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Introduction

O For a coplanar structure there are at most three equilibrium
equations for each part, so that if there 1s a total of n parts and r
force and moment reaction components, we have

r = 3n, statically determinate
r > 3n, statically indeterminate

O This indeterminacy may arise as a result of:-
* Added supports

* Added members
* General form of the structure (eg RC)
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<« Moment Distribution Method

O The method of analyzing beams and frames using moment
distribution was developed by Hardy Cross, in 1930.

@4/ o It is a method of successive approximations that may be carried out
to any desired degree of accuracy.

O The method begins by assuming each joint of a structure 1s fixed.
Then, by unlocking and locking each joint in succession, the
internal moments at the joints are “distributed” and balanced until
the joints have rotated to their final or nearly final positions.

fundamental process of moment distribution follows the same procedure
as any displacement method. There the process is to establish load-
displacement relations at each joint and then satisfy joint equilibrium
requirements by determining the correct angular displacement for the
joint (compatibility). Here, however, the equilibrium and compatibility
of rotation at the joint is satisfied directly, using a “moment balance”
process that incorporates the load-deflection relations (stiffness factors).
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v, Moment Distribution Method

O Sign Convention.

Clockwise moments are positive, whereas
counterclockwise moments are negative

O Member Stiffness Factor
For the beam below, we saw that , M = (4EI/L) 6,

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

O Fixed-End Moments (FEMs).

The moments at the “walls” or fixed joints of a loaded
member are called fixed-end moments. Check the next
two slides for details

O Joint Stiffness Factor.

If several members are fixed connected to a joint and
each of their far ends is fixed, then by the principle of
superposition, the total stiffness factor at the joint is the
sum of the member stiffness factors at the joint,

KTZEK

Ky = 3K = 4000 + 5000 + 1000 = 10 000.
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Fixed end moments
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Fixed end moments
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51:*:";;“" Moment DiStI’ibutiOll MethOd- Distribution Factor

\

O If a moment M 1s applied to a fixed connected joint, Kap=1000 4 K,y = 4000
the connecting members will each supply a portion
of the resisting moment necessary to satisfy moment
equilibrium at the joint.

| O That fraction of the total resisting moment supplied C
by the member 1s called the distribution factor (DF).

K
DF =
3K
O For example, the DFs and moments for members M = 2000 N -m

AB, AC, and AD at joint A 1n the figure are:- r )’

DF,z = 4000/10000 = 0.4 M,z = 0.4(2000) = 800 N-m 200 N-m 00 N
DF, . = 5000/10000 = 0.5 M, = 0.5(2000) = 1000 N *m e

- 1m
DF,, = 1000/10 000 = 0.1 M4, = 0.1(2000) = 200 N - m ©)

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 8



Moment Distribution Method

O Member Relative-Stiffness Factor. O Carry-Over Factor

If the members of a frame or beam are made from the same
material so its modulus of elasticity E will be the same
for all the members. Then the common factor 4E will M
cancel out and henve we remain with the relative (y
stiffness factor Ky A ﬂ

Consider the beam below

4E]

K=—
L —
Far End Fixed M,z = (4EI/L) 6, Mg, = (2EI/L) 6,
MBA — MAB / 2
v I M!‘ — %M
Kp = E O The carry-over factor represents the fraction of M that is
. “carried over” from the pin to the wall.
Far End Fixed

O Hence, in the case of a beam with the far end fixed, the
.1 .
carry-over factor is + . The plus sign indicates both
moments act in the same direction.
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suzv, Moment Distribution for Beams

O Moment distribution 1s based on the principle of successively
locking and unlocking the joints of a structure 1n order to allow the
moments at the joints to be distributed and balanced.

