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Introduction

 For a coplanar structure there are at most three equilibrium 

equations for each part, so that if  there is a total of  n parts and r 

force and moment reaction components, we have

 This indeterminacy may arise as a result of:-

• Added supports 

• Added members

• General form of  the structure (eg RC)
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Moment Distribution Method

 The method of analyzing beams and frames using moment

distribution was developed by Hardy Cross, in 1930.

 It is a method of successive approximations that may be carried out

to any desired degree of accuracy.

 The method begins by assuming each joint of a structure is fixed.

Then, by unlocking and locking each joint in succession, the

internal moments at the joints are “distributed” and balanced until

the joints have rotated to their final or nearly final positions.
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Moment Distribution Method

 Sign Convention.
Clockwise moments are positive, whereas 

counterclockwise moments are negative
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 Fixed-End Moments (FEMs).
The moments at the “walls” or fixed joints of  a loaded 

member are called fixed-end moments. Check the next 

two slides for details

Member Stiffness Factor
For the beam below, we saw that  Joint Stiffness Factor.

If  several members are fixed connected to a joint and 

each of  their far ends is fixed, then by the principle of  

superposition, the total stiffness factor at the joint is the 

sum of  the member stiffness factors at the joint, 
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Fixed end moments
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Fixed end moments
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Moment Distribution Method- Distribution Factor

 If  a moment M is applied to a fixed connected joint, 

the connecting members will each supply a portion 

of  the resisting moment necessary to satisfy moment 

equilibrium at the joint. 

 That fraction of  the total resisting moment supplied 

by the member is called the distribution factor (DF).

 For example, the DFs and moments for members 

AB, AC, and AD at joint A in the figure are:-
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Moment Distribution Method

 Member Relative-Stiffness Factor.
If  the members of  a frame or beam are made from the same 

material so its modulus of  elasticity E will be the same 

for all the members. Then the common factor 4E will 

cancel out and henve we remain with the relative 

stiffness factor 𝐾𝑅
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Carry-Over Factor
Consider the beam below

 The carry-over factor represents the fraction of  M that is 

“carried over” from the pin to the wall.

 Hence, in the case of  a beam with the far end fixed, the 

carry-over factor is +
1

2
. The plus sign indicates both 

moments act in the same direction.
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Moment Distribution for Beams

Moment distribution is based on the principle of  successively 

locking and unlocking the joints of  a structure in order to allow the 

moments at the joints to be distributed and balanced. 
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 Consider this beam with a constant E. First we determine the stiffness factors K. Since in 

theory it would take an “infinite” size moment to rotate the wall one radian, the wall stiffness 

factor is infinite ∞. So we determine only on either side of  Joint B
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Moment Distribution for Beams- Joint B
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 Next we determine the Distribution factors DFs (unitless)

 For the fixed wall joints A and C, the DFs 

are 0 as proved below

 Next we determine the Fixed end Moments
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Moment Distribution for Beams - Joint B

 First assume that B is fixed, find the 

fixed end moment (FEM) at B = -

8000.
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 To make joint B in Equilibrium, apply 

an equal but opposite moment to B. But 

Distribute it according to the 

Distribution factors (DFs)

 Finally, due to the released rotation that 

takes place at B, these moments must be 

“carried over (CO)” since moments are 

developed at the far ends of  the span. 
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Moment Distribution for Beams - Joint B
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 With the end moments known, the 

end shears have been computed 

from the equations of  equilibrium 

applied to each of  these spans.
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Moment Distribution for Beams- Joint C
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 Consider now the same beam, except the 

support at C is a rocker as in the figure. In 

this case only one member is at joint C, so 

the distribution factor for member CB at joint 

C is

 The other DFs and FEMs are as computed before. (line 1 and 

2).

 We have locked both joint B and C. Lets unlock joint C. It 

already has a +8000 moment, to bring it to equilibrium, we 

apply a -8000 moment and distribute it. Line 3 shows both the 

distributed (-8000) and carried over (-4000) moments.

