


Elements of Photogrammetry with Applications in GIS

. Paul R. Wolf, Ph.D
 Bon A. Dewitt, Ph.D.
.Benjamin E. Wilkinson, Ph.D

Fourth Edition

New York   Chicago   San Francisco 
Athens   London   Madrid

Mexico City   Milan   New Delhi 
Singapore   Sydney   Toronto



Copyright © 2014 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher.

ISBN: 978-0-07-176111-6

MHID: 0-07-176111-X

e-Book conversion by Cenveo® Publisher Services

Version 1.0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-176112-3, MHID: 0-07-176112-8.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in
corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the possibility
of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained
from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is
subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s prior consent. You may use the
work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may
be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK
OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education
and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any
inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has
no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education
and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of
or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

http://www.mhprofessional.com


Contents

 1    Introduction
        1-1  Definition

of Photogrammetry
        1-2  History of Photogrammetry
        1-3  Types of Photographs
        1-4  Taking Vertical Aerial Photographs
        1-5  Existing Aerial Photography
        1-6  Uses of Photogrammetry
        1-7  Photogrammetry and Geographic Information Systems
        1-8  Professional Photogrammetry Organizations

       References
       Problems

 2    Principles of Photography and Imaging
        2-1  Introduction
        2-2  Fundamental Optics
        2-3  Lenses
        2-4  Single-Lens Camera
        2-5  Illuminance
        2-6  Relationship of Aperture and Shutter Speed
        2-7  Characteristics of Photographic Emulsions
        2-8  Processing and Printing Black-and-White Photographs
        2-9  Spectral Sensitivity of Emulsions

        2-10  Filters
        2-11  Color Film
        2-12  Digital Images
        2-13  Color Image Representation
        2-14  Digital Image Display

       References
       Problems

 3    Cameras and Other Imaging Devices
        3-1  Introduction
        3-2  Metric Cameras for Aerial Mapping
        3-3  Main Parts of Frame Aerial Cameras
        3-4  Focal Plane and Fiducial Marks
        3-5  Shutters
        3-6  Camera Mounts
        3-7  Camera Controls
        3-8  Automatic Data Recording
        3-9  Digital Mapping Cameras

        3-10  Camera Calibration
        3-11  Laboratory Methods of Camera Calibration
        3-12  Stellar and Field Methods of Camera Calibration



   3-13  Calibration of Nonmetric Cameras
   3-14  Calibrating the Resolution of a Camera
 References
 Problems

 4    Image Measurements and Refinements
        4-1  Introduction
        4-2  Coordinate Systems for Image Measurements
        4-3  Simple Scales for Photographic Measurements
        4-4  Measuring Photo Coordinates with Simple Scales
        4-5  Comparator Measurement of Photo Coordinates
        4-6  Photogrammetric Scanners
        4-7  Refinement of Measured Image Coordinates
        4-8  Distortions of Photographic Films and Papers
        4-9  Image Plane Distortion

        4-10  Reduction of Coordinates to an Origin at the Principal Point
        4-11  Correction for Lens Distortions
        4-12  Correction for Atmospheric Refraction
        4-13  Correction for Earth Curvature
        4-14  Measurement of Feature Positions and Edges

       References
       Problems

 5    Object Space Coordinate Systems
        5-1  Introduction
        5-2  Concepts of Geodesy
        5-3  Geodetic Coordinate System
        5-4  Geocentric Coordinates
        5-5  Local Vertical Coordinates
        5-6  Map Projections
        5-7  Horizontal and Vertical Datums

       References
       Problems

 6    Vertical Photographs
        6-1  Geometry of Vertical Photographs
        6-2  Scale
        6-3  Scale of a Vertical Photograph Over Flat Terrain
        6-4  Scale of a Vertical Photograph Over Variable Terrain
        6-5  Average Photo Scale
        6-6  Other Methods of Determining Scale of Vertical Photographs
        6-7  Ground Coordinates from a Vertical Photograph
        6-8  Relief Displacement on a Vertical Photograph
        6-9  Flying Height of a Vertical Photograph

        6-10  Error Evaluation
       References
       Problems



  7    Stereoscopic Viewing
            7-1  Depth Perception
            7-2  The Human Eye
            7-3  Stereoscopic Depth Perception
            7-4  Viewing Photographs Stereoscopically
            7-5  Stereoscopes
            7-6  The Use of Stereoscopes
            7-7  Causes of Y Parallax
            7-8  Vertical Exaggeration in Stereoviewing
        References
        Problems

  8    Stereoscopic Parallax
            8-1  Introduction
            8-2  Photographic Flight-Line Axes for Parallax Measurement
            8-3  Monoscopic Methods of Parallax Measurement
            8-4  Principle of the Floating Mark
            8-5  Stereoscopic Methods of Parallax Measurement
            8-6  Parallax Equations
            8-7  Elevations by Parallax Differences
            8-8  Simplified Equation for Heights of Objects from Parallax Differences
            8-9  Measurement of Parallax Differences
          8-10  Computing Flying Height and Air Base
          8-11  Error Evaluation
        References
        Problems

  9    Elementary Methods of Planimetric Mapping for GIS
            9-1  Introduction
            9-2  Planimetric Mapping with Reflection Instruments
            9-3  Georeferencing of Digital Imagery
            9-4  Heads-Up Digitizing
            9-5  Photomaps
            9-6  Mosaics
            9-7  Uncontrolled Digital Mosaics
            9-8  Semicontrolled Digital Mosaics
            9-9  Controlled Digital Mosaics
        References
        Problems

10    Tilted and Oblique Photographs
          10-1  Introduction
          10-2  Point Perspective
          10-3  Angular Orientation in Tilt, Swing, and Azimuth
          10-4  Auxiliary Tilted Photo Coordinate System
          10-5  Scale of a Tilted Photograph
          10-6  Relief Displacement on a Tilted Photograph



          10-7  Determining the Angle of Inclination of the Camera Axis in Oblique Photography
          10-8  Computing Horizontal and Vertical Angles from Oblique Photos
          10-9  Angular Orientation in Omega-Phi-Kappa
        10-10  Determining the Elements of Exterior Orientation
        10-11  Rectification of Tilted Photographs
        10-12  Correction for Relief of Ground Control Points Used in Rectification
        10-13  Analytical Rectification
        10-14  Optical-Mechanical Rectification
        10-15  Digital Rectification
        10-16  Atmospheric Refraction in Tilted Aerial Photographs
        References
        Problems

11    Introduction to Analytical Photogrammetry
          11-1  Introduction
          11-2  Image Measurements
          11-3  Control Points
          11-4  Collinearity Condition
          11-5  Coplanarity Condition
          11-6  Space Resection by Collinearity
          11-7  Space Intersection by Collinearity
          11-8  Analytical Stereomodel
          11-9  Analytical Interior Orientation
        11-10  Analytical Relative Orientation
        11-11  Analytical Absolute Orientation
        References
        Problems

12    Stereoscopic Plotting Instruments
          12-1  Introduction
          12-2  Classification of Stereoscopic Plotters

PART I DIRECT OPTICAL PROJECTION STEREOPLOTTERS
 
          12-3  Components
          12-4  Projection Systems
          12-5  Viewing and Tracing Systems
          12-6  Interior Orientation
          12-7  Relative Orientation
          12-8  Absolute Orientation

PART II ANALYTICAL PLOTTERS
 
          12-9  Introduction
        12-10  System Components and Method of Operation
        12-11  Analytical Plotter Orientation
        12-12  Three-Dimensional Operation of Analytical Plotters
        12-13  Modes of Use of Analytical Plotters



PART III SOFTCOPY PLOTTERS
 
        12-14  Introduction
        12-15  System Hardware
        12-16  Image Measurements
        12-17  Orientation Procedures
        12-18  Epipolar Geometry
        References
        Problems

13    Topographic Mapping and Spatial Data Collection
          13-1  Introduction
          13-2  Direct Compilation of Planimetric Features by Stereoplotter
          13-3  Direct Compilation of Contours by Stereoplotter
          13-4  Digitizing Planimetric Features from Stereomodels
          13-5  Representing Topographic Features in Digital Mapping
          13-6  Digital Elevation Models and Indirect Contouring
          13-7  Automatic Production of Digital Elevation Models
          13-8  Orthophoto Generation
          13-9  Map Editing
        References
        Problems

14    Laser Scanning Systems
          14-1  Introduction
          14-2  Principles and Hardware
          14-3  Airborne Laser Scanning
          14-4  Terrestrial Laser Scanning
          14-5  Laser Scan Data
          14-5  Error Evaluation
        References
        Problems

15    Fundamental Principles of Digital Image Processing
          15-1  Introduction
          15-2  The Digital Image Model
          15-3  Spatial Frequency of a Digital Image
          15-4  Contrast Enhancement
          15-5  Spectral Transformations
          15-6  Moving Window Operations
          15-7  Multiscale Representation
          15-8  Digital Image Matching
          15-9  Summary
        References
        Problems

16    Control for Aerial Photogrammetry
          16-1  Introduction



          16-2  Ground Control Images and Artificial Targets
          16-3  Number and Location of Photo Control
          16-4  Traditional Field Survey Methods for Establishing Horizontal and Vertical Control
          16-5  Fundamentals of the Global Positioning System
          16-6  Kinematic GPS Positioning
          16-7  Inertial Navigation Systems
          16-8  GPS-INS Integration
        References
        Problems

17    Aerotriangulation
          17-1  Introduction
          17-2  Pass Points for Aerotriangulation
          17-3  Fundamentals of Semianalytical Aerotriangulation
          17-4  Sequential Construction of a Strip Model from Independent Models
          17-5  Adjustment of a Strip Model to Ground
          17-6  Simultaneous Bundle Adjustment
          17-7  Initial Approximations for the Bundle Adjustment
          17-8  Bundle Adjustment with Airborne GPS Control
          17-9  Interpretation of Bundle Adjustment Results
        17-10  Aerotriangulation with Airborne Linear Array Sensors
        17-11  Satellite Image Triangulation
        17-12  Efficient Computational Strategies for Aerotriangulation
        References
        Problems

18    Project Planning
          18-1  Introduction
          18-2  Importance of Flight Planning
          18-3  Photographic End Lap and Side Lap
          18-4  Purpose of the Photography
          18-5  Photo Scale
          18-6  Flying Height
          18-7  Ground Coverage
          18-8  Weather Conditions
          18-9  Season of the Year
        18-10  Flight Map
        18-11  Specifications
        18-12  Cost Estimating and Scheduling
        References
        Problems

19    Terrestrial and Close-Range Photogrammetry
          19-1  Introduction
          19-2  Applications of Terrestrial and Close-Range Photogrammetry
          19-3  Terrestrial Cameras
          19-4  Matrix Equations for Analytical Self-Calibration



          19-5  Initial Approximations for Least Squares Adjustment
          19-6  Solution Approach for Self-Calibration Adjustment
          19-7  Control for Terrestrial Photogrammetry
          19-8  Analytical Self-Calibration Example
          19-9  Planning for Close-Range Photogrammetry
        References
        Problems

20    Photogrammetric Applications in GIS
          20-1  Introduction
          20-2  Land and Property Management
          20-3  Floodplain Rating
          20-4  Water Quality Management
          20-5  Wildlife Management
          20-6  Environmental Monitoring
          20-7  Wetland Analysis
          20-8  Transportation
          20-9  Multipurpose Land Information System
        20-10  Summary
        References
        Problems

 A    Units, Errors, Significant Figures, and Error Propagation

 B    Introduction to Least Squares Adjustment

 C    Coordinate Transformations

 D    Development of Collinearity Condition Equations

 E    Digital Resampling

 F    Conversions Between Object Space Coordinate Systems

        Index



About the Authors
Paul R. Wolf, Ph.D. (deceased), was a professor emeritus of civil and environmental engineering at
the University of Wisconsin, Madison.

Bon A. Dewitt, Ph.D., is an associate professor in the Geomatics Program, School of Forest Resources
and Conservation, University of Florida, Gainesville. Since 1999 he has served as the director of the
program. Dr. Dewitt specializes in photogrammetry, digital mapping technology, digital image
processing, hydrographic surveys, subdivision design, and land surveying.

Benjamin E. Wilkinson, Ph.D., is an assistant professor in the Geomatics Program, School of Forest
Resources and Conservation, University of Florida, Gainesville. Previously, he was a research
scientist at Integrity Applications Incorporated. Dr. Wilkinson specializes in photogrammetry,
LiDAR, remote sensing, navigation, and software development.



CHAPTER 1
Introduction

1-1  Definition of Photogrammetry
Photogrammetry has been defined by the American Society for Photogrammetry and Remote Sensing
as the art, science, and technology of obtaining reliable information about physical objects and the
environment through processes of recording, measuring, and interpreting photographic images and
patterns of recorded radiant electromagnetic energy and other phenomena. As implied by its name, the
science originally consisted of analyzing photographs, however the use of film cameras has greatly
diminished in favor of digital sensors. Photogrammetry has expanded to include analysis of other
records, such as digital imagery, radiated acoustical energy patterns, laser ranging measurements, and
magnetic phenomena. In this text both photographic and digital photogrammetry are emphasized
since they share many of the same principles, but other sources of information are also discussed. The
terms photograph and photo as used in this book can be considered synonymous with digital image
unless specifically noted.

Included within the definition of photogrammetry are two distinct areas: (1) metric
photogrammetry and (2) interpretative photogrammetry. Metric photogrammetry consists of making
precise measurements from photos and other information sources to determine, in general, the relative
locations of points. This enables finding distances, angles, areas, volumes, elevations, and sizes and
shapes of objects. The most common applications of metric photogrammetry are the preparation of
planimetric and topographic maps from photographs (see Secs. 13-2 through 13-7), and the production
of orthophotos from digital imagery (see Sec. 13-8). The photographs are most often aerial (taken
from an airborne vehicle), but terrestrial photos (taken from earth-based cameras) and satellite
imagery are also used.

Interpretative photogrammetry deals principally in recognizing and identifying objects and
judging their significance through careful and systematic analysis. It is included in the branches of
image interpretation and remote sensing. Image interpretation and remote sensing include not only the
analysis of photography but also the use of data gathered from a wide variety of sensing instruments,
including multispectral cameras, infrared sensors, thermal scanners, and sidelooking airborne radar.
Remote sensing instruments, which are often carried in vehicles as remote as orbiting satellites, are
capable of providing quantitative as well as qualitative information about objects. At present, with our
recognition of the importance of preserving our environment and natural resources, photographic
interpretation and remote sensing are both being employed extensively as tools in management and
planning.

Of the two distinct areas of photogrammetry, concentration in this book is on metric
photogrammetry. Interpretative photogrammetry is discussed only briefly, and those readers
interested in further study in this area should consult the references cited at the end of this chapter.

1-2  History of Photogrammetry
Developments leading to the present-day science of photogrammetry occurred long before the
invention of photography. As early as 350 B.C. Aristotle had referred to the process of projecting
images optically. In the early 18th century Dr. Brook Taylor published his treatise on linear



perspective, and soon afterward, J. H. Lambert suggested that the principles of perspective could be
used in preparing maps.

The actual practice of photogrammetry could not occur, of course, until a practical photographic
process was developed. Pioneering research in this area was advanced by Joseph Niepce of France,
who produced the world’s first photograph in 1827 by a process he referred to as heliography. This
process used metal plates coated with a tarlike substance that would gradually harden with exposure to
light. Expanding on the work of Niepce, fellow Frenchman Louis Daguerre announced his direct
photographic process, which was more practical than heliography. In his process the exposure was
made on metal plates that had been light-sensitized with a coating of silver iodide. This is essentially
the photographic process still in use today.

A year after Daguerre’s announcement, Francois Arago, a geodesist with the French Academy of
Science, demonstrated the use of photographs in topographic surveying. The first actual experiments
in using photogrammetry for topographic mapping occurred in 1849 under the direction of Colonel
Aimé Laussedat of the French Army Corps of Engineers. In Colonel Laussedat’s experiments kites
and balloons were used for taking aerial photographs. Due to difficulties encountered in obtaining
aerial photographs, he curtailed this area of research and concentrated his efforts on mapping with
terrestrial photographs. In 1859 Colonel Laussedat presented an account of his successes in mapping
using photographs. His pioneering work and dedication to this subject earned him the title “father of
photogrammetry.”

Topographic mapping using photogrammetry was introduced to North America in 1886 by
Captain Eduard Deville, the Surveyor General of Canada. He found Laussedat’s principles extremely
convenient for mapping the rugged mountains of western Canada. The U.S. Coast and Geodetic Survey
(now the National Geodetic Survey) adopted photogrammetry in 1894 for mapping along the border
between Canada and the Alaska Territory.

Meanwhile new developments in instrumentation, including improvements in cameras and films,
continued to nurture the growth of photogrammetry. In 1861 a three-color photographic process was
developed, and roll film was perfected in 1891. In 1909 Dr. Carl Pulfrich of Germany began to
experiment with overlapping pairs of photographs. His work formed much of the foundation for the
development of many instrumental photogrammetric mapping techniques in use today.

The invention of the airplane by the Wright brothers in 1903 provided the great impetus for the
emergence of modern aerial photogrammetry. Until that time, almost all photogrammetric work was,
for the lack of a practical means of obtaining aerial photos, limited to terrestrial photography. The
airplane was first used in 1913 for obtaining photographs for mapping purposes. Aerial photos were
used extensively during World War I, primarily in reconnaissance. In the period between World War I
and World War II, aerial photogrammetry for topographic mapping progressed to the point of mass
production of maps. Within this period many private firms and government agencies in North
America and in Europe became engaged in photogrammetric work. During World War II,
photogrammetric techniques were used extensively to meet the great new demand for maps. Air photo
interpretation was also employed more widely than ever before in reconnaissance and intelligence.
Out of this war-accelerated mapping program came many new developments in instruments and
techniques.

Advancements in instrumentation and techniques in photogrammetry have continued at a rapid
pace through the remainder of the 20th, and into the 21st century. The many advancements are too
numerous to itemize here, but collectively they have enabled photogrammetry to become the most
accurate and efficient method available for compiling maps and generating topographic information.
The improvements have affected all aspects of the science, and they incorporate many new
developments such as those in optics, electronics, computers and satellite technology. While this text



does include some historical background, its major thrust is to discuss and describe the current state of
the art in photogrammetric instruments and techniques.

1-3  Types of Photographs
Two fundamental classifications of photography used in the science of photogrammetry are terrestrial
and aerial. Terrestrial photographs (see Chap. 19) are taken with ground-based cameras, the position
and orientation of which might be measured directly at the time of exposure. A great variety of
cameras are used for taking terrestrial photographs, and these may include anything from inexpensive
commercially available cameras to precise specially designed cameras. While there are still some film
cameras being used in terrestrial photogrammetry, digital cameras have become the standard sensors
for image acquisition.

Aerial photography is commonly classified as either vertical or oblique. Vertical photos are taken
with the camera axis directed as nearly vertically as possible. If the camera axis were perfectly
vertical when an exposure was made, the photographic plane would be parallel to the datum plane and
the resulting photograph would be termed truly vertical. In practice, the camera axis is rarely held
perfectly vertical due to unavoidable aircraft tilts. When the camera axis is unintentionally tilted
slightly from vertical, the resulting photograph is called a tilted photograph. These unintentional tilts
are usually less than 1° and seldom more than 3°. For many practical applications, simplified
procedures suitable for analyzing truly vertical photos may also be used for tilted photos without
serious consequence. Precise photogrammetric instruments and procedures have been developed,
however, that make it possible to rigorously account for tilt with no loss of accuracy. Figure 1-1 shows
a film-based aerial mapping camera with its electric control mechanism and the mounting framework
for placing it in an aircraft. The vertical photograph illustrated in Fig. 1-2 was taken with a camera of
the type illustrated in Fig. 1-1 from an altitude of 470 meters (m) above the terrain.

 FIGURE 1-1   Zeiss RMK TOP 15, aerial mapping camera, with electronic controls and aircraft
mountings. (Courtesy Carl Zeiss, Inc.)



 FIGURE 1-2   Vertical aerial photograph. (Courtesy Hoffman and Company, Inc.)

While numerous film-based aerial mapping cameras are still in use, they are steadily being
replaced by high-resolution digital sensors. The sensor shown in Fig. 1-3 can capture digital images
containing pictorial detail that rivals, and in some cases exceeds, that of film-based cameras. The
geometry of the images produced by this sensor is effectively the same as that of standard film-based
aerial mapping cameras, and thus allows the same analysis methods and equations. Figure 1-4 shows a
digital sensor that acquires imagery by scanning the terrain continuously as the aircraft proceeds along
its trajectory. This sensor requires special instrumentation that can determine the precise position and
angular attitude as they vary continuously along the flight path. Substantial post-flight processing is
required in order to produce undistorted images of the terrain from the raw data.



 FIGURE 1-3   Microsoft UltraCam Eagle ultra-large digital aerial photogrammetric camera. (Courtesy
Microsoft Corporation.)

 FIGURE 1-4   Leica ADS80 airborne digital sensor. (Courtesy Leica Geosystems.)



Oblique aerial photographs are exposed with the camera axis intentionally tilted away from
vertical. A high oblique photograph includes the horizon; a low oblique does not. Figure 1-5 illustrates
the orientation of the camera for vertical, low oblique, and high oblique photography and also shows
how a square grid of ground lines would appear in each of these types of photographs. Figures 1-6 and
1-7 are examples of low oblique and high oblique photographs, respectively.

 FIGURE 1-5   Camera orientation for various types of aerial photographs.



 FIGURE 1-6   Low oblique photograph of Madison, Wisconsin (note that the horizon is not shown).
(Courtesy State of Wisconsin, Department of Transportation.)



 FIGURE 1-7   High oblique photograph of Tampa, Florida (note that the horizon shows on the
photograph). (Courtesy US Imaging, Inc.)

Figure 1-8 is an example of a low oblique image taken with a digital camera. The camera’s
position and angular attitude was directly measured in order to precisely locate the image features in a
ground coordinate system.



 FIGURE 1-8   Low oblique digital camera image (Courtesy Pictometry International Corp.)

1-4  Taking Vertical Aerial Photographs

 When an area is covered by vertical aerial photography, the photographs are usually taken
 along a series of parallel passes, called flight strips. As illustrated in Fig. 1-9, the photographs
 are normally exposed in such a way that the area covered by each successive photograph along
 a flight strip duplicates or overlaps part of the ground coverage of the previous photo. This
 lapping along the flight strip is called end lap, and the area of coverage common to an adjacent
 pair of photographs in a flight strip is called the stereoscopic overlap area. The overlapping
 pair of photos is called a stereopair. For reasons which will be given in subsequent chapters,
 the amount of end lap is normally between 55 and 65 percent. The positions of the camera at
 each exposure, e.g., positions 1, 2, 3 of Fig. 1-9, are called the exposure stations, and the
.altitude of the camera at exposure time is called the flying height



 FIGURE 1-9   End lap of photographs in a flight strip.

Adjacent flight strips are photographed so that there is also a lateral overlapping of ground
coverage between strips. This condition, as illustrated in Fig. 1-10, is called side lap, and it is
normally held at approximately 30 percent. The photographs of two or more side-lapping strips used
to cover an area is referred to as a block of photos.

 FIGURE 1-10   Side lap of adjacent flight strips.

1-5  Existing Aerial Photography
Photogrammetrists and photo interpreters can obtain aerial photography in one of two ways: (1) They 
can obtain photographs from existing coverage either for free or at a cost, or (2) they can purchase 
new coverage. It is seldom economical to use existing coverage for mapping, because it rarely meets 
the needs of the user; but existing coverage may prove suitable for other uses such as reconnaissance, 
project planning, historical records, or photo interpretation. If existing photography is not satisfactory 
because of age, scale, camera, etc., it will be necessary to obtain new coverage. Of course, before the 
decision can be made whether to use existing photography or obtain new, it is necessary to ascertain 
exactly what coverage exists in a particular area.

Existing aerial photography is available for nearly all the United States and Canada. Some areas 
have been covered several times, so that various scales and qualities of photography are available. 
Most of the coverage is vertical photography.

The U.S. Geological Survey (USGS), has archived, for distribution upon request,1 millions of 
aerial photos and satellite images. These include air photo coverage of virtually all areas of the United 
States as well as images from several series of satellites which provide global coverage. Their 
archived air photo coverage includes photos taken through the National Aerial Photography Program 
(NAPP); they were taken from a flying height of 20,000 feet (ft) above ground and are in black and 
white and color-infrared. It also includes photos from the



National High Altitude Photography (NHAP) Program, also in black and white and color-infrared
and taken from 40,000 ft above ground. The EROS Data Center also archives photos that were taken
by the USGS for its topographic mapping projects as well as photos taken by other federal agencies
including the National Aeronautics and Space Administration (NASA), the Bureau of Reclamation, the
Environmental Protection Agency (EPA), and the U.S. Army Corps of Engineers.

The U.S. Department of Agriculture2 is another useful resource for obtaining existing aerial
photography. Their archives contain extensive coverage for the United States. Available products
include black and white, color, and color infrared prints at negative scales of 1:20,000 and smaller.

Existing aerial photography can also be obtained from the department of transportation of most
states. These photos have usually been taken for use in highway planning and design; thus the scales
are generally relatively large, and coverage typically follows state and federal highways. In addition,
many counties have periodic coverage.

1-6  Uses of Photogrammetry

The earliest applications of photogrammetry were in topographic mapping, and today that use is still
the most common of photogrammetric activities. At present, the USGS, the federal agency charged
with mapping the United States, performs nearly 100 percent of its map compilation
photogrammetrically. State departments of transportation also use photogrammetry almost
exclusively in preparing their topographic maps. In addition, private engineering and surveying firms
prepare many special-purpose topographic maps photogrammetrically. These maps vary in scale from
large to small and are used in planning and designing highways, railroads, rapid transit systems,
bridges, pipelines, aqueducts, transmission lines, hydroelectric dams, flood control structures, river
and harbor improvements, urban renewal projects, etc. A huge quantity of topographic maps are
prepared for use in providing spatial data for geographic information systems (see Sec. 1-7).

Two newer photogrammetric products, orthophotos and digital elevation models (DEMs), are
now often used in combination to replace traditional topographic maps. As described in Sec. 13-8, an
orthophoto is an aerial photograph that has been modified so that its scale is uniform throughout. Thus
orthophotos are equivalent to planimetric maps, but unlike planimetric maps which show features by
means of lines and symbols, orthophotos show the actual images of features. For this reason they are
more easily interpreted than planimetric maps, and hence are preferred by many users. A DEM, as
discussed in Sec. 13-6, consists of an array of points in an area that have had their X, Y, and Z
coordinates determined. Thus, they provide a numerical representation of the topography in the area,
and contours, cross sections, profiles, etc., can be computed from them. Orthophotos and DEMs are
both widely applied in all fields where maps are used, but because they are both in digital form, one of
their most common applications, as discussed in Sec. 1-7 and Chap. 20, is their use in connection with
geographic information systems.

Photogrammetry has become an exceptionally valuable tool in land surveying. To mention just a
few uses in the field, aerial photos can be used as rough base maps for relocating existing property
boundaries. If the point of beginning or any corners can be located with respect to ground features that
can be identified on the photo, the entire parcel can be plotted on the photo from the property
description. All corners can then be located on the photo in relation to identifiable ground features
which, when located in the field, greatly assist in finding the actual property corners. Aerial photos
can also be used in planning ground surveys. Through stereoscopic viewing, the area can be studied in
three dimensions. Access routes to remote areas can be identified, and surveying lines of least
resistance through difficult terrain or forests can be found. The photogrammetrist can prepare a map
of an area without actually setting foot on the ground—an advantage which circumvents problems of



gaining access to private land for ground surveys.
The field of highway planning and design provides an excellent example of how important

photogrammetry has become in engineering. In this field, high-altitude photos or satellite images are
used to assist in area and corridor studies and to select the best route; smallscale topographic maps are
prepared for use in preliminary planning; large-scale topographic maps and DEMs are compiled for
use in final design; and earthwork cross sections are taken to obtain contract quantities. In many cases
the plan portions of the “plan profile” sheets of highway plans are prepared from aerial photographs.
Partial payments and even final pay quantities are often calculated from photogrammetric
measurements. Map information collected from modern photogrammetric instruments is directly
compatible with computer-aided drafting (CAD) systems commonly used in highway design. The use
of photogrammetry in highway engineering not only has reduced costs but also has enabled better
overall highway designs to be created.

Many areas outside of engineering have also benefitted from photogrammetry. Nonengineering
applications include the preparation of tax maps, soil maps, forest maps, geologic maps, and maps for
city and regional planning and zoning. Photogrammetry is used in the fields of astronomy,
architecture, archaeology, geomorphology, oceanography, hydrology and water resources,
conservation, ecology, and mineralogy. Stereoscopic photography effectively enables the outdoors to
be brought into the comfortable confines of the laboratory or office for viewing and study in three
dimensions.

Photogrammetry has been used successfully in traffic management and in traffic accident
investigations. One advantage of its use in the latter area is that photographs overlook nothing that
may be needed later to reconstruct the accident, and it is possible to restore normal traffic flow
quickly. Even in the fields of medicine and dentistry, measurements from X-ray and other
photographs and images have been useful in diagnosis and treatment. Of course, one of the oldest and
still most important uses of aerial photography is in military intelligence. Space exploration is one of
the new and exciting areas where photogrammetry is being utilized.

Photogrammetry has become a powerful research tool because it affords the unique advantage of
permitting instantaneous recordings of dynamic occurrences to be captured in images. Measurements
from photographs of quantities such as beam or pavement deflections under impact loads may easily
be obtained photographically where such measurements would otherwise be nearly impossible.

As noted earlier, photogrammetry has become extremely important in the field of geographic
information systems (GISs). This area of application is described in the following section.

It would be difficult to cover all the many situations in which photogrammetric principles and
methods could be or have been used to solve measurement problems. Photogrammetry, although still a
relatively new science, has already contributed substantially to engineering and nonengineering fields
alike. New applications appear to be bounded only by our imagination, and the science should
continue to grow in the future.

1-7  Photogrammetry and Geographic Information Systems

Geographic information systems, are widely used and hold a position of prominence in many fields.
These computer-based systems enable storing, integrating, manipulating, analyzing, and displaying
virtually any type of spatially related information about the environment. They are being used at all
levels of government, and by businesses, private industry, and public utilities to assist in planning,
design, management, and decision making. Chapter 20 in this book presents examples of applications
in geographic information systems. It is important at this juncture, however, to mention the major role



that photogrammetry plays in these systems.
An essential element of any GIS is a complex relational database. The information that comprises

the database usually includes both natural and cultural features. Specific types of information, objects
o r layers, within the database may include political boundaries, individual property ownership,
transportation networks, utilities, topography, hydrography, soil types, land use, vegetation types,
wetlands, etc. To be of use in a GIS, however, all data must be spatially related; i.e., all the data must
be in a common geographic frame of reference. Photogrammetry is ideal for deriving much of this
spatial information. As noted in the preceding section, topographic maps, digital elevation models,
and digital orthophotos are examples of photogrammetric products which are now commonly
employed in developing these spatially related layers of information. By employing photogrammetry
the data can be compiled more economically than through ground surveying methods, and this can be
achieved with comparable or even greater spatial accuracy. Furthermore, the data are compiled
directly in digital format, and thus are compatible for direct entry into GIS databases.

The photogrammetric procedures involved in developing topographic maps, digital elevation
models, digital orthophotos, and other products used in GISs are described in later chapters of this
text.

1-8  Professional Photogrammetry Organizations

There are numerous professional organizations in the United States and across the world serving the
interests of photogrammetry. Generally these organizations have as their objectives the advancement
of knowledge in the field, encouragement of communication among photogrammetrists, and
upgrading of standards and ethics in the practice of photogrammetry.

The American Society for Photogrammetry and Remote Sensing (ASPRS), formerly known as the
American Society of Photogrammetry, founded in 1934, is the foremost professional photogrammetric
organization in the United States. One of this society’s most valuable contributions has been its
publication of various manuals, such as the Manual of Photogrammetry, the Manual of Remote
Sensing, the Manual of Photographic Interpretation, and the Manual of Geographic Information
Systems. In preparing these volumes, leading photogrammetrists from government agencies as well as
private and commercial firms and educational institutions have authored and coauthored chapters in
their various special areas of expertise. The American Society for Photogrammetry and Remote
Sensing also publishes Photogrammetric Engineering and Remote Sensing,3 a monthly journal which
brings new developments and applications to the attention of its readers. The society regularly
sponsors technical meetings, at various locations throughout the United States, which bring together
large numbers of photogrammetrists for the presentation of papers, discussion of new ideas and
problems, and firsthand viewing of the latest photogrammetric equipment and software.

The fields of photogrammetry and surveying are so closely knit that it is difficult to separate
them. Both are measurement sciences dealing with the production of maps. The American Congress
on Surveying and Mapping (ACSM), although primarily concerned with more traditional types of
ground surveys, is also vitally interested in photogrammetry. The quarterly journal of ACSM,
Surveying and Land Information Science, frequently carries photogrammetry-related articles.

The Geomatics Division of the American Society of Civil Engineers (ASCE) is also dedicated to
surveying and photogrammetry. Articles on photogrammetry are frequently published in its Journal of
Surveying Engineering.

The Canadian Institute of Geomatics (CIG) is the foremost professional organization of Canada
concerned with photogrammetry. The CIG regularly sponsors technical meetings, and its journal,
Geomatica, carries photogrammetry articles. The Journal of Spatial Science and Photogrammetric



Record are similar journals with wide circulation, published in English, by professional organizations
in Australia and Great Britain, respectively.

The International Society for Photogrammetry and Remote Sensing (ISPRS), founded in 1910,
fosters the exchange of ideas and information among photogrammetrists all over the world.
Approximately a hundred foreign countries having professional organizations similar to the American
Society for Photogrammetry and Remote Sensing form the membership of ISPRS. This society fosters
research, promotes education, and sponsors international conferences at four-year intervals. Its
organization consists of seven technical commissions, each concerned with a specialized area in
photogrammetry and remote sensing. Each commission holds periodic symposia where
photogrammetrists gather to hear presented papers on subjects of international interest. The society’s
official journal is the ISPRS Journal of Photogrammetry and Remote Sensing, which is published in
English.
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Problems
  1-1.   Explain the differences between metric and interpretative photogrammetry.

  1-2.   Describe the different classifications of aerial photographs.

  1-3.   What is the primary difference between high and low oblique aerial photographs?

  1-4.   Define the following photogrammetric terms: end lap, side lap, stereopair, exposure station,
and flying height.

  1-5.   Discuss some of the principal uses of aerial photogrammetry.

  1-6.   Discuss some of the principal uses of terrestrial photogrammetry.

  1-7.   Describe how you would go about obtaining existing aerial photographic coverage of an area.

  1-8.   To what extent is photogrammetry being used in highway planning in your state?

  1-9.   Discuss the importance of photogrammetry in geographic information systems.

1-10.   Visit the following websites, and briefly discuss the information they provide regarding
photogrammetry and mapping.

            (a)  http://www.asprs.org/
            (b)  http://www.isprs.org
            (c)  http://www.cig-acsg.ca/
            (d)  http://www.sssi.org.au/
            (e)  http://www.rspsoc.org
            (f)  http://www.nga.mil/
            (g)  http://www.fgdc.gov/
            (h)  http://www.usgs.gov/pubprod/

_____________
1 Information about aerial photographic coverage can be obtained at http://www.usgs.gov/pubprod/aerial.html.
2 Information about aerial photographic coverage can be obtained at http://www.fsa.usda.gov/fsa.
3 The title of this journal was changed from Photogrammetric Engineering to Photogrammetric Engineering and Remote Sensing in
1975.
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CHAPTER 2
Principles of Photography and Imaging

 

2-1  Introduction
Photography, which means “drawing with light,” originated long before cameras and light-sensitive
photographic films came into use. Ancient Arabs discovered that when inside a dark tent, they could
observe inverted images of illuminated outside objects. The images were formed by light rays which
passed through tiny holes in the tent. The principle involved was actually that of the pinhole camera of
the type shown in Fig. 2-1. In the 1700s French artists used the pinhole principle as an aid in drawing
perspective views of illuminated objects. While inside a dark box, they traced the outlines of objects
projected onto the wall opposite a pinhole. In 1839 Louis Daguerre of France developed a
photographic film which could capture a permanent record of images that illuminated it. By placing
this film inside a dark “pinhole box,” a picture or photograph could be obtained without the help of an
artist. This box used in conjunction with photographic film became known as a camera. Tremendous
improvements have been made in photographic films and film cameras over the years; however, their
basic principle has remained essentially unchanged.

 FIGURE 2-1   Principle of the pinhole camera.
 

A more recent innovation in imaging technology is the digital camera which relies on electronic
sensing devices rather than conventional film. The resulting image, called a digital image, is stored in
computer memory which enables direct computer manipulation.

This chapter describes basic principles that are fundamental to understanding imaging processes.
Concepts relevant to both photography and digital imaging are included.

2-2  Fundamental Optics
Both film and digital cameras depend upon optical elements, especially lenses, to function. Thus an



understanding of some of the fundamental principles of optics is essential to the study of photography
and imaging.

The science of optics consists of two principal branches: physical optics and geometric optics. In
physical optics, light is considered to travel through a transmitting medium such as air in a series of
electromagnetic waves emanating from a point source. Conceptually this can be visualized as a group
of concentric circles expanding or radiating away from a light source, as illustrated in Fig. 2-2. In
nature, a good resemblance of this manner in which light waves propagate can be created by dropping
a small pebble into a pool of still water, to create waves radiating from the point where the pebble was
dropped. As with water, each light wave has its own frequency, amplitude, and wavelength. Frequency
is the number of waves that pass a given point in a unit of time; amplitude is the measure of the height
of the crest or depth of the trough; and wavelength is the distance between any wave and the next
succeeding one. The speed with which a wave moves from a light source is called its velocity.
Velocity is related to frequency and wavelength according to the equation

 FIGURE 2-2   Light waves emanating from a point source in accordance with the concept of physical
optics.
 

(2-1)
 
In Eq. (2-1), V is velocity, usually expressed in units of meters per second; f is frequency, generally
given in cycles per second, or hertz; and λ is wavelength, usually expressed in meters. Light has an
extremely high velocity, moving at the rate of 2.99792458 × 108 meters per second (m/s) in a vacuum.

In geometric optics, light is considered to travel from a point source through a transmitting
medium in straight lines called light rays. As illustrated in Fig. 2-3, an infinite number of light rays
radiate in all directions from any point source. The entire group of radiating lines is called a bundle of
rays. This concept of radiating light rays develops logically from physical optics if one considers the
travel path of any specific point on a light wave as it radiates away from the source. In Fig. 2-2, for
example, point a radiates to b, c, d, e, f, etc. as it travels from the source, thus creating a light ray.



 FIGURE 2-3   Bundle of rays emanating from a point source in accordance with the concept of
geometric optics.
 

In analyzing and solving photogrammetric problems, rudimentary line diagrams are often
necessary. Their preparation generally requires tracing the paths of light rays through air and various
optical elements. These same kinds of diagrams are often used as a basis for deriving fundamental
photogrammetric equations. For these reasons, a basic knowledge of the behavior of light, and
especially of geometric optics, is prerequisite to a thorough understanding of the science of
photogrammetry.

When light passes from one transmitting material to another, it undergoes a change in velocity in
accordance with the composition of the substances through which it travels. Light achieves its
maximum velocity traveling through a vacuum, it moves more slowly through air, and travels still
more slowly through water and glass.

The rate at which light travels through any substance is represented by the refractive index of the
material. Refractive index is simply the ratio of the speed of light in a vacuum to its speed through a
substance, or

(2-2)
 
In Eq. (2-2), n is the refractive index of a material, c is the velocity of light in a vacuum, and V is its
velocity in the substance. The refractive index for any material, which depends upon the wavelength
of the light, is determined through experimental measurement. Typical values for indexes of
refraction of common media are vacuum, 1.0000; air, 1.0003; water, 1.33; and glass, 1.5 to 2.0.

When light rays pass from one homogeneous, transparent medium to a second such medium
having a different refractive index, the path of the light ray is bent or refracted, unless it intersects the
second medium normal to the interface. If the intersection occurs obliquely, as shown in Fig. 2-4, then
the angle of incidence, ϕ, is related to the angle of refraction, ϕ′, by the law of refraction, frequently
called Snell’s law. This law is stated as follows:



 FIGURE 2-4   Refraction of light rays.
 

(2-3)
 
where n is the refractive index of the first medium and n′ is the refractive index of the second medium.
The angles ϕ and ϕ′ are measured from the normal to the incident and refracted rays, respectively.

Light rays can also be made to change directions by reflection. When a light ray strikes a smooth
surface such as a highly polished metal mirror, it is reflected so that the angle of reflection ϕ″ is equal
to the incidence angle ϕ, as shown in Fig. 2-5a. Both angles lie in a common plane and are measured
from NN′, the normal to the reflecting surface.

 FIGURE 2-5   (a) First-surface mirror demonstrating the angle of incidence ϕ and angle of refection ϕ″;
(b) back-surfaced mirror.
 

Plane mirrors used for nonscientific purposes generally consist of a plane sheet of glass with a
thin reflective coating of silver on the back. This type of “back-surfaced” mirror is optically
undesirable, however, because it creates multiple reflections that interfere with the primary reflected
light ray, as shown in Fig. 2-5b. These undesirable reflections may be avoided by using first-surface
mirrors, which have their silver coating on the front of the glass, as shown in Fig. 2-5a.



2-3  Lenses
A simple lens consists of a piece of optical glass that has been ground so that it has either two
spherical surfaces or one spherical surface and one flat surface. Its primary function is to gather light
rays from object points and bring them to focus at some distance on the opposite side of the lens. A
lens accomplishes this function through the principles of refraction. The simplest and most primitive
device that performs the functions of a lens is a tiny pinhole which theoretically allows a single light
ray from each object point to pass. The tiny hole of diameter d1 of the pinhole camera illustrated in
Fig. 2-1 produces an inverted image of the object. The image is theoretically in focus regardless of the
distance from the pinhole to the camera’s image plane. Pinholes allow so little light to pass, however,
that they are unsuitable for photogrammetric work. For practical purposes they are replaced with
larger openings occupied by glass lenses.

The advantage of a lens over a pinhole is the increased amount of light that is allowed to pass. A
lens gathers an entire pencil of rays from each object point instead of only a single ray. As discussed
earlier and illustrated in Fig. 2-3, when an object is illuminated, each point in the object reflects a
bundle of light rays. This condition is also illustrated in Fig. 2-6. A lens placed in front of the object
gathers a pencil of light rays from each point’s bundle of rays and brings these rays to focus at a point
in a plane on the other side of the lens, called the image plane. An infinite number of image points,
focused in the image plane, form the image of the entire object. Note from Fig. 2-6 that the image is
inverted by the lens.

 FIGURE 2-6   Pencils of light and image formation in a single-lens camera.
 

The optical axis of a lens is defined as the line joining the centers of curvature of the spherical
surfaces of the lens (points O1 and O2 of Fig. 2-7). In this figure R1 and R2 are the radii of the lens
surfaces, and the optical axis is the line O1O2. Light rays that are parallel to the optical axis as they
enter a lens come to focus at F, the focal point of the lens. The distance from the focal point to the
center of a lens is f, the focal length of the lens. A plane perpendicular to the optical axis passing
through the focal point is called the plane of infinite focus, or simply the focal plane. Parallel rays
entering a converging lens (one with two convex exterior surfaces, as shown in Fig. 2-7), regardless of
the angle they make with the optical axis, are ideally brought to focus in the plane of infinite focus



(see the dashed rays of the figure).

 FIGURE 2-7   Optical axis, focal length, and plane of infinite focus of a lens.
 

Example 2-1
A single ray of light traveling through air (n = 1.0003) enters a convex glass lens (n′ = 1.52) having a
radius of 5.00 centimeters (cm), as shown in Fig. 2-8. If the light ray is parallel to and 1.00 cm above
the optical axis of the lens, what are the angles of incidence ϕ and refraction ϕ′ for the air-to-glass
interface?

 FIGURE 2-8   Refraction of an incident light ray parallel to the optical axis of a lens.
 

Solution   From the figure,

 
Applying Snell’s law [Eq. (2-3)] gives

 



A pencil of incident light rays coming from an object located an infinite distance away from the
lens will be parallel, as illustrated in Fig. 2-7, and the image will come to focus in the plane of infinite
focus. For objects located some finite distance from the lens, the image distance (distance from lens
center to image plane) is greater than the focal length. The following equation, called the lens formula,
expresses the relationship of object distance o and image distance i to the focal length f of a
converging lens:

(2-4)
 
If the focal length of a lens and the distance to an object are known, the resulting distance to the image
plane can be calculated by using the lens formula.

Example 2-2
Find the image distance for an object distance of 50.0 m and a focal length of 50.0 cm.

Solution   By Eq. (2-4),

 
The preceding analysis of lenses was simplified by assuming that their thicknesses were negligible.
With thick lenses, this assumption is no longer valid. Thick lenses may consist of a single thick
element or a combination of two or more elements which are either cemented together in contact or
otherwise rigidly held in place with airspaces between the elements. A thick “combination” lens used
in an aerial camera is illustrated in Fig. 2-9. Note that it consists of 15 individual elements.

 



FIGURE 2-9   Cross section of SAGA-F lens. (Drawing from brochure courtesy of LH Systems, LLC.)
 

Two points called nodal points must be defined for thick lenses. These points, termed the
incident nodal point and the emergent nodal point, lie on the optical axis. They have the property that
conceptually, any light ray directed toward the incident nodal point passes through the lens and
emerges on the other side in a direction parallel to the original incident ray and directly away from the
emergent nodal point. In Fig. 2-10, for example, rays AN and N′a are parallel, as are rays BN and N′b.
Points N and N′ are the incident and emergent nodal points, respectively, of the thick lens. Such light
rays do not necessarily pass through the nodal points, as illustrated by the figure.

 FIGURE 2-10   Nodal points of a thick lens.
 

If parallel incident light rays (rays from an object at an infinite distance) pass through a thick
lens, they will come to focus at the plane of infinite focus. The focal length of a thick lens is the
distance from the emergent nodal point N′ to this plane of infinite focus.

It is impossible for a single lens to produce a perfect image; it will, instead, always be somewhat
blurred and geometrically distorted. The imperfections that cause blurring, or degrade the sharpness of
the image, are termed aberrations. Through the use of additional lens elements, lens designers are
able to correct for aberrations and bring them within tolerable limits. Lens distortions, on the other
hand, do not degrade image quality but deteriorate the geometric quality (or positional accuracy) of
the image. Lens distortions are classified as either symmetric radial or decentering. Both occur if light
rays are bent, or change directions, so that after they pass through the lens, they do not emerge parallel
to their incoming directions. Symmetric radial distortion, as its name implies, causes imaged points to
be distorted along radial lines from the optical axis. Outward radial distortion is considered positive,
and inward radial distortion is considered negative. Decentering distortion, which has both tangential
and asymmetric radial components, causes an off-center distortion pattern. These lens distortions are
discussed in greater detail in Secs. 3-10 and 4-11.

Resolution or resolving power of a lens is the ability of the lens to show detail. One common
method of measuring lens resolution is to count the number of line pairs (black lines separated by
white spaces of equal thickness) that can be clearly distinguished within a width of 1 millimeter (mm)
in an image produced by the lens. The modulation transfer function (MTF) is another way of
specifying the resolution characteristics of a lens. Both methods are discussed in Sec. 3-14, and a line-



pair test pattern is shown in Fig. 3-19. Good resolution is important in photogrammetry because photo
images must be sharp and clearly defined for precise measurements and accurate interpretative work.
Photographic resolution is not just a function of the camera lens, however, but also depends on other
factors, as described in later sections of this book.

The depth of field of a lens is the range in object distance that can be accommodated by a lens
without introducing significant image deterioration. For a given lens, depth of field can be increased
by reducing the size of the lens opening (aperture). This limits the usable area of the lens to the
central portion. For aerial photography, depth of field is seldom of consequence, because variations in
the object distance are generally a very small percentage of the total object distance. For close-range
photography, however (see Chap. 19), depth of field is often extremely critical. The shorter the focal
length of a lens, the greater its depth of field, and vice versa. Thus, if depth of field is critical, it can
be somewhat accommodated either through the selection of an appropriate lens or by reducing
aperture size.

Vignetting and falloff are lens characteristics which cause resultant images to appear brighter in
the center than around the edges. Compensation can be provided for these effects in the lens design
itself, by use of an antivignetting filter in the camera, or through lighting adjustments in the printing
process (see Sec. 2-8).

2-4  Single-Lens Camera
One of the most fundamental instruments used in photogrammetry is the single-lens camera. The
geometry of this device, depicted in Fig. 2-6, is similar to that of the pinhole camera, shown in Fig. 2-
1. In the single-lens camera, the size of the aperture (d2 in Fig. 2-6) is much larger than a pinhole,
requiring a lens in order to maintain focus.

Instead of object distances and image distances being unrestricted as with the pinhole camera,
with the lens camera these distances are governed by the lens formula, Eq. (2-4). To satisfy this
equation, the lens camera must be focused for each different object distance by adjusting the image
distance. When object distances approach infinity, such as for photographing objects at great
distances, the term 1/o in Eq. (2-4) approaches zero and image distance i is then equal to f, the lens
focal length. With aerial photography, object distances are very great with respect to image distances;
therefore aerial cameras are manufactured with their focus fixed for infinity. This is accomplished by
fixing image distance equal to the focal length of the camera lens.

2-5  Illuminance
Illuminance of any photographic exposure is the brightness or amount of light received per unit area
on the image plane surface during exposure. A common unit of illuminance is the meter-candle. One
meter-candle (1 m · cd) is the illuminance produced by a standard candle at a distance of 1 m.

Illuminance is proportional to the amount of light passing through the lens opening during
exposure, and this is proportional to the area of the opening. Since the area of the lens opening is
πd2/4, illuminance is proportional to the variable d2, the square of the diameter of the lens opening.

Image distance i is another factor which affects illuminance. Illuminance is an effect that adheres
to the inverse square law, which means that the amount of illuminance is inversely proportional to the
square of distance from the aperture. According to this law, at the center of the photograph,
illuminance is proportional to 1/i2. As distances increase away from the center of the photograph,
distances from the aperture likewise increase. This causes decreased illuminance, an effect which can



be quite severe for wide-angle lenses. This is one aspect of the physical basis for lens falloff,
mentioned in Sec. 2-3. Normally in photography, object distances are sufficiently long that the term
1/o in Eq. (2-4) is nearly zero, in which case i is equal to f. Thus, at the center of a photograph,
illuminance is proportional to the quantity 1/f 2, and the two quantities may be combined so that
illuminance is proportional to d2/f 2. The square root of this term is called the brightness factor, or

(2-5)
 
The inverse of Eq. (2-5) is also an inverse expression of illuminance and is the very common term
f-stop, also called f-number. In equation form, According to Eq. (2-6), f-stop is the ratio of focal
length to the diameter of the lens opening, or aperture. As the aperture increases, f-stop numbers
decrease and illuminance increases, thus requiring less exposure time, i.e., faster shutter speeds.
Because of this correlation between f-stop and shutter speed, f-stop is the term used for expressing
lens speed or the “light-gathering” power of a lens. Illuminance produced by a particular lens is
correctly expressed by Eq. (2-6), whether the lens has a very small diameter with short focal length or
a very large diameter with a long focal length. If f-stop is the same for two different lenses, the
illuminance at the center of each of their images will be the same.

(2-6)
 

2-6  Relationship of Aperture and Shutter Speed
A sunbather gets a suntan or sunburn when exposed to sunshine. The darkness of tan or severity of
burn is a function of the sun’s brightness and the time of exposure to the sun. Total exposure  of
photographic film is likewise the product of illuminance and time of exposure. Its unit is meter-
candle-seconds, although in certain applications a different unit, the microlux-second is used.

In making photographic exposures, the correct amounts of illuminance and time may be
correlated using a light meter. Illuminance is regulated by varying f-stop settings on the camera, while
time of exposure is set by varying the shutter speed. Variations in f-stop settings are actually
variations in the diameter of the aperture, which can be controlled with a diaphragm—a circular shield
that enlarges or contracts, changing the diameter of the opening of the lens and thus regulating the
amount of light that is allowed to pass through the lens.

With a lens camera, as the diameter of the aperture increases, enabling faster exposures, the
depth of field becomes less and lens distortions become more severe. At times a small diaphragm
opening is desirable, and there are times when the reverse is true. To photograph a scene with great
variations in object distances and yet retain sharp focus of all images, a large depth of field is
required. In this case, to maximize depth of field, the picture would be taken at a slow shutter speed
and large f-stop setting, corresponding to a small-diameter lens opening. On the other hand, in
photographing rapidly moving objects or in making exposures from a moving vehicle such as an
airplane, a fast shutter speed is essential, to reduce image motion. In this situation a small f-stop
setting corresponding to a large-diameter lens opening would be necessary for sufficient exposure.

From the previous discussion it is apparent that there is an important relationship between f-stop
and shutter speed. If exposure time is cut in half, total exposure is also halved. Conversely, if aperture



area is doubled, total exposure is doubled. If shutter time is halved and aperture area is doubled, total
exposure remains unchanged.

Except for inexpensive models, cameras are manufactured with the capability of varying both
shutter speed and f-stop setting, and many modern cameras do this function automatically. The
nominal f-stop settings are 1, 1.4, 2.0, 2.8, 4.0, 5.6, 8.0, 11, 16, 22, and 32. Not all cameras have all
these, but the more expensive cameras have many of them. The camera pictured in Fig. 2-11, for
example, has a minimum f-stop setting of f-2.8 and is also equipped for varying shutter speeds down
to  second (s).



 FIGURE 2-11   Digital single-lens reflex camera having a minimum f-stop setting of f-2.8 and variable
shutter speeds ranging down to  s. (Courtesy University of Florida)
 

An f-stop number 1, or f-1, occurs, according to Eq. (2-6), when the aperture diameter equals the
lens focal length. A setting at f-1.4 halves the aperture area from that of f-1. In fact, each succeeding
number of the nominal f-stops listed previously halves the aperture area of the preceding one, and it is
seen that each succeeding number is obtained by multiplying the preceding one by . This is
illustrated as follows:

Let d1 = f, where d1 is the aperture diameter. Then

 
At f-stop = 1,

 
If the aperture diameter is reduced to d2, giving a lens opening area of one-half of A1, then

 
From the above,  and the corresponding f-stop number is

 
The relationship between f-stop and shutter speed leads to many interesting variations in obtaining
correct exposures. Many digital cameras have automatic controls that will set the f-stop and shutter
speed for proper exposure. In addition to a manual mode, they typically provide: (1) a fully automatic
mode, where both f-stop and shutter speed are appropriately selected, (2) an aperture priority mode,
where the user inputs a fixed f-stop and the camera selects the appropriate shutter speed, and (3) a
shutter priority mode, where the user inputs a fixed shutter speed and the camera selects the
appropriate f-stop.

Example 2-3
Suppose that a photograph is optimally exposed with an f-stop setting of f-4 and a shutter speed of 
s. What is the correct f-stop setting if shutter speed is changed to  s?

Solution   Total exposure is the product of diaphragm area and shutter speed. This product must
remain the same for the  -s shutter speed as it was for the  -s shutter speed, or

 
Rearranging, we have



 
(a)

 
Let d1 and d2 be diaphragm diameters for  - and  -s shutter times, respectively. Then the
respective diaphragm areas are

 
(b)

 
By Eq. (2-6),

 
(c)

 
Substituting (b) and (c) into (a) gives

 
Reducing gives

 
Hence f-2.8 is the required f-stop. The above is simply computational proof of an earlier statement
that each successive nominal f-stop setting halves the aperture area of the previous one; or in this case
f-2.8 doubles the aperture area of f-4, which is necessary to retain the same exposure if shutter time is
halved.   

2-7  Characteristics of Photographic Emulsions
Photographic films consist of two parts: emulsion and backing or support. The emulsion contains
light-sensitive silver halide crystals. These are placed on the backing or support in a thin coat, as
shown in Fig. 2-12. The support material is usually paper, plastic film, or glass.

 FIGURE 2-12   Cross section of a photographic film.
 

When silver halide crystals are exposed to light, the bond between the silver and the halide is



weakened. An emulsion that has been exposed to light contains an invisible image of the object, called
the latent image. When the latent image is developed, areas of the emulsion that were exposed to
intense light turn to free silver and become black. Areas that received no light become white if the
support is white paper. (They become clear if the support is glass or transparent plastic film.) The
degree of darkness of developed images is a function of the total exposure (product of illuminance and
time) that originally sensitized the emulsion to form the latent image. In any photographic exposure,
there will be variations in illuminance received from different objects in the photographed scene, and
therefore between black and white there will exist various tones of gray which result from these
variations in illuminance. Actually the crystals turn black, not gray, when exposed to sufficient light.
However, if the light received in a particular area is sufficient to sensitize only a portion of the
crystals, then a gray tone results from a mixture of the resulting black and white. The greater the
exposure, the greater the percentage of black in the mixture and hence the darker the shade of gray.

The degree of darkness of a developed emulsion is called its density. The greater the density, the
darker the emulsion. Density of a developed emulsion on a transparent film can be determined by
subjecting the film to a light source, and then comparing the intensity of incident light upon the film
to that which passes through (transmitted light). The relationship is expressed in Eq. (2-7), where D is
the density. Since the intensity response of a human eye is nonlinear, the base-ten logarithm (log) is
used so that density will be nearly proportional to perceived brightness. A density value of zero
corresponds to a completely transparent film, whereas a film that allows 1 percent of the incident light
to pass through has a density of 2. The amount of light incident to an emulsion and the amount
transmitted can be measured with an instrument called a densitometer.

(2-7)
 

If exposure is varied for a particular emulsion, corresponding variations in densities will be
obtained. A plot of density on the ordinate versus logarithm of exposure on the abscissa for a given
emulsion produces a curve called the characteristic curve, also known as the D–log E curve, or the H-
and-D curve. A typical characteristic curve is shown in Fig. 2-13. Characteristic curves for different
emulsions vary somewhat, but they all have the same general shape. The lower part of the curve,
which is concave upward, is known as the toe region. The upper portion, which is concave downward,
is the shoulder region. A straight-line portion occurs between the toe and shoulder regions.



 FIGURE 2-13   Typical “characteristic curve” of a photographic emulsion.
 

Characteristic curves are useful in describing the characteristics of photographic emulsions. The
slope of the straight-line portion of the curve for example, is a measure of the contrast of the film. The
steeper the slope, the greater the contrast (change in density for a given range of exposure). Contrast
of a given film is expressed as gamma, the slope of the straight-line portion of the curve, as shown on
Fig. 2-13. From the figure it is evident that for an exposure of zero the film has some density. The
density of an unexposed emulsion is called fog, and on the curve it is the density corresponding to the
low portion of the toe region. It is also apparent from Fig. 2-13 that exposure must exceed a certain
minimum before density greater than fog occurs. Also, exposures within the shoulder region affect the
density very little, if any. Thus, a properly exposed photograph is one in which the entire range of
exposure occurs within the straight-line portion of the curve.

Just as the skin of different people varies in sensitivity to sunlight, so does the sensitivity of
emulsions vary. Light sensitivity of photographic emulsions is a function of the size and number of
silver halide crystals or grains in the emulsion. When the required amount of light exposes a grain in
the emulsion, the entire grain becomes exposed regardless of its size. If a certain emulsion is
composed of grains smaller than those in another emulsion, such that approximately twice as many
grains are required to cover the film, then this emulsion will also require about twice as much light to
properly expose the emulsion. Conversely, as grain size increases, the total number of grains in the
emulsion decreases and the amount of light required to properly expose the emulsion decreases. Film
is said to be more sensitive and faster when it requires less light for proper exposure. Faster films can
be used advantageously in photographing rapidly moving objects.

As sensitivity and grain size increase, the resulting image becomes coarse and resolution
(sharpness or crispness of the picture) is reduced. Thus, for highest pictorial quality, such as portrait
work, slow, finegrained emulsions are preferable. Film resolution can be tested by photographing a
standard test pattern, as previously discussed in Sec. 2-3 and covered in greater detail in Sec. 3-14.

Photographers have developed exposure guides for films of various sensitivities. For films not
used in aerial photography, the International Standards Organization (ISO) number is used to indicate
film sensitivity or speed. The ISO number assigned to a film is roughly equal to the inverse of shutter
speed (in seconds) required for proper exposure in pure sunlight for a lens opening of f-16. According



to this rule of thumb, if a film is properly exposed in pure sunlight at f-16 and  s, it is classified ISO
200. This rule of thumb is seldom needed today because of the availability of microprocessor-
controlled cameras which, given the ISO rating of the film being used, automatically yield proper
exposures (f-stops and shutter speeds) for particular lighting conditions.

The foregoing discussion of film speed applies primarily to ordinary ground-based photography.
In aerial photography, the range of illuminance at the focal plane is significantly lower due to the
narrower range of ground illuminance and atmospheric haze. For this reason, the sensitivity of films
used in aerial photography is expressed as aerial film speed (AFS), which is different from, and should
not be confused with, the ISO number. Aerial film speed is determined by the point on the
characteristic curve where density is 0.3 unit above the fog density.

2-8  Processing and Printing Black-and-White Photographs
The five-step darkroom procedure for processing an exposed black-and-white emulsion is as follows:

      1.  Developing. The exposed emulsion is placed in a chemical solution called developer. The
action of the developer causes grains of silver halide that were exposed to light to be reduced
to free black silver. The free silver produces the blacks and shades of gray of which the image
is composed. Developers vary in strength and other characteristics and must therefore be
carefully chosen to produce the desired results.

      2.  Stop bath. When proper darkness and contrast of the image have been attained in the
developing stage, it is necessary to stop the developing action. This is done with a stop bath—
an acidic solution which neutralizes the basic developer solution.

      3.  Fixing. Not all the silver halide grains are turned to free black silver as a result of developing.
Instead, there remain many undeveloped grains which would also turn black upon exposure to
light if they were not removed. To prevent further developing which would ruin the image, the
undeveloped silver halide grains are dissolved out in the fixing solution.

      4.  Washing. The emulsion is washed in clean running water to remove any remaining chemicals.
If not removed, these chemicals could cause spotting or haziness of the image.

      5.  Drying. The emulsion is dried to remove the water from the emulsion and backing material.

Modern equipment is capable of automatically performing the entire five-step darkroom
procedure nonstop. The result obtained from developing black-and-white film is a negative. It derives
its name from the fact that it is reversed in tone and geometry from the original scene that was
photographed; i.e., black objects appear white and vice versa, and images are inverted.

A positive print is obtained by passing light through the negative onto another emulsion. This
reverses tone and geometry again, thereby producing an image in which those two characteristics are
true. The configuration involved in this process may be either contact or projection printing. In
contact printing the emulsion side of a negative is placed in direct contact with the unexposed
emulsion contained on printing material. Together these are placed in a contact printer and exposed
with the emulsion of the positive facing the light source. Figure 2-14 is a schematic of a single-frame
contact printer. In contact printing, the positive that is obtained is the same size as the negative from
which it was made.



 FIGURE 2-14   A contact printer.
 

A processed negative will generally have a nonuniform darkness due to lens falloff, vignetting,
and other effects. Consequently, uniform lighting across the negative during exposure of a positive
print will underexpose the emulsion in darker areas of the negative and overexpose it in lighter areas.
Compensation for this can be made in a process called dodging. It consists of adjusting the amount of
light passing through different parts of the negative so that optimum exposure over the entire print is
obtained in spite of darkness variations.

If positives are desired at a scale either enlarged or reduced from the original negative size, a
projection printing process can be used. The geometry of projection printing is illustrated in Fig. 2-15.
In this process, the negative is placed in the projector of the printer and illuminated from above. Light
rays carry images c and d, for example, from the negative, through the projector lens, and finally to
their locations C and D on the positive, which is situated on the easel plane beneath the projector. The
emulsion of the positive, having been exposed, is then processed in the manner previously described.

 FIGURE 2-15   Geometry of enlargement with a projection printer.
 



Distances A and B of Fig. 2-15 can be varied so that positives can be printed at varying scales,
and at the same time the lens formula, Eq. (2-4), can be satisfied for the projector’s lens. The
enlargement or reduction ratio from negative to positive size is equal to the ratio B/A.

Besides using printing paper, positives may also be prepared on plastic film or glass plates. In
photogrammetric terminology, positives prepared on glass plates or transparent plastic materials are
called diapositives.

2-9  Spectral Sensitivity of Emulsions
The sun and various artificial sources such as lightbulbs emit a wide range of electromagnetic energy .
The entire range of this electromagnetic energy is called the electromagnetic spectrum. X-rays, visible
light rays, and radio waves are some familiar examples of energy variations within the
electromagnetic spectrum. Electromagnetic energy travels in sinusoidal oscillations called waves.
Variations in electromagnetic energy are classified according to variations in their wavelengths or
frequencies of propagation. The velocity of electromagnetic energy in a vacuum is constant and is
related to frequency and wavelength through the following expression (see also Sec. 2-2):

(2-8)
 
I n Eq. (2-8), c is the velocity of electromagnetic energy in a vacuum, f is frequency, and λ is
wavelength. Figure 2-16 illustrates the wavelength classification of the electromagnetic spectrum.
Visible light (that electromagnetic energy to which our eyes are sensitive) is composed of only a very
small portion of the spectrum (see the figure). It consists of energy with wavelengths in the range of
from about 0.4 to 0.7 micrometer (μm). Energy having wavelengths slightly shorter than 0.4 μm is
called ultraviolet, and energy with wavelengths slightly longer than 0.7 μm is called near-infrared.
Ultraviolet and near-infrared cannot be detected by the human eye.

 FIGURE 2-16   Classification of the electromagnetic spectrum by wavelength.
 

Within the wavelengths of visible light, the human eye is able to distinguish different colors. The
primary colors—blue, green, and red—are composed of slightly different wavelengths: Blue is
composed of energy having wavelengths of about 0.4 to 0.5 μm, green from 0.5 to 0.6 μm, and red
from 0.6 to 0.7 μm. To the human eye, other hues can be represented by combinations of the primary
colors; e.g., yellow is perceived when red and green light are combined. There are multitudes of these
combination colors. White light is the combination of all the visible colors. It can be broken down into
its component colors by passing it through a prism, as shown in Fig. 2-17. Color separation occurs
because of different refractions that occur with energy of different wavelengths.



 FIGURE 2-17   White light broken into the individual colors of the visible and near-visible spectrum by
means of a prism. (Note that the range of wavelengths of transmitted light is non-linear.)
 

To the human eye, an object appears a certain color because the object reflects energy of the
wavelengths producing that color. If an object reflects all the visible energy that strikes it, that object
will appear white. But if an object absorbs all light and reflects none, that object will appear black. If
an object absorbs all green and red energy but reflects blue, that object will appear blue.

Just as the retina of the human eye is sensitive to variations in wavelength, photographic
emulsions can also be manufactured with variations in wavelength sensitivity. Black-and-white
emulsions composed of untreated silver halides are sensitive only to blue and ultraviolet energy.
Reflected light from a red object, for example, will not produce an image on such an emulsion. These
untreated emulsions are usually used on printing papers for making positives from negatives. When
these printing papers are used, red or yellow lights called safe lights can conveniently be used to
illuminate the darkroom because these colors cannot expose a paper that is sensitive only to blue light.

Black-and-white silver halide emulsions can be treated by use of fluorescent dyes so that they are
sensitive to other wavelengths of the spectrum besides blue. Emulsions sensitive to blue, green, and
red are called panchromatic. Emulsions can also be made to respond to energy in the near-infrared
range. These emulsions are called infrared, or IR. Infrared films make it possible to obtain
photographs of energy that is invisible to the human eye. An early application of this type of emulsion
was in camouflage detection, where it was found that dead foliage or green netting, which had the



same green color as live foliage to the human eye, reflected infrared energy differently. This
difference could be detected through infrared photography. Infrared film is now widely used for a
variety of applications such as detection of crop stress, tree species mapping, etc. Figure 2-18
illustrates sensitivity differences of various emulsions.

 FIGURE 2-18   Typical sensitivities of various black-and-white emulsions.
 

2-10   Filters
The red or yellow safe light described in the previous section usually is simply an ordinary white light
covered with a red or yellow filter. If the filter is red, it blocks passage of blue and green wavelengths
and allows only red to pass. Filters placed in front of camera lenses also allow only certain
wavelengths of energy to pass through the lens and expose the film. The use of filters on cameras can
be very advantageous for certain types of photography.

Atmospheric haze is largely caused by the scattering of ultraviolet and short blue wavelengths.
Pictures which are clear in spite of atmospheric haze can be taken through haze filters. These filters
block passage of objectionable scattered short wavelengths (which produce haze) and prevent them
from entering the camera and exposing the film. Because of this advantage, haze filters are almost
always used on aerial cameras.

Filters for aerial mapping cameras are manufactured from high-quality optical glass. This is the
case because light rays that form the image must pass through the filter before entering the camera. In
passing through the filter, light rays are subjected to distortions caused by the filter. The camera
should therefore be calibrated (see Secs. 3-10 through 3-14), with the filter locked firmly in place;
after calibration, the filter should not be removed, for this would upset the calibration.

2-11   Color Film
Normal color and color infrared emulsions are used for certain applications in photogrammetry. Color
emulsions consist of three layers of silver halides, as shown in Fig. 2-19. The top layer is sensitive to
blue light, the second layer is sensitive to green and blue light, and the bottom layer is sensitive to red
and blue light. A blue-blocking filter is built into the emulsion between the top two layers, thus
preventing blue light from exposing the bottom two layers. The result is three layers sensitive to blue,
green, and red light, respectively, from top to bottom. The sensitivity of each layer is indicated in Fig.
2-20.



 FIGURE 2-19   Cross section of normal color film.
 

 FIGURE 2-20   Typical color sensitivity of three layers of normal color film.
 

In making a color exposure, light entering the camera sensitizes the layer(s) of the emulsion that
correspond(s) to the color or combination of colors of the original scene. There are a variety of color
films available, each requiring a slightly different developing process. The first step of color
developing accomplishes essentially the same result as the first step of black-and-white developing.
The exposed halides in each layer are turned into black crystals of silver. The remainder of the process
depends on whether the film is color negative or color reversal film. With color negative film, a
negative is produced and color prints are made from the negative. Color reversal film produces a true
color transparency directly on the film.

During World War II there was great interest in increasing the effectiveness of films in the
infrared region of the spectrum. This interest led to the development of color infrared or false-color
film. The military called it camouflage detection film because it allowed photo interpreters to easily
differentiate between camouflage and natural foliage. Color Fig. 2-21a and b illustrate this effect.
Green tennis courts with brown backgrounds can be seen within the circles of Fig. 2-21a, a normal
color image. The color-infrared image of Fig. 2-21b depicts the same area, but uses various shades of
red to represent reflected infrared energy. The tennis courts in Fig. 2-21b now appear with a grayish
color, not red like that of the surrounding vegetation. Like normal color film, color IR film also has



three emulsion layers, each sensitive to a different part of the spectrum. Figure 2-22 illustrates the
sensitivity curves for each layer of color IR film. The top layer is sensitive to ultraviolet, blue, and
green energy. The middle layer has its sensitivity peak in the red portion of the spectrum, but it, too, is
sensitive to ultraviolet and blue light. The bottom layer is sensitive to ultraviolet, blue, and infrared.
Color IR film is commonly used with a yellow filter, which blocks wavelengths shorter than about 0.5
μm. The shaded area of Fig. 2-22 illustrates the blocking effect of a yellow filter.

 



 
FIGURE 2-21   (a) Normal color image and (b) color infrared image. Note that healthy vegetation,
which appears green in the normal color image, appears red in the color infrared image. Circled tennis
courts are painted green but appear gray in the color infrared image. (See also color insert.)
 



 FIGURE 2-22   Typical sensitivity of color infrared (false-color) film.
 

To view the exposure resulting from invisible IR energy, the IR sensitive layer must be
represented by one of the three primary (visible) colors. With color IR film and a yellow filter, any
objects that reflect infrared energy appear red on the final processed picture. Objects that reflect red
energy appear green, and objects reflecting green energy appear blue. It is this misrepresentation of
color which accounts for the name false color. Although color IR film was developed by the military,
it has found a multitude of uses in civilian applications.

2-12   Digital Images
A digital image is a computer-compatible pictorial rendition in which the image is divided into a fine
grid of “picture elements,” or pixels. The image in fact consists of an array of integers, often referred
to as digital numbers, each quantifying the gray level, or degree of darkness, at a particular element.
When an output image consisting of many thousands or millions of these pixels is viewed, the
appearance is that of a continuous-tone picture. The image of the famous Statue of Liberty shown in
Fig. 2-23a illustrates the principle. This image has been divided into a pixel grid of 72 rows and 72
columns, with each pixel being represented by a value from 0 (dark black) to 255 (bright white). A
portion of the image near the mouth of the statue is shown enlarged in Figure 2-23b, and the digital
numbers associated with this portion are listed in Fig. 2-23c. Note the correspondence of low numbers
to dark areas and high numbers to light areas.



 FIGURE 2-23   Digital image of Statue of Liberty.
 

The seemingly unusual range of values (0 to 255) can be explained by examining how computers
deal with numbers. Since computers operate directly in the binary number system, it is most efficient
and convenient to use ranges corresponding to powers of 2. Numbers in the range 0 to 255 can be
accommodated by 1 byte, which consists of 8 binary digits, or bits. An 8-bit value can store 28, or 256,
values, which exactly matches the range of 0 to 255 (remember to count the 0 as a value). The entire
image of Fig. 2-23a would require a total of 72 × 72 = 5184 bytes of computer storage.

Digital images are produced through a process referred to as discrete sampling. In this process, a
small image area (a pixel) is “sensed” to determine the amount of electromagnetic energy given off by
the corresponding patch of surface on the object. Discrete sampling of an image has two fundamental
characteristics, geometric resolution and radiometric resolution. Geometric (or spatial) resolution
refers to the physical size of an individual pixel, with smaller pixel sizes corresponding to higher
geometric resolution. The four illustrations of Fig. 2-24 show the entire image of the Statue of Liberty
and demonstrate the effect of different geometric resolutions on image clarity. The original 72 × 72



pixel image of Fig. 2-24a and the half-resolution 36 × 36 image of Fig. 2-24b are readily discernible.
The 18 × 18 image of Fig. 2-24c is barely recognizable, and then only when the identity of the actual
feature is known. At the resolution of the 9 × 9 image of Fig. 2-24d, one sees a semiorganized
collection of blocks bearing little resemblance to the original image, although the rough position of
the face and the arm can be detected. Obviously, geometric resolution is important for feature
recognition in digital photographs.

 FIGURE 2-24   Digital image of Statue of Liberty at various spatial resolutions.
 

Another fundamental characteristic of digital imagery is radio-metric resolution, which can be
further broken down into level of quantization and spectral resolution. Quantization refers to the
conversion of the amplitude of the original electromagnetic energy (analog signal) into a number of
discrete levels (digital signal). Greater levels of quantization result in more accurate digital
representations of the analog signal. While the image of Fig. 2-23 has 8-bit quantization, some digital
images have 10-bit (1024 gray levels), 12-bit (4096 gray levels), or even higher quantization.

Figure 2-25 illustrates the effect of various levels of quantization for the statue image. In this
figure, part (a) shows the original image with 256 discrete quantization levels, while parts (b), (c), and
(d) show 8, 4, and 2 levels, respectively. Notice that in lower-level quantizations, large areas appear
homogeneous and subtle tonal variations can no longer be detected. At the extreme is the 2-level
quantization, which is also referred to as a binary image. Quantization level has a direct impact on the
amount of computer memory required to store the image. The binary image requires only 1 bit of
computer memory for each pixel (21 = 2), the 4-level image requires 2 bits (22 = 4), and the 8-level
image requires 3 bits (23 = 8).



 FIGURE 2-25   Digital image of Statue of Liberty at various quantization levels.
 

Spectral resolution is another aspect of radiometric resolution. Recall from Sec. 2-9 that the
electromagnetic spectrum covers a continuous range of wavelengths. In imaging, samples of
electromagnetic energy are normally sensed only within narrow bands in the spectrum. For example,
the color film discussed in Sec. 2-9 samples three bands within the visible portion of the spectrum—
blue, green, and red. The spectral resolution of color film corresponds to three spectral bands or
channels. The black-and-white statue image of Fig. 2-23 has only one spectral band which covers the
entire visible range from violet through red. Other imaging devices may take samples in several, or
even hundreds, of bands. With a higher level of spectral resolution, a more accurate representation of
an object’s spectral response pattern can be made. Since each spectral band must be stored
individually in computer memory, the number of bands has a direct impact on the amount of image
storage required.

Example 2-4
A 3000-row by 3000-column satellite image has three spectral channels. If each pixel is represented
by 8 bits (1 byte) per channel, how many bytes of computer memory are required to store the image?

Solution



 

2-13   Color Image Representation
A human’s perception of color is a complex interaction involving an analog spectral signal. Highly
accurate and precise portrayal of the analog signal in the digital realm is prohibitively expensive in
terms of memory storage. Color digital images generally utilize a simplification based on the same
principle as a television screen. With the set turned on, hold a magnifying lens up to a white area on
your TV (or computer) screen. You should see that the region is covered by thousands of tiny red,
green, and blue dots or rectangles. If you look at an area of the screen that is a bluish color, you will
see that the blue dots remain brightly lit, whereas the red and green dots are dim. At normal viewing
distance, however, your eyes perceive seemingly continuous shades of color. In this same fashion,
digital images represent shades of color by varying the levels of brightness of the three primary colors
or channels, individually. The samples from these three channels form the digital representation of the
original analog signal. This scheme is appropriately based on the theory that three types of cones
(color-sensing components of the retina) in the human eye are likewise most sensitive to blue, green,
and red energy.

The color of any pixel can be represented by three-dimensional coordinates in what is known as
BGR (or RGB) color space. Assume for example that the digital number in each channel is quantified
as an 8-bit value, which can range from 0 to 255. The color of a pixel is thus represented by an ordered
triplet consisting of a blue value, a green value, and a red value, each of which can range from 0 to
255. This can be represented by the three-dimensional axis system shown in Fig. 2-26. This figure
shows the color cube, where a particular color has a unique set of B, G, R coordinates. Figure 2-27 is a
color illustration of the color cube from (a) behind the origin and (b) from the opposite corner. Note
how the colors change from one region of the cube to another.



 FIGURE 2-26   Blue-green-red color cube.
 

 FIGURE 2-27   (a) A view of the color cube from behind the origin and (b) a view of the color cube
from the opposite corner. (See also color insert.)
 

Even though a B,G,R position within the color cube is adequate to specify any given color, this
scheme does not lend itself to convenient human interpretation. The intensity-hue-saturation (IHS)
system, on the other hand, is more readily understood by humans. This system can be defined as a set
of cylindrical coordinates in which the height, angle, and radius represent intensity, hue, and
saturation, respectively. The axis of the cylinder is the gray line which extends from the origin of the
color cube to the opposite corner where the levels of blue, green, and red are maximum, as shown in



Fig. 2-28. Thus, for any particular color, intensity represents overall brightness irrespective of color,
hue represents the specific mixture of wavelengths that define the color, and saturation represents the
boldness of the color. The representations of hue and saturation are illustrated in Fig. 2-29, which is a
two-dimensional view showing the projection of the color cube and base of the cylinder as viewed
along the gray line toward the origin. Here, hue and saturation appear as a set of polar coordinates
with the direction of the 0° hue axis being arbitrarily chosen as halfway between blue and magenta. As
an example, in Fig. 2-29 the hue value of 240° (–120°) corresponds to the color orange, and the large
saturation value (radius) represents a very bold or vivid color. Figure 2-30 is a color image that shows
the color cube in a position corresponding to Fig. 2-29. This figure allows a visual interpretation of the
effects of hue and saturation.

 FIGURE 2-28   Position of gray line as axis of cylindrical intensity-hue-saturation system.
 



 FIGURE 2-29   Representation of hue and saturation with respect to color values.
 

 FIGURE 2-30   Representation of hue and saturation corresponding to Fig. 2-29. (See also color insert.)
 

Conversion from the system of B, G, R coordinates to I, H, S is accomplished by starting with the



intensity (cylinder) axis lined up with the red axis and then rotating so the intensity axis lines up with
the gray line. Then the standard cartesian-to-cylindrical coordinate conversion is applied. To convert
from I, H, S to B, G, R the process is reversed. The derivation is based on a rigorous three-dimensional
coordinate conversion, the details of which are not presented in this text. To convert from B, G, R to I,
H, S, first compute two intermediate variables X and Y by Eqs. (2-8) and (2-9). Then intensity, hue,
and saturation can be computed by Eqs. (2-10), (2-11), and (2-12), respectively. Example 2-5
demonstrates the procedure.

(2-8)
 

(2-9)
 

(2-10)
 

(2-11)
 

(2-12)
 
In order for the full range of hues to be accommodated, the full-circle inverse tangent function (e.g.,
ATAN2 in many programming languages or spreadsheets) must be used in Eq. (2-11). To convert back
from I, H, S to B, G, R intermediate values of X and Y are computed by Eqs. (2-13) and (2-14). Then
blue, green, and red can be computed by Eqs. (2-15), (2-16), and (2-17), respectively.

(2-13)
 

(2-14)
 

(2-15)
 

(2-16)
 

(2-17)



 
When conversion is done from B, G, R to I, H, S the resulting value of intensity can range from 0 to 

, hue can range from –π to + π, and saturation can range from 0 to , (assuming the ranges
for the B, G, R coordinates were each 0 to 255). Since it is often desirable to store the I, H, S values as
1-byte integers, they may have to be rescaled to the 0-to-255 range. When these values are rescaled,
the conversion process may no longer be perfectly reversible due to loss of precision. In other words,
given a particular set of B, G, R coordinates, if they are converted to I, H, S scaled to a 1-byte integer
from 0 to 255, rescaled to the original ranges, and converted back to B, G, R then the final values may
be slightly different from the original ones.

Example 2-5
Convert the B, G, R coordinates (165, 57, 105) to I, H, S values. Then convert the resultant values back
to B, G, R.

Solution   By Eqs. (2-8) through (2-12):

 
Reverse by using Eqs. (2-13) through (2-17):

 

2-14   Digital Image Display
The B, G, R system discussed in the preceding section is an example of a color-additive process. In
that process, different colors of actively produced light are combined to yield other colors. The color-



additive process is used to produce images on typical TV or computer displays. When a color digital
image is printed on paper, the situation is different. Instead of each pixel being an active light source,
ambient white light reflects off colored inks, which absorb selected colors or channels of energy.
Digital printing is a color-subtractive process because certain colors are absorbed (subtracted) from
the ambient white light. Figure 2-31a illustrates the mixing of colors in a color additive process. The
three circles represent active light sources of red, green, and blue light. The regions of intersection
show the resulting colors that occur when the light sources are combined. Red and green light combine
to produce yellow, green and blue produce cyan, and blue and red produce magenta. Figure 2-31b
illustrates the mixing of colors in a color subtractive process. The three circles represent pigments or
inks having the colors of cyan, magenta, and yellow. The regions of intersection show the resulting
colors that occur when the pigments or inks are combined. Cyan and magenta combine to produce
blue, magenta and yellow produce red, and yellow and cyan produce green.

 FIGURE 2-31   Illustration of the (a) color additive process and (b) color subtractive process. (See also
color insert.)
 

The display of a digital color image on TV or computer monitor is straightforward. The area
within each pixel emits light of various intensities for each of the primary colors (red, green, and
blue), which mix to produce the appropriate color. Printing of color images uses the process of color
subtraction, but it is more complicated because the intensity of pigment or ink cannot be easily
controlled. The complementary colors of yellow, magenta, and cyan are used instead of the primary
colors of blue, green, and red. For example, yellow ink appears yellow because the blue portion of the
incident white light is absorbed by the ink, and only the green and red energy are reflected. Similarly,
magenta absorbs green energy, reflecting only blue and red, and cyan absorbs red energy, reflecting
only blue and green. To produce the color red, yellow ink and magenta ink are used, which will absorb
blue and green, respectively, leaving a red hue. By varying the spatial density of the ink dots, the
amounts of blue, green, and red energy being absorbed will likewise vary, allowing the full range of
colors to be produced. Generally, black ink is incorporated into the scheme, which allows darker grays
and black to be produced.
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Problems
  2-1.   Briefly explain the difference between physical and geometric optics.

  2-2.   Under certain conditions, the speed of light through air is 2.99688 × 108 m/s. What is the index
of refraction of air under these conditions?

  2-3.   A certain electromagnetic energy is propagated in a vacuum at a frequency of 2,361,000 cycles
per second. What is the wavelength (to the nearest meter) of this energy?

  2-4.   The wavelength of visible light ranges from 0.4 to 0.7 μm. Express this range in terms of
frequency (to the nearest cycle per second), based on the speed of light in a vacuum.

  2-5.   If a certain type of glass has an index of refraction of 1.550, what is the speed of light through
this glass?

  2-6.   A ray of light enters glass (index 1.570) from air (index 1.0003) at an incident angle of 36.9°.
Find the angle of refraction.



  2-7.   A ray of light enters glass (index 1.515) from air (index 1.0003) at an incident angle of 67.8°.
Find the angle of refraction.

  2-8.   A light ray emanating from under water (index 1.333) makes an angle of 37.5° with the normal
to the surface. What is the angle that the refracted ray makes with the normal as it emerges into air
(index 1.0003)?

  2-9.   What is the incident angle for a light ray emanating from glass (index 1.53) as it passes into air
(index 1.0003) so that the angle of refraction is 90.0°? (This angle is known as the critical angle,
above which total internal reflection takes place.)

2-10.   Repeat Prob. 2-9, except the light ray emanates from water (index 1.333) into air.

2-11.   A single ray of light traveling through air (index 1.0003) enters a convex glass lens (index
1.575) having a radius of 47.5 mm. If the light ray is parallel to and 9.5 mm above the optical axis of
the lens, what are the angles of incidence and refraction?

2-12.   An object located 1.8 m in front of a thin lens has its image in focus 72.5 mm from the lens on
the other side. What is the focal length of the lens?

2-13.   An object is located 12 m in front of a thin lens having a focal length of 50.0 mm. At what
image distance will the object’s image be in perfect focus?

2-14.   A camera lens can accommodate object distances ranging from 1.2 m to infinity. If the focal
length of the lens is 38 mm, what is the corresponding range of image distances?

2-15.   A lens has a focal length of 70.0 mm. What is the object distance for an image that is perfectly
focused at an image distance of 125.0 mm?

2-16.   Prepare a table of image distances (in millimeters) versus object distances of exactly 1, 2, 5,
10, 100, 1000, and 5000 m for a lens having a 152.416-mm focal length, such that the images are in
perfect focus.

2-17.   Explain why the lens camera replaced the early pinhole camera.

2-18.   Define the photographic terms illuminance, aperture, emulsion, latent image, and fog.

2-19.   A camera lens has a focal length of 35.0 mm. Its f-stop settings range from f-1.4 to f-22. What
is the maximum diameter of the aperture? Minimum diameter?

2-20.   A camera with a 50.0-mm focal length lens has the f-stop set at 4. A 50.0-mm cylindrical
extension is inserted between the lens and the camera body, increasing the nominal image distance
from 50 to 100-mm. What true f-stop corresponds to the original setting of 4?

2-21.   Prepare a table of lens aperture diameters versus nominal f-stop settings ranging from f-1 to f-
32 for a 70.0-mm focal length lens.

2-22.   An exposure is optimum at a shutter speed of  s and f-8. If it is necessary to change the
shutter speed to  s, what should be the corresponding f-stop, to retain optimum exposure?