O Consider this beam with a constant E. First we determine the stiffness factors K. Since in

theory it would take an “infinite” size moment to rotate the wall one radian, the wall stiffness
factor 1s infinite co. So we determine only on either side of Joint B

4E(300) 240 1b/ft
K = =5 = 4EQOin/ft A BlHHlHHHC
B
Iy = 300 in® Ipc = 600 in*
BC = 4E(2?0) = 4E(30) in*/ft 151t | 20 ft |
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Moment Distribution for Beams- Joint B

O Next we determine the Distribution factors DF's (unitless)

O For the fixed wall joints A and C, the DFs

DFz, = 4£(20) = are 0 as proved below
4E(20) + 4E(30) 1500
4E 30 DFAB — —
_ (30) _ % + 4E(20)
DFg- = = (0.6
4E(20) + 4E(30) 4EG0)
DFCB — =
o + 4FE(30)

O Next we determine the Fixed end Moments

wL?  24020)*

FEM)p = ——— = = —8000 Ib - ft
( s 12 12

L2 240(20)>
(FEM) 5 = ”;2 = 220G _ c0001b- £
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Moment Distribution for Beams - joint B

240 1b/ft , O First assume that B 1s fixed, find the
A ‘o 1 ' h{ C fixed end moment (FEM) at B = -
BI'1 8000 1b - ft 8000.
8000 Ib- ft
joint B held fixed
O To make joint B in Equilibrium, apply 8000 1b-ft 8000 Ib- ft

b
an equal but opposite moment to B. But WC
Distribute 1t according to the

Distribution factors (DFs)

correction moment applied to joint B

8000 1b - ft

takes place at B, these moments must be

| E — é/ : ; gg\ O Finally, due to the released rotation that

1600 Ib - ft=— 3200 1b - ft 4800 1b- ft —=2400 Ib - ft “carried over (CO)” since moments are

moment at B distributed

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

developed at the far ends of the span.
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Moment Distribution for Beams - Joint B

Joint A B ¢ O With the end moments known, the
Member AB | BA | BC CB end shears have been computed
DF 0 0.4 0.6 0 from the equations of equilibrium
FEM —2000 | 8000 applied to each of these spans.
Dist,CO| 1600-—3200 | 4800 2400
M 1600 | 3200 |(—3200 10400
1600 Ib - ft Vg, =3201b vV, =20401b 240 Ib/ft Ve =27601b

13
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wzv, Moment Distribution for Beams- Joint C

O Consider now the same beam, except the 240 Ib/fi

support at C 1s a rocker as in the figure. In
this case only one member 1s at joint C, so A B l l vlr l vlr vlv vlr vlr l vlr C
glé? distribution factor for member CB at joint Lig=300im* — I = 600in* —
ls \ \
DF,, = 4ECO) _ 15 ft | 20 ft |
4E(30)
O The other DFs and FEMs are as computed before. (line 1 and foint | 4 5 ¢
2) Member | AB BA BC CB
) DF 0 0.4 0.6 1 1
O We have locked both joint B and C. Lets unlock joint C. It FEM 8000 | 8000 | 2
already has a +8000 moment, to bring it to equilibrium, we o L a0 | o0 T3] s
apply a -8000 moment and distribute it. Line 3 shows both the O ‘ﬁg‘; B ‘ﬁ 2
distributed (-8000) and carried over (-4000) moments. Eeh
54 -+ 108 T
O If we lock C and unlock B, we have total moment of -12000 at | TRep s
B, Thus we apply a correction moment of 12000 and distribute B e s P BY
it as shown in Line 4. Then not that half of the moment is 1224 sor MO
carried over to a fixed wall at A and the roller at C since joint 04 05 14
B haS I‘Otated M 28233 5647.0 | —5647.0 0 15
14
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Moment Distribution for Beams

O It is also possible to apply it to all joints at the same time.

O Start by fixing all the joints and then balancing and
distributing the fixed end moments at both joints B and C
(line 3).

O Unlocking joint B and C simultaneously, the moments are
carried to the ends of the span as shown in line 4

O Again the joints are relocked, and the moments are balanced
and distributed, line 5.

O Unlocking the joints once again allows the moments to be
carried over, as shown 1n line 6.

