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Introduction

O For a coplanar structure there are at most three equilibrium
equations for each part, so that if there 1s a total of n parts and r
force and moment reaction components, we have

r = 3n, statically determinate
r > 3n, statically indeterminate

O This indeterminacy may arise as a result of:-
* Added supports

* Added members
* General form of the structure (e.g. RC)
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Introduction
Advantages Disadvantages
O The maximum Stress and deflection @ Costly to fabricate joints for statically
of an indeterminate structure are indeterminate.
gen.erally smaller. than those of 1ts O Because redundant support reactions,
statically determinate G . .
e . reat care to prevent differential
O Tendency to redistribute its load to displacement of the supports.
its redundant supports in cases O any deformation, such as that caused

where faulty design or overloading
occurs

O statically indeterminate structures
can support a loading with thinner
members and with increased
stability compared to their statically
determinate counterparts
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by relative support displacement, or
changes in member lengths caused by
temperature or fabrication errors, will
introduce additional stresses in the
structure, which must be considered
when designing indeterminate
structures.
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wer, Introduction

O Satisfy equilibrium, compatibility, and force-displacement
* Equilibrium:- The reactive forces hold the structure at rest.
* Compatibility:- structure fit together without breaks or overlaps
» Force-displacement:- Structure carries the Load without excessive
displacements
O For a statically indeterminate structure, they are the force or
flexibility method, and the displacement or stiffness method.

Unknowns | Eduations Used Coefficients of
v for Solution the Unknowns
Compatibilit Flexibilit
Force Method Forces ompatibiuly cX1bility

and Force Displacement | Coefficients

Equilibrium Stiffness

Displacement Method | Displacements : ..
5P 'SP and Force Displacement | Coefficients
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< Slope Deflection Method

O All structures must satisfy equilibrium, load-displacement, and
compatibility of displacements requirements in order to ensure their

safety.

O The displacement method works opposite to the force method. It
first requires satisfying equilibrium equations for the structure. To do
this the unknown displacements are written in terms of the loads by
using the load-displacement relations, then these equations are
solved for the displacements.

O The compatibility equations using the load-displacement relations
determine the unknowns.
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O This beam i1s kinematic indeterminate to

the first degree, one angular displacement
0,.

O This beam is kinematic indeterminate to
the fourth degree. Thus three angular
displacemebts 8y, 85, 6, and the
displacement A..

O This frame 1s kinematic indeterminate to
the three degree. Thus three angular
displacements 6, 8. and the equal
displacement at B and C A-=Ap.

CEE 3222: THEORY OF STRUCTURES

O The displacements are

referred to as the
degrees of freedom for
the structure. They
become the unknowns.

O specifying the

kinematic
indeterminacy or the
number of
unconstrained degrees
of freedom for the
structure 1s a necessary
first step when applying
a displacement method
of analysis.

O It identifies the number

of unknowns



eim Slope Deflection Method — taE EQUATION

O The slope deflection method is not as involving as the force methods especially with higher
degrees of indeterminate. It requires less work

O Consider a span AB of a continuous beam, loaded with some loads and a constant EI. We need
to relate M,z and My, (internal end moments) to the degrees of freedom 8, and 85 and linear

displacement Ag.
QB

WW]W O This beam is kinematic indeterminate to the
_r Third degree. Thus three rotations 64, 05, and
d the displacement Ap.
. & A
AB =y M

deflection a
curve B \ e T -
L

EI 1s constant
positive sign convention
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Slope Deflection Method — Angular Displacement at A, 04
M..I.ﬂ
Er
A’ B
Y Maa
real beam V', =6y conjugate beam ET
(a) (b)
f
o 1(Mup\ |L _[1(Mgs\ |2L _ 4EI
CHEIMy =0: 2( El )L_3 2( El )L ;3 =0 M.as:Tﬂa
. 1/ Mg, L l M,yp 2L B —
C+SMy = 0; 2( - )L S _2( - )L +0,L =0 o
Mg, = ——
BA 7 VA
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Slope Deflection Method — Angular Displacement at B, 0

Angular Displacement at B, 0p

MAB

Linear Displacement at B, Ag

1 M 2 1 M ]
o C+EMg =0 [EE{L](E )J [EE{L]( )] - A=10
Mgy = —6p
Myg = Mgy = M ( 2
2E]
M ——
AB% L HB v
B A’ )
A A
S T e
M ‘ ““""('{’
i
| . M v! ET
real beam conjugate beam

(a) (b)
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< Slope Deflection Method — taE EQUATIONS

0 FIXED END MOMENT:- In general, however, the linear or angular displacements of the
nodes are caused by loadings acting on the span of the member, not by moments acting at its
nodes.