2-23.   Repeat Prob. 2-22, except change the shutter speed to  s.

2-24.   An exposure is optimum at a shutter speed of  s and f-5.6. To increase the depth of field, it is
necessary to expose at f-22. What is the required shutter speed to retain optimum exposure?

2-25.   What is the relationship between film speed and emulsion grain size?

2-26.   What is the relationship between resolution and emulsion grain size?

2-27.   Explain how the slope of the straight-line portion of the D–log E curve relates to contrast.

2-28.   Explain when and why a safe light can be used in a darkroom.

2-29.   Explain why a haze filter is used on aerial cameras.

2-30.   A panchromatic (one-band) digital image has 16,000 rows and 16,000 columns. Assuming each
pixel takes 1 byte, how many bytes are required to store the image?

2-31.   A 6200-row by 6200-column digital image has six spectral channels. Assuming each pixel
requires 1 byte per channel, how many bytes are required to store the image?

2-32.   Convert the B, G, R color of (115, 55, 135) to the I, H, S representation.

2-33.   Convert the I, H, S color of (221, 225°, 65) to the B, G, R representation.

2-34.   Describe how the color subtractive process can be applied to produce green.



CHAPTER 3
Cameras and Other Imaging Devices

 

3-1  Introduction
Perhaps the most fundamental device in the field of photogrammetry is the camera. It is the basic
instrument which acquires images, from which photogrammetric products are produced.

The fourth edition of the Manual of Photogrammetry defines a camera as “a lightproof chamber
or box in which the image of an exterior object is projected upon a sensitized plate or film, through an
opening usually equipped with a lens or lenses, shutter, and variable aperture.” That definition has
been broadened in recent years with the increased use of the digital camera which senses light energy
through the use of semiconductor electronics instead of film. In many cases a more general term such
a s imaging device may be more appropriate to describe the instrument used for primary
photogrammetric data acquisition.

Whatever the characteristics of the imaging device may be, an understanding of the underlying
geometry is essential for precise and accurate applications of photogrammetry. The remarkable
success of photogrammetry in recent years is due in large part to the progress that has been made in
developing precision cameras. Perhaps the most noteworthy among recent camera developments has
been the perfection of lenses of extremely high resolving power and almost negligible distortion. This
has greatly increased the accuracy of photogrammetry. There have also been many significant
improvements in general camera construction and operation.

Imaging devices can be categorized according to how the image is formed. Devices that acquire
the image simultaneously over the entire format are frame cameras (or frame sensors). Frame cameras
generally employ shutters which open and allow light from the field of view to illuminate a two-
dimensional (usually rectangular) image plane before closing. Other imaging devices sense only a
linear projection (strip) of the field of view at a given time and require that the device move or sweep
across the area being photographed in order to acquire a two-dimensional image. Devices of this
second type are referred to as strip cameras, linear array sensors, or pushbroom scanners. A third
type of device builds an image by detecting only a small spot at a time, requiring movements in two
directions (sweep and scan) in order for the two-dimensional image to be formed. These devices are
often referred to as flying spot scanners or whiskbroom scanners.

The traditional imaging device used in photogrammetry is the aerial mapping camera, and its use
is widespread in the photogrammetric industry. The requirements of aerial mapping cameras are quite
different from those of ordinary handheld cameras, such as that shown in Fig. 2-11. The primary
requirement of any photogrammetric aerial camera is a lens of high geometric quality. Aerial cameras
must be capable of exposing in rapid succession a great number of photographs to exacting
specifications. Since these cameras must perform this function while moving in an aircraft at high
speed, they must have short cycling times, fast lenses, and efficient shutters. They must be capable of
faithful functioning under the most extreme weather conditions and in spite of aircraft vibrations.
Aerial cameras using roll film generally have magazine capacities of several hundred exposures while
digital mapping cameras typically have sufficient computer memory to store equivalent numbers of
images. Because the aerial photographic flight mission is fairly expensive and since weather and other
conditions may prevent aerial photography for long periods of time, it is imperative that every
precaution be taken in the manufacture of aerial cameras to guarantee the quality and reliability of the



photography on each mission.
This chapter discusses various types of imaging devices, but the standard-film aerial mapping

camera is presented in the greatest detail. This is primarily due to its continued wide usage; however,
this is also a practical approach because other imaging devices can then conveniently be described as
variations of this basic instrument.

3-2  Metric Cameras for Aerial Mapping
Single-lens frame cameras are the most common cameras in use today. They are used almost
exclusively in obtaining photographs for mapping purposes because they provide the highest
geometric picture quality. With a single-lens frame camera, the lens is held fixed relative to the focal
plane. The film is generally fixed in position during exposure, although it may be advanced slightly
during exposure to compensate for image motion. The entire format is exposed simultaneously with a
single click of the shutter.

Single-lens frame cameras are often classified according to their angular field of view. Angular
field of view, as illustrated in Fig. 3-1, is the angle α subtended at the rear nodal point of the camera
lens by the diagonal d of the picture format. [The most common frame or format size of film aerial
mapping cameras is 230 mm (9 in) square.] Classifications according to angular field of view are

 FIGURE 3-1   Angular field of view of a camera.
 

      1.  Normal angle (up to 75°)
      2.  Wide angle (75° to 100°)
      3.  Superwide angle (greater than 100°)

Angular field of view may be calculated as follows (see Fig. 3-1):

(3-1)
 
For a nominal 152-mm-focal-length camera with a 230-mm-square format, the angular field of view is



 
Single-lens frame cameras are available in a variety of lens focal lengths, and the choice depends

on the purpose of the photography. The most common one in use today for mapping photography has a
152-mm (6-in) focal length and 230-mm- (9-in-) square format, although 89-mm (3 -in), 210-mm (8

-in), and 305-mm (12-in) focal lengths with 230-mm formats are also used. The 152-mm focal
length with a 230-mm format provides the best combination of geometric strength and photographic
scale for mapping. Longer focal lengths such as 305 mm are used primarily for obtaining photographs
for aerial mosaics and for reconnaissance and interpretation purposes. They enable reasonably large
photographic scales to be obtained in spite of high flying heights, and they reduce image
displacements due to relief variations (see Sec. 6-8).

Digital mapping cameras come in a variety of formats and focal lengths, although most are
designed to capture images in the normal angle range—narrower than those of the 152-mm focal
length film camera.

From Eq. (3-1), it is seen that for a particular format size, the angular field of view increases as
focal length decreases. Short focal lengths, therefore, yield wider ground coverage at a given flying
height than longer focal lengths.

In Fig. 1-1 the Zeiss RMK TOP 15 aerial mapping camera was shown, and Fig. 3-2 illustrates the
Leica RC30 aerial mapping camera. These cameras and their predecessors, together with a few others,
are being used today to take the bulk of aerial-film photography for mapping purposes. Both are
precision single-lens frame cameras having 230-mm-square formats and film capacities of
approximately 500 exposures. The TOP 15 has a nominal 152-mm-focal-length lens. The RC30 is
capable of accepting interchangeable cones with lenses having nominal focal lengths of 89, 152, 210,
or 305 mm.



 FIGURE 3-2   Leica RC30 aerial mapping camera. (Courtesy LH Systems, LLC.)
 

The Hasselblad camera of Fig. 3-3 is a small-format single-lens frame camera which has been
employed extensively for space photography. It uses 70-mm film and can be obtained with various
focal-length lenses.



 FIGURE 3-3   Hasselblad 500 ELX camera. (Courtesy University of Florida.)
 

3-3  Main Parts of Frame Aerial Cameras
Although all frame aerial cameras are somewhat different in construction, they are enough alike that a
general description can be given which adequately encompasses all of them. The three basic
components or assemblies of a frame aerial camera, as shown in the generalized cross section of Fig.
3-4, are the magazine, the camera body, and the lens cone assembly.

 FIGURE 3-4   Generalized cross section of a frame aerial camera.
 

3-3-1   Camera Magazine
The camera magazine houses the reels which hold exposed and unexposed film, and it also contains
t h e film-advancing and film-flattening mechanisms. Film flattening is very important in aerial
cameras, for if the film buckled during exposure, the image positions on the resulting photographs
would be incorrect. Film flattening may be accomplished in any of the following four ways: (1) by
applying tension to the film during exposure; (2) by pressing the film firmly against a flat focal-plane
glass that lies in front of the film; (3) by applying air pressure into the airtight camera cone, thereby
forcing the film against a flat plate lying behind the focal plane; or (4) by drawing the film tightly up
against a vacuum plate or platen whose surface lies in the focal plane. The vacuum system has proved
most satisfactory and is the most widely used method of film flattening in aerial cameras. A focal-
plane glass in front of the film is objectionable because image positions are distorted due to refraction



of light rays passing through the glass (see Sec. 2-2). These distortions can be determined through
calibration, however, and their effect eliminated in subsequent photogrammetric operations.

3-3-2   Camera Body
The camera body is a one-piece casting which usually houses the drive mechanism. The drive
mechanism operates the camera through its cycle; the cycle consists of (1) advancing the film, (2)
flattening the film, (3) cocking the shutter, and (4) tripping the shutter. Power for the drive
mechanism is most commonly provided by an electric motor. The camera body also contains carrying
handles, mounting brackets, and electrical connections.

3-3-3   Lens Cone Assembly
The lens cone assembly contains a number of parts and serves several functions. Contained within this
assembly are the lens, shutter, and diaphragm (see Fig. 3-4). With most mapping cameras, the lens
cone assembly also contains an inner cone or spider. The inner cone rigidly supports the lens
assembly and focal plane in a fixed relative position. This fixes the so-called elements of interior
orientation of the camera. These elements are carefully determined through camera calibration (see
Sec. 3-10) so that they are available for photogrammetric calculations. The inner cone is made of
metal having a low coefficient of thermal expansion, so that changes in operating temperatures do not
upset the calibration. In some aerial cameras which do not have inner cones, the body and outer lens
cone act together to hold the lens with respect to the focal plane.

The camera lens is the most important (and most expensive) part of an aerial camera. It gathers
light rays from the object space and brings them to focus in the focal plane behind the lens. Lenses
used in aerial cameras are highly corrected compound lenses consisting of several elements. The lens
of Fig. 2-9, for example, is the 88-mm-focal-length SAGA-F used in the superwide-angle lens cone of
the Leica RC30 aerial mapping camera.

The filter serves three purposes: (1) It reduces the effect of atmospheric haze, (2) it helps provide
uniform light distribution over the entire format, and (3) it protects the lens from damage and dust.

T h e shutter and diaphragm together regulate the amount of light which will expose the
photograph. The shutter controls the length of time that light is permitted to pass through the lens.
Shutters are discussed in detail in Sec. 3-5. As discussed in Sec. 2-5, the diaphragm regulates the f-
stops of the camera by varying the size of the aperture to control the amount of light passing through
the lens. Typically f-stops of aerial cameras range from about f-4 down to f-22. Thus, for a nominal
152-mm-focal-length lens, the diameter of the aperture ranges from about 38 mm at f-4 to about 7 mm
a t f-22. The diaphragm is normally located in the airspace between the lens elements of an aerial
camera and consists of a series of leaves which can be rotated to vary the size of the opening.

3-4  Focal Plane and Fiducial Marks
The focal plane of an aerial camera is the plane in which all incident light rays are brought to focus. In
aerial photography, object distances are great with respect to image distances. Aerial cameras
therefore have their focus fixed for infinite object distances. This is done by setting the focal plane as
exactly as possible at a distance equal to the focal length behind the rear nodal point of the camera
lens. The focal plane is defined by the upper surface of the focal-plane frame. This is the surface upon
which the film emulsion rests when an exposure is made.

Camera fiducial marks are usually four or eight in number, and they are situated in the middle of
the sides of the focal plane opening, in its corners, or in both locations. Blinking lamps cause these



marks to be exposed onto the negative when the picture is taken. Modern mapping cameras generally
expose the fiducials at the midpoint of the duration that the shutter is open. This defines the instant of
exposure, which is critical when incorporating airborne GPS control. This topic is discussed in Chap.
17. The aerial photographs of Figs. 1-2, 1-6, and 1-7 have four corner and four side fiducial marks.

Fiducial marks (or fiducials) serve to establish a reference xy photo coordinate system for image
locations on the photograph. In essence, fiducials are two-dimensional control points whose xy
coordinates are precisely and accurately determined as a part of camera calibration (see Sec. 3-10).
Lines joining opposite fiducials intersect at a point called the indicated principal point, and aerial
cameras are carefully manufactured so that this occurs very close to the true principal point, which is
defined as the point in the focal plane where a line from the rear nodal point of the camera lens,
perpendicular to the focal plane, intersects the focal plane. As will be demonstrated in subsequent
chapters, it is an exceedingly important reference point in photogrammetric work. Besides providing a
coordinate reference for the principal point and image points, fiducials allow for correction of film
distortion (shrinkage and expansion) since each photograph contains the images of these stable control
points (see Sec. 4-9).

Cameras have been perfected to compensate for image motion that occurs because of the forward
movement of the aircraft during the time that the shutter is open. Forward-motion compensation
(FMC) is usually accomplished by moving the film slightly across the focal plane during exposure, in
the direction of, and at a rate just equal to, the rate of image movement. In cameras equipped with
FMC, since the film moves with respect to the focal plane, it is important for fiducial lamps to blink
for only an instant so that the images of the fiducial marks are sharp and distinct.

Example 3-1
An aerial camera with forward-motion compensation and a 152.4-mm focal length is carried in an
airplane traveling at 200 kilometers per hour (km/h). If the flying height above the terrain is 3500 m
and if the exposure time is  s, what distance (in millimeters) must the film be moved across the
focal plane during exposure in order to obtain a clear image?

Solution   The distance D traveled by the airplane during exposure is

 
The distance d that the image moves during exposure [based on scale Eq. (6-1)] is

 

3-5  Shutters
As noted in the previous section, because the aircraft carrying a camera is typically moving at a rapid
speed, images will move across the focal plane during exposure. If exposure times are long or flying
heights low, blurred images may result. It is important, therefore, that the shutter be open for a very
short duration when aerial photographs are taken. Short exposure times also reduce the detrimental
effects of aircraft vibrations on image quality. The shutter speeds of aerial cameras typically range



from about  to  s. Shutters are designed to operate efficiently so that they open instantaneously,
remain open the required time, and then instantaneously close, thus enabling the most uniform
exposure possible over the format. (Other effects such as vignetting and lens falloff, as discussed in
Sec. 2-3, cause nonuniform exposure, which is unavoidable.)

There are a number of different types of camera shutters. Those used in aerial cameras are
generally classified as either between-the-lens shutters or focal-plane shutters. Between-the-lens
shutters are most commonly used in mapping cameras. These shutters are placed in the airspace
between the elements of the camera lens, as illustrated in Fig. 3-4. Common types of between-the-lens
shutters are the leaf type, blade type, and rotating-disk type. A schematic diagram of the leaf type is
shown in Fig. 3-5. It consists usually of five or more leaves mounted on pivots and spaced around the
periphery of the diaphragm. When the shutter is tripped, the leaves rotate about their pivots to the
open position of Fig. 3-5b, remain open the desired time, and then snap back to the closed position of
Fig. 3-5a. Some camera shutters use two sets of leaves, one for opening and the other for closing. This
increases shutter efficiency, shutter speed, and shutter life.

 FIGURE 3-5   Schematic diagrams of a leaf-type shutter. (a) Shutter closed; (b) shutter open.
 

The blade-type shutter consists of four blades, two for opening and two for closing. Its operation
is similar to that of a guillotine. When the shutter is triggered, the two thin opening plates or blades
move across the diaphragm to open the shutter. When the desired exposure time has elapsed, two
closing blades close it.

The rotating-disk type of shutter consists of a series of continuously rotating disks. Each disk has
a cutaway section, and when these cutaways mesh, the exposure is made. The speed of rotation of the
disks can be varied so that the desired exposure times are obtained. This type of shutter is very
efficient because no starting or stopping of parts is required, as is with other types.

3-6  Camera Mounts
The camera mount is the mechanism used to attach the camera to the aircraft. Its purpose is to
constrain the angular alignment of the camera so that the optical axis is vertical and the format is
squarely aligned with the direction of travel. A minimal mount is equipped with dampener devices
which prevent (or at least reduce) aircraft vibrations from being transmitted to the camera, and a



mechanism that allows rotation in azimuth to correct for crab. Crab is a disparity in the orientation of
the camera in the aircraft with respect to the aircraft’s actual travel direction. It is usually the result of
side winds which cause the aircraft’s direction of heading to deviate from its actual travel direction, as
shown in Fig. 3-6a. Crab can be of variable amounts, depending on the wind velocity and direction. It
has the undesirable effect of reducing the stereoscopic ground coverage (see Sec. 1-4) of aerial photos,
as shown in Fig. 3-6b. Figure 3-6c shows the ground coverage when the camera has been rotated
within the mount in the aircraft to make two sides of the format parallel to the actual direction of
travel.

 FIGURE 3-6   (a) Camera exposing aerial photography with crab present. (b) Crabbed overlapping
aerial photographs. (c) Overlapping aerial photographs with no crab.
 

More elaborate mounts like the Leica PAV 80, shown in Fig. 3-7, provide gyro stabilization of
the camera. Gyroscopic devices in the housing or in an external device sense the rotational movements
of the aircraft, which in turn are counteracted by microprocessor-controlled motors that keep the
camera properly oriented. Control is provided in three directions: rotation about the longitudinal axis
(roll), rotation about the transverse axis (pitch), and rotation about the optical axis (yaw or drift). In
addition to simply counteracting the aircraft’s rotational movements, the three rotations are measured
and can be recorded at the instant of exposure. These three rotational quantities are essential for
proper data reduction when using airborne GPS control. When combined with forward-motion
compensation, a gyro-stabilized mount results in the sharpest images by minimizing image movement



during exposure.

 FIGURE 3-7   Leica PAV 80 gyro-stabilized aerial-camera mount. (Courtesy Leica Geosystems)
 

3-7  Camera Controls
Camera controls are those devices necessary for operating the camera and varying settings according
to conditions at the time of photography. The intervalometer is a device which automatically trips the
shutter and actuates the camera cycle as required by the flight plan. Early intervalometers could be set
to automatically make exposures at fixed intervals of time. The time interval depended upon the
camera focal length and format size, desired end lap (see Sec. 1-4), flying height above ground, and
aircraft velocity. The disadvantage of this type of intervalometer is that with fixed time intervals,
variations in end lap occur with variations in terrain elevation, flying height, or aircraft velocities.
Subsequent intervalometer designs, include integrated automatic control unit that incorporates a GPS
receiver, enabling the exposures to be made at preprogrammed locations as dictated by the flight plan.

Another aerial camera control device is the exposure control. This consists of an exposure meter
which measures terrain brightness and correlates it with the optimum combination of aperture size and
shutter speed, given a particular film speed and filter factor. Exposure control units are available
which operate automatically, and they constantly vary camera settings to provide optimum exposures.

Modern camera controls consist of integrated navigation and sensor control units that are highly
automated. By incorporating precise GPS and inertial navigation devices (see Sec. 16-6 to 16-8), these
systems relieve the pilot and photographer of many routine in-flight monitoring and adjustment
functions, resulting in reduced human error. In addition, flights can be made more efficient by
reducing excessive side lap and avoiding gaps in ground coverage. The Flight and Sensor Control
Management System shown in Fig. 3-8 can be used to automate a substantial portion of the image
acquisition mission.



 FIGURE 3-8   Flight and Sensor Control Management System (Courtesy Leica Geosystems)
 

3-8  Automatic Data Recording
Most modern aerial mapping cameras are equipped with a data-recording system which automatically
produces pertinent data on the pictures. The usual data consist of date, flying altitude, calibrated focal
length of the camera, photograph number, job identification, etc. This information is entered on a data
block, which is exposed onto the film when the photograph is taken. The images of an automatic data-
recording system are shown along the left border of the aerial photograph in Fig. 1-2. Automatic data
recording is a convenience which saves time and prevents mistakes in later use of the photographs.

3-9  Digital Mapping Cameras
The majority of the material of this chapter to this point has pertained to traditional film cameras. As
noted earlier, an alternative to film cameras is the digital imaging device. A digital image, as
described in Sec. 2-12, is a rectangular array of pixels in which the brightness of a scene at each
discrete location has been quantified. Rather than record the reflected electromagnetic energy through
silver halide crystals as in a film emulsion, digital imaging devices use solid-state detectors to sense
the energy. A common type of solid-state detector in current use is the charge-coupled device (CCD).
Although there are a number of variations of CCD configurations, the basic operating principle is the
same. At a specific pixel location, the CCD element is exposed to incident light energy, and it builds
up an electric charge proportional to the intensity of the incident light. The electric charge is
subsequently amplified and converted from analog to digital form. A large number of CCDs can be
combined on a silicon chip in a one-dimensional or two-dimensional array. While other solid-state
sensors such as Complimentary Metal-Oxide Semiconductor (CMOS) devices are used in some
applications, the term CCD will be used throughout this text to represent all solid-state image sensors.

3-9-1   Digital-Frame Cameras
A digital-frame camera has similar geometric characteristics to a single-lens frame camera that
employs film as its recording medium. It consists of a two-dimensional array of CCD elements, called
a full-frame sensor. The sensor is mounted in the focal plane of a single-lens camera. Acquisition of



an image exposes all CCD elements simultaneously, thus producing the digital image. Figure 3-9
shows a full-frame sensor. It consists of an array of CCD elements approximately 14,600 × 17,200,
and thus it produces an image having over 250 million pixels. Figure 3-10 shows a schematic
illustration of a digital-frame camera capturing an image of the ground. Light rays from all points in
the scene pass through the center of the lens before reaching the CCD elements, thus producing the
same type of point-perspective image as would have occurred if film were used.

 FIGURE 3-9   Solid-state CCD imaging array of 14,600 × 17,200 (250 million) pixels. (Courtesy
Teledyne DALSA.) (See also color insert.)
 

Digital-frame cameras can be classified in terms of the number of pixels in the digital image.
Currently the term megapixel (1 million pixels) is used for indicating common image sizes.
Inexpensive digital cameras may have arrays of roughly 2500 rows and 3500 columns for a total of
2500 × 3500 = 8,750,000 pixels or 8.7 megapixels. Large arrays such as that of Fig. 3-9 may have 250
million or more. Current technology can produce chips with individual CCD elements approximately
5 μm in size or even smaller. The array of Fig. 3-9 has a 5.6 μm pixel size and thus can capture an 82 ×
99 mm image in the focal plane of a camera.



 FIGURE 3-10   Geometry of a digital frame camera.
 

Figure 3-11 is a digital mapping camera that incorporates the CCD array shown in Fig. 3-9 along
with a 112-mm-focal length lens. In addition to the ability to capture 250 megapixel panchromatic
images, it is equipped to take lower resolution color and infrared images simultaneously.

 FIGURE 3-11   Z/I DMC II-250 digital mapping camera. (Courtesy Z/I Imaging)
 

Some digital-frame cameras use an approach of combining multiple image subsets to produce a



composite image that has the geometric characteristics of a single-frame image. The camera in Fig. 1-
3 employs this multiple image technique. An image is acquired by rapidly triggering four in-line
sensors that combine to acquire nine image patches as shown in Fig. 3-12. The four sensors are
aligned with the flight line and by precisely timing the image acquisitions to correspond to the aircraft
velocity, all of the images will effectively be taken from a common location.

 FIGURE 3-12   Multiple frame capture method of the UltraCam Eagle.
 

3-9-2   Linear Array Sensors
The geometric characteristics of a linear array sensor are different from those of a single-lens frame
camera. At first glance, an image obtained from a linear array sensor may appear to be the same as a
digital frame camera image, but there are subtle geometric differences. A linear array sensor acquires
an image by sweeping a line of detectors across the terrain and building up the image. A linear array
sensor consists of a one-dimensional array or strip of CCD elements mounted in the focal plane of a
single-lens camera. Since the two-dimensional image is acquired in a sweeping fashion, the image is
not exposed simultaneously. Figure 3-13 shows a schematic illustration of a linear array sensor
capturing an image of the ground, assuming a smooth trajectory. At a particular instant, light rays
from all points along a perpendicular to the vehicle trajectory pass through the center of the lens
before reaching the CCD elements, thus producing a single row of the two-dimensional image. An
instant later, the vehicle has advanced to its position for the next contiguous row, and the pixels of this
row are imaged. The sensor proceeds in this fashion until the entire image is acquired. Since the image
was acquired at a multitude of points along the line of the vehicle’s trajectory, the resulting geometry
is called line perspective.



 FIGURE 3-13   Geometry of a linear array sensor.
 

Acquisition of an image as depicted in Fig. 3-13 is characteristic of a linear array image captured
from a satellite where the lack of atmospheric turbulence allows a smooth trajectory. When linear
array images are acquired from a sensor carried by an airborne platform, atmospheric turbulence will
cause the resulting image to be distorted due to pitching and rolling of the aircraft. In order to correct
for this motion, simultaneous data must be collected by a GPS/INS system (See Sec. 16-6 to 16-8) to
measure the position and angular attitude of the sensor. By processing the image to take into account
the sensor motion, a nondistorted image can be produced. Figure 3-14(a) shows a raw image collected
by a linear array camera similar to that of Fig. 1-4. Notice the wavy appearance of streets and other
linear features in this uncorrected image. After rectifying the image based on the GPS/INS data, a
corrected image shown in Fig. 3-14(b) is the result. This rectified image no longer shows the effects of
the sensor motion and the linear features appear straight.



 



 
FIGURE 3-14   Raw image (a) from an airborne linear array sensor exhibiting distortion caused by air
turbulence. Rectified image (b) obtained by correcting the raw image using GPS/INS measurements.
 

Another aspect of linear array sensors is that unlike frame sensors, they lack the ability to
provide stereoscopic coverage in the direction of flight. This problem can be solved by equipping the
sensor with multiple linear arrays pointed both forward and aft. The sensor of Fig. 1-4 has linear
arrays that point forward, down, and backward as illustrated in Fig. 3-15. By using the images
acquired by the forward-looking and backward-looking arrays, objects on the ground are imaged from
two different vantage points, thus providing the required stereo view.



 FIGURE 3-15   Geometry of a three-line scanner.
 

3-10   Camera Calibration
After manufacture and prior to use, aerial cameras are carefully calibrated to determine precise and
accurate values for a number of constants. These constants, generally referred to as the elements of
interior orientation, are needed so that accurate spatial information can be determined from
photographs.

In general, camera calibration methods may be classified into one of three basic categories:
laboratory methods, field methods, and stellar methods. Of these, laboratory methods are most
frequently utilized and are normally performed by either camera manufacturers or agencies of the
federal government. In one particular method of laboratory calibration, which uses a multicollimator,
as well as in the field and stellar procedures, the general approach consists of photographing an array
of targets whose relative positions are accurately known. Elements of interior orientation are then
determined by making precise measurements of the target images and comparing their actual image
locations with the positions they should have occupied had the camera produced a perfect perspective
view. In another laboratory method, which employs a goniometer, direct measurements are made of
projections through the camera lens of precisely positioned grid points located in the camera focal
plane. Comparisons are then made with what the true projections should have been.

The elements of interior orientation which can be determined through camera calibration are as
follows:



      1.  Calibrated focal length (CFL). This is the focal length that produces an overall mean
distribution of lens distortion. Actually this parameter would be better termed calibrated
principal distance since it represents the distance from the rear nodal point of the lens to the
principal point of the photograph. When aerial mapping cameras are manufactured, this
distance is set to correspond to the optical focal length of the lens as nearly as possible, hence
the more common, though somewhat misleading, term calibrated focal length.

      2.  Symmetric radial lens distortion. This is the symmetric component of distortion that occurs
along radial lines from the principal point. Although the amount may be negligible, this type of
distortion is theoretically always present even if the lens system is perfectly manufactured to
design specifications. Figure 3-16a shows a typical symmetric radial lens distortion pattern
with magnitudes of distortion greatly exaggerated. Notice that distortion occurs in a direction
inward toward, or outward from, the center of the image.

 FIGURE 3-16   Lens distortion patterns: (a) symmetric radial, (b) decentering, and (c) combined
symmetric radial and decentering.
 



      3.  Decentering lens distortion. This is the lens distortion that remains after compensation for
symmetric radial lens distortion. Decentering distortion can be further broken down into
asymmetric radial and tangential lens distortion components. These distortions are caused by
imperfections in the manufacture and alignment of the lens system. Figure 3-16b shows a
typical decentering distortion pattern, again with the magnitudes greatly exaggerated. Figure 3-
16c shows a typical pattern of combined symmetric radial and decentering distortion.

      4.  Principal point location. This is specified by coordinates of the principal point given with
respect to the x and y coordinates of the fiducial marks. (Although it is the intent in camera
manufacture to place the fiducial marks so that lines between opposite pairs intersect at the
principal point, there is always some small deviation from this ideal condition.) For a digital
camera, the principal point is nominally located at the center of the CCD array, but calibration
can determine the offset from this location.

      5.  Fiducial mark coordinates. These are the x and y coordinates of the fiducial marks which
provide the two-dimensional positional reference for the principal point as well as images on
the photograph. A digital camera does not have fiducial marks so these values are not
determined from its calibration. Instead, the dimensions and effective shape of the CCD array
are sometimes determined as part of the calibration. While the physical locations of the CCD
elements tend to be highly accurate, the method by which the rows or columns of CCD
elements are electronically sampled may cause a difference in the effective pixel dimensions
in the x versus y directions.

In addition to the determination of the above elements of interior orientation, several other
characteristics of the camera are often measured. Resolution (the sharpness or crispness with which a
camera can produce an image) is determined for various distances from the principal point. Due to
lens characteristics, highest resolution is achieved near the center, and lowest is at the corners of the
photograph. Focal-plane flatness (deviation of the platen from a true plane) is measured by a special
gauge. Since photogrammetric relationships assume a flat image, the platen should be nearly a true
plane, generally not deviating by more than 0.01 mm. For digital cameras, direct measurement of the
out-of-plane deviations is generally not feasible and therefore this distortion goes largely uncorrected.
Often the shutter efficiency—the ability of the shutter to open instantaneously, remain open for the
specified exposure duration, and close instantaneously—is also quantified.

3-11   Laboratory Methods of Camera Calibration
As noted in the previous section, the multicollimator method and the goniometer method are two types
of laboratory procedures of camera calibration. The multicollimator method consists of
photographing, onto a glass plate, images projected through a number of individual collimators
mounted in a precisely measured angular array. A single collimator consists of a lens with a cross
mounted in its plane of infinite focus. Therefore, light rays carrying the image of the cross are
projected through the collimator lens and emerge parallel. When these light rays are directed toward
the lens of an aerial camera, the cross will be perfectly imaged on the camera’s focal plane because
aerial cameras are focused for parallel light rays (those having infinite object distances).

A multicollimator for camera calibration consists of several individual collimators mounted in
two perpendicular vertical planes (often, more than two planes are used). One plane of collimators is
illustrated in Fig. 3-17. The individual collimators are rigidly mounted so that the optical axes of
adjacent collimators intersect at known (measured) angles, such as θ1 of Fig. 3-17. The equivalent
focal length (EFL) is a computed value based on the distances from the center point g to each of the



four nearest collimator crosses (h and f are shown in Fig. 3-17 and the other two are in a perpendicular
plane). Using the average of the four distances and the fixed angle θ1 the EFL value is computed from
the tangent ratio. The camera to be calibrated is placed so that its focal plane is perpendicular to the
central collimator axis and the front nodal point of its lens is at the intersection of all collimator axes.
In this orientation, image g of the central collimator, which is called the principal point of
autocollimation, occurs very near the principal point, and also very near the intersection of lines
joining opposite fiducials. The camera is further oriented so that when the calibration exposure is
made, the collimator crosses will be imaged along the diagonals of the camera format, as shown in
Fig. 3-18.

 FIGURE 3-17   Bank of 13 collimators for camera calibration.
 



 FIGURE 3-18   Images of photographed collimator targets and principal point definitions.
 

Figure 3-18 also contains a magnified view of the very center, which illustrates several key
features. In the close-up, the fiducial lines are indicated which are simply lines joining opposite pairs
of fiducials, and their intersection defines the indicated principal point. The position of the center
collimator cross (principal point of autocollimation) typically serves as the origin of the photo
coordinate system for film cameras. In a digital camera, the coordinates of the CCD elements are
typically determined relative to an origin at one corner of the array. In this case, the principal point of
autocollimation will have nonzero coordinates. The calibrated principal point (also known as the
point of best symmetry) is the point whose position is determined as a result of the camera calibration.
This point is the principal point that should be used to make the most precise and accurate
photogrammetric calculations.

In determining the calibration parameters, a complex mathematical model is used which includes
terms for the calibrated focal length and calibrated principal point coordinates as well as coefficients
of symmetric radial lens distortion and decentering distortion. A least squares solution is performed
which computes the most probable values for the above-mentioned terms and coefficients. The details
of the calculations are beyond the scope of this text, but the fundamental concepts are presented in
Chap. 19.

The goniometer laboratory procedure of camera calibration is very similar to the multicollimator
method, but consists of centering a precision grid plate in the camera focal plane. The grid is
illuminated from the rear and projected through the camera lens in the reverse direction. The angles at
which the projected grid rays emerge are measured with a goniometer, a device similar to a surveyor’s
theodolite. CFL and lens distortion parameters are then computed with a mathematical model similar
to that used in the multicollimator approach.

3-12   Stellar and Field Methods of Camera Calibration
Both the multicollimator and goniometer methods of laboratory camera calibration require expensive



and precise special equipment. An advantage of stellar and field methods is that this special
equipment is not necessary. Several different stellar and field methods of camera calibration have
been developed. In the stellar method, a target array consisting of identifiable stars is photographed,
and the instant of exposure is recorded. Right ascensions and declinations of the stars can be obtained
from an ephemeris for the precise instant of exposure so that the angles subtended by the stars at the
camera station become known. Then these are compared to the angles obtained from precise
measurements of the imaged stars. A drawback of this method is that since the rays of light from the
stars pass through the atmosphere, compensation must be made for atmospheric refraction. On the
other hand, there will be a large number of stars distributed throughout the camera format, enabling a
more precise determination of lens distortion parameters.

Field procedures require that an array of targets be established and that their positions with
respect to the camera station be measured precisely and accurately in three dimensions. This can be
achieved conveniently using GPS methods. The targets are placed far enough from the camera station
so that there is no noticeable image degradation. (Recall that an aerial camera is fixed for infinite
focus.) In this configuration, the camera must be placed in a special apparatus such as a fixed tower,
so that camera station coordinates are correctly related to target coordinates. This enables the CFL and
principal point location to be determined as well as lens distortion parameters, even if the target
configuration is essentially a two-dimensional plane. If the targets are well distributed in depth as well
as laterally, accurate location of the camera is less important.

A variation of the field method described above, termed inflight camera calibration, can also be
employed. In this approach, the aircraft carrying the camera makes multiple passes in different
directions over a target range. Based on a high number of redundant measurements of target images,
additional parameters (i.e., calibration parameters) can be calculated. This method has become more
practical due to advancements in airborne GPS techniques which enable accurate camera station
coordinates for each exposure (see Sec. 17-8). The in-flight method can also be generalized to the
point where calibration parameters are determined in conjunction with the photographs taken during
the actual job. This approach, known as analytical self-calibration, is further described in Sec. 19-4.

3-13   Calibration of Nonmetric Cameras
In certain situations where accuracy requirements and budgets are low, photogrammetrists may
employ nonmetric cameras for acquisition of imagery. Nonmetric cameras are characterized by an
adjustable principal distance, no film flattening or fiducial marks, and lenses with relatively large
distortions. Calibration of a nonmetric camera allows at least some compensation to be made for these
systematic errors.

The problems caused by the lack of fiducial marks and film flattening mechanisms presented a
challenge when calibrating nonmetric film cameras. Fortunately nearly all nonmetric camera
applications currently use digital cameras, so these issues are no longer present. However, the issue of
the effective distorted shape of the CCD array must be addressed in order to obtain the highest degree
of accuracy from digital cameras. As mentioned in Sec. 3-10, mathematical models can be used to
correct for this effect, although the distortion from non-flatness remains.

A further complication in the calibration of nonmetric cameras arises when one is dealing with
different focusing distances. Lens distortion values vary with different focus settings (i.e., different
principal distances), thereby requiring a more general lens distortion model. This problem can be
avoided by setting the focus of the camera to infinity during calibration as well as during normal use.
That way, one set of lens distortion parameters can be determined to account for this consistent focus
setting. If the camera is used for close-range work, the aperture size should be minimized in order to



produce the sharpest images. A word of caution regarding calibration of nonmetric cameras is
warranted. The stability of focusable lenses—particularly zoom lenses—should be considered with
suspicion. The calibration parameters for nonmetric cameras will often change significantly from day
to day or even mission to mission, particularly if the camera has been bumped or subjected to
vibrations. Nonmetric cameras should be calibrated both pre- and postmission to determine whether
parameters have significantly changed. An even better approach would be to use analytical self-
calibration as described in Sec. 19-4.

3-14   Calibrating the Resolution of a Camera
In addition to determining interior orientation elements, laboratory methods of camera calibration
provide an evaluation of the camera’s resolving power. As noted in Sec. 2-3, there are two common
methods of specifying lens resolving power. One is a direct count of the maximum number of lines
per millimeter that can be clearly reproduced by a lens; the other is the modulation transfer function
(MTF) of the lens. The method of calibration employed to determine the line count consists of
photographing resolution test patterns using a very high-resolution emulsion. The test patterns (an
example is shown in Fig. 3-19) are comprised of numerous sets of line pairs (parallel black lines of
varying thickness separated by white spaces of the same thickness). The measure of line thickness for
each set is its number of line pairs per millimeter. Line thickness variations in a typical test pattern
may range from 10 to 80 or more line pairs per millimeter. If the multicollimator method is used to
calibrate a camera, the test patterns may be projected by the collimators simultaneously with the
collimator crosses and imaged on the diagonals of the camera format. After the photograph is made,
the resulting images are examined under magnification to determine the finest set of parallel lines that
can be clearly resolved. The average of the four resolutions at each angular increment from the central
collimator is reported in the calibration certificate. Another parameter generally reported is the area-
weighted average resolution (AWAR), which is an indication of resolution over the entire format.



 FIGURE 3-19   Resolution test pattern for camera calibration.
 

Whereas the above-described maximum-line-count method appears to be a relatively simple and
effective way of quantifying resolving power, it is not without its shortcomings. In the line count
procedure, with each succeedingly smaller test pattern, the sharpness of distinction between lines and
spaces steadily diminishes, and the smallest pattern that can clearly be discerned becomes somewhat
subjective. The preferred measure of resolution is the modulation transfer function.

A fundamental concept involved in quantifying the modulation transfer function is the notion of
spatial frequency. Spatial frequency is a measure of the number of cycles of a sinusoidal wave per unit
distance. An analogy can be drawn from audio signals where frequency concerns the number of sound
waves per unit time. The units of audio frequency are generally specified in cycles per second, or hertz
(abbreviated Hz), whereas units of spatial frequency are typically given in terms of cycles per
millimeter. Spatial frequency is directly related to the count of line pairs per millimeter discussed
above. A black-and-white line pair corresponds to the up-and-down pulse of a sine wave and thus can
be defined as one cycle of a wave. Therefore the number of line pairs per millimeter is equivalent to
cycles per millimeter, or spatial frequency. Images that contain areas of rapidly changing levels of



brightness and darkness have high spatial frequency, whereas images that contain areas of gently
changing levels have low spatial frequency.

To determine modulation transfer, density scans using a photogrammetric scanner (see Sec. 4-6)
are taken in a single trace across test patterns similar to those used in the line count procedure, as
shown in Fig. 3-20a and c. For heavy lines with wide spacing, the actual distribution of density
(brightness variations) across the object pattern would appear as the dashed lines shown in Fig. 3-20b,
whereas brightness distributions measured with a densitometer across the image of this pattern would
appear as the solid lines. Note that the edges of the image patterns are rounded somewhat in Fig. 3-
20b, but the amplitude of brightness differences is the same as that for the original object. Thus at this
spatial frequency of the pattern, modulation transfer is said to be 100 percent. Figure 3-20c shows an
object pattern at a frequency four times that of the pattern shown in Fig. 3-20a. The density
distributions of the object and resulting image of this higher-frequency pattern are shown in Fig. 3-
20d. Note that in this figure, not only are the edges rounded, but also the amplitude of brightness
differences is about one-half that of the original object. This indicates a modulation transfer of 50
percent from object to image. Actually, Fig. 3-20 is a somewhat simplified illustration of the
quantification of modulation transfer. In the rigorous determination of modulation transfer, exposure
values (rather than densities), which have a logarithmic relationship to density, are employed. The
reader may consult references at the end of this chapter for more details on the modulation transfer
function.



 FIGURE 3-20   (a) Test object at low spatial frequency with density trace. (b) Density modulation of
object (dashed) and image (solid). (c) Test object at high spatial frequency with density trace. (d)
Density modulation of object (dashed) and image (solid). [Note that in part (b), the amplitude of the
image modulation is the same as that of the object, corresponding to 100 percent modulation transfer.
In (d) however, amplitude of the image modulation is one-half that of the object, corresponding to
reduced modulation transfer.]
 

By measuring densities across many patterns of varying spatial frequencies, and plotting the
resulting modulation transfer percentages on the ordinate versus corresponding spatial frequencies on
the abscissa, a curve such as that illustrated in Fig. 3-21 is obtained. This curve is the modulation
transfer function. The MTF has a number of advantages over the simple line count method. It is a very
sensitive indicator of edge effects, and it also affords the capability of predicting the resolution that
may be expected at any given degree of detail. Furthermore, MTF curves can be combined for
different lenses, films, and film processes; thus, it is possible to estimate the combined effects of any
given imaging system. For these reasons, the MTF has become the preferred method of expressing
resolution.

 FIGURE 3-21   Curve of modulation transfer function (MTF).
 

The upper limit of resolution for a digital frame camera is absolutely fixed because of sampling
into discrete elements. Since a full cycle of a wave in terms of spatial frequency must consist of a
dark-to-light transition (line pair), two CCD elements are the minimum number that can capture
information at the highest frequency. Thus the maximum spatial frequency (best resolution) at image
scale that can be detected is

(3-2)



 
 where   w = width between centers of adjacent CCD elements

fmax = maximum detectable frequency

Example 3-2
A digital frame camera consists of a 5120 × 5120 array of CCD elements at a pixel size of 6 μm
square. The nominal focal length of the camera is 40 mm. What is the maximum spatial frequency
that can be detected (at image scale)? What is the angular field of view for this camera?

Solution   By Eq. (3-2),

 
Format diagonal d can be calculated by

 
By Eq. (3-1),
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Problems



  3-1.   List and briefly describe the three geometric categories of imaging devices.

  3-2.   List the requirements of a precision mapping camera.

  3-3.   What is the angular field of view of a camera having a 230-mm-square format and a 209-mm
focal length?

  3-4.   Repeat Prob. 3-3 except that the format is 89-mm-square and the focal length is 112 mm.

  3-5.   For a camera having a 230-mm-square format, what range of focal lengths could it have to be
classified as wide angle?

  3-6.   An aerial camera makes an exposure at a shutter speed of  s. If aircraft speed is 390 km/h,
how far does the aircraft travel during the exposure?

  3-7.   Repeat Prob. 3-6, except that the shutter speed is  s and aircraft speed is 170 mi/h.

  3-8.   An aerial camera with forward-motion compensation and a 152.4-mm focal length is carried in
an airplane traveling at 280 km/h. If flying height above terrain is 3200 m and if the exposure time is 

 s, what distance (in millimeters) must the film be moved across the focal plane during exposure in
order to obtain a clear image?

  3-9.   Repeat Prob. 3-8, except that the focal length is 305 mm and the flying height above terrain is
5500 m.

3-10.   Name and briefly describe the main parts of a frame aerial mapping camera.

3-11.   Discuss briefly the different types of camera shutters.

3-12.   What is the purpose of the camera mount?

3-13.   What is the primary benefit of gyro-stabilized camera mounts?

3-14.   What is crab, and how may it be caused?

3-15.   Why is camera calibration important?

3-16.   What are the elements of interior orientation that can be determined in camera calibration?

3-17.   List and briefly describe the various definitions of principal point.

3-18.   Briefly describe the advantages of using the modulation transfer function to quantify the
resolution of a lens over the simple line pairs per millimeter threshold.

3-19.   Illustrate and briefly describe the concept of spatial frequency.

3-20.   A digital frame camera consists of a 4096 × 4096 array of CCD elements at a pixel size of 6.5
μm square. The nominal focal length of the camera is 40 mm. What is the maximum spatial frequency
that can be detected (at image scale)? What is the angular field of view for this camera?



CHAPTER 4
Image Measurements and Refinements

 

4-1  Introduction
The solution of most photogrammetric problems generally requires some type of photographic
measurement. For certain problems the measurements may simply be the lengths of lines between
imaged points. However, rectangular coordinates of imaged points are the most common type of
photographic measurement, and they are used directly in many photogrammetric equations.
Photographic measurements are usually made on positives printed on paper, film, or glass, or in
digital images manipulated on a computer. They could also be made directly on the negatives;
however, this is seldom done because it can deface the imagery, and it is important to preserve the
negatives for making additional prints. It is common, however, to make digital scans directly from the
negatives, thus avoiding additional expense associated with making positive prints.

Equipment used for making photographic measurements varies from inexpensive, simple scales
to very precise and complex machines that provide computer-compatible digital output. These various
types of instruments and the manner in which they are used are described in this chapter. Because of
several effects, there will be systematic errors associated with practically all photographic
measurements. The sources of these errors and the manners by which they are eliminated are also
discussed in this chapter.

4-2  Coordinate Systems for Image Measurements
For metric cameras with side fiducial marks, the commonly adopted reference system for
photographic coordinates, is the rectangular axis system formed by joining opposite fiducial marks
with straight lines, as shown in Fig. 4-1. The x axis is usually arbitrarily designated as the fiducial line
most nearly parallel with the direction of flight, positive in the direction of flight. The positive y axis
is 90° counterclockwise from positive x. The origin of the coordinate system is the intersection of
fiducial lines. This point is often called the indicated principal point, as discussed in Sec. 3-4; for a
precise mapping camera it is very near the true principal point. For the most precise work, since the
lines joining opposite fiducials are not exactly perpendicular, the fiducial marks serve as control
points from which the photo coordinate axis system can be determined.



 FIGURE 4-1   Photographic coordinate system based on side fiducials.
 

The position of any image on a photograph, such as point a of Fig. 4-1, is given by its rectangular
coordinates xa and ya, where xa is the perpendicular distance from the y axis to a and ya is the
perpendicular distance from the x axis to a. Similarly, the photographic position of image point b is
given by its rectangular coordinates xb and yb.

It is very common for aerial cameras to have eight fiducials installed, in both side and corner
locations. Figures 1-2, 1-6, and 1-7 show this fiducial mark configuration. The photographic
coordinate system in this case is still defined as in Fig. 4-1. Eight fiducials enable somewhat more
accurate corrections to be made for systematic errors in measured image coordinates.

On digital images, coordinates are often expressed as row and column numbers of individual
pixels. If pixel dimensions are known, the dimensionless row and column values can be converted to
linear measurements. Note that for many common image manipulation programs, pixel coordinates
are given in the order of column (abscissa) followed by row (ordinate). This results in a “left-handed”
coordinate system, which may lead to problems in certain calculations.

Rectangular coordinates are a very basic and useful type of photographic measurement. They are
used in many different types of computations. As an example, they can be used to calculate the photo
distances between points by using simple analytic geometry. Photographic distance ab of Fig. 4-1, for
example, may be calculated from rectangular coordinates as follows:

(4-1)
 

4-3  Simple Scales for Photographic Measurements
There are a variety of simple scales available for photographic measurements. The particular choice of
measuring instrument will depend upon the accuracy required for the photogrammetric problem at
hand. If a low order of accuracy is acceptable, an ordinary engineer’s scale  may prove satisfactory.
Engineer’s scales, as shown in Fig. 4-2, are available in both metric and English units and have several
different graduation intervals so as to accommodate various nominal scales. Precision and accuracy
can be enhanced by using a magnifying glass and the finest set of graduations, as long as suitable care
is taken in aligning and reading the scale.



 FIGURE 4-2   Metric (top) and English (bottom) engineer’s scales.
 

When greater accuracy is desired, a device such as the glass scale of Fig. 4-3 may be used. Glass
scales have fine graduations etched on the bottom surface and are equipped with magnifying eyepieces
which can slide along the scale. Glass scales of the type shown in Fig. 4-3 can be obtained in either 6-
or 12-in length with either millimeter graduations (least graduations of 0.1 mm) or inch graduations
(least graduations of 0.005 in). With a glass scale, readings may be estimated quite readily to one-
tenth of the smallest division, but these scales cannot be used to lay off distances.

 FIGURE 4-3   Glass scales for photographic measurements. (Courtesy Teledyne-Gurley Co.)
 

4-4  Measuring Photo Coordinates with Simple Scales
The conventional procedure for measuring photo coordinates when using an engineer’s scale generally
consists of first marking the photo coordinate axis system. This may be done by carefully aligning a
straightedge across the fiducial marks and lightly making a line with a razor blade, pin, or very sharp
4H or 5H pencil. Rectangular coordinates are then obtained by direct measurement of the
perpendicular distances from these axes. Use of glass scales is generally not warranted when this
method of marking axes is used, since the enhanced precision and accuracy of the scale are
overshadowed by the errors associated with marking the axes.

If the points whose coordinates are to be measured are sharp, distinct points, they may need no
further identification. If not, they may be identified with a small pinprick. This should be carefully



done under magnification, however, because systematic error will be introduced into measured photo
coordinates if points are erroneously marked.

It is important to affix the proper algebraic sign to measured rectangular coordinates; failure to
do so will result in frustrating mistakes in solving photogrammetry problems. Points situated to the
right of the y axis have positive x coordinates, and points to the left have negative x coordinates.
Points above the x axis have positive y coordinates, and those below the x axis have negative y
coordinates.

4-5  Comparator Measurement of Photo Coordinates
For direct measurement of film, the ultimate in photo coordinate measurement accuracy can be
achieved with precise instruments called comparators. While no longer in common use, these
instruments are so named because they compare the photographic positions of imaged points with
respect to the measurement scales of the devices. There are two basic types of comparators,
monocomparators and stereocomparators. Monocomparators make measurements on one photograph
at a time and with stereocomparators, image positions are measured by simultaneously viewing an
overlapping stereo pair of photographs. Comparators are used primarily to obtain precise photo
coordinates necessary for camera calibration and for analytical photogrammetry. Their accuracy
capability is typically in the range of from 2 to 3 micrometers (μm).

The usual approach for measuring photographic coordinates with a comparator is to measure the
coordinates of all image points as well as all fiducial marks. Then an affine or other two-dimensional
coordinate transformation is performed in order to relate the arbitrary comparator coordinates to the
axis system related to the fiducials. Example C-3. (of App. C) illustrates the procedure using a two-
dimensional affine transformation.

Traditional monocomparators are no longer being manufactured today, although specialized
devices are still being produced for limited markets. A more versatile device, the analytical
stereoplotter, is commonly used to perform the function of both monocomparators and
stereocomparators when working directly with film. Analytical stereoplotters are described in greater
detail in Chap. 12.

Although monocomparators are generally very precise, small systematic errors do occur as a
result of imperfections in their measurement systems. The magnitudes of these errors can be
determined by measuring coordinates of a precise grid plate and then comparing the results with
known coordinate values of the grid plate. The overall pattern of differences (errors) can be modeled
with polynomials in a manner similar to that described in Sec. B-11. Measured photo coordinates can
then be processed through the polynomial to effectively eliminate the systematic errors of the
comparator.

4-6  Photogrammetric Scanners
Photogrammetric scanners are devices used to convert the content of photographs from analog form (a
continuous-tone image) to digital form (an array of pixels with their gray levels quantified by
numerical values). These concepts were introduced in Sec. 2-12. Once the image is in digital form,
coordinate measurement can take place in a computer environment, either through a manual process
involving a human operator who points at features displayed on a computer screen, or through
automated image-processing algorithms. A number of photogrammetric quality scanners are
available, however their manufacture has greatly declined due to increased use of digital cameras.



They vary in approaches taken in the digital conversion (or quantization); however, their fundamental
concepts are the same. It is essential that a photogrammetric scanner have sufficient geometric and
radiometric resolution as well as high geometric accuracy.

The notions of geometric and radiometric resolution were previously discussed in Sec. 2-12.
Geometric or spatial resolution of a scanner is an indication of the pixel size of the resultant image.
The smaller the pixel size, the greater the detail that can be detected in the image. High-quality
photogrammetric scanners should be capable of producing digital images with minimum pixel sizes
on the order of 5 to 15 μm. This roughly corresponds to the resolution threshold of typical aerial
photographs under actual flight conditions. Radiometric resolution of a scanner is an indication of the
number of quantization levels (corresponding to image density differences) associated with a single
pixel. Minimum radiometric resolution should be 256 levels (8-bit) with most scanners being capable
of 1024 levels (10-bit) or higher.

The geometric quality of a scanner can be expressed by the positional accuracy of the pixels in
the resultant image. If a digital image is to produce the same level of accuracy as is attainable by
using film images and a comparator, the positions of the pixels in the digital image need to be at the
same spatial accuracy. Hence, the geometric positional accuracy of a high-quality photogrammetric
scanner should be at the 2- to 3-μm level. Measurements from scanned photos is similar to those using
a comparator. As noted in Sec. 4-5, coordinates of image points and fiducial marks are measured, but
in this case as rows and columns in the scanner coordinate system. Then a two-dimensional coordinate
transformation is performed as in Example C-3, to produce photo coordinates related to the fiducials.

4-7  Refinement of Measured Image Coordinates
The preceding sections of this chapter have discussed instruments and techniques for measuring photo
coordinates. Procedures have also been described for eliminating systematic errors in the
measurements and for reducing the coordinates to the photo coordinate axis system. These photo
coordinates will still contain systematic errors from various other sources, however. The major
sources of these errors are

      1.  (a) Film distortions due to shrinkage, expansion, and lack of flatness; (b) CCD array distortions
due to electrical signal timing issues or lack of flatness of the chip surface

      2.  (a) Failure of photo coordinate axes to intersect at the principal point; (b) Failure of principal
point to be aligned with center of CCD array

      3.  Lens distortions
      4.  Atmospheric refraction distortions
      5.  Earth curvature distortion

Corrections may be applied to eliminate the effects of these systematic errors. However, not all
corrections need to be made for all photogrammetric problems; in fact, for work of coarse accuracy
they may all be ignored. If, for example, an engineer’s scale has been used to make the measurements,
uncertainty in the photo coordinates may be so great that the small magnitudes of these systematic
errors become insignificant. On the other hand, if precise measurements for an analytical
photogrammetry problem have been made with a comparator, all the corrections may be significant.
The decision as to which corrections are necessary for a particular photogrammetric problem can be
made after considering required accuracy versus magnitude of error caused by neglecting the
correction.



4-8  Distortions of Photographic Films and Papers
In photogrammetric work, true positions of images in the picture are required. Photo coordinates
measured by any of the previously discussed methods will unavoidably contain small errors due to
shrinkage or expansion of the photographic materials that support the emulsion of the negative and
positive. In addition, since photogrammetric equations derived for applications involving frame
cameras assume a flat image plane, any lack of flatness will likewise cause errors. These errors can
also be categorized as film distortions, and they are generally the most difficult to compensate for,
due to their nonhomogeneous nature. Photo coordinates must be corrected for these errors before they
are used in photogrammetric calculations; otherwise, errors will be present in the computed results.
The magnitude of error in computed values will depend upon the severity of the film distortions,
which depends upon the type of emulsion support materials used and the flatness of the camera platen.

Most photographic films used to produce negatives for photogrammetric work have excellent
dimensional stability, but some small changes in size do occur during processing and storage.
Dimensional change during storage may be held to a minimum by maintaining constant temperature
and humidity in the storage room. The actual amount of distortion present in a film is a function of
several variables, including the type of film and its thickness. Typical values may vary from almost
negligible amounts up to approximately 0.2 percent.

Paper media are generally much less stable than film. Whether the images are photographically
reproduced or are printed from a scanned image, paper copies often require corrections to measured
distances in order to produce satisfactory results.

4-9  Image Plane Distortion
The nominal amount of shrinkage or expansion present in a photograph can be determined by
comparing measured photographic distances between opposite fiducial marks with their corresponding
values determined in camera calibration. Photo coordinates can be corrected if discrepancies exist,
and the approach differs depending on the necessary level of accuracy. For lower levels of accuracy
(corresponding to measurements with an engineer’s scale on paper prints) the following approach may
be used. If xm and ym are measured fiducial distances on the positive, and xc and yc are corresponding
calibrated fiducial distances, then the corrected photo coordinates of any point a may be calculated as

(4-2)
 

(4-3)
 
I n Eqs. (4-2) and (4-3), x′a and y′a are corrected photo coordinates and xa and ya are measured
coordinates. The ratios xc/xm and yc/ym are simply scale factors in the x and y directions, respectively.
This method is also appropriate for images that have been subjected to substantial enlargement or are
being measured with arbitrary coordinates, for example, an image from a digital camera having a CCD
frame width of 20 mm printed at a width of 150 mm on a sheet of paper. If the precise dimensions of
the CCD frame have been determined through calibration, a correction factor based on Eq. (4-2) can



be computed. In another case, a digital image may be imported into a Computer Aided Drafting
(CAD) drawing. In this case the coordinates of the CAD drawing may be completely arbitrary and
need to be related to a calibrated reference in order to obtain correct measurements. Equations (4-2)
and (4-3) can be used by making CAD-unit measurements of the calibrated distances and applying the
correction factors to subsequent measurements.

Example 4-1
For a particular photograph, the measured x and y fiducial distances were 233.8 and 233.5 mm,
respectively. The corresponding x and y calibrated fiducial distances were 232.604 and 232.621 mm,
respectively. Compute the corrected values for the measured photo coordinates which are listed in
columns (b) and (c) in the table below.

 
Solution   From Eq. (4-2),

 
Each of the measured values is multiplied by the appropriate constant above, and the corrected
coordinates are entered in columns (d) and (e) of the table.   

For high-accuracy applications, shrinkage or expansion corrections may be applied through the x
and y scale factors of a two-dimensional affine coordinate transformation. This method is particularly
well-suited for analytical photogrammetric calculations. This procedure is described in Sec. C-6, and a
numerical example is presented.

4-10   Reduction of Coordinates to an Origin at the Principal Point
It has been previously stated that the principal point of a photograph rarely occurs precisely at the
intersection of fiducial lines or at the center of a CCD array. The actual coordinates of the principal
point with respect to the calibrated xy photo coordinate system of the camera are xp and yp, shown in
Fig. 3-18. These coordinates specify the principal point location about which the lens distortions are
most symmetric.

Photogrammetric equations that utilize photo coordinates are based on projective geometry and



assume an origin of photo coordinates at the principal point. Therefore it is theoretically correct to
reduce photo coordinates from the measurement or photo coordinate axis system to the axis system
whose origin is at the principal point. Manufacturers of precision mapping cameras attempt to mount
the fiducial marks and camera lens so that the principal point and intersection of fiducial lines
coincide. Normally they accomplish this to within a few micrometers, and therefore in work of coarse
accuracy using engineering scales and paper prints, this correction can usually be ignored. For precise
analytical photogrammetric work, it is necessary to make the correction for the coordinates of the
principal point. The correction is applied after a two-dimensional coordinate transformation (e.g.,
affine) is made to the coordinates measured by comparator or from a scanned image. The principal
point coordinates xp and yp from the camera calibration report are subtracted from the transformed x
and y coordinates, respectively. Most appropriately, the correction for the principal point offset is
applied in conjunction with lens distortion corrections.

4-11   Correction for Lens Distortions
As described in Chap. 2, lens distortion causes imaged positions to be displaced from their ideal
locations. The mathematical equations that are used to model lens distortions are typically comprised
of two components: symmetric radial distortion and decentering distortion. In modern precision aerial
mapping cameras, lens distortions are typically less than 5 μm and are only applied when precise
analytical photogrammetry is being performed.

Symmetric radial lens distortion is an unavoidable product of lens manufacture, although with
careful design its effects can be reduced to a very small amount. Decentering distortion, on the other
hand, is primarily a function of the imperfect assembly of lens elements, not the actual design.
Historically, metric aerial mapping cameras had significantly larger amounts of symmetric radial lens
distortion than decentering distortion. Traditional camera calibration procedures provided information
regarding only the symmetric radial component. For instance, an early approach used by the U.S.
Geological Survey was to indicate radial distortion values for each of the angles of the
multicollimator (see Sec. 3-11). The radial distortion value was the radial displacement from the ideal
location to the actual image of the collimator cross, with positive values indicating outward
displacements. The approach used for determining radial lens distortion values for these older
calibration reports was to fit a polynomial curve to a plot of the displacements (on the ordinate) versus
radial distances (on the abscissa). The form of the polynomial, based on lens design theory, is

(4-4)
 
In Eq. (4-4), Δr is the amount of radial lens distortion, r is the radial distance from the principal point,
and k1, k2, k3, and k4 are coefficients of the polynomial. The coefficients of the polynomial are solved
by least squares using the distortion values from the calibration report. To correct the x, y position of
an image point, the distance r from the image point to the principal point is computed and used to
compute the value of Δr from Eq. (4-4). This is done by first converting the fiducial coordinates x and
y, to coordinates  and , relative to the principal point, by Eqs. (4-5) and (4-6). Then Eq. (4-7) is used
to compute the value of r to use in Eq. (4-4).

(4-5)
 



(4-6)
 

(4-7)
 

After the radial lens distortion value of Δr is computed, its x and y components (corrections δx
and δy) are computed and subtracted from  and , respectively. The δx and δy corrections are based
on a similar-triangle relationship, as shown in Fig. 4-4. By similar triangles of that figure

 FIGURE 4-4   Relationship between radial lens distortion and corrections to x and y coordinates.
 

 
from which

(4-8)
 

(4-9)
 
The corrected coordinates xc and yc are then computed by



(4-10)
 

(4-11)
 
Example 4-2
An older USGS camera calibration report specifies the calibrated focal length f = 153.206 mm and
coordinates of the calibrated principal point as xp = 0.008 mm and yp = –0.001 mm. The report also
lists mean radial lens distortion values given in columns (a) and (b) of the table below. Using these
calibration values, compute the corrected coordinates for an image point having coordinates x =
62.579 mm, y = –80.916 mm relative to the fiducial axes.

 
Solution   Compute r values (in meters) in column (c) by the following equation (see Fig. 4-5):

 FIGURE 4-5   Illustration of radial distance r as it relates to focal length f and field angle θ.
 

 
For example, for the field angle, θ = 7.5°,

 
Using the least squares method presented in Sec. B-11 (see Example B-6), the following k values were
computed.



 
Compute the distance from the principal point to the image point, using Eqs. (4-5), (4-6), and (4-7).

 
Given this value for r and the k coefficients, compute Δr by Eq. (4-4):

 
Compute δx and δy by Eqs. (4-8) and (4-9), respectively.

 
Compute corrected coordinates xc and yc by Eqs. (4-10) and (4-11), respectively.

 
Lens design in modern aerial mapping cameras has evolved to such a level that symmetric radial

lens distortion is of the same order of magnitude as decentering distortion, and camera calibration
reports have been adapted to accommodate this change. For example, the mathematical model used in
the current USGS calibration procedure, known as the Simultaneous Multi-camera Analytical
Calibration (SMAC), computes both symmetric radial and decentering distortion parameters directly
by least squares. Principal point coordinates and focal length are also determined in the solution. The
USGS camera calibration report lists polynomial coefficients for symmetric radial lens distortion (k0,
k1, k2, k3, k4), and decentering distortion (p1, p2, p3, p4). It also gives calibrated principal point
coordinates (xp, yp). To compute coordinates (xc, yc) corrected for these systematic errors, the
following equations are used:

(4-12)
 



(4-13)
 

(4-14)
 

(4-15)
 

(4-16)
 

(4-17)
 

In Eqs. (4-12) through (4-17),  and  are coordinates of the image relative to the principal point
as computed by Eqs. (4-5) and (4-6), respectively; r is the radial distance from the image to the
principal point as computed by Eq. (4-7); k0, k1, k2, k3, and k4 are coefficients of symmetric radial lens
distortion from the calibration report; p1, p2, p3, and p4 are coefficients of decentering distortion from
the calibration report; δx and δy are the symmetric radial lens distortion corrections to  and ,
respectively; and Δx and Δy are the decentering distortion corrections to  and , respectively.

Example 4-3
The parameters of a current USGS camera calibration report are given in the following table. Using
these calibration values, compute the corrected coordinates for an image point having coordinates x =
–47.018 mm, y = 43.430 mm relative to the fiducial axes.

 
Solution   Compute , , and r by Eqs. (4-5), (4-6), and (4-7), respectively.

 
Compute symmetric radial lens distortion corrections δx and δy, using Eqs. (4-12) and (4-13),



respectively.

 
Compute decentering distortion corrections Δx and Δy, using Eqs. (4-14) and (4-15), respectively.

 
Compute the corrected coordinates xc and yc, using Eqs. (4-16) and (4-17), respectively.

 

4-12   Correction for Atmospheric Refraction
It is well known that density (and hence the index of refraction) of the atmosphere decreases with
increasing altitude. Because of this condition, light rays do not travel in straight lines through the
atmosphere, but rather they are bent according to Snell’s law (see Sec. 2-2), as shown in Fig. 4-6. The
incoming light ray from point A of the figure makes an angle α with the vertical. If refraction were
ignored, the light ray would appear to be coming from point B rather than from point A.
Photogrammetric equations assume that light rays travel in straight paths, and to compensate for the
known refracted paths, corrections are applied to the image coordinates.



 FIGURE 4-6   Atmospheric refraction in aerial photography.
 

In Fig. 4-6, if a straight path had been followed by the light ray from object point A, then its
image would have been at a′. The angular distortion due to refraction is Δα, and the linear distortion
on the photograph is Δr. Refraction causes all imaged points to be displaced outward from their
correct positions. The magnitude of refraction distortion increases with increasing flying height and
with increasing α angle. Refraction distortion occurs radially from the photographic nadir point1

(principal point of a vertical photo) and is zero at the nadir point. Atmospheric refraction in tilted
photographs is treated in Sec. 10-16.

The usual approach to the atmospheric refraction correction is based on the assumption that
change in the refractive index of air is directly proportional to change in height. Starting with the
incident angle of the light ray at ground level, Snell’s law can be solved continuously along the ray
path for each infinitesimal change in angle due to refraction. When all the infinitesimal changes are
summed, the total is proportional to the tangent of the incident angle. (Derivation of the relationship
involves the solution of a differential equation, which is beyond the scope of this text.) The
proportionality constant is based on the values of the refractive indices at ground level and at the
camera position, which are related to elevation. The relationship that expresses the angular distortion
Δα as a function of α is

(4-18)
 



In this equation, α is the angle between the vertical and the ray of light, as shown in Fig. 4-6, and K is
a value which depends upon the flying height above mean sea level and the elevation of the object
point. There are several different approaches to calculating a value for K, with most assuming a
standard atmosphere. A convenient method, adapted from the Manual of Photogrammetry, is to
compute K by

(4-19)
 
In Eq. (4-19), H is the flying height of the camera above mean sea level in kilometers, and h is the
elevation of the object point above mean sea level in kilometers. The units of K are degrees.

The procedure for computing atmospheric refraction corrections to image coordinates on a
vertical photo begins by computing radial distance r from the principal point to the image, using Eq.
(4-20). In this equation, the x and y image coordinates do not necessarily need to be related to the
principal point since the error due to the assumption of vertical photography far overshadows any
error which would be introduced.

(4-20)
 
Also from Fig. 4-6,

(4-21)
 
The values of K and tan α from Eqs. (4-19) and (4-21), respectively, are then substituted into Eq. (4-
18) to compute refraction angle Δα.

(4-22)
 

The radial distance r′ from the principal point to the corrected image location can then be
computed by

(4-23)
 
The change in radial distance Δr is then computed by

(4-24)
 

The x and y components of atmospheric refraction distortion corrections (δx and δy) can then be
computed by Eqs. (4-8) and (4-9), using the values of x and y in place of  and , respectively. To
compute corrected coordinates x′ and y′, the corrections δx and δy are subtracted from x and y,
respectively.

Example 4-4



A vertical photograph taken from a flying height of 3500 m above mean sea level contains the image a
of object point A at coordinates (with respect to the fiducial system) xa = 73.287 mm and ya = –
101.307 mm. If the elevation of object point A is 120 m above mean sea level and the camera had a
focal length of 153.099 mm, compute the x′ and y′ coordinates of the point, corrected for atmospheric
refraction.

Solution   Compute r by Eq. (4-20).

 
Express tan α by Eq. (4-21) and solve for α.

 
Compute K by Eq. (4-19).

 
Compute Δα by Eq. (4-22).

 
Compute r′ by Eq. (4-23).

 
Compute Δr by Eq. (4-24).

 
Compute δx and δy by Eqs. (4-8) and (4-9), respectively.

 
Subtract the corrections δx and δy from x and y, respectively to obtain corrected coordinates x′ and y′.

 

4-13   Correction for Earth Curvature



Traditionally, in analytical photogrammetry, corrections were commonly applied to measured photo
coordinates to compensate for the effects of earth curvature. The rationale for this notion is that
elevations of points are referenced to an approximately spherical datum (i.e., mean sea level) whereas
photogrammetric equations assume that the zero-elevation surface is a plane. In addition, if horizontal
coordinate systems such as state plane coordinates (see Sec. 5-6) are used in object space, the axis
system is also curved, although it is curved primarily in only one direction (either east-west or north-
south). It has long been recognized that the practice of making earth curvature corrections to measured
photo coordinates is not theoretically correct. However, it has also long been accepted that using the
correction generally leads to more accurate results than ignoring it, particularly in determining
elevations.

The primary problem with the earth curvature correction is that because of the nature of map
projection coordinates, correcting photo coordinates for earth curvature will degrade the accuracy of
either X or Y object space coordinates, depending upon the map projection used. For example, when a
UTM projection (see Sec. 5-6) is used, application of earth curvature corrections will yield more
accurate elevations and Y values, but will degrade X values because the UTM projection does not
curve in the X direction.

The proper approach, which avoids the need for any sort of earth curvature correction, employs a
three-dimensional orthogonal object space coordinate system. One such coordinate system is the local
vertical coordinate system described in Sec. 5-5. By using a local vertical coordinate system for a
project, earth curvature ceases to be a distorting effect. Instead, the curvature of the earth will simply
be a natural characteristic of the terrain, and it will be resolved in the same manner as any other
topographic feature.

4-14   Measurement of Feature Positions and Edges
Up to this point in the chapter, measurement of image distances and coordinates of points have been
discussed in a general context. Now we will consider some of the characteristics of features to be
measured, namely points and edges. Since a “point” must be visible on an image in order to be
measured, the feature must have finite size. Small round objects such as manhole covers will appear
as nearly ideal point features as long as the scale of the image is not too large. Under magnification or
image zoom, the edges of the object will appear to be somewhat indistinct although the center can still
be identified to a high precision as shown in Fig. 4-7. If this manhole appears in another image, its
center will be a repeatable measurement point whereas its edges may not.



 FIGURE 4-7   Zoomed-in view of a manhole with cross-hair at center.
 

In a situation where a point feature is designated to be at the angle point of a painted chevron
target, it is important to use the intersections of the centerlines of the stripes rather than the outside or
inside corner as the point. Edges that may appear clear and sharp at a glance will become blurred and
indistinct when viewed under magnification as shown in Fig. 4-8. In this figure, it would be difficult
to precisely place cross-hairs on the corner of the chevron, but the centerlines of the stripes can be
identified precisely.



 FIGURE 4-8   Zoomed-in view of a chevron target with cross-hair at the intersection of centerlines of
stripes.
 

In many cases it is necessary to measure edges, particularly when mapping features in an area. It
is then important to make a best estimate of where the true edge of the feature is located. A certain
amount of error can be expected in the measurement due to blurred edges. For example, consider
measuring the lengths of the stripes of the chevron in Fig. 4-8. It is very difficult to identify the
precise location of where the paint meets the underlying pavement.
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Problems
  4-1.   Assume that photo coordinates of points a and b of Fig. 4-1 are xa = 57.62 mm, ya = 67.15 mm,
xb = 22.07 mm, and yb = –49.50 mm. Calculate photo distance ab and radial distances oa and ob.

  4-2.   Repeat Prob. 4-1 except that the photo coordinates are xa = –71.66 mm, ya = 47.82 mm, xb =
81.43 mm, and yb = 6.05 mm.

  4-3.   Name and briefly describe the various systematic errors that may exist in photographic
coordinates.

  4-4.   Calculate the acute angle (to the nearest 0.001°) of intersection of fiducial lines for a camera of
the type shown in Fig. 4-1 if comparator measurements of the fiducial marks on a calibration “flash
plate” were as follows:

 
  4-5.   Repeat Prob. 4-4, except that the following flash plate measurements were taken:



 
  4-6.   If the intersection of fiducial lines of the camera of Prob. 4-4 defines the principal point
exactly, what are the x and y photo coordinates of the four fiducial marks in the photo system?
Assume that the x and y photo coordinate axes are parallel to the comparator axes.

  4-7.   Repeat Prob. 4-6, except that it applies to the data of Prob. 4-5.

  4-8.   On a paper-print positive, the measured x distance between fiducials (1 and 3) was 224.9 mm
and y between fiducials (2 and 4) was 223.5 mm. These x and y distances determined in camera
calibration were 225.433 and 225.693 mm, respectively. Using the method of Example 4-1, calculate
shrinkage-corrected coordinates of points a, b, and c whose coordinates were measured on the paper
print as follows:

 
  4-9.   Repeat Prob. 4-8, except that the measured x distance on a paper-print positive between
fiducials 1 and 3 was 225.64 mm and y between fiducials 2 and 4 was 225.83 mm; the calibrated
distances between these same fiducials were 224.282 and 224.155 mm, respectively; and measured
photo coordinates of points a, b, and c were as follows:

 
4-10.   A recent USGS camera calibration report yielded the parameters given in the following table.
Using these calibration values, compute the corrected coordinates (to the nearest micrometer) for an
image point having coordinates x = 73.952 mm and y = 98.155 mm relative to the fiducial axes.



 
4-11.   Repeat Prob. 4-10, except that the coordinates, with respect to the fiducial system, of the image
point are x = –78.090 mm and y = –57.688 mm.

4-12.   The photo coordinates listed below have been corrected for film and lens distortions. The
camera that took the photography had a focal length of 151.942 mm, the flying height above mean sea
level (MSL) was 8530 m, and the average elevation of the terrain was 310 m above MSL. Calculate
the photo coordinates (to the nearest micrometer) corrected for atmospheric refraction using the
method of Example 4-4.

 
4-13.   Repeat Prob. 4-12, except that the camera lens had a focal length of 88.916 mm, flying height
above MSL was 4250 m, the average terrain elevation was 170 m above MSL, and the photo
coordinates were as follows:

 

_____________
1 The photographic nadir point is defined in Sec. 10-3.



CHAPTER 5
Object Space Coordinate Systems

 

5-1  Introduction
Coordinate systems are a fundamental concept associated with spatial data. In the previous chapter,
two-dimensional image space coordinates were discussed. In this chapter, three-dimensional object
space coordinate systems are presented and described. Object space coordinate systems have always
been important for specifying the relative positions of points in surveying, photogrammetry, and
mapping. However, they have recently taken on added significance with the emergence and increasing
importance of geographic information systems (GISs), which are heavily dependent upon coordinated
data for their function.

Object space in photogrammetry refers to the three-dimensional region that encompasses the
physical features imaged in the photographs. Most often object space relates to a portion of the earth’s
terrain and the natural and cultural features thereon; but it also can relate to other items such as
celestial bodies, medical subjects, industrial machines, archeological objects, and many others. When
mapping the earth’s terrain and natural and cultural features, it is important that all mapped objects be
accurately located with respect to an accepted geographic frame of reference. This is particularly
important when spatial data from multiple sources are being integrated. If any of the spatial data sets
are not accurately defined in an accepted frame of reference, then gaps, overlaps, and mismatches will
occur. Several accepted reference systems exist: geodetic, geocentric, local vertical, and map
projection. General concepts of these reference systems are discussed in this chapter, while
mathematical equations which express the relationships between them are given in App. F.

5-2  Concepts of Geodesy
To a person standing in the middle of a prairie, the earth appears to be flat, and within a limited area,
it is approximately so. Within this limited range, positions of points can be determined relative to a
local plane surface without significant loss of accuracy. As the size of the area increases, however, the
effects of the earth’s curvature become significant and must be taken into account in order to maintain
accuracy. Since photogrammetric projects often cover large areas, it is necessary to have quantitative
knowledge of the earth’s shape in order to determine accurate relative positions of points and to
produce reliable maps.

The field of geodesy involves the study of the size, shape, gravity, rotation, and crustal movement
of the earth. It is a highly refined science which provides the basis for earth-related reference
coordinate systems. To understand its basis, three “reference surfaces” must be defined: the physical
earth, the geoid, and the ellipsoid. These are illustrated in Fig. 5-1. The physical earth is exactly what
the term implies. It contains mountains, valleys, plains, and ocean floors, and is the primary object
which is to be mapped. Although generally viewed as a static object, the physical earth is subject to
subtle crustal movements, which are accounted for in modern geodesy.



 FIGURE 5-1   The three fundamental geodetic reference surfaces: physical earth, geoid, and ellipsoid.
 

The geoid is an equipotential gravity surface, which is generally considered to be mean sea level.
It can be imagined as the surface that the earth’s seas would form if wind, wave, and tidal action
ceased and the oceans were connected through the continents by narrow, frictionless canals. The geoid
is a gently undulating surface which is everywhere perpendicular to the direction of gravity. These
gentle undulations are due to gravity variations caused by the nonhomogeneous mass distribution of
the earth. Note that the amplitude of geoid undulations depicted in Fig. 5-1 are greatly exaggerated. At
the scale of this figure, true undulations would result in the geoid and ellipsoid appearing to coincide.
The shape of the geoid, in fact, results from the net attraction, comprised of gravity and the effect of
the earth’s rotation.

A reference ellipsoid is a mathematically defined surface which approximates the geoid either
globally or in a large local area such as a continent. This surface is formed by rotating a two-
dimensional ellipse (shown in Fig. 5-2a) about its minor axis. Rotation of an ellipse in this manner
generates a three-dimensional ellipsoid, as shown in Fig. 5-2b. This figure shows the (curved) lines
which pass through the north and south poles (NP and SP, respectively), known as meridians, and
(curved) lines which are parallel to the equator, called parallels. A meridian is formed by the
intersection of the ellipsoid with a plane containing the pole. A parallel, however, is formed by the
intersection of the ellipsoid with a plane that is perpendicular to the pole (i.e., parallel to the equator).

 FIGURE 5-2   Definition of a reference ellipsoid. (a) Two-dimensional ellipse showing major and
minor axes. (b) Three-dimensional ellipsoid formed by rotation of ellipse about the minor axis.
 



To define the size and shape of the reference ellipsoid, at least two constants are required. They
are derived from actual measurements made upon the earth. Generally, the semimajor axis of the
ellipsoid a and the flattening f are specified. From these two defining constants, other ellipsoid
parameters can be derived. The following equations give relationships between the ellipsoid constants
of a, the semimajor axis; b, the semiminor axis; f, the flattening; e, the first eccentricity; and e′, the
second eccentricity.

(5-1)
 

(5-2)
 

(5-3)
 

(5-4)
 

(5-5)
 

(5-6)
 

The flattening f is a parameter for an ellipsoid (or ellipse) which quantifies how much it departs
from a true sphere (or circle). The value of f for an ellipse can range from 0, which corresponds to a
circle, to 1, which corresponds to a completely flattened ellipse, i.e., a straight line. The accepted
value of f for the earth is roughly 0.0033, which implies that the earth is very nearly spherical. The
first and second eccentricities e and e′ are also parameters which quantify how much an ellipse departs
from a true circle, with values near 0 denoting near circularity. Table 5-1 gives semimajor axis a and
flattening f values for three commonly used reference ellipsoids.

 TABLE 5-1   Parameters for Select Reference Ellipsoids
 

As noted previously, the values for a and f are selected on the basis of geodetic measurements



made in different locations of the world. In the past, reference ellipsoids were derived in order to fit
the geoid in certain local regions, such as North America. The Clarke 1866 ellipsoid is an example of
this type of local surface, which was a best-fit to the geoid in North America. More recently, given
accurate global measurement technology such as GPS, Doppler satellite measurements, and very long
baseline interferometry (VLBI), reference ellipsoids have been derived which give a best-fit to the
geoid in a worldwide sense. The GRS80 and WGS84 ellipsoids are examples of worldwide reference
surfaces.

5-3  Geodetic Coordinate System
Geodetic coordinates for specifying point locations relative to the earth’s surface are latitude ϕ,
longitude λ, and height h. These coordinates all depend upon a reference ellipsoid for their basis.
Latitude and longitude are horizontal components, while the vertical component is height. These three
coordinates are illustrated in Fig. 5-3. This figure shows a point P with a line passing through it,
perpendicular to the ellipsoid and extending to the polar axis. This line is called the normal. The
longitude λ of a point is given by the angle in the plane of the equator from the prime meridian
(usually the meridian through Greenwich, England) to the local meridian (meridian passing through
the normal line). Values of longitude range from –180° to +180° with those west of the prime
meridian being negative and those to the east being positive. The latitude (ϕ) of a point is the angle
from the equatorial plane to the normal line. Values of latitude range from –90° to +90° with those
north of the equator being positive and those to the south being negative. The latitude is more clearly
illustrated in Fig. 5-4, which shows a plane section through the ellipsoid containing the local meridian
and the normal.

 FIGURE 5-3   Geodetic coordinates of latitude ϕ, longitude λ, and height h.
 



 FIGURE 5-4   Illustration of latitude ϕ, normal, and height h in the plane of the local meridian.
 

As also illustrated in Fig. 5-4, height h is the distance from the surface of the ellipsoid to the
point P, in the same direction as the normal. This value specifies the elevation of a point above the
ellipsoid, also known as the ellipsoid height. The elevation of a point above the geoid H, also known
a s orthometric height, is commonly considered to be the mean sea level elevation. Figure 5-1
illustrates the relationship between these two height definitions. The difference between the two
heights is referred to as the geoid undulation or geoid height and is indicated in Fig. 5-1 by the value
N. The relationship between ellipsoid height h, orthometric height H, and geoid undulation N is
specified in Eq. (5-7).

(5-7)
 

Figure 5-1 shows two lines through point P perpendicular to the ellipsoid and geoid, respectively.
These lines intersect at an angle known as the deviation of the vertical. The deviation of the vertical
can be determined by precise surveying techniques, and its value never exceeds 2 arc minutes
anywhere on the earth.

5-4  Geocentric Coordinates
While geodetic coordinates ϕλh provide an earth-based definition for a point’s three-dimensional
position, they are related to a curved surface (reference ellipsoid). These coordinates are therefore
nonorthogonal and as such are unsuitable for analytical photogrammetry, which assumes a rectangular
or cartesian coordinate system. The geocentric coordinate system, on the other hand, is a three-
dimensional XYZ cartesian system which provides an earth-centered definition of position,
independent of any reference surface. This system has its XY plane in the plane of the equator with the
Z axis extending through the north pole. The X axis is oriented such that its positive end passes
through the prime meridian. Figure 5-5 illustrates the geocentric coordinate system and its
relationship to geodetic coordinates.



 FIGURE 5-5   Relationship between geocentric and geodetic coordinates.
 

The geocentric coordinate system is a convenient system for many worldwide geodetic
applications such as satellite geodesy. Its use in photogrammetry and other mapping applications is
not as advantageous since values of the coordinates are very large and have no obvious relationship to
the cardinal directions in a local area. Also, the direction of the camera axis would be quantified
relative to the earth’s pole instead of the local vertical. For these reasons, a special coordinate system,
the local vertical system, with its origin in the local project area is generally used.

5-5  Local Vertical Coordinates
A local vertical coordinate system is a three-dimensional cartesian XYZ reference system which has its
origin placed at a specific point within the project area. At this local origin, the Z axis extends straight
up from the ellipsoid in the same direction as the normal at the origin. The positive X and Y axes are
tangent to the ellipsoid and point to the east and north, respectively. Figure 5-6 shows the local
vertical system and its relationship to geocentric and geodetic coordinates. In this figure, the position
of the local origin is specified in terms of geodetic coordinates ϕo, λo, and ho, with the last equal to
zero. As shown in Fig. 5-6, the local origin has geocentric coordinates Xo, Yo, and Zo, and point P in the
project area has local vertical coordinates  and .



 FIGURE 5-6   Local vertical coordinate system relative to geocentric and geodetic systems.
 

Local vertical coordinates have the characteristic that X, Y, and Z values will correspond roughly
to eastings, northings, and heights above the ellipsoid, respectively. However, the farther a point lies
from the local origin, the less accurate these correspondences will be. This will have no detrimental
effect on coordinates computed through analytical photogrammetry, since the local vertical
coordinates can be accurately converted to useful geodetic coordinates or map projection eastings and
northings. Appendix F contains detailed descriptions of these conversion procedures, complete with
examples.

5-6  Map Projections
One of the fundamental products produced through photogrammetry is a map. A map, in general,
consists of points, lines, arcs, symbols, or images which are placed on a flat, two-dimensional surface
such as a sheet of paper or computer display. It is, in a manner of speaking, a scaled representation of
what a human would see while walking from point to point in the mapped area. As such, it is
preferable that the map present the viewpoint from directly overhead throughout the area. In mapping
the earth’s surface, it is impossible to achieve this overhead viewpoint on a two-dimensional medium
without distortion because of the earth’s curved shape. Map projections were created to accomplish
this viewpoint with a carefully defined and understood amount of distortion.

While there are several types of map projections to choose from, those most often used in
photogrammetric mapping applications are conformal, meaning that true shape is maintained. Two
particular conformal map projections which will be discussed here are the Lambert conformal conic
and the transverse Mercator. These map projections both employ the concept of the developable
surface. A developable surface is a surface that may be three-dimensional in its natural form, but can
be “unrolled” and laid flat. The developable surface is created which nearly coincides with the



ellipsoid in the region being mapped. Points are then projected from the ellipsoid onto the developable
surface or vice versa.

As its name implies, the Lambert conformal conic projection uses a cone as its developable
surface. The axis of the cone is made to coincide with the minor axis of the ellipsoid and will pass
through the ellipsoid along two parallels of latitude, called the standard parallels. Figure 5-7 shows a
cone superimposed on the reference ellipsoid of the earth. Note that in the region between the standard
parallels, the conic surface is below the ellipsoid; therefore, lines that are projected from the ellipsoid
to the cone will be made shorter, and those outside the standard parallels will be made longer. This
change in dimension can be quantified by a scale factor which is less than 1 between the standard
parallels, greater than 1 outside, and exactly equal to 1 at the standard parallels. Since this scale factor
varies in the north-south direction but remains the same in the east-west direction, the Lambert
conformal conic projection is appropriate for areas of limited extent north-south, but wide extent east-
west. It is well-suited for an area such as the state of Tennessee.

 FIGURE 5-7   Cone used in the Lambert conformal conic projection.
 

The XY (easting, northing) coordinates of points within a Lambert conformal conic projection are
based on the cone after it has been unrolled and laid flat. Figure 5-8 shows how the flattened cone is
placed relative to the XY axes. In this figure, parallels of latitude form concentric circular arcs
centered on the apex of the cone, and meridians appear as lines which are radial from the apex.



 FIGURE 5-8   The Lambert cone unrolled and laid flat.
 