O This method 1s more efficient even though the convergence is
slower. The rest 1s found from the FBD shown below

N Ve = 56471 Vg, = 2682.4 1b 240 Ib/ft Ve=2117.61b
i, (U,
Vy=56471b | el 5647.0 Ib- ft 201
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Joint A B C
Member AR BA BC CB
DF 0 0.4 0.6 1 1
FEM —8000 8000 | 2
Dist. 3200 4800 |-8000 | 3
CO 1600 —4000 2400 | 4
Dist. 1600 2400 |-2400 | 5
CO | 800 —1200 | 1200 | 6
Dist. 480 720 1200 | 7
CcO 240 —600 360 | 8
Dist. 240 360 -360 | 9
CcO 120 —180 180 | 10
Dist. 72 108 —180 | 11
CcO 36 —90 4 |12
Dist. 36 54 -54 | 13
Cco 18 —27 277 | 14
Dist. 10.8 162 | -27 | 15
CcO 54 —-135 811 16
Dist. 54 8.1 —81 | 17
CcO 2.7 —405" 405 18
Dist. 1.62 243 —4.05| 19
CcO 0.81 -2.02 122| 20
Dist. 0.80 12| -122| 21
Cco 040 —0.61 061 22
Dist. 0.24 037 —061| 23
M 2823 5647 | —5647 0 24




Sjec] Example 1

O Determine the internal moments at each support of the beam shown
in the figure below. EI 1s constant.

20 kN /m 250 kN
A BT IE LI e ¥ b
u u
~— 12 m =!= 12m4~—m—|—m
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Solution 1
The distribution factors at each joint must be computed first.* The .
stiffness factors for the members are Joint A B e D 1
4EI 4E] 4FE]
= E I — E o — ? Member AB BA BC CB CD DC 2
DF 0 0.5 0.5 0.4 0.6 0 3
Therefore,
4EI/12 FEM —240) 240 |-250 250 |4
_ _ _ _ _ Dist. 120 120 4 6 5
DF 5 = DFpe =0 DFg4 DFge 4EI,’12 - 4EI/12 0.5 o = 5 = 3 .
I 4EI/12 04 DR — 4E1/8 o Dist. -1 -1 —-24 -36 7
€7 4EI/12 + 4E1/8 ~ 7 AEI/12 + 4EI/8 ~ CO | =05 -12 =05 -18 |8
Dist. 6 6 0.2 03 9
The fixed-end moments are CO 3 0.1 3 02 110
(FEM)gc = — o - 1 —240kN*m  (FEM)¢p = o1 240kN*m CO —0.02 -0.6 -0.02 -09 |12
oL 250 oL 2508 Dist. 03 03 0.01 0.01 13
(FEM)¢p = 8T g 8 _ —250kN-m  (FEM)pe = ru % = 250 kN -m M 62.5 1252 | 1252 | 2815 |-2815| 2343 (14
M (KN-m) 242.1
1609 62.5kN 156 kN l l 1210?1/7 l l 11330]{1\[ 130.9 kN 1 119.1 kN
SkN-m . 107.0 kN { L am ¢ 4m!
62.5 /\ ('I’|A 12m BiT) 1252kN-m (TEB 12m CIT) 281.5kN-m (TCI__ DT)
\ s b | u | “ 15.6 kN 2343kN-m
\'/ 173 ' 28 % (m)
—125.2
—234.3
—281.5 17
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wer, Example 2

O Determine the internal moment at each support of the beam shown
in the figure. The moment of inertia of each span 1s indicated.

400 1b 60 Ib /tt
b o
A LE
IAB= . i _ -IBC 1 _{/IgD:6OO ill4§5,
LlOft =!= 20 ft =l= 15 ft ——

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 18



Solution 2

In this problem a moment does not get distributed in the overhanging
span AB, and so the distribution factor (DF)z, = 0. The stiffness of
span BC is based on 4E1/ L since the pin rocker is not at the far end of
the beam. The stiffness factors, distribution factors, and fixed-end
moments are computed as follows:

Kpe = AETSD) _ s0E Kep = AE©00) _ 60k
20 15
DFge=1—(DF)gy =1 —-0=1
DF 5 = 150E = 0.484