O In order to develop the slope-deflection equations, we must transform these span loadings into
equivalent moments acting at the nodes and then use the load-displacement relationships just
derived.

P PL

(NE=——1) Frmmr)

Erl Erl
real beam conjugate beam
(a) (b)
SE — D 1/ PL 1M\ |
O Since we require the slope at each H12F = 0; 2\ afr Ll-2 2\ EI L1=0
end to be zero . PL
O This moment 1s called fixed end moment, +ve at A and —ve at B 8
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Slope Deflection Method — Fixed End Moments

O For convenience 1n solving problems, fixed-end moments have been
calculated for other loadings and are tabulated on the inside back
cover of the book. Assuming these FEMs have been determined for
a specific problem, we have

M,p = (FEM),p Mg, = (FEM)g,
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Fixed end moments

P P
, ! ") (- S
( L) L 4 L j ==
2 I 2 5 5 |
M), = (FEMDs = 57 (FEM)yp = =
P P
i b i a | b i
=== ==
L - . L |
. 2
(FEM),y = — (FEMIaa = 757 (FEM) 5 (im ('E'z“ T
12 2
P P P P
(A "’ ‘l' 3) ¥ L = B
L | L_| L ("“ L L_| L=
3 3 3 5 I35
(FEM), 5 = % (FEM)g, = % (FEM)y g = %
P P P P P P
A Aj B‘) (_.1 —=3. 5
L Lo L gL I
4+4'+'4+'4 "T'T'T'T"1
5P SPL
(FEM, 5 = 16 (FEM)p,; = 16 (FEM),s = lii"f_
W i (1
QU IIITIIIIIREERE N (o I,
wi t I wi? 2 L :
FEMhs =3 (FEM)an = 57 (FEM) = 2
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Fixed end moments

| .
l‘ ' TYTYYT *‘“. TYTYN * B
(ﬂ L | L B) (A L . .5;..
L P 27
_ llwl? FEML . = wi? QL2
{ e = 192 { doa = 197 (FEM)yz = o8
W Hr'
L
( B M @ (ﬂ 1 .
Lt - I Ik I
_ WL _ 3
T P = 55 (FEM)p = %
- J
B
€ ——— (1 ]—2 L =
2 T2 2 7
Swi* Swi’ g2
(FEM) 5 = (FEM)gy = == (FEM) = awl
S —— ‘ —=0
L L .
GETA GEIA ., _ 3EIA
(FEM)us = =5 (FEM)gq = =3 (FEM)ye = I
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Slope Deflection Method — taE EQUATIONS

O By Superposition, we will add the Moments together

I A\
M, = ZE(E 20, + 05 — S(E)_ + member stiffness k = f/fL

! AN s cord rotati ) = A/L
Mo, =2El =) 20, + 0, —3[= + (FEM span’s cord rotation as i (psi) /
BA (L )|: -B \A ( I3 )_ ( )BA
) ) where ‘ ‘ ‘ ‘
(o) \Me Comblne the above 2 equatlons. M, = internal moment in the near end of the span; this moment is

positive clockwise when acting on the span.

Refel‘l‘ing to one end Of the Span as the E, k = modulus of elasticity of material and span stiffness k = I/L.
near end (N) and the Othel‘ end as the #y. 8 = near- and far-end slopes or angular displacements of the

span at the supports; the angles are measured in radians and

far end (F). We get the general slope- are positive clockwise.
o« — o iy = span rotation of its cord due to a linear displacement, that is,

deﬂCCtlon equatlon. r = A/L; this angle is measured in radians and is positive

clockwise.
. (FEM),, = fixed-end moment at the near-end support; the moment
MN o 2Ek(29N + OF — 31111) + (FEM)N is positive clockwise when acting on tEep span; refer to the
For Internal Span or End Span with Far End Fixed tablg_qn the inside back cover for various loading

conditions.
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< Slope Deflection Method — taE EQUATIONS

