo i1s to be
designed to support a uniform load of 2 kN/m. The dimensions of the structure
are shown in the figure below. Determine the force developed in member CE.
Neglect the thickness of the beam and assume the truss members are pin connected
to the beam. Also, neglect the effect of axial compression and shear in the beam.
The cross-sectional area of each strut 1s 400 mm2, and for the beam [ =

20(10%) mm®*. Take E = 200 GPa.

2kN/m

bV VY Y VYV Yy VY YV Yy

2m | 2m 2m—

Actual structure
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Solution 7

i'ﬂ‘"\l'ﬂ'"'ﬂ‘l""“l‘li"“ 1F¢"1!"|F'|F'""‘H]F""‘H!F'\F!F"!1F

Actual structure

(a) It
Fig. 10-17
SOLUTION
Principle of Superposition. If the force in one of the truss members iy
i1s known, then the force in all the other members, as well as in the beam, Fopfepe _E‘?E
can be determined by statics. Hence, the structure is indeterminate to
Redundant F applied

the first degree. For solution the force in member CE is chosen as the
redundant. This member i1s therefore sectioned to eliminate its capacity (b)
to sustain a force. The principle of superposition applied to the structure

is shown in Fig. 10-17b.

Compatibility Equation. With reference to the relative displacement
of the cut ends of member CE, Fig. 10-17b, we require

0= Aceg + Fepfeece (1)
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Solution 7

The method of virtual work will be used to find Az and f-g g The
necessary force analysis is shown in Figs. 10-17¢ and 10-17d.

2kN/m

X i
“) m, = —{].SII
M]_ = 6.1']_ - 112 1 ¥
2
1.118
X2 |
I_______%xz________l 2m ‘
| 7 ) m, = —0.5x, + 0.5(x, — 2)
| ) (1= ; } = -1
™ |2 2 0.5
. Y 1.118
I X
[ 2 |
(c) (d)
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Solution 7

For A we require application of the real loads, Fig. 10-17¢, and a

virtual unit load applied to the cut ends of member CE, Fig. 10-17d.

Here we will use symmetry of borh loading and geometry, and only
consider the bending strain energy in the beam and, of course, the
axial strain energy in the truss members. Thus,

“Mm L NL 2(6x; — x2)(—=0.5x,)dx,
. EI AE . El

‘s /3 (6x, = B)(=Ddv, 2((1.118)(0)(\/5)>
2

EI AE

N 2((—0-5)(0)(1)) N (1(0)2)
AE AE

12 17.33
=————""40+0+0

—29.33(10%)

= = —7.333(107°
200(10)(20)(107°) (107)m

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,
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For fcrcrp we require application of a real unit load and a virtual
unit load at the cut ends of member CE, Fig. 10-17d. Thus,

L n2dx L 2(=0.5x,)%dx, 3(=1)%4dx,
feece = B 2 2 El 2 El
0 0 2

2 a2 2
. 2((1_112(\/5)) N 2(( 0.5) (1)) . ((1) (2))

AE AE

13333 2 5590 05 2
= b= + +
EI EI AE AE AE
3.333(10°) 8.090(10°)

=200(109)(20)(10—6) 400(107%)(200(10°))

= 0.9345(1073) m/kN
Substituting the data into Eq. (1) yields

0 = —7.333(10)m + F£(0.9345(107%) m/kN)

Fcg = 7.85kN Ans.
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