150E + 160E
DFcp = 160E = 0.516
150E + 160E
DF,,. — 160E
e + 160E
Due to the overhang,
(FEM)g, = 400 Ib(10 ft) = 4000 Ib - ft
(FEM)gc = —wl—f = —60(120)2 = —20001b-ft
FEMye = 255 = 20 _ 00110
12 12

These values are listed on the fourth line of the table, Fig. 12-8b.
The overhanging span requires the internal moment to the left of B to
be +4000 Ib-ft. Balancing at joint B requires an internal moment
of —4000 Ib - ft to the right of B. As shown on the fifth line of the table
—2000 Ib - ft is added to BC in order to satisfy this condition. The
distribution and carry-over operations proceed in the usual manner
as indicated.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

Joint B C D
Member BC CB CD DC

DF 1 0484 | 0.516 0
FEM —2000 2000

Dist. —2000 —968 |—1032

CO —484 —1000 =516
Dist. 484 484 516

CcO 242 242 258
Dist. —242 -117.1 | —124.9

CcO —58.6 -121 —62.4
Dist. 58.6 58.6 62.4

cO 293 29.3 31.2
Dist. -293., —-142 | —-151

CcO -71 —14.6 =7.6
Dist. 7.1 7.1 7.6

CcoO 35" 3.5 3.8
Dist. -35 -1.7 -1.8

CcO -0.8 -1.8 —-0.9
Dist. 0.8 0.9 0.9

CcO 0.4 0.4 0.4
Dist. —0.4 -0.2 —0.2

CcO —0.1 —-0.2 —0.1
Dist. 0.1 0.1 0.1

M —4000 | 5871 @ —587.1 | —293.6

CEE 3222: THEORY OF STRUCTURES
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Solution 2

400 Ib 60 1b/ft
l 400 1b 770.6 1b l 1 1 l l l l l ] 58.5 Ib 293.6 1b - ft
| Y Y | |
1) (1 ) (fe—|)
1017 %4000 1b- fi 20 ft 587.1 1b-ft it i
M (Ib- ft)

293.6
x (ft)
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Moment DiStributiOIl for Beams — Stiffness factor modification

O In the previous method, each beam was assumed constrained by fixed supports (locked joints).
Thus SF = 4EI/L and CO = +1/2. The SF can be modified for simplicity

O Member Pin Supported at Far End O Symmetric Beam and Loading
M,z
e L R g %}%} (L) v T

unlocked ~ 7 end W
joint real beam pin 1r L 1
(a) r 3 I 3 1
Va conjugate beam Vi
(b)
1/ M 2 | £ | £ [
=0 ’ —_ | — —_ = = () — , —_— —_ = v ’ 2 2
C+3IMy = 0; Vi) : (H)L(3 L) 0 C+IMe = 0; V(L) + E‘,(L)(z) 0 Ve L | )TVC
, g ML ML B '
Va=b=3g Ve =0="o temeeee 1"""""M
or EI
o or % L
L M = ?9 conjugate beam
3ET O By comparison, then, if the far
- I3 end was fixed supported, the O The center span’s
) stiffness factor K = 4E1/L K= E stiffness factor will be
Far End Pinned would have to be modified by L
3/4 to model the case of having one half that usually
or Roller Supported . : determined using K =
PP the far end pin supported. Symmetric Beam and Loading 42 Ie/rlrlmne usis

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES



Moment DiStribution for Beams — Stiffness factor modification

O Symmetric Beam with Antisymmetric Loading

real beam

1/ M L 5L 1/ M L L
+3Me =0, Ve +=|l=|[Z)N=)-=l=|[Z)=)=0
CHIMe =0; s (L) 2(Ef (2)(6) 2(EIX2)(6)

ML

Vo = i

=0 6EI
or

6E]
M=—8
L

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES

K = —
L

Symmetric Beam with

Antisymmetric Loading

O Here the stiffness factor 1s
one and a half times as large

as that determined using K
= 4EI/L.

22



», Example 3

O Determine the internal moments at the supports for the beam shown
in the figure below. EI 1s constant.

