THE UNIVERSITY OF ZAMBIA SCHOOL OF NATURAL SCIENCES **DEPARTMENT OF MATHEMATICS & STATISTICS** MAT 2110–Engineering Mathematics I

Tutorial Sheet 5

August 2024

- 1. Describe the sets of points in space whose coordinates satisfy the given inequalities or combinations of equations and inequalities:
 - (a) $x \ge 0$, $y \ge 0$, z = 0
 - (b) $0 \le x \le 1$
 - (c) $x^2 + y^2 \le 1$, z = 3
- 2. Given that u = 2i 3j + 4k, v = -2i 3j + 5k and w = i 7j + 3k, find (a) $u \cdot v$ (b) $(u + v) \cdot w$ (c) $Proj_w u$ (d) the angle between u and w
- 3. Find the unit vector(s) whose direction angles are equal.
- 4. Use the dot product to find two unit vectors perpendicular to the vectors -2i+4k and 3i-2j-k.
- 5. Find an equation for the line:
 - (a) containing the point (3, 1, -2) and parallel to $\frac{x-2}{3} = \frac{y+1}{6} = \frac{z-5}{2}$
 - (b) in the xy-plane that passes through the points (1,3,0) and (2,4,0)
 - (c) perpendicular to, and passing through the point of intersection of the lines
- x = -1 + 2t, y = 1 t, z = 7 + 3t and $\frac{x-1}{-2} = \frac{y+14}{8} = \frac{z-6}{-1}$ 6. Discuss the intersection of the following pair of lines:

(a)
$$\mathcal{L}_1: \frac{x-2}{3} = \frac{y-5}{2} = \frac{z-1}{-1}$$

 $\mathcal{L}_2: \frac{x-4}{-4} = \frac{y-5}{4} = \frac{z+2}{1}$

- (b) $\mathcal{L}_1: x = -2 5t, y = -3 2t, z = 1 + 4t$ $\mathcal{L}_2: x = 2 + 3n, y = -1 + n, z = 3n$
- (c) $\mathcal{L}_1: x = 1 2t, y = 3t, z = 0$ $\mathcal{L}_2: x = -2 + 3m, y = 3 - 6m, z = 1 + m$

(d)
$$\mathcal{L}_1 : \langle x, y, z \rangle = \langle 7, -1, 1 \rangle + t \langle 2, -1, 3 \rangle$$

 $\mathcal{L}_2 : \frac{x-3}{-2} = \frac{y+2}{1} = \frac{z-4}{-3}$
(e) $\mathcal{L}_1 : \frac{x+1}{20} = \frac{y}{-5} = \frac{z-1}{10}$

 $\mathcal{L}_2: x = 11 - 4t, y = -3 + t, z = 7 - 2t$

- 7. Find the area of a parallelogram with adjacent vertices at (-2, 1, 0), (1, 4, 2) and (-3, 1, 5).
- 8. Calculate the area of a triangle with vertices at (3, 1, 7), (2, -1, 4) and (7, -2, 4).
- 9. Calculate the volume of a parallelepiped determined by the points P(2, 1, -1), Q(-3, 1, 4), R(-1, 0, 2) and S(-3, -1, 5).
- 10. Find an equation for the plane:
 - (a) through the points P(1, -1, 2), Q(2, 1, 3), and R(-1, 2, -1)
 - (b) through the point (-1, 6, 0) perpendicular to the line x = -1 + t, y = 6 2t, z = 3t
 - (c) containing the line $\langle x, y, z \rangle = \langle 1, 2, 3 \rangle + t \langle -1, -4, 1 \rangle$ and parallel to u = 2i + 3j + k and v = i - j + 2k

- 11. Find the distance between:
 - (a) the point (2, 2, 0) and the line x = -t, y = t, z = -1 + t
 - (b) the lines $\frac{x+2}{-5} = \frac{y+3}{-2} = \frac{z-1}{4}$ and $\frac{x-2}{3} = \frac{y+1}{1} = \frac{z}{3}$
 - (c) the point $(\overline{3}, 0, 10)$ and the plane 2x + 3y + z = 2
- 12. (a) Show that the distance between the parallel planes $Ax + By + Cz = D_1$ and $Ax + By + Cz = D_2$ is

$$d = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}$$

- (b) Hence find an equation for the plane parallel to the plane 2x y + 2z = -4 if the point (3, 2, -1) is equidistant from the two planes.
- 13. Discuss the intersection of each of the following pair of a lines and a plane:
 - (a) x = 3 + 2t, y = 2t, z = t and x + 3y z + 4 = 0

(b)
$$\frac{x+1}{3} = \frac{z}{5}$$
, $y = -2$ and $2x - 3z = 7$

- 14. Discuss the intersection of following planes:
 - (a) x 2y + 4z = 2; x + y 2z = 5
 - (b) 3x 3y + 21z = 4; 7x 7y + 49z = 5
 - (c) -2x + 4y 12z = 5; 3x 6y + 18z = 7.5
- 15. In each of the following, R(t) is the position of a particle in space at time t. Find the particle's velocity, acceleration, speed and acceleration scalar:
 - (a) $R(t) = (\sec t)i + (\tan t)j + \frac{4}{3}tk, \quad t = \frac{\pi}{6}$
 - (b) $(2\ln(t+1))i + t^2j + \frac{t^2}{2}k$
- 16. Find the length of the indicated portion of the curve:

(a)
$$R(t) = \left(\frac{t^2}{2}\right)i + \left(\frac{t^3}{3}\right)k, \quad 0 \le t \le \sqrt{8}$$

- (b) $R(t) = (t \cos t)i + (t \sin t)j + \left(\frac{2\sqrt{2}}{3}\right)t^{\frac{3}{2}}k, \quad 0 \le t \le \pi$
- (c) R(t) = (1+2t)i + (1+3t)j + (6-6t)k, from (-1, -2, 12) to (1, 1, 6)
- 17. Find the point on the curve

$$R(t) = (12\sin t)i - (12\cos t)j + 5tk$$

at a distance 13π units along the curve from the origin in the direction opposite to the direction of increasing arc length.

18. For each given space curve R(t), find the unit tangent vector, **T**, the principal unit normal vector, **N**, the Binormal vector, **B**, and the curvature, κ :

(a)
$$R(t) = \left(\frac{t^3}{3}\right)i + \left(\frac{t^2}{2}\right)j, \quad t > 0$$

- (b) $R(t) = (\cos t + t \sin t) i + (\sin t t \cos t) j + 3k$
- (c) $R(t) = (\cos t)i + (\sin t)j + tk$, t = 0
- (d) $R(t) = (\cosh t)i (\sinh t)j + tk$

19. In each of the following, write $\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}$ without finding \mathbf{T} and \mathbf{N} :

(a)
$$R(t) = (1 + 3t)i + (t - 2)j - 3tk$$

- (b) $R(t) = (t+1)i + (2t)j + t^2k$, t = 1
- (c) $R(t) = (e^t \cos t)i + (e^t \sin t)j + \sqrt{2} e^t k$, t = 0