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SHEAR IN A STRAIGHT BEAM

• Transverse shear stress always has its associated 

longitudinal shear stress acting along longitudinal 

planes of the beam.



SHEAR IN A STRAIGHT BEAM (cont)

• Effects of Shear Stresses:

• Warping of cross section



SHEAR IN A STRAIGHT BEAM (cont)

Note: 

1. Warping” violates the assumptions of “plane section 

remains plane” in flexure and torsion formulae

2. “Warping” is negligible in “slender beam”



SHEAR FORMULA
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Shear Formula

6

• In deriving a formula for shear stress for a rectangular beam, 
one must select an elemental area of the cross section at some 
distance y from the neutral axis and recognize that the force 
acting upon this element is σ dA.

• Substituting in the flexure formula for the normal stress and 
integrating along the entire cross section of the beam, along with 
force analysis, yields the following:

VQ

Ib
 =

Where:
V – Shear Force

Q – The First Moment
I – Moment of Inertia

b – Width of the location



Shear Formula

7

• In deriving a formula for shear stress for a rectangular beam, 
one must select an elemental area of the cross section at some 
distance y from the neutral axis and recognize that the force 
acting upon this element is σ dA.

• Substituting in the flexure formula for the normal stress and 
integrating along the entire cross section of the beam, along with 
force analysis, yields the following:
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Where:
V – Shear Force
Q – The First Moment
I – Moment of Inertia
b – Width of the location



SHEAR FORMULA



SHEAR FORMULA

What is Q? 

Q is a mathematical abstraction termed a first moment of area. 

Recall that a first-moment-of-area term appears as the numerator 

in the definition of a centroid

Q is the first moment of area of only portion A’ of the total cross-sectional 

area A. Equation above can be rewritten in terms of A’ instead of the total 

area A and multiplied by the denominator of the right side (in terms of A’) to 

give a useful formulation for Q:



SHEAR FORMULA

To determine Q at point a in Fig (a), the cross-sectional area is subdivided at a by

slicing parallel to the neutral axis (which is perpendicular to the direction of the internal 

shear



SHEAR FORMULA

Let us consider the calculation of Q at point b (Figure c) in more detail. The area A’ can 

be divided into three rectangular areas (e) so that Aa’ = A1 + A2 + A3. The centroid location 

of the highlighted area with respect to the neutral axis is



SHEAR FORMULA

This result suggests a more direct calculation procedure that is 

often expedient. For cross sections that consist of i shapes

where yi is the distance between the neutral axis and the centroid of 

shape i and Ai is the area of shape i.



SHEAR IN BEAMS

Rectangular cross section

• Shear –stress distribution is parabolic
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SHEAR IN BEAMS (cont)

Wide-flange beam

• Shear-stress distribution is parabolic 

but has a jump at the flange-to-web 

junctions.

Limitations on the use of shear formula

• Not on cross sections that are short or flat

• Not at points of sudden cross sectional changes (e.g. 

flange-to-web junction in wide flange beam)

• Not at a joint on an inclined boundary



EXAMPLE 1 

A steel wide-flange beam has the dimensions shown in Fig. 

a. If it is subjected to a shear of V = 80kN, plot the shear-

stress distribution acting over the beam’s cross-sectional 

area.



EXAMPLE 1 (cont)

• The moment of inertia of the cross-sectional area about the neutral axis 

is

• For point B’, tB’ = 0.3m, and A’ is the dark 

shaded area shown in Fig.c
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EXAMPLE 1 (cont)

• For point B, tB = 0.015m, and QB = QB’, 

• For point C, tC = 0.015m, and A’ is 

the dark shaded area in Fig. d.

• Considering this area to be composed of two rectangles,

• Thus, 

Solutions
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SHEAR FLOW IN BUILT-UP BEAM

• Shear flow ≡ shear force per unit length along longitudinal 

axis of a beam.

I

VQ
q =

q = shear flow

V = internal resultant shear

I = moment of inertia of the entire cross-sectional area

Q = moment of the area A 



SHEAR FLOW IN BUILT-UP BEAM (cont)
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Example 2

A beam is made of three planks, 

nailed together.  Knowing that the 

spacing between nails is 25 mm and 

that the vertical shear in the beam is 

V = 500 N, determine the shear force 

in each nail.

SOLUTION:

• Determine the horizontal force per 

unit length or shear flow q on the 

lower surface of the upper plank.