20 ft ! 15 ft——l
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Solution 3

By inspection, the beam and loading are symmetrical. Thus, we will  These data are listed in the table in Fig. 12-13b. Computing the
apply K = 2EI/L to compute the stiffness factor of the center span stiffness factors as shown above considerably reduces the analysis,
BC and therefore use only the left half of the beam for the analysis. since only joint B must be balanced and carry-overs to joints A and C
The analysis can be shortened even further by using K = 3EI/L for are not necessary. Obviously, joint C is subjected to the same internal
computing the stiffness factor of segment AB since the far end A is moment of 108.9 k - ft.

pinned. Furthermore, the distribution of moment at A can be skipped
by using the FEM for a triangular loading on a span with one end
fixed and the other pinned. Thus,

Joint A B

3EI
Kyp=— (using Eq. 12-4)
21; . Member| AB BA BC
Kpc =75 (using Eq. 12-5) DF 1 0.667 | 0.333
— 3EI/15

=1
3E1/15 FEM 60 |—1333
DE, = — ES e Dist. 48.9 24.4

3EI/15 + 2EI/20

2EI/20
DFpc = 3EI/15 + 2EI/20 0.333 M 0 108.9 | —108.9
wL? 4157
(FEM)z, = 5 - 15 60 k - ft
wL? 4(20)°
(FEM)ge = ——— = — = —1333k-ft

12 12
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Example 4

O Determine the internal moments at the supports for the beam shown
in the figure below. The moment of 1nertia of the two spans is
shown 1n the figure..

240 1b /ft
i RN RIN
s -
;ﬁ?‘ = Igc= 600in* - o
15— 20 ft l

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 25



Solution 4

Since the beam is roller supported at its far end C, the stiffness of span The foregoing data are entered into the table in Fig. 12-14b and the
BC will be computed on the basis of K = 3EI/L. We have moment distribution is carried out. By comparison with Fig. 12-6b,
this method considerably simplifies the distribution.

4EI  4E(300) Using the results, the beam’s end shears and moment diagrams are
Kap = = = 80E shown in Fig. 12—-14c.
L 15
3EI  3E(600)
KBC — — = 90E
L 20 Joint A B C
Thus,
Member AB BA BC CB
80E
DFe = T a0 ° DF 0 0.4706 | 0.5294 1
R0F FEM —12 000
DFg, = ——— = 0.4706 Dist. 5647.2 6352.8
SRR co | 28236~
DFjc = % = (0.5294 M 2823.6 56472 | —5647.2 0
80E + 90E
240 1b /ft
DE.. — 20 _ 5647 Ib 5647 1b 268210 (T lH/H [ Jausto
¢ 90E (lr -,T)SM?lb-ft (lml) 5647lb-ft(T,———|T
_ 15 ft 20 ft
Further simplification of the distribution method for this problem is 2824 lo-1t 13247 b
possible by realizing that a single fixed-end moment for the end
span BC can be used. Using the right-hand column of the table on the 9343

inside back cover for a uniformly loaded span having one side fixed, M (Io-ft)
the other pinned, we have 2824}\ y

' 262
12 —240(20) \/
(FEM)ge = —2= = 20 150001 |

8 8
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Moment Distribution for Frames - No Sidesway

Application of the moment-distribution method for frames having no
sidesway follows the same procedure as that given for beams. To minimize
the chance for errors, it is suggested that the analysis be arranged in a
tabular form, as in the previous examples. Also, the distribution of
moments can be shortened if the stiffness factor of a span can be modified
as indicated 1n the previous section.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 27



Example 5

O Determine the internal moments at the joints of the frame shown 1n
the figure. There 1s a pin at E and D and a fixed support at A. EI 1s
constant.

