AERIAL CAMERAS

FILM-BASED CAMERAS

CAMERA

Light-proof chamber or box in which the image of an exterior object is projected upon a sensitized plate or film, through an opening usually equipped with a lens or lenses, shutter and variable aperture

In digital photography – use semiconductor electronics instead of film

Types of Aerial Cameras

Frame camera (sensor)

 Acquire image simultaneously over entire format

- The frame camera: exposes a square-shaped of ground all at the instant of time
- The continous strip: The film moves continously past a slit in the focal plane
- The panoramic camera: operates in a direction normal to the direction of flight. It takes a sweeping picture of the ground from right to left

AERIAL MAPPING CAMERA REQUIREMENTS

- Lens of high geometric quality
- Capable of exposing large no. of photos in rapid succession to exacting specifications
- Short cycle time
- DFast lenses
- © Efficient shutter
- Functional under extreme weather conditions, like temperature and humidity, in spite of aircraft vibration
- Simple to use during photo mission
- Equipped with safeguards to protect against operator blunders
- Automatic as possible
- Able to preserve elements of interior orientation and preserve internal geometric relationships

METRICAL CAMERAS

- Designed specifically for use in photogrammetry
- Precise determination of spatial positions of objects
- Traditionally use of roll film for recording images

SINGLE LENS FRAME CAMERA

- Lens held fixed relative to focal plane
- Film generally held fixed
- Classified by angular field of view
 - Normal angle (up to 75°)
 - Wide angle (75° 100°)
 - 3. Superwide angle (> 100°)
- Angular field of view

$$\alpha = 2 \tan^{-1} \left(\frac{d}{2f} \right)$$

Data of different lens assemblies

	super-	wide-	inter-	normal-	narrow-
	wide	angle	mediate	angle	angle
focal length [mm]	88.	153.	210.	305.	610.
field [o]	119.	82.	64.	46.	24.
photo scale	7.2	4.0	2.9	2.0	1.0
ground coverage	50.4	15.5	8.3	3.9	1.0

FRAME CAMERAS

- Used for most photogrammetric operations
- Principle parts are:
- The lens assembly
- 2. The Inner cone
- The focal plane
- 4. The Outer cone and body
- 5. The Drive Mechanism
- 6. The Magazine

AERIAL CAMERA PARTS

The lens assembly

- Forms the image of the ground being photographed in the focal plane
- The diaphragm and shutter control the exposure according to the amount of available light and film speed
- The Filter helps to penetrate the atmospheric haze

LENS

- Gathers light rays from object space and brings them into focus in the focal plane behind the lens
- Array of lenses aligned in lens cone

Cross-sectional view of aerial camera lenses

The Inner cone

- Holds the lens assembly fixed with respect to the upper surface (the focal plane) of the cone.
- The upper surface contains reference marks called fiducial marks which define the coordinate axes of the resulting photograph
- The relative positions of the lens axis, the focal plane and the fiducial marks fix the elements of interior orientation of the camera

FOCAL PLANE

- Plane where all incident light rays brought to focus
 - Aerial cameras have focus fixed for infinite object distance set focal plane equal to focal length behind rear nodal point
- ☐ Defined by upper surface of focal-plane frame
 - Surface where film emulsion rests

Fiducial marks
Index marks imaged on film
Serve as reference photo
coordinate system

The Inner cone

- Holds the lens assembly fixed with respect to the upper surface (the focal plane) of the cone.
- The upper surface contains reference marks called fiducial marks which define the coordinate axes of the resulting photograph
- The relative positions of the lens axis, the focal plane and the fiducial marks fix the elements of interior orientation of the camera

FOCAL PLANE

- Plane where all incident light rays brought to focus
 - Aerial cameras have focus fixed for infinite object distance set focal plane equal to focal length behind rear nodal point
- Defined by upper surface of focal-plane frame
 - ☐ Surface where film emulsion rests

Fiducial marks

Index marks imaged on film Serve as reference photo coordinate system

Outer cone and body

- To support the inner cone
- To hold the drive mechanism
- Furnish a support for the magazine

The Drive Mechanism

 Provides the motion necessary to wind and trip the shutter, flattenning the film in the focal plane and wind the film or change the plates between exposures

The Magazine

- Holds the exposed and unexposed film (or plates)
- Advances the necessary amount of film between exposures
- Houses the film flattening device
- For a 23 by 23 cm picture size, the magazine can hold up to 120m of film that is 24cm wide. This will yield as many as 475 exposures

Image Motion

- During the instance of exposure, the aircraft moves and with it the camera, including the image plane.
- Thus, a stationary object is imaged at different image locations, and the image appears to move.
- Image motion results not only from the forward movement of the aircraft but also from vibrations

Forward image motion

Figure 2.5: Forward image motion.

An airplane flying with velocity v advances by a distance D = v t during the exposure time t. Since the object on the ground is stationary, its image moves by a distance d = D/m where m is the photo scale. We have

$$d = \frac{v t}{m} = \frac{v t f}{H}$$

with f the focal length and H the flying height.

Example: given

- exposure time t = 1/300 sec
- velocity v = 300 km/h
- focal length *f*= 150 mm
- flying height H=1500 m
- image motion $d = 28 \mu m$

FORWARD MOTION COMPENSATION

Move film slightly across focal plane during exposure in flight direction

□ Example (3.1) Camera with f = 152.4 mm, airplane velocity = 200 km/hr, flying height above terrain = 3,500m, exposure time = 1/500 sec. What distance (in mm) must film move across focal plane to obtain clear image?

FORWARD MOTION COMPENSATION

Solution:

Distance plane travels during exposure

$$D = (200 \text{ km/h}) \left(\frac{1}{500} \text{sec}\right) \left(\frac{1 \text{ hr}}{3600 \text{ sec}}\right) \left(\frac{1000 \text{ m}}{1 \text{ km}}\right) = 0.11 \text{ m}$$

Distance image moves during exposure

$$d = 0.11 \text{ m} \left(\frac{152.4 \text{ mm}}{3500 \text{ m}} \right) = 0.005 \text{ mm}$$

CAMERA MOUNTS

- ☐ Attaches camera to aircraft
- Constrains angular alignment of camera
- Minimum mount has dampener devices & crab correction
- Crab
 - Difference in camera orientation w.r.t. aircraft's actual travel direction

EFFECT OF CRAB

☐ Undesirable effect – reducing stereoscopic ground coverage of aerial photos

CAMERA CONTROLS

Intervalometer

- Device that automatically trips shutters & activates camera cycle
- Interval depends on focal length, format size, end lap, flying height, velocity
- Modern intervalometers part of integrated unit incorporating GPS

CAMERA CONTROLS

Intervalometer

- Device that automatically trips shutters & activates camera cycle
- Interval depends on focal length, format size, end lap, flying height, velocity
- Modern intervalometers part of integrated unit incorporating GPS

ZEISS RMK A 15/23 WIDE-ANGLE CAMERA

- With ICC/NS-1Central IntervalComputer and NT-1Navigation Telescope
- Pleogon A (153 mm) lens, 93° angular field of view, Max nominal distortion 2 μm
- Used for general work
 - Aerotriangulation, topographic and large-scale mapping