Different Lambert conformal conic projections can be set up for specific local areas or “zones.”
A zone is typically defined in terms of the extent of its latitude and longitude. When a Lambert
conformal conic map projection is developed for a specific area, a central meridian is selected whose
longitude is equal to that of the approximate center of the zone. The origin for the map projection is
also selected. It lies on the central meridian at a location below the coverage of the zone. Figure 5-8
illustrates both the central meridian and the origin. Six parameters uniquely define a Lambert
conformal conic map projection for a specific zone. Two of the parameters are the latitudes ϕ1 and ϕ2

of the two standard parallels depicted in Figs. 5-7 and 5-8. Two others are the latitude and longitude ϕo

and λo, respectively, of the grid origin. The final two parameters are the false easting Eo and false
northing No of the origin. These latter parameters, as shown in Fig. 5-8, are included so that all
coordinates within the zone will be positive. A point P having a particular latitude and longitude (ϕP,
λP) will have corresponding map projection coordinates (XP,YP).

Conversion of latitude and longitude (ϕλ) of a point into map projection coordinates (XY) is
known as the forward or direct conversion. Computation of the forward conversion for the Lambert
conformal conic projection involves complex mathematics which are given in Sec. F-5. Conversion
from XY to ϕλ is referred to as the inverse conversion, procedures for which are also given in Sec. F-5.

Another commonly used map projection is the transverse Mercator, which employs a cylinder as
its developable surface. For an assumed spherical earth, the developable surface is a true cylinder;
however, using an ellipsoidal representation of the earth requires the use of a cylinder that has been



flattened slightly to conform to the shape of the ellipsoid. While a term such as “cylindroid” might be
more appropriate for the developable surface, it would be inconsistent with practically all published
literature on the subject and thus the word “cylinder” will be used in this text. The axis of the cylinder
is defined so as to lie in the plane of the equator, transverse to the minor axis of the ellipsoid. Figure
5-9 shows a cylinder superimposed on the reference ellipsoid of the earth. The cylinder intersects the
reference ellipsoid along two rings which are nominally oriented in the north-south direction. Note
that in the region between the rings of intersection, the cylinder is below the ellipsoid and therefore
lines that are projected from the ellipsoid to the cylinder will be made shorter, and those outside the
rings will be made longer. This is similar to the condition with regard to standard parallels of the
Lambert conformal conic projection. This change in dimension can also be quantified by a scale factor
which is less than 1 between the rings of intersection, greater than 1 outside, and exactly equal to 1 at
the intersecting rings. Since this scale factor varies in the east-west direction but remains
approximately the same in the north-south direction, the transverse Mercator projection is appropriate
for areas of limited extent east-west, but with long extent north-south. It is well suited for areas such
as the states of Vermont and New Hampshire.

 FIGURE 5-9   Cylinder used in the transverse Mercator projection.
 

The XY (easting, northing) coordinates are based on the cylinder after it has been unrolled and
laid flat. Figure 5-10 shows how the flattened cylinder is placed relative to the X and Y axes. In this
figure, parallels of latitude and meridians of longitude appear as lines which take the shapes of
complex curves, symmetric about the central meridian.



 FIGURE 5-10   The transverse Mercator cylinder unrolled and laid flat.
 

As with the Lambert conformal conic projection, different transverse Mercator projections can be
set up in local areas or zones, also defined in terms of their ranges of latitude and longitude. To
develop a transverse Mercator map projection for a specific area, a central meridian is selected in the
approximate center of the zone. An origin is also defined which lies on the central meridian at a
location below the coverage of the zone (see Fig. 5-10). Five parameters uniquely define a transverse
Mercator map projection for a specific zone. The first two parameters are the latitude and longitude,
ϕo and λo, of the grid origin. A third parameter, ko, is the scale factor along the central meridian.
Finally, as shown in Fig. 5-10, a false easting Eo and false northing No of the origin are included to
keep the coordinates positive. A point P having a particular latitude and longitude (ϕP, λP) will have
corresponding map projection coordinates (XP, YP).

The forward conversion of latitude and longitude (ϕλ) of a point to XY coordinates for the
transverse Mercator projection involves mathematical developments which are even more complex
than those of the Lambert conformal conic projection (see Sec. F-6). The inverse conversion (from XY
to ϕλ) is equally complex, and these procedures are also given in Sec. F-6.

Both the Lambert conformal conic and transverse Mercator projections are used in state plane
coordinate (SPC) systems in the United States. These SPC systems were established to provide
convenient local coordinate systems for surveying and mapping. In the SPC system, each state is
divided into one or more zones chosen so that the maximum scale distortion is no more than 1 part in
10,000. To achieve this distortion limit, the north-south dimension of each Lambert conformal conic
zone and the east-west dimension of each transverse Mercator zone are limited to approximately 254



kilometers (km). Each zone has its own unique set of defining parameters, with some states, such as
Rhode Island, having a single zone, and other states, such as Alaska, having as many as 10 zones.
(Note that one of the Alaska zones uses the oblique Mercator projection.)

Another common map projection system is the universal transverse Mercator (UTM) system.
This system was established to provide worldwide coverage between 80° S and 80° N latitude by
defining 60 zones, each having a 6° longitude range. UTM zone 1 extends from 180° west longitude to
174° west longitude, with a central meridian of 177° west. Zone numbers increase to the east, at an
equal spacing of 6° longitude. For example, zone 17 extends from 84° west to 78° west and has a
central meridian of 81° longitude. The value of the scale factor along the central meridian ko is equal
to 0.9996 for every zone, resulting in a maximum scale distortion of 1 part in 2500. Each zone has its
origin (ϕo λo) at the intersection of the equator with the central meridian. The false easting for each
zone is 500,000 m; for latitudes north of the equator, the false northing is 0 m, and for latitudes south
of the equator, the false northing is 10,000,000 m.

The Lambert conformal conic and transverse Mercator map projections are by no means the only
map projections available. Other projections which may be routinely encountered are the polyconic,
polar stereographic, and space oblique Mercator. Although discussion of these projections is beyond
the scope of this text, the reader is encouraged to consult references at the end of this chapter for
details of these and other map projections.

5-7  Horizontal and Vertical Datums
A datum is a system of reference for specifying the spatial positions of points. These spatial positions
are generally expressed in terms of two separate components, horizontal and vertical. Thus datums
have also traditionally been of two kinds: horizontal and vertical. In a physical sense, a datum consists
of a network of well-distributed control monuments whose positions have been determined through
precise control surveys. These monuments serve as reference points for originating subordinate
surveys of all types. Thus they provide the basis for specifying the relative positions of points both for
surveying operations and for mapping purposes.

Common horizontal datums encountered in the United States include the North American Datum
of 1927 (NAD27), the North American Datum of 1983 (NAD83), the World Geodetic System of 1984
(WGS84), various statewide high-accuracy reference networks  (HARNs), and the International
Terrestrial Reference Framework  (ITRF). They provide a means of relating horizontal coordinates
derived through surveying and mapping processes to established coordinate reference systems.

Although the theoretical development of horizontal datums is rather complicated, conceptually
they can be considered to be based on three primary components as minimum constraints: a reference
ellipsoid, an origin, and an angular alignment. The North American Datum of 1927, for example, uses
the Clarke 1866 ellipsoid as its reference surface which was a best-fit to the geoid in North America.
The origin for NAD27 is a point known as “Meades Ranch,” located in the state of Kansas. At this
origin the geoid and ellipsoid, as well as their respective normals, were made to coincide; i.e.,
deviation of the vertical was assumed to be zero there. Based upon the best positional information
available at the time, values of latitude and longitude were assigned and fixed for Meades Ranch,
which by definition are exact. The angular alignment was established by fixing an azimuth to a nearby
point named “Waldo” and by aligning the semiminor axis of the reference ellipsoid with the rotational
axis of the earth. A large network of points, spanning the North American continent, were connected
to this pair of points through high-accuracy control surveys. All points in the network were
monumented to perpetuate their positions. Based on the latitude and longitude coordinates of Meades



Ranch and the azimuth to Waldo, and the control survey data, coordinates of the other points were
computed by a least squares adjustment. The resulting coordinates were then made available to the
public so that surveyors and mappers throughout North America could establish coordinates relative
to NAD27 by originating their surveys from monumented datum points in the vicinity.

As noted earlier, in a physical sense a horizontal datum such as NAD27 consists of the monument
points along with their published coordinates. Since these coordinates were computed from a large
number of measurements, each of which contains a certain amount of error, NAD27 likewise contains
distortions due to these errors. In addition, subsequent surveys expanded NAD27 by connecting to
previously established points in a piecemeal fashion. With advances in instrumentation, particularly
accurate electronic distance-measuring devices, the distortions inherent in NAD27 began to cause
difficulties in constraining the newer, more accurate measurements to the distorted system. To address
this problem, the U.S. National Geodetic Survey created a new datum known as NAD83. This
improved datum included virtually all points from NAD27 and its historic measurements, as well as
nearly one-quarter million new points created from electronically measured distances and satellite
observations. This entire system of combined measurements was adjusted by least squares. The values
of computed coordinates were first published in 1986, 3 years later than planned, but nevertheless the
system was called NAD83.

The reference ellipsoid of the NAD83 datum is the Geodetic Reference System of 1980 (GRS80)
which was a worldwide best-fit to the geoid. The point of origin for NAD83 was made to coincide with
the mass center of the earth, which was indirectly determined on the basis of satellite orbits. The
semiminor axis of the reference ellipsoid was aligned with the rotational axis of the earth, and an
internationally accepted basis for longitude was also used. Since this new datum included many new
measurements and had a different set of constraints, points that were common to both datums now had
two sets of horizontal coordinates. In some cases they differed by as much as 150 m. For this reason it
is essential that the reference datum for any survey or map product be clearly indicated so as to avoid
confusion.

The World Geodetic System of 1984 was established by the U.S. Department of Defense during
the same time period that NAD83 was being developed. This datum is employed for all maps and
charts produced for use by the U.S. armed forces. WGS84 is also the datum to which the broadcast
ephemeris of the Global Positioning System (GPS) is referenced (see Sec. 16-7).

At the same time that NAD83 was being completed, GPS was beginning to be widely used for
geodetic surveys. Due to the exceptionally high accuracy of GPS, discrepancies were being revealed in
the newly created NAD83. As use of GPS expanded, these discrepancies became a significant nuisance
for geodesists, and newer, more accurate datums were sought. As a response, the National Geodetic
Survey, in cooperation with individual states, began to establish high-accuracy reference networks
(HARNs). These networks consisted of newly established points which were surveyed using high-
accuracy GPS observations. The results were statewide networks of points whose relative positions are
known to an accuracy of better than 1 part per million. The HARNs were individually connected to a
high-accuracy worldwide network; therefore even though these networks have a high degree of
internal consistency, there are discontinuities along the borders between states.

The previously mentioned horizontal datums are static systems; i.e., the coordinates of the
monument points are based on a specific moment in time. It has been well established that the surface
of the earth is dynamic, subject to crustal movements of several centimeters per year and perhaps
more. In addition, the rotational axis of the earth is continually on the move at a slow but detectable
rate. With current high-accuracy surveying techniques such as GPS, the dynamic nature of the earth’s
surface is readily detectable. In response, the International Earth Rotation Service established the
International Terrestrial Reference Frame, or ITRF. The published values for this sophisticated datum



consist of geocentric coordinates at a specific point in time (epoch) along with velocity vectors which
can be used to determine the precise locations of the point at a later time. This ultraprecise datum is
accurate to 1 part in 50,000,000, which corresponds to a precision of approximately 15 cm between
any two points on the earth regardless of their locations! The ITRF is essentially a three-dimensional
reference datum of high accuracy which is commonly used as a basis for precise GPS orbit
determination. Periodically, WGS84 has been refined so as to closely coincide with the ITRF.

In order to eliminate the need for separate HARNs for individual states, the National Geodetic
Survey has readjusted the NAD83 datum using GPS and other measurements connecting the HARN
points along with those for the existing NAD83 points. The result is the unified National Spatial
Reference System (NSRS). Since this datum uses the GRS80 ellipsoid and retains the original location
of the earth’s mass center as its origin, it is more consistent with earlier readjustments of NAD83.
Because of this and the year of its most recent readjustment, the new datum is commonly designated
as NAD83(2011). Compared to the location of the earth’s mass center in the ITRF, there is a
displacement of approximately 2 m to the NAD83(2011) origin. Likewise, since WGS84 is
periodically updated to the latest ITRF epoch, there is a displacement of approximately 2 m between
WGS84 and NAD83(2011) origins. As noted in Sec. 5-1, a single common reference system should be
used in order to produce consistent spatial data products.

A vertical datum is a reference system for giving elevations of points relative to the geoid (i.e.,
orthometric heights). Two primary vertical datums are currently in use in the United States: the
National Geodetic Vertical Datum of 1929 (NGVD29) and the North American Vertical Datum of 1988
(NAVD88).

The NGVD29 was established on the basis of tide gauge measurements at 26 stations on the
North American coast, together with interconnecting leveling measurements through a vast network of
benchmarks across the continent. At the time this datum was established, it was assumed that the
geoid coincided with mean sea level as determined at the tide gaging stations. Elevations were
therefore constrained to zero at these stations, and all benchmarks were adjusted to conform to this
defined reference. Thus the NGVD29 can be considered to be a mean sea level datum.

The NGVD29 evolved in much the same way as the NAD27 in that many additional vertical
surveys were connected to the network in local areas. This fact, in addition to distortions in the datum
due to measurement errors and constraint to the tide gauging stations, led to a vertical datum which
was not sufficiently accurate for modern applications. Also, the increasing use of GPS dictated the use
of a vertical datum that more nearly corresponded to the geoid. Thus the NAVD88 was established. It
is based on a worldwide gravity model which is, by definition, the geoid. The zero elevation reference
was based on Father Point at Rimouski Canada, near the mouth of the St. Lawrence. Unfortunately this
elevation was found to differ from the true mean sea level by approximately 0.5 m. Thus the reference
surface of the NAVD88 is slightly different from the true geoid. Despite this inconsistency, the
NAVD88 is more compatible with worldwide horizontal datums.

It is often necessary to convert (transform) points that have been referenced in one datum to
another. Examples would be to transform from NAD27 to NAD83, or from NGVD29 to NAVD88.
These transformations have become especially commonplace with the increasing use of geographic
information systems. These systems often utilize information from different dates and different
sources, and frequently the information is based on different reference coordinate systems. But the
information must all be coordinated in a common reference system before being integrated for
analysis and use in a GIS. A number of different mathematical procedures have been used for making
these conversions. Unless the transformation procedure appropriately accounts for the distortions in
the datums, however, errors on the order of several meters can result in the converted positions. To aid
in making accurate horizontal datum conversions, the NGS has developed a program called NADCON.



It can convert horizontal datum coordinates between NAD27 and NAD83 to an accuracy of
approximately 15 cm with occasional errors as high as 50 cm. A related program called VERTCON,
also available from NGS, performs vertical datum conversions between NGVD29 and NAVD88 to an
accuracy of approximately 2 cm. Another useful program is GEOID12A which can be used to compute
geoid undulation values N within the area encompassed by the NAVD88. These programs are available
from the NGS on their website.1
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  5-1.   List and briefly describe the three basic reference surfaces in geodesy.

  5-2.   Using the values of a and f from Table 5-1, compute the values of the semiminor axis b, and the
first eccentricity e for the Clarke 1866 ellipsoid. Express your answers to 10 significant figures.

  5-3.   Repeat Prob. 5-2, except the b and e values for WGS84 should be computed.

  5-4.   The ellipsoid height h for a point was determined from GPS observation to be +382.67 m. If the
geoid undulation N is equal to +9.44 m, what is the orthometric height H for the point?

  5-5.   Repeat Prob. 5-4, except that the ellipsoid height is –5.62 m and the geoid undulation is –25.83
m.

  5-6.   Briefly explain the difficulty associated with using the geocentric coordinate system in
photogrammetric applications.

  5-7.   Illustrate and briefly describe how Z values in a local vertical coordinate system vary with
distance from the local vertical origin for points having a constant ellipsoid height.

  5-8.   Briefly describe the variation in scale factor in the north-south direction for a Lambert
conformal conic projection.

  5-9.   List the types of map projections that are used in the U.S. state plane coordinate system.

5-10.   Based on the longitude of the area in which you live, determine the number of your local UTM
zone.

5-11.   Access the applications NADCON, VERTCON, and GEOID12A from the NGS website
http://www.ngs.noaa.gov. Using the appropriate application, answer the following:
            (a)  Using the values of latitude and longitude in NAD83 for a point in your local area,

determine the corresponding values in NAD27, using NADCON.
            (b)  Using the NGVD29 elevation of a point in your local area, determine the corresponding

elevation in NAVD88, using VERTCON.
            (c)  Using the same latitude and longitude as in part (a), determine the value of the geoid

undulation using GEOID12A.

_____________
1 The website address of the NGS is http://www.ngs.noaa.gov.

http://www.ngs.noaa.gov
http://www.ngs.noaa.gov


CHAPTER 6
Vertical Photographs

 

6-1  Geometry of Vertical Photographs
As described in Chap. 1, photographs taken from an aircraft with the optical axis of the camera
vertical or as nearly vertical as possible are called vertical photographs. If the optical axis is exactly
vertical, the resulting photograph is termed truly vertical. In this chapter, equations are developed
assuming truly vertical photographs. In spite of precautions taken to keep the camera axis vertical,
small tilts are invariably present. For photos intended to be vertical, however, tilts are usually less
than 1° and rarely exceed 3°. Photographs containing these small unintentional tilts are called near-
vertical or tilted photographs, and for many practical purposes these photos may be analyzed using
the relatively simple “truly vertical” equations of this chapter without serious error.

In this chapter, besides assuming truly vertical photographs, other assumptions are that the photo
coordinate axis system has its origin at the photographic principal point and that all photo coordinates
have been corrected for shrinkage, lens distortion, and atmospheric refraction distortion.

Figure 6-1 illustrates the geometry of a vertical photograph taken from an exposure station L. The
negative, which is a reversal in both tone and geometry of the object space, is situated a distance equal
to the focal length (distance o′L in Fig. 6-1) above the rear nodal point of the camera lens. The positive
may be obtained by direct emulsion-to-emulsion “contact printing” with the negative. This process
produces a reversal of tone and geometry from the negative, and therefore the tone and geometry of
the positive are exactly the same as those of the object space. Geometrically the plane of a contact-
printed positive is situated a distance equal to the focal length (distance o′L in Fig. 6-1) below the
front nodal point of the camera lens. The same is true for an image obtained with a frame-type digital
camera. The reversal in geometry from object space to negative is readily seen in Fig. 6-1 by
comparing the positions of object points A, B, C, and D with their corresponding negative positions a′,
b′, c′, and d′. The correspondence of the geometry of the object space and the positive is also readily
apparent. The photographic coordinate axes x and y, as described in Chap. 4, are shown on the positive
of Fig. 6-1.



 FIGURE 6-1   The geometry of a vertical photograph.
 

6-2  Scale
Map scale is ordinarily interpreted as the ratio of a map distance to the corresponding distance on the
ground. In a similar manner, the scale of a photograph is the ratio of a distance on the photo to the
corresponding distance on the ground. Due to the nature of map projections, map scale is not
influenced by terrain variations. A vertical aerial photograph, however, is a perspective projection,
and as will be demonstrated in this chapter, its scale varies with variations in terrain elevation.

Scales may be represented as unit equivalents, unit fractions, dimensionless representative
fractions, or dimensionless ratios. If, for example, 1 inch (in) on a map or photo represents 1000 ft
(12,000 in) on the ground, the scale expressed in the aforementioned four ways is

      1.  Unit equivalents: 1 in = 1000 ft
      2.  Unit fraction: 1 in/1000 ft
      3.  Dimensionless representative fraction: 1/12,000
      4.  Dimensionless ratio: 1:12,000

By convention, the first term in a scale expression is always chosen as 1. It is helpful to remember that



a large number in a scale expression denotes a small scale, and vice versa; for example, 1:1000 is a
larger scale than 1:5000.

6-3  Scale of a Vertical Photograph Over Flat Terrain
Figure 6-2 shows the side view of a vertical photograph taken over flat terrain. Since measurements
are normally taken from photo positives rather than negatives, the negative has been excluded from
this and other figures that follow in this text. The scale of a vertical photograph over flat terrain is
simply the ratio of photo distance ab to corresponding ground distance AB. That scale may be
expressed in terms of camera focal length f and flying height above ground H′ by equating similar
triangles Lab and LAB as follows:

 FIGURE 6-2   Two-dimensional view of a vertical photograph taken over flat terrain.
 

(6-1)
 
From Eq. (6-1) it is seen that the scale of a vertical photo is directly proportional to camera focal
length (image distance) and inversely proportional to flying height above ground (object distance).

Example 6-1
A vertical aerial photograph is taken over flat terrain with a 152.4 mm-focal-length camera from an
altitude of 1830 m above ground. What is the photo scale?

Solution   By Eq. (6-1),



 
Note the use of the overbar in the solution of Example 6-1 to designate significant figures, as
discussed in Sec. A-3.   

6-4  Scale of a Vertical Photograph Over Variable Terrain
If the photographed terrain varies in elevation, then the object distance—or the denominator of Eq. (6-
1)—will also be variable and the photo scale will likewise vary. For any given vertical photo scale
increases with increasing terrain elevation and decreases with decreasing terrain elevation.

Suppose a vertical aerial photograph is taken over variable terrain from exposure station L of Fig.
6-3. Ground points A and B are imaged on the positive at a and b, respectively. Photographic scale at
h, the elevation of points A and B, is equal to the ratio of photo distance ab to ground distance AB. By
similar triangles Lab and LAB, an expression for photo scale SAB is

 FIGURE 6-3   Scale of a vertical photograph over variable terrain.
 

(a)
 
Also, by similar triangles LOAA and Loa,

(b)



 
Substituting Eq. (b) into Eq. (a) gives

(c)
 
Considering line AB to be infinitesimal, we see that Eq. (c) reduces to an expression of photo scale at a
point. In general, by dropping subscripts, the scale at any point whose elevation above datum is h may
be expressed as

(6-2)
 
In Eq. (6-2), the denominator H - h is the object distance. In this equation as in Eq. (6-1), scale of a
vertical photograph is seen to be simply the ratio of image distance to object distance. The shorter the
object distance (the closer the terrain to the camera), the greater the photo scale, and vice versa. For
vertical photographs taken over variable terrain, there are an infinite number of different scales. This
is one of the principal differences between a photograph and a map.

6-5  Average Photo Scale
It is often convenient and desirable to use an average scale to define the overall mean scale of a
vertical photograph taken over variable terrain. Average scale is the scale at the average elevation of
the terrain covered by a particular photograph and is expressed as

(6-3)
 
When an average scale is used, it must be understood that it is exact only at those points that lie at
average elevation, and it is an approximate scale for all other areas of the photograph.

Example 6-2
Suppose that highest terrain h1, average terrain havg, and lowest terrain h2 of Fig. 6-3 are 610, 460, and
310 m above mean sea level, respectively. Calculate the maximum scale, minimum scale, and average
scale if the flying height above mean sea level is  m and the camera focal length is 152.4 mm.

Solution   By Eq. (6-2) (maximum scale occurs at maximum elevation),

 
and (minimum scale occurs at minimum elevation)



 
By Eq. (6-3)

 
In each of Eqs. (6-1), (6-2), and (6-3), it is noted that flying height appears in the denominator.

Thus, for a camera of a given focal length, if flying height increases, object distance H - h increases
and scale decreases. Figures 6-4a through d illustrate this principle vividly. Each of these vertical
photos was exposed using the very same 23-cm format and 152-mm-focal-length camera. The photo
of Fig. 6-4a had a flying height of 460 m above ground, resulting in an average photo scale of 1:3000.
The photos of Fig. 6-4b, c, and d had flying heights above average ground of 910 m, 1830 m, and 3660
m, respectively, producing average photo scales of 1:6000, 1:12,000, and 1:24,000, respectively.   



 



 
FIGURE 6-4   Four vertical photos taken over Tampa, Florida, illustrating scale variations due to
changing flying heights. (Courtesy Aerial Cartographics of America, Inc.)
 

6-6  Other Methods of Determining Scale of Vertical Photographs
In the previous sections, equations have been developed for calculating the scale of vertical aerial
photographs in terms of camera focal length, flying height, and terrain elevation. There are, however,
other methods of scale determination which do not require knowledge of these values.

A ground distance may be measured in the field between two points whose images appear on the
photograph. After the corresponding photo distance is measured, the scale relationship is simply the
ratio of the photo distance to the ground distance. The resulting scale is exact only at the elevation of



the ground line, and if the line is along sloping ground, the resulting scale applies at approximately the
average elevation of the two endpoints of the line.

Example 6-3
The horizontal distance AB between the centers of two street intersections was measured on the
ground as 402 m. Corresponding line ab appears on a vertical photograph and measures 95.8 mm.
What is the photo scale at the average ground elevation of this line?

Solution

 
The scale of a vertical aerial photograph may also be determined if a map covering the same area

as the photo is available. In this method it is necessary to measure, on the photograph and on the map,
the distances between two well-defined points that can be identified on both photo and map.
Photographic scale can then be calculated from the following equation:

(6-4)
 
Example 6-4
On a vertical photograph the length of an airport runway measures  mm. On a map that is plotted at
a scale of 1:24,000, the runway is measured as 103 mm. What is the scale of the photograph at runway
elevation?

Solution   From Eq. (6-4),

 
The scale of a vertical aerial photograph can also be determined without the aid of a measured

ground distance or a map if lines whose lengths are known by common knowledge appear on the
photo. “Section lines” of a known 1-mile (1-mi) length, or a football field or baseball diamond, could
be measured on the photograph, for example, and photographic scale could be calculated as the ratio
of the photo distance to the known ground distance.

Example 6-5
What is the scale of a vertical aerial photograph on which a section line measures 151 mm?

Solution   The length of a section line is assumed to be 5280 ft. (Actually it can vary considerably
from that value.) Photo scale is simply the ratio of the measured photo distance to the ground distance,
or



 
In each of the methods of scale determination discussed in this section, it must be remembered

that the calculated scale applies only at the elevation of the ground line used to determine that scale.

6-7  Ground Coordinates from a Vertical Photograph
The ground coordinates of points whose images appear in a vertical photograph can be determined
with respect to an arbitrary ground coordinate system. The arbitrary X and Y ground axes are in the
same vertical planes as the photographic x and y axes, respectively, and the origin of the system is at
the datum principal point (point in the datum plane vertically beneath the exposure station).

Figure 6-5 shows a vertical photograph taken at a flying height H above datum. Images a and b of
the ground points A and B appear on the photograph, and their measured photographic coordinates are
xa, ya, xb, and yb. The arbitrary ground coordinate axis system is X and Y, and the coordinates of points
A and B in that system are XA, YA, XB, and YB. From similar triangles La′o and LA′Ao, the following
equation may be written:

 

 FIGURE 6-5   Ground coordinates from a vertical photograph.



 

from which

(6-5)
 
Also, from similar triangles La″o and LA″Ao,

 
from which

(6-6)
 
Similarly, the ground coordinates of point B are

(6-7)
 

(6-8)
 

Upon examination of Eqs. (6-5) through (6-8), it is seen that X and Y ground coordinates of any
point are obtained by simply multiplying x and y photo coordinates by the inverse of photo scale at
that point. From the ground coordinates of the two points A and B, the horizontal length of line AB can
be calculated, using the pythagorean theorem, as

(6-9)
 
Also, horizontal angle APB may be calculated as

(6-10)
 

To solve Eqs. (6-5) through (6-8) it is necessary to know the camera focal length, flying height
above datum, elevations of the points above datum, and photo coordinates of the points. The photo
coordinates are readily measured, camera focal length is commonly known from camera calibration,



and flying height above datum is calculated by methods described in Sec. 6-9. Elevations of points
may be obtained directly by field measurements, or they may be taken from available topographic
maps.

Example 6-6
A vertical aerial photograph was taken with a 152.4-mm-focal-length camera from a flying height of
1385 m above datum. Images a and b of two ground points A and B appear on the photograph, and
their measured photo coordinates (corrected for shrinkage and distortions) are xa = –52.35 mm, ya = –
48.27 mm, xb = 40.64 mm, and yb = 43.88 mm. Determine the horizontal length of line AB if the
elevations of points A and B are 204 and 148 m above datum, respectively.

Solution   From Eqs. (6-5) through (6-8),

 
From Eq. (6-9),

 
Ground coordinates calculated by Eqs. (6-5) through (6-8) are in an abritrary rectangular

coordinate system, as previously described. If arbitrary coordinates are calculated for two or more
“control” points (points whose coordinates are also known in an absolute ground coordinate system
such as the state plane coordinate system), then the arbitrary coordinates of all other points for that
photograph can be transformed to the ground system. The method of transformation used here is
discussed in Secs. C-2 through C-5 (of App. C), and an example is given. Using Eqs. (6-5) through (6-
8), an entire planimetric survey of the area covered by a vertical photograph can be made.

6-8  Relief Displacement on a Vertical Photograph
Relief displacement is the shift or displacement in the photographic position of an image caused by the
relief of the object, i.e., its elevation above or below a selected datum. With respect to a datum, relief
displacement is outward for points whose elevations are above datum and inward for points whose
elevations are below datum.

The concept of relief displacement is illustrated in Fig. 6-6, which represents a vertical
photograph taken from flying height H above datum. Camera focal length is f, and o is the principal
point. The image of terrain point A, which has an elevation hA above datum, is located at a on the
photograph. An imaginary point A′ is located vertically beneath A in the datum plane, and its
corresponding imaginary image position is at a′. On the figure, both A′A and PL are vertical lines, and
therefore A′AaLoP is a vertical plane. Plane A′a′LoP is also a vertical plane which is coincident with



A′AaLoP. Since these planes intersect the photo plane along lines oa and oa′, respectively, line aa′
(relief displacement of point A due to its elevation hA) is radial from the principal point.

 FIGURE 6-6   Relief displacement on a vertical photograph.
 

An equation for evaluating relief displacement may be obtained by relating similar triangles.
First consider planes Lao and LAAo in Fig. 6-6:

(d)
 
Also, from similar triangles La′o and LA′P,

(e)
 
Equating expressions (d) and (e) yields

 
Rearranging the above equation, dropping subscripts, and substituting the symbol d for r - r′ gives



(6-11)
 
 where d = relief displacement

h = height above datum of object point whose image is displaced

r = radial distance on photograph from principal point to displaced image (The units of d and
r must be the same.)

H = flying height above same datum selected for measurement of h

Equation (6-11) is the basic relief displacement equation for vertical photos. Examination of this
equation shows that relief displacement increases with increasing radial distance to the image, and it
also increases with increased elevation of the object point above datum. On the other hand, relief
displacement decreases with increased flying height above datum. It has also been shown that relief
displacement occurs radially from the principal point.

Figure 6-7 is a vertical aerial photograph which vividly illustrates relief displacement. Note in
particular the striking effect of relief displacement on the tall buildings in the upper portion of the
photo. Notice also that the relief displacement occurs radially from the center of the photograph
(principal point). This radial pattern is also readily apparent for the relief displacement of all the other
vertical buildings in the photo. The building in the center is one of the tallest imaged on the photo (as
evidenced by the length of its shadow); however, its relief displacement is essentially zero due to its
proximity to the principal point.



 FIGURE 6-7   Vertical photograph of Tampa, Florida, illustrating relief displacements. (Courtesy US
Imaging, Inc.)
 

Relief displacement often causes straight roads, fence lines, etc., on rolling ground to appear
crooked on a vertical photograph. This is especially true when such roads, fences, etc., occur near the
edges of the photo. The severity of the crookedness will depend on the amount of terrain variation.
Relief displacement causes some imagery to be obscured from view. Several examples of this are seen
in Fig. 6-7; e.g., the street in the upper portion of the photo is obscured by relief displacement of
several tall buildings adjacent to it.

Vertical heights of objects such as buildings, poles, etc., appearing on aerial photographs can be
calculated from relief displacements. For this purpose, Eq. (6-11) is rearranged as follows:

(6-12)
 
To use Eq. (6-12) for height determination, it is necessary that the images of both the top and bottom
of the vertical object be visible on the photograph, so that d can be measured. Datum is arbitrarily
selected at the base of the vertical object. Consider for example, that the cross-hatched terrain in Fig.
6-6 does not exist and that the surface labeled as datum is the actual terrain. Then line AA’ might



represent a tall vertical pole whose top and base are imaged in the photograph. In that case image
distances d and r can be measured and if H is known, Eq. (6-12) can be used to determine the height of
the pole. Equation (6-12) is of particular import to the photo interpreter, who is often interested in
relative heights of objects rather than absolute elevations.

Example 6-7
A vertical photograph taken from an elevation of 535 m above mean sea level (MSL) contains the
image of a tall vertical radio tower. The elevation at the base of the tower is 259 m above MSL. The
relief displacement d of the tower was measured as 54.1 mm, and the radial distance to the top of the
tower from the photo center was 121.7 mm. What is the height of the tower?

Solution   Select datum at the base of the tower. Then flying height above datum is

 
By Eq. (6-12),

 

6-9  Flying Height of a Vertical Photograph
From previous discussion it is apparent that flying height above datum is an important quantity which
is often needed for solving basic photogrammetric equations. Note, for example, that this parameter
appears in scale, ground coordinate, and relief displacement equations. For rough computations, flying
height may be taken from altimeter readings. Flying heights also may be obtained by using either Eq.
(6-1) or Eq. (6-2) if a ground line of known length appears on the photograph. This procedure yields
accurate flying heights for truly vertical photographs if the endpoints of the ground line lie at equal
elevations. In general, the greater the difference in elevation of the endpoints, the greater the error in
the computed flying height; therefore the ground line should lie on fairly level terrain. Accurate
results can be obtained by this method, however, even though the endpoints of the ground line are at
different elevations, if the images of the endpoints are approximately equidistant from the principal
point of the photograph and on a line through the principal point.

Example 6-8
A vertical photograph contains the images of two fence line corners which identify adjacent section
corners. The section line lies on fairly level terrain. Find the approximate flying height above the
terrain if the camera focal length is 88.9 mm and the section line scales 94.0 mm on the photograph.

Solution   Assume the section line to be 5280 ft long. By Eq. (6-1),

 
from which

 



Accurate flying heights can be determined even though the endpoints of the ground line lie at
different elevations, regardless of the locations of the endpoints in the photo. This procedure requires
knowledge of the elevations of the endpoints of the line as well as of the length of the line. Suppose
ground line AB has its endpoints imaged at a and b on a vertical photograph. Length AB of the ground
line may be expressed in terms of ground coordinates, by the pythagorean theorem, as follows:

 
Substituting Eqs. (6-5) through (6-8) into the previous equation gives

 
(6-13)

 
The only unknown in Eq. (6-13) is the flying height H. When all known values are inserted into

the equation, it reduces to the quadratic form of aH2 + bH + c = 0. The direct solution for H in the
quadratic is

(6-14)
 
Example 6-9
A vertical photograph was taken with a camera having a focal length of 152.3 mm. Ground points A
and B have elevations 437.4 m and 445.3 m above sea level, respectively, and the horizontal length of
line AB is 584.9 m. The images of A and B appear at a and b, and their measured photo coordinates are
xa = 18.21 mm, ya = –61.32 mm, xb = 109.65 mm, and yb = –21.21 mm. Calculate the flying height of
the photograph above sea level.

Solution   By Eq. (6-13),

 
Reducing gives

 
Squaring terms and arranging in quadratic form yields

 
Solving for H by Eq. (6-14) gives



 
Note: The positive root was selected, since the negative root yields a ridiculous answer.   

6-10   Error Evaluation
Answers obtained in solving the various equations presented in this chapter will inevitably contain
errors. It is important to have an awareness of the presence of these errors and to be able to assess
their approximate magnitudes. Errors in computed answers are caused partly by random errors in
measured quantities that are used in computation, and partly by the failure of certain assumptions to
be met. Some of the more significant sources of errors in calculated values using the equations of this
chapter are

      1.  Errors in photographic measurements, e.g., line lengths or photo coordinates
      2.  Errors in ground control
      3.  Shrinkage and expansion of film and paper
      4.  Tilted photographs where vertical photographs were assumed

Sources 1 and 2 can be minimized if precise, properly calibrated equipment and suitable caution are
used in making the measurements. Source 3 can be practically eliminated by making corrections as
described in Sec. 4-9. Magnitudes of error introduced by source 4 depend upon the severity of the tilt.
Generally if the photos were intended to be vertical and if paper prints are being used, these errors are
compatible with the other sources. If the photo is severely tilted, or if the highest accuracy is desired,
analytical methods of Chap. 11 should be used. For the methods described in this chapter, errors
caused by lens distortions and atmospheric refraction are relatively small and can generally be
ignored.

A simple and straightforward approach to calculating the combined effect of several random
errors is to use statistical error propagation, as discussed in Sec. A-4. This approach involves
calculating rates of change with respect to each variable containing error and requires the use of
differential calculus. As an example of this approach, assume that a vertical photograph was taken
with a camera having a focal length of 152.4 mm. Assume also that a ground distance AB on flat
terrain has a length of 1524 m and that its corresponding photo distance ab measures 127.0 mm.
Flying height above ground may be calculated, using Eq. (6-1), as follows:

 
Now it is required to calculate the expected error dH′ caused by errors in measured quantities AB

and ab. This is done by taking partial derivatives with respect to each of these quantities containing
error. Suppose that the error σAB in the ground distance is ±0.50 m and that the error σab in the
measured photo distance is ±0.20 mm. The rate of change of error in H′ caused by the error in the
ground length can be evaluated by taking the partial derivative ∂H′/∂AB as



 
In a similar manner, the rate of change of error in H′ caused by the error in the measured image

length can be evaluated by taking the partial derivative ∂H′/∂ab as

 
A useful interpretation of these derivative terms is that an error of 1 m in ground distance AB will
cause an error of approximately 1.2 m in the flying height, whereas an error of 1 mm in image
distance ab will cause an error of approximately 14 m in the flying height. Substitution of these
derivative terms into the error propagation Eq. (A-2) along with the error terms σAB and σab gives

 
Note that the error in H′ caused by the error in the measurement of photo distance ab is the more

severe of the two contributing sources. Therefore, to increase the accuracy of the computed value of
H′, it would be more beneficial to refine the measured photo distance to a more accurate value. Errors
in computed answers using any of the equations presented in this chapter can be analyzed in the
manner described above, and the method is valid as long as the contributing errors are small.
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Problems
Express answers for scale as dimensionless ratios and answers for distance in meters, unless otherwise
specified.

  6-1.   The photo distance between two image points a and b on a vertical photograph is ab, and the
corresponding ground distance is AB. What is the photographic scale at the elevation of the ground
line?
            (a)  ab = 3.57 in; AB = 779 ft
            (b)  ab = 1.75 in; AB = 626 ft
            (c)  ab = 6.12 in; AB = 5847 ft
            (d)  ab = 4.48 in; AB = 9287 ft

  6-2.   Repeat Prob. 6-1, using the values of ab and AB as indicated.
            (a)  ab = 189.5 mm; AB = 501.3 m
            (b)  ab = 148.3 mm; AB = 1043 m



            (c)  ab = 195.7 mm; AB = 1424 m
            (d)  ab = 130.2 mm; AB = 1.00 mi

  6-3.   On a vertical photograph a section line measures 80.3 mm. What is the photographic scale at
the elevation of the section line?

  6-4.   On a vertical photograph a college football field measures 39.0 mm from goal line to goal line
(100.0 yd). What is the scale of the photograph at the elevation of the football field?

  6-5.   A semitractor and trailer combination which is known to be 18 m long measures 11.3 mm long
on a vertical aerial photo. What is the scale of the photo at the elevation of the semi?

  6-6.   Repeat Prob. 6-5, except that a railroad boxcar of 25.0-m known length measures 10.4 mm on
the photo.

  6-7.   An interstate highway pavement of known 24.0-ft width measures 3.57 mm wide on a vertical
aerial photo. What is the flying height above the pavement for this photo if the camera focal length
was 152.4 mm?

  6-8.   In the photo of Prob. 6-7, a rectangular building near the highway has photo dimensions of 6.1
mm and 9.2 mm. What is the actual size of the structure?

  6-9.   Repeat Prob. 6-8, except that in the photo of Prob. 6-7 a bridge appears. If its photo length is
28.9 mm, what is the actual length of the bridge?

6-10.   A vertical photograph was taken, with a camera having a 152.9-mm focal length, from a flying
height 2160 m above sea level. What is the scale of the photo at an elevation of 385 m above sea
level? What is the datum scale?

6-11.   Aerial photographs are to be taken for highway planning and design. If a 152-mm-focal-length
camera is to be used and if an average scale of 1:6000 is required, what should be the flying height
above average terrain?

6-12.   A vertical aerial photograph was taken from a flying height of  m above datum with a
camera having a focal length of 209.45 mm. Highest, lowest, and average terrains appearing in the
photograph are 1650 m, 1050 m, and 1370 m, respectively. Calculate the maximum, minimum, and
average photographic scales.

6-13.   A vertical photograph was taken over the lunar surface from an altitude of 72.5 km with a
80.20-mm-focal-length camera. What is the actual diameter of a crater whose diameter on the
photograph scales 9.74 mm? (Give answer in km.)

6-14.   Vertical photography for military reconnaissance is required. If the lowest safe flying altitude
over enemy defenses is 5000 m, what camera focal length is necessary to achieve a photo scale of
1:24,000?

6-15.   A distance ab on a vertical photograph is 65.0 mm, and the corresponding ground distance AB
is 1153 m. If the camera focal length is 153.19 mm, what is the flying height above the terrain upon
which line AB is located?



6-16.   Vertical photography at an average scale of  is to be acquired for the purpose of
constructing a mosaic. What is the required flying height above average terrain if the camera focal
length is 152.9 mm?

6-17.   The distance on a map between two road intersections in flat terrain measures 43.6 mm. The
distance between the same two points is 83.0 mm on a vertical photograph. If the scale of the map is
1:50,000, what is the scale of the photograph?

6-18.   For Prob. 6-17, the intersections occur at an average elevation of 278 m above sea level. If the
camera had a focal length of 209.6 mm, what is the flying height above sea level for this photo?

6-19.   A section line scales 88.6 mm on a vertical aerial photograph. What is the scale of the
photograph?

6-20.   For Prob. 6-19, the average elevation of the section line is at 395 m above sea level, and the
camera focal length is 152.4 mm. What would be the actual length of a ground line that lies at
elevation 303 m above sea level and measures 53.1 mm on this photo?

6-21.   A vertical aerial photo is exposed at 3910 ft above mean sea level using a camera having an
88.9-mm focal length. A triangular parcel of land that lies at elevation 850 ft above sea level appears
on the photo, and its sides measure 39.5 mm, 28.9 mm, and 27.7 mm, respectively. What is the
approximate area of this parcel in acres?

6-22.   On a vertical aerial photograph, a line which was measured on the ground to be 536 m long
scales 34.6 mm. What is the scale of the photo at the average elevation of this line?

6-23.   Points A and B are at elevations 323 m and 422 m above datum, respectively. The photographic
coordinates of their images on a vertical photograph are xa = 68.27 mm, ya = –32.37 mm, xb = –87.44
mm, and yb = 26.81 mm. What is the horizontal length of line AB if the photo was taken from 1535 m
above datum with a 152.35-mm-focal-length camera?

6-24.   Images a, b, and c of ground points A, B, and C appear on a vertical photograph taken from a
flying height of 2625 m above datum. A 153.16-mm-focal-length camera was used. Points A, B, and C
have elevations of 407 m, 311 m, and 379 m above datum, respectively. Measured photo coordinates
of the images are xa = –60.2 mm, ya = 47.3 mm, xb = 52.4 mm, yb = 80.8 mm, xc = 94.1 mm, and yc = –
79.7 mm. Calculate the horizontal lengths of lines AB, BC, and AC and the area within triangle ABC in
hectares.

6-25.   The image of a point whose elevation is 832 ft above datum appears 58.51 mm from the
principal point of a vertical aerial photograph taken from a flying height of  ft above datum. What
would this distance from the principal point be if the point were at datum?

6-26.   The images of the top and bottom of a utility pole are 113.6 mm and 108.7 mm, respectively,
from the principal point of a vertical photograph. What is the height of the pole if the flying height
above the base of the pole is 834 m?

6-27.   An area has an average terrain elevation of 335 m above datum. The highest points in the area
are 412 m above datum. If the camera focal plane opening is 23 cm square, what flying height above



datum is required to limit relief displacement with respect to average terrain elevation to 5.0 mm?
(Hint: Assume the image of a point at highest elevation occurs in the corner of the camera format.) If
the camera focal length is 152.7 mm, what is the resulting average scale of the photography?

6-28.   The datum scale of a vertical photograph taken from 915 m above datum is . The diameter
of a cylindrical oil storage tank measures 6.69 mm at the base and 6.83 mm at the top. What is the
height of the tank if its base lies at 213 m above datum?

6-29.   Assume that the smallest discernible and measurable relief displacement that is possible on a
vertical photo is 0.5 mm. Would it be possible to determine the height of a telephone utility box
imaged in the corner of a 23-cm-square photo taken from 870 m above ground? (Note: Telephone
utility boxes actually stand 1.2 m above the ground.)

6-30.   If your answer to Prob. 6-29 is yes, what is the maximum flying height at which it would be
possible to discern the relief displacement of the utility box? If your answer is no, at what flying
height would the relief displacement of the box be discernible?

6-31.   On a vertical photograph, images a and b of ground points A and B have photographic
coordinates xa = –12.68 mm, ya = 70.24 mm, xb = 89.07 mm, and yb = –92.41 mm. The horizontal
distance between A and B is 1317 m, and the elevations of A and B are 382 m and 431 m above datum,
respectively. Calculate the flying height above datum if the camera had a 152.5-mm focal length.

6-32.   Repeat Prob. 6-31, except that the horizontal distance AB is 1834 m and the camera focal length
is 88.92 mm.

6-33.   In Prob. 6-13, assume that the values given for focal length, photo distance, and flying height
contain random errors of ±0.10 mm, ±0.05 mm, and ±0.30 km, respectively. What is the expected
error in the computed diameter of the crater?

6-34.   In Prob. 6-15, assume that the values given for focal length, photo distance, and ground length
contain random errors of ±0.005 mm, ±0.50 mm, and ±0.30 m, respectively. What is the expected
error in the computed flying height?

6-35.   In Prob. 6-26, assume that the random error in each measured photo distance is ±0.10 mm and
that the error in the flying height is ±2.0 m. What is the expected error in the computed height of the
utility pole?



CHAPTER 7
Stereoscopic Viewing

 

7-1  Depth Perception
In our daily activities we unconsciously measure depth or judge distances to a vast number of objects
about us through our normal process of vision. Methods of judging depth may be classified as either
stereoscopic or monoscopic. Persons with normal vision (those capable of viewing with both eyes
simultaneously) are said to have binocular vision, and perception of depth through binocular vision is
called stereoscopic viewing. Monocular vision is the term applied to viewing with only one eye, and
methods of judging distances with one eye are termed monoscopic. A person having normal binocular
vision can, of course, view monocularly by covering one eye.

Distances to objects, or depths, can be perceived monoscopically on the basis of (1) relative sizes
of objects, (2) hidden objects, (3) shadows, and (4) differences in focusing of the eye required for
viewing objects at varying distances. Examples of the first two of these are shown in Fig. 7-1. Depth
to the far end of the football field may be perceived, for example, on the basis of the relative sizes of
the goalposts. The goalposts are actually the same size, of course, but one appears smaller because it
is farther away. Also, the stands at the far end of the stadium are quickly judged to be a considerable
distance away from the goalposts in the foreground because they are partially obstructed by the
goalposts.

 FIGURE 7-1   Depth perception by relative sizes and hidden objects.
 

Monoscopic methods of depth perception enable only rough impressions to be gained of
distances to objects. With stereoscopic viewing, however, a much greater degree of accuracy in depth
perception can be attained. Stereoscopic depth perception is of fundamental importance in
photogrammetry, for it enables the formation of a three-dimensional stereomodel by viewing a pair of



overlapping photographs. The stereomodel can then be studied, measured, and mapped. An
explanation of how this phenomenon is achieved is the subject of this chapter, and explanations of its
use in measuring and mapping are given in the chapters that follow.

7-2  The Human Eye
The phenomenon of stereoscopic depth perception can be more clearly understood with the help of a
brief description of the anatomy and physiology of the human eye. The human eye functions in much
the same manner as a camera. As shown in Fig. 7-2, the eye is essentially a spherical organ having a
circular opening called the pupil. The pupil is protected by a transparent coating called the cornea.
Incident light rays pass through the cornea, enter the eye through the pupil, and strike the lens, which
is directly behind the pupil. The cornea and lens refract the light rays according to Snell’s law (see
Sec. 2-2).

 FIGURE 7-2   Cross section of the human eye.
 

The lens of the eye is biconvex and is composed of a refractive transparent medium. It is
suspended by many muscles, which enable the lens to be moved so that the optical axis of the eye can
be aimed directly at an object to be viewed. As with a camera, the eye must satisfy the lens formula,
Eq. (2-4), for each different object distance. The eye’s image distance is constant, however; therefore,
to satisfy the lens formula for varying object distances, the focal length of the lens changes. When a
distant object is viewed, the lens muscles relax, causing the spherical surfaces of the lens to become
flatter. This increases the focal length to satisfy the lens formula and accommodate the long object
distance. When close objects are viewed, a reverse procedure occurs. The eye’s ability to focus for
varying object distances is called accommodation.

As with a camera, the eye has a diaphragm called the iris. The iris (colored part of the eye)
automatically contracts or expands to regulate the amount of light entering the eye. When the eye is
subjected to intense light, the iris contracts, reducing the pupil aperture. When the intensity of light
lessens, the iris dilates to admit more light.

The cornea partially refracts incident light rays before they encounter the lens. The lens refracts
them further and brings them to focus on the retina, thereby forming an image of the viewed object.
The retina is composed of very delicate tissue. The most important region of the retina is the central
fovea, a small pit near the intersection of the optical axis with the retina. The central fovea is the area



of sharpest vision. The retina performs a function similar to that performed by the emulsion of
photographic film. When it is stimulated by light, the sense of vision is caused, which is transmitted
to the brain via the optic nerve.

7-3  Stereoscopic Depth Perception
With binocular vision, when the eyes fixate on a certain point, the optical axes of the two eyes
converge on that point, intersecting at an angle called the parallactic angle. The nearer the object, the
greater the parallactic angle, and vice versa. In Fig. 7-3, the optical axes of the two eyes L and R are
separated by a distance be, called the eye base. For the average adult, this distance is between 63 and
69 mm, or approximately 2.6 in. When the eyes fixate on point A, the optical axes converge, forming
parallactic angle ϕa. Similarly, when sighting an object at B, the optical axes converge, forming
parallactic angle ϕb. The brain automatically and unconsciously associates distances DA and DB with
corresponding parallactic angles ϕa and ϕb. The depth between objects A and B is DB – DA and is
perceived from the difference in these parallactic angles.

 FIGURE 7-3   Stereoscopic depth perception as a function of parallactic angle.
 

The ability of human beings to detect changes in parallactic angles, and thus judge differences in
depth, is quite remarkable. Although it varies somewhat among individuals, the average person is
capable of discerning parallactic angle changes of about 3 seconds of arc, but some are able to
perceive changes as small as 1 second of arc. This means that photogrammetric procedures for
determining heights of objects and terrain variations based on depth perception by comparisons of
parallactic angles can be highly precise.



7-4  Viewing Photographs Stereoscopically
Suppose that while a person is gazing at object A of Fig. 7-4, a transparent medium containing image
marks a1 and a2 is placed in front of the eyes as shown. Assume further that the image marks are
identical in shape to object A, and that they are placed on the optical axes so that the eyes are unable to
detect whether they are viewing the object or the two marks. Object A could therefore be removed
without any noticeable changes in the images received on the retinas of the eyes. As shown in Fig. 7-4,
if the image marks are moved closer together to, say, a1′, and a2′, the parallactic angle increases and
the object is perceived to be nearer the eyes at A′. If the marks are moved farther apart to a1″ and a2″,
the parallactic angle decreases and the brain receives an impression that the object is farther away, at
A″.

 FIGURE 7-4   The apparent depth to the object A can be changed by changing the spacing of the
images.
 

The phenomenon of creating the three-dimensional or stereoscopic impression of objects by
viewing identical images of the objects can be achieved photographically. Suppose that a pair of aerial
photographs is taken from exposure stations L1 and L2 so that the building appears on both photos, as
shown in Fig. 7-5. Flying height above ground is H′, and the distance between the two exposures is B,
the air base. Object points A and B at the top and bottom of the building are imaged at a1 and b1 on the
left photo and at a2 and b2 on the right photo. Now, if the two photos are laid on a table and viewed so
that the left eye sees only the left photo and the right eye sees only the right photo, as shown in Fig. 7-
6, a three-dimensional impression of the building is obtained. The three-dimensional impression



appears to lie below the tabletop at a distance h from the eyes. The brain judges the height of the
building by associating depths to points A and B with the parallactic angles ϕa and ϕb, respectively.
When the eyes gaze over the entire overlap area, the brain receives a continuous three-dimensional
impression of the terrain. This is achieved by the continuous perception of changing parallactic angles
of the infinite number of image points which make up the terrain. The three-dimensional model thus
formed is called a stereoscopic model or simply a stereomodel, and the overlapping pair of
photographs is called a stereopair.

 FIGURE 7-5   Photographs from two exposure stations with building in common overlap area.
 



 FIGURE 7-6   Viewing the building stereoscopically.
 

7-5  Stereoscopes
It is quite difficult to view photographs stereoscopically without the aid of optical devices, although
some individuals can do it. Besides being an unnatural operation, one of the major problems
associated with stereoviewing without optical aids is that the eyes are focused on the photos, while at
the same time the brain perceives parallactic angles which tend to form the stereomodel at some depth
beyond the photos—a confusing situation, to say the least. These difficulties in stereoscopic viewing
may be overcome through the use of instruments called stereoscopes.

There is a wide selection of stereoscopes serving a variety of special purposes. All operate in
essentially the same manner. The lens or pocket stereoscope, shown in Fig. 7-7, is the least expensive
and most commonly used stereoscope. It consists of two simple convex lenses mounted on a frame.
The spacing between the lenses can be varied to accommodate various eye bases. The legs fold or can
be removed so that the instrument is easily stored or carried—a feature which renders the pocket
stereoscope ideal for fieldwork. A schematic diagram of the pocket stereoscope is given in Fig. 7-8.
The legs of the pocket stereoscope are slightly shorter than the focal length f of the lenses. When the
stereoscope is placed over the photos, light rays emanating from points such as a1 and a2 on the photos
are refracted slightly as they pass through each lens. (Recall from Chap. 2 that a bundle of light rays
from a point exactly at a distance f from a lens will be refracted and emerge through the lens parallel.)
The eyes receive the refracted rays (shown dashed in Fig. 7-8), and on the basis of the eye focusing
associated with these incoming rays, the brain receives the impression that the rays actually originate
from a greater distance than that to the tabletop upon which the photos rest. This overcomes the
difficulties noted above. The lenses also serve to magnify the images, thereby enabling details to be
seen more clearly.



 FIGURE 7-7   Lens or pocket stereoscope. (Courtesy University of Florida.)
 

 FIGURE 7-8   Schematic diagram of the pocket stereoscope.
 

In using a pocket stereoscope, the photos are placed so that corresponding images are slightly
less than the eye base apart, usually about 5 cm. For normal 23-cm-format photos taken with 60
percent end lap, the common overlap area of a pair of photos is a rectangular area about 14 cm wide,
as shown crosshatched in Fig. 7-9a. If the photos are separated by 5 cm for stereoviewing with a
pocket stereoscope, as shown in Fig. 7-9b, there is a rectangular area, shown double crosshatched, in
which the top photo obscures the bottom photo, thereby preventing stereoviewing. To overcome this



problem, the top photo can be gently rolled up out of the way to enable viewing the corresponding
imagery of the obscured area.

 FIGURE 7-9   (a) The common overlap area of a pair of 23-cm-format photos taken with 60 percent
end lap (corresponding images coincident). (b) Obscured area when photos are oriented for viewing
with pocket stereoscope.
 

The mirror stereoscope shown in Fig. 7-10 permits the two photos to be completely separated
when viewed stereoscopically. This eliminates the problem of one photo obscuring part of the overlap
of the other, and it also enables the entire width of the stereomodel to be viewed simultaneously. The
operating principle of the mirror stereoscope is illustrated in Fig. 7-11. The stereoscope has two large
wing mirrors and two smaller eyepiece mirrors, all of which are mounted at 45° to the horizontal.
Light rays emanating from image points on the photos such as a1 and a2 are reflected from the mirror
surfaces, according to the principles of reflection discussed in Sec. 2-2, and are received at the eyes,
forming parallactic angle ϕa. The brain automatically associates the depth to point A with that
parallactic angle. The stereomodel is thereby created beneath the eyepiece mirrors, as illustrated in
Fig. 7-11.

 FIGURE 7-10   ST-4 mirror stereoscope. (Courtesy LH Systems, LLC.)
 



 FIGURE 7-11   Operating principle of the mirror stereoscope.
 

Simple lenses are usually placed directly above the eyepiece mirrors as shown in Fig. 7-10. Their
separation may be changed to accommodate various eye bases. The focal length of these lenses is also
slightly greater than the length of the reflected ray path from photo to eyes, and therefore they serve
basically the same function as the lenses of the pocket stereoscope. Mirror stereoscopes may be
equipped with binoculars which fasten over the eyepiece mirrors. The binoculars, which may be
focused individually to accommodate each eye, permit viewing images at high magnification—a
factor which is especially important and useful in photo interpretation or in identifying small image
points. High magnification, of course, limits the field of view so that the entire stereomodel cannot be
viewed simultaneously. The stereoscope must therefore be moved about if all parts of the stereomodel
are to be seen.

It is extremely important to avoid touching the first-surfaced mirrors of a mirror stereoscope.
This is true because the hands contain oils and acids which can tarnish the coatings on the mirrors,
rendering them useless. If the mirrors are accidently soiled by fingerprints, they should be cleaned
immediately, using a soft cloth and lens-cleaning fluid.

A different type of stereoscope called the zoom stereoscope is shown in Fig. 7-12. A variety of
these instruments are manufactured, affording a choice of special features such as continuous zoom
magnification up to 120X, capability of rotating images optically (which permits convenient
correction for crab or alignment), and differential enlargement so that two photos of different scales
can be viewed stereoscopically. For direct stereoscopic viewing of film negatives, these stereoscopes
may be obtained mounted on a light table and equipped with a special scanning mechanism. A reel of
film and a take-up reel are mounted on either end of the table. By turning a crank, the frames are
brought into position for viewing.



 FIGURE 7-12   Zoom 95 stereoscope. (Courtesy Bausch and Lomb Co.)
 

Other systems have been developed to facilitate stereoscopic viewing. These systems employ
schemes such as colored filters, polarized light, or alternating imagery in order to achieve the
stereoscopic effect. Sections 12-5 and 12-15 include a description of several of these approaches as
they apply to stereoscopic plotting instruments.

7-6  The Use of Stereoscopes
Before you attempt to use a stereoscope, it is important to study the operator’s manual if one is
available. This is especially true for stereoscopes having more elaborate optical viewing systems.
Also, the lenses and mirrors should be inspected and cleaned if necessary.

In stereoscopic viewing, it is important to orient the photos so that the left and right eyes see the
left and right photos, respectively. If the photos are viewed in reverse, a pseudoscopic view results in
which ups and downs are reversed; e.g., valleys appear as ridges and hills appear as depressions. This
can be advantageous for certain work such as tracing drainage patterns, but normally the correct
stereoscopic view is desired.

Accurate and comfortable stereoscopic viewing requires that the eye base, the line joining the
centers of the stereoscope lenses, and the flight line all be parallel. Therefore, after the photos have
been inspected and laid out so as to prevent a pseudoscopic view, the flight line is marked on both
photos. For vertical photographs, the flight line is the line from the center of the left photo to the
center of the right photo. In marking the flight line, the photo centers (principal points) are first
located by joining opposite fiducial marks with straight lines. Principal points are shown at o1 and o2

on Fig. 7-13. Corresponding principal points (also called conjugate principal points), which are the
locations of principal points on adjacent overlapping photos, are marked next. This may be done
satisfactorily by carefully observing images immediately surrounding the principal points, and then
marking the corresponding principal points by estimating their positions with respect to these
surrounding images. If the area is level and there are identifiable features in the photos, the method



illustrated in Fig. 7-14 can be used to find the conjuagte principal point with acceptable accuracy. In
Fig. 7-14a, intersecting lines joining opposite fiducial marks define the principal point of the left
photo. Since there is no distinct feature located at this intersection, distances R1 and R2 are measured
to nearby features at approximately the same elevation. Figure 7-14b shows the corresponding area on
the right photo, where arcs centered on these features and having radii R1 and R2 are intersected to
obtain the conjugate principal point. The corresponding principal points are shown at o1′ and o2′ on
Fig. 7-13.

 FIGURE 7-13   Pair of photos properly oriented for stereoscopic viewing.
 



 FIGURE 7-14   (a) Center portion of left photo showing its principal point and distances to two
manhole covers. (b) Intersection of corresponding distances to the same features at the conjugate
principal point in the right photo.
 

The next step in orienting a pair of photos for stereoscopic viewing is to fasten the left photo
down onto the table. Then the right photo is oriented so that the four points defining the flight line (o1,
o2′, o1′, and o2) all lie along a straight line, as shown in Fig. 7-13. The right photo is retained in this
orientation, and while being viewed through the stereoscope, it is moved sideways until the spacing
between corresponding images produces a comfortable stereoscopic view. Normally the required
spacing between corresponding images is slightly more than 5 cm for a pocket stereoscope and about
25 cm for a mirror stereoscope.



It is not absolutely necessary to mark the flight lines and orient photos for stereoscopic viewing
in the manner outlined above; in fact, for casual stereoviewing, the geometry shown in Fig. 7-13 is
normally achieved by a trial method in which the photos are simply shifted in position until a clear
stereoscopic view is obtained. If accuracy and eye comfort are considerations, however, orientation by
the flight-line procedure is recommended.

As previously stated, comfortable stereoscopic viewing requires that the line joining the
stereoscope lens centers be parallel with the flight line. Once the photos are properly oriented, the
operator can easily align the stereoscope by simply rotating it slightly until the most comfortable
viewing position is obtained. The operator should look directly into the centers of the lenses, thereby
holding the eye base parallel with the flight line.

7-7  Causes of Y Parallax
An essential condition which must exist for clear and comfortable stereoscopic viewing is that the line
joining corresponding images be parallel with the direction of flight. This condition is fulfilled with
the corresponding images a1 and a2 shown in Fig. 7-13. When corresponding images fail to lie along a
line parallel to the flight line, y parallax, denoted by py, is said to exist. Any slight amount of y
parallax causes eyestrain, and excessive amounts prevent stereoscopic viewing altogether.

If a pair of truly vertical overlapping photos taken from equal flying heights is oriented perfectly,
then no y parallax should exist anywhere in the overlap area. Failure of any of these conditions to be
satisfied will cause y parallax. In Fig. 7-15, for example, the photos are improperly oriented, and the
principal points and corresponding principal points do not lie on a straight line. As a result, y parallax
exists at both points a and b. This condition can be prevented by careful orientation.

 FIGURE 7-15   Here y parallax is caused by improper orientation of the photos.
 

I n Fig. 7-16 the left photo was exposed from a lower flying height than the right photo, and
consequently its scale is larger than the scale of the right photo. Even though the photos are truly
vertical and properly oriented, y parallax exists at both points a and b due to variation in flying
heights. To obtain a comfortable stereoscopic view, the y parallax can be eliminated by sliding the
right photo upward transverse to the flight line when viewing point a and sliding it downward when
viewing point b.



 FIGURE 7-16   The y parallax is caused by variation in flying height.
 

The effect of tilted photos is illustrated in Fig. 7-17. The left photo is truly vertical and shows
positions of images a through d of a square parcel of property on flat terrain. The right photo was
tilted such that the same parcel appears as a trapezoid. In this case, y parallax exists throughout the
stereoscopic model as a result of the tilt, as indicated for points a and c. In practice, the direction of
tilt is random, and therefore small y parallaxes from this source are likely to exist in variable amounts
throughout most stereomodels. If it is the intent to obtain vertical photography from a constant flying
height, however, these conditions are generally so well controlled that y parallaxes from these sources
are seldom noticeable. Most serious y parallaxes usually occur from improper orientation of the
photos, a condition which can be easily corrected.

 FIGURE 7-17   The y parallax is caused by tilt of the photos.
 

7-8  Vertical Exaggeration in Stereoviewing
Under normal conditions, the vertical scale of a stereomodel will appear to be greater than the
horizontal scale; i.e., an object in the stereomodel will appear to be too tall. This apparent scale
disparity is called vertical exaggeration. It is usually of greatest concern to photo interpreters, who
must take this condition into account when estimating heights of objects, rates of slopes, etc.

Although other factors are involved, vertical exaggeration is caused primarily by the lack of
equivalence of the photographic base-height ratio, B/H′, and the corresponding stereoviewing base-
height ratio, be/h. The term B/H′ is the ratio of the air base (distance between the two exposure
stations) to flying height above average ground, and be/h is the ratio of the eye base (distance between
the two eyes) to the distance from the eyes at which the stereomodel is perceived. Figures 7-18a and b
depict, respectively, the taking of a pair of vertical overlapping photographs and the stereoscopic
viewing of those photos. In Fig. 7-18a, the camera focal length is f, the air base is B, the flying height
above ground is H′, the height of ground object AC is Z, and the horizontal ground distance KC is D. In
Fig. 7-18a, assume that Z is equal to D. In Fig. 7-18b, i is the image distance from the eyes to the



photos, be is the eye base, h is the distance from the eyes to the perceived stereomodel, z is the
stereomodel height of object A′C′, and d is the horizontal stereomodel distance K′C′. Note that while
the ratio Z/D is equal to 1, the ratio z/d is greater than 1 due to vertical exaggeration.

 FIGURE 7-18   Simplistic diagrams for analyzing vertical exaggeration. (a) Geometry of overlapping
aerial photography. (b) Geometry of stereoscopic viewing of the photos of part (a).
 

An equation for calculating vertical exaggeration can be developed with reference to these
figures. From similar triangles of Fig. 7-18a,

(a)
 

(b)
 
Subtracting (b) from (a) and reducing gives

(c)
 
Also from similar triangles of Fig. 7-18b,

(d)
 



(e)
 
Subtracting (e) from (d) and reducing yields

(f)
 
Equating (c) and (f) gives

In the above equation, the values of Z and z are normally considerably smaller than the values of
H′ and h, respectively; thus

(g)
 
Also from similar triangles of Figs. 7-18a and b,

(h)
 

(i)
 
Dividing (i) by (h) and reducing yields

(j)
 
Substituting (j) into (g) and reducing gives

(k)
 
In Eq. (k), if the term Bh/(H′be) is equal to 1, there is no vertical exaggeration of the stereomodel.
(Recall that Z is equal to D.) Thus an expression for the magnitude of vertical exaggeration V is given
by

(7-1)



 

 FIGURE 7-19   Base-height ratio (B/H′).
 

From Eq. (7-1) it is seen that the magnitude of vertical exaggeration in stereoscopic viewing can
be approximated by multiplying the B/H′ ratio by the inverse of the be/h ratio. An expression for the
B/H′ ratio can be developed with reference to Fig. 7-19. In this figure, G represents the total ground
coverage of a vertical photo taken from an altitude of H′ above ground. Air base B is the distance
between exposures. From the figure,

(l)
 

In Eq. (l), PE is the percentage of end lap, which gives the amount that the second photo overlaps
the first. Also by similar triangles of the figure,

(m)
 

In Eq. (m), f is the camera focal length and d its format dimension. Dividing Eq. (l) by Eq. (m)
and reducing gives

(7-2)
 

The stereoviewing base-height ratio varies due to differences in the distances between the eyes of
users and varying dimensions of stereoscopes. It can, however, be approximated in the following way.
Figure 7-20 illustrates the relationships involved in this approximation. With an eye base, be,
averaging about 65 mm in humans, we need only to find the perceived distance from the eyes to the
stereomodel, h to make an approximation. If the distance between the photos is bs, and the distance of
the stereoscope from the photos is i, then we can use the following equation to estimate h by similar
triangles:



 FIGURE 7-20   Eye base to perceived model height ratio.
 

(n)
 

Equation (n) can be used to form Eq. (7-3) to directly solve for the stereoviewing base-height
ratio:

(7-3)
 
Example 7-1
Estimate the stereoviewing base-height ratio if the height of the stereoscope above the photos is 10.00
cm, and the photos are placed 5.0 cm apart.

Solution   By Eq. (7-3)

 

Example 7-2
Using the results of Example 7-1, calculate the approximate vertical exaggeration for vertical aerial
photos taken with a 152.4-mm-focal-length camera having a 23-cm-square format if the photos were
taken with 60 percent end lap.

Solution   By Eq. (7-2),

 



From Example 7-1, be/h is approximately 0.15,

 
Note: If a 305-mm-focal-length camera had been used, the B/H′ ratio would have been 0.30, and
vertical exaggeration would have been reduced to 2.   
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Problems



  7-1.   What are some of the monocular methods of perceiving depth?

  7-2.   What is a parallactic angle?

  7-3.   Compare the advantages and disadvantages of the pocket and mirror stereoscopes.

  7-4.   Give a step-by-step procedure for orienting photos for stereoscopic viewing.

  7-5.   What is y parallax? What are the causes of y parallax in a stereomodel?

  7-6.   Prepare a table of B/H′ ratios for camera focal lengths of 91, 152, 213, and 316 mm; camera
format of 23-cm square; and end laps of 55, 60, and 65 percent.

  7-7.   Calculate the approximate vertical exaggeration in a stereomodel from photos taken with a
152-mm-focal-length camera having a 23-cm-square format if the photos are taken at 55 percent end
lap assuming 65-mm eye base, 11-cm stereoscope height above the photos and 5.5-cm separation of
the photo images.

  7-8.   Repeat Prob. 7-7, except that a 210-mm-focal-length camera was used, and end lap was 65
percent.



CHAPTER 8
Stereoscopic Parallax

 

8-1  Introduction
Parallax is the apparent displacement in the position of an object, with respect to a frame of reference,
caused by a shift in the position of observation. A simple experiment will serve to illustrate parallax.
If a finger is held in front of the eyes, and while gazing at the finger the head is quickly shifted from
side to side without moving the finger, the finger will appear to move from side to side with respect to
objects beyond the finger, such as pictures on the wall. Rather than shifting the head, the same effect
can be created by alternately blinking one’s eyes. The closer the finger is held to the eyes, the greater
will be its apparent shift. This apparent motion of the finger is parallax, and it is due to the shift in the
position of observation.

If a person looked through the viewfinder of an aerial camera as the aircraft moved forward,
images of objects would be seen to move across the field of view. This image motion is another
example of parallax caused by shifting the location of the observation point. Again, the closer an
object is to the camera, the more its image will appear to move.

An aerial camera exposing overlapping photographs at regular intervals of time obtains a record
of positions of images at the instants of exposure. The change in position of an image from one
photograph to the next caused by the aircraft’s motion is termed stereoscopic parallax, x parallax, or
simply parallax. Parallax exists for all images appearing on successive overlapping photographs. In
Fig. 8-1, for example, images of object points A and B appear on a pair of overlapping vertical aerial
photographs which were taken from exposure stations L1 and L2. Points A and B are imaged at a and b
on the left-hand photograph. Forward motion of the aircraft between exposures, however, caused the
images to move laterally across the camera focal plane parallel to the flight line, so that on the right-
hand photo they appear at a′ and b′. Because point A is higher (closer to the camera) than point B, the
movement of image a across the focal plane was greater than the movement of image b; in other
words, the parallax of point A is greater than the parallax of point B. This calls attention to two
important aspects of stereoscopic parallax: (1) The parallax of any point is directly related to the
elevation of the point, and (2) parallax is greater for high points than for low points. Variation of
parallax with elevation provides the fundamental basis for determining elevations of points from
photographic measurements. In fact, X, Y, and Z ground coordinates can be calculated for points based
upon their parallaxes. Equations for doing this are presented in Sec. 8-6.



 FIGURE 8-1   Stereoscopic parallax of vertical aerial photographs.
 

Figure 8-2 shows the two photographs of Fig. 8-1 in superposition. Parallaxes of object points A
and B are pa and pb, respectively. Stereoscopic parallax for any point such as A whose images appear
on two photos of a stereopair, expressed in terms of flight-line photographic coordinates, is

 FIGURE 8-2   The two photographs of Fig. 8-1 are shown in superposition.
 

(8-1)
 

In Eq. (8-1), pa is the stereoscopic parallax of object point A, xa is the measured photo coordinate
of image a on the left photograph of the stereopair, and xa′ is the photo coordinate of image a′ on the
right photo. These photo coordinates are not measured with respect to the fiducial axis system which



was described in Sec. 4-2. Rather, they are measured with respect to the flight-line axis system
described in Sec. 8-2. In Eq. (8-1) it is imperative that proper algebraic signs be given to measured
photo coordinates to obtain correct values for stereoscopic parallax.

Figure 8-3 is a portion of a stereopair of vertical photographs taken over the University of Florida
campus with a 153-mm-focal-length camera at a flying height of 462 m above ground. On these
photos, note how all images moved laterally with respect to the y axis from their positions on the left
photo to their positions on the right photo. Note also how clearly the bell tower (Century Tower)
illustrates the increase in parallax with higher points; i.e., the top of the tower has moved farther
across the focal plane than the bottom of the tower.

 FIGURE 8-3   Overlapping vertical photographs taken over the University of Florida campus
illustrating stereoscopic parallax. (Photos courtesy Hoffman and Company, Inc.)
 

In Fig. 8-3, the tower affords an excellent example for demonstrating the use of Eq. (8-1) for
finding parallaxes. The top of the tower has an x coordinate (xt = 48.2 mm) and an x′ coordinate (xt′ = –
53.2 mm). By Eq. (8-1), the parallax pt = 48.2 – (–53.2) = 101.4 mm. Also, the bottom of the tower has
an x coordinate (xb = 42.7 mm) and an x′ coordinate (xb′ = –47.9 mm). Again by Eq. (8-1), pb = 42.7 –
(–47.9) = 90.6 mm.

8-2  Photographic Flight-Line Axes for Parallax Measurement
Since parallax occurs parallel to the direction of flight, the photographic x and x′ axes for parallax
measurement must be parallel with the flight line for each of the photographs of a stereopair. (Primed
values denote the right-hand photo of a stereopair.) For a vertical photograph of a stereopair, the flight
line is the line connecting the principal point and corresponding (conjugate) principal point. The flight
line in this context is always a straight line even though the aircraft rarely travels in a perfectly
straight line from one camera position to the next. Principal points are located by intersecting the x
and y fiducial lines. A monoscopic method of establishing corresponding principal points is described
i n Sec. 7-6. Stereoscopic methods are discussed in Sec. 8-4. The y and y′ axes for parallax



measurement pass through their respective principal points and are perpendicular to the flight line.
All photographs except those on the ends of a flight strip may have two sets of flight axes for

parallax measurements—one to be used when the photo is the left photo of the stereopair and one
when it is the right photo. An example is shown in Fig. 8-4, where photographs 1 through 3 were
exposed as shown. Parallax measurements in the overlap area of photos 1 and 2 are made with respect
to the solid xy axis system of photo 1 and the solid x′y′ system of photo 2. However, due to the
aircraft’s curved path of travel, the flight line of photos 2 and 3 is not in the same direction as the
flight line of photos 1 and 2. Therefore, parallax measurements in the overlap area of photos 2 and 3
must be made with respect to the dashed xy axis system on photo 2 and the dashed x′y′ system of photo
3. It is possible for the two axis systems to be coincident; however, this does not generally occur in
practice. Henceforth in this chapter it is understood that photographic coordinates for parallax
determination are measured with respect to the flight-line axis system.

 FIGURE 8-4   Flight-line axes for measurement of stereoscopic parallax.
 

8-3  Monoscopic Methods of Parallax Measurement
Parallaxes of points on a stereopair may be measured either monoscopically or stereoscopically. There
are certain advantages and disadvantages associated with each method. In either method the
photographic flight line axes must first be carefully located by marking principal points and
corresponding principal points.

The simplest method of parallax measurement is the monoscopic approach, in which Eq. (8-1) is
solved after direct measurement of x and x′ on the left and right photos, respectively. A disadvantage
of this method is that two measurements are required for each point.

Another monoscopic approach to parallax measurement is to fasten the photographs down on a
table or base material, as shown in Fig. 8-5. In this method the photographic flight lines o1o2 and o1′o2′
are marked as usual. A long straight line AA′ is drawn on the base material, and the two photos are
carefully mounted as shown so that the photographic flight lines are coincident with this line. Now
that the photos are fastened down, the distance D between the two principal points is a constant which
can be measured. The parallax of point B is pb = xb – xb′ (note that in Fig. 8-5 the xb′ coordinate is
negative). However, by examining the figure, it is seen that parallax is also



 FIGURE 8-5   Parallax measurement using a simple scale.
 

(8-2)
 

With D known in Eq. (8-2), to obtain the parallax of a point it is necessary only to measure the
distance d between its images on the left and right photos. The advantage is that for each additional
point whose parallax is desired, only a single measurement is required. With either of these
monoscopic methods of parallax measurement, a simple scale as described in Sec. 4-3 may be used,
with the choice being based upon the desired accuracy.

8-4  Principle of the Floating Mark
Parallaxes of points can be measured while viewing stereoscopically with the advantages of speed and
accuracy. Stereoscopic measurement of parallax makes use of the principle of the floating mark.
When a stereomodel is viewed through a stereoscope, two small identical marks printed on clear
plastic transparencies, called half marks, may be placed over the photographs—one on the left photo
and one on the right photo, as illustrated in Fig. 8-6. The left mark is seen with the left eye and the
right mark with the right eye. The half marks may be shifted in position until they fuse together into a
single mark which appears to exist in the stereomodel and to lie at a particular elevation. If the half
marks are moved closer together, the parallax of the half marks is increased and the fused mark will
therefore appear to rise. Conversely, if the half marks are moved apart, parallax is decreased and the
fused mark appears to fall. This apparent variation in the elevation of the mark as the spacing of half
marks is varied is the basis for the term floating mark. Usable half marks can be created by printing
two plus signs (+) several centimeters apart on a plastic transparency. Pinholes are then precisely
made at the center of the crosses. Finally two small pieces approximately 2-cm square can be cut from
the plastic with the crosses at the centers.



 FIGURE 8-6   The principle of the floating mark.
 

The spacing of the half marks, and hence the parallax of the half marks, may be varied so that the
floating mark appears to rest exactly on the terrain. This produces the same effect as though an object
of the shape of the half marks had existed on the terrain when the photos were originally taken. The
floating mark may be moved about the stereomodel from point to point, and as the terrain varies in
elevation, the spacing of the half marks may be varied to make the floating mark rest exactly on the
terrain. Figure 8-6 demonstrates the principle of the floating mark and illustrates how the mark may
be set exactly on particular points such as A, B, and C by placing the half marks at a and a′, b and b′,
and c and c′, respectively.

The principle of the floating mark can be used to transfer principal points to their corresponding
locations, thereby marking the flight-line axes. In this procedure the principal points are first located
as usual at the intersection of fiducial lines. Then the left half mark is placed over one of the principal
points, say, the left point o1. It is held fixed in that position. Using a mirror stereoscope for viewing,
the right half mark is placed on the right photo and moved about until a clear stereoscopic view of the
floating mark is obtained and the fused mark appears to rest exactly on the ground. The right half
mark is then carefully held in place while a pin is inserted through the center of the cross to make a



pinprick on the photograph. This stereoscopic procedure is very accurate if carefully performed, and it
has the advantage that discrete images near the principal points are not necessary, as they are with the
monoscopic method. Imagine, e.g., the difficulty of monoscopically transferring a principal point that
falls in the middle of a grassland. This transfer could be readily done by the stereoscopic method,
however.

Once corresponding principal points have been marked, the photo base b can be determined. The
photo base is the distance on a photo between the principal point and the corresponding principal point
from the overlapping photo. Figure 8-7 is a vertical section through the exposure stations of a pair of
overlapping vertical photos. By Eq. (8-1), the parallax of the left-photo ground principal point P1 is po1

= xo1 – (–xo′1) = 0 – (-b′) = b′. (The x coordinate of o1 on the left photo is zero.) Also, the parallax of the
right-photo ground principal point P2 is po2 = xo2 – (-xo′2) = b – 0 = b. From the foregoing, it is seen that
the parallax of the left ground principal point is photo base b′ measured on the right photo, and the
parallax of the right ground principal point is photo base b measured on the left photo . In areas of
moderate relief, the values of b and b′ will be approximately equal, and the photo base for the
stereopair can be taken as the average of these two values.

 FIGURE 8-7   Parallax of the principal points.
 

8-5  Stereoscopic Methods of Parallax Measurement
Through the principle of the floating mark, parallaxes of points may be measured stereoscopically.
This method employs a stereoscope in conjunction with an instrument called a parallax bar, also
frequently called a stereometer. A parallax bar consists of a metal rod to which are fastened two half
marks. The right half mark may be moved with respect to the left mark by turning a micrometer
screw. Readings from the micrometer are taken with the floating mark set exactly on points whose
parallaxes are desired. From the micrometer readings, parallaxes or differences in parallax are
obtained. A parallax bar is shown lying on the photos beneath a mirror stereoscope in Fig. 8-8.



 FIGURE 8-8   Wild ST-4 mirror stereoscope with binocular attachment and parallax bar. (Courtesy LH
Systems, LLC.)
 

When a parallax bar is used, the two photos of a stereopair are first carefully oriented for
comfortable stereoscopic viewing, in such a way that the flight line of each photo lies precisely along
a common straight line, as line AA′ shown in Fig. 8-5. The photos are then fastened securely, and the
parallax bar is placed on the photos. The left half mark, called the fixed mark, is unclamped and
moved so that when the floating mark is fused on a terrain point of average elevation, the parallax bar
reading is approximately in the middle of the run of the graduations. The fixed mark is then clamped,
where it will remain for all subsequent parallax measurements on that particular stereopair. After the
fixed mark is positioned in this manner, the right half mark, or movable mark, may be moved left or
right with respect to the fixed mark (increasing or decreasing the parallax) as required to
accommodate high points or low points without exceeding the run of the parallax bar graduations.

Figure 8-9 is a schematic diagram illustrating the operating principle of the parallax bar. After
the photos have been oriented and the left half mark is fixed in position as just described, the parallax
bar constant C for the setup is determined. For the setup, the spacing between principal points is a
constant, denoted by D. Once the fixed mark is clamped, the distance from the fixed mark to the index
mark of the parallax bar is also a constant, denoted by K. From Fig. 8-9, the parallax of point A is

 FIGURE 8-9   Schematic diagram of the parallax bar.
 



 
The term (D – K) is C, the parallax bar constant for the setup. Also ra is the micrometer reading.

By substituting C into the above equation, the expression becomes

(8-3)
 

To calculate the parallax bar constant, a micrometer reading is taken with the floating mark set
on a selected point. The parallax of that point is also directly measured monoscopically and calculated
using Eq. (8-1). Then with p and r for that point known, the value of C is calculated by using Eq. (8-3),
as

(8-4)
 

The parallax bar constant should be determined on the basis of micrometer readings and parallax
measurements for two points. Then the mean of the two values may be adopted. Any two points may
be selected for this purpose; however they should be clear, discrete images, and selected so that they
lie on opposite sides of the flight line and approximately equidistant from the flight line. This
minimizes error in parallaxes due to tilt and faulty orientation of the photos.

One of the advantages of measuring parallax stereoscopically is increased speed, for once the
parallax bar constant is determined, the parallaxes of all other points are quickly obtained with a
single micrometer reading for each point. Another advantage is increased accuracy. An experienced
person using quality equipment and clear photos is generally able to obtain parallaxes to within
approximately 0.03 mm of their correct values.

8-6  Parallax Equations
As noted earlier, X, Y, and Z ground coordinates can be calculated for points based upon the
measurements of their parallaxes. Figure 8-10 illustrates an overlapping pair of vertical photographs
which have been exposed at equal flying heights above datum. Images of an object point A appear on
the left and right photos at a and a′, respectively. The planimetric position of point A on the ground is
given in terms of ground coordinates XA and YA. Its elevation above datum is hA. The XY ground axis
system has its origin at the datum principal point P of the left-hand photograph; the X axis is in the
same vertical plane as the photographic x and x′ flight axes; and the Y axis passes through the datum
principal point of the left photo and is perpendicular to the X axis. According to this definition, each
stereopair of photographs has its own unique ground coordinate system.



 FIGURE 8-10   Geometry of an overlapping pair of vertical photographs.
 

By equating similar triangles of Fig. 8-10, formulas for calculating hA, XA, and YA may be derived.
From similar triangles L1oay and L1AoAy,

 
from which

(a)
 
and equating similar triangles L1oax and L1AoAx, we have

 
from which



(b)
 
Also from similar triangles L2 o′ax′ and L2 Ao′ Ax,

 
from which

(c)
 
Equating Eqs. (b) and (c) and reducing gives

(d)
 
Substituting pa for xa – xa′ into Eq. (d) yields

(8-5)
 
Now substituting Eq. (8-5) into each of Eqs. (b) and (a) and reducing gives

(8-6)
 

(8-7)
 

In Eqs. (8-5), (8-6), and (8-7), hA is the elevation of point A above datum, H is the flying height
above datum, B is the air base, f is the focal length of the camera, pa is the parallax of point A, XA and
YA are the ground coordinates of point A in the previously defined unique arbitrary coordinate system,
and xa and ya the photo coordinates of point a measured with respect to the flight-line axes on the left
photo.

Equations (8-5), (8-6), and (8-7) are commonly called the parallax equations. These equations
enable a moderate accuracy survey of the overlap area of a stereopair to be made, provided the focal
length is known and sufficient ground control is available so the air base B and flying height H can be
calculated.

Equations (8-6) and (8-7) yield X and Y ground coordinates in the unique arbitrary coordinate
system of the stereopair, which is not related to any standard two-dimensional ground coordinate
system. However, if arbitrary XY coordinates are determined using these equations for at least two
points whose ground coordinates are also known in a standard two-dimensional coordinate system
(e.g., state plane coordinates), then the arbitrary XY coordinates of all other points can be transformed
into that ground system through a two-dimensional coordinate transformation, as described in App. C.



Example 8-1
A pair of overlapping vertical photographs was taken from a flying height of 1233 m above sea level
with a 152.4-mm-focal-length camera. The air base was 390 m. With the photos properly oriented,
flight-line coordinates for points a and b were measured as xa = 53.4 mm, ya = 50.8 mm, xa′ = –38.3
mm, ya′ = 50.9 mm, xb = 88.9 mm, yb = –46.7 mm, xb′ = –7.1 mm, yb′ = –46.7 mm. Calculate the
elevations of points A and B and the horizontal length of line AB.

Solution   By Eq. (8-1)

 
By Eq. (8-5),

 
By Eqs. (8-6) and (8-7),

 
The horizontal length of line AB is

 

8-7  Elevations by Parallax Differences
Parallax differences between one point and another are caused by different elevations of the two
points. While parallax Eq. (8-5) serves to define the relationship of stereoscopic parallax to flying
height, elevation, air base, and camera focal length, parallax differences are more convenient for



determining elevations. In Fig. 8-11, object point C is a control point whose elevation hC above datum
is known. The elevation of object point A is desired. By rearranging Eq. (8-5), parallaxes of both
points can be expressed as

 FIGURE 8-11   Elevations by parallax differences.
 