5 k/ft

lllllllllll —_—

20 k—

15 ft

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ, CEE 3222: THEORY OF STRUCTURES 28



Solution 5

By inspection, the pin at £ will prevent the frame from sidesway. The
stiffness factors of CD and CE can be computed using K = 3EI/L since

the far ends are pinned. Also, the 20-k load does not contribute a FEM Member
since it is applied at joint B. Thus,

KAB

DF,z
DFg,
DFg-

DF 5

DFcp

DFce =
DFp- =

(FEM)gc

(FEM)cp

AEI P AEI o 3EI
15 BC 18 A
0

AEI/15

= 0.545
4EI/15 + 4EI/18

1 — 0.545 = 0.455

4EI/18
= 0.330
4EI/18 + 3EI/15 + 3EI/12
3EI/15
= 0.298
4EI/18 + 3EI/15 + 3EI/12
1 — 0.330 — 0.298 = 0.372
1 DF - = 1
—wI?  —5(18)?
wh” _ 25048 _ 35k
12 12
wl?  5(18)?
= = 135 k- ft
12 12

The data are shown in the table in Fig. 12-15b. Here the distribution
of moments successively goes to joints B and C. The final moments
are shown on the last line.

Using these data, the moment diagram for the frame is constructed
in Fig. 12-15c¢.

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

Joint | A B C D E
AB | BA| BC| CB | CD | CE  DC | EC
DF 0 10.545 0.455|0.330 | 0.298 | 0.372| 1 1
CE:E FEM -135| 135
12 Dist. 73.6 | 61.4|—44.6 |—402 |—-50.2
CO | 368 —22.37 307
Dist. 12.2 10.1x—10.1 —9.1|—-11.5
CcO 6.1 -5.177 5.1
Dist. 2.8 2.3}(—1-7 -15| —-1.9
CO 1.4 —08T 12
Dist. 0.4 0'4,><_0'4 —04| —04
CO 0.2 —02°" 02
Dist. 0.1 0.1 —0.1 0.0 —0.1
SM | 445 | 89.1 [—89.1| 115 |—512 —64.1
/ml_kﬁ\
/ 51.2 k- ft /
89.1 k - ft 89.1k-fi 64.1k-ft
115 k- {t
44 5 k- ft

CEE 3222: THEORY OF STRUCTURES
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THE FOLLOWING IS FOR
STUDENT TO STUDY, NOT TO
TEACH OR EXAMINE ON
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P

artificial joint applied artificial joint removed
(no sidesway) (sidesway)

(a) (b) (©)

1 Here the applied loading P will create unequal moments at joints B and C such
that the frame will deflect an amount A to the right.

1 The frame in figure (b) 1s first considered held from sidesway by applying an

artificial joint support at C.
1 Moment distribution 1s applied and then by statics the restraining force R is

determined. The equal, but opposite, restraining force 1s then applied to the frame
31
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Moment Distribution for Frames - Sidesway

One method for doing this last step requires first assuming a numerical
value for one of the internal moments, say Mjy,. Using moment distribution
and statics, the deflection A’ and external force R’ corresponding to the
assumed value of Mjp, can then be determined. Since linear elastic
deformations occur, the force R’ develops moments 1n the frame that are
proportional to those developed by R. For example, if My, and R’ are
known, the moment at B developed by R will be My, = My,(R/R’).

1 Addition of the joint moments for both cases, figure b and ¢, will yield the actual

moments 1n the frame, figure a.
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(a) (b) (c) (d)

1 Consider, for example, the two-story frame shown 1in figure a. This structure can
have two independent joint displacements, since the sidesway A; of the first
story 1s independent of any displacement A, of the second story.

U Simultaneous solution of these equations yields the values of C’

R, = —C ’R'Q + C "Rg and C”’. These correction factors are then multiplied by the internal
joint moments found from the moment distribution in Fig. c and d.
R, = +C'R} — C"RY The resultant moments are then found by adding these corrected

moments to those obtained for the frame in Fig. b.
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wer, Example 6
O Determine the moments at
each joint of the frame 16 kN
shown 1n the figure. EI 1s
constant 1m Al oo
b s i [ ¢
5m 5m
|
A D
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Solution 6

16 kN
Im 4m
B = C
Sm Sm
A D
(a)
]
16 kN
C{l
B € _
A | D
(b)
+
C
B — R
A D

(c)