O The general slope-deflection equation when used for the solution
of problems, 1s applied twice for each member span (AB); that 1s,
application 1s from A to B and from B to A for span AB 1n below.

rmﬂmmlm

deﬂectlon ‘é“‘
curve B N T~
L |

ET is constant
positive sign convention
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Slope Deflection Method — taE EQUATIONS

O When the end support 1s a pin or a roller P .
the moment at the roller or pin mustbe | | 5
Zero, Vo= A
O The angular displacement 85 at this M.is Op s,
support does not have to be determined, k |
()
2/ My = 26k(205 +(0) = 39) + FEMy X 1
0 = 2Ek(205 + 6y — 30) + 0
P

My = 3Ek(6y — ) + (FEM)y
Only for End Span with Far End Pinned or Roller Supported
(b)

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES
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Degrees of Freedom

Label all the supports and joints (nodes) in order to identify the spans
of the beam or frame between the nodes. By drawing the deflected
shape of the structure, it will be possible to identify the number of
degrees of freedom. Here each node can possibly have an angular
displacement and a linear displacement. Compatibility at the nodes
is maintained provided the members that are fixed connected to a
node undergo the same displacements as the node. If these
displacements are unknown, and in general they will be, then for
convenience assume they act in the positive direction so as to cause
clockwise rotation of a member or joint, Fig. 11-2.

Slope-Deflection Equations

The slope-deflection equations relate the unknown moments applied
to the nodes to the displacements of the nodes for any span of the
structure. If a load exists on the span,compute the FEMs using the table
given on the inside back cover. Also,if a node has a linear displacement,
A, compute y = A/L for the adjacent spans. Apply Eq. 11-8 to each
end of the span, thereby generating two slope-deflection equations for
each span. However, if a span at the end of a continuous beam or frame
is pin supported, apply Eq. 11-10 only to the restrained end, thereby
generating one slope-deflection equation for the span.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,
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Equilibrium Equations

Write an equilibrium equation for each unknown degree of freedom
for the structure. Each of these equations should be expressed in
terms of unknown internal moments as specified by the slope-
deflection equations. For beams and frames write the moment
equation of equilibrium at each support, and for frames also write
joint moment equations of equilibrium. If the frame sidesways or
deflects horizontally, column shears should be related to the moments
at the ends of the column. This is discussed in Sec. 11.5.

Substitute the slope-deflection equations into the equilibrium
equations and solve for the unknown joint displacements. These
results are then substituted into the slope-deflection equations to
determine the internal moments at the ends of each member. If any
of the results are negative, they indicate counterclockwise rotation;
whereas positive moments and displacements are applied clockwise.

18



below. EI 1s constant
£iol Cocer

8 m I 6m-——
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Solution 1

O Two spans considered and since
no span has a roller or pin at the
M3 (

end, the equations will be applied
twice.

O Using the FEM formulae
provided, we solve

I
1.2 6(6)° M =2E(—)(28 + 6 — 3¢) + (FEM)
{FEM)m::_w_:— ©) = —72kN-m N L N : v N
30 30 / £l
L>  6(6) M =25(—)2{1 + 6z — 3(0)] +0=—86 1
{FEM)CB=H;G _ 6(6) — 108KN-m AB X [2(0) B (0] 7 s (1)
Now, considering B to be the near end and A to be the far end, we have
Note that (FEM)g. is negative since it acts counterclockwise on the b EJl
fg:::iAa;-B. Also, (FEM), g = (FEM)gs, = 0 since there is no load on MBA = 2E(§)[233 +0—=3(0)] + 0= ?ﬂg (2)
6, = O = 0. Since A and C are fixed In a similar manner, for span BC we have

= = 1 2ET
Uap = Wpe = 0 the supports do not settle. Mgc = ZE(E)[ZHB +0-30)]—-72= T{-}E - 72 (3)

MC‘E

QE(é)[Q(U} + 6 — 3(0)] + 10.8 = ilﬂg + 108 (4)

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 20
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Solution 1

