UNIVERSITY OF ZAMBIA GEOLOGY DEPARTMENT, SCHOOL OF MINES

GGY3051: ENGINEERING GEOLOGY

COURSE INTRODUCTION

Eng. Derrick Zilifi

MEng. [Geotech Eng]., MSc [WREM]., BMinSc [Geol] - UNZA

F09Aneex Building, Scholl of Mines

Course Background

The course introduces basic geology and principles of site investigation to civil engineering students.

By the end of the course students are expected to have:

- Developed an appreciation of geologic processes and their influence in civil engineering works
- Acquired knowledge of the most important rocks and minerals and be able to identify them
- Developed ability to interpret geological maps with an emphasis on making construction decisions

Course Objectives & Outcomes

- Main objective is to introduce Civil Engineering students to geology and how the latter is applied to civil engineering and construction/civil engineering works.
- A secondary objective is based on the assumption that most Civil Engineers will deal professionally with geologists in their careers. Thus
- An understanding of terms and methods used by geologists will better enable them to communicate with geoscientists and to properly interpret problems encountered in their fields.

Course Outline

Introduction & Basics of Engineering Geology

- ✓ Why Geology for Engineers at all?
- ✓ Introduction to Earth Science, Earth's Structure and Plate Tectonics (ppts in Topic 1);
- ✓ Common Rock Forming Minerals Silicates and Non-Silicates;
- ✓ Rocks Igneous, Sedimentary & Metamorphic;
- ✓ Geological (Discontinuity) Structures Bedding/Foliation, Folds, Joints and Faults.

Strength of Geological Materials & Masses

- ✓ Behaviour of Rocks and Soil materials and masses;
- ✓ Nature and behavior of Discontinuity surfaces in geological masses

Geology in Engineering

- ✓ Geological factors in Civil Engineering (Discontinuities, Fluctuations of Groundwater levels);
- ✓ Site Investigations (Organisation & Methods of);
- ✓ Construction materials (winning of),
- ✓ Stability of Slopes;
- ✓ Interpretation of Geological Maps and Reports.

• Introduction to Water Resources:

- ✓ Components of Hydrologic Cycle (Precipitation, Evapotranspiration, Runoff, Infiltration);
- ✓ Surface water:
- ✓ General properties of GW flow and its sub-surface distribution);
- ✓ Surface water Groundwater relations (Darcy's Law).
- ✓ Case Studies: Water supplies Threats of anthropogenic activities (Over-exploitation & Pollution) to quantity & quality of GW resources; Influence of Fluctuations of GW levels to stability of Engineering Structures.

Teaching Method

- Lectures 4 hours per week
- ► Practical 3 hours, once a week

Method of Assessment

Continuous assessment – 40 %

- Labs 20 %
- Tests 20 %

Final Examination – 60 %

Readers

PRESCRIBED

⇒ Introduction to Physical Geology. Thompson, G.R, & Turk, J.

SUPPLEMENTARY MATERIAL

⇒ A Geology for Engineers, Seventh Edition. Blyth, F.G.H. & de Freitas,
 M. H.

END OF LECTURE