—_—
F et
60 kN-m
S5m
. B0kN-m
-~
-
TA,= 28 kN
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First we consider the frame held from sidesway as shown in Fig. 12-185b.
We have

2
(FEM) = —IHL’T] = —1024kN-m
(3)
16(1)*(4)
(FEM)cg = —(5}2 = 256kN-'m

The stiffness factor of each span is computed on the basis of 4EI/L or
by using the relative-stiffness factor /L. The DFs and the moment
distribution are shown in the table, Fig. 12-184. Using these results,
the equations of equilibrium are applied to the free-body diagrams of
the columns in order to determine A, and D, Fig. 12-18¢. From the
free-body diagram of the entire frame (not shown) the joint restraint
R in Fig. 12-18b has a magnitude of

3F =0; R=173kN — 081 kN = 092 kN

An equal but opposite value of R = 0.92 kN must now be applied to
the frame at C and the internal moments computed, Fig. 12-18¢. To
solve the problem of computing these moments, we will assume a
force R’ is applied at C, causing the frame to deflect A" as shown in
Fig. 12-18f. Here the joints at B and C are temporarily restrained from
rotating, and as a result the fixed-end moments at the ends of the
columns are determined from the formula for deflection found on the
inside back cover, that is,
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Solution 6

Toint A B C D Since both B and C happen to be displaced the same amount A',
l l and AB and DC have the same E. I, and L. the FEM in AB will be the
Member| AB BA BC CB D bc same as that in DC. As shown in Fig. 12-18f, we will arbitrarily assume
DF 0 0.5 0.5 0.5 0.5 0 ~ F_—E N this fixed-end moment to be
C 5.78kN-m - *m
F[‘}EEI:I 5.12 15(]?; —%gg =12 (FEM),y = (FEM)g, = (FEM)¢p = (FEM)pe = —100kN-m
CO 2.56 —{].64;( 2.56 —0.64 5m 5m A negative signis necessary since the moment must act counterclockwise
Dist. 032 | 032 i 128 —1.2 on the column for deflection A’ to the right. The value of R’ associated
CO 0.16 —0.64 0.16 —0.64 with this —100 kN - m moment can now be determined. The moment
Dist. 0.32 0.32 }(\_D-DS —0.0 288kN-m | 132kN-m distribution of the FEMs is shown in Fig. 12-18¢. From equilibrium,
C:G 0.16 —0.04 0.16 —0.04 H ﬂ the horizontal reactions at A and D are calculated, Fig. 12-18h. Thus,
Dist. 002 | 002 | —0.08 —0.08 1 Ay =1T3kN Tﬂx =081kN  for the entire frame we require
=M 288 | 578 | =598 | 292 | =272 —1.32 SF. = 0: R' =28 + 78 = 56.0 kKN
@ () Hence, R" = 56.0 kN creates the moments tabulated in Fig. 12-18g.
Toit 2 B C D Corresponding moments caused by R = 0.92 kN can be determined by
proportion. Therefore, the resultant moment in the frame, Fig. 12-18a, 1s
Member)| AB | BA SCRIE I U I equal to the sum of those calculated for the frame in Fig. 12-18b plus
/—100 kN -m — 0 05 s L 0 the proportionate amount of those for the frame in Fig. 12-18¢. We have
FEM |-100 100 =100 =100
Dist. 50 | 50 ., 50 | 50 My = 288 + 25(—80) = 1.57kN+m Ans.
coO 25 25 25 25
Dist. =125 |-125 . —12.5 [-125 Mg, =578 + %(_.5[}) = 4T79kNm Ans.
CO | —6.25 —6.25 “[-6.25 —6.25 )
Dist. 3125 3125, 3.125| 3.12 Mye = —5.78 + 22(60) = —~4.79kN-m Ans.
CO 1.56 1.56 1.56 1.56 :
® E:‘g' — z'?l S AL N Mg = 272 + ¥%(60) = 3.71 kN*m Ans.
ist. 195 0195 0.195]  0.195 052
A SM | —80.00| —60.00] 60.00 | 60.00 |—60.00 —80.00 Mep = =272 + 55(—60) = =371 kN-m Ans.
E (@) Mpc = —132 + £5—80) = —263kN-m  Ans
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Example 7