Equilibrium Equations. The above four equations contain five
_ : = \ \Y e 6 kN/m
unknowns. The necessary fifth equation comes from the condition of L 13,63 kN
moment equilibrium at support B. The free-body diagram of a segment T:Ilj 154 kN-m ,Aji[[Er _
of the beam at B is shown in Fig. 11-10c. Here Mg, and Mg, are f" f B 1)
assumed to act in the positive direction to be consistent with the slope- Mz, Vi 0.579 kN 12.86 kN-m
deflection equations.* The beam shears contribute negligible moment g K V (kN) AL EN
about B since the segment is of differential length. Thus, 437
+IMp = 0; Mgy + Mye =0 5
C+3IMp Ba t Mpc () 0570 s \i096 14 x (m)
To solve, substitute Egs. (2) and (3) into Eq. (5), which yields
. 6.17
= ——
El
e ot . M (kN -m) 5.47 ~13.63
Resubstituting this value into Eqgs. (1 1elds
: -0y Y AN
Mus = 1.54kN-m \V 10.96
MBA = 3.09kN-m e
MBC = —309kN-'m
—12.86
Mcp = 1286 kN-m L (e)
The negative value for Mpc indicates that this moment acts
counterclockwise on the beam, not clockwise as shown in Fig. 11-105. 154 kN-m Sl B 437N e R
Using these results, the shears at the end spans are determined from ( l | 1 ) " ( 1 Ifﬂjjj[ Ty)
the equilibrium equations, Fig. 11-10d. The free-body diagram of the ~  _ . = | 309 kN-m o
. . . y - & dm .
entire beam and the shear and moment diagrams are shown in I s Lﬁ m—— 1286kN-m
Fig. 11-10e.
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Example 2

O Draw the shear and moment diagrams for the beam shown 1n Figure
below. EI 1s constant

2 k /ft 12 k
|
T S— 8 C
A  T0--—-—-- B —
4 ft
!= 24 ft — 8 ft —
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Solution 2

O Two spans considered and because of a  Note that (FEM),; and (FEM)g. are negative since they act

roller at C, we apply the second equation counterclockwise on the beam at A and B, respectively. Also, since the
’ supports do not settle, 45 = ¥z = 0. Applying Eq. 11-8 for span

for Span BC. AB and realizing that 6, = 0, we have
wL’ 1 My = 26( L )20y + 05 — 30) + (FEM
(FEM), p = 0, = _E(g)(gar)l — —96k-ft N I (205 + 0 — 3¢) + (FEM)y
wL? 1 ) Myp = ZE( ! )[2(0) + 05 — 3(0)] — 96
(FEM)g, = = = 12(2)(24) = 96 k- ft 24
M,p = 0.08333EI6, — 96 (1)
3PL 3(12)(8 AB 5
(FEM)ge = — = _3U2®) = —18k-ft I
16 16 Mgy = 2E( 5 |[265 + 0 = 30)] + 96
Mg, = 0.1667EI8; + 96 ()
Applying Eq. 11-10 with B as the near end and C as the far end, we have
/
MBL My = 3E( )(HN ¥) + (FEM)y
? Mpe = 35( )(93 —0) — 18
M
4 Ve Mg = 0375E10; — 18 (3)
Remember that Eq. 11-10 is not applied from C (near end) to B
(b) (far end).
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Solution 2

Equilibrium Equations. The above three equations contain four
unknowns. The necessary fourth equation comes from the conditions
of equilibrium at the support B. The free-body diagram is shown in
Fig. 11-11bh. We have

C+3IMp = 0; Mpsy + Mpc =0 4)
To solve, substitute Eqgs. (2) and (3) into Eq. (4), which yields
1440
N

Since 0 is negative (counterclockwise) the elastic curve for the beam
has been correctly drawn in Fig. 11-1la. Substituting 6z into

Egs. (1)—(3), we get
M,z = —108.0 k- ft

Mg, = 720k~ ft

Mg = —72.0k-ft

Using these data for the moments, the shear reactions at the ends of
the beam spans have been determined in Fig. 11-11¢. The shear and
moment diagrams are plotted in Fig. 11-11d.

