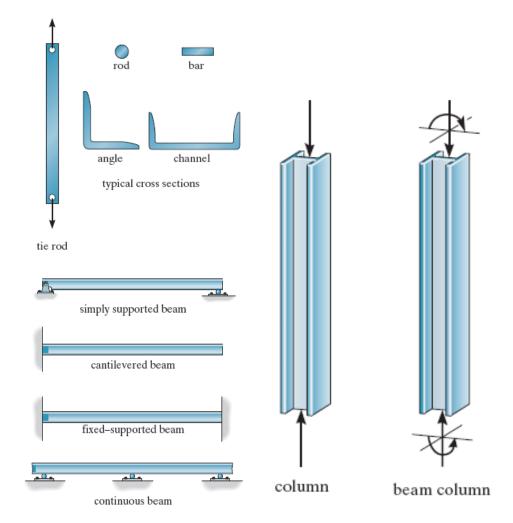
CEE 3222 Theory of Structures

Dr. Lenganji Simwanda

Chapter 1:

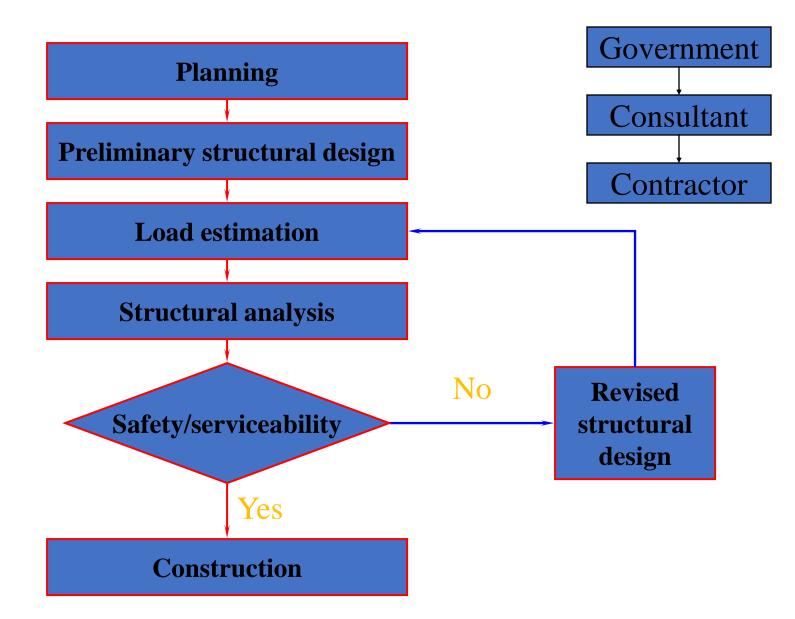
Types of Structures and Loads


Introduction

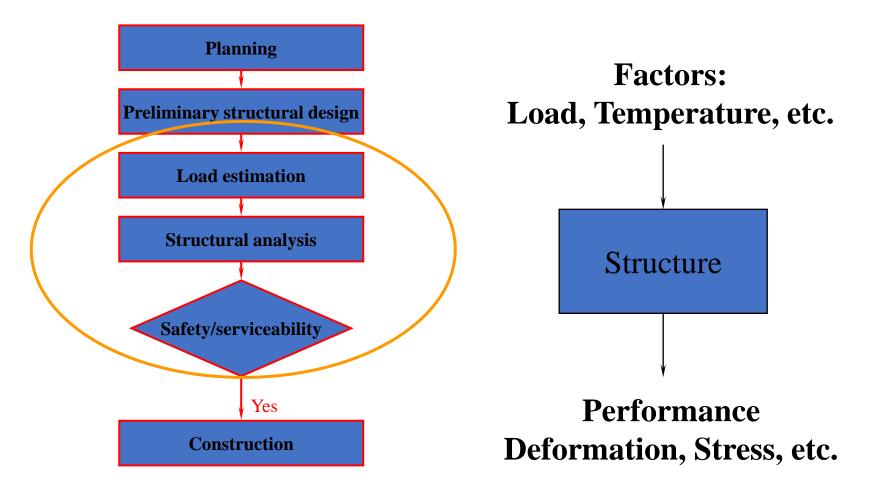
- Structures refer to a system of connected parts used to support a load
 - <u>Tallest buildings</u>
 - Long-span bridges