O Determine the moments at each
joint of the frame shown in the Bl
figure a. The moment of inertia
of each member is indicated 1n
the figure 10 ft
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Solution 7

2 k/ft 2 k/ft
annny
. Igc = 1500 in*
0 |1 E —
,;% % 15 ft
4 Al =
| 12 ft
Dj —
@ (b)

The frame is first held from sidesway as shown in Fig. 12-19b. The
internal moments are computed at the joints as indicated in Fig. 12-194.
Here the stiffness factor of CD was computed using 3EI/L since there
is a pin at D. Calculation of the horizontal reactions at A and D is shown
in Fig. 12-19¢. Thus, for the entire frame,

SF, = 0 R=1289 — 100 =189k

Mr. MWABA MSc, B.Eng., R.Eng., PEIZ,

Joint A B C D
Member, AB BA BC CB CD DcC
DF 0 0.615 | 0.385 0.5 0.5 1

FEM —24 24

Dist. 14.76 924 |-12 —12

CO 738 —6 462

Dist. 3.69 231 x—2.31 —2.31

CO 1.84 —116| 1l.16

Dist. 0.713| 0447/—-0.58 | —0.58
CO 0.357 —0.29° 0.224

Dist. 0.18 0.11 |-0.11 | —0.11
=M 9.58 | 19.34 | —19.34 15.00 [—15.00, 0O

(d)
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19.34 k- fi

llS.ﬂﬂI:-ﬂ

N

_—

10 fi

v 958 k-fi
—_—
TA,= 289k

(e)

T
-

15ft

fi—D, =100k
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Solution 7

Joint | A B C D
Membed AB | BA | BC | CB | CD | DC
DF | 0 |0615|038| 05| 05 | 1
FEM |—100 | —100 2778
Dist. 61.5| 38.5 [13.80 | 13.89
CO |30.75 6.94°119.25
Dist. —4.27|-2.67£9.625/-9.625
CO |-2.14 —481F134
Dist. 296| 1.85] 067 | 0.67
CO | 1.48 0337 092
Dist. —0.20|-0.13 046 |—0.46

(0 SM |-69.91-40.01]40.01 | 2331 |-2331 0

The opposite force is now applied to the frame as shown in Fig. 12-19¢.
As in the previous example, we will consider a force R" acting as shown

in Fig. 12-19f. As a result, joints B and C are displaced by the same
amount A . The fixed-end moments for BA are computed from

_ 6E(2000)A’
(10)?

6EIA
LE

(FEM),p = (FEM)g, =

However, from the table on the inside back cover, for CD we have

3EIN _ 3E(2500)4"

FEM = —
( ]:’_‘D LZ “5)2
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(2)

Assuming the FEM for AB is —100k-ft as shown in Fig. 12-19f,

the corresponding FEM at C, causing the same A’, is found by
comparison, i.e.,

A = _(=100)(10* _ (FEM)cp(15)°
T GE2000)  3E(2500)
(FEM)ep = —27.78 k- fi

Moment distribution for these FEMs is tabulated in Fig. 12-19g.
Computation of the horizontal reactions at A and D is shown in
Fig. 12-19h. Thus, for the entire frame,

3F, = 0; R"=11.0 + 1.55 = 12,55k

The resultant moments in the frame are therefore
Mup = 958 + (1555 )(—69.91) = —0.948 k- fi Ans.
Mg, = 1934 + (£2)(—40.01) = 13.3k-ft Ans.
Mge = —1934 + (£2)40.01) = —13.3k-ft Ans.
Mcp = 15.00 + (7555)(23.31) = 185k fi Ans.
Mep = —15.00 + (555 )(—23.31) = —18.5k-ft Ans.
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-—

40.01 k-f

)

10 ft

—

69.91 k-ft
11.0k

(

Ay

o

F2331 k-ft

15ft

A pL=155k

(h)

3Y
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