(e S T Y

12ft— Tkft T2kt

=30k

4& 4t

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

V (k)
255
15
L3
12.75 24 28 32
=225
M (k-ft)
54.6
, 24 28 32
| I
12.75 “12
-72
—108
(d)
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wrr, Example 3

O Determine the internal moments at the supports of the beam shown
in the figure. The roller support at C 1s pushed downward 0.1 ft by
the force P. Take E = 29(103) ksi,I = 1500 in*

0
A = = ;;, ”””” D
24 ft S 20t 15 ft —

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 25
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Solution 3

Slope-Deflection Equations. Three spans must be considered in

this problem. Equation 11-8 applies since the end supports A and D 20 ft — 15 ft —
are fixed. Also, only span AB has FEMs.
+Hiige ~Ucp D
2 '
(FEM), 5 = —% = —11—2(1_5)(24)2 = —720k-ft B L
R tdpe C —dep
(FEM)g, = —— = —(1.5)(24)> = 72.0k-ft
1212 For span AB:
— 3 2
As shown in Fig. 11-13b, the displacement (or settlement) of the Map = 2[29(10 )(12) }(0-003014)[2(0) +0p — 3(0)] - 72
support C causes ¥z¢ to be positive, since the cord for span BC rotates M, = 25173.60; — 72 (1)
zl:j:t?ziiid 'n:gﬂ Htgn‘t;vz negative, since the cord for span CD rotates Mg, = 2[29( 10°)( 12)2} (0.003014) [293 +0— 3(0)} + 72
r wise. ;
Mg, = 50347205 + 72 (2)
Une = 0.1ft _ 0.005rad  thep = _01ft _ —0.00667 rad For span BC:
2011 15 1t Me = 2[29(10°)(12)2](0.003617)[ 26, + 6. — 3(0.005)] + 0
Also, expressing the units for the stiffness in feet, we have Mpc = 60416.765 + 30 208.30 — 453.1 3)
<00 <00 Mcp = 2[29(10°)(12)?](0.003617)[ 26 + 65 — 3(0.005)] + 0
a8 = ——— = 0.003014 ft’ kgc = 7 = 0.003617 ft’ Mg = 60416.760- + 30 208.305 — 453.1 (4)
24(12) 20(12) .
1500 For span CD:
kep = 512" 0.004823 ft' Mcp = 2[29(10%)(12)*](0.004823)[ 26 + 0 — 3(—0.00667)] + 0
Mp = 80555.66- + 0 + 805.6 (5)
Notling thﬁt f;,; = gnﬂ: 0 Sirge 141 agncl _D are fiied Suppoi'lts, and Mpe = 2[29(103)(12)2](0_004323)[2(0) + 0; — 3(—0.00667)1 + 0
applying the slope-deflection Eq. 11-8 twice to each span, we have M. = 40 277.86, + 805.6 ©6)

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 26



Solution 3

Equilibrium Equations. These six equations contain eight unknowns. P
Writing the moment equilibrium equations for the supports at B and C, VvV
Fig. 10-13b, we have Vs, Mpc Cr l Mcp

C+EZMp = 0; Mgy + Mpe =0 (7) QT 2 lj QT

C+3ZM, = 0; Meg +Mep =0 (8)

In order to solve, substitute Egs. (2) and (3) into Eq. (7), and Egs. (4) Mg VBR Mcp VCR

and (5) into Eq. (8). This yields B
Oc + 3.66705 = 0.01262

—6 — 0.2146; = 0.00250
Thus

E

0z = 0.00438 rad 0 = —0.00344 rad

The negative value for 6. indicates counterclockwise rotation of the
tangent at C, Fig. 11-13a. Substituting these values into Egs. (1)—(6) yields

Mg = 382k-ft Ans.
Mpy = 292 k- ft Ans.
Mpc = —292 k-1t Ans.
M~ = —529k-ft Ans.
M~ = 529 k- ft Ans.
Mp- = 667 k- ft Ans.

Apply these end moments to spans BC and CD and show that
Ve, =4105k, Ve, = —79.73 k and the force on the roller is P = 121 k.
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i Slope Deflection Method — Frame analysis

O A frame will not sidesway, or be
displaced to the left or right,
provided 1t 1s properly restrained.

