UNIVERSITY OF ZAMBIA

GGY3051: ENGINEERING GEOLOGY

INDUSTRIAL / CONSTRUCTION MATERIALS & CONCRETE

1. Non-Metallic (Industrial / Building) Minerals

Cengage Learning

Introduction

Virtually everything we use or build or create

in modern life involves rock, mineral and

fuel resources taken from the Earth

Introduction....contd. comprised of only **EIGHT** of these: Oxygen Silicon Aluminum Iron Calcium Sodium Magnesium Potassium Titanium

Earth has 92 natural elements. About 99.7% of it's crust is

- ()Si AI Fe
- Ca
- Na
- Mg
- K
- Ti

46.3% 28.2% 8.2% 5.6% 4.1% 2.4% 2.3% 2.1% 0.5%

Introduction....contd. > The EIGHT common elements combine with 1000's of rare elements to form +/- 3,000 different minerals > Key here is that: Each mineral is potentially a resource, if people find a use for it. Minerals are valued primarily for their <u>mechanical</u> or chemical properties > As technologies evolve, so too do the related values of mineral resources.

Introduction....contd.

> Minerals are either *metallic* or *nonmetallic*

Weight-wise, 90% of minerals that humans use are

nonmetallic!!

value...

> Metallic minerals have other, economic-based

Introduction....contd.

\geq 90% of nonmetallic mineral extraction is used for:

Building materials

Building stones / large stones

✓ Coarse gravel

✓ Fine sand

Non-Metallic (Industrial/Building) Materials

- occurring substances:
- - metals, fuels, & gemstones.

These are rocks, minerals, or other naturally

> of economic value, but which generally excludes

Classification of Industrial Rocks Two of the methods of classification include: So Industrial ROCKS fall into; Pumice and pumicite....

Granite

- **1. Genetic classification** how they have formed.

 - A. Igneous Rocks e.g. Granite, Basalt & Diabase,

Classification of Industrial Rocks....contd.

B. Metamorphic Rocks – **e.g.** Gneiss, Slate, Quartzite, Marble...

Gneiss

Quartzite

Classification of Industrial Rocks....contd.

Phosphate rock....

C. Sedimentary Rocks – e.g. Sandstone, Gypsum, Sand & gravel; Salt, Clay, Limestone & dolomite,

Classification of Industrial Minerals

Genetic classification – how they formed. Industrial MINERALS fall into; A. Igneous Minerals – Mica, Nepheline, Feldspar, Lithium minerals, Beryl....

Mica

Classification of Industrial Minerals....contd.

B. Vein & Replacement Minerals – Quartz crystal, Fluorspar, Barite, Magnesite...

Quartz Crystal

Classification of Industrial Minerals....contd.

C. Metamorphic Minerals – Vermiculite, Talc, Graphite, Asbestos ...

Classification of Industrial Minerals....contd.

D. Sedimentary Minerals and sulfur – Diamond, Diatomite, Borate, Potash minerals, Sodium minerals, Nitrates, Sulfur

Diamond

Calcium Nitrate

Sulphur

1. Limestone/Calcite (calcium carbonate – CaCO3) and sand.

Examples of Industrial Minerals & their Uses

- > is a sedimentary rock composed largely of Calcite
- > often contains variable amounts of silica in form of chert or flint, as well as varying amounts of clay, silt

Construction Materials

In this section, we shall discuss:

✓ Aggregate

Asphalt \checkmark

Aggregate

> Collective term for sand, gravel & crushed stone mineral materials in their natural/processed state. Roads & highways constitute largest single use of aggregate at 40 percent of total usage.

- Aggregate can either be natural or manufactured
- Natural aggregates generally extracted from larger
 - rock formations from quarrying (open excavations)
- Manufactured rock typically consists of industrial
 - by-products, e.g. slag (by-product of metallurgical
 - processing of steel, tin & copper)

Aggregate Physical Properties

- Toughness & resistance to abrasion Aggregates must be hard & tough enough to resist crushing, degradation & disintegration from activities, e.g. manufacturing, stockpiling, placing & compaction. Durability and soundness. Aggregates must be resistant to breakdown & disintegration from weathering (wetting/drying), or else, they might break apart prematurely & cause pavement distress.

Aggregate Physical Properties....contd. surface texture are best.

Particle shape & surface texture – are important for

proper compaction, load resistance & workability.

Generally, angular-shaped particles with a rough

- materials that are dangerous to health, or which might cause failures in buildings, or are damaging to environment.
- Cleanliness & deleterious materials Aggregates
 - must be clean.... vegetation matter, soft particles, clay
 - <u>lumps</u>, & <u>excess dust might prevent binder-aggregate</u>
 - bonding & affect performance by quick degradation.