• Calculate the corresponding shear 

force in each nail.
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Example 2
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SOLUTION:

• Determine the horizontal force per 

unit length or shear flow q on the 

lower surface of the upper plank.
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• Calculate the corresponding shear 

force in each nail for a nail spacing of 

25 mm.
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EXAMPLE 3

Nails having a total shear strength of 40 N are used in a beam 

that can be constructed either as in Case I or as in Case II. If 

the nails are spaced at 90 mm, determine the largest vertical 

shear that can be supported in each case so that the fasteners 

will not fail.



EXAMPLE 3 (cont)

• Since the cross section is the same in both cases, the moment of inertia 

about the neutral axis is

Case I 

• For this design a single row of nails holds the top or bottom flange onto 

the web. 

• For one of these flanges,
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EXAMPLE 3 (cont)

Case II

• Here a single row of nails holds one of the side boards onto the web.

• Thus,

Solutions
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SHEAR FLOW IN THIN-WALLED BEAM

• Approximation: only the shear-flow component that acts 

parallel to the walls of the member will be counted.



SHEAR FLOW IN THIN-WALLED BEAM (cont)

• In horizontal flanges, flow varies linearly, 

• In vertical web(s), flow varies parabolically, 
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EXAMPLE 4 

The thin-walled box beam in Fig. a is subjected to a shear of 10 

kN. Determine the variation of the shear flow throughout the 

cross section.



EXAMPLE 4 (cont)

• The moment of inertia is

• For point B, the area            thus q’B = 0. 

• Also,

• For point C,

• The shear flow at D is

Solutions
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SHEAR CENTRE

• Beam loaded in a vertical plane 

of symmetry deforms in the 

symmetry plane without 

twisting.
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• Beam without a vertical plane 

of symmetry bends and twists 

under loading.
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• When the force P is applied at a distance e to the 

left of the web centerline, the member bends in a 

vertical plane without twisting.

Unsymmetric Loading of Thin-Walled Members

• If the shear load is applied such that the beam 

does not twist, then the shear stress distribution 

satisfies
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• F and F’ indicate a couple Fh and the need for 

the application of a torque as well as the shear 

load. 

VehF =



SHEAR CENTRE

Shear center is the point through which a force can be applied which will cause 

a beam to bend and yet not twist

The location of the shear center is only a function of geometry of the cross 

section and does not depend upon the applied load.

If this force is applied through the centroid C (see next page) of the cross 

section, the channel will not only bend downward, but it will also twist 

clockwise as shown.



SHEAR CENTRE

To prevent this twisting and therefore cancel the unbalanced moment, it is necessary to 

apply P at a point O located an eccentric distance e from the web,

P

dF
e f=

• From this analysis, it should be noted that the shear center will always lie on an axis of 

symmetry of a member’s cross-sectional area. 

• For example, if the channel is rotated 90° and P is applied at A, Fig.a, no twisting will 

occur since the shear flow in the web and flanges for this case is symmetrical, and 

therefore the force resultants in these elements will create zero moments about A, Fig. b. 

• Obviously, if a member has a cross section with two axes of symmetry, as in the case of 

a wide-flange beam, the shear center will coincide with the intersection of these axes 

(the centroid)
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SHEAR CENTRE (cont)



EXAMPLE 4 

Determine the location for the shear center of the channel 

section with b = 100 mm, h = 150 mm., and t = 4 mm
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Example 4
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• Combining,
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𝑏
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ℎ
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EXAMPLE 5

Determine the location of the shear centre O for the cross 

section shown below.  Assume a uniform thickness of 𝑡 = 4 mm 

for all portions of the cross section. 



EXAMPLE 5 (cont)

Solutions

a)  Moment of inertia about the neutral axis:  Recognizing that the wall thickness is thin, the moment 

of inertia for the shape can be calculated as: 
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Shear flow in area (1):  We will choose to sum moments about point B so that we need only 

determine one force:  F2.  Begin by calculating the shear flow at point A. 
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EXAMPLE 5 (cont)

Solutions

Let the shear force V be equal to the moment of inertia INA, and express the shear flow q at point A 

as. 

 
( )( )3

4
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12,600 N/mm
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A

A
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Calculate the horizontal force F2 as: 
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2 2
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F = = =  

Shear Center 

 𝑃𝑒 =  90 mm 𝐹2 
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2,771,666.67 
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N
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