O Also, no sidesway will occur 1in an
unrestrained frame provided it i1s
symmetric with respect to both
loading and geometry.

O For both cases the term Y = 0,
since bending does not cause the
jomts to have a  linear
displacement.

O The procedure for analysis 1s as
outlined for beams

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 28
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‘..-unv;_;; Slope Deflection Method — Frame analysis

O A frame will sidesway, or be displaced to the
P side, when 1t or the loading acting on 1t 1s non
symmetric.

O Eg P causes unequal moments Mg, (tend to
display to joint B to the right) and M5 (tend to
display to joint C to the left) .

O Theterm y = A/L.

O we must write force equilibrium equations 1n
order to obtain the complete solution. The
unknowns in these equations, however, must
only involve the internal moments acting at
the ends of the columns, since the slope
deflection equations involve these moments.
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Example 4

O Determine the moments at each joint of the frame shown in the
figure below. EI 1s constant.

24 kN/m

| Sm

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 30



Solution 4

Slope-Deflection Equations. Three spans must be considered in My = 2Ek(20y + 07 — 34) + (FEM)y
this problem: AB, BC, and CD. Since the spans are fixed supported at -
A and D, Eq. 11-8 applies for the solution. M,z = ZE(—)[Z(D) + 0 — 3(0)] + 0
From the table on the inside back cover, the FEMs for BC are =
M4z = 0.1667EIf, (1)
o Swlr o 5024)18)° I
(FEM)ge = — % 96 —80kN-m Mg, = ZE(E)[EBB +0 = 3(0)] + 0
SwL*  5(24)(8)* _
FEM)p = o = 22O _ N Max = 0.333E16, @
96 96 -
Mg = m(g)[ma + 8. — 3(0)] — 80

Note that6, = 0, = 0and 4.5 = Y = Yp = 0, since no sidesway
will occur. Mg = 0.5EI85 + 0.25EI8, — 80 (3)

Applying Eq. 11-8, we have I
Meg = ZE(E)[EBC + 6 — 3(0)] + 80

M = 0.5EI6- + 0.25El8; + 80 (4)

Mep = ZE(%)[ZGC +0-30)]+0

My = 0.333EI6, (5)

Mpe = 25(%)[2(0) + 0. — 3(0)] + 0

Mpe = 0.1667EI8, (6)
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Solution 4

Equilibrium Equations. The preceding six equations contain eight M M
unknowns. The remaining two equilibrium equations come from ¢ £
moment equilibrium at joints B and C, Fig. 11-16b. We have B c
Mgy + Mpc =0 (7)
Mcg + Mcp =0 (8)
Mg, Mcp

To solve these eight equations, substitute Eqgs. (2) and (3) into
Eq. (7) and substitute Eqgs. (4) and (5) into Eq. (8). We get

Using these results, the reactions at the ends of each member can be
determined from the equations of equilibrium, and the moment
—80 diagram for the frame can be drawn, Fig. 11-16¢.

0.833E10p + 0.25E16,- = 80
0.833E10 + 0.25El0g

Solving simultaneously yields 823kN-m

137.1
O0p = —0c = —¢—

which conforms with the way the frame deflects as shown in / \
Fig. 11-16a. Substituting into Eqgs. (1)—(6), we get 45.7kN-m 45.7kN-m 457kN-m
Mup = 229kN-m Ans.
Mgy = 457kN-m Ans.
Mg = —457TkN-m Ans.
Mcp = 457kN-m Ans.
Mcp = —45.7kN-m Ans.
Mpc = —229kN-m Ans. 2o b 22.9kN-m
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Example 5

O Determine the internal moments at each joint of the frame shown 1n

the figure below. The moment of inertia for each member 1s given in
the figure. Take E = 29(103) ksi.

vlr 3k /ft
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Solution 5

Slope-Deflection Equations. Four spans must be considered in this
problem. Equation 11-8 applies to spans AB and BC, and Eq. 11-10