(e)
 

(f)
 
The difference in parallax pa – pc, obtained by subtracting Eq. (e) from Eq. (f) and rearranging, is

(g)



 
Let pa – pc equal Δp, the difference in parallax. By substituting H – hA from Eq. (f), and Δp into (g) and
reducing, the following expression for elevation hA is obtained:

(8-8)
 
Example 8-2
In Example 8-1, flight-line axis x and x′ coordinates for the images of a vertical control point C were
measured as xc = 14.3 mm and xc′ = –78.3 mm. If the elevation of point C is 591 m above sea level,
calculate the elevations of points A and B of that example, using parallax difference Eq. (8-8).

Solution   By Eq. (8-1),

 
For point A,

 
By Eq. (8-8),

 
For point B,

 
By Eq. (8-8),

 
Note that these answers check the values computed in Example 8-1.

If a number of control points are located throughout the overlap area, use of Eq. (8-8) permits
elevations of unknown points to be most accurately determined from the parallax difference of the
nearest control point. This minimizes the effects of two primary errors—photographic tilt and
imperfect alignment of the photos for parallax measurement.

8-8  Simplified Equation for Heights of Objects from Parallax
Differences

In many applications it is necessary to estimate heights of objects to a moderate level of accuracy.



Utilizing parallax differences for height determination is particularly useful when application of relief
displacement is not possible because either the feature is not vertical (e.g., a construction crane) or the
base of the feature is obscured (e.g., trees in a forest). In a situation like this, a parallax difference can
be determined between a point on the ground and the top of the feature. A fundamental assumption is,
of course, that the point on the ground is at the same elevation as the base of the feature. In a large
number of cases, this assumption is valid as long as only moderate accuracy is required.

A simplified equation for height determination can be obtained from Eq. (8-8) by choosing the
vertical datum to be the elevation of the point on the ground that is used as the basis for the parallax
difference. This makes hC zero, and Eq. (8-8) simplifies to

(8-9)
 

In Eq. (8-9), hA is the height of point A above ground, Δp = pa – pc is the difference in parallax
between the top of the feature and the ground (pc is the parallax of the ground), and H is the flying
height above ground, since datum is at ground. If the heights of many features are needed in an area
where the ground is approximately level, the photo base b can be utilized as the parallax of the ground
point. In this case, Eq. (8-9) can be modified to

(8-10)
 

I n Eq. (8-10), b is the photo base for the stereopair, Δp = pa – b, and the other terms are as
previously defined. For very low flying heights or in areas of significant relief, or both, the
assumptions of Eq. (8-10) are not met; in these cases, Eq. (8-8) should be used. Equation (8-10) is
especially convenient in photo interpretation where rough elevations, building and tree heights, etc.
are often needed.

Example 8-3
The parallax difference between the top and bottom of a tree is measured as 1.3 mm on a stereopair of
photos taken at 915 m above ground. Average photo base is 88.2 mm. How tall is the tree?

Solution   By Eq. (8-10),

 

8-9  Measurement of Parallax Differences
Parallax differences may be determined in any of the following ways:

      1.  By monoscopic measurement of parallaxes followed by subtraction
      2.  By taking differences in parallax bar readings
      3.  By parallax wedge



A parallax wedge, as illustrated in Fig. 8-12, consists of a piece of transparent film upon which
are drawn two converging lines. The left line is a reference line while the line on the right contains
graduations from which readings can be made. The spacing of the two lines depends on whether the
parallax wedge will be used with a mirror stereoscope or a pocket stereoscope. For a pocket
stereoscope the spacing should vary from about 65 mm at the bottom to about 45 mm at the top. This
spacing accommodates the usual spacing between corresponding images when a stereopair is oriented
for viewing with a pocket stereoscope, and it gives a possible range of about 20 mm in parallax
differences that can be measured.

 FIGURE 8-12   Parallax wedge.
 

Suppose line spacings of a parallax wedge were exactly 65 mm at the bottom and 45 mm at the
top, as shown in Fig. 8-12. If the total height y of the graduations was 200 mm, then for graduations
spaced at 2.5-mm intervals along the line, each of the 80 graduations proceeding upward on the scale
is 0.25 mm closer to the reference line than the next-lower graduation. Graduations numbered from 45
to 65 on the parallax wedge represent horizontal spacings from the reference line, with the smallest
graduation interval representing a parallax difference of 0.25 mm even though the vertical spacing
between consecutive lines is 2.5 mm.

When a parallax wedge is used, the photos are first carefully oriented for viewing with a pocket
stereoscope and secured. The parallax wedge is placed in the overlap area and viewed
stereoscopically; the two lines of the parallax wedge will fuse and appear as a single floating line in
areas where the spacing of the lines is slightly less than the spacing of corresponding photo images.
The floating line will appear to split where the parallax of the lines is equal to that of the photo
images. The position of the parallax wedge can be adjusted so that the floating line splits forming a
wedge exactly at a point whose parallax is desired, and at that point a reading is taken from the scale.
The parallax wedge reading at point a of Fig. 8-12, for example, is 51.25 mm. Parallax differences are
obtained by simply taking differences in parallax wedge readings for different points.



An expedient means of producing a parallax wedge is to create a drawing using an available
computer-aided drafting (CAD) program and to print the result on a transparency using a laser printer.

8-10   Computing Flying Height and Air Base
To use parallax equations, it is generally necessary to compute the flying height and air base. Flying
height may be calculated using the methods described in Sec. 6-9. For best results, the average of
flying heights for the two photos of a stereopair should be used.

If the air base is known and if one vertical control point is available in the overlap area, flying
height for the stereopair may be calculated by using Eq. (8-5).

Example 8-4
An overlapping pair of vertical photographs taken with a 152.4-mm-focal-length camera has an air
base of 548 m. The elevation of control point A is 283 m above sea level, and the parallax of point A is
92.4 mm. What is the flying height above sea level for this stereopair?

Solution   By rearranging Eq. (8-5),

 
If the flying height above datum is known and if one vertical control point is available in the

overlap area, the air base for the stereopair may be calculated by using Eq. (8-5).

Example 8-5
An overlapping pair of vertical photos was exposed with a 152.4-mm-focal-length camera from a
flying height of 1622 m above datum. Control point C has an elevation of 263 m above datum, and the
parallax of its images on the stereopair is 86.3 mm. Calculate the air base.

Solution   By rearranging Eq. (8-5),

 
If a line of known horizontal length appears in the overlap area, then the air base can be readily

calculated. The horizontal length of the line may be expressed in terms of rectangular coordinates,
according to the pythagorean theorem, as

 
Substituting Eqs. (8-6) and (8-7) into the above for the rectangular coordinates gives

 
Solving the above equation for B yields



(8-11)
 

Example 8-6
Images of the endpoints of ground line AB, whose horizontal length is 650.47 m, appear on a pair of
overlapping vertical photographs. Photo coordinates measured with respect to the flight axis on the
left photo were xa = 33.3 mm, ya = 13.5 mm, xb = 41.8 mm, and yb = –95.8 mm. Photo coordinates
measured on the right photo were xa′ = –52.3 mm and xb′ = –44.9 mm. Calculate the air base for this
stereopair.

Solution   By Eq. (8-1),

 
By Eq. (8-9),

 

8-11   Error Evaluation
Answers obtained using the various equations presented in the chapter will inevitably contain errors. It
is important to be aware of the presence of these errors and to be able to assess their magnitudes.
Some of the sources of error in computed answers using parallax equations are as follows:

      1.  Locating and marking the flight lines on photos
      2.  Orienting stereopairs for parallax measurement
      3.  Parallax and photo coordinate measurements
      4.  Shrinkage or expansion of photographs
      5.  Unequal flying heights for the two photos of stereopairs
      6.  Tilted photographs
      7.  Errors in ground control
      8.  Other errors of lesser consequence such as camera lens distortion and atmospheric refraction

distortion

A general approach for determining the combined effect of several random errors in computed
answers is presented in Sec. A-4. This approach is demonstrated in the following example.

Example 8-7
In the computation of the elevation of point A in Example 8-1, suppose that the random errors were ±
2 m in H, ± 2 m in B, and ± 0.1 mm in pa. Compute the resulting error in hA due to the presence of



these errors.

Solution   The basic equation used was Eq. (8-5), and the partial derivatives in that equation taken
with respect to each of the three error sources are

 
Substituting the above expressions into Eq. (A-2) gives

 
Substituting numerical values into the above, we get

 
Errors in computed answers using any of the equations of this chapter can be analyzed in the

fashion described above. It is, of course, necessary to estimate the magnitude of the random errors in
the measured variables used in the equations. It is more difficult to analyze errors caused by tilt in the
photographs. The subject of tilted photographs is discussed in Chap. 10, and rigorous analytical
methods are presented in Chap. 11. For the present, however, suffice it to say that for normal
photography intended to be vertical, errors in parallax equation answers due to tilt are compatible with
errors from the other sources that have been considered.
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Problems



  8-1.   Calculate the stereoscopic parallaxes of points A through D, given the following measured
flight-line axis coordinates. Which point is the highest in elevation? Which is lowest?

 
  8-2.   Calculate the elevations of points A through D of Prob. 8-1 if the camera focal length is 152.62
mm, flying height above datum is 2763 m, and the air base is 1135 m.

  8-3.   A pair of overlapping vertical photographs is mounted for parallax measurement, as illustrated
in Fig. 8-5. Distance D is measured as 276.1 mm. Calculate the stereoscopic parallaxes of the points
whose measured d values are as follows. Which point is highest in elevation? Which is lowest?

 
Point d
A 183.0 mm
B 185.5 mm
C 186.4 mm
D 187.8 mm

 
  8-4.   Repeat Prob. 8-3, except D was measured as 272.7 mm, and measured d values are as follows.

 
Point d
A 182.5 mm
B 184.7 mm
C 185.3 mm
D 180.2 mm

 
  8-5.   Assume that point A of Prob. 8-3 has an elevation of 357.1 m above datum and that the photos
were taken with an 88.74-mm-focal-length camera. If the air base is 1357 m, what are the elevations
of points B, C, and D?

  8-6.   Assume that point A of Prob. 8-4 has an elevation of 249.0 m above datum and that the photos
were taken with a 153.07-mm-focal-length camera. If the air base is 1773 m, what are the elevations
of points B, C, and D?

  8-7.   From the information given for Probs. 8-1 and 8-2, calculate the horizontal ground length of
line AC. Measured y coordinates on the left photo are ya = 70.8 mm and yc = –64.9 mm.

  8-8.   Repeat Prob. 8-7 except that the computations are for line BD. Measured y coordinates on the
left photo are yb = 10.8 mm and yd = –81.5 mm.



  8-9.   From the data of Probs. 8-3 and 8-5, calculate the horizontal area of triangle ABC. Measured x
and y flight-line axis coordinates of a, b, and c on the left photo were xa = –7.6 mm, ya = 90.3 mm, xb =
31.8 mm, yb = –79.3 mm, xc = 88.4 mm, and yc = 16.1 mm.

8-10.   Distances b on the left photo and b′ on the right photo of a pair of overlapping vertical photos
are 91.0 mm and 88.2 mm, respectively. If the air base is 604 m and the camera focal length is 88.78
mm, which ground principal point is higher and by how much?

8-11.   Repeat Prob. 8-10, except that b and b′ are 90.6 mm and 92.1 mm, respectively, the air base is
682 m, and the camera focal length is 152.60 mm.

8-12.   A pair of overlapping vertical photos is taken from a flying height of 981 m above ground with
a 152.46-mm-focal-length camera. The x coordinates on the left photo of the base and top of a certain
tree are 76.2 mm and 82.9 mm, respectively. On the right photo these x′ coordinates are –13.8 mm and
–16.1 mm, respectively. Determine the height of the tree.

8-13.   A pair of overlapping vertical photos is taken from a flying height of 1273 m above the base of
a radio tower. The x coordinates on the left photo of the top and base of the tower were 87.3 mm and
80.4 mm, respectively. On the right photo these x′ coordinates were –11.6 mm and –10.2 mm,
respectively. What is the approximate height of the tower?

8-14.   The air base of a pair of overlapping vertical photos was determined to be 793 m. The focal
length of the camera was 152.35 mm. The image coordinates of point A, whose elevation is 203 m
above datum, were determined on the left photo as xa = 37.2 mm and on the right photo as xa′ = –52.9
mm. What is the flying height above datum for the stereopair?

8-15.   Repeat Prob. 8-14, except that the air base was 514 m, the camera focal length was 209.60 mm,
and point A, whose elevation was 365 m above datum, had image coordinates of xa = 44.9 mm on the
left photo and xa′ = –46.9 mm on the right photo.

8-16.   The images of two control points A and B appear in the overlap area of a pair of vertical
photographs. The following photo coordinates and ground coordinates apply to points A and B.
Calculate the air base of the stereopair, using Eq. (8-11).

 
8-17.   Repeat Prob. 8-16, except that the photo coordinates and ground coordinates for points A and B
were as follows:



 
8-18.   A pair of overlapping vertical photos was exposed with a camera having a 209.80-mm focal
length. Calculate B and H from the following information on ground points D and E. [Hint: Set up Eq.
(8-5) for point D and for point E, then solve simultaneously.]

 
8-19.   Repeat Prob. 8-18, except that the camera focal length is 152.53 mm and the following
information applies to points D and E.

 
8-20.   A parallax wedge for use with a pocket stereoscope similar to that shown in Fig. 8-12 has
height of graduations y equal to 160 mm. The lateral spacing between reference line and the graduated
line is 45 mm at the top and 65 mm at the bottom. What is the vertical spacing of reference marks on
the graduated line if the difference in parallax between adjacent graduations is 0.25 mm?

8-21.   In Prob. 8-14, suppose that random errors were ±1 m in h and B, and ±0.05 mm in each of xa

and xa′. What is the expected resultant error in the calculated value of H due to these random errors?
(Assume the focal length to be error-free.)

8-22.   In Prob. 8-15, suppose that random errors were ± 0.5 m in hA, ± 2 m in B, and ±0.1 mm in both
xa and xa′. What is the expected error in the calculated value of H due to these errors? (Assume the
focal length to be error-free.)

8-23.   In Prob. 8-12, assume that random errors existed in the amounts of ± 1 m in H and ±0.1 mm for
each of the measured photo coordinates. What is the expected error in the calculated height of the tree
due to these random errors?



CHAPTER 9
Elementary Methods of Planimetric Mapping for GIS

 

9-1  Introduction
This chapter describes elementary methods that can be used for compiling planimetric maps from
vertical photographs and satellite images. These include (1) tracing with the use of reflection
instruments, (2) georeferencing of digital imagery, (3) performing heads-up digitizing, (4) preparing
photomaps, and (5) constructing mosaics.1 Each of these techniques is relatively uncomplicated to
perform and generally requires simpler and less expensive equipment compared to the rigorous
photogrammetric mapping techniques that are presented in later chapters. These methods can have
definite utility, depending upon the extent and required accuracy of planimetric mapping to be
accomplished. For map revision over limited areas, and in many applications of geographic
information systems (GISs), particularly those involving natural resource mapping, the high accuracy
afforded by rigorous photogrammetric methods is often not necessary. By using appropriate
elementary methods, substantial cost savings can be realized while obtaining planimetric information
at acceptable accuracy.

The choice among the above-cited methods depends upon the purpose of the map or image
product, extent of the area to be mapped, required accuracy, available imagery, and budget constraints.
As an example, it may be necessary to include a recently constructed road or shopping center which is
not shown on an otherwise satisfactory existing planimetric map. It would be expensive, and
unnecessary, to prepare a new map of the area if these features could be satisfactorily superimposed
onto the existing map. This type of planimetric map revision can readily be done using procedures
described in this chapter.

The accuracies that can be achieved in planimetric mapping by using these methods are generally
of a lower order than those attainable with stereoplotting instruments (see Chap. 12) or orthophoto
processing (see Chap. 15). However, for some work, especially if ample care is exercised, suitable
results can be achieved.

9-2  Planimetric Mapping With Reflection Instruments
A number of instruments have been devised that enable an operator to view an image superimposed
with a map manuscript. The basic operation of these instruments is fundamentally the same. Photo
control2 points which have been plotted to scale on the map manuscript are used as a basis for
orienting the image. By adjusting image scale, rotation, translation, and in some cases tilt or
nonuniform image stretch, the images of the photo control points can be made to approximately
coincide with the plotted control points on the manuscript. The degree of coincidence depends on a
number of factors including the amount of terrain relief. Once the device is oriented, additional image
features can be directly traced onto the manuscript by virtue of the operator’s simultaneous view of
the oriented image and the map.

The zoom transfer scope (ZTS) of Fig. 9-1 is a versatile reflection instrument which is used
primarily for planimetric map revision. Although the use of ZTSs is declining, they can still be found
being used at mapping agencies. With the ZTS, an aerial photograph or other hard-copy image is
placed on a viewing stage and secured with clamps. Some ZTSs can accommodate imagery on either



transparent film or paper, and some can function in either monoscopic or stereoscopic mode. The map
manuscript is placed on a horizontal working surface which can be viewed simultaneously with the
image. The instrument can accommodate large differences in scale from photo to map by means of
zoom optics which provide continuous variations in magnification from 1 to 7X. In addition, the
anamorphic optical system of the ZTS enables different magnification ratios to be applied in the x and
y directions. The ZTS also has the capability of removing the effects of nonorthogonal affine
distortion (see Sec. C-6) in the image by means of rotating prisms. These features facilitate adjusting
photo images to coincide with map points or control points. Once the image and map are adjusted, the
manuscript is taped down and the operator then traces the desired features.

 FIGURE 9-1   Zoom transfer scope. (Courtesy University of Florida.)
 

Of course, photographs are perspective projections, and as described in Chap. 6, they contain
scale variations due to tilt and relief. Therefore, in compiling maps using reflection instruments,
traced features will contain any scale variations that exist in the photo images. However, if relief is
moderate, and relatively small areas are traced that lie within a perimeter of control points, the
resulting map will be sufficiently accurate to satisfy many purposes.

9-3  Georeferencing of Digital Imagery
A digital image as described in Sec. 2-12 can be obtained through a number of sources including
satellite imaging sensors, digital cameras, and scanned aerial photographs. In its rudimentary form, a
digital image bears no relationship to a ground coordinate reference system. Rather, its coordinate
basis consists of integer column and row numbers which specify a pixel’s location within a
rectangular image array. Georeferencing, sometimes called ground registration , is a technique
whereby a digital image is processed so that the columns and rows of the resulting product are aligned
with north and east in a ground coordinate system. Some authors, particularly those in the remote-
sensing field, refer to georeferencing as rectification; however, in the context of photogrammetry, the
term rectification is reserved for the process of removing the effects of tilt from an aerial photograph.
(See Secs. 10-11 through 10-15.)

The process of georeferencing an image involves two fundamental steps: (1) computing the



parameters of a two-dimensional coordinate transformation (see App. C) which relates the digital
image to the ground system and (2) filling an array, which is aligned with the ground coordinate
system, with the appropriate digital numbers that quantify the brightness of the ground at the
corresponding locations.

In the first step, a number of ground control points (GCPs) are selected which can be identified in
the image and for which accurate ground coordinates are available. The column and row image
coordinates of each GCP are obtained and subsequently related to the ground coordinates. The
simplest method for obtaining image coordinates of a GCP is to display the image on a computer
screen. Then by using a mouse, a cursor is guided to the location of the image point and recorded by
clicking on it. Many image manipulation programs are capable of this rudimentary operation.

The coordinate transformation in this first step of the georeferencing process converts from
ground coordinates (x and y) to image coordinates (X and Y) . At first, the direction of this conversion
(from ground to image) may seem backward. However, for reasons which will become clear in this
section, the transformation must be performed in this manner. Furthermore, the use of lowercase x and
y for ground coordinates and uppercase X and Y for image coordinates seems to be a reversal from the
usual convention. Actually, this is appropriate when one looks at the uppercase/lowercase convention
from a different point of view. In the coordinate transformation equations presented in App. C,
lowercase variables are used for coordinates in the “from” system (the initial system), and uppercase
variables are used for coordinates in the “to” system (the final system). For georeferencing, since the
ground system is the “from” system, lowercase x and y are used for its coordinates; and since the
image system is the “to” system, uppercase X and Y are used for its coordinates. Image coordinates of
the common points will serve as control for the transformation, and the resulting parameters will give
the relationship from ground to image coordinates. Any two-dimensional coordinate transformation
could be used, but the conformal and affine are most often employed because of their convenience and
suitability. For illustration purposes here, the two-dimensional conformal coordinate transformation
will be used. Equations (C-12) express this transformation relationship, and for convenience they are
repeated here as Eq. (9-1). [Note that the variable names have been changed to relate to the coordinate
system designations and specific conversion process (noted in italics) above.]

(9-1)
 

In Eq. (9-1), x and y are coordinates of points in the ground system; X and Y are coordinates of
points in the image that have been obtained by converting from their column and row values; and a, b,
TX, and TY are parameters which are determined during this first step. Once computed, these
parameters are used to transform coordinates of additional points from the ground system to the image
system. The reason for this arrangement of the transformation will become apparent in the description
of the second step, which follows.

During the second step of georeferencing, an image that is aligned with the ground coordinate
system is produced. To understand this step, it is useful to visualize the ground as being divided into a
rectangular grid of individual elements called groundels (ground elements), analogous to pixels
(picture elements) of a digital image. The difference is that while pixels have no specific relationship
to the ground, groundels are arranged at a nominal spacing in a grid which is parallel to the ground
coordinate system. For each groundel, the x and y coordinates of its center point are transformed,
based on the parameters computed in the first step, into corresponding image coordinates. The



brightness value from the image at this corresponding location is then inserted into the groundel array.
This involves the process of resampling, which is covered in App. E. After this process has been
applied to each groundel, the georeferenced image is contained in the array of groundels.

To illustrate the above-described process of georeferencing, refer to Figs. 9-2a and b. Figure 9-2a
represents an 8-pixel by 8-pixel digital image prior to georeferencing. Note that this image is
represented as a square, nonrotated image, which is how it might appear if displayed on a computer
screen. The solid-line grid of Fig. 9-2b represents an array of groundels which are nominally aligned
with a ground coordinate system xy. Nominal ground coordinates are associated with the centers of the
groundels, shown as small dots in Fig. 9-2b. The dashed lines represent the digital image as it would
appear if properly aligned with the ground system. Four control points (1, 2, 3, and 4) having
coordinates in the ground xy system appear in the image. Coordinates of these control points in both
the image system of Fig. 9-2a and the ground system are listed in Table 9-1. Note that image
coordinates, which correspond to pixel centers [indicated by crosses in Fig. 9-2a], are specified to the
nearest whole row and column, which is typical of most georeferencing applications. More elaborate
techniques are available which can yield accurate fractional row and column coordinates; however,
these techniques are not discussed here.

 FIGURE 9-2   (a) Schematic representation of nonreferenced digital image. (b) Schematic
representation of georeferenced image (solid lines) and orientation of image aligned with the ground
(dashed lines).
 

 TABLE 9-1   Ground and Image Coordinates for Control Points of Fig. 9-2
 



To prepare for the coordinate transformation which will yield the mathematical relationship
between the image and ground coordinates, it is useful to convert the column and row coordinates of
image pixels to the more conventional XY system. Note that in Fig. 9-2a the column coordinates
increase from left to right, similar to conventional X coordinates; however the row coordinates
increase from top to bottom, which is in the opposite direction from conventional Y coordinates.
Because of this configuration, using the column coordinate as the abscissa and the row coordinate as
the ordinate results in a “left-handed” coordinate system, as opposed to the more commonly used
“right-handed” system, which is typical of ground coordinate systems. Transformation of a left-
handed system to a right-handed system can cause mathematical inconsistencies in certain coordinate
transformations, such as the conformal transformation. This inconsistency can be remedied by a
number of approaches.

One approach is to use the row coordinate as the abscissa and the column coordinate as the
ordinate. This results in a right-handed coordinate system which is rotated 90° clockwise. Another
approach is to simply use a transformation that is able to account for the difference between left- and
right-handed coordinate systems. The affine transformation has this capability by virtue of its separate
x and y scale factors (see Sec. C-6), one of which will be positive and the other, negative. A third
method is to convert the image coordinates from a left-handed system with the origin in the upper left
corner to a right-handed system with its origin in the lower left corner. This can be accomplished by
selecting the column coordinate as the abscissa and calculating ordinate values by subtracting row
coordinates from the maximum row number.

Assume that the two-dimensional conformal transformation will be used to relate the ground
coordinate system of Fig. 9-2b to the image coordinate system of Fig. 9-2a. Using image coordinates
from Table 9-1, a right-handed XY coordinate system will be created using the third method just
described. The maximum row number of the image is 7; therefore the original row coordinates will be
subtracted from 7 to obtain Y coordinates. The resulting XY image coordinates are listed in Table 9-2.

 TABLE 9-2   Column and Row Image Coordinates of Table 9-1 Converted to XY Coordinates
 

To transform from the xy ground coordinate system to the XY converted image coordinate
system, the following equations [of the form of Eq. (9-1)] are written:



(9-2)
 
Using the least squares techniques presented in Secs. B-9 and C-5, the equations are solved for the
most probable values of a, b, TX, and TY, which are

 
Once these transformation parameters have been computed, the georeferencing is completed by

filling the groundel array with brightness values from the digital image. Referring to Fig. 9-2b, which
contains a 9 × 9 groundel grid, this involves 81 separate applications of the above transformation, each
followed by access of the brightness value from the image through resampling. For example, point p
i n Fig. 9-2b has ground coordinates of x = 40 and y = 50, and its image coordinates X and Y, by
substitution into Eqs. (9-1), are

 
Expressing the location in column and row coordinates gives

 
This column and row location is indicated by the position of point p in Fig. 9-2a. This position

falls within the area of the pixel at column = 3 and row = 4, so the brightness associated with that
particular image pixel could be copied into the corresponding groundel at x = 40 and y = 50. This is
the nearest-neighbor method of resampling, which is described in App. E. Alternatively, bilinear or
bicubic interpolation could be used for the resampling.

It is possible for some of the groundels to fall outside the limits of the digital image, as is the
case with point q. From Fig. 9-2b, point q corresponds to the groundel at coordinates x = 10 and y =
10. Transforming these coordinates into the XY image system gives

 
Expressing this location in column and row coordinates gives



 
Notice that since the row coordinate of 8.2 is beyond the maximum row number of 7, there is no
brightness value from the image corresponding to this particular groundel. In this case, it is
appropriate to use a default value of 0 for the groundel brightness value.

Figure 9-3 shows the result of georeferencing as applied to a satellite image. Figure 9-3a shows
the nonreferenced image. Notice that even though the true directions of streets in the area correspond
to cardinal directions (north, south, east, and west), the general directions of streets appear to be
rotated approximately 10° in the image. Figure 9-3b shows the resulting georeferenced image where
the directions of streets now properly correspond to cardinal directions.

 



 
FIGURE 9-3   (a) Nonreferenced satellite image. (b) Georeferenced image. (Courtesy University of
Florida.)
 

When georeferencing digital imagery, it is beneficial to choose groundel dimensions that are
consistent with the pixel dimensions of the image. For example, when georeferencing a satellite image
with 10-m pixels, the groundel size should also be 10 m. This is not an absolute necessity, but if the
dimensions differ by more than a factor of about 1.5, more elaborate resampling methods may be
necessary.

When choosing ground control points for georeferencing, it is important to select a well-
distributed pattern of points, preferably with a point in each of the four corners as well as additional
points spaced uniformly throughout the interior. It is particularly important to avoid having all control
points in a small cluster in one area of the image. In addition, if the affine or projective transformation
is used, it is critical that not all the control points lie along a straight line; otherwise, the
transformation becomes ill-conditioned and yields poor results. Depending on the transformation used
and the required geometric accuracy, the number of control points per image should be roughly 8 to
15. With a smaller number of control points, the accuracy will generally be lower and it will be more
difficult to detect errors that may be present in the coordinates of one or more points. For the highest
accuracy, a large number of control points are always desirable; however, beyond about 15 points, the



marginal benefit of additional points seldom outweighs the extra effort involved.
The geometric accuracy of a georeferenced image can be assessed through evaluation of the

residuals from the transformation, which should always be computed and checked. Large residuals
may indicate errors in measured image or ground coordinates. Many computer software packages
calculate the root mean square  (RMS) of the residuals, which gives a nominal indication of accuracy.
This value can be misleading, however, since the probability of an actual point’s position being within
the two-dimensional RMS error region is only about 40 percent. To increase the level of confidence to
about 95 percent, the RMS value should be multiplied by 2.5.

It is possible to compute a transformation with small residuals but still have low accuracy in
terms of absolute position. This would occur if, for example, the ground coordinates were scaled from
a map that contains a significant systematic error. Perhaps the map was based on the NAD27 datum,
but the resulting georeferenced image is assumed to be in the NAD83 datum (see Sec. 5-7). To
disclose systematic errors of this type, it is advisable to perform a field test on a randomly selected
sample of image points (checkpoints) using an independent source of higher accuracy, such as a global
positioning system (GPS) survey. The magnitudes of discrepancies between coordinates as obtained
from the georeferenced image and those obtained by the higher-accuracy method can be used to assess
accuracy.

9-4  Heads-Up Digitizing
Heads-up digitizing is a term used to describe the process where features, which are visible on a
georeferenced digital image displayed on a computer screen, are digitized directly with a mouse. The
human operator views the digital image simultaneously with the digitized features on the computer
screen. Since the operator’s gaze remains on the computer screen throughout, the operation is referred
to as heads-up.

Heads-up digitizing requires software that is capable of displaying a georeferenced image in the
proper coordinate reference frame and enables simultaneous on-screen digitizing. Many GIS software
packages are capable of this operation as well as some CAD packages. A key advantage of heads-up
digitizing is that the points and lines associated with the digitized features are displayed as an overlay
on the digital image, and if mistakes are made while pointing on the features, they can be readily
detected and subsequently remeasured.

9-5  Photomaps
Photomaps are simply aerial photos that are used directly as planimetric map substitutes. The photos
were traditionally brought to some desired average scale by enlargement or reduction by projection
printing (see Sec. 2-11), but are now commonly plotted on a large format printer from a digital file.
Title information, place names, and other data may be superimposed on the photos in the same way
that it is done on maps. Photomaps may be prepared from single aerial photos, or they may be made
by piecing together two or more individual overlapping photos to form a single continuous composite
picture. These composites are commonly referred to as mosaics and are described in Sec. 9-6.

Photomaps are similar to standard maps in many respects, but they have a number of definite
advantages over maps. Photomaps show relative planimetric locations of a virtually unlimited number
of objects, whereas features on maps—which are shown with lines and symbols—are limited by what
was produced by the mapmaker. Photomaps of large areas can be prepared in much less time and at
considerably lower cost than maps. Photomaps are easily understood and interpreted by people



without photogrammetry backgrounds because objects are shown by their images. For this reason they
are very useful in describing proposed construction or existing conditions to members of the general
public, who may be confused by the same representations on a map.

Photomaps have one serious disadvantage—they are not true planimetric representations. Rather,
they are constructed from perspective photographs, which are subject to image displacements and
scale variations. The most serious image displacements and scale variations are caused by variations
in the terrain elevation and tilting of the camera axis. These displacements are generally most severe
at the edges of the photographs. Of course, some small errors result from printer distortion of digital
images (or shrinkage or expansion of the photo papers), camera lens imperfections, and atmospheric
refraction, but these are generally negligible.

The effects of tilt can be eliminated by rectifying the photograph. (Rectification is described in
Secs. 10-11 through 10-15.) Rectification does not remove the effects of topographic relief, however.
Therefore the scale of the photomap is never constant throughout unless the terrain is perfectly level.
Relief displacements can be minimized by increasing the flying height, while at the same time using a
longer-focal-length camera to compensate for the decrease in scale. In measuring distances or
directions from a photomap, it must be remembered that, due to image displacements, the scaled
values will not be true. They are often used for qualitative studies only, and in that case slight
planimetric inaccuracies caused by image displacements are of little consequence.

Because of their many advantages, photomaps are quite widely used. Their value is perhaps most
appreciated in the field of planning, both in land-use planning and in planning for engineering
projects. A photomap that shows an area completely and comprehensively can be rapidly and
economically prepared. All critical features in the area that could affect the project can then be
interpreted and taken into account. Alternative plans can be conveniently investigated, including
considerations of soil types, drainage patterns, land-use and associated right-of-way costs, etc. As a
result of this type of detailed study, the best overall plan is finally adopted.

Photomaps are valuable in numerous other miscellaneous areas besides planning. They are used
to study geologic features, to inventory natural resources, to record the growth of cities and large
institutions, to monitor construction activities at intervals of time, to record property boundaries, etc.
They are also used as planimetric map substitutes for many engineering projects. Highway
departments, for example, that are engaged in preparing plans for extensive construction projects
frequently use photomaps to replace planimetric surveys. This not only eliminates much of the ground
surveying but also does away with the office work associated with planimetric mapping. Design
drawings and construction specifications are superimposed directly over the photomap. Used in that
manner, these products have resulted in tremendous savings in time and cost, and they have yielded
completely satisfactory results.

9-6  Mosaics
If a single photo does not contain extensive enough coverage to serve as a photomap of an area, an
aerial mosaic may be prepared. Traditionally, mosaics were constructed manually from hard-copy
paper prints, but in this day and age digital mosaics are more common. Whether accomplished
manually or digitally, mosaics are constructed from a block of overlapping photographs which are
trimmed and joined, much as cloth patches are stitched together to form a quilt. A special type of
digital mosaic, known as a composite orthophoto, provides the most geometrically accurate image
product available; however, its production is far more complex than that of a simple mosaic. Digital
orthophotos are described in Sec. 13-8.

Aerial mosaics generally fall into three classes: controlled, semicontrolled , and uncontrolled. A



controlled mosaic is the most accurate of the three classes. In the manual process, this type of mosaic
is prepared from photographs that have been rectified and ratioed; i.e., all prints are made into
equivalent vertical photographs that have the same nominal scale. In assembling the mosaic, image
positions of common features on adjacent photos are matched as closely as possible. To increase the
overall accuracy of the assembly, a plot of control points is prepared at the same scale as the ratioed
photos. Then in piecing the photos together to form the mosaic, the control point images are also
matched to their corresponding plotted control points to constrain the positions of the photos.
Controlled digital mosaics have similar characteristics, but they are prepared in an analytical process
similar to georeferencing, as discussed in Sec. 9-3. Along the edges between adjacent photos, images
of features are aligned to the extent possible, although they will seldom line up exactly. These residual
misalignments exist primarily because of relief displacements.

An uncontrolled mosaic is prepared by simply matching the image details of adjacent photos.
There is no ground control, and aerial photographs that have not been rectified or ratioed are used.
Uncontrolled mosaics are more easily and quickly prepared than controlled mosaics. They are not as
accurate as controlled mosaics, but for many qualitative uses they are completely satisfactory.

Semicontrolled mosaics are assembled by utilizing some combinations of the specifications for
controlled and uncontrolled mosaics. A semicontrolled mosaic may be prepared, for example, by
using ground control but employing photos that have not been rectified or ratioed. The other
combination would be to use rectified and ratioed photos but no ground control. Semicontrolled
mosaics are a compromise between economy and accuracy. The mosaic of Fig. 9-4 is a semi-
controlled mosaic prepared from nonrectified photos but assembled to fit U.S. Geological Survey
quadrangle maps.



 FIGURE 9-4   Semicontrolled mosaic showing the entire San Francisco Bay area. This mosaic consists
of more than 2000 individual aerial photographs. (Copyright photo, courtesy Pacific Resources, Inc.)
 

9-7  Uncontrolled Digital Mosaics
As noted above, a fundamental operation performed in the production of mosaics is the matching of
images from adjacent photographs. In the manual process using hard-copy photographs, this is done
through trial and error by shifting and rotating the photos slightly until optimal alignment is achieved.
As previously mentioned, perfect alignment is seldom achieved due to relief displacements and tilt
displacements of the images. With digital images, the matching procedure involves identifying tie
points in the overlap areas between adjacent photos. To match a pair of photos, coordinates of the



common tie points are measured in both photos, and a two-dimensional coordinate transformation is
performed to define the geometric relationship between the photographs. This process is illustrated in
Fig. 9-5, which shows two adjacent photographs in superposition. In this figure, the overlap area
between photos 1 and 2 contains four tie points, a, b, c, and d. In the separated photographs shown at
the bottom of the figure, each of these tie points has row and column coordinates in the digital image
coordinate system of each photo. For instance, point a has coordinates ,  in photo 1 and ,  in
photo 2. By selecting the coordinates of the tie points from photo 2 as control, a two-dimensional
coordinate transformation can be computed that determines the parameters for transforming photo 1
coordinates to photo 2 coordinates. In the example of Fig. 9-5, since the tie points lie nearly in a
straight line, a conformal transformation should be used because more complex transformations, such
as affine or projective, become mathematically unstable when the control configuration is linear or
nearly so.

 FIGURE 9-5   Use of tie points to join adjacent digital photographs.
 

After the transformation, the digital coverage of photo 1 can be extended to include the additional
area covered by photo 2. This is done by increasing the number of columns in the photo 1 array to
create sufficient storage space to accommodate additional pixels from the photo 2 array. The
brightness values associated with these additional columns are initially undefined. Then, in a process
similar to that of georeferencing, the coordinates of each pixel in the extended area of photo 1 are
transformed to the coordinate system of photo 2, using the previously determined parameters.



Brightness values are then resampled from photo 2 and stored in the extended portion of the photo 1
array. The result is a single image which incorporates the coverage of both photos.

When two photographs are attached by the foregoing method, a choice can be made as to which
one is used to provide the brightness values in the overlap area. The simplest approach is to retain the
values from the photo 1 array. This is generally not the best approach for two reasons. First, the
extreme right edge of photo 1 typically contains the image of a side fiducial mark, which obscures the
underlying terrain. Second, since relief displacements are more severe at greater distances from the
principal point of a vertical photo, images of features along the seam between photos are more likely
to be disjointed. To minimize these problems, the common area should be divided approximately into
two halves, with one-half of the brightness values coming from each photograph. If a natural edge
such as a street or fence line runs through the overlap area from top to bottom, it can be used to define
the seam between the two photos. This will generally result in a less noticeable seam in the resulting
image.

Large, uncontrolled digital mosaics can be constructed by repeating this attachment process for
each photograph in a strip or block. As more digital photos are added, the area of the mosaic grows
until the entire region is covered. Successive attachments of photos create an accumulation of errors
and can cause the digital mosaic to become significantly warped. This effect can be reduced somewhat
by starting in the middle of the block and working outward in all directions.

9-8  Semicontrolled Digital Mosaics
As mentioned in Sec. 9-6, semicontrolled mosaics employ either rectified photos which can be joined
(without control points) in the manner described in Sec. 9-7, or control points are used to constrain
nonrectified photographs. The more likely situation associated with generation of a semicontrolled
digital mosaic is to use nonrectified photographs in conjunction with a distributed configuration of
control points. This situation is illustrated in Fig. 9-6. The figure shows 12 photographs (I through
XII) arranged in a block formation with tie points (1 through 33) in the overlap areas between adjacent
photos. Also, seven control points (A through G) are distributed about the block. Note that there is no
single photograph with more than one control point; therefore, individual rectification of photographs
is not possible. It is possible, however, to simultaneously transform points from all 12 photographs in
a single least squares adjustment.



 FIGURE 9-6   Control and tie point configuration for a semicontrolled digital mosaic.
 

Suppose that the two-dimensional conformal transformation is used to perform the adjustment.
Equations (9-1) express the conformal transformation relationship between coordinates x and y in an
arbitrary system and coordinates X and Y in the control system. In Eqs. (9-1), a, b, TX, and TY are the
four parameters of the transformation.

Since the block shown in Fig. 9-6 contains 12 individual photographs, 12 sets of four parameters
(total of 48) are required to transform the individual photographs to the ground coordinate system.
Calculation of the 48 unknown parameters requires a least squares adjustment involving two forms of
observation equation pairs. The first type of observation equation pair is used for control points, and it
has the same form as Eqs. (9-1) except that appropriate subscripts are included for the parameters and
coordinates. As an example, note that in Fig. 9-6 control point C appears in photo VI. Digital photo
coordinates x and y of the image of C in photo VI, which can be obtained from the row and column as
described in Sec. 9-3, appear on the right-hand side of Eqs. (9-1); and X and Y ground coordinates of
point C appear on the left. Also included in the right-hand side of Eqs. (9-1) are the parameters a, b,
TX, and TY which correspond to photo VI. Equations (9-3) express the observation equation pair which
corresponds to the coordinates of control point C on photo VI, with appropriate subscripts.

(9-3)
 

Equations of this form are written for each control point and for each photo in which it appears.
The second type of observation pair is for tie points. Since tie points have no ground coordinates
associated with them, they cannot be used directly in Eqs. (9-1). Instead, the condition that the
differences in ground coordinates X and Y for the common tie point based on the photo coordinates x



and y in two adjacent photographs must equal zero, is enforced. An example of this condition is given
by Eqs. (9-4), which express the relationship for tie point 1 between photos I and II.

(9-4)
 

A pair of equations of the form of Eqs. (9-4) is written for each occurrence of a tie point between
a pair of photographs. Table 9-3 lists all the unique occurrences of tie points between adjacent
photographs corresponding to Fig. 9-6. In this table, there are a total of 63 unique tie point
connections between photographs, each of which contributes two equations of the form of Eqs. (9-4).
Notice that tie points, such as point 1, which exist only on two photographs contribute only one pair of
equations, whereas tie points, such as point 9, which exist on four photographs contribute six pairs of
equations to the solution.

 TABLE 9-3   Connections Between Photos of Fig. 9-6 Based on Measured Tie Point Coordinates
 

After all the equations have been formed, the unknown parameters (a, b, TX, and TY) associated
with each photo are computed by least squares. These parameters specify the geometric relationships



between each photo and the ground system; however, the direction is the opposite of what is required.
As described in Sec. 9-3 regarding georeferencing, coordinates of groundels must be transformed to
the image coordinate system so that the brightness of the particular ground element can be
determined. Since parameters a, b, TX, and TY in Eqs. (9-2) transform from image coordinates to
ground, the equation must be rearranged. To do this, equations can be written in matrix form as

(9-5)
 
Solving Eq. (9-5) for the values of x and y results in Eq. (9-6).

(9-6)
 
By using the X and Y coordinates for each of the groundels in the area covered by the mosaic and the
parameters of the corresponding photograph, Eq. (9-6) can be solved to obtain the position on the
photo from which to extract the brightness values. The values are then resampled from the digital
photo and placed in the groundel array. In areas of overlap between photographs, brightness values can
be extracted from either photo. The choice can be made by the approach described in Sec. 9-7.

9-9  Controlled Digital Mosaics
As mentioned in Sec. 9-6, controlled mosaics are made from rectified and ratioed photographs in
conjunction with ground control. With digital mosaics, this process begins with photo rectification, as
described in Sec. 10-11. In this process control points are identified in each photograph, and the two-
dimensional projective transformation is used to georeference the image, using the process described
i n Sec. 9-3. A minimum of four control points are needed, although more than four points are
recommended in order to have redundancy and enable a least squares solution. Since each rectified
digital photograph is georeferenced, the individual groundels will be directly related to ground
coordinates. All that remains to create the controlled digital mosaic is to assemble the georeferenced
images in a single groundel array that encompasses the full ground area of the mosaic. No further
resampling or other significant processing is required, although choices must be made as to which
brightness values to choose in overlapping areas.

An alternative approach can be used where there is insufficient ground control to rectify each
digital photograph individually. It is a slight variation of the simultaneous coordinate transformation
approach described in Sec. 9-8 which pertaines to semicontrolled digital mosaics. The difference is
that instead of using a two-dimensional conformal or affine transformation, the projective
transformation is used. This involves solving for all the individual sets of eight projective
transformation parameters for the entire block simultaneously. Since the transformation is projective,
the photographs will be rectified and ratioed as well as adjusted to ground control in a single
operation.

A simultaneous projective transformation is more complicated than either the conformal or the
affine because the equations are nonlinear. The approach of simplifying the equations into a linear
form as discussed in Sec. C-9 [see Eqs. (C-55)] cannot be used for tie points since the X and Y
coordinates appear on both sides of the equation. Performing a solution of the nonlinear form of the



projective equations requires a Taylor series expansion of Eqs. (C-54) as well as initial
approximations for the unknown parameters. Equations (C-54) are repeated here as Eqs. (9-7) for
convenience.

(9-7)
 

For near-vertical photographs, a simultaneous affine transformation can be used to obtain initial
approximations, because the parameters a3 and b3 of Eqs. (9-7) are approximately zero. This causes
the denominators in these equations to reduce to unity, and thus the projective Eqs. (9-7) are
equivalent to the affine equations [see Eqs. (C-22)]. When the initial approximations have been
determined, the simultaneous projective transformation equations (which have been linearized by
Taylor’s series) can then be formed, and iterated until the solution converges. This results in a
solution for the projective parameters which specifies the geometric relationship between each
photograph and the ground coordinate system.

As was the case with the simultaneous conformal transformation method described in Sec. 9-8,
the computed parameters describe the relationship in the reverse sense from that required. To reverse
Eqs. (9-7) so that the x and y photo coordinates are isolated on the left requires substantial algebraic
manipulation. The algebraic steps required to reverse these equations are left to the reader. Equations
(9-8) express the necessary relationship in reverse.

(9-8)
 

Some final comments must be made regarding the simultaneous projective transformation
solution. The least squares solution is often sensitive to large amounts of relief in the project area.
Since the solution involves tie points for which there is no known height, corrections cannot be made
for their relief displacements. If heights in object space of the selected tie points vary substantially
from mean terrain, the projective equations can become ill-conditioned, which can cause the least
squares solution to fail. In this case, the only recourse is to rectify each digital photograph
individually and assemble them as mentioned at the beginning of this section. In addition to the
difficulties caused by substantial relief, simultaneous projective transformations require more control
points throughout the photo block as well as more tie points along the edges than either the
simultaneous conformal or affine transformation.
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Problems
  9-1.   Describe the various techniques available for elementary planimetric mapping using vertical
photographs.

  9-2.   Describe the zoom transfer scope and its advantages in planimetric mapping by direct tracing.

  9-3.   Discuss ground control requirements necessary for georeferencing.

  9-4.   Briefly discuss the advantage of heads-up digitizing over mapping with a tablet digitizer.

  9-5.   Discuss the advantages and disadvantages of photomaps and aerial mosaics as compared to
conventional line and symbol maps.

  9-6.   Outline some of the uses of photomaps.

  9-7.   Define the three main classes of mosaics.

  9-8.   A photomap is to be prepared by enlarging a 23-cm-square-format aerial photo to a size of an
80-cm square. If a Lear jet was used to obtain the photo and a 152-mm-focal-length camera was
carried to an altitude of 12.2 km above ground for the exposure, what will be the resulting scale of the
photomap, and how many hectares will it cover?

  9-9.   A mosaic to serve as a map substitute for locating utilities will be prepared from digital
photographs scanned at a 25-micrometer (25-μm) pixel size. The photographs will be taken with a



312-mm-focal-length camera having a 23-cm-square format. If 75-cm-diameter manholes must span
10 pixels on the digital mosaic, what must be the flying height above average ground for the
photography?

9-10.   Repeat Prob. 9-9, except the camera lens focal length is 152 mm, the photos will be scanned at
a 12-μm pixel size, and 10-cm-wide highway stripes must span 2 pixels on the digital mosaic.

_____________
1 In this context, compiling planimetric maps denotes the drawing of scaled diagrams which show planimetric features by means of
lines and symbols or the production of images which portray planimetric features in picture form. Planimetric maps portray only
horizontal position and give no information concerning elevations. The maps are prepared to some designated scale; thus all features
are presumed to be shown in their true relative positions. Pure digital products such as computer-aided drafting (CAD) drawings and
georeferenced images do not have a specific scale per se, but rather include explicit information regarding ground coordinates of
features or pixels.
2 Photo control, as described in detail in Chap. 16, consists of any discrete objects whose images appear on the photo and whose
ground coordinates are known. There are several methods for determining the ground coordinates, including scaling from an existing
map, direct field survey, or photogrammetric techniques such as aerotriangulation (described in Chap. 17).



CHAPTER 10
Tilted and Oblique Photographs

10-1   Introduction
 In spite of level vials, inertial measurement devices, gimbals, and other stabilizing equipment, in
 practice it is impossible to maintain the optical axis of an airborne camera truly vertical. Unavoidable
 aircraft tilts cause photographs to be exposed with the camera axis tilted slightly from vertical, and the
 resulting pictures are called tilted photographs. If vertical photography is intended, the amount by
 which the optical axis deviates from vertical is usually less than 1° and rarely exceeds 3°. In some
 cases, aerial photography is purposely angled away from vertical. These types of images are classified
. as high oblique if the photograph contains the horizon, and low oblique otherwise
 Terrestrial photos are almost always taken from an oblique pose. Horizontal terrestrial photos are
 obtained if the camera axis is horizontal when the exposure is made. If a camera is available that has
 leveling capabilities, horizontal terrestrial photos can be obtained. Although, it is generally not practical
 to take horizontal photos because it is usually necessary to incline the camera axis up or down
 somewhat in order to center the object of interest in the field of view. Furthermore, no significant
. benefits result from taking horizontal photos
 Six independent parameters called the elements of exterior orientation (sometimes called EOPs) express
 the spatial position and angular orientation of a photograph. The spatial position is normally given by
 XL, YL, and ZL, the three-dimensional coordinates of the exposure station in a ground coordinate system.
 Commonly, ZL is called H, the height above datum. Angular orientation is the amount and direction of
 tilt in the photo. Three angles are sufficient to define angular orientation, and in this book two different
 systems are described: (1) the tilt-swing-azimuth (t-s-α) system and (2) the omega-phi-kappa (ω-φ-κ)
system. The omega-phi-kappa system possesses certain computational advantages over the tilt-swing-
 azimuth system and is therefore more widely used. The tilt-swing-azimuth system, however, is more
.easily understood and shall therefore be considered first

10-2   Point Perspective
Perspective can be defined as how something is visually perceived under varying circumstances. In
the context of frame imaging systems, perspective projection governs how 3D objects (the scene
photographed) appear when projected onto a 2D surface (film or CCD array), making it the foundation
for many of the principles of photogrammetry. The laws of perspective geometry can be used to derive
information such as object scale and shape from tilted and oblique photographs and in turn derive
information about the position and orientation of the photograph using knowledge of the objects being
imaged. The collinearity equations mathematically describe the perspective projection from 3D object
space to 2D image space (see App. D).

Some important properties of a perspective projection are that straight lines are preserved and
projected lines that are parallel in object space intersect when projected onto the image plane (in fact,
all lines intersect in projective space). More specifically, horizontal parallel lines intersect at the
horizon, and vertical lines intersect at either the zenith or nadir in an image. The locations at which
these lines intersect on images are called vanishing points. Figures 10-1, 10-2, and 10-3 illustrate one-
, two-, and three-point perspective images of a building, respectively. Notice that in Fig. 10-1, the



horizontal lines at the left appear to converge toward a vanishing point in the distance, while the
vertical lines appear parallel and the horizontal lines to the right appear parallel. For this figure, the
optical axis of the camera was oriented perpendicular to the side of the building which resulted in one
point perspective. In Fig. 10-2, there are two sets of horizontal parallel lines shown along two sides of
the building. Both sets of lines, if extended, intersect at two points on the horizon to the left and right
of the photo. The vertical lines shown in the photo appear parallel because the optical axis of the
camera was horizontal (perpendicular to the vertical). It was not perpendicular to either side of the
building however, which resulted in two point perspective. Finally, Fig. 10-3 shows three point
perspective of the building from two different poses. In Fig. 10-3a, the horizontal lines also converge
toward two points on the horizon, and since the camera is inclined down from horizontal, the vertical
lines converge toward the nadir. Conversely, in Fig. 10-3b, since the camera is inclined up from
horizontal, the vertical lines converge toward the zenith.

 FIGURE 10-1   One-point perspective image.
 



 FIGURE 10-2   Two-point perspective image.
 

 



 FIGURE 10-3   (a) Three-point perspective image where vertical lines intersect at nadir. (b) Three-
point perspective image where vertical lines intersect at zenith.
 

10-3   Angular Orientation in Tilt, Swing, and Azimuth
In Fig. 10-4, a tilted aerial photograph is depicted showing the tilt-swing-azimuth angular orientation
parameters. In the figure, L is the exposure station and o is the principal point of the photo positive.
Line Ln is a vertical line, n being the photographic nadir point, which occurs where the vertical line
intersects the plane of the photograph. The extension of Ln intersects the ground surface at Ng, the
ground nadir point, and it intersects the datum surface at Nd, the datum nadir point. Line Lo is the
camera optical axis; its extension intersects the ground at Pg, the ground principal point, and it
intersects the datum plane at Pd, the datum principal point. One of the orientation angles, tilt, is the
angle t or nLo between the optical axis and the vertical line Ln. The tilt angle gives the magnitude of
tilt of a photo.



 FIGURE 10-4   Geometry of a tilted photograph showing tilt-swing-azimuth angular orientation.
 

Vertical plane Lno is called the principal plane. Its line of intersection with the plane of the
photograph occurs along line no, which is called the principal line. The position of the principal line
on the photo with respect to the reference fiducial axis system is given by s, the swing angle. Swing is
defined as the clockwise angle measured in the plane of the photograph from the positive y axis to the
downward or nadir end of the principal line, as shown in Fig. 10-4. The swing angle gives the direction
of tilt on the photo. Its value can be anywhere between 0° and 360°, or alternatively, between –180°
and 180°.

The third angular orientation parameter, α or azimuth, gives the orientation of the principal plane
with respect to the ground reference axis system. Azimuth is the clockwise angle measured from the
ground Y axis (usually north) to the datum principal line, Nd Pd. It is measured in the datum plane or in
a plane parallel to the datum plane, and its value can be anywhere between 0° and 360°, or
alternatively, between –180° and 180°. The three angles of tilt, swing, and azimuth completely define
the angular orientation of a tilted photograph in space. If the tilt angle is zero, the photo is vertical.
Thus a vertical photograph is simply a special case of the general tilted photograph. For a vertical
photo, swing and azimuth are undefined, but arbitrary definitions can be provided (see Sec. D-10).



10-4   Auxiliary Tilted Photo Coordinate System
In the tilt-swing-azimuth system, certain computations require the use of an auxiliary x′y′ rectangular
photographic coordinate system. This system, as shown in Fig. 10-5a, has its origin at the
photographic nadir point n and its y′ axis coincides with the principal line (positive in the direction
from n to o). Positive x′ is 90° clockwise from positive y′. In solving tilted photo problems in the tilt-
swing-azimuth system, photo coordinates are usually first measured in the fiducial coordinate system
described in Sec. 4-2 and then converted to the auxiliary system numerically.

 FIGURE 10-5   (a) Auxiliary x′y′ image coordinate system for a tilted photograph. (b) Principal plane
of a tilted photo.
 

For any point in a tilted photo, the conversion from the xy fiducial system to the x′y′-tilted system
requires (1) a rotation about the principal point through the angle θ and (2) a translation of origin from
o to n. The rotation angle θ is defined as

(10-1)
 

The coordinates of image point a after rotation are  and , as shown in Fig. 10-5a. These
coordinates, calculated in the same fashion as the  and  coordinates of Eqs. (C-2), are specified by

 
Auxiliary coordinate  is obtained by adding the translation distance on to . From Fig. 10-5b, which



is a side view of the principal plane, on is f tan t. Since there is no x translation,  =  and from the
relationship between s and θ in Eq. (10-1), sinθ = –sins and cosθ = –coss. Therefore the coordinates 
and  of a point a in the required auxiliary coordinate system are

(10-2)
 

In Eqs. (10-2), xa and ya are the fiducial coordinates of point a, f is the camera focal length, and t
and s are the tilt and swing angles, respectively.

10-5   Scale of a Tilted Photograph
In Chap. 6 it was shown that scale variations in a vertical photograph are the result of variations in
object distance (distance from camera to ground). The shorter the object distance, the larger the scale,
and vice versa. For vertical photos, variations in object distances were caused only by topographic
relief. In a tilted photograph, relief variations also cause changes in scale, but scale in various parts of
the photo is further affected by the magnitude and angular orientation of the tilt. Figure 10-6a portrays
the principal plane of a tilted photograph taken over a square grid on approximately flat ground.
Figure 10-6b illustrates the appearance of the grid on the resulting tilted photograph. Due to tilt,
object distance LA′ in Fig. 10-6a is less than object distance LB′, and hence a grid line near A would
appear larger (at a greater scale) than a grid line near B. This is illustrated in Fig. 10-6b, where photo
distance d1 appears longer than photo distance d2, yet both are the same length on the ground.

 FIGURE 10-6   (a) Principal plane of a tilted photograph taken over approximately flat ground. (b)
Image on the tilted photo of a square grid.
 

The scale at any point on a tilted photograph is readily calculated if tilt and swing for the
photograph and the flying height of the photo and elevation of the point above datum are known.
Figure 10-7 illustrates a tilted photo taken from a flying height H above datum; Lo is the camera focal



length. The image of object point A appears at a on the tilted photo, and its coordinates in the auxiliary
tilted photo coordinate system are  and . The elevation of object point A above datum is hA. Object
plane AA′KK′ is a horizontal plane constructed at a distance hA above datum. Image plane aa′kk′ is also
constructed horizontally. The scale relationship between the two parallel planes is the scale of the
tilted photograph at point a because the image plane contains image point a and the object plane
contains object point A. The scale relationship is the ratio of photo distance aa′ to ground distance AA′
and may be derived from similar triangles La′a and LA′A, and Lka′ and LKA′ as follows:

 FIGURE 10-7   Scale of a tilted photograph.
 

(a)
 
but

 



also

 
Substituting Lk and LK into Eq. (a) and dropping subscripts yields

(10-3)
 

I n Eq. (10-3), S is the scale on a tilted photograph for any point whose elevation is h above
datum. Flying height above datum for the photo is H; f is the camera focal length; and y′ is the
coordinate of the point in the auxiliary system calculated by Eqs. (10-2). If the units of f and y′ are
millimeters and if H and h are meters, then the scale ratio is obtained in millimeters per meter. To
obtain a dimensionless ratio, the right side of Eq. (10-3) must be multiplied by 1 m/1000 mm in that
case. Examination of Eq. (10-3) shows that scale increases with increasing terrain elevation. If the
photo is taken over level ground, then h is constant but scale still varies throughout the photograph
with variations in y′.

Example 10-1
A tilted photo is taken with a 152.4-mm-focal-length camera from a flying height of 2266 m above
datum. Tilt and swing are 2.53° and 218.20°, respectively. Point A has an elevation of 437 m above
datum, and its image coordinates with respect to the fiducial axis system are xa = –72.4 mm and 87.1
mm. What is the scale at point a?

Solution   By the second equation of Eqs. (10-2),

 
By Eq. (10-3),

 

10-6   Relief Displacement on a Tilted Photograph
Image displacements on tilted photographs caused by topographic relief occur much the same as they
do on vertical photos, except that relief displacements on tilted photographs occur along radial lines
from the nadir point. (Relief displacements on a truly vertical photograph are also radial from the
nadir point, but in that special case the nadir point coincides with the principal point.)

On a tilted photograph, image displacements due to relief vary in magnitude depending upon
flying height, height of object, amount of tilt, and location of the image in the photograph. Relief
displacement is zero for images at the nadir point and increases with increased radial distances from
the nadir.

As defined in Sec. 10-1, tilted photos are those that were intended to be vertical, but contain
small unavoidable amounts of tilt. In practice, tilted photos are therefore so nearly vertical that their



nadir points are generally very close to their principal points. Even for a photograph containing 3° of
tilt taken with a 152-mm-focal-length camera, distance on is only about 8 mm. Relief displacements
on tilted photos may therefore be calculated with satisfactory accuracy using Eq. (6-11), which applies
to a vertical photograph. When this equation is used, radial distances r are measured from the
principal point, even though theoretically, they should be measured from the nadir point.

10-7   Determining the Angle of Inclination of the Camera Axis in
Oblique Photography

Oblique photos, in which the camera axis is inclined either up or down from horizontal at the time of
exposure, represent the typical case in terrestrial photogrammetry. Since the base configuration for
terrestrial photos is a horizontal pose, it is useful to characterize its orientation by the angular
deviation from horizontal. Figure 10-8 illustrates an oblique terrestrial photo taken with the camera
axis inclined at an angle θ (not to be confused with θ defined in Sec. 10-4) from horizontal. In this
case the axis is inclined downward, and θ is called a depression angle. If the camera axis were inclined
upward, θ would be an elevation angle. The angle of inclination of the camera axis is an important
variable for certain elementary methods of determining object space positions of points whose images
appear on overlapping terrestrial photos. With some terrestrial cameras the angle of inclination can be
set or measured so that it becomes a known quantity. If it is unknown for a particular photo or photos,
methods are available for computing its value.

 FIGURE 10-8   Horizontal and vertical angles from measurements on an oblique terrestrial photo.
 

One elementary method of determining the angle of inclination of the camera axis of a terrestrial
photo relies on the fundamental principles of perspective geometry. If a photograph contains images
of linear features which are horizontal or vertical, the horizon or nadir can be located through
graphical construction. Figure 10-9 illustrates an oblique terrestrial photo of two buildings at a street
corner. In this figure, dashed lines are extended from the tops and bottoms of the windows (horizontal
parallel lines) to their intersections at vanishing points v1 and v2, which when connected define the
horizon. Also shown are dashed lines extending from the vertical building edges to their intersection



at the nadir point n. The line from n through the principal point o intersects the horizon at a right angle
at point k.

 FIGURE 10-9   Location of horizon and nadir on an oblique photograph.
 

A reference photo coordinate system can be established for the oblique photo of Fig. 10-9 from
the preceding graphical construction. Figure 10-10a shows the x and y axes of the oblique photo
coordinate system with its origin at point k. Note that the x axis coincides with the horizon. Figure 10-
10b shows a profile view of the principal plane Lkn. The optical axis Lo is inclined downward at a
depression angle θ. To conform with usual sign convention, depression angles are considered negative



in algebraic sign. If the camera axis is inclined upward, θ is considered positive. Angle θ can be
determined by either of two approaches. The first approach requires that the horizon be located by
vanishing points. Then line ko is drawn at a right angle to the horizon through point o (the principal
point of the photo) to define the y axis. Distance ko is then measured, and angle θ is computed from
the following (see Fig. 10-10b):

 FIGURE 10-10   (a) Oblique photo coordinate axis system. (b) Side view of principal plane showing
depression angle θ and tilt angle t.
 

(10-4)
 
In Eq. (10-4), θ is the depression (or elevation) angle, y0 is the y coordinate of the principal point in
the oblique photo coordinate system, and f is the camera focal length. In this equation, the correct
algebraic sign must be applied to y0 so that angle θ, in turn, will have the correct algebraic sign. It is
also necessary to use an appropriate value for the focal length f. If the graphical analysis is being
made on an enlarged photographic print, the focal length of the camera must be correspondingly
enlarged. The second approach to determining angle θ is based on the location of the nadir. After the
nadir has been determined, distance on is measured and the tilt angle t computed by the following:

(10-5)
 

Once the tilt angle has been determined, angle θ can be computed from

(10-6)
 

If a photograph is taken in which the optical axis is pointed upward from the horizon, angle θ is
an elevation angle, and vertical parallel lines will intersect at the zenith. In this case, the distance oz
from the principal point to the zenith point is measured, and angle θ can be computed by



(10-7)
 

As discussed in Sec. 19-8, analytical methods can also be used for determining the angle of
inclination of the camera axes for terrestrial photos, and these methods provide the highest levels of
accuracy.

10-8   Computing Horizontal and Vertical Angles from Oblique
Photos

Once angle θ has been determined, horizontal and vertical angles can be computed for points whose
images appear in the photograph. Refer to Fig. 10-8 which shows the geometry of an oblique
terrestrial photograph. In this figure, L is the exposure station, and Lo is f, the camera focal length; Lk
is a horizontal line intersecting the photo at k. The x axis coincides with the horizon line, and the y
axis passes through the principal point o, perpendicular to the x axis at point k. Point a is an image
point, and aa′ is a vertical line, with a′ being located in the horizontal plane of the exposure station
and horizon line. Horizontal angle αa between the vertical plane, (L a′ a), containing image point a and
the vertical plane, Lko, containing the camera axis is

(10-8)
 

In Eq. (10-8) note that correct algebraic signs must be applied to xa, ya, and θ. Algebraic signs of
α angles are positive if they are clockwise from the optical axis and negative if they are
counterclockwise. After the horizontal angle αa has been determined, vertical angle βa to image point a
can be calculated from the following equation:

(10-9)
 

The algebraic signs of β angles are automatically obtained from the signs of the y coordinates
used in Eq. (10-9).

Example 10-2
An oblique terrestrial photo was exposed with the camera axis depressed at an angle θ = –14.3°. The
camera focal length was 60.00 mm. Compute the horizontal and vertical angles to an object point A
whose image has photo coordinates xa = 27.4 mm and ya = 46.2 mm, measured with respect to the
oblique photo coordinate axes.

Solution.   From Eq. (10-8),



 
From Eq. (10-9),

 

10-9   Angular Orientation in Omega-Phi-Kappa
As previously stated, besides the tilt-swing-azimuth system, angular orientation of a photograph can
be expressed in terms of three rotation angles, omega, phi, and kappa. These three angles uniquely
define the angular relationships between the three axes of the photo (image) coordinate system and the
three axes of the ground (object) coordinate system.

Figure 10-11 illustrates a tilted photo in space. The ground coordinate system is XYZ. The tilted
photo image coordinate system is xyz (shown dashed), and its origin is at exposure station L. Consider
an image coordinate system x′y′z′ with origin also at L and with its respective axes mutually parallel to
the axes of the ground coordinate system, as shown in Fig. 10-11. As a result of three sequential
rotations through the angles of omega, phi, and kappa, the x′y′z′ axis system can be made to coincide
with the photographic xyz system. Each of the rotation angles omega, phi, and kappa is considered
positive if counterclockwise when viewed from the positive end of the rotation axis.

 FIGURE 10-11   Orientation of a photograph in the omega-phi-kappa system.



 

The sequence of the three rotations is illustrated in Fig. 10-12. The first rotation, as illustrated in
Fig. 10-12a, is about the x′ axis through an angle omega. This first rotation creates a new axis system
x1y1z1. The second rotation phi is about the y1 axis, as illustrated in Fig. 10-12b. As a result of the phi
rotation a new axis system x2y2z2 is created. As illustrated in Fig. 10-12c, the third and final rotation is
about the z2 axis through the angle kappa. This third rotation creates the xyz coordinate system which
is the photographic image system. Equations that express these three rotations are developed in Sec.
C-7.

 FIGURE 10-12   (a) Rotation about the x′ axis through angle omega. (b) Rotation about the y1 axis
through angle phi. (c) Rotation about the z2 axis through angle kappa.
 

For any photo there exist a unique set of angles omega, phi, and kappa which explicitly define the
angular orientation of the photograph with respect to the reference ground coordinate system,
provided appropriate ranges are maintained (see Sec. D-10). These three angles are related to the
previously described tilt, swing, and azimuth angles; and if either set of three orientation angles is
known for any photo, the other three can be determined as described in Sec. D-10. In the omega-phi-
kappa system, as with the tilt-swing-azimuth system, the space position of any photo is given by the
exposure station coordinates XL, YL, and ZL (or H).



10-10  Determining the Elements of Exterior Orientation
Many different methods, both graphical and numerical, have been devised to determine the six
elements of exterior orientation of a single photograph. In general all methods require photographic
images of at least three control points whose X, Y, and Z ground coordinates are known. Also, the
calibrated focal length of the camera must be known. Although there are a number of methods to find
these elements (see Chap. 17), the most commonly used is space resection by collinearity.

The method of space resection by collinearity is a purely numerical method which
simultaneously yields all six elements of exterior orientation. Normally the angular values of omega,
phi, and kappa are obtained in the solution, although the method is versatile and tilt, swing, and
azimuth could also be obtained. Space resection by collinearity permits the use of redundant amounts
of ground control; hence least squares computational techniques can be used to determine most
probable values for the six elements. This method is a rather lengthy procedure requiring an iterative
solution of nonlinear equations, but when programmed for a computer, a solution is easily obtained.
Sometimes, when rapid computation is needed, a linear model is used, although with less precise
results (see Chap. 17).

Space resection by collinearity involves formulating the so-called collinearity equations for a
number of control points whose X, Y, and Z ground coordinates are known and whose images appear in
the photo. The equations are then solved for the six unknown elements of exterior orientation which
appear in them. The collinearity equations express the condition that for any given photograph the
exposure station, any object point and its corresponding image all lie on a straight line. Figure D-1
illustrates the collinearity condition for exposure station L, image point a, and object point A. The
details involved in the numerical solution of space resection by collinearity are presented in Chap. 11.

10-11  Rectification of Tilted Photographs
Rectification is the process of making equivalent vertical photographs from tilted photo negatives.
The resulting equivalent vertical photos are called rectified photographs. Rectified photos
theoretically are truly vertical photos, and as such they are free from displacements of images due to
tilt. They do, however, still contain image displacements and scale variations due to topographic
relief. These relief displacements and scale variations can also be removed in a process called
differential rectification  or orthorectification, and the resulting products are then called orthophotos.
Orthophotos are often preferred over rectified photos because of their superior geometric quality.
Nevertheless, rectified photos are still quite popular because they do make very good map substitutes
where terrain variations are moderate. This chapter discusses only the methods of rectification for the
removal of the effects of tilt. Orthophoto production is described in Chap. 13.

Rectification is generally performed by any of three methods: analytically, optically-
mechanically, and digital. Analytical rectification has the disadvantage that it can be applied only to
individual discrete points, i.e., points that can be specifically identified so that their locations within
the tilted photo can be measured. The resulting rectified photos produced by analytical methods are
not really photos at all since they are not composed of photo images. Rather, they are plots of
individual points in their rectified locations. The optical-mechanical and digital methods produce an
actual picture in which the images of the tilted photo have been transformed to their rectified
locations. Thus, the products of these two methods can be used in the production of photomaps and
mosaics. In any of these rectification procedures, the rectified photos can be simultaneously ratioed;
i.e., their average scales can be brought to some desired value different from that of the original photo.
This is particularly advantageous if rectified photos are being made for the purpose of constructing a



controlled mosaic, since all photos in the strip of block can be brought to a common scale. Thus, the
resulting mosaic will have a more uniform scale throughout.

The fundamental geometry of rectification is illustrated in Fig. 10-13. This figure shows a side
view of the principal plane of a tilted photo. When the exposure was made, the negative plane made an
angle t with the datum plane. Rays from A and B were imaged at a′ and b′, respectively, on the
negative, and their corresponding locations on the tilted photo are at a and b. The plane of an
equivalent vertical photo is shown parallel to the datum plane and passing through i, the isocenter of
the tilted photo.1 The plane of a ratioed rectified photo is also shown. It is likewise parallel to the
datum plane but exists at a level other than that of the equivalent vertical photo plane.

 FIGURE 10-13   Principal plane of a tilted photograph showing the basic geometry of rectification.
 

Methods of projecting points such as a and b to either a′ and b′ or a′′′ and b′′′ are subjects of the
following sections of this chapter. Figure 10-13 also illustrates, by virtue of lines LA′ and LB′, that
although tilt displacements are removed in rectification, displacements due to relief are still present.

10-12  Correction for Relief of Ground Control Points Used in
Rectification

Since rectified and ratioed aerial photos retain the effects of relief, ground control points used in
rectification must be adjusted slightly to accommodate their relief displacements. Conceptually, the



process involves plotting ground control points at the locations that they will occupy in the rectified
and ratioed photo. To this end, the positional displacements due to relief of the control points must be
computed and applied to their horizontal positions in a radial direction from the exposure station so
that they will line up with points in the rectified photo. This procedure requires that the coordinates
XL, YL, and ZL (or H) of the exposure station (which can be computed by space resection) and the X, Y,
and Z (or h) coordinates for each ground control point be known. In addition, when the rectified photos
are to be ratioed as well, it is convenient to select a plane in object space, at a specified elevation, to
which the scale of the ratioed photo will be related. Generally, the elevation of this plane will be
chosen as the elevation of average terrain, havg.

The procedure is illustrated in Fig. 10-14, which shows the horizontal position of the exposure
station, L, denoted as a cross and the unadjusted horizontal positions of four ground control points, A,
B, C, and D, denoted as circles. Also illustrated are radial distances r′ from L to each of the points, as
well as the relief displacements, d, from the location in the plane of average terrain to the photo
locations, A′, B′ , C′, and D′, of the control points, denoted as triangles. Since the elevations of these
control points may be higher or lower than the average terrain, the relief displacements may be either
outward (control point higher than average terrain) or inward (control point lower than average
terrain). Note that in Fig. 10-14, the elevations of points B and D are less than average terrain
elevation and the elevations of points A and C are greater.

 FIGURE 10-14   Plot of control points for rectification showing corrections made for relief
displacements.



 

Determination of the coordinates of a displaced point (triangle) involves several steps. Initially,
the value of r′ is computed by Eq. (10-10) using the point’s horizontal coordinates X and Y, and the
horizontal coordinates of the exposure station, XL and YL.

(10-10)
 

Next, the relief displacement, d, is calculated by Eq. (10-11), which is a variation of Eq. (6-11):

(10-11)
 

In Eq. (10-11), d is the relief displacement, r′ is the radial distance [computed by Eq. (10-10)], h
the height of the control point above datum, havg the average terrain height in the tilted photo (also the
height above datum of the ratioed photo plane), and H the flying height above datum for the tilted
photo. The units of all terms in the equation are those of the object space coordinate system, i.e.,
either meters or feet. Once the displacement d has been computed, the radial distance r to the
displaced (image) location of the point can be computed by the following equation (be careful to use
the proper algebraic sign of d).

(10-12)
 

Next, the azimuth, α, from the exposure location to the control point can be computed by

(10-13)
 

In Eq. (10-13), it is necessary to use the full circle inverse tangent function so that the entire
range of azimuth can be determined. Finally, the X′ and Y′ coordinates of the displaced (image) point
are computed by

(10-14)
 

(10-15)
 

The resulting coordinates, X′ and Y′, are appropriate for use in any of the methods of rectification.

10-13  Analytical Rectification
There are several methods available for performing analytical (numerical) rectification. Each of the
analytical methods performs rectification point by point, and each requires that sufficient ground
control appear in the tilted photo. Basic input required for the numerical methods, in addition to



ground coordinates of control points, is x and y photo coordinates of all control points plus those of
the points to be rectified. These are normally measured on a comparator. Due to the lengthy
calculations required, numerical rectification is generally performed through the use of a computer
program.

Of the available methods of analytical rectification, the one that uses the two-dimensional
projective transformation is the most convenient and is the only method that will be discussed here.
The transformation equations are developed in Sec. C-9 and are repeated here as Eqs. (10-16), for
convenience:

(10-16)
 

In Eqs. (10-16), X and Y are ground coordinates, x and y are photo coordinates (in the fiducial
axis system), and the a′s, b′s, and c′s are the eight parameters of the transformation. The use of these
equations to perform analytical rectification is a two-step process. First, a pair of Eq. (10-16) is
written for each ground control point. Four control points will produce eight equations, so that a
unique solution can be made for the eight unknown parameters. It is strongly recommended that more
than four control points be used so that an improved solution can be arrived at by using least squares.
An added benefit is that redundant measurements may provide the ability of detecting mistakes in the
coordinates, something which is not afforded by the unique solution using four control points.

Once the eight parameters have been determined, the second step of the solution can be
performed—that of solving Eqs. (10-16) for each point whose X and Y rectified coordinates are
desired. After rectified coordinates have been computed in the ground coordinate system, they can be
plotted at the scale desired for the rectified and ratioed photo.

This analytical method is only rigorous if the ground coordinates, X and Y, of Eqs. (10-16) have
been modified for relief displacements as discussed in Sec. 10-12. If this is not done, a quasi-
rectification results; although if the terrain is relatively flat and level, the errors will be minimal.

10-14  Optical-Mechanical Rectification
In practice, the optical-mechanical method is still being used, although digital methods have rapidly
surpassed this approach. The optical-mechanical method relies on instruments called rectifiers. They
produce rectified and ratioed photos through the photographic process of projection printing (see Sec.
2-12); thus they must be operated in a darkroom.

As illustrated in Fig. 10-15, the basic components of a rectifier consist of a lens, a light source
with reflector, a stage for mounting the tilted photo negative, and an easel which holds the
photographic emulsion upon which the rectified photo is exposed. The instrument is constructed with
controls so that the easel plane, lens plane (plane perpendicular to the optical axis of the rectifier
lens), and negative plane can be tilted with respect to each other, and controls that allow a shift to be
applied to the negative plane. Thus provision is made for varying angles α and β of Fig. 10-15.



 FIGURE 10-15   Schematic diagram of a tilting-lens optical-mechanical rectifier showing a side view
of the principal plane.
 

So that rectified photos can be ratioed to varying scales, the rectifier must also have a
magnification capability, and this is achieved by varying the projection distance (distance LE of Fig.
10-15 from the lens to the easel plane). To do this, however, and still maintain proper focus in
accordance with Eq. (2-4), it is necessary to simultaneously vary the image distance (distance Le of
Fig. 10-15 from the lens to the negative plane). The actual magnification that results along the axis of
the rectifier lens is the ratio LE/(Le), but it varies elsewhere in the photo due to the variable scale of
the tilted photograph.

From Fig. 10-15 it can be seen that in rectification, projection distances vary depending upon the
locations of points on the photo. To achieve sharp focus for all images in spite of this, the Scheimpflug
condition must be satisfied. The Scheimpflug condition states that, in projecting images through a
lens, if the negative and easel planes are not parallel, the negative plane, lens plane, and easel plane
must all intersect along a common line to satisfy the lens formula and achieve sharp focus for all
images. Note that this condition is satisfied in Fig. 10-15 where these planes intersect at S.

10-15  Digital Rectification
Rectified photos can be produced by digital techniques that incorporate a photogrammetric scanner
and computer processing. This procedure is a special case of the more general concept of
georeferencing as presented in Chap. 9. The feature that distinguishes digital rectification from other
georeferenced images is that rectification requires that a projective transformation be used to relate
the image to the ground coordinate system whereas georeferencing often uses simpler transformations
such as the two-dimensional conformal or the two-dimensional affine transformation.

Figure 10-16a shows a portion of a scanned aerial oblique. Note that images in the foreground



(near the bottom) are at a larger scale than those near the top. This photograph contains a generally
rectangular street pattern, where the streets appear nonparallel due to the large amount of tilt. Figure
10-16b shows a digitally rectified version of the oblique photograph shown in Fig. 10-16a. Note that
in this rectified image, the general street pattern is approximately rectangular, although displacements
remain due to relief in the terrain as well as buildings.

 FIGURE 10-16   (a) Digital image of an oblique, nonrectified photograph. (b) Image after digital
recification.
 

Three primary pieces of equipment needed for digital rectification are a digital image (either
taken from a digital camera or a scanned photo), computer, and plotting device capable of producing
digital image output. While a high-quality photogrammetric scanner is an expensive device, it is also
highly versatile and can be used for many other digital-photogrammetric operations. Low-accuracy
desktop scanners can also be used for digital rectification; however, the geometric accuracy of the
product will be substantially lower. Current plotting devices, generally large-format ink jet printers,
produce image output of good quality, although the geometric accuracy and image resolution may be
slightly less than that of photographic rectifiers.

10-16  Atmospheric Refraction in Tilted Aerial Photographs
As mentioned in Sec. 4-12, atmospheric refraction in aerial photographs occurs radially from the nadir
point. Now that parameters of tilted photographs have been described, a technique that corrects image
coordinates in a tilted photo for the effects of atmospheric refraction is presented. In most practical
situations, the assumption of vertical photography is sufficient when calculating atmospheric
refraction. However for highest accuracy, when dealing with high altitude photography (e.g., flying
height greater than 5000 m) and photographs with excessive tilts (e.g., tilts greater than 5°) should be
considered when atmospheric refraction corrections are made.



Figure 10-17 illustrates a tilted photo containing image point a at coordinates xa and ya. The
photographic nadir point n exists at coordinates xn and yn (in the fiducial axes coordinate system)
which can be computed by the following equations. (Refer also to Fig. 10-2.)

 FIGURE 10-17   Diagram of a tilted photo with image point a whose coordinates will be corrected for
atmospheric refraction.
 

(10-17)
 

The angle between the vertical line Ln and the incoming light ray through point a is designated as
α. Angle α can be computed by the application of the law of cosines to triangle Lna. (Refer again to
Figs. 10-5 and 10-17.)

 
Rearranging gives

(10-18)
 
where

(10-19)
 

(10-20)
 



(10-21)
 

After angle α has been determined, the refraction angle Δα can be calculated by Eq. (4-18) using a
K value computed by Eq. (4-19).

Figure 10-18 shows triangle Lna along with the light ray La′ which indicates the direction from
the ground point that has been corrected for atmospheric refraction. From the figure, angle θ can be
computed by the law of cosines as

 FIGURE 10-18   Vertical plane through tilted photo of Fig. 10-17 showing refracted light ray and
corrected ray.
 

(10-22)
 

Angle θ′ can then be computed by

(10-23)
 

Application of the law of sines to triangle Lna′ gives

 
Solving for na′ gives

(10-24)
 
where

(10-25)



 
and Ln and θ′ are computed by Eqs. (10-20) and (10-23), respectively. The displacement, aa′ due to
atmospheric refraction is then

(10-26)
 

To compute the coordinate corrections δx and δy, displacement aa′ must be applied in the
direction of line an, as shown in Fig. 10-19. The direction of line an is specified by angle b as shown
in the figure and can be computed by

 FIGURE 10-19   Photograph positions of image point a and its new location a′ after correction for
atmospheric refraction.
 

(10-27)
 

The corrections are then given by

(10-28)
 

Finally, the coordinates  and  for point a corrected for atmospheric refraction are computed
by

(10-29)



 
Example 10-3
A tilted aerial photograph taken from a flying height of 4800 m above mean sea level contains the
image a of object point A at fiducial coordinates xa = –64.102 mm and ya = 83.220 mm. The angles of
tilt, swing, and azimuth for the photograph are 2.64°, 130.27°, and 5.15°, respectively. If the elevation
of object point A is 140 m above mean sea level and the camera had a focal length of 152.794 mm,
compute the  and  coordinates of the point, corrected for atmospheric refraction.

Solution   Compute the fiducial coordinates of the nadir point n by Eqs. (10-17).

 
Compute the values of na, Ln, and La by Eqs. (10-19), (10-20), and (10-21), respectively.

 
Compute angle α by Eq. (10-18).

 
Compute K by Eq. (4-19).

 
Compute Δα by Eq. (4-18).

 
Compute θ by Eq. (10-22).

 
Compute θ′ and α′ by Eqs. (10-23) and (10-25), respectively.

 
Compute na′ by Eq. (10-24).



 
Compute aa′ and β by Eqs. (10-26) and (10-27), respectively.

 
Compute δx and δy by Eqs. (10-28).

 
The corrected coordinates  and  are computed by Eqs. (10-29).

 
Two final comments regarding refraction in a tilted photo are in order. First, the values of tilt and

swing are not known until after an analytical solution is performed (see Chap. 11). However, photo
coordinates are necessary in order to compute the analytical solution. Therefore refinement for
atmospheric refraction in a tilted photograph must be performed in an iterative fashion. Since
analytical photogrammetric solutions are generally iterative due to the nonlinear equations involved,
tilted photo refraction corrections can be conveniently inserted into the iterative loop.

Second, the foregoing discussion of atmospheric refraction in a tilted photograph assumes that
the tilt angle is the angle between the optical axis and a vertical line. In analytical photogrammetry
however, a local vertical coordinate system is generally used for object space (see Sec. 5-5). As a
result, tilt angles will be related to the direction of the local vertical Z axis which is generally different
from the true vertical direction. This effect however, is negligible for practical situations. Unless a
photograph is more than about 300 km from the local vertical origin, the effect from ignoring this
difference in vertical direction will generally be less than 0.001 mm.
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Problems
  10-1.   A particular tilted aerial photograph exposed with a 152.047-mm-focal-length camera has a
tilt angle of 3.25° and a swing angle of 135.00°. On this photograph, what are the auxiliary x′ and y′
photo coordinates for points a and b, whose photo coordinates measured with respect to the fiducial
axes are xa = –62.41 mm, ya = 76.80 mm, xb = –98.75 mm, and yb = –6.23 mm?

  10-2.   Repeat Prob. 10-1, except that the camera focal length is 109.907 mm, tilt angle is 2.93°,
swing angle is 235.50°, xa = 54.15 mm, ya = 76.80 mm, xb = 98.55 mm, and yb = –12.06 mm.

  10-3.   Calculate photographic scale for image points a and b of Prob. 10-1 if flying height above
datum was 2039 m, and if elevations of points A and B were 306 m and 268 m above datum,
respectively.

  10-4.   Calculate photographic scale for image points a and b of Prob. 10-2 if flying height above
datum was 2239 m, and if elevations of points A and B were 329 m and 421 m above datum,
respectively.

  10-5.   Illustrate and briefly describe the six elements of exterior orientation.

  10-6.   Name and briefly describe the three different methods of performing rectification. Discuss
some advantages and disadvantages of each.

  10-7.   A tilted aerial photograph is exposed at XL = 9274.2 m, YL = 8292.0 m, and ZL = 1500.1 m. A
rectified and ratioed photograph is to be produced with an optical-mechanical rectifier using a trial
and error approach. The following table lists X, Y, and Z coordinates of five control points which will
control the rectification. If the plane of rectification (average terrain) is at havg = 110.0 m, compute the
displaced image locations X′ and Y′ of the control points as illustrated in Fig. 10-8.

 
  10-8.   Repeat Prob. 10-7, except that the tilted photograph is exposed at XL = 12,732.6 m, YL =
15,820.0 m, and ZL = 1,010.5 m, average terrain is at havg = 225.0 m, and the X, Y, and Z coordinates of
the control points are as listed in the following table.



 
  10-9.   The following table lists measured photo coordinates for images of the control points 1-5 of
Prob. 10-7 as well as additional points 6-8. Using the analytical rectification technique discussed in
Secs. 10-11 and C-9, determine the rectified coordinates of points 6, 7, and 8. Use the original X and Y
coordinates from the table from Prob. 10-7 as control, not the X′ and Y′ coordinates adjusted for relief
displacement.

 
10-10.   Repeat Prob. 10-9, except use X′ and Y′ coordinates, adjusted for relief displacement, from
Prob. 10-7 as control for the rectification.

10-11.   The following table lists measured photo coordinates for images of the control points 1
through 5 of Prob. 10-8 as well as additional points 6, 7, and 8. Using the analytical rectification
technique discussed in Secs. 10-11 and C-9, determine the rectified coordinates of points 6 through 8.
Use the original X and Y coordinates from the table from Prob. 10-8 as control, not the X′ and Y′
coordinates adjusted for relief displacement.



 
10-12.   Repeat Prob. 10-11, except use X′ and Y′ coordinates, adjusted for relief displacement, from
Prob. 10-8 as control for the rectification.

10-13.   A tilted aerial photograph taken from a flying height of 3323 m above mean sea level contains
the image a of object point A at fiducial coordinates xa = 46.067 mm and ya = –78.092 mm. The angles
of tilt, swing, and azimuth for the photograph are 2.93°, –49.58°, and 144.39°, respectively. If the
elevation of object point A, hA = 295 m above mean sea level and the camera had a focal length, f =
152.013 mm, compute the x′ and y′ coordinates of the point, corrected for atmospheric refraction in the
tilted photo.