Structures

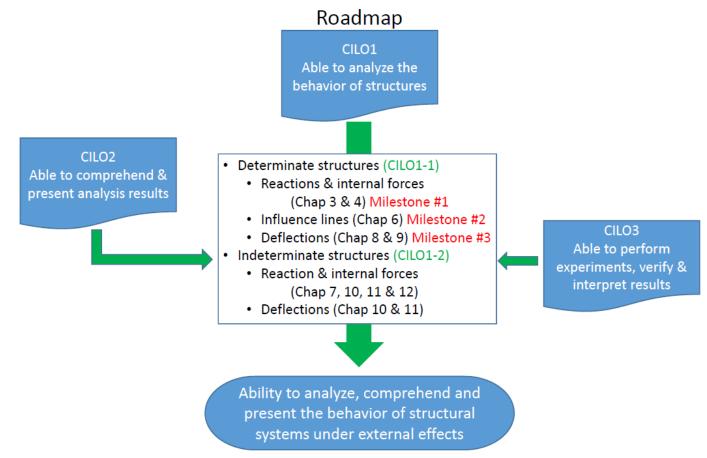
- Classification of structures
 - Beam structures
 - Arch structures
 - Truss structures
 - Domes and shells
 - Columns and frames
- Structural elements
 - Tie rods
 - Beams
 - Columns



<u>Issues</u>


- How are they designed?
- How are they built?
- How safe are they under earthquake, typhoon, or terrorist attack?

A typical structural engineering project

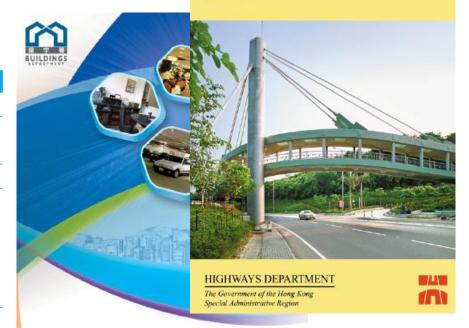


Structural Analysis

Objective of this Course

• To analyze, comprehend and present the behavior of structural systems under external effects

<u>Loads</u>


• Design loading for a structure is often specified in codes

- General building codes
- Design codes

STRUCTURES DESIGN MANUAL

for Highways and Railways

Third Edition

Code of Practice for Dead and Imposed Loads 2011

TABLE 1-1 • Codes

General Building Codes

Minimum Design Loads for Buildings and Other Structures, SEI/ASCE 7-05, American Society of Civil Engineers International Building Code

Design Codes

Building Code Requirements for Reinforced Concrete, Am. Conc. Inst. (ACI) Manual of Steel Construction, American Institute of Steel Construction (AISC) Standard Specifications for Highway Bridges, American Association of State Highway and Transportation Officials (AASHTO) National Design Specification for Wood Construction, American Forest and Paper Association (AFPA)

Manual for Railway Engineering, American Railway Engineering Association (AREA)

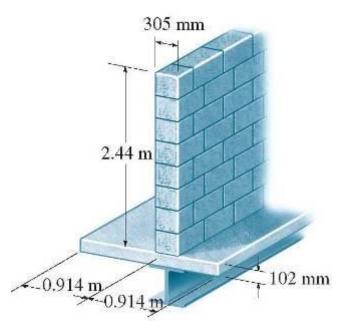
- Types of load
 - Dead loads
 - Weights of various structural members
 - Weights of any objects that are attached to the structure

TABLE 1–2 • Minimum Dens Loads from Materials*	ities fo	r Design
	lb/ft^3	kN/m^3
Aluminum	170	26.7
Concrete, plain cinder	108	17.0
Concrete, plain stone	144	22.6
Concrete, reinforced cinder	111	17.4
Concrete, reinforced stone	150	23.6
Clay, dry	63	9.9
Clay, damp	110	17.3
Sand and gravel, dry, loose	100	15.7
Sand and gravel, wet	120	18.9
Masonry, lightweight solid concrete	105	16.5
Masonry, normal weight	135	21.2
Plywood	36	5.7
Steel, cold-drawn	492	77.3
Wood, Douglas Fir	34	5.3
Wood, Southern Pine	37	5.8
Wood, spruce	29	4.5

*Reproduced with permission from American Society of Civil Engineers *Minimum Design Loads for Buildings and Other Structures*, SEI/ASCE 7-05. Copies of this standard may be purchased from ASCE at 345 East 47th Street, New York, N.Y. 10017-2398.