Mgy, = 2[29(10%)(12)%](0.001286)[265 + 0 — 3(0)] + O

will be applied to CD and CE, because the ends at D and E are pinned. Mg, = 21481.56; (2)
Computing the member stiffnesses, we have My = 2[29(103)(12)2](0.0024“}[293 + 0. — 30)] — 12
400 200
= TR 0.001286 f*  kep = o 0.000643 ft® Mg = 40277.86; + 20 138.96, — 12 (3)
200 650 Meg = 2[29(10°)(12)%(0.002411)[20 + 65 — 3(0)] + 12
kge = —— = 0002411 ¢ kg = —— = 0.002612 ft’
16(12) 12(12) Mg = 20 138.96; + 40277.80, + 12 (4)
The FEMs due to the loadings are My = 3Ek(Oy — ) + (FEM)y
PL 6(16) Mep = 3[29(10°)(12)% ](0.000643)[6 — 0] + 0 (5)
(FEM)gp = —— = —— = —12k-ft
8 8 Mep = 8055.60
(FEM)yy — P; _ 5{;6’ 1kt Mz = 3[29(10°)(12)*](0.002612)[6 — 0] — 54
Mo = 3272570, — 54 (6)
LZ 3(12 2 CE (s
FEM)ge = 5 = U sy
8 8
Applying Egs. 11-8 and 11-10 to the frame and noting that 8, = 0,
Wap = Yge = Yep = Y = 0 since no sidesway occurs, we have
My = 2Ek(20y + 0 — 3) + (FEM)y
M,z = 2[29(10°)(12)*](0.001286)[2(0) + 85 — 3(0)] + O
M, = 10740.76, (1)
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Solution 5

Equations of Equilibrium. These six equations contain eight
unknowns. Two moment equilibrium equations can be written for
joints B and C, Fig. 11-17H6. We have

Mgy + Mg =0 (7)
Meg + Mep + Mg =0 (8)

In order to solve, substitute Egs. (2) and (3) into Eq. (7),and Eqgs. (4)—(6)
into Eq. (8). This gives

61759.30; + 20 138.90,- = 12
20 138.90, + 81 059.00, = 42

Solving these equations simultaneously yields
0 = 2.758(10)rad 0 = 5.113(107*) rad

These values, being clockwise, tend to distort the frame as shown in
Fig. 11-17a. Substituting these values into Eqs. (1)—(6) and solving, we get

Myp = 0.206 k - ft Ans.
Mg, = 0592 k-ft Ans.
Mpe = —0.592k-ft Ans.
M~ = 33.1k-ft Ans.
Mep = 4.12k-ft Ans.
M = —373k-ft Ans.
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», Example 6

O Determine the moments at each joint of the frame shown in the
figure below. EI 1s constant.

5 L

40 k—

—
—
e

12

P -
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Solution 6

Determine the moments at each joint of the frame shown in
Fig. 11-19a. EI is constant.

SOLUTION

Slope-Deflection Equations. Since the ends A and D are fixed,
Eq. 11-8 applies for all three spans of the frame. Sidesway occurs here
since both the applied loading and the geometry of the frame are
nonsymmetric. Here the load is applied directly to joint B and therefore
no FEMs act at the joints. As shown in Fig. 11-194, both joints B and C
are assumed to be displaced an equal amount A. Consequently,
Yap = A/12 and Y- = A/18. Both terms are positive since the cords
of members AB and CD “rotate” clockwise. Relating {45 to ¢¥ipc, we
have ¢, = (18/12)pc. Applying Eq. 11-8 to the frame, we have

1| 18

My = 25(5) 200) + 05 — 3(5‘“”)] + 0 = EI0.166765 — 0.750p0) 1)
1| 18

Mg, = 2E(E) 20, + 0 — 3(5%6)] + 0 = EI0.33365 — 0.75p0) )
I \e¢
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Solution 6

Mep = 2E( ! )[wc + 05 — 3(0)] + 0 = EI0.2676 + 0.13305)  (4)
Mep = 25( ! )[29(: +0 = 3Ppcl + 0 = EN0.2226, — 0.333¢p0) (5)
= 25( ! )[2(0) + 60— 3¢pc] + 0 = EN0.1116, — 0.333¢p0) (6)

Equations of Equilibrium. The six equations contain nine
unknowns. Two moment equilibrium equations for joints B and C,
Fig. 11-19b, can be written, namely,
Mgy + Mgc =0 (7)
Mcegp +Mcp =0 (8)
Since a horizontal displacement A occurs, we will consider summing
forces on the entire frame in the x direction. This yields