10-14.   Repeat Prob. 10-13 except that the flying height is 6032 m above mean sea level, xa = 100.087
mm, ya = 103.45 mm, tilt = 4.90°, swing = –147.28°, azimuth = 54.00°, hA = 167 m, and f = 153.097
mm.

10-15.   A nearly-horizontal terrestrial photo (θ= 0°) was exposed with a phototheodolite having a
focal length of 55.00 mm. Find the horizontal angle ALB at the exposure station subtended by points A
and B if corresponding images a and b have photo coordinates of xa = 43.25 mm, ya = –19.67 mm, xb =
–27.23 mm, and yb = 24.73 mm.

10-16.   For the data of Prob. 10-15, calculate the vertical angles from the exposure station to points A
and B.

10-17.   Repeat Prob. 10-15, except that the camera focal length is 150.00 mm, and the measured
photo coordinates are xa = –89.23 mm, ya = 45.48 mm, xb = 45.12 mm, and yb = –27.73 mm.

10-18.   Calculate the vertical angles for points A and B of Prob. 10-17.

10-19.   An oblique terrestrial photo was exposed with the camera axis depressed at an angle of θ =
4.92°. The camera focal length was 192.30 mm. Calculate the horizontal and vertical angles between
the rays from the camera station to object points A and B if their images have oblique photo
coordinates of xa = –75.82 mm, ya = –14.28 mm, xb = 81.58 mm, and yb = –59.95 mm.

10-20.   Repeat Prob. 10-19, except that the depression angle was 15.50°, the camera focal length was
90.01 mm, and the oblique photo coordinates were xa = 2.70 mm, ya = –38.23 mm, xb = 67.23 mm, and



yb = 23.09 mm.

_____________
1 An equivalent vertical photograph is an imaginary truly vertical photo taken from the same exposure station as the tilted photo, with
the same camera. The isocenter lies on the principal line of the tilted photo where the bisector of the tilt angle, constructed from the
exposure station, intersects the tilted photo plane. A plane constructed through the isocenter, parallel to the datum principal plane, is
the plane of an equivalent vertical photograph.



CHAPTER 11
Introduction to Analytical Photogrammetry

 

11-1   Introduction
Analytical photogrammetry is a term used to describe the rigorous mathematical calculation of
coordinates of points in object space based upon camera parameters, measured photo coordinates, and
ground control. Unlike the elementary methods presented in earlier chapters, this process rigorously
accounts for any tilts that exist in the photos. Analytical photogrammetry generally involves the
solution of large, complex systems of redundant equations by the method of least squares. The
concepts of analytical photogrammetry existed for many years before the applications of them were
considered practical due to the heavy computational effort that they entail. The evolution of computer
technology and photogrammetric software, however, made analytical photogrammetry a
commonplace technique. Analytical photogrammetry forms the basis of many modern hardware and
software systems, including: stereoplotters (analytical and softcopy), digital terrain model generation,
orthophoto production, digital photo rectification, and aerotriangulation.

This chapter presents an introduction to some fundamental topics and elementary applications in
analytical photogrammetry. The coverage here is limited to computations involving single photos and
stereo-pairs. Later chapters in the book cover more advanced topics and applications in this subject. In
particular, Chap. 17 describes analytical photogrammetry solutions for handling strips and blocks of
photos.

11-2   Image Measurements
A fundamental type of measurement used in analytical photogrammetry is an x and y photo coordinate
pair. These coordinates must be related to the principal point as the origin. Since mathematical
relationships in analytical photogrammetry are based on assumptions such as “light rays travel in
straight lines” and “the focal plane of a frame camera is flat,” various coordinate refinements may be
required to correct measured photo coordinates for distortion effects that otherwise cause these
assumptions to be violated. Techniques of photo coordinate refinement, as presented in Secs. 4-7
through 4-12 and Sec. 10-16, can be used to correct photo coordinates so that the assumptions will be
valid.

A number of instruments and techniques are available for making photo coordinate
measurements, as discussed in Secs. 4-4 through 4-6. To ensure results having the highest accuracy,
these measurements must be made with great care. In many analytical photogrammetry methods, it is
necessary to measure image coordinates of common object points that appear in more than one
photograph. In these cases it is essential that the image of each object point be precisely identified
between photos so that the measurements will be consistent.

11-3   Control Points
In addition to measurement of image coordinates, a certain number of control points in object space
are generally required for analytical photogrammetry. Object space coordinates of these control



points, which may be either image-identifiable features or exposure stations of the photographs
themselves, are generally determined via some type of field survey technique such as GPS. It is
important that the object space coordinates be based on a three-dimensional cartesian system which
has straight, mutually perpendicular axes. This often requires three-dimensional coordinate
conversions which are described in Chap. 5 and App. F.

11-4   Collinearity Condition
Perhaps the most fundamental and useful relationship in analytical photogrammetry is the collinearity
condition. Collinearity, as described in App. D, is the condition that the exposure station, any object
point, and its photo image all lie along a straight line in three-dimensional space. The collinearity
condition is illustrated in Fig. 11-1, where L, a, and A lie along a straight line. Two equations express
the collinearity condition for any point on a photo: one equation for the x photo coordinate and another
for the y photo coordinate. The mathematical relationships are developed in App. D and expressed by
Eqs. (D-5) and (D-6). They are repeated here for convenience.

 FIGURE 11-1   The collinearity condition.
 

(11-1)
 

(11-2)
 
In Eqs. (11-1) and (11-2), xa and ya are the photo coordinates of image point a; XA, YA, and ZA are object



space coordinates of point A; XL, YL, and ZL are object space coordinates of the exposure station; f is
the camera focal length; x° and y° are the coordinates of the principal point (usually known from
camera calibration); and the m’s (as described in Sec. C-7) are functions of three rotation angles, and
most often omega, phi, and kappa are the angles employed.

The collinearity equations are nonlinear and can be linearized by using Taylor’s theorem as
described in Sec. D-5. The linearized forms are Eqs. (D-15) and (D-16), and they are also repeated
here for convenience.

(11-3)
 

(11-4)
 
In Eqs. (11-3) and (11-4),  and  are residual errors in measured xa and ya image coordinates; dω,
dФ, and dκ are corrections to initial approximations for the orientation angles of the photo; dXL, dYL,
and dZL are corrections to initial approximations for the exposure station coordinates; and dXA, dYA,
and dZA are corrections to initial values for the object space coordinates of point A. The b’s and the J
and K terms are described in Sec. D-5. Because higher order terms are ignored in linearization by
Taylor’s theorem, the linearized forms of the equations are approximations. They must therefore be
solved iteratively, as described in App. D, until the magnitudes of corrections to initial
approximations become negligible.

11-5   Coplanarity Condition
Coplanarity, as illustrated in Fig. 11-2, is the condition that the two exposure stations of a stereopair,
any object point, and its corresponding image points on the two photos all lie in a common plane. In
the figure, for example, points L1, L2, a1, a2, and A all lie in the same plane. The coplanarity condition
is developed in Sec. D-7 and shown in Eq. (11-5).



 FIGURE 11-2   The coplanarity condition.
 

(11-5)
 
In Eq. (11-5), subscripts 1 and 2 affixed to terms D, E, and F indicate that the terms apply to either
photo 1 or photo 2. The m’s again are functions of the three rotation angles omega, phi, and kappa, as
defined in Sec. C-7. One coplanarity equation may be written for each object point whose images
appear on both photos of the stereopair. The coplanarity equations do not contain object space
coordinates as unknowns; rather, they contain only the elements of exterior orientation of the two
photos of the stereopair.

Like collinearity equations, the coplanarity equation is nonlinear and must be linearized by using
Taylor’s theorem and solved iteratively for corrections to approximations of the orientation
parameters. Linearization of the coplanarity equation is described in Sec. D-8.

11-6   Space Resection by Collinearity
Space resection, as discussed in Sec. 10-10, is a method of determining the six elements of exterior
orientation (ω, ϕ, κ, XL, YL, and ZL) of a photograph. This method requires a minimum of three control
points, with known XYZ object space coordinates, to be imaged in the photograph. If the ground
control coordinates are assumed to be known and fixed, then the linearized forms of the space
resection collinearity equations for a point A are

(11-6)
 

(11-7)
 
In Eqs. (11-6) and (11-7), the terms are as defined in Secs. 11-4 and D-5. Two equations are formed



for each control point, which gives six equations if the minimum of three control points is used. In
this case a unique solution results for the six unknowns, and the residual terms on the right sides of
Eqs. (11-6) and (11-7) will be zero. If four or more control points are used, more than six equations
can be formed, allowing a least squares solution.

Since the collinearity equations are nonlinear, and have been linearized using Taylor’s theorem,
initial approximations are required for the unknown orientation parameters. For the typical case of
near-vertical photography, zero values can be used as initial approximations for ω and ϕ. The value of
ZL (the height H above datum) can be computed using the method discussed in Sec. 6-9. Since this
method requires only two control points, several solutions are possible, using different pairs of control
points. An improved approximation can be made by computing several values for H and taking the
average. After H has been determined, ground coordinates from a vertical photograph, as described in
Sec. 6-7, can be computed, using the measured x and y photo coordinates, focal length f, flying height
H, and elevation of the object point Z [or h as it appears in Eqs. (6-5) and (6-6)]. A two-dimensional
conformal coordinate transformation can then be performed, which relates the ground coordinates as
computed from the vertical photo equations to the control values. The two-dimensional conformal
coordinate transformation Eqs. (C-12), repeated here in a slightly different form, are used.

(11-8)
 

I n Eqs. (11-8), X and Y are ground control coordinates for the point; x′ and y′ are ground
coordinates from a vertical photograph as computed by Eqs. (6-5) and (6-6); and a, b, TX, and TY are
the transformation parameters. A pair of equations of the type of Eqs. (11-8) can be written for each
control point, and the four unknown parameters computed by least squares (see Secs. C-4 and C-5).
The translation factors TX and TY determined from this solution can then be used as initial
approximations for XL and YL, respectively. Rotation angle q, which can be computed by Eq. (C-11),
can be used as an approximation for k.

By using these initial approximations in Eqs. (11-6) and (11-7), a least squares solution can be
computed for the unknown corrections to the approximations. The solution is iterated until the
corrections become negligible.

Example 11-1
A near-vertical aerial photograph taken with a 152.916-mm-focal-length camera contains images of
four ground control points A through D. Refined photo coordinates and ground control coordinates (in
a local vertical system) of the four points are listed in the following table. Calculate the exterior
orientation parameters ω, ϕ, κ, XL, YL, and ZL for this photograph.



 
Solution   Since the computations involved in analytical photogrammetry—even in the most
elementary problems—are too difficult and time consuming for hand solution, one should use a
computer program to solve them. The following describes the steps and shows the output from a space
resection program.

      1.  With an ASCII Editor, create the following file with a “.dat” extension.

 
           The first line is the focal length of the camera. The next four lines consist of the point name,

the x and y photo coordinates, and the ground control coordinates for each point.
      2.  Running the resect program yields an output file containing the following:

 
           The solved exterior orientation parameters for the angular and positional components with

standard deviations are shown in degrees and meters, respectively. The photo coordinate
residuals are in millimeters.   

11-7   Space Intersection by Collinearity
If space resection is used to determine the elements of exterior orientation for both photos of a
stereopair, as described in the preceding section, then object point coordinates for points that lie in the
stereo overlap area can be calculated. The procedure is known as space intersection, so called because
corresponding rays to the same object point from the two photos must intersect at the point, as shown
in Fig. 11-3. To calculate the coordinates of point A by space intersection, collinearity equations of the
linearized form given by Eqs. (11-3) and (11-4) can be written for each new point, such as point A of
Fig. 11-3. Note, however, that since the six elements of exterior orientation are known, the only
remaining unknowns in these equations are dXA, dYA, and dZA. These are corrections to be applied to
initial approximations for object space coordinates XA, YA, and ZA, respectively, for ground point A.



The linearized forms of the space intersection equations for point A are

 FIGURE 11-3   Space intersection with a stereopair of aerial photos.
 

(11-9)
 

(11-10)
 
In Eqs. (11-9) and (11-10), the terms are as defined in Secs. 11-4 and D-5. Two equations of this form
can be written for point a1 of the left photo, and two more for point a2 of the right photo; hence four
equations result, and the three unknowns dXA, dYA, and dZA can be computed in a least squares
solution. These corrections are added to the initial approximations to obtain revised values for XA, YA,
and ZA. The solution is then repeated until the magnitudes of the corrections become negligible.

Again because the equations have been linearized using Taylor’s theorem, initial approximations
are required for each point whose object space coordinates are to be computed. For these calculations,
with normal aerial photography vertical photos can be assumed, and the initial approximations can be
determined by using the parallax equations [Eqs. (8-5) through (8-7)]. Note that because the X, Y, and
Z coordinates for both exposure stations are known, for making these computations H can be taken as
the average of  and , and B is computed from

(a)
 
The coordinates that result from Eqs. (8-6) and (8-7) are in the arbitrary system described in Sec. 8-6.
(Let these coordinates be designated as x′ and y′.) To convert them to the X and Y ground system,
coordinate transformation Eqs. (11-8) can be used. For this transformation, the two exposure stations
can serve as the control because their X and Y coordinates are known in the ground system, and their x′
and y′ coordinates in the parallax system are , and . Since there are four equations
and four unknowns, the transformation parameters can be solved for directly and applied to the



imaged points to get the horizontal coordinate initial approximations as shown in Eqs. (11-11).

(11-11)
 
Example 11-2
A stereopair of images taken with a 152.057-mm-focal-length camera has exterior orientation
parameters shown in the first table below. The images of four points have measured photo coordinates
shown in the second table below. Use the analytical space intersection program to find the ground
coordinates of each of the points.

 

 
Solution

      1.  With an ASCII editor, create a file with a “.dat” extension in the following way:

 
                   The first line is the focal length, the second two lines contain the exterior orientation

parameters of the photos, and the remaining lines contain the point name and x and y
coordinates of the point on each photo.

      2.  Run the intersect program, producing the following output file:



 
                   The object space, or ground coordinates and their corresponding standard deviations are in

meters. The photo coordinate residuals are in millimeters. The x photo coordinate residuals are
nearly equal to zero for both the left and right photos. This is expected for a stereopair
displaced in the x direction because x parallax determines the Z coordinate in object space. The
y photo coordinate residuals indicate the presence of y parallax, and their sizes are good
indicators of the quality of the solution. Generally, y coordinate residuals less than about 5 or 6
micrometers (μm) indicate a rather good solution.   

11-8   Analytical Stereomodel
Aerial photographs for most applications are taken so that adjacent photos overlap by more than 50
percent. Two adjacent photographs that overlap in this manner form a stereopair, and object points
that appear in the overlap area constitute a stereomodel. The mathematical calculation of three-
dimensional ground coordinates of points in the stereomodel by analytical photogrammetric
techniques forms an analytical stereomodel.

The process of forming an analytical stereomodel involves three primary steps: interior
orientation, relative orientation, and absolute orientation. After these three steps are achieved, points
in the analytical stereomodel will have object coordinates in the ground coordinate system. These
points can then be used for many purposes, such as digital mapping, serving as control for orthophoto
production, or DEM generation. The three orientation steps can be performed as distinct mathematical
operations, or it is possible to combine them in a simultaneous solution. In this chapter, the three steps
will be described as distinct, sequential operations.

11-9   Analytical Interior Orientation
Interior orientation for analytical photogrammetry is the step which mathematically recreates the
geometry that existed in the camera when a particular photograph was exposed. This requires camera
calibration information as well as quantification of the effects of atmospheric refraction. These
procedures, commonly called photo coordinate refinement, are described in Secs. 4-9 through 4-12. In
the case of film photography, the process begins with coordinates of fiducials and image points which
have been measured by a comparator or related device. A two-dimensional (usually affine) coordinate
transformation can be used to relate the comparator, or softcopy coordinates to the fiducial coordinate
system as well as to correct for film distortion. There is no need for fiducial measurements when
using photographs from a digital camera, since it has a consistent coordinate system in the form of
pixels. For both film and digital photography the lens distortion and principal-point information from
camera calibration are then used to refine the coordinates so that they are correctly related to the



principal point and free from lens distortion. Finally, atmospheric refraction corrections can be
applied to the photo coordinates to complete the refinement and, therefore, finish the interior
orientation.

11-10  Analytical Relative Orientation
Analytical relative orientation is the process of determining the relative angular attitude and
positional displacement between the photographs that existed when the photos were taken. This
involves defining certain elements of exterior orientation and calculating the remaining ones. The
resulting exterior orientation parameters will not be the actual values that existed when the
photographs were exposed; however, they will be correct in a “relative sense” between the photos. In
analytical relative orientation, it is common practice to fix the exterior orientation elements ω, ϕ, κ,
XL, and YL of the left photo of the stereopair to zero values. Also for convenience, ZL of the left photo (

) is set equal to f, and XL of the right photo ( ) is set equal to the photo base b. (With these
choices for  and , initial approximations for the unknowns are more easily calculated, as will be
explained later.) This leaves five elements of the right photo that must be determined. Figure 11-4
illustrates a stereomodel formed by analytical relative orientation.

 FIGURE 11-4   Analytical relative orientation of a stereopair.
 

Although the coplanarity condition equation can be used for analytical relative orientation, the
collinearity condition is more commonly applied. In applying collinearity, each object point in the
stereomodel contributes four equations: a pair of equations for the x and y photo coordinates of its
image in the left photo, and a pair of equations for the x and y photo coordinates of its image in the



right photo. In addition to the five unknown orientation elements, each object point adds three more
unknowns which are their X, Y, and Z coordinates in the stereomodel. Thus each point used in relative
orientation results in a net gain of one equation for the overall solution, and therefore at least five
object points are required for a solution. If six or more points are available, an improved solution is
possible through least squares. If six points were used for relative orientation, a system of 24
equations with 23 unknowns would result; and if 12 points were used, the system would consist of 48
equations and 41 unknowns.

 
Prior to solving the linearized collinearity equations, initial approximations for all unknown

values must be determined. For photography that was intended to be vertical, values of zero are
commonly used for initial estimates of ω2, ϕ2, κ2, and YL2. An initial value for  may be selected
equal to the value used for . If the constraints that were noted earlier are used for the parameters,
that is, ω1 = ϕ1 = κ1 =  =  = 0,  = f, and  = b, then the scale of the stereomodel is
approximately equal to photo scale. Thus the x and y photo coordinates of the left photo are good
approximations for X and Y object space coordinates, and zeros are good approximations for Z object
space coordinates, respectively.



Suppose that the six points of Fig. 11-4 were used in analytical relative orientation. In matrix
form, the system of 24 equations involving 23 unknowns could be expressed as follows:

(11-12)
 
where

 



 
Note that Eq. (11-12) conforms to Eq. (B-10).

The terms of these matrices are from Eqs. (11-3) and (11-4), and the method of calculating each
is explained in Sec. D-5. The subscripts a, b, c, d, e, and f correspond to the point names; subscript 1
refers to the left photo; and subscript 2 refers to the right photo. Note that the elements of the X matrix
are listed at the tops of the columns of the A matrix for illustration purposes only.

Upon studying these matrices, particularly the A matrix, their systematic nature becomes
apparent. The fact that many submatrices of zeros exist also indicates the relative ease with which
partitioning could be applied in the solution. The following equations show the form of the A, X, L,



and V matrices when partitioned by the standard approach.

 
where

 
In the above submatrices, p is the point designation, and i is the photo designation. The prefixed
subscript and postfixed superscript designate the number of rows and columns, respectively.

When the observation equations are partitioned in the above-described manner, the least squares
solution (ATA)X = (ATL) takes the following form.



 
where

 
Special methods can be used to store and solve the partitioned normal equations; however, this

subject is deferred until Chap. 17.

Example 11-3
A stereopair of near-vertical photographs is taken with a 152.113-mm-focal-length camera. Photo
coordinates of the images of six points in the overlap area are listed in the following table. Perform
analytical relative orientation of the stereopair.

 



Solution

      1.  With an ASCII text editor, create the following data file with a “.dat” extension:

 
           The first line of data in the input file is the camera focal length. The information on each of the

following lines, from left to right, consists of the point identification, its x and y photo
coordinates on the left photo, and its x and y photo coordinates on the right photo.

      2.  Run the relor program to produce the following results:

 
In the upper table of output, the units of omega, phi, and kappa are degrees, while XL, YL, and ZL

are in millimeters. The rightmost column lists standard deviations in the computed unknowns, also in
degrees and millimeters. The middle table lists stereomodel coordinates, and their computed standard
deviations, in millimeters. The lower table lists x and y photo coordinates and their residuals for both
photos. Notice that, similar to the space intersection example, x photo coordinate residuals are nearly
equal to zero for both the left and right photos, and y residuals are larger, nearly equal, and opposite
for left and right photos.   

11-11  Analytical Absolute Orientation
For a small stereomodel such as that computed from one stereopair, analytical absolute orientation



can be performed using a three-dimensional conformal coordinate transformation (see Sec. C-7). This
requires a minimum of two horizontal and three vertical control points, but additional control points
provide redundancy, which enables a least squares solution. In the process of performing absolute
orientation, stereomodel coordinates of control points are related to their three-dimensional
coordinates in a ground-based system. It is important for the ground system to be a true cartesian
coordinate system, such as local vertical, since the three-dimensional conformal coordinate
transformation is based on straight, orthogonal axes.

Once the transformation parameters have been computed, they can be applied to the remaining
stereomodel points, including the XL, YL, and ZL coordinates of the left and right photographs. This
gives the coordinates of all stereomodel points in the ground system.

Example 11-4
Ground coordinates in a local vertical system for three control points are listed in the table below. For
the results of the analytical relative orientation of Example 11-3, perform analytical absolute
orientation using a three-dimensional conformal coordinate transformation.

 
Solution

      1.  With an ASCII text editor, create the following data file with a “.dat” extension:

 
           For the above input file, the first three lines relate to the control points. From left to right the

data include the point identification; its x, y, and z stereomodel coordinates; and its X, Y, and Z
ground coordinates. The first # sign signifies that all control has been entered, and that the data
following pertain to stereomodel points whose coordinates are to be transformed into the
ground system. Each data line consists of the point identification, followed by its x, y, and z
stereomodel coordinates. The second # sign completes the data.

      2.  Run the “3dconf” program to produce the following results:



 
           The values listed in the top table of the output are residuals in the X, Y, and Z control point

coordinates. The center table lists the seven parameters of the three-dimensional conformal
coordinate transformation, and the lower table gives the transformed X, Y, and Z ground
coordinates of noncontrol points, together with their computed standard deviations.   
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Problems
  11-1.   Describe two different conditions that are commonly enforced in analytical photogrammetry.



  11-2.   If 13 pass points are used in the analytical relative orientation of a stereopair, how many
independent collinearity equations can be written?

  11-3.   A near-vertical aerial photograph taken with a 152.013-mm-focal-length camera contains
images of five ground control points A through E. Refined photo coordinates and ground control
coordinates in a local vertical system of the five points are listed in the following table. Calculate the
exterior orientation parameters ω, ϕ, κ, XL, YL, and ZL for this photograph using the space resection
program.

 
  11-4.   Repeat Prob. 11-3, except that the camera focal length is 150.023 mm, and the coordinates are
as listed in the following table.

 
  11-5.   Orientation of a stereopair of aerial photographs taken with a 150.023-mm-focal-length
camera resulted in the exterior orientation values listed in the following table. If refined photo
coordinates for a particular point on photo 1 are x1 = 48.349 mm and y1 = –30.454 mm and those for
the same point on photo 2 are x2 = –47.248 mm and y2 = –36.097 mm, compute the object space
coordinates for the point.

 



  11-6.   The relative orientation, found using the method described in Sec. 11-10, of a stereopair of
aerial photographs taken with a 153.617-mm-focal-length camera resulted in the orientation values
listed in the following table. If refined photo coordinates for a particular point on photo 1 are x1 =
42.589 mm and y1 = –11.113 mm and those for the same point on photo 2 are x2 = –44.570 mm and y2

= –9.951 mm, compute the object space coordinates for the point by space intersection.

 
  11-7.   A stereopair of near-vertical photographs is taken with a 149.941-mm-focal-length camera.
Photo coordinates of the images of six points in the overlap area are listed in the following table.
Perform analytical relative orientation on the stereopair (see Example 11-3).

 
  11-8.   Repeat Prob. 11-7 except that the camera was calibrated so its units are in pixels and focal
length is 3403.77 pixels. The refined photo coordinates of the images of 12 points in the overlap area
(also in pixel units) are listed in the following table.



 
  11-9.   Ground coordinates in a local vertical system for three control points A, B, and D are listed in
the table below. Using the results of the analytical relative orientation of Prob. 11-7, perform
analytical absolute orientation with the program provided (see Example 11-4), obtaining ground
coordinates for the remaining points.

 
11-10.   Ground coordinates in a local vertical system for four control points A, B, E, and F are listed
in the table below. Using the results of the analytical relative orientation of Prob. 11-8, perform
analytical absolute orientation with the program provided (see Example 11-4), obtaining ground
coordinates of the remaining points.

 



CHAPTER 12
Stereoscopic Plotting Instruments

 

12-1   Introduction
Stereoscopic plotting instruments (commonly called stereoplotters or simply “plotters”) are
instruments designed to provide rigorously accurate solutions for object point positions from their
corresponding image positions on overlapping pairs of photos. A stereoplotter is essentially a three-
dimensional digitizer, capable of producing accurate X, Y, and Z object space coordinates when
properly oriented and calibrated. The fact that the photos may contain varying amounts of tilt is of no
consequence in the resulting accuracy; in fact, modern stereoplotters are capable of handling oblique
or horizontal (terrestrial) photos. The primary uses of stereoplotters are compiling topographic maps
and generating digital files of topographic information, and because these are widely practiced
photogrammetric applications, the subject of stereoplotters is one of the most important in the study
of photogrammetry.

The fundamental concept underlying the design of an early type of stereoplotter is illustrated in
Fig. 12-1. In Fig. 12-1a, an overlapping pair of aerial photos is exposed. Transparencies or
diapositives, as they are called, carefully prepared to exacting standards from the negatives, are placed
in two stereoplotter projectors, as shown in Fig. 12-1b. This process is called interior orientation.
With the diapositives in place, light rays are projected through them; and when rays from
corresponding images on the left and right diapositives intersect below, they create a stereomodel
(often simply called a model). In creating the intersections of corresponding light rays, the two
projectors are oriented so that the diapositives bear the exact relative angular orientation to each other
in the projectors that the negatives had in the camera at the instants they were exposed. The process is
called relative orientation and creates, in miniature, a true three-dimensional stereomodel of the
overlap area. After relative orientation is completed, absolute orientation is performed. In this process
the stereomodel is brought to the desired scale and leveled with respect to a reference datum.



 FIGURE 12-1   Fundamental concept of stereoscopic plotting instrument design. (a) Aerial
photography; (b) Stereoscopic plotting instrument.
 

When orientation is completed, measurements of the model may be made and recorded,
nowadays generally in digital, computer-compatible form. The position of any point is determined by
bringing a three dimensional reference mark (the floating mark) in contact with the model point. At
the position of the reference mark, the three-dimensional coordinates (X, Y, and Z) are obtained
through either an analog or a digital solution. Planimetric (X, Y) positions and elevations (Z) of points
are thus obtained.



12-2   Classification of Stereoscopic Plotters
A variety of stereoscopic plotting instruments have been developed over the years, each with a
different design. As an aid to understanding stereoplotters, it is helpful to classify them into groups
having common characteristics. This classification is divided into four general categories: (1) direct
optical projection instruments, (2) instruments with mechanical or optical-mechanical projection, (3)
analytical stereoplotters, and (4) softcopy stereoplotters. The first-generation stereoplotters were of
direct optical projection design, and although they are only of historic interest today, a description of
their operation provides a good introduction to the subject of stereoplotters. These instruments create
a true three-dimensional stereomodel by projecting transparency images through projector lenses, as
illustrated in Fig. 12-1. The model is formed by intersections of light rays from corresponding images
of the left and right diapositives. An operator is able to view the model directly and make
measurements on it by intercepting projected rays on a viewing screen (platen).

Instruments of mechanical projection or optical-mechanical projection also create a true three-
dimensional model from which measurements are taken. Their method of projection, however, is a
simulation of direct projection of light rays by mechanical or optical-mechanical means. An operator
views the diapositives stereoscopically directly through a binocular train. While there are still some
mechanical plotters in use today, details of their operation are not included in this text.

Analytical stereoplotters form a stereomodel through a purely mathematical procedure which
takes place in a computer. The mathematical basis behind these plotters was introduced in Chap. 11.
As with mechanical plotters, an operator views the diapositives stereoscopically directly through a
binocular train. The movements of the stereoscopic images are introduced by servomotors which are
under computer control. Unlike direct projection or mechanical plotters, these versatile instruments
are essentially unlimited in terms of the photographic geometry they can accommodate.

Softcopy instruments are the most recent innovation in the design of stereoplotters.
Fundamentally, softcopy plotters operate in the same manner as analytical stereoplotters, except that
instead of viewing film (hard-copy) diapositives through binocular optics, scanned (softcopy)
photographs are displayed on a computer screen and viewed directly. Special viewing systems have
been designed which enable the operator to view the left image with the left eye and the right image
with the right eye in order to see in stereo.

It would be difficult, if not impossible, to describe each available instrument in detail in an entire
book, let alone a single chapter. For the most part, descriptions are general without reference to
specific plotters and without comparisons of available instruments. To emphasize and clarify basic
principles, however, examples are made of certain instruments and in some cases pictures are given.
Omission of other comparable stereoplotters is not intended to imply any inferiority of these
instruments. Operator’s manuals which outline the details of each of the different instruments are
provided by the manufacturers. Comprehension of the principles presented in this chapter should
provide the background necessary for understanding these manuals.

PART I   DIRECT OPTICAL PROJECTION STEREOPLOTTERS
 

12-3   Components
The principal components of a typical direct optical projection stereoplotter are illustrated in the
schematic diagram of Fig. 12-2. The numbered parts are the (1) main frame, which supports the



projectors rigidly in place, thereby maintaining orientation of a stereomodel over long periods; (2)
reference table , a large smooth surface which serves as the vertical datum to which model elevations
are referenced and which also provides the surface upon which the manuscript map is compiled; (3)
tracing table, to which the platen and tracing pencil are attached; (4) platen, the viewing screen which
also contains the reference mark; (5) guide rods, which drive the illumination lamps, causing
projected rays to be illuminated on the platen regardless of the area of the stereomodel being viewed;
(6) projectors; (7) illumination lamps; (8) diapositives; (9) leveling screws, which may be used to tilt
the projectors in absolute orientation; (10) projector bar, to which the projectors are attached; and
(11) tracing pencil, which is located vertically beneath the reference mark on the platen.

 FIGURE 12-2   Principal components of a typical direct optical projection stereoplotter.
 

12-4   Projection Systems
In the projection systems of direct optical projection stereoplotters, diapositives of a stereopair are
placed in projectors and illuminated from above. Light rays are projected through the projector
objective lenses and intercepted below on the reflecting surface of the platen. The projection systems
of this type of stereoplotter require that the instruments be operated in a dark room.

Stereoplotter projectors are similar to ordinary slide projectors, differing primarily in their
optical precision, physical size, and capability of adjustment in angular attitude relative to one
another. Since projection takes place through an objective lens, the lens formula, Eq. (2-4), must be
satisfied in order to obtain a sharply focused stereomodel. In terms of the stereoplotter symbols of
Fig. 12-1b, the lens formula is expressed as

(12-1)



 
In Eq. (12-1), p is the principal distance of the projectors (distance from diapositive image plane to
upper nodal point of the projector lens), h is the projection distance (distance from lower nodal point
of the objective lens to the plane of optimum focus), and f′ is the focal length of the projector
objective lens. To obtain a clear stereomodel, intersections of projected corresponding rays must
occur at a projection distance within the range of the depth of field of the projector lens (see Sec. 2-3).

To recreate the relative angular relationship of two photographs exactly as they were at the
instants of their exposures (a process described in Sec. 12-8), it is necessary that the projectors have
rotational and translational movement capabilities. These motions, six in number for each projector,
are illustrated in Fig. 12-3. Three of the movements are angular rotations about each of three mutually
perpendicular axes: x rotation, called omega; y rotation, called phi; and z rotation, called kappa. The
origin of the axis system about which the rotations take place is at the projector lens, with the x axis
being parallel to the projector bar. The other three movements are linear translations along each of the
three axes. In general, projectors of direct optical projection stereoplotters have all three angular
rotations; however, they do not necessarily have all three linear translations. As a minimum, though,
they must have the x translation for changing the spacing between projectors.

 FIGURE 12-3   The six basic projector motions.
 

Projectors of the type illustrated in Fig. 12-2 illuminate only a small area of the diapositive at a
time. This type of illumination system consists of a small, narrow-angle light source which
illuminates a circular area on the diapositive approximately 4 cm in diameter. When projected through
the objective lens, an area slightly larger than the platen is illuminated in the model area. Driven by
means of guide rods, the lamps swing above the diapositives, following the platen and illuminating it
as it moves about the stereomodel.

12-5   Viewing and Tracing Systems
The function of the viewing system of a stereoplotter is to enable the operator to view the stereomodel



three-dimensionally. Stereoviewing is made possible by forcing the left eye to view only the overlap
area of the left photo while the right eye simultaneously sees only the overlap area of the right photo.
The different stereoviewing systems commonly used in direct optical projection plotters are (1) the
anaglyphic system, (2) the stereo-image alternator (SIA), and (3) the polarized-platen viewing (PPV)
system.

The anaglyphic system uses filters of complementary colors, usually red and cyan (blue-green),
to separate the left and right projections. Assume that a cyan filter is placed over the light source of
the left projector while a red filter is placed over the right. Then, if the operator views the projected
images while wearing a pair of spectacles having cyan glass over the left eye and red glass over the
right eye, the stereomodel can be seen in three dimensions.

The SIA system uses synchronized shutters to achieve stereoviewing. A shutter is placed in front
of each projector lens. Also, a pair of eyepiece shutters, through which the operator must look, is
situated in front of the platen. The shutters are synchronized so that the left projector and left eyepiece
shutters are open simultaneously while the right projector and right eyepiece shutters are closed, and
vice versa. An operator therefore sees only left projector images with the left eye and right projector
images with the right eye. The shutters rotate at a rapid rate so that the operator is unaware of any
discontinuity in the projection.

The PPV system operates similarly to the anaglyphic system except that polarizing filters are
used instead of colored filters. Filters of orthogonal polarity are placed in front of the left and right
projectors, and the operator wears a pair of spectacles with corresponding filters on the left and right.
In contrast to the anaglyphic system, the SIA and PPV systems both cause much less light loss, and
both permit the use of color diapositives.

A system for making precise measurements of the stereomodel is essential to every stereoplotter.
Measurements may be recorded as direct tracings of planimetric features and contours of elevation, or
they may be taken as X, Y, and Z model coordinates. One of the principal elements of the measuring
system of a direct optical projection stereoplotter is a tracing table. The platen (see Fig. 12-2), which
can be raised or lowered, contains a reference mark in its center, usually a tiny speck of light. The
reference mark appears to float above the stereomodel if the platen is above the terrain; hence it is
called the floating mark. Vertical movement of the platen is geared to a dial, and by varying gear
combinations the dial can be made to display elevations directly in meters or feet for varying model
scales.

A manuscript map, preferably of stable base material, is placed on top of the reference table. The
tracing table rests on the manuscript and is moved about manually in the X and Y directions. To plot
the position of any point, the platen is adjusted in X, Y, and Z until the floating mark appears to rest
exactly on the desired point in the model. A pencil point which is vertically beneath the floating mark
is then lowered to record the planimetric position of the point on the map, and its elevation is read
directly from the dial.

To trace a planimetric feature such as a creek, the pencil is lowered to the map and the tracing
table is moved in the XY plane while the platen is moved up or down to keep the floating mark in
contact with the stream. The pencil thereby records a continuous trace of the feature. Contours of
elevation may also be traced by locking the dial at the elevation of the desired contour and then
moving the tracing table about, keeping the floating mark in contact with the terrain. Tracing contours
with a stereoplotter is a skill that takes years of practice to master.

12-6   Interior Orientation
As mentioned earlier, three steps are required to orient a stereoscopic plotter. The first, interior



orientation, includes preparations necessary to recreate the geometry of the projected rays to duplicate
exactly the geometry of the original photos; e.g., angles θ1′ and θ2′ of Fig. 12-1b must be exactly equal
to angles θ1′ and θ2′of Fig. 12-1a. This is necessary to obtain a true stereomodel. Procedures involved
in interior orientation are (1) preparation of diapositives, (2) compensation for image distortions, (3)
centering of diapositives in the projectors, and (4) setting off the proper principal distance in the
projectors.

Diapositives are transparencies prepared on optically flat glass for the stereoplotter of Fig. 12-2.
They are made by direct contact printing so their principal distances will be exactly equal to the focal
length of the taking camera. Contact printing creates true geometry as long as the principal distances
of the projectors are set equal to the focal length of the taking camera.

In direct optical projection plotters, compensation for symmetric radial distortion of the lens of
the taking camera may be accomplished in one of the following three ways: (1) elimination of the
distortion with a “correction plate” (2) varying the projector principal distance by means of a cam, and
(3) use of a projector lens whose distortion characteristics negate the camera’s distortion.

Each diapositive must be centered in its projector so that the principal point is on the optical axis
of the projector lens. Although this problem is solved slightly differently for each instrument, it is
basically done by aligning fiducial marks of the diapositive with four calibrated collimation marks
whose intersection locates the optical axis of the projector.

The final step in interior orientation is to set the diapositive principal distance on the projectors.
The principal distance is adjusted by either graduated screws or a graduated ring to raise or lower the
diapositive image plane.

12-7   Relative Orientation
Imagine the camera frozen in space at the instants of exposure of two photographs of a stereopair. The
two negatives in the camera would then bear a definite position and attitude relationship relative to
each other. In relative orientation, this relative position and attitude relationship is recreated for the
two diapositives by means of movements imparted to the projectors.

The condition that is fulfilled in relative orientation is that each model point and the two
projection centers form a plane in miniature just like the plane that existed for the corresponding
ground point and the two exposure stations. This condition is illustrated by corresponding planes
A’O1O2 and AL1L2 of Fig. 12-1. Also, parallactic angle Ф′ for any point of the stereomodel of Fig. 12-1
must equal the point’s original parallactic angle Ф. The implication of the foregoing condition of
relative orientation is that projected rays of all corresponding points on the left and right diapositives
must intersect at a point, and this is the basis of the systematic relative orientation procedures
described below.

Since relative orientation is unknown at the start, the two projectors are first positioned relative
to each other by estimation. Usually, if near-vertical photography is being used, the projectors are set
so that the diapositives are nearly level and so that their x axes lie along a common line. Also, the
projectors are adjusted so that their Y and Z settings (distances from the projector bar in the Y and Z
directions) are equal. Then, by an iterative procedure involving incremental projector adjustments
while creating clear stereo views at an arrangement of spots in the overlap area, the projectors
eventually become properly aligned. When finished, the projectors are in the same relative orientation
as the camera stations were when the photography was acquired. The operator can then “roam” about
the overlap area and see the model comfortably in three dimensions.



12-8   Absolute Orientation
After relative orientation is completed, a true three-dimensional model of the terrain exists. Although
the horizontal and vertical scales of the model are equal, that scale is unknown and must be fixed at
the desired value. Also the model is not yet level with respect to a vertical datum. Selecting model
scale and fixing the model at that scale, and leveling the model are the purposes of absolute
orientation.

Model scale is fixed within certain limits by the scale of the photography and by the
characteristics of the particular stereoplotter. By comparing the geometry of Fig. 12-1a and b, model
scale is seen to be the ratio of the sizes of triangles AL1L2 and A′O1O2. Equating these similar triangles,
model scale may be expressed as

(12-2)
 
In Eq. (12-2), Sm is model scale, b is the model air base, B is the photographic air base, h is plotter
projection distance, and H’ is the flying height above ground. From Eq. (12-2) it can be seen that
model scale is directly proportional to model air base. Thus by varying the model air base, the model
scale can be set to the desired value. However, due to limits on the range of h values, there will be
corresponding limits on the range of the model air base, b.

If a preliminary model base is calculated from Eq. (12-2) and the projectors are set accordingly,
then after relative orientation the stereomodel will be near the required scale. As defined by Eq. (12-2)
and shown in Fig. 12-4, model scale is changed by varying the model base. If the Y and Z settings of
the two projectors are equal, then model base is composed only of an X component called bx, and
model scale is varied by simply changing the model base by Δbx, as shown in Fig. 12-4a.

 FIGURE 12-4   Changing model scale by adjusting model base. (a) Cross-sectional view; (b) plan view.
 



A minimum of two horizontal control points is required to scale a stereomodel. These points are
plotted at adopted model scale on the manuscript map as points A and B of Fig. 12-4b. The manuscript
is then positioned under the model, and with the floating mark set on one model point, such as A′, the
manuscript is moved until map point A is directly under the plotting pencil. The floating mark is then
set on model point B′. While the manuscript is held firmly with a fingertip at point A, it is rotated until
map line AB is collinear with model line A′B′. If model line A′B′ is shorter than map line AB, as is the
case in Fig. 12-4b, model scale is too small and must be increased by increasing the model base until
new model line A″B″ is equal in length to map line AB. The model base may be set to the required
value by trial and error, or Δbx may be calculated directly from

(12-3)
 
In Eq. (12-3), AB and A′B′ are scaled from the manuscript in any convenient units. If the algebraic sign
of Δbx is negative, model scale is too large and bx must be reduced by Δbx. Once the model is scaled, it
is recommended that a third horizontal control point be checked to guard against possible mistakes.

The final step in absolute orientation is to level the model. This procedure requires a minimum of
three vertical control points distributed in the model so that they form a large triangle. As a practical
matter, four points, one near each corner of the model, should be used. A fifth point near the center of
the model is also desirable.

A model with a vertical control point near each corner that has not yet been leveled is shown in
Fig. 12-5. Note that there are two components of tilt in the model, an X component (also called Ω) and
a Y component (also called Φ). The amount by which the model is out of level in each of these
components is determined by reading model elevations of the vertical control points and comparing
them with their known values.

 FIGURE 12-5   Stereomodel that is not level (note X and Y components of tilt).
 



There are different methods available for introducing the corrective X and Y tilts, depending upon
the particular design of the stereoplotter. With stereoplotters such as that of Fig. 12-2, corrective tilts
can be introduced by turning the leveling screws to rotate the projector bar as illustrated in Fig. 12-6.
After the leveling procedure has been completed, the model will appear as it does in Fig. 12-6b and d.

 FIGURE 12-6   (a) and (b) Correcting X tilt of a model by X tilt of projector bar. (c) and (d) Correcting
Y tilt of a model by Y tilt of projector bar.
 

The leveling operation will disturb the previously established model scale, especially if large
corrective tilts are required. Also, it is likely that absolute orientation will slightly upset relative
orientation. Therefore it is not practical to labor at great lengths with either relative or absolute
orientation the first time through. Rather, quick orientations should be performed at first, followed by
careful refinements the second time through. When orientation is completed, the manuscript map
should be firmly secured to the reference table in preparation for map compilation.

PART II   ANALYTICAL PLOTTERS
 

12-9   Introduction
Analytical plotters development was made possible by advances in computers, digital encoders, and
servosystems. By combining computerized control with precision optical and mechanical components,



analytical plotters enable exact mathematical calculations to define the nature of the stereomodel.
They are also easily interfaced with computer-aided drafting (CAD) systems, which facilitates map
editing and updates. These instruments, with their digital output capability, are ideal for compiling
data for use in geographic information systems.

Because they have no optical or mechanical limitations in the formation of their mathematical
models, analytical plotters have great versatility. They can handle any type of photography, including
vertical, tilted, low oblique, convergent, high oblique, panoramic, and terrestrial photos. In addition,
they can accommodate photography from any focal-length camera, and in fact they can
simultaneously use two photos of different focal lengths to form a model.

In comparison with analog plotters, analytical plotters can provide results of superior accuracy
for three fundamental reasons. First, because they do not form model points by intersecting projected
light rays or mechanical components optical and mechanical errors from these sources are not
introduced. Second, analytical plotters can effectively correct for any combination of systematic
errors caused by camera lens distortions, film shrinkage or expansion, atmospheric refraction, and, if
necessary, earth curvature. Third, in almost every phase of their operation, they can take advantage of
redundant observations and incorporate the method of least squares into the solution of the equations.

The essential capabilities of an analytical plotter are (1) to precisely measure x and y photo
coordinates on both photos of a stereopair and (2) to accurately move to defined x and y photo
locations. These operations are carried out under direct computer control. Digital encoders provide the
ability to measure x and y photo coordinates, with the output from the encoders being read by the
computer. Servomotors, which respond to signals from the controlling computer, allow the
photographs to be moved to the defined locations.

12-10  System Components and Method of Operation
An analytical plotter incorporates a pair of precision comparators which hold the left and right photos
of a stereopair. Figure 12-7 shows a schematic diagram of a single comparator which employs a lead
screw for measurement and movement. The plate carrier, which holds the photograph, moves
independently in the X and Y directions as the servomotors turn the corresponding lead screws. Digital
encoders attached to the shafts of the motors sense the position of a point on the photo relative to an
index mark (half mark) which is fixed.



 FIGURE 12-7   Schematic representation of a comparator from an analytical plotter.
 

Figure 12-8 illustrates how the primary components of an analytical stereoplotter interact. The
heart of the system is the controller computer which interfaces with the operator controls,
servomotors, encoders, and the CAD computer. The controller computer accepts input from the
operator controls and calculates left and right plate positions from these inputs. It then operates the
servomotors to move the plates, stopping when the encoders indicate that the correct positions have
been reached.

 FIGURE 12-8   Schematic diagram of components and operation of an analytical plotter.



 

Analytical plotters form neither an optical nor a mechanical model, rather, they compute a
mathematical model based on the principles of analytical photogrammetry presented in Chap. 11. This
mathematical model is established through numerical versions of interior, relative, and absolute
orientation. Although the exact methods used to accomplish these orientations may vary among
instruments, the fundamental approach is the same. Typically, the orientation software is a distinct
module, separate from the data collection (mapping) software. This allows flexibility in the choice of
available data collection software for a given analytical plotter.

Although the development of the softcopy stereoplotter has reduced the demand for analytical
plotters and major manufacturers are no longer producing new plotters they are still widely used. Two
popular analytical stereoplotters are the Zeiss P-3, and the Leica SD3000, shown in Figs. 12-9 and 12-
10, respectively.

 FIGURE 12-9   Zeiss P-3 analytical plotter. (Courtesy Carl Zeiss, Inc.)
 



 FIGURE 12-10   Leica SD3000 analytical plotter. (Courtesy LH Systems, LLC.)
 

12-11  Analytical Plotter Orientation
As is necessary with all analog stereoplotters, interior, relative, and absolute orientation are also
required for analytical plotters prior to going into most modes of operation. In all phases of
orientation, and operation for that matter, a dialogue is maintained between operator and instrument.
The system’s computer guides the operator through each of the various steps of operation, calling for
data when needed and giving the operator opportunities to make certain decisions.

Prior to using an analytical plotter, its measuring system should be calibrated using a precise grid
plate. This plate consists of a flat piece of glass upon which an array of fine crosses has been etched.
The coordinates of the crosses on a high-quality grid plate are known to within 1 or 2 μm. The grid
plate is placed on the plate carrier, and the coordinates of each of the crosses are measured. A two-
dimensional coordinate transformation is then computed which relates the raw plate coordinates of the
analytical plotter to the accurate xy system of the grid plate. An analytical plotter should be
recalibrated approximately every year as part of routine maintenance or anytime the instrument is
moved, to ensure accurate results.

The orientation and operation of all analytical plotters are quite similar. The following
subsections describe, in general, the three orientation steps for analytical plotters.

12-11-1   Interior Orientation
As mentioned in Sec. 12-6, interior orientation consists of (1) preparation of diapositives, (2)
compensation for image distortions, (3) centering of diapositives, and (4) setting off the proper



principal distance. Steps 2 and 4 simply amount to accessing the appropriate lens distortion
coefficients and camera focal length from a data file. By using these parameters in the appropriate
photogrammetric equations, these steps of interior orientation are readily accomplished. Diapositives
used with analytical plotters are typically contact prints made on film transparencies, although some
plotters can accommodate paper (opaque) prints. The individual diapositives of a stereopair are placed
on the left and right plate carriers and held in place by glass covers. Centering of the diapositives is
accomplished by measuring the X and Y plate coordinates (based on the encoders) of the fiducials of
each photo. This phase of operation is aided by computer-activated servomotors, which automatically
drive the measuring mark to the vicinity of the fiducials. A fine pointing is then made by the operator.
As few as two fiducials can be measured, but more are recommended and up to eight should be
measured if they are available, to increase redundancy. Individual two-dimensional coordinate
transformations (see App. C) are then calculated for the left and right photos. This establishes the
relationship between the XY plate coordinates and the xy calibrated fiducial coordinates, and at the
same time it compensates for film shrinkage or expansion. A choice of coordinate transformations is
available, but usually the affine or projective types are used (see Secs. C-6 and C-9). Residuals for this
solution will be displayed so that the operator can either accept them or remeasure one or more
fiducials. When the solution is accepted, the interior orientation parameters are stored in the
computer.

12-11-2   Relative Orientation
Relative orientation is achieved by numerical techniques as described in Sec. 11-10. The operator
measures the left and right photo coordinates of at least six pass points to provide observations for the
least squares relative orientation solution. In areas of imagery that contain discrete features such as
manhole covers and sidewalk intersections, the operator sets the individual left and right index marks
on the images of the feature in each photo to measure their coordinates. In open areas such as grass-
covered fields, the operator adjusts the floating mark while viewing in stereo until it appears to rest
exactly on the ground. Once the raw plate coordinates are observed for all pass points, they are
transformed to the calibrated fiducial system, and then lens distortion and atmospheric refraction
corrections are applied, resulting in refined coordinates. Numerical relative orientation is then
calculated, resulting in values for the exterior orientation parameters (ω, Ф, κ, XL, YL, ZL) for both
photos. Again the residuals will be displayed, and the operator has the option of discarding certain
points, adding others, or accepting the solution. When relative orientation is accepted, the orientation
parameters are stored in the computer. At this point the operation of the analytical plotter changes
from a two-dimensional to a three-dimensional mode. The X, Y, and Z operator controls provide model
coordinate input to the controller computer which then drives the plates to the appropriate image
locations.

12-11-3   Absolute Orientation
Absolute orientation is commonly achieved by a three-dimensional conformal coordinate
transformation. While viewing in stereo, the operator places the floating mark on the images of the
ground control points which appear in the model and records the XYZ model coordinates for each. The
computer then accesses a previously established data file which contains the ground coordinates for
the control points, thus enabling a three-dimensional conformal coordinate transformation to be
calculated. For absolute orientation a minimum of two horizontal and three well-distributed vertical
control points are required, just as for absolutely orienting analog plotters. More than the minimum is
recommended, however, so that a least squares solution can be made. Once again, residuals are
displayed, and the operator has the option of discarding or remeasuring individual points. After the



solution is accepted, the transformation parameters are stored, the analytical stereoplotter is fully
oriented, and it is ready to be used as a three-dimensional mapping tool.

12-12  Three-Dimensional Operation of Analytical Plotters
After the steps of orientation are complete, the parameters from each step are available for real-time
control of the plotter. The operator supplies input of X, Y, and Z ground coordinates through hand
(and/or foot) controls, and the instrument responds by calculating theoretical left and right plate
coordinates for this ground position. The servomotors then move the left and right plates to these
coordinates so that the floating mark appears at the corresponding location in the model. At first
glance, this sequence of operation seems to be out of order. Users of analytical plotters often
incorrectly assume that their hand control inputs directly move the index marks to positions in the
photos and that ground XYZ coordinates are then computed. This confusion may arise due to the real-
time nature of plotter operation.

The top-down flow of this real-time operation is illustrated in Fig. 12-11. In this figure,
computational steps are indicated with solid boxes, inputs represented with dashed boxes, and
instrument movements indicated with ellipses. The process begins when the operator adjusts the XYZ
controls which provide the primary inputs. The controlling computer then calculates the
corresponding XYZ model coordinates by applying parameters of the three-dimensional conformal
coordinate transformation, which was calculated in the absolute orientation step. Note that the three-
dimensional transformation was computed going from ground system to model.



 FIGURE 12-11   Flowchart showing the real-time, three-dimensional operation of an analytical
stereoplotter.
 

After the XYZ model coordinates have been computed, the computer solves the collinearity
equations [see Eqs. (11-1) and (11-2)] for x and y coordinates on the left photo and x′ and y′
coordinates on the right. The calculations are made using the XYZ model coordinates as well as the
exterior orientation parameters ω, ϕ, κ, XL, YL, and ZL of the left photo and ω′,ϕ′, κ′, XL′, YL′, and ZL′ of
the right. The photo coordinates directly computed from the collinearity equations contain no
distortions and may therefore be considered ideal coordinates. The actual images in the photographs,
however, do not occupy these ideal positions due to lens distortion and atmospheric refraction.
Therefore, when the servomotors move the plates, in order for the actual images in the photos to
correctly coincide with the index marks in the binoculars, distortions must be added to the ideal
coordinates computed by the collinearity equations.

The next step is to transform from the photo coordinate system to the calibrated grid plate
coordinate system. This calculation is based on the two-dimensional coordinate transformation



parameters which were computed during interior orientation. The final step is to transform from grid
plate coordinates to the plate carrier coordinate system. This calculation relies on the two-dimensional
coordinate transformation parameters which were computed during grid plate calibration. With the
plate carrier coordinates known for both photographs, the servomotors are instructed to drive the left
and right index marks to these locations. All these calculations can be performed in a fraction of a
millisecond on a modern computer, giving a real-time response. The only lag in the system is due to
the finite speed of the servomotors. However, unless fast, abrupt movements are made with the
operator controls, the entire process happens smoothly and with instantaneous response.

The XYZ stereoplotter controls are directly linked to the CAD system inputs. The operator could,
in fact, draw on the CAD system using these controls without looking into the plotter, although the
drawn entities would have no relationship to the ground if this were done. By looking into the plotter,
the operator can see the movement of the floating mark as it responds to XYZ input. The operator
guides the floating mark in X, Y, and Z until it appears to rest directly on the feature of interest. At that
point, the final position of the operator controls defines the XYZ ground position of the feature, and it
is then recorded into the CAD system.

12-13  Modes of Use of Analytical Plotters
The modes of use of analytical plotters vary only slightly with the different instruments. Generally all
can perform planimetric and topographic mapping. In this case the operator simply traces out features
and contours by keeping the floating mark in contact with each feature. The ground coordinates from
the operator controls are directly transmitted to the CAD computer for subsequent off-line editing and
plotting, or for the development of digital elevation models. “Layered information” needed for the
databases of geographic information systems can also be conveniently compiled and stored.

Analytical plotters can also be operated in a profiling mode. In this operation X, Y, and Z
coordinates can be measured along predetermined lines in the model. The locations and directions of
desired profile lines can be input to the computer in terms of XY ground coordinates, and the machine
will automatically drive the measuring mark to the corresponding locations while an operator
monitors the floating mark to keep it in contact with the ground. The XYZ plotter output is
continuously recorded by the CAD computer. Profile data can be used directly for various engineering
applications such as investigating earthwork quantities along proposed highway centerlines, or they
can be used to generate terrain elevation data for subsequent digital orthophoto production (see Sec.
13-7 and 13-8).

Another common application of analytical plotters is in aerotriangulation. Here various modes of
operation are possible, from independent model triangulation to simultaneous bundle adjustment (see
Chap. 17). When the aerotriangulation is completed, the diapositives can be used in other
stereoplotters or photogrammetric scanners, or they can be reset in the analytical plotter based upon
the now available ground control information. As a result of aerotriangulation, the parameters of
relative and absolute orientation become known. Analytical plotters have a “reset” capability which
enables reading in these known parameters, whereupon an instantaneous relative and absolute
orientation can be achieved automatically, thus bypassing the measurements otherwise needed to
determine those two steps. In fact, if for any reason a model that was once set should need to be reset
to obtain additional data, the orientation parameters from the first setting can be recalled and the
system will automatically perform relative and absolute orientation. Anytime photos are moved,
however, interior orientations must be redone since the positions of the photographs on the plate
carriers will have changed.

Analytical plotters can also be used simply as monocomparators or stereocomparators, where



image coordinates are measured and recorded for use in aerotriangulation. Many analytical
stereoplotters contain a software module which performs aerotriangulation. Alternatively, photo
coordinate data can be recorded in a computer file in various formats, suitable for any of several
commercially available aerotriangulation software programs.

PART III   SOFTCOPY PLOTTERS
 

12-14  Introduction
The latest stage in the evolution of stereoplotters is that of softcopy plotters. Advances in the
computational speed, memory capacity, disk storage, and display monitors of computer systems along
with accurate, high-resolution photogrammetric scanners and digital cameras have led to these fully
computerized systems. The fundamental operation of a softcopy plotter is the same as that of an
analytical plotter except that instead of employing servomotors and encoders for point measurement,
softcopy systems rely on digital imagery. Softcopy plotters can perform all the operations of an
analytical plotter and, due to their design, can perform a wealth of digital image processing routines as
well.

Softcopy stereoplotters have had a tremendous impact on the practice of photogrammetry. By
replacing costly optical and mechanical components with digital display manipulation, softcopy
plotters have become less expensive and more versatile than analytical plotters. The core of a softcopy
plotter is a set of computer software modules that perform various photogrammetric tasks. Software is
the distinguishing characteristic, while associated computer hardware may be purchased “off the
shelf” from a variety of vendors.

Besides the software, another essential component of a softcopy plotter is a computer with a
high-resolution graphics display. The computer must be capable of manipulating large digital images
efficiently and must be able to display left and right photos of a stereopair simultaneously or nearly
so. At the same time, a special configuration is required so that the operator’s left eye views only the
left photo and the right eye views only the right photo.

Manual use of a softcopy plotter is most similar to that of an analytical stereoplotter.
Orientations can be performed by placing the measuring mark (a single pixel or small pattern of pixels
on the display) on necessary points, followed by analytical calculations being performed to compute
the orientation. Once oriented, the softcopy plotter can be used in the three-dimensional mode to
measure (digitize) topographic features.

In addition to the manual uses available with softcopy plotters, these systems offer many
automatic features not found on analytical plotters. One of the most useful automatic capabilities is
the ability to perform routine point measurement by computer processing, requiring little or no
operator input. This capability can significantly speed up the process of orienting the plotter, as well
as assist in collecting digital elevation model information, profiles, and cross-sections. Another
convenience offered by softcopy plotters is vector superimposition, in which topographic map features
(lines, points, etc.) are superimposed on the digital photos as they are being digitized. This capability,
also found on a few analytical stereoplotters, allows operators to keep their gaze in one place rather
than constantly moving back and forth from photograph display to CAD display.



12-15  System Hardware
The fundamental hardware requirement for a softcopy stereoplotter is a high-performance computer
workstation with advanced graphics capability. The computer must have not only substantial
processing speed, but also large amounts of random access memory and mass storage (hard disk
space). Many systems employ multiple processors to increase computational speed. This high speed
and the large memory capacity are necessary because digital image files used in softcopy plotters may
be several hundred megabytes or more. In addition, some form of archival storage such as optical
disks is required for offline storage of digital images. The system also requires operator controls for
X, Y, and Z position within the stereomodel. On a softcopy system, the X and Y controls are usually
implemented as some type of computer “mouse,” while the Z control is typically a small wheel which
can be rotated by the operator’s thumb.

For the computer to serve as a stereo workstation, additional hardware is required to enable the
operator to see the left image with the left eye and the right image with the right eye. Various
approaches are available to provide stereoviewing capability, such as polarizing filters and alternating
shutters. In the polarizing filter approach, a computer, display system is configured so that light from
the left image and light from the right image are orthogonally polarized. Meanwhile, the operator
wears a simple pair of spectacles consisting of orthogonally polarized filters.

Figure 12-12 illustrates a stereo display configuration for the polarizing filter approach. The
lower and upper displays (LCD monitors) are arranged so that the tops are nearly joined at the hinge
point and the bottoms are spread out at an angle of approximately 110°. A partially reflective mirror
bisects the angle of the displays with the reflective side facing the upper display and the anti-
reflective side facing the lower display. Understanding how the stereo image is formed requires
knowledge of an interesting detail regarding LCD computer monitors.

The physical construction of an LCD requires the use of polarizing filters and as a result, light
emanating from an LCD monitor is polarized, usually in a 45° orientation. In the polarizing filter
approach, light from the lower display passes through the anti-reflective side of the mirror without
changing its polarization angle. It will then pass through the filter (left filter in Fig. 12-12), that has
the same polarization angle and will be visible to the left eye. However, this polarized light will not
pass through the filter that has the orthogonal orientation (right filter in Fig. 12-12). Light from the
upper display changes polarization 90° by reflecting off the mirror and will therefore be blocked by
the left filter but will pass through the right. The result is that the left eye will see the left image (from
the lower display) and the right eye will see the right image (from the upper display). Figure 12-13
shows the polarizing filter display configured for a softcopy system. One additional detail that is
addressed in the design is the fact that the reflected image of the upper display will be reversed in a
left/right sense. An additional hardware device or software emulator is required to reverse the initial
monitor image to that it appears normal in its mirrored state.



 FIGURE 12-12   Stereoviewing principle of the polarizing filter screen display.
 

 FIGURE 12-13   Softcopy photogrammetric workstation with polarizing filter stereo imaging.
(Courtesy BAE Systems.)
 

A second approach to stereoviewing uses a display monitor which shows alternating left and right
images at 120 Hz, along with special viewing glasses that have liquid crystal shutters (LCS) which
alternate at the same rate. The LCS glasses receive signals transmitted by the computer—often from
an infrared device—which control the alternating left and right masking functions. At a particular
instant, the left image is displayed on the monitor, and at the same time, the LCS mask over the right
eye turns opaque while the LCS mask over the left eye is clear, as illustrated in Fig.12-14a. Since the



right eye is blocked and the left eye is unobstructed, the operator sees the left image with the left eye.
A split second later, the right image is displayed on the monitor, and at the same time the LCS mask
over the left eye turns opaque while the LCS mask over the right eye is clear, as illustrated in Fig. 12-
14b. This causes the operator to see the right image with the right eye. When this is repeated at a rate
of 120 Hz, the operator is unaware of the alternating images, yet the proper stereoview is created. The
system shown in Fig. 12-15, uses this method of stereo image display.

 FIGURE 12-14   Stereoviewing principle of the alternating LCS shutter display. (a) view of the screen
with the left image displayed and right LCS mask closed (b) view of the same screen a split second
later, with the right image displayed and left LCS mask closed.
 

 FIGURE 12-15   VR mapping workstation. (Courtesy Cardinal Systems.)
 

Each of the aforementioned methods of stereoviewing has its advantages. An advantage of the
polarizing screen method is that more than one person can view the stereo display at one time, with



extra sets of inexpensive polarized spectacles. The alternating-shutter approach shares the advantage
of more than one person viewing the stereo display at a time, although this requires multiple sets of
LCS glasses, which are more expensive than simple polarized spectacles. In a production environment
this advantage is minor, except perhaps for training novice operators. The polarizing screen and
alternating-shutter methods also allow the operator more freedom of movement compared to
binocular viewing systems associated with analytical plotters.

12-16  Image Measurements
As is the case with all stereoplotters, manual image measurements are accomplished through operator
control of a floating mark. On a softcopy stereoplotter, a floating mark consists of left and right half
marks which are superimposed on the left and right images, respectively. An individual half mark
consists of a single pixel, or small pattern of pixels in the shape of a dot, cross, or more complex
shape. The pixel(s) of the half mark is (are) set to brightness values and/or colors which give a high
contrast with the background image. When the operator moves the X, Y, or Z control, the positions of
the individual half marks move with respect to the background images. Once the floating mark
visually coincides with a feature of interest, the operator can press a button or foot pedal to record the
feature’s position.

Two approaches are used for half mark movement: a fixed mark with a moving image or a fixed
image with a moving mark. The first approach, which mimics the action of an analytical stereoplotter,
keeps the individual half marks at the same physical position on the screen while the images pan
across the screen under operator control. This implementation places a high demand on the computer
display in terms of data transfer rate, thus requiring a high-speed computer graphics adapter. The
second approach works by keeping the left and right images in a fixed position on the display while
the individual half marks move in response to the operator’s input. While this approach places far less
demand on the display adapter, it creates additional problems. One problem is that when the half
marks approach the edge of the image area, the images must be reloaded and redisplayed so that the
half marks can be placed at the center of the viewing area. This discontinuous image shift can be quite
disruptive to the operator, since it requires a corresponding shift in the direction of the operator’s
gaze. Another problem, which is more subtle, is that the operator’s eyes must follow the floating mark
as it moves, which can cause eye strain. With the fixed half mark approach, the operator’s gaze
remains essentially fixed while the images move around it.

A key advantage afforded by softcopy plotters is their ability to make point measurements
automatically. This is accomplished through some form of pattern-matching technique, wherein a
small subarray of digital numbers from the left image is matched with a corresponding subarray from
the right image. Finding the matching position is equivalent to manually setting the floating mark so
that it appears to rest directly on a feature in the stereomodel. Various methods are available for
performing the pattern-matching operation, and some of these are discussed in Sec. 15-8.

12-17  Orientation Procedures
Softcopy plotters are oriented in a similar fashion to that of analytical plotters; i.e., the same three
steps of interior, relative, and absolute orientation must be performed. The key difference between
orientations of softcopy and analytical plotters is that softcopy systems allow for greater automation
in the process. Interior orientation, which primarily consists of pointing on the fiducial marks, can be
done directly under operator control, or by use of pattern-matching methods. Systems that use pattern



matching attempt to find the positions of the fiducial marks by matching a standard image of the
fiducial, sometimes called a template, with a corresponding subarray from the image. Once all
fiducials have been located, a two-dimensional transformation can be computed to relate image
coordinates (row and column) to the fiducial axis system.

Relative orientation can also be greatly assisted by automatic pattern matching. Small subarrays
from the left image in the standard pass point locations are matched with corresponding subarrays
from the right image. Once a sufficient number of pass points have been matched (generally at least
six points), a relative orientation can be computed. Accuracy of the relative orientation can be
improved by matching additional pass points, thus providing greater redundancy in the least squares
solution.

Absolute orientation is much less amenable to automation than interior or relative orientation. In
absolute orientation, three-dimensional measurements must be made on the positions of ground
control points which appear in the model. Since ground control points can have varying shapes and
can appear anywhere within the model, they are more difficult to locate by automatic pattern-
matching techniques. In these cases, manual pointing on the control points is usually done.

One situation where absolute orientation can be automated occurs when a block aerotriangulation
has previously been performed on the digital images. As a result of the aerotriangulation, exterior
orientation parameters will have been determined for each photo. Having known exterior orientation
parameters essentially defines the absolute orientation, thus no additional measurements need to be
taken.

12-18  Epipolar Geometry
As mentioned in Sec. 15-3, automatic methods can be used to set the floating mark on a feature. This
involves pattern matching, which can be a computationally intensive task. To reduce the
computational burden, it is helpful to constrain the search area so as to avoid unnecessary
calculations. By exploiting the principle of epipolar geometry, search regions can be constrained
along a single line.

As described in Sec. 11-5, coplanarity is the condition in which the left and right camera stations,
an object point, and the left and right images of the object point lie in a common plane. If relative
orientation is known for a given stereopair, the coplanarity condition can be used to define epipolar
lines. This situation is illustrated in Fig. 12-16. The figure shows the intersection of the epipolar plane
(any plane containing the two exposure stations and an object point, in this instance plane L1AL2) with
the left and right photo planes. The resulting lines of intersection are the epipolar lines. They are
important because, given the left photo location of image a1, its corresponding point a2 on the right
photo is known to lie along the right epipolar line. Based solely upon the location of image point a1,
object point A could be located anywhere along line L1A, at an arbitrary Z elevation. For example, if
object point A were located at position A′, its image would still be at point a1 in the left photo. Based
on an assumed object point position of A′, the corresponding location of its image on the right photo,
a′2 can be calculated by the collinearity equations (see App. D). A small subarray of digital numbers at
the location of point a′2 can be compared with a corresponding subarray at the location of point a1.
Since these two locations do not both correspond to images of object point A, the patterns would not
match, and another point on the right epipolar line would be tried. The search continues along the
epipolar line until it zeros in on the corresponding image at a2, where the patterns match. The
coordinates of image points a1 and a2 can then be used to determine the three-dimensional object
space coordinates of point A.



 FIGURE 12-16   Epipolar geometry of a stereopair of photos.
 

By using the principle of epipolar geometry, searching for matching points is much more
efficient. This is especially important when a large number of points must be matched, such as when a
digital elevation model is created (see Sec. 13-7). Many softcopy systems perform epipolar
resampling after relative orientation so that the rows of pixels in both images lie along epipolar lines.
This resampling can increase the efficiency of pattern matching even further.
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Problems
  12-1.   List and briefly describe the four main categories of stereoplotters.

  12-2.   Describe the basic differences between stereoplotters with direct optical projection and
instruments with mechanical or optical-mechanical projection.

  12-3.   Three basic orientation steps are necessary prior to using a stereoplotter. Name them and give
the objective of each.

  12-4.   What is the focal length of the lens in a projector in the direct projection plotter of Fig. 12-2
whose principal distance and optimum projection distance are 152 and 760 mm, respectively?

  12-5.   Discuss the different viewing systems used in direct optical projection stereoplotters.

  12-6.   Outline the steps of interior orientation.

  12-7.   What are the advantages and disadvantages of using film diapositives in stereoplotters as
opposed to glass diapositives?

  12-8.   Briefly describe the process of absolute orientation for a direct optical projection
stereoplotter. Why must the steps be repeated?

  12-9.   Briefly describe the working components of an analytical stereoplotter.

12-10.   Explain how the process of interior orientation for an analytical stereoplotter differs from that
of an analog stereoplotter.

12-11.   Repeat Prob. 12-10, except explain it for relative orientation.



12-12.   Repeat Prob. 12-10, except explain it for absolute orientation.

12-13.   Discuss the advantages of analytical plotters over analog plotters.

12-14.   Compare softcopy plotters and analytical plotters, i.e., discuss their similarities and
differences.

12-15.   Describe the principle of the active polarizing screen method of stereoviewing for a softcopy
plotter.

12-16.   Describe the principle of the alternating LCS shutter display method of stereoviewing for a
softcopy plotter.

12-17.   Discuss the advantages of the fixed floating mark and moving images approach for
stereoviewing over that of the moving floating mark and fixed images.

12-18.   Briefly describe how automation can be applied to interior and relative orientation of a
softcopy plotter.



CHAPTER 13
Topographic Mapping and Spatial Data Collection

 

13-1   Introduction
Mapping, and/or spatial data collection for GIS databases, can generally be categorized into either
planimetric or topographic methods. Planimetric methods involve determining only the horizontal
positions of features. The locations of these features are normally referenced in an XY coordinate
system that is based upon some selected map projection (see Chap. 5). Topographic methods, on the
other hand, include not only the location of planimetric details but also provide elevation information.
Until recently, elevations have typically been represented by contours, which are lines connecting
points of equal elevation. Now, however, elevations are often given in digital form; that is, Z
coordinates are listed for a network of X, Y locations. This is particularly the case when data are being
collected for GIS applications. This digital representation of elevations is called a digital elevation
model (DEM), and this subject is discussed further in Sec. 13-6.

The purpose of the mapping, or spatial data collection, will normally dictate the level of detail
required in representing features and the required level of accuracy as well. If the mapping is being
done photogrammetrically by stereoscopic plotter, this in turn will dictate the flying height for the
aerial photos, and hence also photo scale and map compilation scale. For example, maps used for the
preliminary planning of a highway or transmission line would normally be compiled from high-
altitude aerial photos which have a small scale. This would yield a small compilation scale, suitable
for showing only general features and elevations with moderate accuracy. A map used for the design,
construction, and operation of a utility, on the other hand, would generally be compiled from low-
altitude photos, having a much larger scale. Thus compilation scale would be larger, and features and
elevations would be shown in much greater detail and to a higher level of accuracy.

The concept of map scale and its relationship to level of detail that can be shown was well
understood throughout the era when hard-copy maps were being compiled manually. That was the case
because as map scale decreased, the number of features and contours that could be shown also had to
decrease; otherwise, the map would have become congested to the point of being unreadable. Now,
however, with the advent of digital mapping systems, the concept of mapping scale versus level of
detail that can be shown is often not so obvious. With these systems, map products created from
digital data can technically be plotted at any scale, and congestion can readily be removed by simply
using the system’s zoom feature. Nonetheless, the intended purpose of the mapping will still guide the
level of detail presented, and this in turn will dictate photographic scale, compilation scale, and hence
the positional accuracy of features shown.

13-2   Direct Compilation of Planimetric Features by Stereoplotter
In Chap. 12, fundamental operations of stereoscopic plotters were discussed. Regardless of the type of
plotter employed, interior, relative, and absolute orientation (see Secs. 12-6 through 12-8) must be
performed in order. Then compilation of the planimetric and/or topographic features within the
“stereoscopic neat model” (see Sec. 18-7) can begin. Either of two basic methods may be employed in
compiling topographic information with stereoplotters: (1) direct tracing from stereomodels to create
hard-copy maps or (2) compiling digital files of topographic data from which computer-generated



maps are prepared. The first method is described in this section, while the second is covered in Secs.
13-4 through 13-6.

Prior to the existence of digital mapping systems, photogrammetric map compilation was
accomplished exclusively by direct tracing of topographic features and contours from stereomodels.
This process, although still occasionally performed, now has almost completely given way to digital
mapping. In the direct tracing process, to locate a “point” feature such as a utility pole, the floating
mark is placed on the object in the stereomodel, and the corresponding location of the tracing pencil
marks the point’s map location. “Linear” features such as roads and streams, and “area” features such
as lakes and buildings, are drawn by placing the floating mark on the feature at some starting point,
and then tracing the feature by moving the floating mark continuously along or around the object. The
corresponding movement of the tracing pencil on the map sheet simultaneously locates the feature.
While tracing features in this manner, it is absolutely essential that the floating mark be always kept
in contact with the feature being traced; otherwise, its planimetric position will be incorrect. If a
feature is not visible on one photo (or both), the floating mark cannot be properly set. Often when
buildings are traced, the base of the building cannot be seen, and generally the roof edges will be
traced. Slender vertical features such as utility poles can be plotted at either the top or the base, for if
the floating mark is truly in contact with the pole, both will correspond to the same point.

As a general rule in direct compilation, planimetric details are traced first, followed by
contouring. This is so because natural and cultural features have a very significant effect on the
location and appearance of contours (e.g., the V’s of contours crossing streams must peak in the
stream and contours cross roads at right angles). An example of carelessly compiled contours or
planimetry is shown in Fig. 13-1a, while its corresponding correct rendition is shown in Fig. 13-1b.
Also in direct compilation, it is advisable to plot all features of a kind at once (e.g., all roads), before
proceeding to another feature, as this reduces the likelihood of omissions.

 FIGURE 13-1   (a) Inconsistencies between planimetry and contour locations. (b) Consistent renditions
of planimetry and contours.
 

13-3   Direct Compilation of Contours by Stereoplotter
Direct compilation of contours is a difficult operation that takes considerable skill and experience on
the part of the operator. To trace contours, the floating mark is set at the elevation of a desired contour
and is moved within the model until the mark coincides with the apparent terrain surface in the model.
This will occur at any point where the desired contour elevation exists. The operator then moves the
floating mark about the stereomodel as necessary to keep it constantly in contact with the terrain,



while the tracing pencil simultaneously follows the movement and records the contour. During the
tracing of a contour, the operator must continuously look ahead to properly determine the direction in
which to proceed.

In direct tracing of contours, it is recommended that all contours be completely compiled within
a local area of the model, rather than attempt to trace a single contour across the entire model. To
facilitate accurate contouring, the operator should become acquainted with the general shape of the
terrain within the entire model before proceeding. This is usually most conveniently accomplished by
viewing prints of the stereopair in three dimensions, using a stereoscope. Generally, contouring can be
approached in much the same way as the assembly of a jigsaw puzzle. Easier areas and prominent
features are compiled first, and the more difficult detail is filled in later. It can be helpful to initially
locate and trace apparent drainage lines (ditches, swales, etc.) in order to guide the contouring
operation. If necessary, these drainage lines can be subsequently erased during the map editing stage.

Some terrain areas such as flat expanses, regions of shadow, and areas of minimal image texture
present particular difficulty when tracing contours. In these areas, it is sometimes necessary to
determine “spot elevations” and interpolate contours from them. This is helpful because spot
elevations can be read to significantly greater accuracy than direct contour tracing. In areas covered
with trees or tall vegetation, it may be impossible to plot continuous contours. In these areas broken
contours (contour lines plotted in open areas only) may be drawn; otherwise, spot elevations can be
plotted and contours interpolated. Densely vegetated areas occasionally must be field-surveyed.

13-4   Digitizing Planimetric Features from Stereomodels
Features that are typically depicted in topographic mapping are many and varied. In general, however,
in digital mapping any feature can be represented as consisting of: (1) a point, (2) a line (straight or
curved), or (3) a polygon (closed shape). Horizontal and vertical control points, utility poles, and fire
hydrants are examples of features that can be represented by points. Roads, railroads, streams, etc, can
be shown as lines, while parcels of different land ownership or land-use types, large buildings, etc.,
can be represented by polygons.

As noted in Sec. 13-3, map compilation scale dictates the level of detail of the features to be
included. This in turn may affect the manner of representing a particular feature. For example, on a
1:24,000-scale map, an 8 m-wide road would be plotted only 0.3 mm wide, and therefore it would be
appropriately represented as a single line. On the other hand, the same road shown on a 1:600-scale
map would be 13 mm wide, and therefore both edges of the road could be clearly shown without
congestion.

In practice, features can be graphically represented by using different base-classes and sub-
classes. This way, users can either select from predefined classes associated with specific features, or
create their own. For example, a building sub-class is a type of rectangle base-class, and inherits its
properties. That is, it can be represented by two perpendicular pairs of parallel lines and requires only
three points to be defined. Thus, the user can simply select the building class to digitize rectangular
buildings. In addition, the user may choose the rectangle base-class to digitize some other rectangular
feature—such as an outdoor basketball court—that may not be a defined sub-class in the software.
Further division is also possible beyond a two-class hierarchy. For instance, the rectangle class could
be a sub-class of a polygon base-class. Predefined sub-classes typically have different graphical
depictions depending on the features they represent in order to allow differentiation on the map. For
example, while points can be used to define light poles, manholes, signs, and hydrants, each is
assigned its own unique identifying symbol. While the classes described here refer to the shapes that
are drawn during digitization, the features themselves may be grouped by category without regard to



the type of drawing class. The category only relates to the database representation of the feature–such
as in GIS–while the class is used mainly for the digitizing process.

In digital mapping, code identifiers are used to keep track of the many different features that can
be digitized from a stereomodel. Normally all features within one category are given a specific
identifying code (number or letter). Then within that category, individual features may be further
labeled with an additional identifier. Many different coding systems have been developed for
categorizing map features based on type. These systems, while fundamentally similar, differ
according to the primary purpose of the map product. Special considerations may also be required to
fit the needs of individual projects. As an example, suppose an operator is digitizing all structures
within a stereomodel, and in the mapping system being used, this category is identified by the number
3. Now within that category, buildings might be identified with the letter A, bridges with B, dams with
C, retaining walls with D, etc. Thus, a bridge would be identified with a feature code of 3B. The
following feature categories (with typical individual features listed within each category) are
presented only as a general guide. The list is not all-inclusive and may need to be supplemented on a
project-specific basis.

      1.  Nonimage data: coordinate grid, property boundaries, horizontal and vertical control points
      2.  Streets, highways, and related features: edge of pavement, centerlines, curbs, medians, barrier

walls, shoulders, guardrails, parking lots, alleys, driveways
      3.  Other transportation: railroad tracks, abandoned railroads, airport runways and taxiways,

unpaved roads, trails, sidewalks, port facilities, locks
      4.  Structures: buildings, bridges, water towers, dams, fence lines, stadiums, retaining walls,

antennas, concrete slabs, swimming pools
      5.  General land use: cemeteries, parks and recreation areas, agricultural areas, quarries,

stockpiles, landfills
      6.  Natural features: lakes, ponds, rivers, streams, beaches, islands, wetlands, wooded areas,

individual trees, bushes and shrubs, meadows
      7.  Terrain elevation: contours, spot elevations
      8.  Drainage features: ditches and swales, retention basins, culverts, headwalls, catch basins, curb

inlets, storm sewer manholes, flared end sections, berms
      9.  Utilities: utility poles, power lines, telephone lines, transmission lines, substations,

transformers, fire hydrants, gate-valve covers, sanitary manholes
    10.  Signs and lights: traffic signals, streetlights, billboards, street signs
    11.  Project-specific: varies

13-5   Representing Topographic Features in Digital Mapping
Traditionally most maps were traced directly from stereomodels and reproduced in hard copy by some
type of printing process, while today the vast majority of maps are developed using computers and
topographic data that have been compiled by digitizing from stereomodels. Many advantages accrue
from the digital method of extracting topographic information. Perhaps the foremost advantage is that
databases of geographic information systems require data in digital form; and in most cases, if proper
formats and procedures are employed during the process of digitizing stereomodels, the resulting files
can be entered directly without further modification into a GIS database. Other advantages are that
digitized data afford greater flexibility of use. As examples, computerized mapping systems enable
maps to be viewed on a screen, or they can be rapidly plotted in hard-copy form without the tedium of
manual drafting. Furthermore, maps can be plotted using any desired scale and/or contour interval,



and the topographic data can be instantaneously transmitted electronically to remote locations.
Because the information is collected according to feature category or “layer” in the digitizing process,
individual layers can be plotted and analyzed separately, or overlaid with other layers for analyses.
These are just a few of the advantages—there are many others.

The process of digitizing planimetric features from stereomodels is fundamentally the same,
whether the operator is using a digitized mechanical projection stereoplotter , an analytical plotter, or
a softcopy plotter (see Chap. 12). Of course, just as was the case of mapping by direct tracing from
stereomodels, in digitizing data from stereomodels the instrument must be completely and accurately
oriented prior to commencement of the digitizing process. To digitize an object within a stereomodel,
the operator must bring the floating mark in contact with that object, enter the feature code, and then
either push a button or depress a foot pedal. This causes the feature code and its X, Y, Z coordinates to
be instantaneously stored in the computer. When digitizing linear or area features, a number of points
along the line or polygon are digitized. This can be done very rapidly, since after the first point on any
specific feature is identified and digitized, no further feature codes need be entered on that feature. On
these types of features, most operators will pause momentarily when the button or foot pedal is
depressed to ensure that the floating mark is on the desired object when the digitizing occurs. CAD
systems associated with modern plotters provide for grouping of similar features into a specific layer
in the drawing file. Generally, features are compiled in descending order of prominence. Point
features that would appear smaller than about 1 mm at the intended map scale should be represented
by appropriate symbols. Any notes or labels that the compiler feels are necessary to avoid later
misidentification should also be made. Again, a set of paper prints and a stereoscope are essential to
the compiler as an aid in identifying features.

13-6   Digital Elevation Models and Indirect Contouring
Digital representation of elevations in a region is commonly referred to as a digital elevation model
(DEM). When the elevations refer to the earth’s terrain, it is appropriately referred to as a digital
terrain model (DTM). When considering elevations of surfaces at or above the terrain (tree crowns,
rooftops, etc.), it can be referred to as a digital surface model (DSM). Any of these models can be
represented as a regular grid or as a triangulated irregular network (TIN). While a DEM can
technically be an elevation model of anything, in this book the term DEM will be used for elevation
models of the earth’s terrain in either regular grid or TIN form, unless otherwise specified.

In a regular grid DEM, spot elevations are determined for a uniformly spaced array of ground
cells or groundels (See Sec. 9-3). The elevations (Z values) are digitally stored in a computer array.
Figure 13-2 shows a three-dimensional representation of a rectangular DEM. In this figure, lines are
drawn to connect the center points of the groundel array, which, by virtue of their varying Z values,
appear as undulating terrain. Since the z values are stored as an array of numbers, they are compatible
for computer processing using various algorithms. These algorithms include contour generation,
volume and slope calculation, orthophoto generation (see Sec. 13-8), and depiction of three-
dimensional views. Computer algorithms applied to rectangular arrays of elevations tend to be very
straightforward in their implementation. They readily lend themselves to investigations such as
frequency analysis and finite element analysis.



 FIGURE 13-2   Three-dimensional representation of a rectangular DEM.
 

A disadvantage associated with regular grid DEMs is that for large areas of level or uniformly
sloping terrain, a great deal of computer memory is wasted storing highly redundant elevation
information. For example, if a groundel spacing of 1 m is used for a flat area of terrain 100 m2, then
100 × 100 = 10,000 storage locations will be used to represent the elevations. Since the terrain is flat,
all 10,000 values will be the same. More complex data structures such as quadtrees can be used in lieu
of arrays to reduce storage requirements of regular grids; however, their implementation is far more
complicated.

A TIN affords a more efficient representation of terrain in terms of data storage. With a TIN, spot
elevations can be acquired at critical points, which are high points, low points, locations of slope
changes, ridges, valleys, and the like. Once these spot elevations have been collected, together with
their X, Y coordinates, lines are constructed between the points forming a system of triangles covering
the surface. The triangles can be assumed to be planar facets which are sloped in three-dimensional
space. Each triangle side has a uniform slope, and the system of triangles is called a TIN model. The
method generally used to construct the TIN is known as a Delaunay triangulation. In a Delaunay
triangulation, the lines are drawn between points in closest proximity to each other, without any lines
intersecting. The resulting set of triangles has the property that for each triangle, the circle that passes
through the three vertices contains no vertices of any other triangles.

A further generalization of a TIN allows the inclusion of breaklines. Breaklines are lines which
have constant slope and are used where there are discontinuities in the terrain surface, such as streams,
retaining walls, and pavement edges. Within the TIN, a breakline will form the sides of two adjacent
triangles and will have no other lines crossing it. By using breaklines in a TIN, the terrain surface can
be more faithfully represented, and contours generated from the TIN will give a more accurate
portrayal of the surface features.

Figure 13-3 illustrates the concept of using a TIN as a DEM in order to determine contours.
Figure 13-3a shows a contour map, which for purposes of illustration is assumed to accurately
represent a particular terrain area. Note that the figure includes a hill near the left edge, a depression
at the upper left, a steady rise to the upper right, and a stream (AB) which runs from the upper left to
the lower right. Figure 13-3b shows a TIN (dashed lines) formed from a sample of 20 spot elevations
(shown as black dots at all triangle vertices) along with the set of interpolated contours (solid lines).
The contours are formed by interpolating along the sides of the triangles and connecting the
interpolated points with straight lines. (Smooth curves can also be used to approximate the straight-
line contours.) Although the figure gives a nominal depiction of the hill, depression, and rise, the
contours associated with the stream (AB) are not properly represented. In the TIN shown in Fig. 13-3c,
the original 20 spot elevations are still shown, but a breakline has been added to connect the endpoints
(A and B) of the stream. Note that in this figure, none of the TIN lines cross the stream as they did in
Fig. 13-3b. As such, the contours associated with the stream give a much better representation. An



even more accurate terrain representation is shown in Fig. 13-3d. In this figure, 72 spot elevations are
used, in addition to the stream breakline. Note that the shapes and spacings of the contours in this
figure are much closer to those in Fig. 13-3a, although some minor inconsistencies remain.

