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Pure Bending in Beams




Bending in Beams

The Beam is the most common type of structural member is the beam. In
actual structures and machines, beams can be found in a wide variety of sizes

Beams are usually long, straight, prismatic members that support transverse
loads, which are loads that act perpendicular to the longitudinal axis of the
member. The applied load causes the beam to deform

.‘.

Beam with applied loads

Deformed due to bending



Pure Bending in Beams

500N 500N
25cm 50cm 25cm

M =125N.m M' = 125N.m
(b)

Pure Bending: Prismatic members subjected to equal and opposite couples
acting in the same longitudinal plane
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Pure bending refers to the
flexure of a beam in response to
constant (i.e., equal) bending
moments.

For example, the region
between points C and D of the
beam has a constant bending
moment M

Pure bending occurs only in
regions where the transverse
shear force V is equal to zero



Symmetric Member in Pure Bending

M

« Internal forces in any cross section are equivalent
to a couple. The moment of the couple is the
section bending moment.

« From statics, a couple M consists of two equal
and opposite forces.

« The sum of the components of the forces in any
direction is zero.

« The moment is the same about any axis
perpendicular to the plane of the couple and
zero about any axis contained in the plane.

» These requirements may be applied to the sums
of the components and moments of the statically
Indeterminate elementary internal forces.

Fy=]oy dA=0
My =]zoy dA=0
M, =[-yo, dAA=M




Bending Deformations

(a) Longitudinal, vertical section
(plane of symmetry)

(b) Longitudinal, horizontal section

Beam with a plane of symmetry in pure

bending:

member remains symmetric
bends uniformly to form a circular arc

cross-sectional plane passes through arc center
and remains planar

length of top decreases and length of bottom
Increases

a neutral surface must exist that is parallel to the
upper and lower surfaces and for which the length
does not change

stresses and strains are negative (compressive)
above the neutral plane and positive (tension)
below it



Strain Due to Bending

Consider a beam segment of length L.
After deformation, the length of the neutral
surface remains L. At other sections,

observing that the length of DE is equal to the
length L of the undeformed member, we write

L =pb > ()

Considering now the arc JK located at a distance y
above the neutral surface, we note that its length L’
IS

L'=(p-y)0 (ii)

Neutral Since the original length of arc JK was equal to L, the

axis deformation of JK is

S§=L—1 (iii)




Strain Due to Bending
substituting from (i) and (ii) into (iii),

d=(p—-y)0—pb=-yb

The longitudinal strain &, in the elements of JK is obtained
by dividing d by the original length L of JK.

6 yb
y £ L pb
y : L
Ex = —; (strain varies linearly)
_c _c
Neutral Em = P o P= Em

axis

\

where &, is the maximum absolute value

y
Thus; & = _ng

Maximum strain occurs at the outermost fibre located at distance y = ¢ from the Neutral axis



Stress Due to Bending

« For a linearly elastic material, -

y 7
o, =Ee, =—=FE¢,
C
y .
0, = ——0,, (stress varies linearly)
C

0., denotes the maximum absolute value



Stress Due to Bending

* For static equilibrium, * For static equilibrium,

dFF = odA

M = j—yax dA =j—y(—zam) dA
Neutral axis can be located on the x -section by ¢

satisfying the condition that the resultant force M = U_mjyz dA = Om!
produced by the stress distribution over the x- ¢ ¢
sectional area must be equal to zero 5. = Mc _ M
m
| S
Substituting o, = —Xam
F,=0=[o, dA=[-Yo, dA My ¢
C i

O:—%J‘ydA

First moment with respect to neutral plane This called the elastic flexure
IS zero. Therefore, the neutral surface must formula
pass through the section centroid.
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Sign Convention

The sign convention for curvature depends upon the orientation of the coordinate axes.
If the x axis is positive to the right and the y axis is positive upward, as shown below: then

the curvature is positive when the beam is bent concave upward and the center of curvature
Is above the beam. The converse is true for negative curvature

Positive curvature
curvature

(a) (b)



Sign Convention

Relationship between bending moment M and bending stress

-v

Compressive Y| Tensile
bending stress bending stress
—

B =
7] 7 T =7
i 144 B =
M b = M
=y =
- -
— e
O D |
ASERA T
» iy

Tensile Compressive
bending stress bending stress
(a) Bending stresses caused by (b) Bending stresses caused by
positive M negative M

