

STEREOSCOPIC VIEWING

DEPTH PERCEPTION

- Binocular vision capable of viewing with both eyes simultaneously
 - Stereoscopic viewing perception of depth when viewing through binocular vision
- Monocular vision viewing with only one eye
 - Monoscopic viewing judging depth with one eye

DEPTH PERCEPTION

- Distances perceived monoscipically by
 - Relative sizes of objects
 - Hidden objects
 - Shadows
 - Differencing in focusing

HUMAN EYE

- Pupil circular opening where light passes
 - Protected by cornea
- Light passes through lens and brought to focus at Central fovea
- Iris diaphragm
- Optic nerve sends sense of vision to brain

MACULA LUTEA

STEREOSCOPIC DEPTH PERCEPTION

- When eyes fix on point, optical axes converge on that point, intersection at an angle called parallactic angle (\(\phi \))
 - Nearer object, greater parallactic angle
- b_e eye base
 - About 2.6" (63-69 mm)
- Depth between objects A and B is D_B – D_A

VIEWING PHOTOS STEREOSCOPICALLY

- As A moves to A', image marks (a'₁ and a'₂) on transparent medium move closer together
 - Parallactic angle increases and object perceived nearer
- At A", marks (a"₁ and a"₂) move apart
 - Parallactic angle decreases and object perceived farther away

VIEWING PHOTOS STEREOSCOPICALLY

- 2 exposures made at L₁
 and L₂
 - Building on both photos
- B is air base distance between exposures
- H' is flying height above ground
- Top and bottom imaged on left photo at a₁and b₁ and on right photo at a₂and b₂

VIEWING PHOTOS STEREOSCOPICALLY

- Placing photos laid on table so left eye sees left image and right eye the right image
- Stereoscopic model (called stereomodel) appears below table top
- Brain judges height of building from differences in parallactic angle

STEREOSCOPES

- Pocket stereoscope
 Mirror stereoscope

USE OF STEREOSCOPES

- Accurate & comfortable stereoscopic viewing requires eye base, line between centers of stereoscope lenses, and flight line be parallel
- Conjugate principal point (corresponding principal point

Y-PARALLAX

- Slight amounts causes eye strain & excessive amounts prevent stereoscopic viewing
- Causes of y-parallax
 - Photos improperly oriented
 - Unequal flying height between photos
 - Tilt in photography

- Apparent scale disparity between horizontal and vertical scales
- Primary cause: lack of equivalence between photographic base-height ratio, B/H', and stereoviewing baseheight ratio, b_e/h

Vertical Exaggeration - Causes

Stereoscopic Causes

- Viewing distance
- Separation of photographs
- Eye base
- magnification

Photographic Causes

- Photographic scale
- Altitude above terrain
- Air base
- Terrain relief

$$\frac{x_a}{B} = \frac{f}{H'-Z} \implies x_a = \frac{Bf}{H'-Z}$$

 From stereoscopic geometry

$$\frac{X_c}{B} = \frac{f}{H'} \implies X_c = \frac{Bf}{H'}$$

Subtracting

$$x_a - x_c = Bf \frac{Z}{(H')^2 - H'Z}$$

From similar triangles

$$\frac{x_a}{b_a} = \frac{i}{h-z} \implies x_a = \frac{b_e i}{h-z}$$

$$\frac{x_c}{b_e} = \frac{i}{h}$$
 \Rightarrow $x_c = \frac{b_e i}{h}$

■ Subtracting yields $x_a - x_c = b_e i \frac{z}{h^2 - hz}$

■ Equating the 2 equations for x_a - x_c

Bf
$$\frac{Z}{(H')^2 - H'Z} = b_e i \frac{z}{h^2 - hz}$$

 But Z and z are considerably smaller than H' and h, thus

$$\frac{\text{BfZ}}{(\text{H'})^2} \approx \frac{b_e iz}{h^2} \qquad \Rightarrow \qquad \frac{z}{Z} = \frac{\text{fh}}{\text{H'i}} \frac{\text{Bh}}{\text{H'b}_e}$$

From similar triangles in 2 diagrams

$$\frac{x_c - x_k}{D} = \frac{f}{H'} \implies D = (x_c - x_k) \frac{H'}{f}$$

$$\frac{x_c - x_k}{d} = \frac{i}{h} \implies d = (x_c - x_k) \frac{h}{i}$$

• From which $\frac{d}{D} = \frac{fh}{H'i}$

Substitute into equation for z/Z

$$\frac{z}{Z} = \frac{d}{D} \frac{Bh}{H'b_e}$$

 If Bh/(H'b_e) is 1, there is no vertical exaggeration. Thus, magnitude of vertical exaggeration, V, is given by

$$V \approx \frac{B}{H'} \frac{h}{b_e}$$

From the figure

$$B = G - G \frac{PE}{100} = G \left(1 - \frac{PE}{100} \right)$$

$$\frac{H'}{G} = \frac{f}{d}$$
 \Rightarrow $H' = \frac{fG}{d}$

From which

$$\frac{B}{H'} = \left(1 - \frac{PE}{100}\right) \frac{d}{f}$$

Example (7-1): What is the approximate vertical exaggeration for a vertical photo taken with a 152.4-mm focal length camera having a 23-cm square format if the photos were taken with 60% endlap?

V

VERTICAL EXAGGERATION

Solution:
$$\frac{B}{H'} = \left(1 - \frac{60}{100}\right) \frac{230}{152.4} = 0.60$$

Assuming b_e/h is 0.15

$$V = 0.60 \left(\frac{1}{0.15} \right) = 4.0$$
 (approx.)