 FIGURE 13-3   (a) Contour map showing accurate representation of terrain in an area. (b) Contours of
the same area based on a TIN created from 20 data points, but without a breakline along stream AB.
(Note the erroneous contour representations, especially in the area of the stream.) (c) Contours of the
same area based on a TIN with 20 data points, but identifying stream line AB as a breakline. (Note the
improvement in the contours in the area of the stream.) (d) Contours of the same area based on a TIN
created from 72 data points, and with stream line AB identified as a breakline. [Note how well these
contours agree with the accurate representation of (a).]
 

Because certain computational algorithms require the use of regular grids, it is sometimes
necessary to convert a TIN to a regular grid DEM. This can be done by interpolating elevations
between the TIN vertices at the centers of each grid cell. Various methods are available for
performing this interpolation, including nearest neighbor, inverse distance weighting, moving least
squares, surface splines, and Kriging. As its name implies, the nearest-neighbor method simply
assigns the elevation of a grid cell to that of the nearest spot elevation in the TIN. In the inverse
distance weighting approach, elevations at the grid cell locations are computed by a weighted average
of spot elevations, where each weight is inversely proportional to the horizontal distance between the
grid cell center and the spot elevation point. By this approach, spot elevations that are nearer to the
grid cell will contribute more heavily to the weighted average. In the moving least squares approach, a
local polynomial surface z = f(x, y) is fitted to a small set of points nearest the grid cell being



interpolated. Once the polynomial coefficients have been computed by least squares, the z value
(elevation) is computed at the given x, y of the grid cell. The procedure is then repeated for every
additional grid cell, with different polynomial surfaces being computed for each. Surface splines are
mathematically defined functions that generate a smoothly-varying surface that is forced to pass
through each of the spot elevation points. Kriging is a statistical method which involves spatial
correlation of points. The spatial correlation is specified a priori through the use of a variogram which
quantifies the influence a spot elevation will have on points being interpolated. Proper definition of
the variogram is important for generating an accurate interpolation. Figure 13-4 shows a three-
dimensional view of a regular grid which has been interpolated by Kriging, using the spot elevations
(and points along the breakline) of Fig. 13-3d.

 FIGURE 13-4   Three-dimensional view of a regular grid that has been interpolated from the data
points of Fig. 13-3d by Kriging.
 

13-7   Automatic Production of Digital Elevation Models
An important application of softcopy stereoplotters, which relies upon digital image matching, is the
automatic production of digital elevation models. In this process, a set of image points is selected
from the left image and subsequently matched with corresponding points in the right image. The set of
selected points is typically arranged in a nominal grid pattern, which results in a nearly uniform
regular grid DEM. In general, the resulting DEM will differ somewhat from a perfectly regular grid
due to tilt and relief displacements which exist in the images

Figure 13-5 is an illustration of the positions of DEM points within the overlap area of a
stereopair of images. A boundary is chosen for the region in which the DEM points will be selected.
The grid of selected points within the region on the left image is arranged at spacing of dx and dy in the
x and y directions, respectively. Each of these points is matched with corresponding points from the
right image, using image-matching techniques as discussed in the preceding section. Since the ground
is generally not flat, the x parallax of DEM points will not be constant. As can be seen in Fig. 13-5,
this varying x parallax causes the pattern of corresponding points from the right image to differ from a
perfect grid arrangement.



 FIGURE 13-5   Positions of automatically matched DEM points in a stereopair.
 

Once the full set of DEM points has been matched and their object space coordinates calculated,
their three-dimensional positions in the stereomodel can be represented by a set of floating marks
superimposed upon the terrain. If desired, the plotter operator can then view these points in stereo, one
at a time, and adjust the positions of points which do not appear to rest on the terrain. When the
operator is satisfied with all vertical positions, the resulting DEM can be stored in a computer file.
This DEM is then available for additional operations such as automatic contouring or the production
of digital orthophotos, as discussed next.

13-8   Orthophoto Generation
An orthophoto is a photograph showing images of objects in their true orthographic positions.
Orthophotos are therefore geometrically equivalent to conventional line and symbol planimetric maps
which also show true orthographic positions of objects. The major difference between an orthophoto
and a map is that an orthophoto is composed of images of features, whereas maps utilize lines and
symbols plotted to scale to depict features. Because they are planimetrically correct, orthophotos can
be used as maps for making direct measurements of distances, angles, positions, and areas without
making corrections for image displacements. This, of course, cannot be done with perspective photos.
As discussed in Chap. 20, orthophotos are widely used in connection with geographic information
systems, where they serve as planimetric frames of reference for performing analyses, and are also
used for generating layers of information for databases.

Orthophotos are produced from perspective photos (usually aerial photos) through a process
called differential rectification , which eliminates image displacements due to photographic tilt and
terrain relief. The process is essentially the same as standard rectification described in Secs. 10-14 and
10-15, except that it is performed independently at myriad individual, tiny surface patches or
differential elements. In this way, rather than rectify the photograph to some average scale (which
does not correct for relief displacements), each differential element is rectified to a common scale.
Prior to the age of digital photogrammetry, complicated optical-mechanical devices were employed to
produce orthophotos from film diapositives. Several of these are described in the second edition of
this book. Modern orthophotos, however, are produced digitally, Softcopy systems are particularly
well-suited for differential rectification. The essential inputs for the process of differential
rectification are a DEM and a digital aerial photo having known exterior orientation parameters (ω, ϕ,



κ, XL, YL, and ZL). It is also necessary to obtain the digital image coordinates (row and column) of the
fiducials so that a transformation can be computed to relate photo coordinates to digital image
coordinates. A systematic application of the collinearity equations (see Sec. 11-4) is then performed to
produce the orthophoto.

Figure 13-6 illustrates the collinearity condition for a particular groundel point P in the DEM.
The X and Y coordinates of point P are based upon the row and column within the DEM array, and its
Z coordinate is stored in the DEM groundel array at that position. Given the X, Y, and Z coordinates of
point P and the known exterior orientation parameters for the photograph, the collinearity equations
[see Eqs. (11-1) and (11-2)] can be solved to determine photo coordinates xp and yp. These photo
coordinates define the position where the image of groundel point P will be found. Since photo
coordinates are related to the fiducial axis system, a transformation must be performed on these
coordinates to obtain row and column coordinates in the digital image. The transformed row and
column coordinates will generally not be whole numbers, so resampling is done within the scanned
photo to obtain the digital number associated with groundel point P.

 FIGURE 13-6   Collinearity relationship for a DEM point P and its corresponding image p.
 

The process of creating the digital orthophoto requires repetitive application of the collinearity
equations for all the points in the DEM array. Figure 13-7 gives a schematic illustration of the
process. In this figure, two arrays are shown in vertical alignment, where each of the groundels of the
DEM array corresponds one-to-one with a pixel of the orthophoto array. The orthophoto array is
initially empty, and will be populated with digital numbers (shown in the figure as x’s) as the process
is carried out. At each step of the process, the X, Y, Z coordinates of the center point of a particular
groundel of the DEM are substituted into the collinearity equations as discussed in the preceding
paragraph. The resulting photo coordinates are then transformed to row and column coordinates of the
digital aerial photo. Resampling is performed to obtain a digital number, which is then placed into the
corresponding pixel of the digital orthophoto. The process is complete when all pixels of the



orthophoto have been populated with digital numbers.

 FIGURE 13-7   Schematic representation of digital orthophoto production process.
 

If the DEM used does not fully represent features on the ground surface, the resulting orthophoto
can be dramatically distorted. Figure 13-8 shows the effect of DEM accuracy on the resulting
orthophoto. The original photo, prior to orthorectification, is shown in Fig. 13-8a. Figure 13-8b shows
the photo orthorectified with a DEM that does not include the bridge (i.e., elevation is the ground
beneath the bridge), and Fig. 13-8c is the orthophoto resulting from a DEM that takes into account the
height of the bridge above the ground.



 



 



 
FIGURE 13-8   Effect of DEM accuracy on orthorectification.
 

Orthophotomaps prepared from orthophotos offer significant advantages over aerial photos and
line and symbol maps because they possess the advantages of both. On one hand, orthophotos have the
pictorial qualities of air photos because the images of an unlimited number of ground objects can be
recognized and identified. Furthermore, because of the planimetric correctness with which images are
shown, measurements may be taken directly from orthophotos just as from line maps. When digital
orthophotos are stored in a computer in their numeric form, they can be incorporated with a regular
grid DEM having the same ground resolution to produce three-dimensional pictorial views. This is
achieved by assigning the brightness values of the orthophoto pixels to corresponding cells of the
DEM and manipulating the view angle. The result is a three-dimensional view of the terrain with the
image draped over the top, as shown in Fig. 13-9.



 FIGURE 13-9   Three-dimensional pictorial view of terrain obtained by combining a DEM and
orthophoto.
 

13-9   Map Editing
After map manuscripts have been compiled with a stereoplotter, they are passed on to an editor who
provides finishing touches. Since modern stereoplotter manuscripts are compiled in a CAD
environment, the resulting digital files can be used directly by the editor at a computer workstation.
The editor checks the manuscript for completeness and the use of proper symbols and labels.
Endpoints of lines which delineate polygon features are forced to close properly, and buildings are
squared up. Lines which continue between adjacent manuscript sheets are edge-matched so that they
will be continuous. Proper line types (dashed, solid, etc.) are assigned along with appropriate line
thickness. Depending upon project requirements and the features in the mapped area, additional edits
may be performed. In a CAD environment, many of the editing functions can be achieved through
automated processing, particularly edge-matching, closing polygons, and building squaring. After the
manuscripts have been edited, the map should be checked to verify its compliance with the
appropriate accuracy standards.

When the digital manuscript has been edited to its final form, the original stereoplotter
manuscripts form a continuous and seamless composite map of the project area. The corresponding
digital CAD file can be saved on a convenient data storage medium. When individual map sheets are
required, the editor will extract areas of the digital manuscript in a “cookie-cutter” fashion and place
them in an appropriate border and title block. A north arrow, scale bar, legend, notations, etc., are then
placed on the map which can be subsequently plotted at the appropriate scale.
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Problems
  13-1.   Explain the basic differences between planimetric mapping and topographic mapping.

  13-2.   Discuss the relationships between map scale and the level of detail that can be shown on a
map.

  13-3.   Describe the process of using a stereoscopic plotter to create a hard-copy map by directly
tracing planimetric features.

  13-4.   Describe the process of using a stereoscopic plotter to create a hard-copy map by directly
tracing contours.

  13-5.   Why are feature codes necessary in digital mapping?

  13-6.   Describe the general process of digitizing planimetric features from stereomodels.

  13-7.   Cite several advantages of digital mapping over direct tracing of hard-copy maps.

  13-8.   Describe the following terms: (a) DEM and (b) TIN.

  13-9.   What are the slope characteristics that exist for the sides of all triangles of a TIN model?

13-10.   What is Delaunay triangulation?

13-11.   Describe breaklines, and discuss their importance in digital mapping.

http://spatialdata.sam.usace.army.mil/organizations/survey/2002


13-12.   How do orthophotos differ from normal aerial photos?

13-13.   Discuss the similarities and differences between orthophotomaps and line and symbol maps.

13-14.   What is the purpose of the map editing process? Name some specific conditions that are
examined in the process.



CHAPTER 14
Laser Scanning Systems

 

14-1   Introduction
The laser was first manufactured in 1960 and some of its earliest applications included precise
determination of the distance to faraway objects such as the lunar laser-ranging experiments, which
were first carried out in 1962. However, it was not until the mid 1990s that advancements in GPS and
inertial-aided navigation and georeferencing made large-scale mapping with lasers possible. Although
the acronym Light Detection and Ranging (LiDAR) is widely used, the term laser scanning is more
appropriate for describing most of the systems used for mapping. In addition to companies devoted
solely to laser scanning, the complementary nature of laser scan data and aerial photography has led
many companies who specialize mainly in photogrammetry to obtain laser scanning systems. Laser
scanning has many advantages over photogrammetry, albeit with significant tradeoffs. For example, it
is an active system, meaning that it provides its own energy, not relying on the sun to illuminate
objects. This allows laser scanning to be performed at night and to avoid losing data due to sun
shadows. It also has the advantage that it can sometimes penetrate tree canopy, allowing the ground to
be mapped in forested areas. However, airborne laser scanning is at present less precise than airborne
photogrammetric data with current systems yielding precisions in the neighborhood of 10-cm
vertically and 15-cm horizontally under favorable conditions. It relies on georeferencing via airborne
GPS and inertial systems, meaning that satellite configurations play a large role in how accurate the
data is. In addition, laser scanning does not provide the spectral information that photography does,
and the data sets can be unwieldy. These issues have led to the common practice of simultaneously
acquiring both types of sensor data and fusing them to create combined data sets. Figure 14-1 shows
aerial photography “draped” over laser scan data.



 FIGURE 14-1   Combined aerial photography and laser scan data. (Image courtesy of Optech)
 

14-2   Principles and Hardware
The low divergence of laser beams allows one to aim light precisely at small areas. The main principle
behind laser mapping systems is that a laser pulse is transmitted to an object or terrain and its return
signal is detected a split second later. By accurately measuring the time delay between the
transmission and return, and applying the speed of light, the distance from the scanner to the terrain or
object point can be determined as shown in Eq. (14-1). In Eq. (14-1), t is the time between when the
pulse is emitted and when the return is detected, and c is the speed of light (in the atmosphere).
Therefore, the basic sensor hardware for laser mapping systems is composed of a laser emitter, a laser
receiver, and a timing unit.

(14-1)
 

In order to cover large areas with multiple laser pulses, the direction of the laser must be changed
rapidly and precisely. Different scanning mechanisms are used to achieve this including oscillating
mirrors and rotating multifaceted mirrors. Figure 14-2 shows the point pattern from an airborne
oscillating mirror scanning system (left), and that from a rotating multifaceted mirror scanning
system (right). Note the zigzagging pattern generated by the oscillating mirror compared to the
parallel lines from the rotating mirror. The oscillating mirror system leads to smaller point spacing in
the across-flight direction, and larger point spacing in the in-flight direction at the edge of the scan
due to the mirror slowing down to change directions. Some systems modify the pulse rate during
acquisition to compensate for this effect.

 FIGURE 14-2   Scan pattern from an oscillating mirror laser scanning system.
 



Example 14-1
A laser mounted on an airplane emits a pulse that reflects off a target and returns to the sensor in
.0066000 millisecond. Assume that the pulse is aimed directly down to the datum surface, that the
speed of light is 299, 792, 458 m/s, and that the laser is at exactly 1 km above the datum. What is the
object’s height above datum?

Solution

      1.  By Eq.(14-1),

 
      2.  Subtract the distance D from the distance to the datum.

 

Example 14.2
Suppose that in Example 14-1 there is a 5 nanosecond (0.000005 millisecond) error in the timing
device. What will be the error in the calculated object height above datum?

Solution   By Eq. (14-1),

 

14-3   Airborne Laser Scanning
The most common type of laser scanning is airborne laser scanning (ALS). In addition to the laser
scanning mechanism, ALS systems are composed of georeferencing hardware including an inertial
measurement device and a GPS receiver. As the aircraft travels over the survey area scanning the
terrain below, the inertial navigation device periodically records the attitude angles (roll, pitch, and
yaw; or omega, phi, and kappa). In addition, the interfaced GPS receiver is periodically recording the
X, Y, Z  positions of the antenna. After the signals from the three devices are processed and combined,
the laser pulses essentially define vector displacements (distances and directions) from specific points
in the air, to points on the ground. Equation (14-2) shows relationship between point position on the
ground and the orientation and angle of the laser scanner, where: XA, YA, and ZA are the point
coordinates; XS, YS, and ZS are the scanner position coordinates; M is the rotation matrix from the
scanner to the ground system; and α is the pointing angle. Since the laser device can generate pulses at
a very fast rate (thousands of pulses per second), the result is a dense pattern of measured XA, YA ZA

points on the terrain. Figure 14-3 shows an ALS system with scanning and georeferencing hardware.



(14-2)
 

 FIGURE 14-3   Optech Orion airborne laser scanning system. (Image Courtesy of Optech)
 

Similar to photogrammetric flight plans, ALS flights are flown so that overlapping scanned
swaths are produced for the survey area. This is to ensure full coverage of the area, avoiding data gaps
caused by terrain relief and to allow for calibration. Figure 14-4 shows an ALS swath pattern
illustrating the impact of terrain change on swath width. Note that swath width is a function of the
height of the scanner above terrain and the scan angle, the size of the angle swept by the laser. In
addition to overlapping parallel swaths, a common procedure is to fly a few swath lines perpendicular
to the other lines for use in the calibration of the scanning mirror and other hardware.

 FIGURE 14-4   Swath pattern from an ALS system over variable terrain. (Courtesy of RIEGL USA, Inc.;
http://www.rieglusa.com.)
 

Example 14-3
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An airplane carrying an ALS system emits a laser pulse with a pointing angle of α = 5.000° that takes
.0051110 millisecond to reach an object on the ground and return to the sensor. At the same time, an
onboard GPS-INS system measures the position of the laser coordinates as X = 100.00 m, Y = 100.00
m, Z = 1000.00 m, and the orientation as ω = ϕ = κ = 0. What is the location of the object on the
ground?

Solution

      1.  Solve for D using Eq. (14-1).

 
      2.  Solve for XA, XA, ZA using Eq. (14-2). Note that M is the identity matrix because all rotations are

zero and can be removed from the equation.

 

Example 14-4
An ALS system has a pulse rate of 20 kHz, a scan rate (left to right and back) of 50 Hz, a flying height
of 1000 m, and a scan angle of 40°. What is the estimated spacing of pulses along the ground?

Solution

      1.  Calculate the number of pulses per line.

 
      2.  Calculate W, the swath width on the ground.



 
      3.  Calculate pulse spacing.

 

14-4   Terrestrial Laser Scanning
Terrestrial laser scanning (TLS) is usually done using a static platform. That is, as opposed to ALS,
the scanner is set up at a location and scans the survey area from this stationary position. Since there
is no movement of the platform, either the scanner’s head must rotate or an additional mirror must be
used to scan. Figure 14-5 shows a terrestrial laser scanner.

 FIGURE 14-5   RIEGL VZ400 terrestrial laser scanner. (Courtesy of RIEGL USA, Inc.;
http://www.rieglusa.com.)
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TLS data is typically georeferenced by scanning targets with known datum coordinates. The 3D
coordinate transformation (see section C-7) from the scanner system to the datum system is calculated
using the target points, and is then applied to all other points in the scan. Similarly, scans from
different positions can be combined using the same process with common targets between scans. TLS
data may also be georeferenced by fixing a GPS antenna to the scanner itself. In this case, multiple
scans are combined using the method described above, and the positions of the antenna in the
combined scanner system can be used to solve for the transformation from the combined scanner
system to the datum system. Note that you must have a minimum of three scanner setups to use this
method. Another popular method for combining scans is by using surface matching. The set of points
for one area from one scan is compared with the points for the same area in another scan, and the
relative orientation between scans is calculated based on the criteria of how well the scans “fit”
together. A common method for surface matching is the iterative closest point (ICP) algorithm, in
which the relative orientation of two scans is iteratively updated towards a solution criterion that the
sum of the distance between paired points from different scans is minimized.

 FIGURE 14-6   RIEGL VMX450 mobile laser mapping system. (Courtesy of RIEGL USA, Inc.;
http://www.rieglusa.com.)
 

Terrestrial scanning may also be collected using a mobile platform. In this case, similar to aerial
mapping, an onboard GPS receiver and inertial system must be used. Mobile TLS combines the ability
of static TLS to collect 3D data from a ground perspective with the ability of ALS to collect data over
large areas in a short amount of time. Since it uses direct georeferencing, it avoids the need for control
observations—a major limitation of its static counterpart. However, the data from mobile TLS is
generally much less accurate than static, and results are highly dependent on the visibility of satellites.
Mobile TLS is mostly used for mapping urban streets and highways; however, as more sophisticated
processing is developed it is expected to be used in a wider range of applications.

http://www.rieglusa.com


14-5   Laser Scan Data
Laser scan data consists of sets of 3D coordinates called point clouds. Because of the high rate of
collection, the size of these point clouds can contain millions of coordinates. Since the laser pulse can
penetrate through certain types of vegetation and other objects, each pulse may yield multiple returns.
For instance, when a pulse is emitted, a portion of it may hit leaves at the top of a tree and return to
the sensor, the remaining pulse may strike a limb on the same tree and return to the sensor, and the
rest of the pulse may hit the ground and reflect back to the sensor. These multiple returns are each
recorded. Figure 14-7 illustrates multiple returns from a single pulse.

 FIGURE 14-7   Multiple returns from a single laser pulse.
 

After the initial processing of the point cloud to determine the real-world, datum coordinates of
the points, operations may be performed on the data to provide specific information sought by the
user. For instances, a common procedure is to filter the data so that only last returns are used. This
results in a bare-earth DEM, an exceptional example of the advantage of laser scanning to penetrate
canopy. Figure 14-8a shows before and b shows after images of a filtered point cloud. The data is also
commonly interpolated to create a gridded DEM. This DEM can be used to create contour maps and
other topographic products.



 FIGURE 14-8   Unfiltered and filtered ALS data. (Image Courtesy of Optech.)
 

Laser scanning systems can be classified as either discrete or full-waveform with respect to how
returns are recorded. Discrete sensors record the ranges for each return, while full waveform sensors
record a quantized waveform of the returning echo. Using full waveform sensors allows for the
extraction of extra information from the object being scanned like surface roughness, and can
facilitate the filtering of terrain with short vegetation. The major downside to full-waveform systems
is the immense amount of data that is recorded. Similarly, the intensities, or the strengths of the
returning signals, are usually recorded and provide even further information about the scanned object
and can be used to aid in classification of the data.

14-5   Error Evaluation
The accuracy of the position of 3D points collected by ALS is most affected by the precision of the
processed GPS data. As better kinematic GPS algorithms emerge, accuracy is expected to increase.
Although a nominal accuracy is associated with ALS data, the discrimination of the height of objects



that are close together can be problematic due to the footprint, or laser beam diameter on the ground.
In addition to the footprint of the laser, the pulse length can contribute to ambiguity in ALS data. This
is particularly an issue with getting bare earth data from areas with low vegetation. For example, if a
pulse is 3 m long, and there is vegetation on the ground that is 1.5 m high, there will be an overlap in
the returns from the vegetation and the ground. The convolution of these returns can cause a bias in
the determination of the ground (second return) height. The use of full waveform sensors can help
alleviate this problem.

Similar to airborne photogrammetry using direct georeferencing, boresight and leverarm
calibrations must be found to get accurate results in ALS, and contribute significantly to errors in the
data if they are coarsely resolved. There may also be a scaling error of the angle traversed by the
scanning mechanism. In other words, there may be errors stemming from the device that records the
pointing angle of the laser beam.
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Problems
  14-1.   Discuss the differences between laser scanning and photography and explain the benefits of
collecting both at the same time.

  14-2.   What are some unique properties of lasers that make them useful for measuring distances?

  14-3.   Compare oscillating mirror to rotating multifaceted mirror scanning devices by listing
advantages and disadvantages of each.

  14-4.   A laser mounted on an airplane emits a pulse that reflects off a target and returns to the sensor



in 0.0062003 millisecond. Assume that the pulse is aimed directly down to the datum surface, that the
speed of light is 299, 792, 458 m/s, and that the laser is at exactly 1.2 km above the datum. What is the
object’s height above datum?

  14-5.   Repeat Prob. 14-4, except the return time is 0.00054923 millisecond, and the laser is at 1.5 km
above datum.

  14-6.   An airplane carrying an ALS system emits a laser pulse with a pointing angle of α = 14.723°
that takes 0.0051245 millisecond to reach an object on the ground and return to the sensor. At the
same time, an onboard GPS-INS system measures the position of the laser coordinates as X = 100.00
m, Y = 100.00 m, and Z = 1000.00 m, and the orientation as ω = Φ =κ = 0°. What is the location of the
object on the ground?

  14-7.   Repeat Prob. 14-6, except the orientation angles are ω = 0.51224°, ϕ = – 0.05992°, κ
=178.6729°.

  14-8.   Discuss the assumptions that are made about the relative location of the laser emitter and
laser sensor in Probs. 14-4 through 14-7.

  14-9.   An ALS system has a pulse rate of 33 kHz, a scan rate (left to right and back) of 70 Hz, a
flying height of 600 m, and a scan angle of 40°. What is the estimated spacing of pulses along the
ground?

14-10.   Repeat Prob. 14-9, except the pulse rate is 167 kHz, the scan rate is 100 Hz, the flying height
is 1100 m, and the scan angle is 50°.



CHAPTER 15
Fundamental Principles of Digital Image Processing

 

15-1   Introduction
Digital image processing in general involves the use of computers for manipulating digital images in
order to improve their quality and/or modify their appearance. In digital image processing, the digital
number (see Sec. 2-12) of each pixel in an original image is input to a computer, with its inherent row
and column location. The computer operates on the digital number according to some preselected
mathematical function or functions, and then stores the results in another array which represents the
new or modified image. When all pixels of the original image have been processed in this manner and
stored in the new array, the result is a new digital image.

Many different types of digital image processes can be performed. One type falls under the
general heading of preprocessing operations . These are generally aimed at correcting for distortions
in the images which stem from the image acquisition process, and they include corrections for such
conditions as scanner or camera imperfections and atmospheric refraction. These procedures are
discussed in Chap. 4. Another type of digital image processing, called image enhancement, has as its
goal, the improvement of the visual quality of images. Image enhancement makes interpretation and
analysis of images easier, faster, and more accurate; and thus it can significantly improve the quality
of photogrammetric products developed from digital images, and reduce the cost of producing them.
Digital orthophotos in particular benefit significantly from the improved image quality that results
from image enhancements.

A third type of digital image processing, called image classification, attempts to replace manual
human visual analysis with automated procedures for recognizing and identifying objects and features
in a scene. Image classification processes have been widely used in a host of different interpretation
and analysis applications, as well as in the production of a variety of thematic maps. They are also
used in automated soft copy mapping systems (see Chap. 12). A final type of digital image processing,
data merging, combines image data for a certain geographic area with other geographically referenced
information in the same area. The procedures may overlay multiple images of the same area taken at
different dates—a technique which is very useful in identifying changes over time, such as monitoring
a forest fire or following the spread of a disease in a certain tree species. The procedures can also
combine image data with nonimage data such as DEMs, land cover, and soils. These types of digital
image processing are extremely important in the operation of geographic information systems.

In this chapter, some concepts that are fundamental to digital image processing are presented,
and basic procedures for a few of the more common types of digital image processes are introduced.
Examples are given to illustrate their effects.

15-2   The Digital Image Model
To comprehend the subject of digital image processing, an understanding of the concept of the digital
image model is useful. In a mathematical sense, a digital image model can be considered as a
mathematical expression which yields image density as a function of x, y (row, column) position. This
is analogous to a regular grid DEM which yields elevation of a terrain surface as a function of X, Y
position.



Digital images are imperfect renditions of the object scenes they portray. Their imperfections
stem from a host of sources, including the imaging system, signal noise, atmospheric scatter, and
shadows. The primary degradation of an image is a combined systematic blurring effect resulting
from aberrations of the lens, resolution of the recording medium (e.g., CCD Array/film), and, to some
extent, atmospheric scatter. The effect of these combined factors can be specified in terms of the
point-spread function. A point-spread function can be thought of as the blurred image that would
result from a perfect point source of light such as a star. This point spread function can be represented
as a mathematical expression which models the systematic image imperfection, and which was
applied to the ideal image through a process known as convolution. (The subject of convolution in
image processing is discussed in Sec. 15-5, and examples are given.)

The cumulative effect of the systematic image degradations can be represented in a general sense
by

(15-1)
 
In Eq. (15-1), I(x, y) is the actual image model as represented by the digital image, O(x, y) is the
theoretical ideal image model of the object, P(x, y) is the point-spread function, N(x, y) is signal noise,
and * (asterisk) indicates the convolution operation. Figure 15-1 illustrates convolution of the ideal
image model by the point spread function. Notice how the high frequency features in the original
object are are smoothed in the output image. Spatial frequency is explained in the next section. One
goal of image processing is to negate the effects of image noise and the point-spread function to
recover the theoretical ideal image.

 FIGURE 15-1   The effect of convolution of an ideal image with the point spread function.
 

While there are techniques known as optimal filters that can negate these detrimental effects to
some extent, their implementation is complex and requires an in-depth knowledge of signal



processing theory. On the other hand, simpler methods are also available which can at least partially
compensate for these effects. Some of these methods can reduce image noise, and others can reduce
the blurring caused by the point-spread function through edge enhancement.

15-3   Spatial Frequency of a Digital Image
Section 2-12 gave a general description of digital images and described the processes by which they
are produced. It introduced the concepts of pixels as discrete samples of the image at a specific
geometric resolution, as well as the quantization of brightness values. These are important concepts in
understanding digital image processing. Another notion that is key to the comprehension of digital
image processing is that of spatial frequency (see Sec. 3-14). Objects (e.g., terrain features) have a
virtually unlimited range of spatial frequencies. Imagine, for example, an ideal image of a cornfield,
where the rows are nominally spaced 1 m apart. On a small-scale image (e.g., high-altitude air photo),
the variations from light to dark to light, etc. (corresponding to corn, soil, corn, etc.) might be barely
discernible. The spatial frequency at object scale associated with this variation would be 1 cycle per
meter. A medium-scale image (e.g., low-altitude air photo) of the same cornfield might reveal
variations from light to dark between individual leaves of the plants. If the leaves were nominally
spaced 10 cm (0.1 m) apart, the corresponding spatial frequency would be 1 cycle per 0.1 m, or 10
cycles per meter. A large-scale image (e.g., close-up photo taken with a handheld camera) might
reveal variations associated with individual kernels on an ear of corn. If the kernels were nominally
spaced 5 mm (0.005 m) apart, the corresponding spatial frequency would be 1 cycles per 0.005 m, or
200 cycles per meter. If an individual kernel were viewed under a microscope, even higher spatial
frequencies would be discernible. The point of this example is that a multitude of different
frequencies exists in objects in nature.

Although there are many different frequencies in a natural scene, most of the higher frequencies
will be lost when a digital image is acquired. This occurs whether the image is exposed directly by a
digital sensor or is obtained by scanning a film-based photograph. In the process of obtaining digital
images, brightness variations that occur within an individual pixel will be averaged together, thus
attenuating high frequencies. This is a consequence of the physical size of the pixel being sampled.
The highest frequency that can be represented in a digital image is the Nyquist frequency, which is
one-half the sampling frequency. As an example, in a satellite image with pixels having a 10-m
ground resolution, the sampling frequency is 1 sample per 10 m, or 0.1 sample per meter. The highest
spatial frequency (Nyquist frequency) that can be represented in this image is therefore 0.05 cycles
per meter, or 1 cycle per 20 m. Note that 1 cycle corresponds to two samples. Figure 15-2 illustrates
the effect of using different sample frequencies to represent a given signal. The signal frequency is
eight cycles per unit. Notice that a sampling frequency of 16 samples per unit is the minimum to fully
represent the signal. The Nyquist frequency is the upper limit for the modulation transfer function (see
Sec. 3-13). This is illustrated in Fig. 15-3. Since the sampling frequency in the figure is 160 samples
per mm, the modulation transfer function is not applicable above the Nyquist frequency, 80 cycles per
mm.



 FIGURE 15-2   The effect of different sampling frequencies in the depiction of a signal with a
frequency of eight cycles per second.
 

 



FIGURE 15-3   Relationship between the Nyquist frequency and the modulation transfer function.
 

The relationship between the variations of digital numbers in a digital image and the spatial
frequencies they represent can be precisely quantified in a mathematical sense. Often, certain
characteristics of a digital image are more logically described in terms of spatial frequency than by
digital numbers in an image. In sections that follow, explanations will be given which should help to
clarify this relationship. However, a full understanding of the concept will require substantial study in
the area of signal processing theory, which is beyond the scope of this text.

15-4   Contrast Enhancement
Contrast enhancement is a commonly employed type of digital image processing operation. As
discussed in Sec. 2-12, when each pixel of a scene is quantized, a digital number that corresponds to
the brightness at its location is assigned. In an area where the overall scene brightness is low (e.g., a
shadow region), the majority of the pixels will have low values. In such cases, the contrast between
features will be diminished. To get an impression of the overall brightness values in an image, it is
useful to produce a histogram of the digital numbers. The histogram is a plot of digital number on the
abscissa versus number of occurrences on the ordinate. As an example, if a digital image has 1907
pixels having a digital number (DN) of 29, the histogram will show an ordinate of 1907 at the abscissa
of 29. Figure 15-4a shows a small portion of a digital image which is in the shadow of a building, and
Fig. 15-4b shows its corresponding histogram of digital numbers. The image contains a sidewalk and a
bench which are barely noticeable because of the low contrast caused by the shadow. Notice from the
histogram that the majority of digital numbers falls in the range of 20 to 65, even though the available
range is 0 to 255. This indicates that when the image is displayed, the contrast among features in this
area will be low, as is certainly evident in Fig. 15-4a.

 FIGURE 15-4   (a) Digital image of an area in a shadow. (b) Histogram of digital numbers from the
image.
 



A simple method of increasing the contrast is to apply a linear stretch. With this operation, the
digital numbers within a certain range (e.g., from 20 to 65) are linearly expanded to the full available
range of values (e.g., from 0 to 255). The effect of a linear stretch on the image of Fig. 15-4a is
illustrated in Fig. 15-5a. Its associated histogram is shown in Fig. 15-5b. Notice in this histogram that
the digital numbers have been expanded (stretched) so as to encompass the full available range (0 to
255). As can be seen in Fig. 15-4a, the effect of this linear stretch is enhanced contrast, making the
sidewalk and bench more apparent.

 FIGURE 15-5   (a) Digital image from Fig. 15-4a after linear stretch contrast enhancement. (b)
Histogram of digital numbers from the image after linear stretch.
 

A more complex method of increasing the contrast is to apply histogram equalization. The
concept behind histogram equalization is to expand the digital numbers in a nonlinear fashion across
the available range so that the values are more evenly distributed. The effect of histogram equalization
on the image of Fig. 15-4a is illustrated in Fig. 15-6a. Its associated histogram is shown in Fig. 15-6b.
Notice from this histogram that the numbers are more evenly distributed, particularly at the high end
of the digital number range. Note also that the histogram-equalized image of Fig. 15-6a has even
greater contrast than that of the linear stretched image, making the sidewalk and bench even more
pronounced.

 FIGURE 15-6   (a) Digital image from Fig. 15-4a after histogram equalization contrast enhancement.



(b) Histogram of digital numbers from the image after histogram equalization.
 

15-5   Spectral Transformations
As discussed in Sec. 15-3, digital images capture information at various spatial frequencies. Digital
images in their native form exist in the spatial domain. The term spatial domain refers to the concept
that the coordinates of pixels in the image relate directly to positions in the two-dimensional space of
the image. Through certain mathematical operations, images can be converted from the spatial domain
to the frequency domain, and vice versa. A digital image which has been converted to the frequency
domain has pixels whose positions (row and column) relate to frequency instead of spatial locations.
Images in the frequency domain no longer have visibly recognizable features as spatial domain
images do. They are an abstraction of the original spatial image; however, they do contain the entire
information content of the original. In the frequency domain, the spatial frequencies inherent in the
native image are represented by measures of amplitude and phase for the various frequencies present
in the image.

The most commonly used method for converting a digital image to the frequency domain (or vice
versa) is the discrete Fourier transform (DFT). This process is roughly analogous to conversion
between geodetic and geocentric coordinates (see Sec. F-3). Converting from geodetic to geocentric
coordinates changes the representation of a point’s position from latitude, longitude, and height; to X,
Y, and Z. In an analogous fashion, the DFT converts the brightness values from a (spatial domain)
digital image to a set of coefficients for sine and cosine functions at frequencies ranging from 0 to the
Nyquist frequency. In an additional step, amplitude and phase information can be obtained from these
sine and cosine coefficients. A more detailed explanation of the DFT requires the use of complex
numbers, which is beyond the scope of this text.

The discrete Fourier transform has become a useful tool for analyzing digitally sampled periodic
functions in one, two, or even more dimensions. (Note that, as described in Sec. 15-2, a digital image
is a two-dimensional function.) A particularly efficient implementation of the discrete Fourier
transform is the aptly named fast Fourier transform (FFT). Since its discovery and implementation in
the 1960s, it has enabled discrete Fourier transforms to be computed at a greatly enhanced speed. This
greatly enhanced computational speed has led to wider use of the Fourier transform as an image
processing tool.

Figure 15-7a shows a digital satellite image of a portion of Gainesville, Florida, with its Fourier
transform (amplitudes only) shown in Fig. 15-7b. In Fig. 15-7b, greater amplitudes correspond to
brighter tones, and lesser amplitudes correspond to darker tones. This Fourier transform exhibits a
star-shaped pattern which is typical of two-dimensional transforms of urban scenes. The lowest spatial
frequencies are represented at the center of the star with frequency increasing with increasing distance
from the center. It can be seen from Fig. 15-7b that lower frequencies have greater magnitudes than
higher frequencies. The figure also shows discernible spikes radiating from the center. Those radiating
in vertical and horizontal directions are due to discontinuities associated with the edges of the image,
whereas the spikes oriented approximately 10° counterclockwise are due to the edges associated with
the primary streets and buildings in the image.



 FIGURE 15-7   (a) Digital satellite image of Gainesville, Florida. (b) Fourier transform. (Courtesy
University of Florida.)
 

Certain operations are easier to accomplish in the frequency domain than in the spatial domain.
For example, assume a digital sensor had an electrical problem which caused an interference pattern
in the image as illustrated in Fig. 15-8a. Conversion of this contaminated image from the spatial to the
frequency domain reveals high amplitudes for the particular frequencies which contributed to the
interference, as shown in Fig. 15-8b. The coefficients corresponding to the sine and cosine terms for
those frequencies can be changed from the high values to zero values as illustrated in Fig. 15-8c, thus
eliminating the interference in the frequency domain image. To view the image, an inverse Fourier
transform would then be applied to the modified frequency image to convert back to the spatial
domain, as illustrated in Fig. 15-8d. Since the systematic interference was eliminated in the frequency
domain, it is no longer present in the spatial domain image. The interference removal was not perfect,
however, as can be seen in the subtle interference patterns which remain in Fig. 15-8d.



 FIGURE 15-8   (a) Gainesville image with interference noise. (b) Fourier transform. (c) Fourier
transform with high-frequency interference eliminated. (d) Cleaned image after inverse Fourier
transform of (c). (Courtesy University of Florida.)
 

As mentioned above, certain mathematical operations are easier to compute in the frequency
domain than the spatial domain. Another such operation is convolution. This process involves two
functions: the signal (e.g., digital image) and the response function. An example of a response
function is the mathematical representation of the effect that a real imaging system imparts to an ideal
image to produce the actual image (i.e., the point-spread function). The two functions are convolved,
which will apply the “smearing” effect of the response function to the signal. Depending on the form
of the response function, the convolution will have the effect of filtering out certain high frequencies
from the image. In the absence of noise, the inverse operation deconvolution can be applied to an
image that has been affected by a known response function, to reconstruct the high frequencies which
were lost. Deconvolution may be done to remove the blurring effect of the point-spread function (see
Sec. 15-2) in order to recover the ideal image from an imperfect real image. Deconvolution should be
done with caution, however, since it can be highly sensitive to image noise.

Another operation which is easy to compute in the frequency domain is correlation. Correlation
also involves two functions, which can both be assumed to be signals (e.g., digital images).



Correlation provides a measure of the similarity of two images by comparing them while
superimposed, as well as shifting an integral number of pixels left, right, up, or down, all with one
simultaneous operation. Correlation can be useful in matching patterns from one image that
correspond to those of another image. Pattern matching provides the backbone of softcopy mapping
systems.

Fourier transforms, while probably the best known, are not the only image transformations
available. Another transformation is the wavelet transform. Wavelets are types of functions
characterized by an oscillation over a fixed interval. They can be used to represent an image in a
similar manner as the Fourier transform. In practice, a “mother wavelet” serves as a template for
several “child” wavelets, which are scaled and translated to match the frequencies in the rows and
columns of an image. Since all that is needed to represent an image are the scale and translation
parameters, wavelets can reduce the amount of storage space for an image by eliminating the
coefficients of rarely used frequencies. Thus, wavelets are useful in image compression.

Another useful transformation is the Hough transform. The Hough transform is primarily used
for joining discontinuous edges in an image. It can be highly useful for reconstructing linear and
circular features from raster images, where the edges have breaks in them. Details of these transforms
are beyond the scope of this text; however, references cited at the end of this chapter can be consulted
for further information.

Figure 15-9 shows a first-level wavelet decomposition. In the upper left corner is an image at half
its original resolution (low frequency components). The three other images contain the high frequency
components removed when decreasing the resolution. The upper-right hand image contains the high
frequencies components in the horizontal direction, the lower-left hand image contains the
components associated with high frequencies in the vertical direction, and the lower-right hand image
contains the components for diagonal high frequencies. These four sub-images can be used to
perfectly recreate the image in its original resolution. The full wavelet transformation entails
iteratively reducing the resolution of previous-level images and storing the higher frequency
components until the lower resolution image is one pixel. Similar to the Fourier transform, wavelets
also allow the smoothing of imagery by withholding unwanted frequencies when recreating an image.
Wavelets can also be used in many other image processing algorithms such as edge detection.



 FIGURE 15-9   The first level of wavelet decomposition for an aerial image.
 

15-6   Moving Window Operations
As mentioned in Sec. 15-5, the Fourier transform is highly effective for performing convolution of a
digital image with a response function. A simpler method known as the moving window can also be
used for performing convolution. The moving window is particularly useful when the response
function is highly localized. For example, a two-dimensional response function may consist of a 3 × 3
submatrix of nonzero terms contained within a large array which has zero terms everywhere else.
When convolving using the Fourier transform, the image and response function must have the same
dimensions, which can lead to inefficiency when the vast majority of terms in the response function
are equal to zero. In cases such as this, the moving window can be used efficiently.

The moving window operation has two primary inputs: the original digital image and a localized
response function known as a kernel. The kernel consists of a set of numbers in a small array, which
usually has an odd number of rows and columns. The kernel is conceptually overlaid with a same-size



portion of the input image (image window), and a specific mathematical operation is carried out. The
value resulting from this operation is placed in the center of the corresponding location in the output
image, the kernel is shifted by one column (or row), and another value is computed. This procedure is
repeated until the entire output image has been generated. Figure 15-10 illustrates one step of the
procedure. In this figure, the 3 × 3 kernel is centered on pixel 3, 4 (row = 3, column = 4) in the input
image. After the convolution is performed, the result is placed in pixel 3, 4 of the output (convolved)
image. The kernel is then shifted so that it is centered on pixel 3, 5, and the convolution is repeated.
When convolving pixels at the edge of the original image, the kernel will extend outside the image
boundary. Under the assumption that the image is a periodic function, the kernel values that extend
beyond the image will “wraparound” so as to overlay with image pixels at the opposite side of the
image. The wrap-around effect can be visualized by imagining exact copies of the image to exist
above, to the right, below, to the left, and diagonally away from each of the four corners of the
original image. This is the same result that would have occurred if the Fourier transform had been
used to perform the convolution.

 FIGURE 15-10   Moving-window image convolution.
 

The mathematical operation of convolution is accomplished through a series of multiplications
and additions. For example, the convolution result depicted in Fig. 15-10 is computed by

(15-2)
 
In Eq. (15-2), the k values are the individual kernel elements, the I values are digital numbers from the
input image with the appropriate row and column indicated by their subscripts, and C34 is the
convolution result which is placed at row = 3, column = 4 in the output image.



Perhaps the simplest form of convolution kernel is one that computes the average of the nearby
pixels. This type of convolution is known as a low-pass filter, so called because the averaging
operation attenuates high frequencies, allowing low frequencies to be passed on to the convolved
image. The kernel values used in a simple 3 × 3 low-pass filter are shown in Eq. (15-3).

(15-3)
 
In this equation, K is the kernel matrix, which in this case has all elements equal to . Convolution of
this kernel matrix with a corresponding 3 × 3 image submatrix is equivalent to computing a weighted
average of the digital numbers within the submatrix. Notice that the sum of the elements in this kernel
matrix equals 1, which is appropriate when computing a weighted average. In fact, elements of a
kernel can be considered to be the weights used in computing a weighted average. If the sum of the
elements of the kernel matrix does not equal 1, the convolution result can be divided by the kernel’s
sum before placement into the output image.

Example 15-1
Given the following convolution kernel K and the matrix of digital numbers D from a 5 × 5 image,
compute the convolved image C, using the moving window approach.

 
Solution

      1.  Create the periodic wrap-around effect by adding an extra row and column from the imaginary
copies of the image surrounding the original image.

 
      2.  Convolve at each 3 × 3 position of the moving window. Calculation of the first two elements

will be shown as examples.



 
the remaining values are

 
The result of a low-pass filter convolution is illustrated in Figs. 15-11a and b. Figure 15-11a

shows the original image of cars in a parking lot. A low-pass filter was applied using a 5 × 5
convolution kernel which computed a simple average, resulting in the image of Fig. 15-11b. Notice
that the image of Fig. 15-11b now appears somewhat blurred since the highest-frequency detail has
been filtered out from the original image. By applying kernels of larger size (say, 7 × 7 or 9 × 9) a
wider range of high-frequency information will be filtered from the image. The ultimate limit in
kernel size would be the same as that of the original image. Such a convolution would result in all
pixels of the output image having the same value—the overall average of digital numbers from the
input image. In that case, detail at all frequencies will have been filtered out, leaving a uniformly gray
image.

 FIGURE 15-11   (a) Parking lot image. (b) Parking lot image after applying a low-pass filter.
 

The intentional blurring of an image as the result of applying a low-pass filter may seem like a
counterproductive operation. After all, high-frequency detail assists in identifying features and
measuring the positions of their edges. The method could serve as a simple high-frequency noise



filter, but there are better methods available for this purpose. However, another use for low-pass
filtering is to employ the process as a precursor to a high-pass operation. By performing a pixel-by-
pixel subtraction of the low-passed image from the original image, the result will give the high-
frequency detail which was filtered out in the low-pass operation. Since subtraction can yield negative
numbers which are inconvenient to deal with in a digital image, the absolute value can be taken after
each subtraction. Figure 15-12 shows the high-pass filtered result from subtracting the digital numbers
of Fig. 15-11b from those of Fig. 15-11a and taking the absolute value. As is apparent from the figure,
this simple high-pass filter can be used to detect edges in the original image.

 FIGURE 15-12   Parking lot image after application of a simple high-pass filter.
 

Moving window operations can be used to perform other useful operations, such as noise
filtering. One such noise filter method is known as median filtering. In this approach, a convolution is
not performed in the normal fashion. Rather, a 3 × 3 moving window is passed through the input
image, and the 9 pixels in the immediate neighborhood are extracted at each step. The nine digital
numbers are then sorted, and the median (middle) value is placed in the corresponding location in the
output image. By using the middle value rather than the average, the median filter will not be sensitive
to any extremely high or low value which may be the result of image noise. The result of median
filtering is shown in Figs. 15-13a and b. Figure 15-13a shows the same image of a parking lot shown
in Fig. 15-11a, except that for purposes of this example, random “salt and pepper” noise has been
added. After the median filter operation is applied, the image of Fig. 15-13b results. Note that the
noise has indeed been eliminated, at the expense of a subtle loss of high-frequency information.
Median filters are useful for removing many forms of random noise, but are not as effective at
removing systematic noise.



 FIGURE 15-13   (a) Parking lot image with noise. (b) Parking lot image after application of median
filter.
 

Another class of operations which uses the moving window approach is edge detection. Earlier in
this section, a simple form of edge detection based on high-pass filtering was presented. Other
methods exist for edge detection, and two specific ones are presented here: the laplacian and Sobel
operators.

The laplacian operator is a convolution using a kernel which has values corresponding to the
shape of the function shown in Fig. 15-14, except that it extends in two dimensions. In Fig. 15-14, note
that at the center, the laplacian starts with a positive value and drops off to negative values at a certain
distance from the center. The effect of this type of kernel is to amplify the differences between
neighboring digital numbers which occur at an edge. If the kernel values (weights) are chosen so that
their sum is equal to zero, the laplacian will result in a high-pass operation, with the lower frequency
information filtered out. The result will be an image which contains edge information at the
corresponding high frequency. By using a larger laplacian kernel which is flatter and wider, edge
information at a particular frequency will be passed to the output image, resulting in a bandpass
image. A bandpass image is an image which contains frequencies within a specific range only.
Frequencies outside the range (band) are not present in the bandpass image. Note that since the
laplacian kernel contains negative values, the convolution result can be negative, so the absolute value
should be taken if the result is to be displayed.

 FIGURE 15-14   Laplacian weighting function.
 



The results of two laplacian convolutions on the parking lot image of Fig. 15-11a are shown in
Figs. 15-15a and b. The convolution kernel used for Fig. 15-15a has the form shown in Eq. (15-4), and
the kernel used for Fig. 15-15b has the form shown in Eq. (15-5). Note that the sum of the elements
for each of these kernels is equal to zero.

(15-4)
 

 FIGURE 15-15   (a) Parking lot image after convolution with 3 × 3 laplacian kernel. (b) Parking lot
image after convolution with 5 × 5 laplacian kernel.
 

(15-5)
 
Notice from Fig. 15-15a that the laplacian operation has enhanced the highest frequencies while
filtering out all other frequencies. The resulting edges correspond to the highest frequencies and
barely contain recognizable information. Since a wider laplacian kernel was used to produce Fig. 15-
15b, the edges that were detected correspond to frequencies that are slightly lower than those of Fig.
15-15a. Notice that the outlines of the cars are readily discernible, as well as the lamppost and its
shadow.

The laplacian edge detector is not sensitive to the orientation of the edge that it detects. A
different edge detection operator, the Sobel, is capable of not only detecting edges, but determining
their orientation as well. This is accomplished by using a pair of kernels (an x kernel and a y kernel) in
the convolution. The forms of the x and y kernels are given in Eqs. (15-6) and (15-7), respectively.



(15-6)
 

(15-7)
 

Convolution by the two kernels at a specific window location gives the x component of the edge,
Sx, and the y component of the edge, Sy. From these two convolution results, the magnitude and
direction of the edge can be computed by Eqs. (15-8) and (15-9), respectively.

(15-8)
 

(15-9)
 
Application of the Sobel edge detection operation to the parking lot image results in the magnitude
image shown in Fig. 15-16. Notice that the edges defining the cars and their shadows are well defined,
as are the edges defining the lamppost and its shadow.

 FIGURE 15-16   Parking lot image after application of Sobel edge detection.
 

From the examples given on this and the previous page, it can be seen that the size and
composition of the kernels applied in digital image processing have a major bearing upon the results
achieved, and they also create many interesting possibilities.



15-7   Multiscale Representation
In the preceding section, bandpass filters were discussed. Images that result from a bandpass filter
contain edge information that corresponds only to the range of frequencies in the bandpass image. By
using filters which pass lower ranges of frequencies, low-frequency (small-scale) edges can be
detected. The effect of detecting edges at different scales (frequencies) can be seen in Figs. 15-17a, b,
and c. Figure 15-17a is the result of performing a simple average convolution with a 3 × 3 kernel on
the parking lot image, and subtracting the convolved image from the original. Note that this image
contains a great deal of large-scale (high-frequency) edge information.

 FIGURE 15-17   (a) Large-scale edge information from parking lot image. (b) Edge information at a
smaller scale. (c) Edge information at a still smaller scale.
 

Figure 15-17b is the result of two convolutions, followed by a difference. The first convolution is
the same as that used to produce Fig. 14-17a, i.e., a simple average convolution with a 3 × 3 kernel.
Assume that the original parking lot image is image I and the result of the first convolution gives
image I3. The second convolution is performed on image I3 using a simple average convolution with a
5 × 5 kernel, resulting in image I3,5. Finally, image I3,5 is subtracted from image I3, resulting in Fig. 15-



17b. Notice that this figure contains edge information at a smaller scale (lower frequency) than that of
Fig. 15-17a. Notice also that the edges corresponding to the roof rack on the vehicle at the lower left
are still discernible.

The last image, Fig. 14-17c, is the result of three convolutions followed by a difference. Starting
with image I3,5 which has been convolved twice, an additional convolution is performed using a 7 × 7
kernel (simple average), resulting in image I3,5,7. Finally, I3,5,7 is subtracted from image I3,5, resulting in
Fig. 15-17c. In this figure, edges of a still smaller scale (lower frequency) have been detected. Notice
that in this figure, the edges associated with the roof rack have essentially disappeared.

This method of obtaining multiscale representations of edges is rather simplistic, but serves as an
introduction to the concept. Other approaches such as those that employ the wavelet transform can
produce multiscale representations with better resolution. The wavelet transform is often used to
extract multiscale features (edges) for use in feature recognition and pattern matching.

Another concept relating to image scale is that of the image pyramid. An image pyramid is
formed by successively convolving an image with a gaussian kernel, with each convolution producing
a halfresolution copy of the previous image. A gaussian kernel is one which has weights that
correspond to the shape of a normal (gaussian) distribution or bell-shaped curve. The series of images
thus produced can be visualized as a stack of image layers forming a pyramid, as shown in Fig. 15-18.
This figure shows an image pyramid formed from the parking lot image, with the original image at the
bottom of the pyramid and successive half-resolution copies going up the pyramid.

 FIGURE 15-18   Image pyramid formed from parking lot image.
 

An image is formed by convolving the original image with a gaussian kernel, such as that shown
in Eq. (15-10).

(15-10)
 
Notice that the weights in this kernel are largest in the center and fall off gradually away from the



center. This pattern of weights mimics the behavior of a gaussian distribution in two dimensions.
The convolution is performed in the usual fashion, with the exception that instead of the moving

window shifting one row or column at a time, it is shifted two rows or columns. This results in a
convolved image having one-half as many rows and columns as the original. This reduction in number
of pixels is offset by the fact that each pixel in the convolved image represents an area twice the width
and height of the original pixels. Each successive convolution is performed on the previously
convolved image, resulting in the series of half-resolution copies.

Image pyramids can be used for many purposes. One particularly important use is for
multiresolution image matching. By matching images in upper layers of the pyramid, the location of
the match can be predicted in lower layers within a couple of pixels, which avoids searching through
the entire full-resolution image to find a matching feature. Another use is for quick display of an
image while zooming in or out. By first constructing an image pyramid, an image zoom operation can
be accomplished by accessing different layers of the pyramid. These are just two possible uses for
image pyramids, and there are many others.

15-8   Digital Image Matching
A common task associated with the use of stereoplotters is to place the floating mark at a three-
dimensional model position of an object point. This requires the ability to recognize similar image
characteristics (texture, shapes, etc.) in small regions from the left and right images of a stereopair.
Figure 15-19 shows the same object (in this case a manhole) as it appears in two different aerial
photos. The task is to find, using the patch of pixels shown in the left image, the associated patch of
pixels in the right image using some measure of similarity between the two. The human visual system
is able to perform this task with little conscious effort. When our eyes fixate on an object, the two
images merge and the three-dimensional nature of the object is revealed. When one is working with
digital images in a softcopy stereoplotter, placing of the floating mark can be performed either
manually or by computer processing. Computer software which accomplishes this task uses
techniques of digital image matching.

 FIGURE 15-19   A manhole in two different aerial photographs.
 

Digital image-matching techniques fall into three general categories: area-based, feature-based ,



and hybrid methods. Area-based methods perform the image match by a numerical comparison of
digital numbers in small subarrays from each image. This approach is straightforward and commonly
used in softcopy systems. Feature-based methods are more complicated and involve extraction of
features, which are comprised of edges at different scales, with subsequent comparison based on
feature characteristics such as size and shape. Feature-based image matching requires techniques from
the realm of artificial intelligence in computer science. Hybrid methods involve some combination of
the first two approaches. Typically, hybrid methods involve preprocessing of the left and right images
to highlight features (edges) by methods which were introduced in Secs. 15-6 and 15-7. After the
features have been located, they are matched by area-based methods. While all three approaches have
particular advantages and disadvantages, this section focuses on area-based image-matching
techniques.

Perhaps the simplest area-based digital image-matching method is a technique known as
normalized cross-correlation . In this approach, a statistical comparison is computed from digital
numbers taken from same-size subarrays in the left and right images. A correlation coefficient is
computed by the following equation, using digital numbers from subarrays A and B.

(15-11)
 

In Eq. (15-11), c is the correlation coefficient; m and n are the numbers of rows and columns,
respectively, in the subarrays; Aij is the digital number from subarray A at row i, column j;  is the
average of all digital numbers in subarray A; Bij is the digital number from subarray B at row i, column
j;  and is the average of all digital numbers in subarray B. The correlation coefficient can range from
–1 to +1, with +1 indicating perfect correlation (an exact match). A coefficient of –1 indicates
negative correlation, which would occur if identical images from a photographic negative and positive
were being compared. Coefficient values near zero indicate a nonmatch, and could result from a
comparison of any two sets of random numbers. Due to factors such as image noise, perfect (+1)
correlation is extremely rare. Generally a threshold value, such as 0.7, is chosen and if the correlation
coefficient exceeds that value, the subarrays are assumed to match.

Normalized cross-correlation is essentially the same operation as linear regression  in statistics.
Details of linear regression can be found in most elementary statistics texts, and only general concepts
are discussed here. In linear regression, a set of ordered pairs (abscissas and ordinates) is statistically
analyzed to determine how well the numbers correspond to a straight-line relationship. In the process,
most-probable values are determined for the parameters (slope and intercept) of a best-fit line through
the data points. For example, assume the following pair of 3 × 3 arrays of digital numbers are to be
analyzed using linear regression.

 
To compute the linear regression, a tabular solution can be used, as shown in Table 15-1. In this table,
the abscissas and ordinates used for the regression are listed in the columns labeled a and b,



respectively; a2 and b2 are their corresponding squares; and a × b are the products. (Note: In typical
notation used for linear regression, xi and yi are used for abscissas and ordinates, respectively, and this
notation is also shown in the table.)

 TABLE 15-1   Tabular Form for Computing Linear Regression
 

In order to compute the regression, the following terms are computed.

(15-12)
 

(15-13)
 

(15-14)
 

(15-15)
 

(15-16)
 



(15-17)
 
In Eqs. (15-12) through (15-17), n is the number of data points (9 in this case), and the other terms are
as indicated in the table. Parameter β in Eq. (15-15) is the slope of the regression line; parameter α in
Eq. (15-16) is the y intercept of the regression line; and parameter r in Eq. (15-17) is the sample
correlation coefficient. Note that r is the same as the normalized cross-correlation coefficient c from
Eq. (15-11). Figure 15-17 shows a plot of the nine data points, along with the regression line. In this
figure, the nine data points lie nearly along the regression line, which is also indicated by the
correlation coefficient r being nearly equal to 1.

Digital image matching by correlation can be performed in the following manner. A candidate
subarray from the left photo is chosen, and a search will be performed for its corresponding subarray
in the right image. Since the exact position of the image in the right image is not initially known, a
search array is selected with dimensions much larger than those of the candidate subarray. A moving
window approach is then used, comparing the candidate subarray from the left image with all possible
window locations within the search array from the right image, as illustrated in Fig. 15-21. At each
window location in the search array, the correlation coefficient is computed in a manner similar to
moving window convolution (see Sec. 15-6), resulting in a correlation matrix C. After all coefficients
have been calculated, the largest correlation value in C is tested to see if it is above the threshold. If it
exceeds the threshold, the corresponding location within the search array is considered to be the
match.

 FIGURE 15-20   Linear regression.
 



 FIGURE 15-21   Computing correlation coefficients using a moving window within a search array.
 

Example 15-2
The candidate array A is an ideal template for a fiducial cross, and the following search array S is a
portion of a digital image containing a fiducial cross. Compute the position of the fiducial within the
search array by correlation.

 
Solution
Note: The correlation coefficient at the first window position (with the upper left element of a 5 × 5
subarray at the 1, 1 position of the search array) will be calculated as an example.

      1.  Extract subarray B from the search array at position 1, 1.

 
      2.  Compute the average digital number for subarrays A and B.



 
      3.  Compute the summation terms for the correlation coefficient.

 
      4.  Compute the correlation coefficient.

 
      5.  Compute the remaining coefficients in the same manner.

 
      6.  Select the maximum correlation coefficient. The maximum value, 0.94, occurs at row 3,



column 3 of the C array. This value was computed when the upper left element of the moving
window was at that position (row = 3, column = 3) in the search array. Since the center of the
cross in the template is 2 columns to the right and 2 rows down from the upper left corner, the
center of the cross in the search array is at row 3 + 2 = 5 and column 3 + 2 = 5. 

A second area-based digital image-matching method is the least squares matching technique.
(The reader may wish to refer to App. B for general information on least squares.) Conceptually, least
squares matching is closely related to the correlation method, with the added advantage of being able
to obtain the match location to a fraction of a pixel. Least squares matching can also account for some
distortions caused by perspective differences and rotation between images. Figure 15-22 shows: (a) a
calibration target, (b) a tilted image of a target, and (c) the resampled result from image (b), which is
a least squares match of the template (a). Different implementations of least squares matching have
been devised, with the following form being commonly used.

 FIGURE 15-22   A calibration target template, the image of the target, and its resampled image.
 

(15-18)
 

(15-19)
 

(15-20)
 
In Eq. (15-18), A(x, y) is the digital number from the candidate subarray of the left image at location x,
y; B(x′, y′) is the digital number from a subarray in the search area of the right image at location x′, y′;
h0 is the radiometric shift; and h1 is the radiometric scale. Note that parameter h0 is the same as the y
intercept a of Eq. (15-16), and h1 is the same as the slope b of Eq. (15-15). Equations (15-19) and (15-
20) specify an affine relationship (see Sec. C-6) between the coordinates of the pixel on the left photo
and the coordinates of the corresponding pixel on the right photo. Figure 15-23 illustrates the
positions of subarrays A and B in the left and right images. In this figure, the x and y axes are the basis
for coordinates on the left image, and the x′ and y′ axes are the basis for coordinates on the right
image. Coordinates in both images are expressed in units of pixels.



 FIGURE 15-23   Positions of subarrays for least squares matching.
 

Combining Eqs. (15-18), (15-19), and (15-20) and expressing the result in the form of a least
squares observation equation gives the following:

(15-21)
 
In Eq. (15-21), f is the function relating the digital numbers from the two images, VA is the residual,
and the other variables are as previously defined. Equation (15-21) is nonlinear, and application of
Taylor’s series gives the following linear form.

(15-22)
 
where

 
and

(15-23)
 

(15-24)



 
Since the function f of Eq. (15-21) includes digital numbers from subarray B, partial derivative

terms must be obtained using discrete values to estimate the slope of B in both the x and y directions.
Equation (15-23) computes the estimate for slope in the x direction by taking the difference between
the digital numbers of pixels to the right and left divided by 2, and Eq. (15-24) computes the estimate
for slope in the y direction in a corresponding manner. Use of these discrete slope estimates, in
conjunction with the chain rule from calculus, allows the partial derivatives (the f ′ terms) to be
determined, as listed above.

Least squares matching is an iterative process which requires an accurate estimate for the
position of B within the right image. Initial approximations must be obtained for the unknown
parameters h0, h1, a0, a1, a2, b0, b1, and b2. Estimates for h0 and h1 can be obtained by linear regression
as illustrated earlier in this section. If the coordinates of the lower left pixels of A and B are x0, y0 and
x′0, y′0, respectively, the following initial approximations can be used for the affine parameters.

 
Each iteration of the solution involves forming the linearized equations, solving the equations by least
squares to obtain corrections to the approximations, and adding the corrections to the approximations.
At the beginning of an iteration, the pixels of subarray B (along with a 1-pixel-wide border around B
which is needed for derivative estimates) are resampled (see App. E) from the right image. This is
done by stepping through the pixels of subarray A, taking the x and y coordinates of each pixel, and
transforming them to the right image x′ and y′ by using Eqs. (15-19) and (15-20). A corresponding
digital number is then resampled from the right image at position x′ , y′. Once subarray B has been
filled, the least squares equations can be formed and solved. The solution is then iterated until the
corrections become negligible. On the final iteration, the resampled subarray should be very similar to
the template array as Fig. 15-22c is to Fig. 15-22a.

Some final comments are appropriate at this point. First, the estimated position of subarray B
should be within a couple of pixels in order for the solution to converge properly. This can be
achieved efficiently through the use of an image pyramid (see Sec. 15-7). Corresponding points can be
matched at an upper level of the pyramid where the search area contains fewer pixels. Once the point
is matched at a particular level of the pyramid, the position on the next-lower level will be known to
within 2 pixels. By progressively matching from upper levels down to the bottom level, accurate
position estimates can be obtained at each subsequent level. Another concern is the size of the
subarrays to be matched. Generally, a subarray size of 20 × 20 to 30 × 30 gives satisfactory results. If
the subarray is much smaller, the low redundancy can result in a weak solution. Larger subarrays can
lead to problems due to terrain variations within the image area causing distortions that are not affine.
Finally, the transformation equation for y ′ can be simplified by performing epipolar resampling on
the images prior to matching. In epipolar resampling, the images are resampled so that the rows line
up with epipolar lines. When this is done, Eqs. (15-19) and (15-20) can be simplified to

(15-25)
 

(15-26)
 



15-9   Summary
The discussion of digital image processing methods presented in this chapter is only a brief treatment
of the subject. These methods dealt primarily with edge detection, contrast enhancement, noise
removal, multiscale representations, and image matching. A wealth of other digital image processing
methods are available for dealing with these problems as well as many others. An in-depth
understanding of digital image processing requires a great deal of study and experimentation. Those
who are interested in learning more about this subject are directed to the references listed below.
Further information can be gathered by consulting the bibliographies contained in these documents.
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Problems
  15-1.   Give a brief definition of a digital image model.

  15-2.   Define spatial frequency.

  15-3.   What is the Nyquist frequency? Why is it important?

  15-4.   Briefly describe the linear stretch method of contrast enhancement.

  15-5.   Give a brief description of the histogram equalization method of contrast enhancement.

  15-6.   Briefly describe the relationship between the spatial domain and frequency domain for a
digital image.

  15-7.   Give a brief description of the discrete Fourier transform.

  15-8.   What is the fast Fourier transform and why is it important?

  15-9.   Briefly describe the wavelet transform.

15-10.   Name three uses of the wavelet transform.

15-11.   Given the following convolution kernel K and the matrix of digital numbers D from a 5 × 5
image, compute the convolved image C, using the moving window approach.

 
15-12.   Repeat Prob. 14-9, except use the following convolution kernel K.

 
15-13.   Briefly explain the difference between high-pass and bandpass filters.

15-14.   Outline a process by which edges at different scales can be extracted from a digital image.

15-15.   Briefly explain how an image pyramid is constructed.

15-16.   Briefly describe the three categories of digital image matching.



15-17.   Describe how normalized cross-correlation relates to linear regression in image matching.

15-18.   Given the following two subarrays from a pair of digital images, compute the normalized
cross-correlation coefficient.

 
15-19.   Repeat Prob. 15-18, except that the following subarrays are to be used.

 
15-20.   Discuss the differences between digital image matching by normalized cross-correlation and
least squares matching.



CHAPTER 16
Control for Aerial Photogrammetry

 

16-1   Introduction
Photogrammetric control traditionally consists of any points whose positions are known in an object-
space reference coordinate system and whose images can be positively identified in the photographs.
In aerial photogrammetry the object space can be defined by various reference ground coordinate
systems (see Chap. 5). Photogrammetric ground control , as it is commonly called in aerial
photogrammetry, provides the means for orienting or relating aerial photographs to the ground.
Almost every phase of photogrammetric work requires some ground control. Aircraft-mounted
GPS/INS systems can also be used as control for photogrammetric surveys by directly measuring the
position and attitude of the camera during acquisition.

Photogrammetric ground control is generally classified as either horizontal control (the position
of the point in object space is known with respect to a horizontal datum) or vertical control (the
elevation of the point is known with respect to a vertical datum). Separate classifications of horizontal
and vertical control have resulted primarily because of differences in horizontal and vertical reference
datums, and because of differences in surveying techniques for establishing horizontal and vertical
control. Also, horizontal and vertical control are considered separately in some photogrammetric
processes. Often, however, both horizontal and vertical object-space positions of points are known, so
that these points serve a dual control purpose.

Field surveying for photogrammetric control has historically been a two-step process, although
now with the widespread use of GPS, this distinction is not as clear. The first step consists of
establishing a network of basic control in the project area. This basic control consists of horizontal
control monuments and benchmarks of vertical control which will serve as a reference framework for
subsequent photo control surveys. The second step involves establishing object-space positions of
photo control by means of surveys originating from the basic control network. Photo control points
are the actual image points appearing in the photos that are used to control photogrammetric
operations. The accuracy of basic control surveys is generally higher than that of subsequent photo
control surveys. If GPS is used for the control surveying work, in some cases the intermediate step of
establishing basic control may be bypassed and photo control established directly. This is discussed
further in Sec. 16-5.

The two-step procedure of field surveying for photogrammetric control is illustrated in Fig. 16-1.
In the figure a basic GPS control survey originates from existing control stations E1 through E4 and
establishes a network of basic control points B1 through B6 in the project area. With these basic
stations established, the second step of conducting subordinate surveys to locate photo control can
occur. This is illustrated with the surveys that run between B5 and B6 and locate photo control points P1

and P2.



 FIGURE 16-1   Field surveys for establishing photogrammetric control.
 

The establishment of good ground control is an extremely important element of almost any type
of photogrammetric project. The accuracy of finished photogrammetric products can be no better than
the ground control upon which they are based. Many maps and other items that have been carefully
prepared in the office to exacting standards have failed to pass field inspection simply because the
ground control was of poor quality. Because of its importance, the ground control phase of every
photogrammetric project should be carefully planned and executed. The cost of establishing ground
control for photogrammetric mapping is normally substantial, and depending upon conditions it can
be expected to constitute between 10 and 50 percent of the total project cost.

Planning is an essential step before carrying out a photogrammetric ground control survey. The
required accuracy and consequently, the type of equipment and field techniques to be used should be
settled early. Required accuracy of photo control depends primarily upon the accuracy necessary in
the photogrammetric mapping or other project that it controls. However, another consideration is
whether the control will serve other purposes in addition to controlling the photogrammetric work. For
example, if a map is to be prepared for planning and designing an urban transportation system, the
ground control should be accurate enough to also be used in describing property right of way
acquisition and to serve in properly laying out the construction alignment.

T h e national map accuracy standards (NMAS) are commonly used to govern accuracy
requirements of maps and therefore indirectly will govern control surveying accuracy. If a map
produced photo-grammetrically is to be labeled as complying with these standards, it is required that
at least 90 percent of the principal planimetric features be plotted to within 1/30 in (0.8 mm) of their
true positions for map scales of 1:20,000 or larger, and to within 1/50 in (0.5 mm) for scales smaller
than 1:20,000. On a map plotted at a scale of 1:600 (1 in/50 ft), this represents an allowable horizontal
map error of 0.5 m (1.7 ft) on the ground. On a map at a scale of 1:24,000 (1 in/2000 ft), the allowable
horizontal map error is 12 m (40 ft). If NMAS are to be met, horizontal photo control must be located
to greater accuracy than the allowable horizontal map error. As a general rule of thumb, photo control



should contain error no greater than about one-fourth to one-third the horizontal map accuracy
tolerance. Some organizations require stricter tolerances than this. Of course, basic control must be
more accurate than photo control.

NMAS also require that at least 90 percent of all points tested for elevation be correct to within
one-half the contour interval. To meet this standard, a rule of thumb in topographic mapping states
that elevations of vertical photo control points should be correct to within plus or minus about one-
fifth of the contour interval; but as an additional safety factor, some agencies require that their
accuracy be within one-tenth of the contour interval. According to this latter rule, a map being plotted
with a contour interval of 1 m requires vertical photo control accurate to within 0.1 m. Again, the
basic control must be more accurate than this.

A more current set of accuracy standards drafted by the Federal Geographic Data Committee is
titled Geospatial Positioning Accuracy Standards. These standards are readily applicable to digital
maps, which are stored in a computer and manipulated with CAD software. As with NMAS, accuracy
is expressed with separate horizontal and vertical components. Other sets of accuracy standards have
also been established by various organizations such as the American Society for Photogrammetry and
Remote Sensing, the Federal Highway Administration, and the American Society of Civil Engineers.

In planning the control survey, maximum advantage should be taken of existing control in the
area. The National Geodetic Survey has established numerous horizontal control monuments and
vertical control benchmarks in its work of extending the national control network. The U.S.
Geological Survey has also established a network of reliable horizontal and vertical control
monuments in its topographic mapping operations. In certain localities, other agencies of the federal
government such as the Tennessee Valley Authority, Army Corps of Engineers, and Bureau of Land
Management have established control. In addition, various state, county, and municipal agencies may
have established control monuments.

16-2   Ground Control Images and Artificial Targets
In general, images of acceptable photo control points must satisfy two requirements: (1) They must be
sharp, well defined, and positively identified on all photos; and (2) they must lie in favorable locations
in the photographs. (Reasons for this latter requirement are described in Sec. 16-3.) Control surveys
for photogrammetry are normally conducted after the photography has been obtained. This ensures
that the above two requirements can be met. Photo control images are selected after careful study of
the photos. The study should include the use of a stereoscope to ensure a clear stereoscopic view of all
points selected. This is important because many of the subsequent photogrammetric measurements
will be made stereoscopically. A preliminary selection of photo control images may be made in the
office, but the final selection should be made in the field with the photos in hand. This enables
positive identification of objects to be made, and it also permits making a firsthand assessment of
object point accessibility, terrain conditions, and surveying convenience.

When selecting the position of a control point associated with an object, one should also take into
consideration the precise measurement of the point in the images that will take place. For example, if
the chevron-shaped feature shown in Fig. 16-2a is to be used as a control point, it may be tempting to
use the point formed by the edges of the two legs. However, due to blurring along the edges, it will be
difficult to precisely measure the position of the point in the image. A better choice is to use the
intersection of the centerline of the legs, illustrated in Fig. 16-2b, which is easier to identify than the
edges in the image.



 FIGURE 16-2   (a) Control point image with blurred edges. (b) Intersection of centerlines of legs.
 

Images for horizontal control have slightly different requirements than images for vertical
control. Because their horizontal positions on the photographs must be precisely measured, images of
horizontal control points must be very sharp and well defined horizontally. Some objects whose
images are commonly satisfactory for horizontal control are intersections of sidewalks, intersections
of roads, manhole covers, small lone bushes, isolated rocks, corners of buildings, fence corners, power
poles, points on bridges, intersections of small trails or watercourses, etc. Care must be exercised to
ensure that control points do not fall in shadowed areas on some photos.

Images for vertical control need not be as sharp and well defined horizontally. Points selected
should, however, be well defined vertically. Best vertical control points are small, flat or slightly
crowned areas. The small areas should have some natural features nearby, such as trees or rocks,
which help to strengthen stereoscopic depth perception. Large, open areas such as the tops of grassy
hills or open fields should be avoided, if possible, because of the difficulties they cause in
stereoscopic depth perception. Intersections of roads and sidewalks, small patches of grass, small bare
spots, etc., make excellent vertical control points.

In some areas such as prairies, forests, and deserts, natural points suitable for photogrammetric
control may not exist. In these cases artificial points called panel points may be placed on the ground
prior to taking the aerial photography. Their positions are then determined by field survey or in some
cases by aerotriangulation. This procedure is called premarking or paneling. Artificial targets provide
the best possible photographic images, and therefore they are used for controlling the most precise
photogrammetric work, whether or not natural points exist. Artificial targets are also used to mark
section corners and boundary lines for photogrammetric cadastral work.

Besides their advantage of excellent image quality, their unique appearance makes
misidentification of artificial targets unlikely. Disadvantages of artificial targets are that extra work
and expense are incurred in placing the targets, the targets could be moved between the time of their
placement and the time of photography, and the targets may not appear in favorable locations on the
photographs. To guard against the movement of artificial targets, the photography should be obtained
as near as possible to the time of placing targets. To obtain target images in favorable positions on the
photographs, the coverage of each photo can be planned in relation to target locations, and the
positions of ground principal points can be specified on the flight plan.

A number of different types of artificial targets have been successfully used for photogrammetric



control. The main elements in target design are good color contrast, a symmetric target that can be
centered over the control point, and a target size that yields a satisfactory image on the resulting
photographs. Contrast is best obtained using light-colored targets against a dark background or dark-
colored targets against light backgrounds. The target shown in Fig. 16-3 provides good symmetry for
centering over the control point. The middle panel of the target should be centered over the control
point, since this is the image point to which measurements will be taken. The legs help in identifying
targets on the photos, and also help in determining the exact center of the target should the image of
the center panel be unclear. While the target shown in Fig. 16-3 is perhaps the ideal shape,
circumstances may dictate use of other target shapes. Figure 16-4a shows a target which is often used
where a smaller target is needed. The target of Fig. 16-4b is nearly as effective as that of Fig. 16-3,
and it has the advantage of being more easily and quickly constructed. The target of Fig. 16-4c is less
than optimal due to lack of biaxial symmetry; however, it may be needed in confined areas such as
edges of highways.

 FIGURE 16-3   Artificial photogrammetric target.
 

 FIGURE 16-4   Other common artificial targets.
 

Target sizes must be designed on the basis of intended photo scale so that the target images are
the desired size on the photos. An image size of about 0.03 mm to about 0.10 mm in film photography
and about 10 to 20 pixels in digital photography for the sides of the central panel is suitable. As shown
in Fig. 16-3, if the ground dimension of the central panel of the target is D, then the leg width should
also be D, leg length should be 5D, and the open space between the central panel and the leg should be
D. Target sizes are readily calculated once the photo scale and optimum target image size are selected.
If, for example, a central panel size of 0.05 mm is desired and photography at a scale of 1:12,000 is
planned, then D should be 0.6 m.



Materials used for targeting are quite variable. In some cases, satisfactory targets are obtained by
simply painting white crosses on blacktop roads. In other cases, targets are painted on plywood,
masonite, or heavy cloth, in which case they may be salvaged and reused. Satisfactory targets have
also been made by placing stones against an earth background in the shape of a cross. The stones may
be painted white for added contrast. Lime placed in the shape of a cross against a dark background has
also produced satisfactory targets. Old tires painted white centered over the control points are also
good for low-altitude, large-scale photography.

If panel points are needed in an area after the photography has already been obtained a procedure
known as post marking can be performed. In this method, targets as described above are placed in the
desired positions. Supplemental vertical photographs are taken of each target and its surrounding area
with a small-format camera carried in a light aircraft flying at low altitude. Flying height can be
calculated for the supplemental photography so that it has the same scale as the original photography.
Locations of the targets can then be transferred by superimposing scaled supplemental photography
over the original photography. A similar method can be performed in film photography using a point
transfer device.

The importance of exercising extreme caution in locating and marking objects in the field that
correspond to selected photo images cannot be overemphasized. Mistakes in point identification are
common and costly. A power pole, for example, may be located in the field, but it may not be the
same pole whose image was identified on the photos. Mistakes such as this can be avoided by
identifying enough other details in the immediate vicinity of each point so that verification is certain.
A pocket stereoscope taken into the field can be invaluable in point identification, not only because it
magnifies images but also because hills and valleys which aid in object verification can be seen both
on the photos and on the ground.

16-3   Number and Location of Photo Control
The required number of control points and their optimum location in the photos depend upon the use
that will be made of them. For a very simple problem such as calculating the flying height of a photo
which is assumed to be vertical (see Sec. 6-9), only the horizontal length of a line and the elevations
of its endpoints are needed. A line of as great a length as possible should be chosen. For controlling
mosaics (see Chap. 9), only a sparse network of horizontal control may be needed. The network should
be uniformly distributed throughout the block of photos.

In solving the space resection problem for determining the position and orientation of a tilted
photo (see Sec. 11-6), a minimum of three XYZ control points is required. The images of the control
points should ideally form a large, nearly equilateral triangle. Although three control points are the
required minimum for space resection, redundant control is recommended to increase the accuracy of
the photogrammetric solution and to prevent mistakes from going undetected.

If photo control is being established for the purpose of orienting stereomodels in a plotting
instrument for topographic map compilation, the absolute minimum amount of control needed in each
stereomodel is three vertical and two horizontal control points. Again, the prudent photogrammetrist
will utilize some amount of redundant control. As a practical minimum, each stereomodel oriented in
a plotter should have three horizontal and four vertical control points. The horizontal points should be
fairly widely spaced, and the vertical control points should be near the corners of the model. A
satisfactory configuration is shown in Fig. 16-5. Some organizations require a fifth vertical control
point in the center of each stereomodel.



 FIGURE 16-5   Control recommended for orienting stereomodels in a stereoscopic plotting instrument.
 

If aerotriangulation (see Chap. 17) is planned to supplement photo control, then fewer ground-
surveyed photo control points are needed. The amount of ground-surveyed photo control needed for
aerotriangulation will vary, depending upon the size, shape, and nature of the area to be covered, the
resulting accuracy required, and the procedures, instruments, and personnel to be used. In general, the
more dense the ground-surveyed network of photo control, the better the resulting accuracy in the
supplemental control determined by aerotriangulation. There is an optimum amount of ground-
surveyed photo control, however, which affords maximum economic benefit from aerotriangulation
and at the same time maintains a satisfactory standard of accuracy. On average, if aerotriangulation of
a strip of photos is to be performed for the purpose of obtaining control for orienting stereomodels in
a stereoplotter, a minimum of about two horizontal and three or four vertical ground-surveyed photo
control points should appear in approximately every fifth stereomodel along the strip. This
configuration is shown in Fig. 16-6. For aerotriangulation of blocks of photos, the ground-surveyed
control should be systematically arranged throughout the block. Best control configurations consist of
horizontal control along the periphery of the block with a uniform distribution of vertical control
throughout the block. Experience generally dictates the best control configurations to use, and
organizations involved in aerotriangulation normally develop their own standards which meet
accuracy requirements for their particular combination of procedures, instruments, and personnel.



 FIGURE 16-6   Example control configuration for a strip of photographs.
 

16-4   Traditional Field Survey Methods for Establishing Horizontal
and Vertical Control

There are numerous and varied traditional instruments and techniques for field surveying. In the
context of this chapter, GPS is considered a nontraditional method and is discussed in subsequent
sections. This section provides a very brief discussion of some basic methods. The textbooks on
surveying listed as references at the end of this chapter provide a much more thorough treatment of
these subjects.

Traditional field methods are divided into surveys for horizontal and vertical control. Horizontal
control surveys, both for basic control and for photo control, may be conducted using any of the
traditional field methods: traversing, triangulation, or trilateration. Total station instruments are
most commonly used for measuring the angles and distances associated with these methods.
Traversing, the most common of the three mentioned, consists of measuring horizontal angles and
horizontal distances between consecutive stations of a closed network. The existing reference control
stations are included in the network. Based on the existing control coordinates and reference direction,
along with the newly measured horizontal angles and distances, coordinates of all new stations may be
calculated trigonometrically in the rectangular coordinate system of the existing reference control. An
adjustment, typically least squares (see App. B), is normally made to account for measurement errors.

Triangulation involves measurement of horizontal angles between intervisible stations of a
network of triangular figures. Trilateration, on the other hand, involves measurement of horizontal
distances in such a network. Often, triangulation and trilateration are combined in a given network. A
least squares adjustment can be performed on the combined network to yield coordinates for the new
stations. Using triangulation-combined trilateration enables highly accurate coordinates to be
determined.

For any horizontal control survey, an important task which must precede the taking of field
measurements is establishing the network of stations in the project area whose positions are to be
determined. In basic control surveys, the stations will normally be artificial monuments such as
wooden stakes or iron rods driven into the ground. These are carefully referenced to permanent nearby
features so that they can be recovered later if lost. In photo control surveys, some of the stations will
be artificial monuments and others will be the natural features selected for photo control points.

For vertical control surveys, differential leveling is a common field procedure. The basic
equipment for differential leveling is a leveling instrument and a graduated rod. The leveling
instrument consists of a sighting telescope with reticle for reading the graduated rod and a means for
orienting the telescope’s line of sight in a horizontal plane. Another technique for determining
differences in elevation is trigonometric leveling. It may be used where moderate accuracy is required
and is especially well suited for rugged terrain. In trigonometric leveling, as illustrated in Fig. 16-7,
vertical (zenith) angle Z and slope distance S are measured from the instrument at A to the reflector at
B. As discussed in the preceding section, these measurements can be conveniently made with a total
station instrument. The difference in elevation from the center of the instrument to the center of the
reflector is S cos Z. The elevation of point B is then equal to the elevation of point A, plus the
instrument height ih, plus S cos Z, minus the reflector height rh, as illustrated in Fig. 16-7.
Compensation for errors due to earth curvature and atmospheric refraction is generally made by



standard correction formulas found in many surveying texts. For highest accuracy in compensating for
these errors, the measurements should be made in both directions and averaged.

 FIGURE 16-7   Trigonometric leveling.
 

16-5   Fundamentals of the Global Positioning System
GPS was implemented by the U.S. Department of Defense to address the problem of navigation and
positioning on a global basis. It currently consists of a network of 31 satellites orbiting the earth at an
altitude of approximately 20,000 km, along with associated ground tracking and control stations. The
satellites are arranged in six orbital planes and make a complete revolution every 12 hours (h). This
arrangement guarantees that at least four satellites will be “visible” from anywhere on earth at any
instant in time. The satellites are equipped with transmitters which can broadcast electromagnetic
signals, as well as atomic clocks which establish a highly precise and accurate time basis.

Each satellite broadcasts digital messages or codes on two carrier frequencies: L1 at 1575.42
megahertz (MHz) and L2 at 1227.60 MHz. The codes are a pseudorandom series of bits (0s and 1s)
which have been modulated onto the carrier frequencies. Two primary codes are broadcast: the C/A or
coarse acquisition code, which is carried only by the L1 frequency, and the P or precise code, which is
broadcast on both L1 and L2. In addition to these two primary codes, additional data are broadcast,
including timing information and a satellite ephemeris. An additional carrier frequency, L5, is being
introduced with the launch of new GPS satellites. The L5 signal is broadcast at 1176.45 MHz, and will
add accuracy and robustness to the current system.

The C/A code is broadcast at a chip rate of 1.023 MHz or 1.023 × 106 bits per second (bits/s).
Given the speed of light of 2.9979246 × 108 m/s, each bit of the C/A code has an equivalent length of
293 m. The P code is broadcast at a frequency of 10.23 MHz, giving an equivalent length of 28.3
m/bit. The carrier waves are broadcast at much higher frequencies and therefore have wavelengths
which are substantially shorter than the code bits. For the L1 frequency the wavelength is 0.190 m, and
for L2 it is 0.244 m. The equivalent lengths of the code bits and the wavelengths of the carrier
frequencies relate directly to the precision with which positions can be determined. Thus positions
computed through carrier-phase processing can be determined much more precisely than those
computed through code-phase processing.

The primary components of receivers used in conjunction with GPS are an antenna and a module
which contains the receiver electronics, a clock, and a computer. Figure 16-8 shows a typical GPS
receiver with the antenna set up on a tripod directly over a control monument. Virtually all GPS
receivers are capable of measuring the C/A code phase while fewer can measure the P code phase.
Only the more expensive geodetic-grade receivers can measure the carrier phase. In addition, some



units can receive only the L1 frequency while dual-frequency receivers can receive both L1 and L2.
Newer receivers have the ability to receive L5 signals, and some can receive signals from global
navigation satellite system (GNSS) signals other than GPS, such as the Russian GLONASS.