Enhanced bending moment sign convention. (a) is a sagging moment and (b) is a
hogging moment

g Tension
Compression

+M - +M Q. )
C !j = b-_\ -M
2 Compression
Tension

(a) Positive M (b) Negative M



Beam Section Properties

« The maximum normal stress due to bending,

A = 24cm?
AZ e Mc M

O-m_

ff' \ T I S

I = section moment of inertia

, The ratio I /c depends only upon the geometry of the cross

‘ ‘ ‘ section.
h=4cm "'—"‘
b = 3em, This ratio is called the elastic section modulus and is
_ 4 not .
I = 72Cm3 I — 128cm4 de 0 ed byS
S = 2dcm S =32cm? I |
S = E = section modulus
M
Thus; o, =—=

A beam section with a larger section modulus will have a lower maximum
stress



Beam Section Properties

Consider a rectangular beam cross section,

S—I—% hg—lbhz—lAh
¢ h 6 6
2

S

Between two beams with the same cross sectional area, the beam with the
greater depth will be more effective in resisting bending.

This shows that, of two beams with the same cross-sectional area A, the beam
with the larger depth h will have the larger section modulus and, thus, will be
the more effective in resisting bending.



Beam Section Properties

T R I, o Structural steel beams are designed to have a

¢ large section modulus.

| Y%« Instructural steel, standard beams (S-beams)

| I Jl and wide-flange beams (W-beams) are preferred

) | L . .
b8 Bemm b to other shapes because a large portion of their

cross section is located far from the neutral axis

» Thus, for a given cross-sectional area and a given

depth, their design provides large values of | and,
consequently, of S

« Values of the elastic section modulus of commonly
manufactured beams can be obtained from tables

listing the various geometric properties of such
beams




Beam Section Properties

» To determine the maximum stress o, in a given section of a standard beam, the engineer
needs only to read the value of the elastic section modulus S in a table, and divide the
bending moment M in the section by S.

» The deformation of the member caused by the bending moment M is measured by
the curvature of the neutral surface denoted as %. Its reciprocal, p, is Radius of

curvature

» The curvature is defined as the reciprocal of the radius of curvature p, and can be
obtained by solving 1

€m

p C

But, in the elastic range, ¢,,, = 0,,,/E.

om 1 Mc
Ec Ec I

1 1
b " | p EI




Example 1

30 mm

A cast-iron machine part is acted upon
by a 3 kN-m couple. Knowing E =165
GPa and neglecting the effects of
fillets, determine (a) the maximum
tensile and compressive stresses, (b)

the radius of curvature.
4-18

SOLUTION:

 Based on the cross section geometry,
calculate the location of the section
centroid and moment of inertia.
- 2YA - 2
Y:ﬁ IX’:Z(I+Ad )
« Apply the elastic flexural formula to
find the maximum tensile and
compressive stresses.

Mc
om=T

e Calculate the curvature
1_M
o El



Example 1 — Cont’d

6 — SOLUTION:
- Towm DBased on the cross section geometry, calculate
i, = 50 mm =" the location of the section centroid and
t 4 1‘““ T Y moment of inertia.
s = 20/mm D x Area, mm? | y, mm yA, mm?®
30 mm 1| 20x90 =1800 50 90x10°
40x 30 =1200 20 24x10°
> A=3000 Y yA=114x10°
12 mm B 3
18 mm | Y = LyA_114x107 38 mm

SA 3000

] 1
I, = 2(1 + Ad?) = 2 <Ebh3 + Adz)

1 1
=(-=90 x 203 + 1800 x 122 ) + [ —=30 x 403 + 1200

12 12
I =868 x 103mm* = 868 x 10— Im*



Example 1

« Apply the elastic flexural formula to find the

A . . )
maximum tensile and compressive stresses.
4 Mc
Om ="
_ Mcy  3KN-mXx0.022m
0= = T ge8 x 1094 op =+76.0 MPa
Mcpg
%= "1
_ 3kN-mx0.038m og =—131.3MPa
/—Center of curvature — 868 X 10~-9m*

e Calculate the curvature

M__ 3kN-m
EI (165 GPa)(868 x 10~ 9m*)

1
p

—=20.95 x 10 3m—1

i) V=

=47.7m
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