Asphalt

✓ Is also known as **bitumen** ✓ Is dark brown to black, in colour Is hydrocarbon product of petroleum distillation residue. ✓ At least 80% carbon, which explains its deep black color, & has sulphur. Primarily used as sealant for rooftops & a durable surface coat for roads, airport runways, playgrounds & parking lots.

http://www.ekocozum.com/blog/wpcontent/uploads/2008/05/asfalt.jpg

Types of Asphalt

Two major types of Asphalt are used in construction:

Rolled asphalt

Mastic asphalt.

1) Rolled Asphalt

binder.

✓ Used to make roads & other surfaces, e.g., parking lots, by being applied in layers and compacted.

✓ Different types of rolled asphalt are distinguished according to process used to bind aggregate with asphalt.

✓ Made of aggregate, or solid materials, e.g., sand, gravel, or recycled concrete, with an asphalt

Types of Rolled Asphalt a) Hot mix asphalt concrete (HMAC): ➢ Is produced at 160° C. > this high temperature serves to decrease moisture & viscosity during manufacturing process, resulting in a very durable material. > is most commonly used for hightraffic areas, e.g., busy highways and airports.

Types of Rolled Asphalt....contd. b) Cold mix asphalt concrete, Is emulsified in soapy water before mixing it with aggregate, to eliminate need for high temperatures altogether. > The asphalt produced is **not** nearly as durable as HMAC Is typically used for low traffic areas, or to patch damaged HMAC.

2) Mastic Asphalt

\checkmark Is also called sheet asphalt.

✓ Has lower bitumen content than rolled asphalt.

✓ Is used for some roads & footpaths.

Also used in roofing and flooring.

2) Mastic Asphalt....contd.

- alternative to rolled asphalt.
- Benefits include
 - Anti-skid property
 - Absence of air pockets
 - But if improperly laid, it might cause slippery road conditions.

Stone Mastic Asphalt (SMA), is another variety. Becoming increasingly popular as an

Is masonry unit and does not infer any particular material

and Portland cement, while

- > yet others, are made from <u>sand & lime</u>, sometimes with addition of crushed flint.

- Most bricks are made from some form of <u>clay</u>, while
- \triangleright Others are made of concrete, crushed rock aggregate,

Types of Brick

Common unit - suitable for

general construction, with

no special claim to give an

attractive appereance.

Types of Brick....contd.

Facing unit - speacilly

made, or selected, to

give an <u>attractive</u>

<u>appearance to blg.</u>

Types of Brick....contd.

Engineering bricks – are fired clay bricks, having a dense and strong semi-vitreous body, conforming to defined limits for water absorbtion and compressive

strength

Soft mud bricks- are the most economical, burned

at high temperature to achieve strength.

Uses of Brick

In metallurgical and glass industry for lining furnaces. ✓ Used as a <u>refractory</u> (silica, magnesia bricks) \checkmark Used to make walls, fences, barbeques, etc.

General Properties of Brick

- ✓ Hard
- Compact
- ✓ Durable
- ✓ Cheap
- Come in several earth-tone colors
- ✓ Holds heat well/insulates

Characteristics of Industrial Minerals

Geologically, most industrial minerals:

✓ are widespread

✓ have enormous reserves

✓ are easily accessible

Characteristics of Industrial Minerals.....contd.

- **Economically:**
- - investments
- are cheaper to obtain
 - If they are closer to the market
 - - price than metals

development of industrial minerals needs relatively less

> As some specialty minerals demand a higher market

Characteristics of Industrial Minerals....contd. Technologically, industrial minerals: In the second need less energy \checkmark have less –ve impact on the environment ✓ possess exceptionally attractive properties for industry

Characteristics of Industrial Minerals....contd.

is merely a geological curiosity. mineral supplier.

Without a market, an industrial mineral deposit

Demand for IMs feeds back from the end-

use market, to the end product, to the intermediate end product, and back to the

Characteristics of Industrial Minerals....contd.

- Existence and performance of a Mineral
 - consuming market directly affects demand
 - for mineral raw materials, i.e. industrial
 - minerals
- > When there is no market demand, there will be
 - no mineral supply, & therefore, no mineral
 - development

Characteristics of Industrial Minerals.....contd.

- Factors influencing Industrial Minerals' pricing:
- ✓ Source & Volume of mineral
- Quality of mineral as dictated by desired end use
- Further processing requirements
- Freight/shipping costs of mineral

Characteristics of Industrial Minerals.....contd.

Factors influencing Industrial Minerals' pricing (contd.)

✓ Port handling

Warehousing/storage costs

Mineral inspection & Insurance costs

Relationship of buyer & seller

> are prerequisite raw materials for a wide range Supply chain employs people & businesses

End of lecture