 FIGURE 16-8   GPS receiver with antenna mounted on a tripod. (Courtesy University of Florida.)
 

The Department of Defense operates a series of ground tracking and control stations around the
globe having GPS receivers which continuously monitor the entire constellation of satellites. Based on
observations from these stations, accurate orbit information, given with respect to the WGS84 datum,
is determined for each satellite. It is periodically transmitted to the satellites for subsequent broadcast
as part of the GPS signal. This orbit information comprises what is called the predicted ephemeris. It
enables GPS users to compute estimated positions of satellites through extrapolation from previously
computed orbit parameters. A more accurate precise ephemeris, which contains directly computed
parameters (as opposed to predicted), may be obtained from the National Geodetic Survey1 several
days after GPS observations have been obtained.

The fundamental mode of operation of GPS employs a single receiver and is called point
positioning. In this mode, a receiver tracks the modulated code (C/A or P) from several satellites
simultaneously. This information, the so-called code phase observable, is used to determine the time it
takes for the signal to travel from the satellite to the receiver. The signal travel times from the various
satellites are converted to distances known as pseudoranges, by multiplying by the speed of light.
Given the positions of the satellites from the ephemeris, these distances are used in a three-
dimensional spherical intersection to determine the coordinates of the receiver. Generally, at least
four satellites are used which enable cancellation of the clock error of the receiver.

Errors inherent to point positioning are several. Most individually contribute an error of perhaps
1 to 5 m in the computed position of the receiver. These include errors due to ephemeris accuracy,
timing accuracy, ionospheric and tropospheric interference, antenna construction, and multipath (or
signal reflection). These errors are further amplified by a factor known as PDOP which is related to
satellite geometry. The accumulation of all these errors can result in an error in receiver position of up
to 25 m or more.



A GPS method known as differential positioning using code-phase observations can be used to
determine locations of points with much greater accuracy than point positioning. The basic concept
behind differential positioning is to employ two receivers which collect GPS signals simultaneously.
One of the receivers is placed on a control point having known position, called a base station; and the
other receiver, the rover, is placed at an unknown point. Since the position of the base station is
known, ranging errors to individual satellites can be calculated. Since both receivers collected data
simultaneously, the ranging errors calculated at the base station can be applied to the range
measurements at the rover. Compensation for these ranging errors is made to compute more accurate
coordinates of the unknown point.

For the ultimate in accuracy, relative positioning using carrier-phase observations is employed.
In this approach, the phase changes of the L1 and unsually L2 carrier wave are measured at the
receivers in order to determine their distances from the satellites. This is similar to the method
employed by total station instruments in measuring distances electronically. The fundamental
problem associated with this approach is that any particular cycle of the carrier wave is
indistinguishable from the other cycles. The result is that there will be an unknown number of full
cycles of the carrier wave between the satellite and the receiver. This integer ambiguity is a problem
that must be overcome in the software used to process the information. Modern systems are able to
overcome this problem very effectively. This is the preferred GPS method for establishing
photogrammetric control.

Many modes of operation and data reduction techniques are available when performing ground
control surveys by GPS. The method chosen will depend primarily upon accuracy requirements, but
will also depend upon available equipment and processing software as well as the amount of time
available to field crews. While an exhaustive list of GPS methods is not presented here, those that are
commonly applied in photogrammetric control surveys are briefly discussed. The methods are broadly
categorized into code-phase and carrier-phase techniques.

In general, single-receiver point positioning is far too inaccurate for useful photogrammetric
control work. Therefore, differential techniques are used to establish control. If small-scale mapping
is being performed, differential code-phase techniques may be employed. As mentioned previously,
differential GPS requires that one receiver be placed at a known base station. One or more roving
receivers may then be employed to collect simultaneous observations at unknown points. Depending
on the quality of receivers used and the distance between the base station and rover, errors of less than
5 m can routinely be achieved. Currently the best-attainable accuracies of differential codephase GPS
are better than 0.5 m.

Several carrier-phase methods of relative positioning are commonly used for establishing
photogrammetric control. Of these, the static method is the most accurate. As the name implies, static
GPS involves placing fixed receivers on points and collecting carrier-phase data for as long as an hour
or more. After data have been collected, baseline vectors are computed between pairs of receivers
which give ΔX, ΔY, and ΔZ components between corresponding points in a three-dimensional
coordinate system. Generally, interconnected networks (see Fig. 16-1) of these vectors are created
which are subsequently adjusted by least squares to obtain coordinates for the unknown points. Using
the static technique, coordinates of unknown points can be determined with errors at the centimeter
level.

If shorter observation times are desired, the method of rapid static observation may be employed.
With this approach, station occupation times may be reduced to 10 min or even less, while still
achieving centimeter-level accuracy. The rapid static method requires more expensive equipment and
more sophisticated data processing techniques than static GPS, however. Generally, receivers capable
of tracking both the L1 and L2 carrier frequencies as well as the C/A and P code signals are used. By



including all four phase measurements in a highly redundant solution, accurate coordinates can be
determined despite the reduced station occupation time.

While GPS is most often used to compute horizontal position, it is capable of determining
vertical position (elevation) to nearly the same level of accuracy. An inherent problem with the
vertical position, however, is that it will be related to the ellipsoid, not the geoid or mean sea level
( s ee Secs. 5-2 and 5-3). To relate the GPS-derived elevation (ellipsoid height) to the more
conventional elevation (orthometric height), a geoid model is necessary (see Sec. 5-7).

16-6   Kinematic GPS Positioning
Another technique known as kinematic positioning can be used for establishing ground control. When
performing kinematic positioning, the rover receiver is in constant motion except for the brief period
during which a station is occupied. The method requires a stationary receiver to be located at a known
base station, and an initial start-up period during which the rover receiver is held stationary. This
start-up period is required so that the processing software can calculate the unknown integer
ambiguities. Once the ambiguities have been resolved, the rover receiver can be moved, and as long as
it remains in contact with the satellite transmissions, the changes in integer ambiguities can be
determined. The accuracy of kinematic GPS can be nearly as good as that of static, i.e., within a few
centimeters. A major drawback associated with kinematic GPS surveys is that loss of signal cannot be
tolerated. When the rover receiver “loses lock” on the satellite transmissions, which can happen if it
goes under a tree, bridge, or other obstruction, then it must be returned to a previously surveyed
position so that the integer ambiguities can be redetermined. This restricts the use of kinematic GPS
to open areas. To reduce the inconvenience associated with loss of lock, the technique of “on-the-fly”
(OTF) ambiguity resolution has been developed. This method of ambiguity resolution is performed by
a software technique whereby many trial combinations of integer ambiguities for the different
satellites are tested in order to determine the correct set. This essentially trial-and-error approach
generally requires a period of uninterrupted data (i.e., no loss of lock) of as much as several minutes
in order for the ambiguities to be correctly determined. Use of dual-frequency receivers which track
C/A as well as P code provides redundancy which can greatly enhance the computational process of
determining the integer ambiguities.

Kinematic GPS can also be used for airborne GPS control. In this method, the position of the
camera is measured using a GPS antenna fixed to the aircraft. Many of the same concepts from
kinematic positioning for ground control apply to airborne control. For instance, a base station must
be used and consequently multiple base stations must be used when mapping large areas to keep the
distance to the station under a maximum threshold. Since loss of satellite lock is detrimental to the
solution, care should be taken not to bank the aircraft to high roll angles during turns between flight
lines in order to prevent the wings from blocking satellites. Typically, the maximum tolerated roll is
about 15° to 20°. An important consideration regarding airborne GPS positioning is the
synchronization (or lack thereof) of GPS fixes with the photographic exposures. The GPS receiver will
be recording data at uniform time intervals called epochs, which may be on the order of 1 s each. The
camera shutter, on the other hand, operates asynchronously with respect to the GPS fixes, as shown in
Fig. 16-9. The result is that the position of the GPS antenna must first be interpolated from adjacent
fixes before the coordinates can be translated to the lens. Depending upon atmospheric turbulence and
the epoch recording rate of the GPS receiver, the error due to this interpolation can be quite severe. In
Fig. 16-9, interpolation for exposures 1 and 2 results in sizable errors from the actual positions,
whereas interpolation for exposure 4 is nearly perfect. Integration of airborne kinematic GPS and an
inertial navigation system (INS) can greatly reduce the error from interpolating by “filling in the



gaps” between epochs. This method can provide position (and attitude) data at a rate of up to 200 Hz.

 FIGURE 16-9   Interpolation between GPS fixes for positions at time of exposure.
 

16-7   Inertial Navigation Systems
For the most part, inertial navigation system (INS) technology has made possible the use of airborne
laser scanning (LiDAR), linear array imaging sensors, and different types of radar and sonar for
precise mapping. In the case of aerial photogrammetry, INS can provide a means for reducing or even
eliminating the need for ground control. This is because, especially when integrated with airborne
GPS, INS effectively enables the direct measurement of position and angular attitude associated with
the exposure of a photograph. In other words, exterior orientation parameters, ω, φ, κ, XL, YL, and ZL,
can be found without any information from the photography such as the image location of tie and/or
control points. This is commonly referred to as direct georeferencing. The value of INS is clear when
considering the potential reduction of the effort and cost of establishing ground control. INS is a
complex subject and is given a simplified treatment in this section. For a more in-depth description,
please see the references at the end of this chapter.

An INS consists of a computer and an inertial measurement unit (IMU). The IMU consists of a
set of three accelerometers and three gyroscopes or gyros. The accelerometers are mounted
orthogonally to each other and output directional specific force, which is the total acceleration of an
object minus acceleration due to gravitational attraction. For example, an object stationary relative to
the earth’s surface has specific force of 9.8 m/s2, whereas an object in freefall has zero specific force.
Specific force is obtained from accelerometers via Newton’s second law by measuring the amount of
force required to keep an object stationary under different accelerations and dividing by the mass.
There are multiple methods for mechanically implementing accelerometers. For instance, many
modern devices use a coil in an electrical field to keep a mass in a stationary position. The gyros are
also mounted orthogonally and are used to measure rotational motion. The main principle behind
traditional gyros is conservation of angular momentum. One can imagine a toy gyroscope, a spinning
top, or spinning plates. When no external force is applied to a rotating mass, its spin axis will remain
constant. One can measure the torque required to keep a mounted gyro fixed with respect to a moving
vehicle, and use it to calculate the vehicle’s rate of angular change relative to the gyro’s spin axis.
Historically, rigid rotor gyros consisting of discs spinning around their center of mass were used for
inertial-based navigation based on conservation of angular momentum. However, modern gyros, such
as fiber optic and ring laser systems, are based on other physical laws. Although they operate on
different principles, the fundamental output—the rate of angular change—is the same for modern
gyros and spinning-mass gyros.

INS mechanization is a process for obtaining useable information from IMU measurements.
Mechanization involves integrating the specific force from the accelerometers and the angular
velocity from the gyros over time to calculate position, velocity, and attitude. An important



consideration in mechanization is the reference frame for the output parameters. IMU measurements
are made with respect to the inertial reference frame . The origin of the inertial reference frame is the
center of the earth. The z axis is parallel with the earth’s spin axis. The x axis is oriented such that its
positive end passes through the mean vernal equinox, the intersection of the plane of earth’s orbit (the
ecliptic) and the equator. The y axis completes the orthogonal system. Note that the geocentric
coordinate system (see Sec. 5-4) rotates through the inertial reference frame once every 24 hours. The
inertial measurements must be transformed into a mapping coordinate system such as the local-level
frame, which is similar to the local vertical system in Sec. 5-5 except that the origin is located at the
center of the INS. When mechanizing in the local vertical frame, the position is calculated in geodetic
coordinates, while the velocity and attitude are with respect to easting, northing, and up. Since the
mapping coordinate system is rotating with respect to the inertial reference frame, one must take into
account not only gravity, but also the Coriolis effect and centripetal force. For a more in-depth
description of INS mechanization, please see the references at the end of this chapter.

Since all output from the IMU is relative, one must first initialize the system before INS
mechanization. This involves resolving an initial position, velocity, and attitude of the sensor.
Although there are dynamic methods, it is simpler to initialize the INS when the platform is
stationary. Initial position and velocity can be found using GPS. As for the attitude of the system, tilt
can be determined by measuring the specific force when the system is not moving. The specific force
measured will then only consist of gravity. The tilt of the system is the rotation that aligns the
negative z axis of the sensor with the gravity vector (roughly down in the local-level frame). In order
to initialize the heading one can use the gyro measurements when the vehicle is stationary, which are
related to the rotation of the earth and the latitude of the initial position. The sensed rotation in the
gyros corresponds to the transformed rotation about the y and z axes, east and north respectively, of
the local-level frame relative to the inertial frame. More rigorous and precise methods usually follow
the coarse method described here. In practice, the INS software performs initialization automatically
with a specific protocol recommended by the manufacturer.

INS navigation where all positions are determined from a single initial position is called dead
reckoning. Inertial sensors, while precise over short intervals, are susceptible to initial biases and
random errors over time. Since in dead reckoning all subsequent measurements relate only to an
initial state, errors accumulate in the course of collection. For this reason, the best measure of the
quality of an IMU is the rate at which the gyros “drift” over time. The inherent accumulation of errors
in position from INS mechanization has led to the widespread integration of GPS with INS.

16-8   GPS-INS Integration
Kinematic airborne GPS requires interpolation over sometimes significant lengths of time to estimate
the position at exposure leading to unreliable values. In addition, GPS does not provide an estimate of
angular attitude. INS can provide angular attitude, however, left unchecked INS estimates of position
and attitude have unbounded errors over time. This has led to the development of integrated GPS-INS
systems, and example application of which is shown in Fig. 16-10. In the figure, the black box
mounted to the top of the sensor (in this case an airborne laser scanner) is the IMU. GPS and INS
complement each other exceptionally well. INS provides high-frequency but volatile estimates, while
GPS provides independent and relatively low-frequency estimates with bounded errors. Integrated
GPS-INS systems use the GPS to update estimates from the INS. This could be achieved by simply
using the GPS to “reset” the velocity and position from INS mechanization. However, integration is
usually more rigorously accomplished using a filter—a mathematical process that provides best
estimates of parameters given a function and input measurements. One such process is the Kalman



filter.

 FIGURE 16-10   Airborne GPS-INS system. (Courtesy of RIEGL USA, Inc.; http://www.rieglusa.com.)
 

When integrating, the Kalman filter for INS-GPS operates on the errors associated with the INS.
INS errors can be estimated through modeling of the system, and GPS enables a measure of the INS
errors which can be used to refine their values. This “predict and update” scheme is characteristic of
Kalman filters. It can be implemented at different levels of integration: loosely coupled, tightly
coupled, and deeply coupled. Loosely coupled integration uses the independently calculated position
and velocity from GPS. Whenever GPS position and velocity become available (at each epoch), they
are subtracted from the values obtained from the INS. The difference between the two is used to
calculate a new estimate of the error states which are then used to find new estimates of the position,
velocity, and attitude. Tightly coupled integration incorporates more basic GPS measurements such as
the pseudoranges to estimate the error states of the INS. Deeply coupled integration involves the
incorporation of even more basic GPS observations, the satellite signals themselves, and requires
special hardware to implement.

GPS-INS data is typically first processed using a filter operating forward in time. That is, each
measurement is introduced into the filter sequentially as they were measured to produce the estimates.
This means that each estimate is based on previous measurements, and only the very last estimate is
derived from all the measurements. Following the forward filter, a backward-operating process is
applied in order to allow forward-filtered estimates of position, velocity, and angular attitude to be
adjusted based on subsequent estimates and measurements. This procedure is called smoothing.

In practice, integration of GPS-INS is a sophisticated process, and is an ongoing area of research

http://www.rieglusa.com


to develop new and more robust methods. It should be mentioned that other observations can be
integrated with GPS and/or INS including those from altimeters, magnetometers, video, radar, and
star-tracking devices among others. In fact, INS and vision-aided navigation in GPS-denied
environments has become of particular interest.

Modern GPS-INS systems have become accurate and reliable. They can provide angular attitude
accuracies as good as 0.005° rms for ω and φ, and 0.008° rms for κ. Positional accuracies for XL, YL,
and ZL can be achieved at the level of 0.05 m rms. Furthermore, direct georeferencing of airborne
imagery using integrated GPS-INS, in concert with elevation models provided by airborne laser
scanning, allows for rapid production of photogrammetric products such as orthophotos. However,
although direct georeferencing via GPS-INS is attractive due to its speed and efficiency, for best
results it should be augmented with aerotriangulation. Aerotriangulation provides a check on the
directly obtained exterior orientation parameters and can be implemented with directly georeferenced
imagery with or without ground control points, although the former is preferred. The integration of
aerotriangulation and airborne control is covered in Sec. 17-8. In addition, when using INS-GPS for
airborne photogrammetry, it is necessary to know the relative attitude and position of the navigation
sensors with respect to the camera. As shown in Sec. 17-8 aerotriangulation provides a method for
calibrating these boresight and lever arm parameters.
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Problems
  16-1.   Explain the difference between basic control and photo control.

  16-2.   Describe the characteristics of good horizontal photo control points.

  16-3.   Describe the characteristics of good vertical photo control points.

  16-4.   State the national map accuracy standards for both horizontal positions and elevations.

  16-5.   Discuss the geospatial positioning accuracy standards, and contrast them with national map
accuracy standards.

  16-6.   If a map is being prepared photogrammetrically to a scale of 600 ft/in, and photo control must
be established to an accuracy 3 times greater than the allowable error for plotted points as specified by
national map accuracy standards, how accurately on the ground must photo control points be located?

  16-7.   Repeat Prob. 16-6, except that map scale is 1 : 24,000.

  16-8.   What are the photo dimensions of the square at the intersection of two sidewalks of 2-m width
if photo scale is 1 : 30,000?

  16-9.   What are the photographic dimensions in millimeters of a 0.75-m-diameter manhole cover if
photo scale is 1 : 12,000?

16-10.   Briefly describe three traditional field methods used in horizontal control surveys.

16-11.   Give a brief description of two traditional field methods used in vertical control surveys.

16-12.   Briefly describe the fundamental components of the Global Positioning System.

16-13.   Explain the difference between carrier and code signals as it applies to GPS.

16-14.   Discuss the errors which are inherent in single-receiver point positioning by GPS.

16-15.   Briefly describe the principle of differential positioning by GPS. Why is this technique more
accurate than point positioning?

16-16.   Give a brief description of the concept of integer ambiguity as it applies to carrier-phase GPS.

16-17.   Briefly discuss the principle of on-the-fly ambiguity resolution in kinematic GPS.

16-18.   Discuss the advantages and disadvantages of using artificial targets as opposed to using
natural targets for photo control.

16-19.   What must be the ground dimension D (see Fig. 16-3) of artificial targets if their
corresponding photo dimension is to be 0.05 mm on photos exposed from 3000 m above ground with a
152-mm-focal-length camera?



16-20.   Repeat Prob. 16-19, except that the photo dimension is 10 pixels, flying height above ground
is 6000 ft, and camera focal length is 13,000 measured in pixels.

16-21.   Describe the measurements provided by inertial measurement units.

16-22.   Explain the problems with “dead reckoning” with respect to an INS.

16-23.   Describe the pros and cons of GPS and INS and why they are complementary systems.

16-24.   Briefly describe the three levels of GPS-INS integration.

_____________
1 Archival precise orbit information can be obtained at the following website: http://www.ngs.noaa.gov.

http://www.ngs.noaa.gov


CHAPTER 17
Aerotriangulation

 

17-1   Introduction
Aerotriangulation is the term most frequently applied to the process of determining the X, Y, and Z
ground coordinates of individual points based on photo coordinate measurements. Phototriangulation
is perhaps a more general term, however, because the procedure can be applied to terrestrial photos as
well as aerial photos. The principles involved are extensions of the material presented in Chap. 11.
With improved photogrammetric equipment and techniques, accuracies to which ground coordinates
can be determined by these procedures have become very high.

Aerotriangulation is used extensively for many purposes. One of the principal applications lies in
extending or densifying ground control through strips and/or blocks of photos for use in subsequent
photogrammetric operations. When used for this purpose, it is often called bridging, because in
essence a “bridge” of intermediate control points is developed between field-surveyed control that
exists in only a limited number of photos in a strip or block. Establishment of the needed control for
compilation of topographic maps with stereoplotters is an excellent example to illustrate the value of
aerotriangulation. In this application, as described in Chap. 12, the practical minimum number of
control points necessary in each stereomodel is three horizontal and four vertical points. For large
mapping projects, therefore, the number of control points needed is extensive, and the cost of
establishing them can be extremely high if it is done exclusively by field survey methods. Much of
this needed control is now routinely being established by aerotriangulation from only a sparse network
of field-surveyed ground control and at a substantial cost savings. A more recent innovation involves
the use of kinematic GPS and INS in the aircraft to provide coordinates and angular attitude of the
camera at the instant each photograph is exposed. In theory, this method can eliminate the need for
ground control entirely, although in practice a small amount of ground control is still used to
strengthen the solution.

Besides having an economic advantage over field surveying, aerotriangulation has other benefits:
(1) most of the work is done under laboratory conditions, thus minimizing delays and hardships due to
adverse weather conditions; (2) access to much of the property within a project area is not required;
(3) field surveying in difficult areas, such as marshes, extreme slopes, and hazardous rock formations,
can be minimized; and (4) the accuracy of the field-surveyed control necessary for bridging is verified
during the aerotriangulation process, and as a consequence, chances of finding erroneous control
values after initiation of compilation are minimized and usually eliminated. This latter advantage is so
meaningful that some organizations perform bridging even though adequate field-surveyed control
exists for stereomodel control. It is for this reason also that some specifications for mapping projects
require that aerotriangulation be used to establish photo control.

Apart from bridging for subsequent photogrammetric operations, aerotriangulation can be used in
a variety of other applications in which precise ground coordinates are needed although most of these
uses have been largely supplanted by GPS. In property surveying, aerotriangulation can be used to
locate section corners and property corners or to locate evidence that will assist in finding these
corners. In topographic mapping, aerotriangulation can be used to develop digital elevation models by
computing X, Y, and Z ground coordinates of a systematic network of points in an area, although
airborne laser scanning is commonly being used for this task. Aerotriangulation has been used



successfully for densifying geodetic control networks in areas surrounded by tall buildings where
problems due to multipath cause a loss of accuracy in GPS surveys. Special applications include the
precise determination of the relative positions of large machine parts during fabrication. It had been
found especially useful in such industries as shipbuilding and aircraft manufacture. Many other
applications of aerotriangulation are also being pursued.

Methods of performing aerotriangulation may be classified into one of three categories: analog,
semianalytical, and analytical. Early analog procedures involved manual interior, relative, and
absolute orientation of the successive models of long strips of photos using stereoscopic plotting
instruments having several projectors. This created long strip models from which coordinates of pass
points could be read directly. Later, universal stereoplotting instruments were developed which
enabled this process to be accomplished with only two projectors. These procedures are now
principally of historical interest, having given way to the other two methods.

Semianalytical aerotriangulation involves manual interior and relative orientation of
stereomodels within a stereoplotter, followed by measurement of model coordinates. Absolute
orientation is performed numerically—hence the term semianalytical aerotriangulation.

Analytical methods consist of photo coordinate measurement followed by numerical interior,
relative, and absolute orientation from which ground coordinates are computed. Various specialized
techniques have been developed within each of the three aerotriangulation categories. This chapter
briefly describes some of these techniques. It predominantly relates to bridging for subsequent
photogrammetric operations because this is the principal use of aerotriangulation. Extension of these
basic principles can readily be translated to the other areas of application, however.

17-2   Pass Points for Aerotriangulation
Pass points for aerotriangulation are normally selected in the general photographic locations shown in
Fig. 17-1a. Historically, points were artificially generated using stereoscopic point marking devices.
These devices involved drilling a hole in the photograph, destroying the emulsion on that point.
Nowadays, in automatic aerotriangulation, pass points are usually found using automated procedures
on digital and scanned-film photography. Control points can be located manually with sub-pixel
accuracy in software. There is no destruction of the photograph using digital methods, so points can
easily be removed and replaced.



 FIGURE 17-1   (a) Idealized pass point locations for aerotriangulation. (b) Locations of pass points in
two adjacent stereomodels.
 

A typical procedure for measuring a pass point begins by first manually digitizing the point in
one photograph. The pixels around this point serve as the template array. Next, the user defines a
search area in other photographs for automatic image matching. There are also automatic methods for
defining a search area by predicting the coordinates of the point in the subsequent photographs.
Finally, the pixel patch in the search area corresponding to the template array is automatically located.
Normalized cross-correlation followed by least squares matching is a common method for this step
(see Sec. 15-8). To avoid poor matches and blunders, well-defined unique objects with good contrast
and directionality should be selected as image-matching templates. Image-matching software usually
provides a measure of how well the point was matched, such as the correlation coefficient in
normalized cross-correlation. This number should serve as a guide for the user to decide whether or
not to accept the matching results. Care must be taken because it is not uncommon for incorrectly
matched points to have high correlation coefficients. The process is repeated for each pass point
keeping in mind the optimal distribution illustrated in Fig. 17-1. Due to increased redundancy, the
most effective points are those that appear in the so-called tri-lap area, which is the area included on
three consecutive images along a strip. Once many pass points are located, more can be added in a
fully automated process by prediction of point locations based on a coordinate transformation.

17-3   Fundamentals of Semianalytical Aerotriangulation
Semianalytical aerotriangulation, often referred to as independent model aerotriangulation, is a partly
analytical procedure that emerged with the development of computers. It involves relative orientation
of each stereomodel of a strip or block of photos. After the models have been formed, they are
numerically adjusted to the ground system by either a sequential or a simultaneous method. In the
sequential approach, contiguous models are joined analytically, one by one, to form a continuous strip



model, and then absolute orientation is performed numerically to adjust the strip model to ground
control. In the simultaneous approach, all models in a strip or block are joined and adjusted to ground
control in a single step, much like the simultaneous transformation technique described in Sec. 9-8.

An advantage of using semianalytical aerotriangulation is that independent stereomodels are
more convenient for operators in production processes. This stems from the fact that the images that
make up stereomodel are more “tightly” oriented with respect to each other, whereas in fully
analytical adjustments the images are oriented to optimize their fit with respect to a block of multiple
photos which may lead to residual y parallax in the orientation between individual stereopairs.
Regardless of whether the sequential or simultaneous method is employed, the process yields
coordinates of the pass points in the ground system. Additionally, coordinates of the exposure stations
can be determined in either process; Thus, semianalytical solutions can provide initial approximations
for a subsequent bundle adjustment (see Sec. 17-6).

17-4   Sequential Construction of a Strip Model from Independent
Models

In the sequential approach to semianalytical aerotriangulation, each stereopair of a strip is relatively
oriented in a stereoplotter, the coordinate system of each model being independent of the others.
When relative orientation is completed, model coordinates of all control points and pass points are
read and recorded. This is done for each stereomodel in the strip. Figures 17-2a and b illustrate the
first three relatively oriented stereomodels of a strip and show plan views of their respective
independent coordinate systems. By means of pass points common to adjacent models, a three-
dimensional conformal coordinate transformation (see Sec. C-7) is used to tie each successive model
to the previous one. To gain needed geometric strength in the transformations, the coordinates of the
perspective centers (model exposure stations) are also measured in each independent model and
included as common points in the transformation. The right exposure station of model 1-2, O2, for
example, is the same point as the left exposure station of model 2-3. To transform model 2-3 to model
1-2, therefore, coordinates of common points d, e, f, and O2 of model 2-3 are made to coincide with
their corresponding model 1-2 coordinates. Once the parameters for this transformation have been
computed, they are applied to the coordinates of points g, h, i, and O3 in the system of model 2-3 to
obtain their coordinates in the model 1-2 system. These points in turn become control for a
transformation of the points of model 3-4. By applying successive coordinate transformations, a
continuous strip of stereomodels may be formed, as illustrated in Fig. 17-2c. The entire strip model so
constructed is in the coordinate system defined by model 1-2.



 FIGURE 17-2   Independent model or semianalytical aerotriangulation. (a) Three adjacent relatively
oriented stereomodels. (b) Individual arbitrary coordinate systems of three adjacent stereomodels. (c)
Continuous strip of stereomodels formed by numerically joining the individual arbitrary coordinate
systems into one system.
 

17-5   Adjustment of a Strip Model to Ground
After a strip model has been formed, it is numerically adjusted to the ground coordinate system using
all available control points. If the strip is short, i.e., up to about four models, this adjustment may be
done using a three-dimensional conformal coordinate transformation. This requires that a minimum of



two horizontal control points and three vertical control points be present in the strip. More control
than the minimum is desirable, however, as it adds stability and redundancy to the solution. As
discussed later in this section, if the strip is long, a polynomial adjustment is preferred to transform
model coordinates to the ground coordinate system. In the short strip illustrated in Fig. 17-2c,
horizontal control points H1 through H4 and vertical control points V1 through V4 would be used in a
three-dimensional conformal coordinate transformation to compute the ground coordinates of pass
points a through l and exposure stations O1 through O4.

Example 17-1
Figure 17-3 illustrates a continuous strip of three stereomodels with pass points a through l and
ground control points A through E. Independent model coordinates for points and exposure stations of
each model are listed below along with ground coordinates of control points A through E. Compute the
ground coordinates of the pass points and exposure stations by the sequential method of
semianalytical aerotriangulation. Use a three-dimensional conformal coordinate transformation
program.

 

 FIGURE 17-3   Configuration of pass points and control for semianalytical aerotriangulation of



Example 17-1.
 

Solution

      1.  With an ASCII text editor, create the following data file with a “.dat” extension (see Example
11-3 for a description of the data file format):

 
      2.  Run the “3dconf” program to produce the following results. (Only the portion of the output

which gives transformed points is shown.)

 
           The above output gives the coordinates of points g, h, i, C, and O3 in the model 1-2 system.
      3.  With an ASCII text editor, create the following data file with a “.dat” extension:

 
      4.  Run the “3dconf” program to produce the following results. (Only the portion of the output

which gives transformed points is shown.)

 



           The output gives the coordinates of points j, k, l, D, E, and O4 in the model 1-2 system.
      5.  With an ASCII text editor, create the following data file with a “.dat” extension:

 

 
      6.  Run the “3dconf” program to produce the following results (only the portion of the output

which gives transformed points is shown):

 
                   This completes the solution. Note that the output of step 6 contains the computed ground

coordinates in meters for pass points a through l as well as the exposure stations O1 through O4.
The computed standard deviations are also listed in meters. 

Due to the nature of sequential strip formation, random errors will accumulate along the strip.
Often, this accumulated error will manifest itself in a systematic manner with the errors increasing in
a nonlinear fashion. This effect, illustrated in Fig. 17-4, can be significant, particularly in long strips.
Figure 17-4a shows a strip model comprised of seven contiguous stereomodels from a single flight
line. Note from the figure that sufficient ground control exists in model 1-2 to absolutely orient it (and
thereby the entire strip) to the ground system. The remaining control points (in models 4-5 and 7-8)



can then be used as checkpoints to reveal accumulated errors along the strip. Figure 17-4b shows a
plot of the discrepancies between model and ground coordinates for the checkpoints as a function of X
coordinates along the strip. Except for the ground control in the first model, which was used to
absolutely orient the strip, discrepancies exist between model positions of horizontal and vertical
control points and their corresponding field-surveyed positions. Smooth curves are fit to the
discrepancies as shown in the figure.

 FIGURE 17-4   (a) Plan view of control extension of a seven-model strip. (b) Smooth curves indicating
accumulation of errors in X, Y, and Z coordinates during control extension of a strip.
 

If sufficient control is distributed along the length of the strip, a three-dimensional polynomial
transformation can be used in lieu of a conformal transformation to perform absolute orientation and
thus obtain corrected coordinates for all pass points. This polynomial transformation yields higher
accuracy through modeling of systematic errors along the strip. Most of the polynomials in use for
adjusting strips formed by aerotriangulation are variations of the following third-order equations:

(17-1)
 
I n Eqs. (17-1), , , and  are the transformed ground coordinates; X and Y are strip model
coordinates; and the a’s, b’s , and c’s are coefficients which define the shape of the polynomial error
curves. The equations contain 30 unknown coefficients (a’s, b’s , and c’s). Each three-dimensional
control point enables the above three polynomial equations to be written, and thus 10 three-
dimensional control points are required in the strip for an exact solution. When dealing with



transformations involving polynomials, however, it is imperative to use redundant control which is
well distributed throughout the strip. It is important that the control points occur at the periphery as
well, since extrapolation from polynomials can result in excessive corrections. As illustrated by Fig.
17-4b, errors in X, Y, and Z are principally functions of the linear distance (X coordinate) of the point
along the strip. However, the nature of error propagation along strips formed by aerotriangulation is
such that discrepancies in X, Y, and Z coordinates are also each somewhat related to the Y positions of
the points in the strip. Depending on the complexity of the distortion, certain terms may be eliminated
from Eqs. (17-1) if they are found not to be significant. This serves to increase redundancy in the
transformation which generally results in more accurate results. Further, the discussion of the
application of polynomials in adjusting strip models to ground can be found in references cited at the
end of this chapter. It is possible however, to avoid the polynomial adjustment completely by using
the simultaneous approach as mentioned in Sec. 17-3.

17-6   Simultaneous Bundle Adjustment
The most elementary approaches to analytical aerotriangulation consist of the same basic steps as
those of analog and semianalytical methods and include (1) relative orientation of each stereomodel,
(2) connection of adjacent models to form continuous strips and/or blocks, and (3) simultaneous
adjustment of the photos from the strips and/or blocks to field-surveyed ground control. What is
different about analytical methods is that the basic input consists of precisely measured photo
coordinates of control points and pass points. Relative orientation is then performed analytically based
upon the measured coordinates and known camera constants. Finally, the entire block of photographs
is adjusted simultaneously to the ground coordinate system.

Analytical aerotriangulation tends to be more accurate than analog or semianalytical methods,
largely because analytical techniques can more effectively eliminate systematic errors such as film
shrinkage, atmospheric refraction distortions, and camera lens distortions. In fact, X and Y coordinates
of pass points can quite routinely be located analytically to an accuracy of within about 1/15,000 of
the flying height, and Z coordinates can be located to an accuracy of about 1/10,000 of the flying
height. With specialized equipment and procedures, planimetric accuracy of 1/350,000 of the flying
height and vertical accuracy of 1/180,000 have been achieved. Another advantage of analytical
methods is the freedom from the mechanical or optical limitations imposed by stereoplotters.
Photography of any focal length, tilt, and flying height can be handled with the same efficiency. The
calculations involved are rather complex; however, a number of suitable computer programs are
available to perform analytical aerotriangulation. With the advances in computer power, these
calculations have become routine.

Several different variations in analytical aerotriangulation techniques have evolved. Basically,
however, all methods consist of writing condition equations that express the unknown elements of
exterior orientation of each photo in terms of camera constants, measured photo coordinates, and
ground coordinates. The equations are solved to determine the unknown orientation parameters, and
either simultaneously or subsequently, coordinates of pass points are calculated. By far the most
common condition equations used are the collinearity equations which are presented in Sec. 11-4 and
derived in App. D. Analytical procedures have been developed which can simultaneously enforce
collinearity conditions onto units which consist of hundreds of photographs.

The ultimate extension of the principles described in the preceding sections is to adjust all
photogrammetric measurements to ground control values in a single solution known as a bundle
adjustment. The process is so named because of the many light rays that pass through each lens
position constituting a bundle of rays. The bundles from all photos are adjusted simultaneously so that



corresponding light rays intersect at positions of the pass points and control points on the ground. The
process is an extension of the principles of analytical photogrammetry presented in Chap. 11, applied
to an unlimited number of overlapping photographs.

Figure 17-5a shows a small block consisting of two strips with four photos per strip. The photo
block contains images of 20 pass points labeled 1 through 20 and 6 control points labeled A through F,
for a total of 26 object points. Points 3, 8, 13, 18, B, and E also serve as tie points which connect the
two adjacent strips. Figure 17-5b shows the individual photos in a nonoverlapping configuration. Note
that photos 1, 4, 5, and 8 each contain images of 8 points; and photos 2, 3, 6, and 7 each contain
images of 11 points, for a grand total of 4 × 8 + 4 × 11 = 76 point images.

 FIGURE 17-5   (a) Block of photos in overlapped position. (b) Separated photos showing image points.



 

The unknown quantities to be obtained in a bundle adjustment consist of (1) the X, Y, and Z object
space coordinates of all object points and (2) the exterior orientation parameters (ω, ϕ, κ, XL, YL, and
ZL) of all photographs. The first group of unknowns (object space coordinates) is the necessary result
of any aerotriangulation, analytical or otherwise. Exterior orientation parameters, however, are
generally not of interest to the photogrammetrist, but they must be included in the mathematical
model for consistency. In the photo block of Fig. 17-5a the number of unknown object coordinates is
26 × 3 = 78 (number of object points times the number of coordinates per point). The number of
unknown exterior orientation parameters is 8 × 6 = 48 (number of photos times the number of exterior
orientation parameters per photo). Therefore the total number of unknowns is 78 + 48 = 126.

The measurements (observed quantities) associated with a bundle adjustment are (1) x and y
photo coordinates of images of object points; (2) X, Y, and/or Z coordinates of ground control points;
and (3) direct observations of the exterior orientation parameters (ω, ϕ, κ, XL, YL, and ZL) of the
photographs. The first group of observations, photo coordinates, is the fundamental photogrammetric
measurements. For a proper bundle adjustment they need to be weighted according to the accuracy and
precision with which they were measured. The next group of observations is coordinates of control
points determined through field survey. Although ground control coordinates are indirectly
determined quantities, they can be included as observations provided that proper weights are assigned.
The final set of observations, exterior orientation parameters, has recently become important in
bundle adjustments with the use of airborne GPS control as well as inertial navigation systems (INSs)
which have the capability of measuring the angular attitude of a photograph.

Returning to the block of Fig. 17-5, the number of photo coordinate observations is 76 × 2 = 152
(number of imaged points times the number of photo coordinates per point), and the number of ground
control observations is 6 × 3 = 18 (number of three-dimensional control points times the number of
coordinates per point). If the exterior orientation parameters were measured, the number of additional
observations would be 8 × 6 = 48 (number of photos times the number of exterior orientation
parameters per photo). Thus, if all three types of observations are included, there will be a total of 152
+ 18 + 48 = 218 observations; but if only the first two types are included, there will be only 152 + 18 =
170 observations. Regardless of whether exterior orientation parameters were observed, a least
squares solution is possible since the number of observations is greater than the number of unknowns
(126) in either case.

The observation equations which are the foundation of a bundle adjustment are the collinearity
equations (see Sec. D-3). These equations are given below in a slightly modified form as Eqs. (17-2)
and (17-3).

(17-2)
 

(17-3)
 
In these equations, xij and yij are the measured photo coordinates of the image of point j on photo i
related to the fiducial axis system; xo and yo are the coordinates of the principal point in the fiducial
axis system; f is the focal length (or more correctly, principal distance) of the camera; 



 are the rotation matrix terms for photo i; Xj, Yj, and Zj are the coordinates of point j
in object space; and , , and  are the coordinates of the incident nodal point of the camera lens
in object space. Since the collinearity equations are nonlinear, they are linearized by applying the
first-order terms of Taylor’s series at a set of initial approximations. After linearization (see Sec. D-5)
the equations can be expressed in the following matrix form:

(17-4)
 
where

 
The above terms are defined as for Eqs. (D-15) and (D-16), except that subscripts i and j are used

for the photo designation and point designation, respectively. (In App. D, the subscript A is used for
the point designation, and no subscript is used for the photo designation.) Matrix  contains the
partial derivatives of the collinearity equations with respect to the exterior orientation parameters of
photo i, evaluated at the initial approximations. Matrix  contains the partial derivatives of the
collinearity equations with respect to the object space coordinates of point j, evaluated at the initial
approximations. Matrix  contains corrections for the initial approximations of the exterior
orientation parameters for photo i, and matrix  contains corrections for the initial approximations of
the object space coordinates of point j. Matrix εij contains measured minus computed x and y photo
coordinates for point j on photo i, and finally matrix Vij contains residuals for the x and y photo
coordinates.

Proper weights must be assigned to photo coordinate observations in order to be included in the
bundle adjustment. Expressed in matrix form, the weights for x and y photo coordinate observations of
point j on photo i are

(17-5)
 

where  is the reference variance;  and  are variances in xij and yij, respectively; and 



 is the covariance of xij with yij. The reference variance is an arbitrary parameter which can
be set equal to 1, and in many cases, the covariance in photo coordinates is equal to zero. In this case,
the weight matrix for photo coordinates simplifies to

(17-6)
 

The next type of observation to be considered is ground control. Observation equations for
ground control coordinates are

(17-7)
 
where Xj, Yj, and Zj are unknown coordinates of point j; , , and  are the measured coordinate
values for point j; and , and  are the coordinate residuals for point j.

Even though ground control observation equations are linear, in order to be consistent with the
collinearity equations, they will also be approximated by the first-order terms of Taylor’s series.

(17-8)
 
In Eq. (17-8), , , and  are initial approximations for the coordinates of point j; dXj, dYj, and dZj

are corrections to the approximations for the coordinates of point j; and the other terms are as
previously defined.

Rearranging the terms of Eq. (17-8) and expressing the result in matrix form gives

(17-9)
 
where  is as previously defined and

 
As with photo coordinate measurements, proper weights must be assigned to ground control



coordinate observations in order to be included in the bundle adjustment. Expressed in matrix form,
the weights for X, Y, and Z ground control coordinate observations of point j are

(17-10)
 
where  is the reference variance; , , and  are the variances in , , and , respectively; 

 is the covariance of  with ;  is the covariance of  with ; and  is
the covariance of  with . As before, the reference variance can be arbitrarily set equal to 1;
however, in general, since ground control coordinates are indirectly determined quantities, their
covariances are not equal to zero.

The final type of observation consists of measurements of exterior orientation parameters. The
form of their observation equations is similar to that of ground control and given as Eq. (17-11).

(17-11)
 

(17-12)
 
The weight matrix for exterior orientation parameters has the following form:

(17-13)
 
With the observation equations and weights defined as above, the full set of normal equations may be
formed directly. In matrix form, the full normal equations are



(17-14)
 
where

 
The submatrices in the above forms are

 
In the above expressions, m is the number of photos, n is the number of points, i is the photo subscript,
and j is the point subscript. Note that if point j does not appear on photo i, the corresponding
submatrix will be a zero matrix. Note also that the  contributions to the N matrix and the 
contributions to the K matrix are made only when observations for exterior orientation parameters
exist; and the  contributions to the N matrix and the  contributions to the K matrix are made only



for ground control point observations.
While the normal equations are being formed, it is recommended that the estimate for the

standard deviation of unit weight be calculated (see Sec. B-10). Assuming the initial approximations
are reasonable, matrices εij, , and . are good estimates of the negatives of the residuals. Therefore,
the estimate of the standard deviation of unit weight can be computed by

(17-15)
 
In Eq. (17-15), n.o. is the number of observations and n.u. is the number of unknowns in the solution.
If all observations have been properly weighted, S0 should be close to 1.

After the normal equations have been formed, they are solved for the unknowns Δ, which are
corrections to the initial approximations for exterior orientation parameters and object space
coordinates. The corrections are then added to the approximations, and the procedure is repeated until
the estimated standard deviation of unit weight converges. At that point, the covariance matrix for the
unknowns can be computed by

(17-16)
 
Computed standard deviations for the unknowns can then be obtained by taking the square root of the
diagonal elements of the ΣΔΔ matrix.

17-7   Initial Approximations for the Bundle Adjustment
In Sec. 17-6, the equations involved in a bundle adjustment were presented. Since the equations are
nonlinear, Taylor’s series was used to linearize the equations; therefore, initial approximations are
required for the unknowns. For the solution to converge properly, the initial approximations must be
reasonably close to the correct values. Several methods may be used to obtain initial approximations;
however, preliminary strip adjustments are most commonly employed.

The first step is to perform analytical relative orientation (see Sec. 11-10) for each stereopair in
the block. The photo coordinate residuals should be inspected at this point as an initial check on the
measurements. Next, the relatively oriented models are connected to form strips by the method
presented in Sec. 17-4. Residuals from this step can also provide a quality check on the photo
coordinate measurements and point identification. After all the strip models have been formed and
validated, each strip is individually adjusted to ground control points located within each strip. This
adjustment to ground control can be performed either by a three-dimensional conformal coordinate
transformation or by a three-dimensional polynomial transformation (see Sec. 17-5). Residuals from
this step provide a check on the ground control coordinates as well as point identification.

At this point, ground coordinates will have been calculated for all points in the photo block. An
additional check can be performed to validate the identification of tie points between strips. If the
identification of tie points is consistent, their coordinates as determined in adjacent strips should
agree within a small tolerance. Assuming everything is consistent at this point, the resulting ground
coordinates can be used as initial approximations for the bundle adjustment.



Approximations for the exterior orientation parameters can also be obtained directly from the
strip adjustment if the adjustment is performed using a three-dimensional conformal coordinate
transformation. In that case, since perspective centers (camera stations) are included when adjacent
models are connected, their object space coordinates will be available after the final adjustment to
ground control. Assuming vertical photography, zeros can be used as approximations for ω and ϕ.
Approximations for κ can be obtained directly from the final three-dimensional conformal coordinate
transformation to ground control, which contains a compatible κ angle. If a polynomial strip
adjustment is performed, the perspective centers are not included in the adjustment. In that case, after
the polynomial adjustment is completed, the space resection problem can be solved for each photo
(see Sec. 11-6). In these calculations, the ground coordinates obtained for the pass points in the
polynomial adjustment are used as control coordinates.

In cases where more precise initial approximations are needed, one can “chain” together the
rotations of a full strip through relative orientation to obtain estimates of ω, φ, and κ. Precise initial
approximations decrease the number of iterations required for convergence, and can therefore
significantly increase the speed of bundle adjustment solutions. The final three-dimensional
conformal coordinate transformation from sequential independent model triangulation (see Sec. 17-5)
provides the approximations of orientation angles for the first photo in the strip. Next, a rotation
matrix from ground to strip, M3D, is formed from these angles, and a rotation matrix from the first
photo to the second photo, M1–2, is formed from the rotation angles of the first relative orientation via
the definitions in Sec. C-7. The product of these matrices M1–2M3D, yields the rotation matrix from
ground to the second photo and can therefore be used to obtain approximations of ω2, φ2, and κ2 for the
second photo. Approximations for all other photos in the strip can be obtained by repeating this
process (i.e., chaining the angular orientations together).

Example 17-2
A strip model was constructed sequentially using the method described in Sec. 17-4, and then adjusted
to ground using a three-dimensional conformal coordinate transformation. Using the data provided in
the table, find the initial approximations of ω, φ, and κ for each photo in the strip using the chain
method.

 
Solution   Use the rotation angles for the orientation of ground to strip to approximate ω, φ, and κ for
the first photo. Form the rotation matrix from the ground to strip system using the definitions in Sec.
C-7:

 
Next, form the rotation matrix representing the relative angular orientation from photo 1 to photo 2:



 
The product of these matrices yields the rotation matrix from ground to photo 2 which can be used to
find approximate values for ω, φ, and κ for photo 2 via the method described in Sec. D-10:

 
Multiplying the rotation matrix formed by the relative orientation angles from photo 2 to photo 3, M2-

3, by the above matrix yields the rotation matrix from ground to photo 3 which can be used to find
approximate values for ω, φ, and κ for photo 3:

 
Multiplying the rotation matrix formed by the relative orientation angles from photo 3 to photo 4, M3-

4, by the above matrix yields the rotation matrix from ground to photo 4 which can be used to find
approximate values for ω, φ, and κ for photo 4:

 



17-8   Bundle Adjustment with Airborne GPS Control
As mentioned in Sec. 17-1, kinematic GPS and INS observations can be taken aboard the aircraft as
the photography is being acquired to determine coordinates and angular attitude for exposure stations.
Use of GPS and INS in the aircraft to control a bundle adjustment of a block of photographs is termed
airborne control. By including coordinates of the exposure stations and angular attitude of the camera
in the adjustment, the amount of ground control can be greatly reduced.

Figure 17-6 illustrates the geometric relationship between a camera, inertial measurement unit
(IMU), and GPS antenna on an aircraft. In this figure, x, y, and z represent the standard three-
dimensional coordinate system of a mapping camera; and xA, yA, and zA represent the coordinates of the
GPS antenna relative to the camera axes, often referred to as the lever arm. The x axis of the camera is
parallel to the longitudinal axis of the aircraft, the z axis is vertical, and the y axis is perpendicular to
the x and z axes. Since object space coordinates obtained by GPS pertain to the phase center of the
antenna but the exposure station is defined as the incident nodal point of the camera lens, the GPS
coordinates of the antenna must be translated to the camera lens. To properly compute the
translations, it is necessary to know the angular orientation of the camera with respect to the object
space coordinate system. Determining the correct angular orientation is complicated by the use of a
gimbaled camera mount which allows relative rotations between the camera and the aircraft frame.

 FIGURE 17-6   Configuration of camera, IMU, and GPS antenna for airborne GPS control.
 

If the camera in its mount was fixed, the rotation matrix Mi, consisting of angular orientation
parameters of the camera (ωi, ϕi and κi) would translate directly to angular orientation of the camera-
to-antenna vector. However, differential rotation from the airframe to the camera, represented by 
(the superscript m stands for mount), must also be taken into account in order to determine the angular
attitude of the camera-to-antenna vector in object space. Note that even in a so-called fixed mount
there will generally be a crab adjustment, rotation about the z axis of the fixed-mount coordinate
system, to ensure proper photographic coverage (see Sec. 3-6). Some camera mounts such as the Leica
PAV30 shown in Fig. 3-8 have the capability of measuring the differential rotations, and they can be
recorded by a computer. The following equation specifies the rotation of the camera-to-antenna vector
with respect to object space:



(17-17)
 
I n Eq. (17-17), Mi is the conventional rotation matrix consisting of angular exterior orientation
parameters of the camera with respect to the object space coordinate system (ωi, ϕi and κi);  in the
rotation matrix of the camera with respect to the mount; and  is the rotation matrix of the camera-
to-antenna vector with respect to object space coordinates.

Once  has been determined, the rotation angles ( , , and ) can be computed. [See Eqs. (C-
33) and Sec. D-10.] After  has been computed, the coordinates of the camera lens can be computed
by Eq. (17-18). (Note: subscript i has been dropped.)

(17-18)
 

When a camera mount is used which does not provide for measurement of the differential
rotation from the airframe to the camera, it is assumed to be equal to zero, resulting in errors in the
computed position of the camera lens. This error can be minimized by mounting the GPS antenna
vertically above the camera in the aircraft, which effectively eliminates the error due to unaccounted
crab adjustment, rotation about the z axis of the fixed-mount coordinate system. As long as the
differential tilt rotations are small (less than a couple of degrees) and the antenna-to-camera vector is
short (less than 2 m), the lens positional error will be less than 10 cm. One last comment must be
made concerning the translation of GPS antenna coordinates to the lens. Since the values of ω, ϕ, and
κ are required to compute the translation, the antenna offset correction must be included within the
iterative loop of the analytical bundle adjustment.

In order to use airborne control, it is necessary to have accurate values for the lever arm between
the camera and GPS antenna. Perhaps the most common method for determining this vector is direct
measurement using conventional surveying techniques. However, it is possible to include their values
as unknowns in the bundle adjustment solution. Equations (17-19) show the collinearity equations for
an imaged point with observations from GPS and lever arm parameters included. Note that the lever
arm parameters are included under the assumption that the camera mount is fixed and should
otherwise reflect the change in angular attitude due to rotation of the mount.

(17-19)
 

The lever arm parameters are highly correlated with both the interior and exterior orientation
parameters. This can greatly affect the precision of their solution in the bundle adjustment, which is
why the lever arm parameters are normally measured using conventional surveying techniques.

The boresight angles that define the orientation of the IMU with respect to the camera can be
found by the difference between results from a bundle adjustment using ground control, and the values
obtained from using airborne control. Alternatively, as with the lever arm parameters, these values can
also be included in a bundle adjustment as unknowns. In this case, the ms in Eq. (17-19) correspond to



matrix entries of Mi, the product of the rotation matrix determined by the INS, Mi
IMU, and the boresight

rotation matrix, ΔM as shown in Eq. (17-20).

(17-20)
 
Since two rotation matrices are included, there are six unknown rotation angles in Eq. (17-19). This
makes the linearization of the collinearity equations significantly more complex than with the
standard formulation.

Another consideration regarding airborne GPS positioning is the problem of loss of lock on the
GPS satellites, especially during banked turns. When a GPS receiver operating in the kinematic mode
loses lock on too many satellites, the integer ambiguities must be redetermined (see Chap. 16-8).
Since returning to a previously surveyed point is generally out of the question, on-the-fly (OTF)
techniques are used to calculate the correct integer ambiguities. With high-quality, dual-frequency, P-
code receivers, OTF techniques are often successful in correctly redetermining the integer
ambiguities. In some cases, however, an integer ambiguity solution may be obtained which is slightly
incorrect. This results in an approximately linear drift in position along the flight line, which causes
exposure station coordinate errors to deteriorate. This problem can be detected by using a small
number of ground control points at the edges of the photo block. Inclusion of additional parameters in
the adjustment corresponding to the linear drift enables a correction to be applied which eliminates
this source of error. Often, cross strips are flown at the ends of the regular block strips, as shown in
Fig. 17-7. The cross strips contain ground control points at each end which allow drift due to incorrect
OTF integer ambiguities to be detected and corrected. The corrected cross strips in turn serve to
provide endpoint coordinates for the remainder of the strips in the block, thus enabling drift
corrections to be made for those strips as well.

 FIGURE 17-7   Configuration of flight strips for airborne GPS control.
 

Two additional precautions regarding airborne GPS should be noted. First, it is recommended
that a bundle adjustment with analytical self-calibration (see Sec. 19-4) be employed when airborne
GPS control is used. Often, due to inadequate modeling of atmospheric refraction distortion, strict
enforcement of the calibrated principal distance (focal length) of the camera will cause distortions and



excessive residuals in photo coordinates. Use of analytical self-calibration will essentially eliminate
that effect. Second, it is essential that appropriate object space coordinate systems be employed in
data reduction. GPS coordinates in a geocentric coordinate system should be converted to local
vertical coordinates for the adjustment (see Secs. 5-5 and F-4). After aerotriangulation is completed,
the local vertical coordinates can be converted to whatever system is desired. Elevations relative to
the ellipsoid can be converted to orthometric elevations by using an appropriate geoid model.

17-9   Interpretation of Bundle Adjustment Results
After setting up and executing a bundle adjustment, it is essential to analyze and interpret the results.
Analysis of the results allows one to identify blunders, maximize the precision of the solution, and
report the level of confidence in the solved parameters. The output of a bundle adjustment program
can aid in troubleshooting divergent or grossly inaccurate solutions. Similarly, scrutiny of residual
statistics provides a guide for the user to tune a priori estimates of observation standard deviations,
and increase the precision of seemingly sufficient solutions. Fortunately, the least squares methods
described at the end of Sec. 17-6 and in Sec. B-10, provide tools that can be used toward these goals,
namely the observation residuals and the covariance matrix. Problems with bundle adjustments come
in many forms. These include divergence, convergence with blundered observations, and convergence
with improper weighting of observations.

During execution, a bundle adjustment may fail to converge on a solution. Divergence occurs
when the standard deviation of unit weight, S0, gets larger at successive iterations. A typical bundle
adjustment program will recognize divergence and terminate when this happens. If a bundle
adjustment diverges, there are a few likely causes. The first is that the initial approximations were not
close enough to their optimal values in a least squares sense. This is usually the result of blunders in
reporting the initial approximations such as reversed direction of κ, or incorrect geometric
configuration of the object space coordinates of points (e.g., point distribution was inverted).
Although some software may detect it, the inclusion of a pass point with coordinates for only one
photo can cause a bundle adjustment to diverge. A related blunder is misidentification of a point on a
photo, which can easily occur if multiple points are associated with similar-looking features such as
manholes. The best way to identify blunders in initial approximations is to simply recheck their values
and make sure they are logical with respect to the geometry of the photo block. For example, if the
plane was flying east to west when a photo was taken, then κ should be close to 180°. In the same
scenario, if a point a is imaged farther along the x axis than point b, then the ground coordinates for
point b will have higher X coordinates (easting) than point a (recall that the x direction in an image is
assumed to be nominally aligned with the direction of flight). The sequential approach to
semianalytical aerotriangulation presented in Secs. 17-4 and 17-5, in addition to providing initial
approximations, can be used as quality control prior to the bundle adjustment. The sequential
approach provides a check in the form of pass point and control point residuals from the relative
orientation between images, transformations between models, and the transformation from strip to
ground.

In some cases, a bundle adjustment may converge even with blundered observations present.
There are robust methods for least squares adjustments (such as Random Sample Consensus,
RANSAC) that allow for the automatic identification and elimination of blunders. However, in many
circumstances, blunders can be identified using simpler methods or manually. The first indication that
a converged bundle adjustment contains one or more blunders is an inordinately high S0. Blundered
observations will have relatively large residuals. A first check is to look for residuals significantly



greater than the estimated a priori standard deviation. Similarly, since the residuals are assumed to be
normally distributed, one should be suspicious of any observation with a residual greater than 3 times
its standard deviation. When a blunder is found, the best course of action is to remeasure the point.
However, if there is sufficient point coverage near the point, then it may be removed. In some cases a
point may seem to be a blunder, but is actually just measured less accurately than other points. This
can be caused by the point being in an area on the photo that is less conducive to point matching, like
a field of grass. When this happens, the best strategy is to “loosen” the point in the adjustment, i.e.,
increase the a priori standard deviation of the observation relative to other observations. Once
corrections and tuning have been applied to the input, the adjustment should be run again. Sometimes
multiple bundle adjustments for a single data set must be executed in order to eliminate all blunders
and to fine tune a priori precision estimates. Between each execution, it is sometimes helpful to
update initial approximations using the previous adjustment allowing for faster convergence.

In the best case scenario, the adjustment will converge on a solution and have a standard
deviation of unit weight close to one. This indicates that initial approximations for unknown
parameters were sufficient and that a priori standard deviations reflected the true values of the
precision of the observations. It may occur that a bundle adjustment converges and has no blunders
but S0 is either too high or too low. In general, this will not significantly affect the results, but it is still
suggested that it be corrected. The reason this occurs is that a priori estimates of standard deviations
are incorrect. If S0 is higher than one, one should increase the a priori standard deviations. If S0 is
lower than one, the a priori standard deviations should be decreased.

Post-bundle adjustment statistics provide an excellent measure of the quality of the solution.
After a bundle adjustment converges properly, the standard deviations for both exterior orientation
parameters and ground coordinates of pass points are obtained using Eq. (17-16). These a posteriori
standard deviations can be used to quantify the precision of the solution. The geometry of the
adjustment (the relative location of photos, pass points, and control points), the precision of the
observations, and the redundancy of the observations influence the standard deviations. For example,
the exterior orientation parameter φ for a photo in an east-west strip such as the one illustrated in Fig.
17-4 will typically have a lower standard deviation than that for ω. Due to the geometry of the strip,
small changes in the position of points (e.g., errors) would influence the solved rotation about the x
axis more than the rotation about the y axis. It is common for the solved horizontal ground coordinates
of pass points to have higher standard deviations than Z coordinates. One way to visualize why this
occurs is to imagine rays from the perspective centers of two near-vertical photos intersecting at a
point on the ground. Small changes in either the position of the point in the image or the exterior
orientation parameters of the camera will affect the point of closest intersection of the rays more in
the Z direction than in the X or Y directions. Another geometric factor to consider is the location of the
point in the photo. For example, and for a similar reason as above, points imaged farther from the x
axis in an east-west strip of photos will have higher standard deviations for Y ground coordinates than
those with a more central location in the photo. In addition to geometry, redundancy of observations
can have a large influence on the precision of the bundle adjustment solution. For instance, points
measured in tri-lap areas can be expected to have smaller standard deviations than points only imaged
in two photos.

It should be noted that although a posteriori standard deviations can sufficiently represent the
quality of adjustments, coordinate comparisons with checkpoints—precisely measured control points
that are not included in the adjustment—are generally better measures of the accuracy of the solution.
A drawback of using checkpoints is that they require extra effort in the form of field work and/or
photogrammetric procedures. However, their coordinates can be obtained any time after photo
acquisition and adjustment as long as they are distinguishable in the images can still be physically



located on the ground.

17-10  Aerotriangulation with Airborne Linear Array Sensors
Linear array sensors capture images with different geometry compared to the point perspective of a
frame camera. Each scan line has its own set of exterior orientation parameters compared to one set of
parameters for a frame camera image. The aircraft must be equipped with a GPS-INS system in order
to measure these exterior orientation parameters for each scan line of the image. Aerial three-line
linear array sensors, such as the Leica ADS80, have the advantage of providing three different
perspectives of ground points along a strip from collection of forward, backward, and nadir scans.
This facilitates the use of aerotriangulation toward improving the accuracy of the data. Figure 17-8
illustrates the geometry of a three-line linear array system.

 FIGURE 17-8   Three-line linear array sensor scans: forward, nadir, and backward.
 

Three-line scanners collect three raw image scenes synchronously along a strip. One scene
consists of the collection of scan lines from the backward-looking linear array, another is from the
nadir-looking linear array, and the third is from the forward-looking linear array. In their raw format,
Level 0, these scenes are distorted due to aircraft movement during collection. Correcting the data for
sensor tilt and aircraft movement using GPS-INS measurements yields nominally rectified imagery,
Level 1. Figure 17-9 shows Level 0 imagery and Level 1 imagery. In the ADS systems, the



transformations from Level 0 to Level 1 are done in real time. In order to increase the accuracy of the
imagery and to facilitate the calibration of boresight and lever arm parameters, the exterior orientation
parameters obtained by GPS-INS are adjusted using a unique method of aerotriangulation.

 FIGURE 17-9   Raw (left) and processed (right) linear array imagery. Note that the edges of the
processed imagery correspond to the tilt of the sensor during acquisition. (Courtesy of the University
of Florida)
 

The first step in three-line scanner aerotriangulation is to obtain pass points between the scenes.
Although pass point generation is done in Level 1 scenes to facilitate automated matching, the



coordinates of the pass points refer to the Level 0 scenes. In order to apply the collinearity equations,
one must have exposure stations with multiple image observations. However, since the orientation
data comes from a continuous stream, the observations of the exterior orientation parameters are
continuous along the flight path and it is nearly impossible to have multiple points imaged in a single
scan line. Thus, orientation fixes are used. Orientation fixes can be considered simulated exposure
stations. They are defined at regular intervals along the flight path, and their spacing is chosen based
on the quality of the GPS-INS data. The poorer the GPS-INS, the shorter the allowable interval
between orientation fixes. Figure 17-10 illustrates the concept of orientation fixes along a flight path.

 FIGURE 17-10   Orientation fixes along a flight path for a three-line linear sensor array.
 

Once the orientation fixes have been established, the collinearity equations for each point on each
scene can be formed. The exterior orientation parameters associated with the imaging of these points
must be expressed as functions of the nearest orientation fixes before and after imaging. The
adjustment is similar to relative orientation in that each orientation fix for a scene is adjusted based on
the weighted exterior orientation parameters of the other orientation fixes corresponding to the other
scenes. Each point yields two equations for each of the three scenes. Boresight and lever arm
parameters can also be introduced into the equations using methods similar to those described in Sec.
17-8. Care must be taken when selecting the distance between the orientation fixes in order to ensure
that there will be enough redundancy from pass points to resolve the unknown parameters. In general,
the distance between orientation fixes should not exceed the instantaneous ground distance between
the nadir and backward scan lines. After the adjustment is completed, the solved orientation fixes are
used to update the GPS-INS data, which can then be used to rectify Level 0 imagery.

17-11  Satellite Image Triangulation
For certain applications with low accuracy requirements, aerotriangulation from satellite images may
be suitable. For example, for small-scale topographic mapping over mountainous regions,
panchromatic images from a linear array sensor onboard the French Système Pour d’Observation de la
Terre (SPOT) satellite may be used. Stereopairs of SPOT images can be acquired for a region by using
the off-axis pointing capability of the satellite. Photogrammetric analysis of the resulting images can
be performed through the use of modified collinearity equations.



Since the satellite is highly stable during acquisition of the image, the exterior orientation
parameters can be assumed to vary in a systematic fashion. Figure 17-11 illustrates an image from a
linear array sensor. In this figure, the start position (point o) is the projection of the center of row 0 on
the ground. At this point, the satellite sensor has a particular set of exterior orientation parameters 

, and . These parameters can be assumed to vary systematically as a function of the x
coordinate (row in which the image appears). Various functional relationships have been tested for
modeling these systematic variations, and the following have been found to consistently yield
satisfactory results:

 FIGURE 17-11   Illustration of linear array sensor image.
 

(17-21)
 
In Eq. (17-21), x is the row number of some image position; ωx, ϕx, κx, , and  are the exterior
orientation parameters of the sensor when row x was acquired; ωo, ϕo, κo, , and  are the exterior
orientation parameters of the sensor at the start position; and a1 through a7 are coefficients which
describe the systematic variations of the exterior orientation parameters as the image is acquired. Note
that according to Eq. (17-21) the variation in ZL is second order, whereas the other variations are linear
(first order). This is due to the curved orbital path of the satellite and is based on an assumption that a
local vertical coordinate system (see Sec. 5-5) is being used. Depending upon the accuracy



requirements and measurement precision, the coefficient of the second-order term a7 may often be
assumed to be equal to zero.

Given the variation of exterior orientation parameters described above, the collinearity equations
which describe linear array sensor geometry for any image point a are

(17-22)
 

(17-23)
 
In Eqs. (17-22) and (17-23), ya is the y coordinate (column number) of the image of point A; yo is the y
coordinate of the principal (middle) point of the row containing the image; f is the sensor focal length;

 through  are the rotation matrix terms [see Eqs. (C-33)] for the sensor attitude when row xa was
acquired; , and  are the coordinates of the sensor when row xa was acquired; and XA, YA, and ZA

are the object space coordinates of point A. Note that the exterior orientation terms and hence the
rotation matrix terms are functions of the form of Eq. (17-21). It is also important to note that the
units of the image coordinates and the focal length must be the same. For example, the first three
SPOT sensor systems had focal lengths of 1082 mm and, when operating in the panchromatic mode,
pixel dimensions of 0.013 mm in their focal planes.2 Therefore, if standard row and column image
coordinates (in terms of pixels) are used, the focal length is expressed as 1082 mm/0.013 mm/pixel =
83,200 pixels.

Rational polynomial coefficient (RPC) camera models (see Sec. C-10) are commonly used to
describe satellite imagery. RPCs are considered a replacement model for the actual physical
characteristics and orientation of the sensor with respect to image coordinates of ground points. They
are derived from the physical model of the satellite sensor using least squares techniques, and their
coefficients are delivered with the imagery. Much like the collinearity equations, RPCs are a
mathematical model for transforming three-dimensional ground points to two-dimensional image
coordinates. Thus, RPCs can be used in many of the same applications as the collinearity equations
such as DEM generation, othorectification, and feature extraction. For example, IKONOS satellite
imagery uses the ratio of two cubic polynomial functions of three-dimensional ground coordinates to
describe x (line) and y (sample) coordinates of a point in the linear array sensor image as in Eq. (17-
24). The image and ground coordinates of the points are normalized to avoid ill-conditioning and
increase the numerical precision (see Example B-6).

(17-24)
 
In Eq. (17-24), Pa, La, and Ha are the normalized latitude, longitude, and height of point a, xa and ya are
the normalized image coordinates of point a, and NumL, DenL, NumS, and DenS are cubic polynomial
functions of Pa, La, and Ha. Both of the two rational polynomials consist of 39 coefficients (20 in the



numerator and 19 in the denominator) for a total of 78 coefficients used in the model. Note that if a
point is imaged on two stereo satellite images, the three-dimensional object space coordinates can be
found via least squares since there would be four equations and three unknowns, similar to space
intersection via collinearity described in Sec. 11-7.

The RPC model on its own may be sufficient for some applications, however it is possible to
increase the accuracy by determining bias parameters using a least squares block adjustment of stereo
satellite imagery. Equation (17-25) is referred to as the adjustable RPC model, where a0, a1, a2, b0, b1,
a n d b2 are affine transformation parameters that model biases in image space stemming from
systematic errors in the physical orientation of the sensor.

(17-25)
 
The solution for the affine parameters can be found using a block adjustment of stereo satellite images
with Eq. (17-25) serving as the basis for the observation equations. Depending on the geometry of the
imagery and the type of sensor (e.g., IKONOS versus QuickBird) not all of the additional parameters
may be statistically significant, and care should be taken not to over-parameterize the adjustment (see
Sec. C-10).

17-12  Efficient Computational Strategies for Aerotriangulation
Section 17-6 presented the mathematical form for least squares adjustment of photogrammetric
blocks. As presented, however, the equations are somewhat inefficient for computational purposes.
Methods are available for reducing the matrix storage requirements and solution time for large blocks
of photographs. One approach is briefly presented here.

The first step is to partition the full normal equations [Eq. (17-14)] so that the exterior
orientation terms and the object space coordinate terms are separated, giving

(17-26)
 
In Eq. (17-26),  is the block-diagonal submatrix from the upper left portion of N having dimensions
6m × 6m, where m is the number of photos in the block;  is the block-diagonal submatrix from the
lower right portion of N having dimensions 3n × 3n, where n is the number of object points in the
block;  is the submatrix from the upper right portion of N having dimensions 6m × 3n and  is its
transpose;  is the submatrix from the upper portion of Δ having dimensions of 6m × 1, consisting of
the correction terms for the exterior orientation parameters for all photos;  is the submatrix from the
lower portion of Δ having dimensions of 3n × 1, consisting of the correction terms for the object space
coordinates for all points;  is the submatrix from the upper portion of K having dimensions of 6m ×
1; and  is the submatrix from the lower portion of K having dimensions of 3n × 1.

A block-diagonal matrix consists of nonzero submatrices along the main diagonal and zeros
everywhere else. This kind of matrix has the property that its inverse is also block-diagonal, where the



submatrices are inverses of the corresponding submatrices of the original matrix. As such, the inverse
of a block-diagonal matrix is much easier to compute than the inverse of a general, nonzero matrix.
With this in mind, Eq. (17-26) can be rearranged to a form which can be solved more efficiently. First,
Eq. (17-26) is separated into two separate matrix equations.

(17-27)
 

(17-28)
 
Equation (17-28) is then rearranged to solve for .

(17-29)
 
Next the right side of Eq. (17-29) is substituted for  in Eq. (17-27).

(17-30)
 
Rearranging Eq. (17-30) to collect the  terms gives

(17-31)
 

Matrix Eq. (17-31) is referred to as the reduced normal equations. These equations are solved for 
, which can then be substituted into Eq. (17-29) to compute . This approach is more efficient since

the largest system of equations which must be solved has only 6m unknowns, as opposed to 6m + 3n
unknowns in the full normal equations. This efficiency is made possible by the block-diagonal
structure of the  matrix.
One can also use the partitioned N matrix to obtain the covariance matrix. The inverse of N can be
partitioned as shown in Eq. (17-32).

(17-32)
 
Using the relationship between a matrix and its inverse shown in Eq. (17-33), the matrix C = N–1 can
be formed using the definitions in Eqs. (17-34), (17-35), and (17-36).

(17-33)
 

(17-34)
 

(17-35)



 

(17-36)
 
While C2 can be used to form the full covariance matrix for point coordinates, the computations are
normally limited to determining covariance values for each point separately. This can be done by
using only the portions of the matrices on the right hand side of Eq. (17-36) corresponding to a
particular point j. The covariance matrix can then be formed using Eq. (17-16).

An additional enhancement to the solution can be made to increase computational efficiency even
further. This enhancement exploits the fact that the coefficient matrix of the reduced normal equations
is sparse; i.e., it has a large number of elements that are zero. Special computational techniques and
data storage methods are available which take advantage of sparsity, reducing both computational
time and data storage requirements. Details concerning these special computational techniques may be
found in references listed at the end of this chapter.

Figure 17-12 shows a small block with three strips of nine photos each, having end lap and side
lap equal to 60 and 30 percent, respectively. The outlines of photo coverage for only the first three
photos in strips 1 and 2 are shown in the figure, and the remainder are represented as neat models (see
Sec. 18-7). In Fig. 17-12, the image of a representative pass point A exists on photos 1-1, 1-2, 1-3, 2-1,
2-2, and 2-3. This pass point causes “connections” between each possible pair of photos from the set
of six on which it is imaged. Connections for the entire block are illustrated in Fig. 17-13. This figure
shows a graph which indicates the connections (shown as lines or arcs) caused by shared pass points
over the entire block.

 FIGURE 17-12   Configuration of a photo block having three strips of nine photos each.
 



 FIGURE 17-13   Graph showing connections between photos caused by shared pass points.
 

These connections cause nonzero submatrices to appear at corresponding locations in the reduced
normal equations. The positions where these nonzero submatrices appear depend upon the order in
which the photo parameters appear in the reduced normal equation matrix. Two ordering strategies,
known as down-strip and cross-strip, are commonly employed. In the down-strip ordering, the photo
parameters are arranged by strips, so that the nine photos from strip 1 appear first, followed by the
nine photos of strip 2, and the nine photos from strip 3. With cross-strip ordering, the photo
parameters are arranged so that the first photo of strip 1 appears first, followed by the first photos of
strips 2 and 3; then the second photos of strips 1, 2, and 3; and so on. These two photo orders are listed
in Table 17-1. As will be demonstrated, cross-strip ordering leads to a more efficient solution than
down-strip ordering in this case.

 



TABLE 17-1   Down-Strip and Cross-Strip Ordering for the Photos of Fig. 17-14
 

Figure 17-14 shows a schematic representation of the reduced normal equations when down-strip
ordering is employed. Notice from the figure that the nonzero elements tend to cluster in a band about
the main diagonal of the matrix. The width of the band from the diagonal to the farthest off-diagonal
nonzero element is the bandwidth of the matrix. The bandwidth of the matrix shown in Fig. 17-14 is 6
× 12 = 72. With cross-strip ordering of the photos, the reduced normal equation matrix shown in Fig.
17-15 results. Here, the bandwidth is 6 × 8 = 48, which is substantially smaller than that for down-
strip ordering. The narrower the bandwidth, the faster the solution and the less storage required.

 FIGURE 17-14   Structure of the reduced normal equations using down-strip ordering.
 



 FIGURE 17-15   Structure of the reduced normal equations using cross-strip ordering.
 

Solution time for nonbanded reduced normal equations is proportional to the number of
unknowns (6m) raised to the third power. For the example with 27 photos, the time is proportional to
(6 × 27)3 = 4.2 × 106. For banded equations, the solution time is proportional to the bandwidth squared,
times the number of unknowns. For the example with down-strip number, the time is proportional to
722 × (6 × 27) = 8.4 × 105, which is 5 times faster than the nonbanded case. With cross-strip
numbering, the time is proportional to 482 × (6 × 27) = 3.7 × 105, which is more than 11 times faster
than the nonbanded case!

Down-strip and cross-strip ordering generally apply only to regular, rectangular photo blocks. In
cases where photo blocks cover irregular areas, other more complicated approaches should be used to
achieve a minimal bandwidth. Details of these other approaches can be found in references which
follow.
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Problems
  17-1.   Discuss the advantages of aerotriangulation over field surveys.

  17-2.   List the three categories of aerotriangulation. Which categories are currently used?

  17-3.   Describe the process of automatic pass point generation. What are its advantages to manual
point measurement?

  17-4.   Briefly describe independent model aerotriangulation by the sequential method.

  17-5.   Why is a three-dimensional polynomial transformation often used for transforming a
sequentially constructed strip model to the ground coordinate system?

  17-6.   A continuous strip of three stereomodels has pass points a through l and ground control points
A through D. Independent model coordinates for points and exposure stations of each model are listed
below along with ground coordinates of control points. Compute the ground coordinates of the pass
points and exposure stations by the sequential method of semianalytical aerotriangulation. Use the
three-dimensional conformal coordinate transformation program provided (see Example 17-1).

 
  17-7.   Repeat Prob. 17-6, except using the coordinates from the table below.



 
  17-8.   Briefly describe how the method of independent model aerotriangulation by simultaneous
transformations differs from the sequential approach.

  17-9.   Discuss the advantages of analytical methods of photogrammetric control extension as
opposed to semianalytical methods.

17-10.   Briefly describe the unknowns and measurements associated with a bundle adjustment of a
block of photographs.

17-11.   Describe how coordinates of the GPS antenna are related to the exposure station when
airborne GPS control is used to control photography.

17-12.   Describe how the boresight angular attitude parameters relate the camera and the IMU.

17-13.   In what coordinate system is the lever arm offset?

17-14.   Briefly discuss the problem associated with the lack of synchronization of GPS fixes with
camera exposures in airborne GPS control.

17-15.   What is the purpose of cross strips at the ends of photo blocks when airborne GPS is used to
control photography?

17-16.   Compute initial approximations for the angular exterior orientation parameters using the
results from a sequentially constructed strip model with results in the following table using the
methods in Example 17-2.



 
17-17.   Briefly explain how a line perspective image differs from a point perspective image.

17-18.   Briefly discuss the characteristic of the  submatrix that makes the method of reduced
normal equations more efficient for a bundle adjustment than solving the full normal equations.

17-19.   Discuss the difference between down-strip and cross-strip numbering as they apply to the
bandwidth of the reduced normal equations of a bundle adjustment.

_____________
2 SPOT 1, 2, and 3 sensors could be operated in either a panchromatic or multispectral mode. In panchromatic mode, pixel
dimensions were 0.013 mm, and ground resolution was 10 m. In multispectral mode, pixel dimensions were 0.026 mm, and ground
resolution was 20 m.



CHAPTER 18
Project Planning

 

18-1   Introduction
Successful execution of any photogrammetric project requires that thorough planning be done prior to
proceeding with the work. Planning, more than any other area of photogrammetric practice, must be
performed by knowledgeable and experienced persons who are familiar with all aspects of the subject.

The first and most important decision to be made in the planning process concerns the selection
of the products that will be prepared. In addition to selecting the products, their scales and accuracies
must be fixed. These decisions can only be made if the planner thoroughly understands what the
client’s needs are, so that the best overall products can be developed to meet those needs. The client
will also naturally be concerned with the anticipated costs of the items as well as the proposed
schedule for their delivery. Therefore, successful planning will probably require several meetings with
the client prior to commencing the work, and depending upon the nature and magnitude of the project,
continued meetings may be needed as production progresses.

A variety of products may be developed in a given photogrammetric project, including prints of
aerial photos, photo indexes, photomaps, mosaics, orthophotos, planimetric and topographic maps,
digital maps for GIS databases and other purposes, cross sections, digital elevation models, cadastral
maps, and others. In addition to the wide variation in products that could be developed for a given
project, there are normally other major considerations that will have definite bearing on procedures,
costs, and scheduling. These include the location of the project; its size, shape, topography, and
vegetation cover; the availability of existing ground control; etc. Thus, every project presents unique
problems to be considered in the planning stages.

Assuming that the photogrammetric products, and their scales and accuracies, have been agreed
upon with the client, the balance of the work of project planning can generally be summarized in the
following categories:

      1.  Planning the aerial photography1

      2.  Planning the ground control
      3.  Selecting instruments and procedures necessary to achieve the desired results
      4.  Estimating costs and delivery schedules

When planning has been completed for these categories, the photogrammetrist will normally prepare a
detailed proposal which outlines plans, specifications, an estimate of costs, and delivery schedules for
the project. The proposal often forms the basis of an agreement or contract for the performance of the
work.

Of the above four categories, this chapter concentrates primarily on planning of the aerial
photography. Planning of the ground control has been discussed in detail in Chap. 16, and instrument
and procedure selection has been discussed in earlier chapters where the various photogrammetric
products and instruments for producing them have been described. A brief discussion of the subjects
of cost estimating and scheduling is given in Sec. 18-12.



18-2   Importance of Flight Planning
Because the ultimate success of any photogrammetric project probably depends more upon good-
quality photography than on any other aspect, planning the aerial photography, also called flight
planning, is of major concern. If the photography is to satisfactorily serve its intended purposes, the
photographic mission must be carefully planned and faithfully executed according to the “flight plan.”
A flight plan generally consists of two items: a flight map, which shows where the photos are to be
taken; and specifications, which outline how to take them, including specific requirements such as
camera and film requirements, scale, flying height, end lap, side lap, and tilt and crab tolerances. A
flight plan which gives optimum specifications for a project can be prepared only after careful
consideration of all the many variables which influence aerial photography.

An aerial photographic mission is an expensive operation involving two or more crewpersons and
high-priced aircraft and equipment. In addition, periods of time that are acceptable for aerial
photography are quite limited in many areas by weather and ground cover conditions, which are
related to seasons of the year. Failure to obtain satisfactory photography on a flight mission not only
necessitates costly reflights, but also in all probability will cause long and expensive delays on the
project for which the photos were ordered. For these reasons flight planning is one of the most
important operations in the overall photogrammetric project.

18-3   Photographic End Lap and Side Lap
Before discussing the many aspects which enter into consideration in planning an aerial photographic
mission, it will be helpful to redefine the terms end lap and side lap. As discussed in Sec. 1-4, vertical
aerial photographic coverage of an area is normally taken as a series of overlapping flight strips. As
illustrated in Fig. 18-1, end lap is the overlapping of successive photos along a flight strip. Figure 18-
2 illustrates side lap, or the overlap of adjacent flight strips.

 FIGURE 18-1   End lap, the overlapping of successive photos along a flight strip.
 



 FIGURE 18-2   Side lap, the overlapping of adjacent flight strips.
 

In Fig. 18-1, G represents the dimension of the square of ground covered by a single vertical
photograph (assuming level ground and a square camera focal-plane format), and B is the air base or
distance between exposure stations of a stereopair. The amount of end lap of a stereopair is commonly
given in percent. Expressed in terms of G and B, it is

(18-1)
 
I n Eq. (18-1), PE is percent end lap. If stereoscopic coverage of an area is required, the absolute
minimum end lap is 50 percent. However, to prevent gaps from occurring in the stereoscopic coverage
due to crab, tilt, flying height variations, and terrain variations, end laps greater than 50 percent are
used. Also, if the photos are to be used for photogrammetric control extension, images of some points
must appear on three successive photographs—a condition requiring greater than 50 percent end lap.
For these reasons aerial photography for mapping purposes is normally taken with about 60 percent
end lap.

Crab, as explained in Sec. 3-6, exists when the edges of the photos in the x direction are not
parallel with the direction of flight. It causes a reduction in stereoscopic coverage, as was indicated in
Fig. 3-7. Figures 18-3 through 18-5 illustrate reductions in end lap causing loss of stereoscopic
coverage due to tilt, flying height variation, and relief variations, respectively.

 FIGURE 18-3   Failure to achieve stereoscopic coverage due to tilt.



 

 FIGURE 18-4   Failure to achieve stereoscopic coverage due to flying height variations.
 

 FIGURE 18-5   Failure to achieve stereoscopic coverage due to terrain variations.
 

Side lap is required in aerial photography to prevent gaps from occurring between flight strips as
a result of drift, crab, tilt, flying height variation, and terrain variations. Drift is the term applied to a
failure of the pilot to fly along planned flight lines. It is often caused by strong winds, but can also
result from a lack of definite features and objects shown on the flight map which can also be identified
from the air to guide the pilot during photography. Excessive drift is the most common cause for gaps
in photo coverage; when this occurs, reflights are necessary.

I n Fig. 18-2, again G represents the dimension of the square of ground coverage of a single
vertical photograph, and W is the spacing between adjacent flight lines. An expression for PS (percent
side lap) in terms of G and W

(18-2)
 

Mapping photography is normally taken with a side lap of about 30 percent. Besides helping to
prevent gaps in coverage, another advantage realized from using this large a percentage is the
elimination of the need to use the extreme edges of the photography, where the imagery is of poorer
quality. Photography for orthophoto or mosaic work is sometimes taken with greater than 30 percent
side lap since this reduces the sizes of the central portions of the photographs that must be used,
thereby lessening distortions of images due to tilt and relief. In certain cases, such as for very precise



photogrammetric control extension, the aerial photos may be taken with 60 percent side lap as well as
60 percent end lap to increase the redundancy in the bundle adjustment (see Chap. 17).

Example 18-1
The air base of a stereopair of vertical photos is 1400 m, and flying height above average ground is
2440 m. The camera has a focal length of 152.4 mm and a 23-cm format. What is the percent end lap?

Solution

 
      2.  Ground coverage dimension

 
      3.  Percent end lap, by Eq. (18-1), is

 

Example 18-2
I n Example 18-1, assume that the spacing between adjacent flight strips is 2500 m. What is the
percent side lap?

Solution   By Eq. (18-2),

 

18-4   Purpose of the Photography
In planning aerial photographic missions, the first and foremost consideration is the purpose for which
the photography is being taken. Only with the purpose defined can optimum equipment and
procedures be selected. In general, aerial photographs are desired which have either good metric
qualities or high pictorial qualities. Photos having good metric qualities are needed for topographic
mapping or other purposes where precise quantitative photogrammetric measurements are required.
High pictorial qualities are required for qualitative analysis, such as for photographic interpretation or
for constructing orthophotos, photomaps, and aerial mosaics.

Photographs of good metric quality are obtained by using calibrated cameras and films having
fine-grained, high-resolution emulsions or digital sensors with a high pixel count. For topographic
mapping and other quantitative operations, photography is preferably taken with a wide- or super-
wide-angle (short-focal-length) camera so that a large base-height ratio (B/H′) is obtained. The B/H′
ratio, as described in Sec. 7-8, is the ratio of the air base of a pair of overlapping photographs to the



average flying height above ground. The larger the B/H′ ratio, the greater the intersection angles
(parallactic angles) between intersecting light rays to common points. In Figs. 18-6a and b, for
example, the air bases are equal, but the focal length and flying height in Fig. 18-6a are one-half those
in Fig. 18-6b. The photographic scales are therefore equal for both cases, but the B/H′ ratio of Fig. 18-
6a is double that of Fig. 18-6b, and parallactic angle ϕ1 to point A in Fig. 18-6a is nearly double the
corresponding angle ϕ2 in Fig. 18-6b.

 FIGURE 18-6   Parallactic angles increase with increasing B/H′ ratios.
 

It can be shown that the errors in computed positions and elevations of points in a stereopair
increase with increasing flying heights, and decrease with increasing x parallax. Large B/H′ ratios
denote low flying heights and large x parallaxes, conditions favorable to higher accuracy. The photos
of Fig. 18-6a are therefore superior to those of Fig. 18-6b for mapping or quantitative analyses.

Photography of high pictorial quality does not necessarily require a calibrated camera, but the
camera must have a good-quality lens. In many cases, films having fast, large-grained emulsions or
digital cameras with high ISO speeds produce desirable effects. For some photo interpretation work,
normal color photography is useful. For other special applications, black-and-white infrared or color
infrared photos are desirable. Special effects can also be obtained by using filters in combination with
various types of films. Timber types, for example, can be delineated quite effectively by using a red
filter in combination with black-and-white infrared film. Similarly, digital image processing
techniques can be applied to enhance photos for many different interpretive applications.

For mosaic work, relief displacements, tilt displacements, and scale variations produce
objectionable degradations of pictorial quality. These may be minimized, however, by increasing
flying height, thereby decreasing the B/H′ ratio. Increased flying height, of course, reduces photo
scale; but compensation for this can be achieved by using a longer-focal-length camera. The photo of
Fig. 18-7a was exposed at one-half the flying height of the photo of Fig. 18-7b. The scales of the two
photos are equal, however, because focal length f2 of Fig. 18-7b is double f1 of Fig. 18-7a. The photo
o f Fig. 18-7b is more desirable for mosaic construction because its scale variations and image
distortions due to relief, tilt, and flying height variations are much less than those of the photo of Fig.
18-7a. On Fig. 18-7a, for example, relief displacement d1 is more than double the corresponding relief
displacement d2 of Fig. 18-7b.



