

THE UNIVE RSITY OF ZAMBIA SCHOOL OF MINES

UNIVERSITY FISRT SEMESTER - JUNE 2023

GGY3051 TEST I ENGINEERING GEOLOGY BELENDED CLASS (THEORY)

INSTRUCTIONS:	ANSWER ALL QUESTIONS
TIME	2HRS

Q1 Given the simple geological map below:

i Describe in words the general attitude (strike and dip) of the sedimentary beds of rocks. The beds are striking NE [or trending NE-SW) and dipping NW at an average of about 30° 5 ii Which of these beds is the youngest? The bed on the western end on the map is the youngest 5 iii What is the approximate attitude of 'a'? Approximately 120°/78°NE 5 iv Provide a geological description of the relative displacement of rocks a long the structure 'b'. Right-lateral fault 5 What kind of direct stress is associated with features like "b"? Shear stress 5 vi Explain the difference between a strike line and a topographic contour. A topographic contour line is an imaginary line on a map representing or connecting points of equal elevation on the ground surface. 5 A strike line is an imaginary line which is parrallele to the strike direction and represents points of equal elevation on a geological feature. 30 marks Q2 In engineering geology, ground mass can be defined as the volume of ground which will be affected by, or will affect the engineering works or process, and it is

- Q2 In engineering geology, ground mass can be defined as the volume of ground which will be affected by, or will affect the engineering works or process, and it is generally very much larger than the mass of material in direct contact with the engineering work. Briefly and clearly, explain the ground mass for:
 i An underground tunnel
- ⁵ For an undergound tunnel ground mass consists of the volume of ground affected by the withdrawal of ground support caused by tunnel excavation and that volume of ground from which water has been lost by drainage into the tunnel excavation to facilitate for the tunnelling works and process.
- ii A dam built in a deep valley

5

Dams built in valleys may be endangered by landslides from valley sides – these may be of some antiquity and of natural origin, but new movement may be triggered by the dam construction process. Therefore, the involved "mass" or ground mass would extend into these landslides, which could be situated well outside the actual construction site.

- iii A building with a shallow foundation
- For a building, ground mass is that volume of ground which will be stressed by the extra load of the building and also the ground that will be affected by 5 excavation of foundations.
- iv A road passing through a section of mountain
- 5 For a road passing through a section of mountain, groundmass includes the road base or foundation and cut slopes on the mountain 20 Marsk
- Q3 A rock mass of circular cross-sectional area, with a diameter of 2 m, was subjected to a load of 40kN. If the mass experienced a change of 20 cm in its original length of 4m and 8 cm in its diameter, calculate:

3

i Longitudinal and diametral strains

Assume	compres	sional loading:		
L=	4	m		
D =	2	m		
ΔL=	0.2	m		
ΔD=	0.08	m		
L	.ongitudi	=	0.05	
0	Diametral	=	0.04	

ii Poisson's Ratio

ν=	diametric strain	=>	0.8
	longitudinal strain	_	

iii Modulus of Elasticity

E = Stress / Axial Strain = σ/ϵ

Stress = Force/ Are	a
Force =	40 kN
Area =	3.142 m ²
Stress =	12.73 kN/m ²
E =	254.61 kN/m ²

Q4 A 500kg wedged block of granite rests on a dry, inclined road-cut slope of 40° and the base of the block has a contact surface area of $2m^2$. Assuming g = 9.8 m/s²:

i Determine the magnitudes of Normal and Shear stress imposed by the granite block on the slope

	Weight = ma	ass x acceler	ation due to gravity	/	4900 N	
	Normal force = 4900 x	cos 40°	=>	3753.6 N		
	Shear force = 4900 x	sin 40°	=>	3149.7 N		
	Normal stress=	1876	5.8 N/m ²			4
	Shear stress =	1574	l.8 N/m ²			4
ii	Calculate the factor of	safety for th	e granite block on	the slope		
	Factor of Safety = Normal Stress/ Shear Stress 1.2					4
iii	ii Is the block of granite likely to slide down? Explain your answer					
	The block of granite is not likely to slide down because the factor of safety is greater than one. That is the stress promoting sliding [shear stress] is less than the stress stabilising the block [normal stress].					4
iv	Mention two kinds of s	slope failures	for which a factor	of safety can b	e calculated	
	Translational (Plane	failure and	wedge failure)			4
Q5						20 Marks
i	Mention three charact	eristics of sc	il that influence gro	oundwater infilti	ation and percolation.	
	Size of pores in soil	/ rock	-			2
	Total porosity of soil	/ rock				2
	Interconnectivity of s	soil / rock p	ores			2
ii	What is the difference between primary porosity and secondary porosity? Give one example of a geological material for primary porosity and one for s ii porosity.				econdary	
	Primary porosity is i	nherent por	e spaces develop	ed during forn	nation of the rock, and is more pervasive or wide spread in the rock.	
	Secondary porosity	developes a	fter formation of t	he rocks, is re	elated to secondary structures like rock fractures and can be localised.	2
	Examples of primary	porosity: s	andstone, conglo	merate		0.5
	Examples of second	ary pororsit	y: strucures in ca	rbonate rocks	lime limestone and dolomite	0.5
iii	Briefly explain three w	ays in which	groundwater quality	ty in bore holes	can be safeguarded	
	Proper well construct	tion				2
	Well location upstrea	am/away fro	m pollution source	es – pit latrine	es, waste dumps, cemeteries, etc.	2
	Concrete platforms a	around well,	& with proper dra	ainage		2
	Animais must be kep	л away by a	tence.			15 Marks