TABLE 1-3 • Minimum Design Dead Loads*				
Walls	psf	kN/m^2		
4-in. (102 mm) clay brick	39	1.87		
8-in. (203 mm) clay brick	79	3.78		
12-in. (305 mm) clay brick	115	5.51		
Frame Partitions and Walls				
Exterior stud walls with brick veneer	48	2.30		
Windows, glass, frame and sash	8	0.38		
Wood studs 2×4 in., $(51 \times 102 \text{ mm})$ unplastered	4	0.19		
Wood studs 2×4 in., $(51 \times 102 \text{ mm})$ plastered one side	12	0.57		
Wood studs 2 \times 4 in., (51 \times 102 mm) plastered two sides	20	0.96		
Floor Fill				
Cinder concrete, per inch (mm)	9	0.017		
Lightweight concrete, plain, per inch (mm)	8	0.015		
Stone concrete, per inch (mm)	12	0.023		
Ceilings				
Acoustical fiberboard	1	0.05		
Plaster on tile or concrete	5	0.24		
Suspended metal lath and gypsum plaster	10	0.48		
Asphalt shingles	2	0.10		
Fiberboard, $\frac{1}{2}$ -in. (13 mm)	0.75	0.04		

*Reproduced with permission from American Society of Civil Engineers *Minimum Design Loads for Buildings and Other Structures*, SEI/ASCE 7-05. Copies of this standard may be purchased from ASCE at 345 East 47th Street, New York, N.Y. 10017-2398.


Appendix A

Density of Materials

Materials		Density (kN/m³)
Concrete (normal weight	Plain	23.6
aggregate, with or without PFA)	Reinforced	24.5
Γ	Prestressed	24.5
Brick and block work	Brick work	21.7
Γ	Concrete blocks	20.6
Metals	Aluminium	27.2
F	Brass	83.3
	Bronze	87.7
Γ	Copper	87.7
Γ	Iron (cast)	70.7
Г	Iron (wrought)	75.4
Γ	Lead	111.0
F	Steel	77.0
F	Zinc	70.0
Mortar	Cement mortar	23
F	Gypsum mortar	18
	Lime-cement mortar	20
Γ	Lime mortar	18
Natural stone	Granite	29
F	Marble	27
	Basalt	30
	Sandstone	25
Γ	Slate	28
Wood	Timber	Refer to suppliers specifications
	Hardboard	11
F	Chipboard	8
	Plywood	6
	Blockboard	5
Γ	Wood-wool	6
Other materials	Glass	26
F	Soil	20
	Acrylic sheet	12
F	Asphaltic concrete	25
F	Mastic asphalt	18
F	Hot rolled asphalt	23

Example 1.1

The floor beam is used to support the 1.83m width of lightweight plain concrete slab having a thickness of 102mm. The slab serves as a portion of the ceiling for the floor below & its bottom coated with plaster. A 2.44m high, 305mm thick lightweight solid concrete block wall is directly over the top flange of the beam. Determine the loading on the beam measured per m length of the beam.

- Live loads (Imposed loads)
 - Varies in magnitude & location
 - Building loads
 - Depends on the purpose for which the building is designed
 - These loadings are generally tabulated in local, state or national code

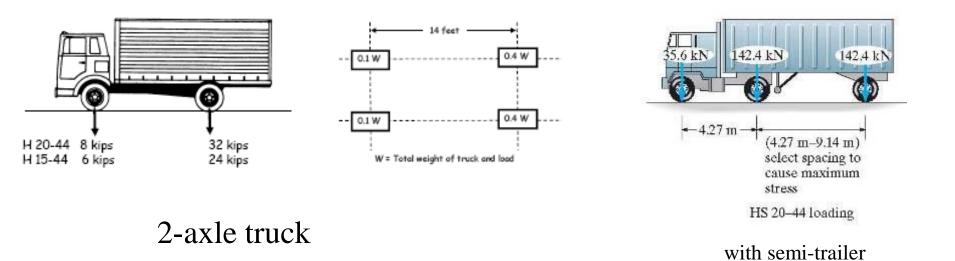
TABLE 1-4 • Minimu	m Liv	e Loads*			
	Liv	ve Load		Live	Load
Occupancy or Use	psf	kN/m ²	Occupancy or Use	psf	kN/m ²
Assembly areas and theaters			Residential		
Fixed seats	60	2.87	Dwellings (one- and two-family)	40	1.92
Movable seats	100	4.79	Hotels and multifamily houses		
Dance halls and ballrooms	100	4.79	Private rooms and corridors	40	1.92
Garages (passenger cars only)	50	2.40	Public rooms and corridors	100	4.79
Office buildings			Schools		
Lobbies	100	4.79	Classrooms	40	1.92
Offices	50	2.40	Corridors above first floor	80	3.83
Storage warehouse					
Light	125	6.00			
Heavy	250	11.97			

*Reproduced with permission from Minimum Design Loads for Buildings and Other Structures, ASCE 7-05.