 If  we lock C and unlock B, we have total moment of  -12000 at 

B, Thus we apply a correction moment of  12000 and distribute 

it as shown in Line 4. Then not that half  of  the moment is 

carried over to a fixed wall at A and the roller at C since joint 

B has rotated
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Moment Distribution for Beams

 It is also possible to apply it to all joints at the same time.

 Start by fixing all the joints and then balancing and

distributing the fixed end moments at both joints B and C

(line 3).

 Unlocking joint B and C simultaneously, the moments are

carried to the ends of the span as shown in line 4

 Again the joints are relocked, and the moments are balanced

and distributed, line 5.

 Unlocking the joints once again allows the moments to be

carried over, as shown in line 6.

 This method is more efficient even though the convergence is

slower. The rest is found from the FBD shown below
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Example 1

Determine the internal moments at each support of  the beam shown

in the figure below. EI is constant. 
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Solution 1
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Example 2

Determine the internal moment at each support of  the beam shown 

in the figure. The moment of  inertia of  each span is indicated.
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Solution 2
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Solution 2
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Moment Distribution for Beams – Stiffness factor modification

 In the previous method, each beam was assumed constrained by fixed supports (locked joints). 

Thus 𝑆𝐹 = 4𝐸𝐼/𝐿 and 𝐶𝑂 = +1/2. The SF can be modified for simplicity

21

 Member Pin Supported at Far End

 By comparison, then, if  the far 

end was fixed supported, the 

stiffness factor 𝐾 = 4𝐸𝐼/𝐿
would have to be modified by 

3/4 to model the case of  having 

the far end pin supported. 

 Symmetric Beam and Loading

 The center span’s 

stiffness factor will be 

one half  that usually 

determined using 𝐾 =
4𝐸𝐼/𝐿.
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Moment Distribution for Beams – Stiffness factor modification
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 Symmetric Beam with Antisymmetric Loading

 Here the stiffness factor is 

one and a half  times as large 

as that determined using K 

= 4EI/L.
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Example 3

Determine the internal moments at the supports for the beam shown 

in the figure below. EI is constant.
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Solution 3
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Example 4

Determine the internal moments at the supports for the beam shown 

in the figure below. The moment of  inertia of  the two spans is 

shown in the figure..
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Solution 4
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Moment Distribution for Frames – No Sidesway
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Example 5
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Determine the internal moments at the joints of  the frame shown in 

the figure. There is a pin at E and D and a fixed support at A. 𝐸𝐼 is 

constant.
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Solution 5
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THE FOLLOWING IS FOR 

STUDENT TO STUDY, NOT TO 

TEACH OR EXAMINE ON
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Moment Distribution for Frames – Sidesway

Here the applied loading P will create unequal moments at joints B and C such

that the frame will deflect an amount ∆ to the right.

 The frame in figure (b) is first considered held from sidesway by applying an

artificial joint support at C.

Moment distribution is applied and then by statics the restraining force R is

determined. The equal, but opposite, restraining force is then applied to the frame
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Moment Distribution for Frames – Sidesway
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 Addition of the joint moments for both cases, figure b and c, will yield the actual

moments in the frame, figure a.
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Moment Distribution for Frames – Sidesway

 Consider, for example, the two-story frame shown in figure a. This structure can

have two independent joint displacements, since the sidesway ∆1 of the first

story is independent of any displacement ∆2 of the second story.

 Simultaneous solution of these equations yields the values of C’

and C’’. These correction factors are then multiplied by the internal

joint moments found from the moment distribution in Fig. c and d.

The resultant moments are then found by adding these corrected

moments to those obtained for the frame in Fig. b.
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Example 6 

Determine the moments at 

each joint of  the frame 

shown in the figure. EI is 

constant
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Solution 6 
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Solution 6 
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Example 7 

Determine the moments at each 

joint of  the frame shown in the 

figure a. The moment of  inertia 

of  each member is indicated in 

the figure
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Solution 7 
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Solution 7 
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