Mg, T Meo
Mﬂ;_‘; B C—'!l_'-!'-
40k B C
Mg 12 ft
18 ft
M.EA hl{:ﬂ VA¢
(b) Mg

A\
o T
MD(‘

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,
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The horizontal reactions or column shears V, and V can be related
to the internal moments by considering the free-body diagram of each
column separately, Fig. 11-19¢. We have

Myg + M
EMB — 0; VA = _%
Mp-+ M
SM-=0; Vp = —¥
Thus,
Myp + M Mp- + M
40 + AB > BA + DC 18 CD -0 (9)

In order to solve, substitute Egs. (2) and (3) into Eq. (7), Egs. (4)
and (5) into Eq. (8), and Egs. (1), (2), (5), (6) into Eq. (9). This yiclds
0.605 + 0.1330 — 0.75¢pc = 0
0.13305 + 0.4890- — 0.333¢pc = 0
4
0-563 + 0'2226C - 1.944¢IDC = _g

Solving simultaneously, we have

El9, = 438.81 ElI6- = 136.18 Elfpe = 375.26
Finally, using these results and solving Egs. (1)—(6) yields
Myp = —208 k - ft Ans.
Mgy = —135k-ft Ans.
Mpge = 135k ft Ans.
Meg = 94.8Kk-ft Ans.
Mcp = —948k-ft Ans.
Mpc = —110k-ft Ans.
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Example 7

O Determine the moments at each joint of the frame shown in the
figure below. EI 1s constant for each member.

2 k/ft

HHHHHHC
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Solution 7

Slope-Deflection Equations. Equation 11-8 applies to each of the
three spans. The FEMs are

wlL? 2(12)*
FEM), = —— = — = —24 k-ft
(FEMD5c 12 12
wL?  2(12)
FEM)p = = = 24 k- ft
( )cr B T

The sloping member A B causes the frame to sidesway to the right as
shown 1n Fig. 11-22a. As a result, joints B and C are subjected to both
rotational and linear displacements. The linear displacements are
shown in Fig. 11-22b, where B moves A, to B’ and C moves A5 to C'.
These displacements cause the members’ cords to rotate ¢, s
(clockwise) and —i, (counterclockwise) as shown.* Hence,

A, A, _ As

i, = 10 s 12 Y3 = 20

As shown in Fig. 11-22¢, the three displacements can be related. For
example, A, = 0.5A, and A; = 0.866A,. Thus, from the above
equations we have

hy = —0.417y, i3 = 0.433¢,

Using these results, the slope-deflection equations for the frame are

[2(0) + 05 — 34,] + 0

[20g + 0 — 3¢yy] + 0O

)[233 + 0c — 3(—0.417y))] — 24

(b)

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES
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(3)
(4)
)
(6)
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Solution 7

Equations of Equilibrium. Moment equilibrium at joints B and C
yields

Mgy + Mpc =0 (7)
Mcp + Mcp =0 (8)
The necessary third equilibrium equation can be obtained by summing

moments about point O on the entire frame, Fig. 11-22d. This
eliminates the unknown normal forces N, and N, and therefore

C+2M0 =0

Min + M Mook M
M,g + Mpc — (%)(34) — (%)(40.78) — 24(6) = 0

_2'4MAB - 3'4MBA - 2'04MCD - 1'04MDC - 144 — 0 (9)

Substituting Eqgs. (2) and (3) into Eq. (7), Egs. (4) and (5) into Eq. (8),
and Eqgs. (1), (2), (5), and (6) into Eq. (9) yields
24
0‘73308 == 0'1670C - 0.392(111 = E
24
0.1676; + 0.5336- + 0.0784y, = — =
144
—1.84005 — 0.5126, + 3.880¢, = =
Solving these equations simultaneously yields
Eloy = 87.67  El6. = —823  EIj, = 67.83 Vp = MDCZ+0 Mcp -
Substituting these values into Egs. (1)—(6), we have Mpc ‘?’
Myp = =232k ft Mpgc = 5.63k-ft Mcp = —253k-ft Ans. @ Np
MBA = —5.63k-ft MCB = 253k-ft MDC = —17.0k-ft Ans.
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