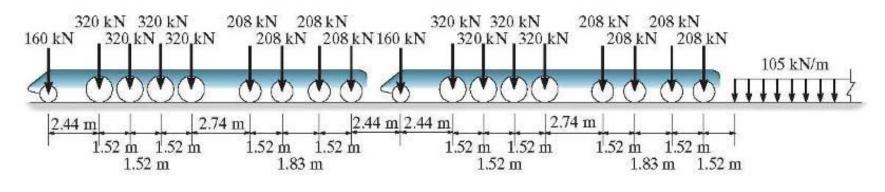
Code of Practice for Dead and Imposed Loads 2011

Table 3.1

- -


.

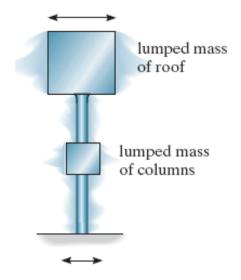
Classification of Floor Uses		
Class	Use	
1	Floors for domestic use and residential activities	
2	Floors for offices and other non-industrial work places	
3	Floors where people may congregate	
4	Floors for shopping purposes	
5	Floors for storage, equipment, plant and industrial use	
6	Areas for vehicular traffic	
7	Roofs	
8	Affiliated building elements	


Table 3.2 Minimum Imposed Loads

	Class	Use	Examples of Specific Use	q_k (kPa)	$Q_k(kN)$
	1	Floors for	Domestic uses	2.0	2.0
		domestic use and residential activities	Dormitories	2.0	2.0
			Private sitting rooms, bedrooms and toilet rooms in hotels, motels and guesthouses	2.0	2.0
			Wards, bedrooms and toilet rooms in hospitals, nursing homes and residential care homes for elderly persons	2.0	2.0
			Bathrooms (load from Jacuzzi in bathrooms shall be assessed separately and on individual basis) ¹	2.0	2.0
			Pantries ¹	2.0	2.0
			Kitchens ¹	2.0	2.0
	2	Floors for offices and	Medical consulting or treatment rooms	2.5	3.0
		other non- industrial work places	Hospital operating theatres and X-ray rooms	2.5	3.0
			Laboratories	3.0	4.5
			Light workrooms with neither central power-driven machines nor storage	3.0	4.5
			Offices for general use	3.0	4.5
			Rooms for lightweight electrical and electronic installations	3.0	4.5
			Rooms for meters and not for storage ¹	3.0	4.5
			Pantries ¹	3.0	4.5
			Banking halls	4.0	4.5
			Kitchens and laundries not in domestic buildings	4.0	4.5
			Projection rooms ¹	5.0	4.5

- Highway Bridge loads
 - Primary live loads are those due to traffic
 - Specifications for truck loadings are reported in AASHTO
 - For 2-axle truck, these loads are designated with H followed by the weight of truck in tons and another no. gives the year of the specifications that the load was reported

• Railway Bridge loads



E-72 loading

- Wind loads
 - Kinetic energy wind \rightarrow potential energy of pressure
 - Depends on density & flow of air, angle of incidence, shape/stiffness of structure & roughness of surface
 - Can be treated as static or dynamic

- Earthquake loads
 - Earthquake produce loadings through its interaction with the ground & its response characteristics
 - Their magnitude depends on amount & type of ground acceleration, mass & stiffness of structure
 - During earthquake, the ground vibrates both horizontally & vertically

- Hydrostatic & Soil Pressure
 - The pressure developed by these loadings when the structures are used to retain water or soil or granular materials
 - E.g. tanks, dams, ships, bulkheads & retaining walls
- Other natural loads
 - Effect of blast
 - Temperature changes
 - Differential settlement of foundation

Structural Design

- Material uncertainties occur due to
 - variability in material properties
 - residual stress in materials
 - intended measurements being different from fabricated sizes
 - material corrosion or decay
- Many types of loads can occur simultaneously on a structure

Structural Design

- In working-stress design, the computed elastic stress in the material must not exceed the allowable stress along with the following typical load combinations as specified by the ASCE 7-02 Standard
 - Dead load
 - 0.6 (dead load) + wind load
 - 0.6 (dead load) + 0.7(earthquake load)

Structural Design

- Ultimate strength design is based on designing the ultimate strength of critical sections
- This method uses load factors to the loads or combination of loads
 - 1.4 (Dead load)
 - 1.2 (dead load) + 1.6 (live load) + 0.5 (snow load)
 - 1.2 (dead load) + 1.5(earthquake load) + 0.5 (live load)