 FIGURE 18-7   Reduction in relief displacement is achieved by increasing flying height.
 

18-5   Photo Scale
Average photographic scale is one of the most important variables that must be selected in planning
aerial photography. It is generally fixed within certain limits by specific project requirements. For
topographic mapping, photo scale is usually dictated by the map’s required scale and/or horizontal and
vertical accuracy. On the other hand, in photo interpretation applications, or for orthophoto or mosaic
preparation, ensuring that the smallest ground objects of importance can be resolved on the photos
may be the governing consideration in selecting the photo scale.

Example 18-3
A particular project involves the use of aerial photography to study the centerline markings of
highways. The actual width of painted centerlines on the highways is 100 mm (4 in). A high-resolution
film (80 line pairs per millimeter) will be used. What minimum photo scale is required?

Solution   With a resolution of 80 line pairs per millimeter (see Sec. 3-14), the smallest objects that
could reasonably be resolved with that film would be 1/80 mm = 0.0125 mm in size. Thus, the
minimum scale required would be roughly

 
In topographic mapping, the enlargement ratio from photo scale to the scale of the plotted map

must be considered. With older direct optical projection stereoplotters, where maps were drawn in real
time as the operator viewed and traced the stereomodel, the enlargement ratio was fixed within narrow
limits, with 5 being most common. Today these types of instruments are seldom used in practice.
Mechanical projection stereoplotters (see Chap. 12) have enlargement ratio capabilities which range
from less than 1 up to 10 or more, depending upon the particular instrument. However, the number of
these instruments in use today is also declining, and those being used are seldom employed for direct



map compilation anymore. Rather they are equipped with digitizers, and topographic information is
digitized and stored in files. From these digital files, maps are plotted using computers. Today,
analytical plotters and softcopy systems account for the majority of topographic mapping, and for
topographic mapping both of these systems are normally used to produce digital files.

In using computers to plot maps from digital files, virtually any enlargement ratio is possible. It
is important to note, however, that the digitized information contains errors, and these errors are
magnified by whatever enlargement ratio is used. Thus to ensure the integrity and accuracy of a map
compiled from digital data, the enlargement ratios that are actually utilized must be held within
reasonable limits. To ensure that their plotted maps meet required accuracy standards, many
organizations will not enlarge more than five to seven times over photo scale. Higher enlargement
ratios are sometimes used but this should be done with caution, and generally only when experience
with previous projects has shown through field checks that satisfactory accuracies have been obtained.

Example 18-4
A map must be compiled at a scale of 1:6000. If an enlargement ratio of 5 will be used in producing
this map, what is the required photo scale?

Solution   Photo scale is one-fifth as large as map scale. Therefore,

 
Selection of optimum map scale depends upon the purpose of the map. It should be carefully

planned, because compilation at a larger scale than necessary is uneconomical, and compilation at too
small a scale reduces the usefulness of the map or may even render it unsatisfactory. The horizontal
accuracy (accuracy to which planimetric positions of points can be measured from a map) depends
directly upon the map’s scale. Assume, for example, that map positions of planimetric features can be
plotted correctly to within 1/30 in, a condition necessary to meet National Map Accuracy Standards
(see Sec. 16-1) for large-scale maps.2 Now if a particular cadastral map requires that points be
accurate to within ± 2.0 ft, required map scale is 1 in = 60 ft (1:720). Then for that situation, if an
enlargement ratio of 5 is employed, photo scale is fixed at 5 × 60 = 300 ft/in (1:3600). In another
example, if points only need to be accurate to within ± 20 ft on a topographic map for preliminary
planning, and again assuming the same accuracy of 1/30 in, then a scale of 1 in = 600 ft (1:7200) is all
that would be required, and minimum photo scale would be 5 × 7200, or 1:36,000.

As previously noted, vertical mapping accuracy is also an important factor to be considered in
planning aerial photography. In past photogrammetric practice, contours which portrayed topographic
relief were compiled directly from stereomodels, and thus the guidelines and standards for specifying
vertical accuracy in topographic mapping were commonly given in terms of contour interval. As noted
earlier in this text, however, for modern photogrammetry projects digital elevation models (DEMs)
are now generally compiled rather than contours. From the DEMs, triangulated irregular network
(TIN) models are constructed using computers, and then contours, cross sections, and profiles can be
generated automatically from the TIN models. But even though different procedures are now
employed to compile topographic information, contours are still the end product that is often used in
representing topographic relief. Thus, guidelines and standards that are based on contour interval are
still appropriate for quantifying vertical mapping accuracy. And as will be discussed later in this
section, as vertical mapping accuracy requirements increase (contour interval decreases), flying height
must decrease and photo scale must increase.

As with planimetric accuracy, the contour interval to be selected for a particular mapping project



depends upon the intended use of the maps. Assume, for example, that elevations can be interpolated
correctly from a map to within one-half the contour interval, a condition required for meeting
National Map Accuracy Standards. If elevations must be interpolated to within ±0.5 ft on a highway
design map, then a 1-ft contour interval is necessary. If elevations must be interpolated to ±10 ft on a
map prepared for studying the volume of water impounded in the reservoir of a large dam, then a 20-ft
contour interval is all that is required.

The recommended contour interval depends on not only the use to be made of the map but also
the type of terrain. If the map is being prepared for planning a sewer system for a city such as Las
Vegas, Nevada, which lies on relatively flat terrain, perhaps a 1-ft contour interval would be required.
On the other hand, if a topographic map of San Francisco is being prepared for the same purpose,
because of the large range of relief in that city, perhaps a 5- or 10-ft contour interval would be used.

In planning a topographic mapping project, contour interval and map scale must be selected so
that they are compatible. As map scale decreases, contour interval must increase; otherwise, the
contours would become too congested on the map. In large-scale mapping of average types of terrain,
the scale and contour interval relationships shown in Table 18-1 generally provide satisfactory
compatibility.

 TABLE 18-1   Compatible Map Scales and Contour Intervals for Average Terrain
 

Relative accuracy capabilities in photogrammetric mapping, whether planimetric or vertical,
depend upon many variables, but the most important is flying height above ground. Others include the
quality of the stereoplotting instrument that is used and the experience and ability of its operator, the
camera and its calibration, the quality of the photography, the density and accuracy of the ground
control, and the nature of the terrain and its ground cover. A rule of thumb for quantifying vertical
accuracy capability, based on contour interval, employs a term called the C factor. The C factor is the
ratio of the flying height above ground of the photography (H′) to the contour interval that can be
reliably plotted using that photography, or in equation form

(18-3)
 
The units of H′ and CI (contour interval) of Eq. (18-3) are the same. The C factors that are employed
by photogrammetric mapping organizations are based upon their experiences, and this experience will
include field checks of map accuracies achieved on a variety of previous projects. To ensure that their
maps meet required accuracy standards, many organizations use a C factor of from about 1200 to
1500. Other organizations may push the value somewhat higher, but this must be done with extreme



caution.

Example 18-5
A topographic map having a scale of 200 ft/in with 5-ft contour interval is to be compiled from
contact-printed diapositives using a stereoplotter having a nominal 6-in (152-mm) principal distance.
Determine the required flying height for the photography if the maximum values to be employed for
the C factor and enlargement ratio are 1500 and 5, respectively.

Solution

      1.  Considering contour interval and C factor:

 
      2.  Considering map scale and enlargement ratio:

 
                   In this instance, the lower of the two flying heights (6000 ft) must be selected, and

therefore the enlargement ratio from photo scale to map scale governs over contour interval.   

In some topographic mapping projects, particularly where there is little relief, it is impractical to
show elevations using contours because few, if any, may result. In these situations, a grid of spot
elevations can be read throughout the area to depict the relief. A rule of thumb relating accuracy of
spot elevations and flying height is that the ratio of flying height above ground to the accuracy with
which spot elevations can be reliably read is approximately 5000. Thus, if spot elevations are needed
to an accuracy of ±1/2 m, then the flying height above ground necessary to achieve those results would
be in the range of about 1/2 (5000), or roughly 2500 m. Again, in addition to flying height, the actual
accuracies that can be achieved also relate to the stereoplotting instrument, the operator’s ability, the
quality of the aerial photography, the density and accuracy of the ground control, and other factors.

18-6   Flying Height
Once the camera focal length and required average photo scale have been selected, required flying
height above average ground is automatically fixed in accordance with scale [see Eq. (6-3)].

Example 18-6
Aerial photography having an average scale of 1:6000 is required to be taken with a 152.4-mm-focal-
length camera over terrain whose average elevation is 425 m above mean sea level. What is required
flying height above mean sea level?

Solution   By Eq. (6-3)



 
Flying heights above average ground may vary from a hundred meters or so in the case of large-

scale helicopter photography, to several hundred kilometers if satellites are used to carry the camera.
Flying heights used in taking photos for topographic mapping normally vary between about 500 and
10,000 m. If one portion of the project area lies at a substantially higher or lower elevation than
another part, two different flying heights may be necessary to maintain uniform photo scale.

Ground coverage per photo for high-altitude photography is greater than that for low-altitude
photography. Fewer high-altitude photos are therefore required to cover a given area. Very high-
altitude coverage is more expensive to obtain than low-altitude photography because of the special
equipment required. Some of the problems encountered at high flying heights are the decreasing
available oxygen, decreasing pressure, and extreme cold. When flying heights exceed about 3000 m,
an oxygen supply system is necessary for the flight crew. At altitudes above 10,000 m, pure oxygen
under pressure is required. Also, the cabin must be pressurized, and heaters are required to protect the
crew against the cold. Most aerial photography is taken by using single- or twin-engine aircraft.
Supercharged single-engine aircraft can reach altitudes of about 6 km, and supercharged twin-engine
aircraft are capable of approaching 10 km. Higher altitudes require turbocharged or jet aircraft.

During photography the pilot maintains proper flying height by means of an altimeter or GPS
receiver. Since altimeters give elevations above mean sea level, the proper reading is the sum of
average ground elevation and required flying height above ground necessary to achieve proper photo
scale. Altimeters are barometric instruments, and consequently their readings are affected by varying
atmospheric pressure. They must be checked daily and adjusted to base airport air pressure. GPS
receivers, while essentially unaffected by barometric pressure, give elevations relative to the ellipsoid
(see Sec. 16-5); therefore a geoid model is required to relate these elevations to mean sea level.

18-7   Ground Coverage
Once average photographic scale and camera format dimensions have been selected, the ground
surface area covered by a single photograph may be readily calculated. In addition, if end lap and side
lap are known, the ground area covered by the stereoscopic neat model can be determined. The neat
model, as illustrated in Fig. 18-8, is the stereoscopic area between adjacent principal points and
extending out sideways in both directions to the middle of the side lap. The neat model has a width of
B and a breadth of W. Its coverage is important since it represents the approximate mapping area of
each stereopair.



 FIGURE 18-8   The area covered by a stereoscopic neat model.
 

Example 18-7
Aerial photography is to be taken from a flying height of 6000 ft above average ground with a camera
having a 6-in (152.4-mm) focal length and a 9-in (23-cm) format. End lap will be 60 percent, and side
lap will be 30 percent. What is the ground area covered by a single photograph and by the stereoscopic
neat model?

Solution

      1.  By Eq. (6-1),

 
      2.  The dimension G of the square ground area covered by a single photo is

 
      3.  The area in acres covered on the ground by a single photo is



 
      4.  At 60 percent end lap, B is 0.4G; and at 30 percent side lap, W is 0.7G. Therefore the

dimensions of the rectangular stereoscopic neat model are

 
           And the area of the neat model is

 
While neat models guide the planning process for projects intended for stereoplotter mapping,

other applications may call for different ground coverage parameters. For example, if orthophotos are
the intended final product, it is beneficial to plan flights with equal end lap and side lap. The
advantage of increasing the side lap is that more ground is covered near the center of photos. This
reduces the amount of relief displacement and occlusion by buildings, and is therefore more useful in
urban areas than rural.

18-8   Weather Conditions
The weather, which in most locations is uncertain for any given day, is a very important consideration
in aerial photography. In most cases, an ideal day for aerial photography is one that is free from
clouds, although if the sky is less than 10 percent cloud-covered, the day may be considered
satisfactory. If clouds of greater than 10 percent coverage are present but are so high that they are
above the planned flying height, this may still be objectionable since large cloud shadows will be cast
on the ground, obscuring features. The number of satisfactory cloudless days varies with time of year
and locality. There are certain situations in which overcast weather can be favorable for aerial
photography. This is true, for example, when large-scale photos are being taken for topographic
mapping over built-up areas, forests, steep canyons, or other features which would cast troublesome
shadows on clear, sunny days.

A particular day can be cloudless and still be unsuitable for aerial photography due to
atmospheric haze, smog, dust, smoke, high winds, or air turbulence. Atmospheric haze scatters almost
entirely in the blue portion of the spectrum, and it can therefore be effectively eliminated from the
photographs by using a yellow filter in front of the camera lens. Smog, dust, and smoke scatter
throughout the entire spectrum and cannot be filtered out satisfactorily. Best days for photographing
over industrial areas which are susceptible to smog, dust, and smoke occur after heavy rains or during
moving cold fronts which clear the air. Windy, turbulent days can create excessive image motion and
cause difficulties in keeping the camera oriented for vertical photography, in staying on planned flight
lines, and in maintaining constant flying heights.

The decision to fly or not to fly is one that must be made daily. The flight crew should be capable
of interpreting weather conditions and of making sound decisions as to when satisfactory photography
can be obtained. If possible, the flight crew should be based near the project so that they can observe
the weather firsthand and quickly take advantage of satisfactory conditions.



18-9   Season of the Year
The season of the year is a limiting factor in aerial photography because it affects ground cover
conditions and the sun’s altitude. If photography is being taken for topographic mapping, the photos
should be taken when the deciduous trees are bare, so that the ground is not obscured by leaves. In
many places this occurs twice a year for short periods in the late fall and in early spring. Oak trees
tend to hold many of their leaves until spring, when the buds swell and cause the leaves to fall. In
areas with heavy oak cover, therefore, the most satisfactory period for aerial photography is that very
short period in the spring between budding and leafing out. Sometimes aerial photography is taken for
special forestry interpretation purposes, in which case it may be desirable for the trees to be in full
leaf. Normally, aerial photography is not taken when the ground is snow-covered. Heavy snow not
only obscures the ground but also causes difficulties in interpretation and in stereoviewing.
Occasionally, however, a light snow cover can be helpful by making the ground surface more readily
identifiable in tree-covered areas.

Another factor to be considered in planning aerial photography is the sun’s altitude. Low sun
angles produce long shadows, which can be objectionable because they obscure detail. Generally a sun
angle of about 30° is the minimum acceptable for aerial photography. During the winter months of
November through February, the sun never reaches a 30° altitude in some northern parts of the United
States due to the sun’s southerly declination. Aerial photography should therefore be avoided in those
areas during these months, if possible. Often, snow cover will prevent photography during these
periods anyway. For the other months, photography should be exposed during the middle portion of
the day after the sun rises above 30° and before it falls below that altitude. For certain purposes,
shadows may be desirable, since they aid in identifying objects. Shadows of trees, for example, help to
identify the species. Shadows may also be helpful in locating photo-identifiable features such as
fenceposts and power poles to serve as photo control points.

18-10  Flight Map
A flight map, as shown in Fig. 18-9, gives the project boundaries and flight lines the pilot must fly to
obtain the desired coverage. The flight map is prepared on some existing map which shows the project
area. United States Geological Survey quadrangle maps are frequently used. The flight map may also
be prepared on small-scale photographs of the area, if they are available. In executing the planned
photographic mission, the pilot finds two or more features on each flight line which can be identified
both on the flight map and on the ground. The aircraft is flown so that lines of flight pass over the
ground points. Alternatively, an airborne GPS receiver can be employed to guide the aircraft along
predefined flight lines.



 FIGURE 18-9   Example of a flight plan. (Courtesy Ayres Associates, Inc.)
 

Rectangular project areas are most conveniently covered with flight lines oriented north and
south or east and west. As illustrated in Fig. 18-9, this is desirable because the pilot can take
advantage of section lines and roads running in the cardinal directions and fly parallel to them.

If the project area is irregular in shape or if it is long and narrow and skewed to cardinal
directions, it may not be economical to fly north and south or east and west. In planning coverage for
such irregular areas, it may be most economical to align flight lines parallel to project boundaries as
nearly as possible. Flight planning templates are useful for determining the best and most economical
photographic coverage for mapping, especially for small areas. These templates, which show blocks of
neat models, are prepared on transparent plastic sheets at scales that correspond to the scales of the
base maps upon which the flight plan is prepared. The templates are then simply superimposed on the
map over the project area and oriented in the position which yields best coverage with the fewest neat
models. Such a template is shown in Fig. 18-10. The crosses represent exposure stations, and these
may be individually marked on the flight map. This template method of flight planning is
exceptionally useful in planning exposure station locations when artificial targets are used (see Sec.
16-2).



 FIGURE 18-10   Transparent template of neat models used for planning aerial photography.
 

Once the camera focal length, photo scale, end lap, and side lap have been selected, the flight
map can be prepared. The following example illustrates flight map preparation for a rectangular
project area.

Example 18-8
A project area is 10 mi (16 km) long in the east-west direction and 6.5 mi (10.5 km) wide in the north-
south direction (see Fig. 18-11). It is to be covered with vertical aerial photography having a scale of
1:12,000. End lap and side lap are to be 60 and 30 percent, respectively. A 6-in- (152.4-mm-) focal-
length camera with a 9-in- (23-cm-) square format is to be used. Prepare the flight map on a base map
whose scale is 1:24,000, and compute the total number of photographs necessary for the project.

 FIGURE 18-11   Project area for Example 18-9.
 

Solution

      1.  Fly east-west to reduce the number of flight lines.



      2.  Dimension of square ground coverage per photograph [photo scale = 1:12,000 (1 in/1000 ft)] is

 
      3.  Lateral advance per strip (at 30 percent side lap) is

 
      4.  Number of flight lines. (Align the first and last lines with 0.3G (side-lap dimension) coverage

outside the north and south project boundary lines, as shown in Fig. 18-11. This ensures lateral
coverage outside of the project area.)

           Distance of first and last flight lines inside their respective north and south project boundaries
(see Fig. 18-11) is

 
           Number of spaces between flight lines:

 
           Number of flight lines = number of spaces + 1 = 6
      5.  Adjust the percent side lap and flight line spacing.

           Adjusted percent side lap for integral number of flight lines (include portion extended outside
north and south boundaries):

 
           Adjusted spacing Wa between flight lines for integral number of flight lines:

 
      6.  Linear advance per photo (air base at 60 percent end lap):

 
      7.  Number of photos per strip (take two extra photos beyond the project boundary at both ends of

each strip to ensure complete stereoscopic coverage):



 
      8.  Total number of photos:

 
      9.  Spacing of flight lines on the map:

 
           Draw the flight lines at 3.09-in spacing on the map, with the first and last lines

           [(0.5 – 31.2/100)9000 ft]/2000 ft/in = 0.84 in inside the project boundaries.   

Computer programs are now available for preparing flight plans. Figure 18-12 illustrates a flight
plan for a highway corridor being prepared with the aid of a computer. Design variables including
camera focal length, photo scale, end lap, and side lap are input to the computer. Base maps upon
which the flight maps will be prepared can either be scanned into the computer from existing hard
copies, or they can be downloaded from existing databases of topographic maps. Coordinates of points
that delineate the boundaries of the area to be photographed must be input, and the coordinates of at
least two control points must also be entered and their locations identified within the map area. The
computer can then make all the same calculations that were demonstrated in Example 18-8 and
prepare flight maps with superimposed flight lines. In addition to software devoted soley to preparing
flight plans, there are various kinds of mapping software that allows users to easily develop their own
flight plans by superimposing lines and points over existing imagery. In the most modern aerial
photography and navigation systems, after designing the flight map, the computer determines the
coordinates of the ends of the flight lines. Then the aircraft’s navigation system, aided by an onboard
GPS receiver (see Secs. 16-6 through 16-8), automatically guides the aircraft along the desired flight
lines at the required altitude and exposes the photographs according to the given percent end lap.



 FIGURE 18-12   Flight plan prepared on a computer. (Courtesy University of Florida)
 

18-11  Specifications
Most flight plans include a set of detailed specifications which outline the materials, equipment, and
procedures to be used on the project. These specifications include requirements and tolerances
pertaining to photographic scale (including camera focal length and flying height), end lap, side lap,
tilt, crab, and photographic quality. The following is a sample set of detailed specifications for aerial
photography (courtesy Ayres Associates, Inc.).

      1.  General. The engineer shall perform the necessary flying and photography to provide
photographic coverage of an area approximately 8 square miles in extent shown on the sketch
map attached hereto as exhibit A. The engineer may sublet this phase of the work to a qualified
and experienced aerial photographic firm. The city, however, retains the right to approve or
reject any or all such firms which the engineer may wish to engage.

      2.  Scale. Flight height above average ground shall be such that the negatives will have an average
scale of 1 in = 500 ft (1:6000). Negatives having a departure from the specified scale by more
than 5 percent because of tilt or abrupt changes in flying altitude must be corrected. The
photographs shall be suitable for the compilation of the topographic maps specified herein, and
the mapping flight height shall not vary from 3000 ft above mean terrain by more than 5
percent.

      3.  End lap and side lap. End lap shall be sufficient to provide full stereoscopic coverage of the
area to be mapped. End lap shall average 63 percent, plus or minus 5 percent. End lap of less
than 58 percent or more than 68 percent in one or more negatives shall be cause for rejection of
the negatives in which such deficiency or excess occurs; unless within a stereoscopic pair, end
lap exceeding 68 percent is necessary in areas of low elevation to attain the minimum 58
percent end lap in adjacent areas of high elevation. Wherever there is a change in direction of
the flight lines, vertical photography on the beginning of a forward section shall end-lap the
photography of a back section by 100 percent. Any negatives having side lap of less than 20
percent or more than 55 percent may be rejected.

      4.  Tilt. Negatives made with the optical axis of the aerial camera in a vertical position are desired.



Tilt of any negative by more than 5°, an average tilt of more than 1° for the entire project, or
tilt between any two successive negatives exceeding 4° may be cause of rejection.

      5.  Crab. Crab in excess of 3° may be cause of rejection of the flight line of negatives or portions
thereof in which such crab occurs.

      6.  Quality. The photographs shall be clear and sharp in detail and of uniform average density.
They shall be free from clouds, cloud shadows, light streaks, static marks, or other blemishes
which would interfere with their intended use. All photography shall be taken when the area to
be mapped is free of snow, before foliation, and at such time as to ensure a minimum solar
angle of 30°, except upon written authorization to the contrary by the city.

      7.  Camera. For topographic and contour mapping, photographs shall be exposed with a distortion-
free 6-in- (152-mm-) focal-length precision aerial mapping camera equipped with a between-
the-lens element shutter to produce negatives 9 in × 9 in (23 cm × 23 cm). The engineer shall
furnish the city with a precision camera calibration report for the camera to be used.

      8.  Contact prints. The contact prints from the vertical negatives shall be printed on double-weight
semimatte paper of suitable contrast.

      9.  Photo index. Photo indices shall be prepared by directly photographing, on safety base film at a
convenient scale, the assembly of contact prints from all indexed and evaluated prints used.
The photo index shall carry a suitable title, scale, and north point.

    10.  Ownership of negatives. All negatives shall become the property of the city and shall be
delivered to the city upon completion of this contract, or may be stored indefinitely in the film
library of the engineer at no added charge.

18-12  Cost Estimating and Scheduling
Cost estimating is an area of critical concern in the operation of any photogrammetric business,
because if projects are let to contract that are underestimated, devastating financial results can ensue.
In general, the items that must be considered in a cost analysis include material, labor, and overhead.
In addition, a reasonable allowance for profit must be included.

Material costs are directly related to the quantity of each photogrammetric product to be
prepared, and the procedures for calculating these quantities are quite straightforward. Example 18-8
illustrated the method of estimating the total number of aerial photos needed to cover a project area.
Similar procedures are used to estimate other materials, and thus these costs can usually be estimated
with fair accuracy. Overhead costs, which consist of salaries of administrative personnel, office and
laboratory rental, electricity, water, heat, telephone, miscellaneous office supplies, etc., are also rather
straightforward to determine. Labor costs, which generally constitute the major expense on
photogrammetric projects, are considerably more difficult to estimate accurately, and this presents the
greatest challenge to the estimator.

Although estimates can be made of the number of hours needed to perform each task involved in
photogrammetric procedures, there are many unforeseen circumstances that can cause the actual time
expended to deviate significantly from the estimates. The most realistic approach to estimating labor,
therefore, is to rely on past experiences with projects of a similar nature. Obviously, it then becomes
very important to keep detailed records of the actual costs incurred on the individual items of all
projects. Because of significant variations of project complexities and rapidly changing cost factors,
past records alone cannot be relied upon completely, and a good deal of intuition and subjective
judgment is also necessary. This can normally be obtained only through years of experience.

In estimating, it is easy to omit small items, but enough of these over time can accumulate to
cause a significant loss of revenue. Therefore, care must be exercised to prevent these omissions, and



the use of checklists is a good way to handle this problem.
Once the total number of labor hours has been estimated for each phase of a project, schedules

for completion of the various operations can be planned on the basis of the number of instruments and
personnel available to do the work. In addition to these factors, however, another important
consideration is the amount of other work in progress and its status in relation to required completion
dates. To arrive at realistic schedules, additional time in excess of that actually needed to perform the
work must be added to account for uncontrollable circumstances. As an example, schedules for aerial
photography and ground control surveys must account for possible delays due to inclement weather.

Every reasonable attempt should be made to accommodate clients with stringent scheduling
needs. In some cases, to meet critical new scheduling requirements and still adhere to delivery dates
already agreed upon, it may be necessary to consider hiring additional staff and running more than one
work shift. Of course, the possibility of purchasing additional equipment also exists, but this should be
done with caution and only when anticipated quantities of continued future work can justify the
expenditures.
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Problems
  18-1.   The air base of a stereopair of vertical photos is 1400 m, and the flying height above average
ground is 3000 m. If the camera has a 152-mm focal length and a 23-cm square format, what is the
percent end lap?

  18-2.   Repeat Prob. 18-1, except that the focal length is 15,000 pixels and the format is 10,000 pixels
squared.

http://spatialdata.sam.usace.army.mil/organizations/survey/2002


  18-3.   Repeat Prob. 18-1, except that the air base is 4300 ft and flying height above average ground
is 6500 ft.

  18-4.   For Prob. 18-1, if adjacent flight lines are spaced at 2260 m, what is the percent side lap?

  18-5.   For Prob. 18-2, if adjacent flight lines are spaced at 1390 m, what is the percent side lap?

  18-6.   For Prob. 18-3, if adjacent flight lines are spaced at 6300 ft, what is the percent side lap?

  18-7.   An average photo scale of 1:20,000 is required of vertical photos. What air base is required to
achieve 60 percent end lap if the camera has a 6 in focal length and a 23-cm square format?

  18-8.   Repeat Prob. 18-7, except that required photo scale is 1:8000 and average end lap must be 55
percent.

  18-9.   Vertical photographs are to be exposed from 2300 m above average ground. If a B/H′ ratio of
0.60 is required, what should be the length of the air base? What will the percent end lap be for these
photos if the camera focal length is 152 mm and the format is 23 cm square?

18-10.   Repeat Prob. 18-9, except that the photos were exposed from 4900 ft above ground and the
required B/H′ ratio is 0.65.

18-11.   What is the B/H′ ratio for vertical photography exposed with 55 percent end lap using a
camera having a 152-mm focal length and a 9 in square format?

18-12.   Repeat Prob. 18-11, except that end lap is 60 percent and camera focal length is 210 mm.

18-13.   A project requires counting the number of people on a beach by using aerial photography.
Assuming a 2-ft-diameter circle as a reasonable size for a person when viewed from above, and
assuming a film with 80 line pairs per millimeter resolution will be used, what photo scale will be
required? If a 152-mm-focal-length camera will be used, what is the required flying height above the
beach?

18-14.   A map with a scale of 1:8000 is to be compiled from vertical aerial photographs. The
enlargement ratio from photo scale to map scale will be 5, and a 152-mm-focal-length camera will be
used. What should be the flying height above average ground for the photography?

18-15.   Repeat Prob. 18-14, except that a map with a scale of 1:6000 will be compiled and an
enlargement ratio of 7 will be applied.

18-16.   A C factor of 1500 will be applied in compiling a map having a contour interval of 3 m. What
maximum flying height is acceptable, and what is corresponding photo scale if the camera has a 152-
mm focal length?

18-17.   Repeat Prob. 18-16 except that the contour interval is 5 ft and a C factor of 1300 will be
applied.

18-18.   An engineering design map is to be compiled from aerial photography. The map is to have a
scale of 1:2400 and a 2-m contour interval. The enlargement ratio from photo scale to map scale is 5,



and the C factor is 1500. If the camera focal length is 152 mm, what is the required flying height
above average ground, based upon required map scale? Based upon contour interval? Which condition
controls flying height?

18-19.   Repeat Prob. 18-18, except that map scale is 500 ft/in, the contour interval is 10 ft, and the C
factor and enlargement ratio to be applied are 1500 and 7, respectively.

18-20.   Vertical aerial photographs are taken from a flying height of 3500 m above average ground
using a camera with a 210-mm-focal-length lens and a 23-cm square format. End lap is 60 percent at
average terrain elevation. How many acres of ground are covered in a single photograph? In the neat
model? (Assume 30 percent side lap.)

18-21.   For Prob. 18-20, if low, average, and high terrain is 500, 600, and 700 m, respectively, above
datum, what is the percent end lap at low terrain? At high terrain? What is the percent side lap at low
terrain? At high terrain?

18-22.   A rectangular area 10 mi in the north-south direction by 40 mi in the east-west direction is to
be covered with aerial photography having a scale of 1:5000. End lap and side lap are to be 60 and 30
percent, respectively. A camera having a 23-cm square format is to be used. Compute the total number
of photographs in the project, assuming that the flight strips are flown in an east-west direction and
that the coverage of the first and last flight lines is 75 percent within the project boundary. Also add
two photos at the ends of each strip to ensure complete coverage.

18-23.   If a flight map is to be prepared for Prob. 18-22 on a base map having a scale of 1:24,000,
what should be the spacing of flight lines on the map? What is the map distance between successive
exposures along a flight line?

18-24.   A transparent template of neat models, similar to that shown in Fig. 18-10, is to be prepared to
overlay on a map having a scale of 1:12,000. What should be the dimensions of neat models on the
template if the camera format is 23 cm square, photo scale is 1:6000, end lap is 60 percent, and side
lap is 30 percent?

18-25.   Repeat Prob. 18-24, except that map scale is 1:120,000 and photo scale is 1:24,000.

18-26.   A rectangular project area 3 km in the north-south direction and 4 km in the east-west
direction is to be photographed at a scale of 1:4000. End lap and side lap are to be 60 and 30 percent,
respectively, and the camera format is 23 cm square. Compute the total number of photographs needed
to cover this area, assuming that flight lines will run east-west and that the first and last lines will be
flown so that the adjusted side lap will extend outside the project boundaries. Add two photos at the
ends of each strip to ensure complete coverage. Prepare a flight map showing the flight lines,
assuming the base map has a scale of 1:24,000.

_____________
1 Although a significant number of projects involve terrestrial or close-range photogrammetry, in this chapter aerial photogrammetry
is assumed.



2 The complete set of National Map Accuracy Standards is available at the following website:
http://rmmcweb.cr.usgs.gov/public/nmpstds/nmas647.html

http://rmmcweb.cr.usgs.gov/public/nmpstds/nmas647.html


CHAPTER 19
Terrestrial and Close-Range Photogrammetry

 

19-1   Introduction
Terrestrial photogrammetry is an important branch of the science of photogrammetry. It deals with
photographs taken with cameras located on the surface of the earth. The cameras may be handheld,
mounted on tripods, or suspended from towers or other specially designed mounts. The term close-
range photogrammetry is generally used for terrestrial photographs having object distances up to
about 300 m. With terrestrial photography the cameras are usually accessible, so that direct
measurements can be made to obtain exposure station positions, similar to airborne GPS control with
aerial photography. With some terrestrial cameras, angular orientation can also be measured or set to
fixed values, so that all elements of exterior orientation of a terrestrial photo are commonly known
and need not be calculated. These known exterior orientation parameters are a source of control for
terrestrial photos, replacing in whole or in part the necessity for locating control points in the object
space.

Terrestrial photography may be static (photos of stationary objects) or dynamic (photos of
moving objects). For static photography, slow, fine-grained, high-resolution films may be used and
the pictures taken with long exposure times. Stereopairs can be obtained by using a single camera and
making exposures at both ends of a baseline. In taking dynamic terrestrial photos, fast films and rapid
shutter speeds are necessary. If stereopairs of dynamic occurrences are required, two cameras located
at the ends of a baseline must make simultaneous exposures.

19-2   Applications of Terrestrial and Close-Range Photogrammetry
Historically the science of photogrammetry had its beginning with terrestrial photography, and
topographic mapping was among its early applications. Terrestrial photos were found especially
useful for mapping rugged terrain which was difficult to map by conventional field-surveying
methods. Although it was known that topographic mapping could be done more conveniently using
aerial photos, no practical method was available for taking aerial photographs until the airplane was
invented. Following the invention of the airplane, emphasis in topographic mapping shifted from
terrestrial to aerial methods. Terrestrial photogrammetry is still used in topographic mapping, but its
application is usually limited to small areas and special situations such as deep gorges or rugged
mountains that are difficult to map from aerial photography. Other topographic applications of
terrestrial photogrammetry are in mapping construction sites, areas of excavation, borrow pits,
material stockpiles, etc.

Through the years terrestrial photogrammetry has continued to gain prominence in numerous
diversified nontopographic applications. Examples of nontopographic applications occur in such areas
as aircraft manufacture, shipbuilding, telecommunications, robotics, forestry, archaeology,
anthropology, architecture, geology, engineering, mining, nuclear industry, criminology,
oceanography, medicine, dentistry, and many more. In the field of medicine, X-ray photogrammetry
has been utilized advantageously for measuring sizes and shapes of body parts, recording tumor
growth, studying the development of fetuses, locating foreign objects within the body, etc.

Figure 19-1 illustrates an application of close-range photogrammetry to antenna design. In this



figure, close-range photographs are taken of a parabolic radio antenna. Coordinates of points on the
antenna were computed to verify its dimensional integrity of the rocket system. Figure 19-2
demonstrates the use of close-range photogrammetry to determine the dimensions of a ship’s
propeller. In this application, the propeller’s size and shape were determined so that a replacement
could be fabricated with the correct dimensions. Figure 19-3 illustrates the use of close-range
photogrammetry to determine the shape of an inflatable antenna. This information was used to verify
the size and shape of the antenna after inflation. Note that a projector is being used to produce the
white dots needed to define the surface. In addition, the use of two synchronized cameras allows three-
dimensional measurement of dynamic objects.

 FIGURE 19-1   Application of close-range photogrammetry to the determination of the precise shape of
a parabolic antenna. Note the artificial targets (white dots) placed on the structure. (Courtesy Geodetic
Systems, Inc.)
 



 FIGURE 19-2   Application of close-range photogrammetry for determining the size and shape of a
ship’s propeller. Note the artificial targets (white dots) placed on the structure. (Courtesy Geodetic
Systems, Inc.)
 

 FIGURE 19-3   Application of close-range photogrammetry to determine the size and shape of an
inflatable antenna. (Courtesy Geodetic Systems, Inc.)
 



Terrestrial photogrammetry has been used to great advantage as a reliable means of investigating
traffic accidents. Photos that provide all information necessary to reconstruct the accident may be
rapidly obtained. Time-consuming sketches and ground measurements, which all too often are
erroneous, are not needed, and normal traffic flow can be restored more quickly. Terrestrial
photogrammetry has been widely practiced in accident investigation for many years in several
European countries.

Terrestrial photogrammetry has become a very useful tool in many areas of scientific and
engineering research for several reasons. One reason is that it makes possible measurements of objects
which are inaccessible for direct measurement. Also, measurements can be obtained without actually
touching delicate objects. In some experiments, such as measurements of water waves and currents,
physical contact during measurement would upset the experiment and render it inaccurate. Cameras
which freeze the action at a particular instant of time make possible measurements of dynamic events
such as deflections of beams under impact loads. Because of the many advantages and conveniences
offered by terrestrial photogrammetry, its importance in the future seems assured.

19-3   Terrestrial Cameras
A variety of cameras are used in terrestrial photography. All fall into one of two general
classifications: metric or nonmetric. The term metric camera, as used here, includes those cameras
manufactured expressly for photogrammetric applications. They have fiducial marks built into their
focal planes, or have calibrated CCD arrays, which enable accurate recovery of their principal points.
Metric cameras are stably constructed and completely calibrated before use. Their calibration values
for focal length, principal-point coordinates, and lens distortions can be applied with confidence over
long periods.

The Dynamo camera of Fig. 19-4 is a digital camera that is generally used as one of a
synchronized pair, which can capture simultaneous images necessary for dynamic applications.



 FIGURE 19-4   Dynamo close-range camera (bottom) with strobe attachment (top). (Courtesy Geodetic
Systems, Inc.)
 

The INCA3 (Intelligent Digital Camera) of Fig. 19-5 is a digital terrestrial camera which is also
used primarily for industrial applications. This camera uses a CCD array having a either a 2029 ×
2044 or 3500 × 2300 pixel format, with each pixel having a 12-bit gray level. The camera’s angular
field of view is 77° × 56° with a 21 mm lens. Images are recorded on a flash memory card or directly
transferred to a computer in real-time. Accuracies of better than 1 part in 200,000 of the object size
can be achieved with this camera.

 FIGURE 19-5   The INCA3 digital close-range camera. (Courtesy Geodetic Systems, Inc.)
 

Phototheodolites and stereometric cameras are two special types of terrestrial camera systems in
the metric classification. A phototheodolite (see Fig. 1-1) is an instrument that incorporates a metric
camera with a surveyor’s theodolite. With this instrument, precise establishment of the direction of
the optical axis can be made. A stereometric camera system consists of two identical metric cameras
which are mounted at the ends of a bar of known length. The optical axes of the cameras are oriented
perpendicular to the bar and parallel with each other. The length of the bar provides a known baseline
length between the cameras, which is important for controlling scale.

Nonmetric cameras are manufactured for amateur or professional photography where pictorial
quality is important but geometric accuracy requirements are generally not considered paramount.
These cameras do not contain fiducial marks, but they can be modified to include them. Nonmetric
cameras can be calibrated and used with satisfactory results for many terrestrial photogrammetric
applications.



19-4   Matrix Equations for Analytical Self-Calibration
The camera calibration parameters, or elements of interior orientation, were described in Sec. 3-10.
The effects of these distortion parameters must be accounted for in order to make precise
photogrammetric measurements. When using metric cameras, this is not of great concern due to the
stability of the parameters over long intervals of time—although they should be calibrated
periodically based on the manufacturer’s recommendation. On the other hand, nonmetric cameras
cannot be expected to maintain stable calibration parameters even between sessions. In many cases,
however, nonmetric cameras can provide very accurate results when using analytical self-calibration.

Analytical self-calibration is a computational process wherein camera calibration parameters are
included as unknowns in the photogrammetric solution, generally in a combined interior-relative-
absolute orientation referred to as a self-calibrating bundle adjustment. This process can be used for
both aerial and terrestrial photos. In some circumstances, the data acquired during a mission can be
used to calibrate the camera. This case ensures that the solved calibration parameters represent the
interior orientation of the camera at the time of exposure of the photographs. Alternatively, a
specially-designed calibration pattern with optimally configured three-dimensional control points can
be used in conjunction with photography taken with optimally-oriented camera exposure stations (see
Sec. 19-9). In this case, more precise estimates of the parameters can be obtained due to the favorable
geometry. However, there is no guarantee that they will be the same when the camera is used during
the mission due to internal movement of the mechanical elements of the camera in the time between
calibration and acquisition.

The process of analytical self-calibration uses collinearity equations that have been augmented
with additional terms to account for adjustment of the calibrated focal length, principal-point offsets,
and symmetric radial and decentering lens distortions. In addition, the equations might include
corrections for atmospheric refraction. The classic form of the augmented collinearity equations is
shown in Eq. (19-1). Note that the model presented here is valid for both film and digital photos.

(19-1)
 
 where

xa, ya = measured photo coordinates related to fiducials
x0, y0 = coordinates of the principal point

= xa – x0

= ya – y0

=
k1, k2, k3 = symmetric radial lens distortion coefficients
p1, p2, p3 = decentering distortion coefficients

f = calibrated focal length
r, s, q = collinearity equation terms as defined in Eqs. (D-11) and (D-12)

The interior orientation parameters x0, y0, f, k1, k2, k3, p1, p2, and p3, which appear in Eq. (19-1) are



included as unknowns in the solution, together with w, j, k, XL, YL, and ZL for each photo and XA, YA,
and ZA for each object point. These equations are nonlinear, therefore Taylor’s series is used to
linearize them, and an iterative solution is made. The matrix form of the linearized augmented
collinearity equations is shown in Eq. (19-2).

(19-2)
 
where

 
Matrix  contains the partial derivatives of Eq. (19-1) with respect to the camera calibration

parameters evaluated at the initial approximations. Matrix  contains the corrections for the initial
approximations of the camera calibration parameters. The matrices , , , , εij, and Vij are the
same as those in Eq. (17-4), with the exception that matrices εij and Vij are computed using the
augmented collinearity equations. Weighted observations of the calibration parameters can be
included in a similar way as ground control points and aerial control are in Sec. 17-6, by including the
observation equations shown in matrix form in Eq. (19-3).

(19-3)
 

Normally, direct observations of the calibration parameters are not made; however, weighting
provides a method of constraining them, which in some cases is necessary to produce a convergent
solution. The partitioned normal equations for a bundle adjustment with analytical self-calibration are
shown in matrix form in Eq. (19-4).



(19-4)
 

Equation (19-4) is the same as the partitioned normal equations shown in Eq. (17-26), except
with the following added terms:

 
With the inclusion of the extra unknowns, it follows that additional independent equations will be

needed to obtain a solution. In addition, the numerical stability of analytical self-calibration is of
serious concern. Merely including the additional parameters does not guarantee that they will be
precisely resolved. It is necessary to have special constraints and/or geometric configurations to
ensure a stable solution. For example, with nominally vertical aerial photography if the object points
are at roughly the same elevation, then xo, yo, and f are strongly correlated with XL, YL, and ZL,
respectively. Similarly, nominally horizontal terrestrial photography of a wall taken with the focal
plane of the camera parallel to the surface of the wall results in f and xo being correlated with XL and
YL, and yo being correlated with ZL. Given these correlations, the solution may not produce satisfactory
results. This problem can be overcome or at least alleviated if there is significant variation in the



depth of the object field with respect to the camera, by using highly convergent photography, by
making observations of the camera position and/or attitude, or by using photos with varying rotations
about the optic axis of the camera. In addition, to recover the lens distortion parameters accurately, it
is necessary to have many redundant object points whose images are well distributed across the format
of the composite of all photographs. In other words, the combined images of objects points from all
photographs should be distributed over the extents of the format. For example, one photo may have
image points only on the left half of the format and another photo may have points only on the right
half of the format, but taken as a composite, images have been distributed across the extents of the
format.

19-5   Initial Approximations for Least Squares Adjustment
As mentioned in the previous section, initial approximations of all unknown parameters are required
for a least squares adjustment when using linearized observation equations. Thus, one must have
sufficient preliminary estimates of the position and angular orientation of the camera stations ω, φ, κ,
XL, YL, and ZL), object space coordinates of all imaged points (XA, YA, and ZA), and values of all camera
calibration parameters (x0, y0, f, k1, k2, k3, p1, p2, and p3) prior to implementation. This section will
focus on the first two sets, with the initialization of camera calibration parameters addressed in Sec.
19-6. Obtaining initial approximations for terrestrial photography can be much more difficult than for
aerial photography. This not only stems from the inherent differences in geometry of the
configurations, but also from the fact that in many close range and terrestrial applications, the
photography was taken without the intention of using it for photogrammetry (e.g., historical photos
and photos used for accident reconstruction). In these instances, the photographer likely did not note
the position and angular orientation of the camera during exposure. There are, however, both manual
and automatic methods for obtaining initial approximations for terrestrial and close range
photogrammetric adjustments.

Manual methods can often provide adequate initial approximations when automation is not an
option. Perhaps the most complex unknowns to estimate manually prior to adjustment using
terrestrial/close range photography are the exterior orientation angles ω, φ, and κ. For near-vertical
aerial photos, these angles can easily be estimated with sufficient accuracy by using ω = φ = 0°, and
estimating κ using the direction of flight or via the method described in Sec. 11-6. In terrestrial
photography, however, there is no simple method for their estimation due to the non-intuitive values
of ω, φ, and κ. For example, a photo taken while tilted 70° from vertical with 180° swing (i.e., the y-
axis is up in the photo), and pointed with an azimuth of 83° is oriented with ω = 26.05°, φ = –74.379°,
and κ = –63.09°. Under the same configuration, except pointed with an azimuth of 173°, the exterior
orientation angles are ω = –75.90°, φ = –6.79°, and κ = –178.30°. This shows that simply changing the
pointing direction of the camera affects ω, φ, and κ in ways that are not easily visualized. This
example also illustrates a method for estimating the exterior orientation angles manually. First, they
are estimated using the tilt-swing-azimuth system described in Sec. 10-3 and then they are converted
using the method in Sec. D-10 to obtain ω, φ, and κ. In fact, a bundle adjustment solution can be
implemented using tilt, swing, and azimuth. However, photogrammetric software typically uses the
omega-phi-kappa convention. As for the position of the camera, one can use the conditions of
acquisition and scene in a photo to estimate the position from where it was taken. For example, if a
person standing and holding the camera naturally took the photo, one can estimate the height of the
camera above the ground as being slightly less than the height of the photographer. Estimates of
object space coordinates for exposure stations and tie points can be deduced by approximating their



positions relative to points with known coordinates and their apparent positions based on the scenes.
That is, control points can be used to determine the orientation and scale of the object space imaged in
the photo. These can then be used to estimate the distance and direction from the control points to the
tie points and exposure stations yielding their object space coordinates. This procedure requires
practice to become proficient at rapidly and reliably obtaining these approximations.

Although manual methods are often reliable for small projects when performed with care,
automatic methods are preferred when there are many photos involved. There are several methods for
automatic initialization, only two of which are presented here. One method begins by using space
resections (see Sec. 11-6) to solve for the exterior orientation parameters of two images. The exterior
orientation parameters are then used to find the object space coordinates of tie points in the two
images via space intersection (see Sec. 11-7). The object space coordinates of these tie points are used
to perform space resection for other photos in the project. The resulting exterior orientation
parameters can then be used in subsequent space intersections. The process is repeated until initial
approximations for all images and tie points are found. Note that this method requires at least four
control points in at least two images for a least squares solution of the first space resections. In
industrial applications, which are usually performed in laboratory environments with metric cameras,
automatic initialization is often achieved using exterior orientation devices. These devices consist of a
single apparatus with several targets on it that are used to define the object space coordinate system.
Figure 19-6 shows a five-target exterior orientation device. The relative positions of the targets on the
device are known to a very high degree of precision, and serve as control points for the initial space
resections.

 FIGURE 19-6   The AutoBar exterior orientation device (Courtesy Geodetic Systems, Inc.)
 

Another method, similar to the previous one, utilizes relative orientation (see Sec. 11-10), and
does not require that the minimum number of control points be visible in a single photo. This method
begins by first performing relative orientation between the pair of photos with the most favorable
geometry (see Sec. 19-9). Next, space intersection is used to find the model space coordinates of all
tie points in the two images. These model space coordinates are used in a space resection to find the
exterior orientation parameters—relative to the model—of the third photo. The model space
coordinates of the remaining tie points in the third image not used for space resection are found
through space intersection. The process is repeated on all subsequent images until all the model space
exterior orientation parameters and coordinates of all tie points are found. Following this, a three
dimensional conformal coordinate transformation from the model space to the (ground) control



system is solved using control points and applied to the model space coordinates of the tie points and
exposure stations, yielding their estimates. Finally, the initial approximations for the exterior
orientation angles can be found using the method described in Sec. 17-7.

If collinearity is used in the analytical relative orientation, initial approximations are needed for
the relative orientation parameters and the coordinates of the tie points. However, the use of
coplanarity (Sec. 11-5) to perform analytical relative orientation can circumvent the need for initial
approximations of tie point model coordinates since they are not used in that method, although
approximations of the five relative exterior orientation parameters are still required. Also, note that
initial approximations are also required for space resection and space intersection. There are known,
reliable methods for automatically finding initial approximations for space resection and space
intersection solutions, which can be found in the references at the end of this chapter. However,
relative orientation continues to be an active area of research with multiple direct and search-based
methods described. These methods are beyond the scope of this book and the reader is encouraged to
consult the reference section for information on them.

19-6   Solution Approach for Self-Calibration Adjustment
Carrying out a self-calibrating bundle adjustment of terrestrial/close range photography can be a
complicated task. This section presents a method for adjustment that aids in troubleshooting and helps
ensure convergence. The approach is designed for a bundle adjustment program that has input
consisting of pass point measurements, control point measurements, initial approximations, and a
priori standard deviations of all observations and camera calibration parameters. Typically, there are
no direct observations of the camera calibration parameters. However, treating them as observations
allows one to constrain them in the adjustment by weighting. Approximations for the focal length, f,
can be determined using the camera manufacturer’s specifications. The remaining calibration
parameters can be initialized at zero. Before describing the approach, it should be stated that it is not
uncommon for some calibration parameters to be too sensitive to calculate. On a related note, the
guidelines given in Sec. 19-9 should be followed as much as possible before attempting an adjustment.
Also, note that many of the concepts and procedures in Sec. 17-9 are applicable to terrestrial/self-
calibration adjustments.

The first step of the approach is to adjust two photos. The photos selected for this initial
adjustment should be convergent with a large amount of overlap between them and a sufficient
amount of control points. Starting with two photos instead of attempting to adjust the entire set of
photos reduces the chances of having multiple blunders, and therefore simplifies troubleshooting. One
can attempt to adjust the two images with the calibration parameters “loosened,” giving them high a
priori standard deviations, and thus allowing them to be solved in the adjustment. However, this often
leads to divergence due to a combination of insufficient distribution of tie points throughout the
photos, homogeneous depth of field, inadequate redundancy, and poor geometric configuration (non-
convergence) of the photos. In this case, the calibration parameters should be constrained by assigning
them very small a priori standard deviations. If the adjustment fails to converge with constrained
parameters, check for blunders and make sure initial approximations are consistent.

Once the two-photo adjustment converges, check the pass point residuals to identify any
blunders, remeasuring them if found. Add photos one at a time, rerunning the adjustment and again
checking for blunders with each addition. Previously estimated initial approximations can be updated
using their solved values after each adjustment. This will speed up subsequent solutions by reducing
the number of iterations required. After many photos have been added to the adjustment, the
calibration parameters can be loosened.



If the adjustment diverges when the calibration parameters are loosened, it is advisable to loosen
only f and k1 since they are almost always significant. If this solution converges, one can then attempt
to loosen x0, y0, and k2, which are often significant. The remaining parameters require high redundancy
and very strong geometry for them to be resolved. Due to their high correlation, it may be advisable to
constrain p1 and p2 when x0 and y0 are loosened or vice-versa. One should also check the significance
of each of the calibration parameters after the adjustment. This can be done by using a t-test of the
significance of the adjusted parameter’s departure from its initial approximation. The formula for the
t-statistic is in Eq. (19-5), where â is one of the estimated calibration parameters (x0, y0, f, k1, k2, k3, p1,
p2, or p3), a0, is its initial approximation, and sâ is the estimated parameter’s standard error which can
be calculated using Eq. (17-16).

(19-5)
 
If a calibration parameter is not significantly different from its initial approximation given its degrees
of freedom, it should be excluded from the adjustment.

As mentioned in Sec. 17-6, the standard error of unit weight, S0, should be close to one if all
observations are properly weighted. If S0 is too high, then estimated a priori standard deviations are
too low and should be increased. If S0 is too high, then estimated a priori standard deviations are too
high, and should be decreased. A chi-squared can be used to test whether or not S0 is significantly
different than 1 by using the formula in Eq. (19-6). In Eq. (19-6), r is the degrees of freedom, and σ2 =
1.

(19-6)
 
Description of the t-test, chi-squared test, and their associated tables can be found in most
introductory statistics textbooks.

19-7   Control for Terrestrial Photogrammetry
In terrestrial photogrammetry, the object space is often relatively close to the camera; in fact, in many
cases the photographs are taken in laboratories. Object distances vary from a few centimeters up to
300 m or more, and the objects photographed vary in size from articles as small as human teeth and
smaller, to very large buildings or ships. In any case, if accurate maps are to be made of photographed
objects, control will be required.

In terrestrial photogrammetry there are basically four different methods of establishing control:
(1) imposing the control on the camera by measuring its position and orientation with respect to a
coordinate system or with respect to the photographed object, (2) locating control points in the object
space in a manner similar to locating control for aerial photography, (3) combining camera control
and object space control points, and (4) using a free-network adjustment with scale control only.

In the first method, no control points need appear in the object space. Rather, the position and
orientation of the camera or cameras are measured with respect to the object itself. If a planar object
is being photographed from a single camera station, control requirements may be satisfied by



measuring the distance from the camera to the plane surface and orienting the camera optical axis
perpendicular to the surface. Perpendicular orientation can be accomplished by mounting a plane-
surfaced mirror parallel to the object plane and then moving the camera about until the reflection of
the camera lens occupies the center of the field of view. If the camera focal length is known, a
complete planimetric survey of the object can then be made.

If stereopairs of photos are taken, the control survey can consist of measuring the horizontal
distance and difference in elevation between the two camera stations and also determining the
orientations of the camera optical axis for each photo. Phototheodolites enable a complete
determination of camera orientation and direction of optical axis. Stereometric cameras automatically
provide control by virtue of their known baseline length and parallel optical axes. In exposing
stereopairs with less elaborate cameras, horizontal orientation can be enforced by using level vials or
tilt sensors, and parallel orientation of the camera axes can be accomplished by reflection from
parallel mirrors.

In the second method of controlling terrestrial photos, points should be selected in the object
space which provide sharp and distinct images in favorable locations in the photographs. Their
positions in the object space should then be carefully measured. If no satisfactory natural points can
be found in the object space, artificial targets may be required. Targets should be designed so that
their images appear sharp and distinct in the photos. White crosses on black cards may prove
satisfactory. If the object space is small and the control points are close together, measurements for
locating the targets may be made directly by means of graduated scales. If the object space is quite
large or if the control points are inaccessible for direct measurement, triangulation with precise
theodolites set up at the ends of a carefully measured baseline may be necessary. In some cases a
premeasured grid pattern may be placed in the object space and photographed along with the object,
thereby affording control.

If the object being photographed is stationary, control points may be located on the object.
Corners of window frames, for example, may be used if a building is being photographed. If a
dynamic event is being photographed at increments of time, for example, photographing beam
deflections under various loads, then targets may have to be mounted on some stationary framework
apart from the object. By means of surveyor’s levels, targets may be set at equal elevations, thereby
providing a horizontal line in the object space. Vertical lines may be easily established by hanging
plumb bobs in the object space and attaching targets to the string.

The third method of controlling terrestrial photography is a combination of the first two methods.
This third approach is generally regarded as prudent because it provides redundancy in the control,
which prevents mistakes from going undetected and also enables increased accuracy to be obtained.

The fourth control method uses an arbitrary coordinate system, with the scale of the model being
defined through one or more known lengths that appear in the object space. The known lengths may be
based upon distance measurements made between target points on the object. In other cases, scale
bars may be used. A scale bar is a long item such as a metal rod which has a known length. By placing
one or more scale bars in proximity to the object, photo coordinate measurements can be made on the
images of the ends of the bar, thus including the scale bar in the three-dimensional model of the object
space. By constraining the distances between these endpoints to their known values, the scale of the
overall object will be established. The arbitrary coordinate system can be established by either setting
the position and angular attitude of one of the exposures to some nominal set of values (say, ω = ϕ = k
= XL = YL = ZL = 0) or through the use of an exterior orientation device as described in Sec. 19-5. The
remaining exposures and/or object points will then be determined relative to this set of defined values.
After all coordinates have been obtained, a three-dimensional conformal coordinate transformation
(see Sec. C-7) can be used to relate the arbitrary system to any desired frame of reference.



19-8   Analytical Self-Calibration Example
This section describes a self-calibration example using close-range terrestrial photography. The block
included five photos taken with an off-the-shelf digital SLR camera. One of the photos used is shown
in Fig. 19-7. There were 23 unique feature points used to generate 93 photo-coordinate pairs. One
vertical control point and two three-dimensional control points were obtained using traditional field
surveying techniques. The block is illustrated in Fig. 19-8. Photos 1 and 5 were about 20 m away from
each other.

 FIGURE 19-7   Photo 4 used in the adjustment.
 

 



FIGURE 19-8   Graphical representation in plan view of the block of photos used in the example with
93 light rays representing the measured photo coordinate pairs.
 

Notice the convergent photography and varying depth of field leading to strong geometry for the
adjustment. The focal length, f, was estimated using the manufacturer’s specifications. In order to
obtain pass points in millimeters—the units of f—the images were scaled and placed in a computer-
drafting program, wherein the photo measurements were made, such that the ratio of focal length to
format was nominally correct and the center of the photo was at the coordinate system origin. The rest
of the camera calibration parameters were initialized at zero. Since the focal length was 7.1 mm and
the equivalent focal length for 35 mm film is 28 mm, the equivalent format is 8.8 mm:

 
Note that the above formula is purely based on manufacturer’s specifications, and that the

calibrated focal length is based on the photo measurements made on scaled photos. Thus the
adjustment-resolved f, along with the other camera calibration parameters, is not the true physical
focal length of the camera. However, this does not affect the adjusted object space coordinates of
points since the calibration parameters are restricted to the image-space components of the
collinearity equations. That is, the adjusted object space parameters are related only to the object
space observations, which are the control points in this example. The initial approximations for the
ground coordinates of pass points and exterior orientation parameters of the camera stations were
found using manual methods described in Sec. 19-5.

On the first execution of the adjustment, the calibration parameters were constrained by giving
the initial approximations very small standard deviations to help ensure convergence. The selected
values for input and the output are shown in Table 19-1 and Table 19-2, respectively where σx and σy

are the a priori standard deviations of the photo-coordinate measurements, and , , and  are the
average adjusted ground coordinate standard deviations.

 TABLE 19-1   Selected Input Parameters of the First Adjustment with All Camera Calibration
Parameters Constrained
 



 TABLE 19-2   Selected Output values of the First Adjustment with All Camera Calibration Parameters
Constrained
 

Since the adjustment converged and there were no detectable blunders, the calibration parameters
were loosened by effectively giving the initial approximations zero weight, allowing them to be
adjusted. The selected input and output are shown in Tables 19-3 and 19-4, respectively.

 TABLE 19-3   Selected Input Parameters of the Second Adjustment with All Camera Calibration
Parameters Loosened
 

 TABLE 19-4   Selected Output of the Second Adjustment with All Camera Calibration Parameters
Loosened
 

Notice in Table 19-4 that the adjusted object space coordinate standard deviations, , , and ,
indicate more precise results than when the calibration parameters were constrained. Also, note that
the standard error of unit weight, S0, is lower than one indicating that the a priori standard deviations
of the photo coordinate measurements were overly pessimistic. The t-statistics for the solved
calibration parameters are shown in Table 19-5. The values revealed that y0, p1, and p2, and were not



resolved such that their value was significantly different than their initial approximations at the 90
percent confidence level. This is due to insufficient redundancy and perhaps geometry of the
photography to properly model these distortions.

 TABLE 19-5   T-Statistics for the Second Adjustment with All Camera Calibration Parameters
Loosened
 

Following an adjustment where y0, p1, and p2 were removed from the adjustment by constraining
their values to zero, it was found that k2 was also not significant at the 90 percent confidence level
with a t-statistic of 0.78. Its higher t-statistic in the second adjustment may have stemmed from
correlation with, and compensation for, the three other insignificant parameters.

The final adjustment used the selected input parameters shown in Table 19-6. The insignificant
calibration parameters were constrained and the a priori photo-coordinate standard deviations were
lowered as shown in Table 19-7.

 TABLE 19-6   Selected Input Parameters of the Final Adjustment
 



 TABLE 19-7   Selected Output of the Final Adjustment
 

A chi-squared test on S0 indicated that the a priori photo coordinate standard deviations are
appropriate since its value is not significantly different from one with 95 percent confidence. Notice
that the adjusted ground coordinates of the points had horizontal standard deviations roughly half of
those for the second adjustment. This shows the effect that overparameterization can have on the
adjustment solution. Finally, the t-statistics in Table 19-8 confirm that the adjustable camera
calibration parameters were significantly resolved.

 TABLE 19-8   T-Statistics for the Second Adjustment with All Camera Calibration Parameters
Loosened
 

Note that, unlike in aerial adjustments, the X and Y components of the ground coordinates are
more weakly resolved than the Z component. This is a result of the different geometry of the
terrestrial/close range configuration. The mostly horizontal direction of the light rays leads to weaker
triangulation on the horizontal components relative to vertical. That is, errors in the image
measurements lead to errors in the best estimate of the position of the intersection of rays more in the
horizontal direction than the vertical.

19-9   Planning for Close-Range Photogrammetry
In some cases, close-range photogrammetric analyses are done with existing amateur photography.
For example, a police officer may have taken photographs of the scene of a vehicle accident, and
subsequent photogrammetric analysis may be needed to determine the positions of the vehicles, tire
marks, and other evidence. Such photography may not be ideally exposed, well focused, or generally
in an optimal geometric configuration for photogrammetric analysis. On the other hand, under
controlled situations (e.g., industrial applications), preliminary planning can be performed so as to
control such factors as type of camera, lighting, and camera orientation.

Three main considerations for pictorial quality are resolution, depth of field, and exposure.



Whether one is using digital or film cameras, resolution is important in that all points of interest must
be clearly visible on the resulting image (see Sec. 3-14). A preliminary assessment should be made to
ensure that the resolution is sufficient to adequately capture the smallest necessary details. Depth of
field (see Sec. 2-3) is particularly important for ensuring proper focus. In close-range
photogrammetry, since object depth is typically of significant size relative to the distance from the
camera, a large f-stop setting may be required to ensure that the entire object is in focus. Proper
exposure is necessary for the image points being measured to have sufficient contrast and definition.
Particular attention should be paid to avoiding shadows on the object, especially when a flash is used
for illumination. In some cases, special retro-reflective targets may be attached to points of interest
prior to exposing the photographs. This allows the photographer to underexpose the background, with
the targets remaining clear and bright.

There are also some physical constraints which must be considered in planning close-range
photography. For example, object points must be visible from at least two (preferably more)
photographs. A number of different camera locations may need to be considered in order to meet this
constraint. Another constraint concerns the physical space around the object. In many applications,
objects may be enclosed in confined spaces which makes effective determination of camera positions
more difficult.

An important geometric consideration for close-range photography is the angular orientation of
the camera exposure stations. Accuracy of the analytical solution depends, to a large extent, upon the
angles of intersection between rays of light. The highest overall accuracy will be achieved when
angles of intersection are near 90°. Figure 19-9a illustrates stereo photographic coverage of an object
where the camera axes are parallel. In this figure, the parallactic angle f1 to object point A is
approximately 35°. In Fig. 19-9b, stereo coverage of the same object is obtained from convergent
photos. In this figure, the corresponding parallactic angle f2 is approximately 95°. Since f2 is closer to
90° than f1, the overall accuracy of the computed coordinates of point A will be higher in the
configuration of Fig. 19-9b. Notice also that the stereoscopic coverage in Fig. 19-9a is only
approximately 50 percent of the field of view, while, the stereoscopic coverage of Fig. 19-9b is 100
percent of the field of view. This enables the full format of the camera to be used, resulting in greater
efficiency and higher effective image resolution.

 FIGURE 19-9   (a) Close-range stereo coverage of an object with parallel camera axes. (b) Close-range
stereo coverage with convergent photography.
 

For the highest level of accuracy in close-range photogrammetry, a fully analytical solution is
preferred. By applying the principles of analytical photogrammetry as described in Chap. 11 and Sec.



17-6, precisely measured photo coordinates of images can be used to directly compute X, Y, and Z
coordinates in object space. The foundation of the analytical solution is the collinearity condition
which gives rise to the collinearity equations [see Eqs. (11-1) and (11-2)]. These equations can be
directly applied to terrestrial as well as aerial photographs.

In the preferred analytical method, the self-calibration approach described in Sec. 19-4 is used.
This gives a calibration of the camera under the actual conditions (temperature, humidity, etc.) which
existed when the photographs were taken. Certain geometric requirements must be met in order to
effectively perform analytical self-calibration. First, numerous redundant photographs from multiple
locations are required, with sufficient roll diversity. Roll diversity is a condition in which the
photographs have angular attitudes that differ greatly from each other. Another requirement is that
many well-distributed image points be measured over the entire format. This is important for accurate
determination of lens distortion parameters.

Accurate measurement of photo coordinates is necessary to ensure accurate results from the
analytical solution. High-precision comparators are generally used for film-based photographs. Digital
camera systems, on the other hand, rely upon image-matching techniques (see Sec. 15-8) to obtain
accurate photo coordinates. In any case, it is essential to properly identify object points as they appear
on the different photos. Mislabeled points will result in an inaccurate analytical solution or, in some
cases, will cause the solution to fail completely.
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Problems
  19-1.   Discuss some of the uses of terrestrial or close-range photogrammetry.

  19-2.   Describe the differences between metric and nonmetric terrestrial cameras.

  19-3.   Describe the pros and cons of calibrating a camera using mission data versus calibrating a
camera in a laboratory environment.

  19-4.   Explain how calibration parameters can be constrained in a self-calibrating bundle
adjustment.

  19-5.   Explain why the tilt-swing-azimuth system is useful for finding initial approximations of the
attitude angles for terrestrial photography.

  19-6.   Describe why starting with two images and sequentially adding photos to an adjustment is a
good strategy for performing a close range adjustment with self-calibration.

  19-7.   Why is it advisable to constrain p1 and p2 when x0 and y0 are loose in adjustments with little
redundancy.

  19-8.   Discuss four basic approaches in establishing control for terrestrial or close-range
photogrammetry.



  19-9.   Name and discuss three considerations which affect pictorial quality that should be considered
in planning close-range photography.

19-10.   Discuss how accuracy can be improved through the use on convergent photos versus stereo
photographs with parallel camera axes.

19-11.   Describe two geometric requirements for photography when analytical self-calibration is used
for computing object coordinates in close-range photogrammetry.

19-12.   Explain how incorrectly-scaled image coordinates affect the solved focal length and object
space coordinates of control points in a bundle adjustment with self-calibration.



CHAPTER 20
Photogrammetric Applications in GIS

 

20-1   Introduction
As noted in earlier sections of this book, photogrammetry and remote sensing play extremely
important roles in the development and implementation of geographic information systems. In one
very useful application, aerial images are frequently employed by GIS operators as background frames
of reference for performing spatial analyses. The images may be obtained from either aerial cameras
or satellite systems, and in general they will have undergone some form of georeferencing such as
conversion to digital mosaics (see Chap. 9) or orthophotos (see Chap. 13) prior to being used in this
manner. But perhaps the most important contribution to geographic information systems made by
photogrammetry and remote sensing is their use in directly generating spatially accurate feature
information for databases.

Information for specific GIS databases can be compiled directly from stereomodels created from
aerial photographs by photogrammetric restitution instruments such as analytical plotters or softcopy
plotters (see Chaps. 12 and 13). As examples, layers of information such as roads, hydrography, land
use, and many others can be coded and digitized directly from stereomodels, and entered into GIS
databases. Digital line graphs (DLGs) and digital elevation models (DEMs) are two additional
products that are frequently compiled directly from stereomodels. The former gives planimetric
positions of objects, while the latter provides elevation data. Both are essential for many GIS
applications. The digital orthophoto (see Chap. 13) is another photogrammetric product that has
become indispensable in GIS work. Digital orthophotos can be automatically and very economically
compiled. They are especially valuable because they are in image (raster) form, and GIS operators can
analyze them visually. In addition they are planimetrically accurate, and thus two-dimensional
features can be digitized directly from them. Because of these characteristics, they are extremely
convenient for use as background reference frameworks for GIS applications. Roads, railroads,
wetland boundaries, and other planimetric features that appear in raster form on a digital orthophoto,
for example, can readily be converted to vector form so that they are amenable to various GIS spatial
analyses.

Layers of information for geographic information systems are often compiled by simultaneously
analyzing photogrammetric products in conjunction with other documents. As an example, a land
ownership layer may be conveniently developed by making a visual analysis of digital orthophotos
while simultaneously reading and interpreting parcel descriptions, dimensions, and other information
given in deeds, plat books, and tax documents. Generating GIS database information by
photogrammetry is almost always faster and more cost-effective than doing so by any other means,
and the process enables high orders of accuracy to be achieved.

In sections that follow, a variety of applications are presented in which geographic information
systems were used as a means of solving problems. The contributions made by photogrammetry and
remote sensing in these applications are described.

20-2   Land and Property Management
The local government of St. Johns County, Florida, encompasses 609 mi2 and serves a population of



approximately 200,000. Services for its residents and visitors require an inventory of public lands,
buildings, streets, and other resources which require a variety of applications of GIS for management
and operation. Organized records of buildings along with measurements and spatial analyses support
operations and maintenance. Aerial image products, particularly orthophotos, derived from
photogrammetric methods support the layer of all county-owned parcels that include data regarding
size, current use, future use, and legal requirements. In addition, stereo-plotting was used to accurately
digitize street elements (pavement, curb and gutter, etc.), stormwater retention ponds, building
footprints, and various elevation data which are used to directly manage county land, buildings, and
facilities, as well as analyze and enhance the use of these features.

The GIS is the primary site development and analytical tool for informed land management.
County personnel need to analyze large areas of land to determine potential sites for new facilities
such as roads, stormwater drainage systems, utilities, and communication towers. For site selections,
staff must first determine if any existing county property would be suitable. Data organized in a GIS
readily enable queries to be made to eliminate many inappropriate parcels based on design constraints
and legal considerations. GIS spatial analysis facilitates overlaying imagery, parcels of land, storm
surge prediction areas, flood zones, National Wetland Inventory estimates, land cover, elevation,
zoning, address points, and utility lines along with the remaining county-owned parcels. Search
buffers and road network routing support efficient site selection.

These site analysis tools and data supported the design of ten sites for the county
intergovernmental radio system. Telecommunications engineering and modeling determined
approximate locations for towers. Using GIS layers for research and spatial analysis helped ensure a
full review of land was performed and the best available sites were selected so that this important
system could be developed. (See Fig. 20-1.)



 FIGURE 20-1   Telecommunication tower sites for a portion of St. Johns County, Florida.
 

20-3   Floodplain Rating
The Federal Emergency Management Agency (FEMA) works with communities across the United
States to help homeowners, contractors, architects, local codes officials, and engineers build smarter
and safer homes. FEMA also manages the National Flood Insurance Program (NFIP) which provides
homeowners, renters, and business owners a way to protect themselves financially from catastrophic
flood losses. The NFIP’s community rating system (CRS) is a voluntary incentive program that
recognizes and encourages community floodplain management activities that exceed the minimum
NFIP requirements. As a result, flood insurance premium rates are discounted to reflect the reduced
flood risk resulting from various community actions.

St. Johns County, Florida, participates in the CRS program to help reduce flood damage losses,
provide proper regulation for construction, increase public awareness of flood zone locations and
impacts, and prepare for flooding situations. By participating in the CRS program, damage from
flooding can be minimized and property owners’ flood insurance rates reduced to reflect the lower
damage impacts. The CRS contains extensive guidelines and recognition for improvements within the
categories defined in the NFIP. Photogrammetry, remote sensing, and LiDAR products incorporated in
the county GIS are used to more accurately delineate floodplains and identify potential improvements.
(See Fig. 20-2.)



 FIGURE 20-2   Floodplain ratings for areas within St. Johns County, Florida.
 

In addition, the GIS can be used to efficiently determine how much open space exists within the
regulatory floodplain areas. Increasing open space within the floodplains helps reduce the potential for
damage and increases available space for flood waters. In addition to identifying the floodplain areas
and open space, the GIS incorporates private land ownership, public lands, and land uses in order to
maintain an effective CRS. Water bodies were delineated and land uses updated from
orthophotography, which was used as a base map for the entire project. Structures including roads and
buildings were also reviewed and removed, and designation as conservation lands increased the value
of the preserved open space. Knowledge of the floodplains, open space, preserved lands, and
percentage of floodplain lands covered by these open spaces has helped St. Johns County protect
property, reduce insurance costs, and provide safer conditions for homes and businesses.

20-4   Water Quality Management
Geographic information systems have been successfully applied to the solution of many problems in
water quality management. A project of this type selected for discussion in this text involves a GIS
that was developed for the Sugar River watershed in south-central Wisconsin (see Fig. 20-3). The
objectives of the GIS were to provide a cost-effective means for assisting in preventing soil erosion
and to improve and preserve the water quality in the Sugar River and its tributaries, as well as in Belle
Lake which exists at the lower end of the watershed. The GIS was developed by the Dane County Land



Conservation Department, with funding from the Wisconsin Department of Natural Resources, the
U.S. Environmental Protection Agency, and Dane County.

 FIGURE 20-3   Location of Sugar River water quality management GIS project. (Courtesy Dane County
Land Conservation Department, M. S. Robinson and A. Roa-Espinosa.)
 

In the Sugar River watershed, excessive amounts of sediment and phosphorus, generated by both
agricultural and urban land uses, enter the surface water. These conditions are detrimental to the
aquatic and wildlife habitat within the basin, and they also impact negatively upon the aesthetic
qualities and recreational use of the water. To address this problem, a GIS was developed to provide
the information necessary for a computer modeling program to identify areas of high sediment and
phosphorus delivery within the watershed. Improved management practices could then be
implemented in these areas.

The major layers of information developed for the GIS database included topography,
hydrography, soils, and land use/land cover. Photogrammetry played a major role in the development
of each of these layers. The elevation layer (see Fig. 20-4) was based upon a digital elevation model
that was produced photogrammetrically. The DEM, which consisted of a 10-m grid with accuracies to
within ±0.3 m, provided slope information that was critical in the computer modeling. The
hydrography layer, which consisted of the rivers and streams within the watershed, was digitized from
orthophotos. By combining the elevation and hydrography layers, small individual hydrologic
drainage areas that were needed for the computer modeling were identified. There were approximately
500 individual areas in the watershed, as shown in Fig. 20-5, and they averaged about 1 km2 in size.
The soils layer was digitized from NHAP aerial photos.



 FIGURE 20-4   Elevation model prepared from DEM of Sugar River watershed. (Courtesy Dane County
Land Conservation Department, M. S. Robinson and A. Roa-Espinosa.)
 

 FIGURE 20-5   Hydrologic area units within the Sugar River watershed obtained by combining



elevation and hydrography layers. (Courtesy Dane County Land Conservation Department, M. S.
Robinson and A. Roa-Espinosa.)
 

The land use/land cover layer consisted of the combination of many individual layers. It included
categories of cropland, grassland, pasture, woodland, wetland, water, roads, residential areas,
industrial areas, and commercial areas (see Fig. 20-6). Although other sources such as zoning maps
and parcel maps were used to compile this information, most of these data were obtained from
orthophotos. Individual farm tracts were included within this layer, and these tracts were further
subdivided into separate fields. This was important because their differing crop rotations and land
uses have an important bearing on their rates of sediment and phosphorus delivery.

 FIGURE 20-6   Land use/land cover layer of the Sugar River GIS database. (Courtesy Dane County
Land Conservation Department, M. S. Robinson and A. Roa-Espinosa.)
 

The previous information was used by the computer program to model the sediment and
phosphorus delivery rates across the watershed. Figure 20-7 is a graphic which shows the sediment
yield of each of the hydrologic units in the watershed. A similar graphic was developed for
phosphorus yields. Areas with high yields could be examined in the field and targeted for improved
field and management practices. These practices could include such measures as practicing
conservation tillage, using soil binders, establishing buffer strips, constructing terraces, or installing
water and sediment control basins.



 FIGURE 20-7   Sediment yield within the Sugar River watershed obtained through GIS analysis.
(Courtesy Dane County Land Conservation Department, M. S. Robinson and A. Roa-Espinosa.)
 

20-5   Wildlife Management
An example illustrating a GIS application in wildlife management involves a portion of the Lower
Virgin River in the southwestern United States. The study area, shown in Fig. 20-8, includes the entire
riparian corridor of the river from the Virgin River Gorge near Little-field in northwest Arizona, to the
Lake Mead National Recreation Area in southeast Nevada. This involves a total of 12,349 acres of
riparian vegetation and open water/river channel over a length of approximately 52 mi of river. The
study was conducted by the Southern Nevada Water Authority. Its objectives were to delineate the
vegetation communities and other habitat types (open water, etc.) within the riparian corridor of the
river, determine how the different vegetation species are used by wildlife, and predict how the
distribution and composition of vegetation and wildlife change with varying flow levels in the river.
Evaluations of the status of the federally endangered southwestern willow flycatcher and the federally
threatened desert tortoise were matters of special interest in this project.



 FIGURE 20-8   Study area of Virgin River wildlife management GIS project. (Courtesy Southern
Nevada Water Authority.)
 

To achieve the project’s goals, a GIS was developed which covered the area. The base map, or
frame of reference for performing GIS analyses, was prepared from color infrared aerial photos. These
photos, taken at a scale of 1:24,000, were scanned, rectified, and joined digitally to form a mosaic of
the study area. A total of 38 photos were involved in the mosaic construction. Control for the digital
mosaic process was obtained from USGS digital line graphs.

In this study, one of the critical layers of information compiled was vegetation. To assist in
preparing this layer, portions of the base map in selected areas were enlarged to 1:6000 scale. This
increased the visual resolution which facilitated their use for fieldwork. These large-scale photomaps
were used during field surveys to identify and delineate the locations of vegetation classifications in
several key areas of the river corridor. Based upon these “ground truth” samples, the remaining
images in the corridor were interpreted and classified, using the heads-up digitizing process (see Sec.



9-4). A hard copy of this preliminary vegetation map was then taken into the field, and the
delineations of vegetation types were verified and modified as necessary. GPS was also used in some
cases to check visual analyses and to locate certain features that were not visible on the base map,
such as special habitat areas and nesting grounds. These modifications were then incorporated into the
vegetation layer of the database. Next the resulting vegetation map was utilized to select
representative areas for evaluating wildlife and their use of the resources within the riparian corridor.
A total of 11 vegetation classifications were included on the map. Figure 20-9 shows the portion of the
vegetation map at the location where the Virgin River corridor enters Lake Mead. Note that only five
classifications existed within this section of the corridor.

 FIGURE 20-9   Vegetation layer of Virgin River wildlife management GIS project. (Courtesy Southern



Nevada Water Authority.)
 

The vegetation/habitat layer was used as a guide in selecting areas for conducting wildlife
surveys in the field. The areas were chosen so that each of the vegetation classifications and habitats
were represented within the survey. In addition to vegetation types, the topography, floodplain
characteristics, and stream gradient were also considered in selecting the wildlife survey areas.
Accessibility was a consideration as well. Sampling transects which included small mammal live
traps, pitfall traps, and bird observation points were placed at selected stations within the survey areas
to sample the wildlife populations. GPS was used to control the placement and mapping of the transect
lines for data capture within the GIS model. To date, a total of 170 different species of birds, 34
different species of mammals, 13 species of reptiles, and 4 species of amphibians have been found to
utilize the Lower Virgin River riparian corridor.

This project has been meeting all its objectives. A great deal of valuable data have been gathered
to further existing knowledge of the wildlife in this southwest habitat, and to aid in understanding the
dependence these wild creatures have upon the different vegetation communities and other habitat
types that exist in the river corridor. The study of this 52-mi-long riparian corridor would have been a
daunting task if performed by ground methods alone. However, as discussed, photogrammetry has
contributed significantly in the conduct of this study. Not only has photogrammetry enabled the work
to be completed more rapidly and efficiently, but also it has permitted greater amounts of data to be
collected, analyzed, and managed, thereby improving the overall end results. This method of study has
the added advantage that the information collected can conveniently be shared with other agencies
having overlapping or common interests and goals.

20-6   Environmental Monitoring
The Southern Nevada Water Authority (SNWA) is responsible for supplying water to nearly 2 million
people in the Las Vegas region. Ninety percent of the water serving the region comes from a single
source, the Colorado River. Since 1999, the river has undergone extreme drought, with the quantity of
water diminishing by nearly 50%. The SNWA has been looking for other sources to help supplement
existing water supplies, and groundwater in valleys north of Las Vegas has been considered as a
potential option.

The SNWA looked to meet the water needs of nearly 2 million people while maintaining natural
habitat and minimizing negative impacts to the environment. This was done through environmental
monitoring for the large area of interest to SNWA. Analysis of large areas by performing regular field
surveys is generally not feasible, as it would take an enormous effort by numerous staff members to
effectively monitor such areas. However, large-scale monitoring has become easier over the past few
decades, as the advent of commercial airborne imagery allows companies to view and analyze
thousands of square miles in a much shorter timeframe. Satellite imagery can be periodically acquired
over the same areas, allowing for analysis to detect changes that have occurred over time. Spatially
accurate multispectral imagery, once the exclusive domain of satellites, now can also be routinely
acquired from airborne sensors. This allows for better resolution of imagery and reduces the
detrimental atmospheric effects inherent in satellite imagery.

As part of the monitoring efforts in basins where groundwater could be pumped, SNWA has
collected baseline data over areas of eastern Nevada. Among the data collected were both
multispectral imagery and LiDAR elevations. The image resolution (ground sample dimension)
selected for this project was 6 in (15 cm) and the LiDAR data were collected at a nominal spacing of



1.1 m. Together, these data helped establish a high-quality baseline for areas of interest to SNWA. The
collection of the data was a large task, as nearly 3000 mi2 of LiDAR and imagery were acquired over a
4-week period wherein the longest length was about 125 mi and the greatest width 80 mi. The area of
interest is very sparsely populated, has minimal transportation coverage, and ranges in elevation from
5500 to 13,000 ft.

The initial spatial control of aerial-based imagery and LiDAR data was positioned by airborne
GPS (AGPS) systems deploying strategically placed ground receivers that coordinated with the flight
team and flight plan as a function of time and schedule. In addition to in-flight AGPS, staff members
were deployed to collect spectrometer readings of plant and ground features to help identify ground
cover, assist with color-balancing of imagery, and aid in plant classification. Once acquisition of
imagery and LiDAR was completed, statically collected GPS control and checkpoint targets were
compared against AGPS’s kinematic positions. Out of the nearly 100 checkpoints, 99% were within
the ASPRS (American Society for Photogrammetry and Remote Sensing) horizontal and vertical
accuracy requirements, and most were within a few centimeters of static GPS-measured coordinates.

After validating the spatial accuracy of the dataset, the checkpoint positions were utilized as
supplemental control and the processing was redone to produce the final products. It is also important
to understand that the use of ground and AGPS provided a reliability factor in the event that the AGPS
system failed during flight, thereby ensuring the expensive field deployment would be successful and
would produce accurate results. Processing of both datasets took several months, but was ultimately
completed and accepted by SNWA.

These datasets have been instrumental in different aspects of the monitoring program, including
GIS mapping and analysis for hydrology, biology, and ranch management. Spring locations, property
boundaries, plant identification, soil analysis, slope analysis, animal grazing allotments, and
determining the volume of small drainage basins are just some of the items that have been determined
or benefitted from the more accurate datasets that were collected. Prior to this acquisition, the best
imagery available in the area was 1-m resolution, a good product for a large area but it lacked detail
that was needed for some of the analyses. Equally important was the elevation grid that was generated
from the LiDAR data. This grid greatly improved upon the existing 30-m grid created in the early
1990s. Figure 20-10 depicts the imagery produced for the project area.



 FIGURE 20-10   Groundwater resource area in eastern Nevada being monitored for environmental
effects. (Courtesy Southern Nevada Water Authority.)
 

20-7   Wetland Analysis
It has been well established that wetlands provide crucial benefits to the natural environment. Besides
providing habitat for fish and other wildlife, they act as “filters” to impede stormwater runoff
contaminants from reaching the groundwater and surface waters. In St. Johns County, Florida, as well
as most areas of the country, wetland delineation and analysis is therefore important for facilitating
informed and responsible land management. Land uses and management practices must not cause
detrimental impacts to these wetlands. For example, stormwater runoff from parking lots often



contains toxic chemicals that can be very harmful to plants and wildlife. Runoff from landscaped
areas often contains herbicides that can also have similar negative impacts. Delineation of wetlands
and analysis of hydrological characteristics are considered essential for the preservation of these
important areas.

Detailed wetland analysis involves substantial knowledge and experience. A GIS can be a useful
tool to aid the wetland scientist in finding general locations for analysis. When delineating wetlands
on a parcel of county-owned land, the starting point is always GIS. Some of the key layers in refining
the analysis and directing ground analysis include: land cover, national wetlands inventory (NWI),
soils, true color imagery, color infrared imagery, and LiDAR elevation data. Starting with the land
cover, soils, and NWI layers, the nominal habitat type and potential hydric indicators (particularly
hydric soils or hydrophytic vegetation) are checked to indicate the possible presence of wetlands.
Subsequently, the imagery layers provide additional clues allowing the wetland scientist to recognize
certain image characteristics as indicative of wetlands. Elevation data often refines the search area for
wetland delineation when combined with aerial imagery. The combination of these indicators can
provide a nominal indicator of the wetland boundary. With a preliminary GIS review of the parcel,
time in the field is directed to the areas needing further scrutiny and the field process of wetland
delineation is much more efficient and accurate. By measuring the spatial location of the boundary in
the field, a more accurate representation can be input into the GIS database, which will improve the
accuracy of the information. Figure 20-11 shows a portion of the wetlands layer in the St. Johns
County GIS.

 FIGURE 20-11   A portion of the wetlands layer from the St. Johns County, Florida, GIS database.
 

20-8   Transportation
The Roadway Characteristics Inventory (RCI) is a GIS database which contains information about
signs, pavement, drainage structures, bridges, etc., along highways in Florida. First introduced as a



pilot project, the RCI was developed to facilitate pavement maintenance, accident cataloging,
replacement or repair of damaged structures (guardrails, signs, fences, etc.), and other items related to
highway issues. The GIS replaced manual inventory methods in which facilities were located by
driving along the highways and noting the positions of inventory features from odometer readings
(dead reckoning). The GIS will be used initially for planning purposes; however, the spatial accuracy
is good enough to support other purposes such as preliminary design.

Aerial photography was acquired along the highway at a flying height of 600 m above terrain.
This photography was used to compile planimetric features such as road centerlines and edges of
pavement. Digital orthophotos were also produced, at a resolution of 10 cm, to provide a spatially
accurate visual base map. To complement the photogrammetric data, field inventories were conducted
to locate and catalog the various highway features. Field locations were performed using differential,
code-phase GPS techniques which obtained positions to submeter accuracy. Figure 20-12 shows a
portion of the GIS along a stretch of highway. When a user selects a feature by pointing and clicking,
a table pops up, giving detailed information about the particular item. In Fig. 20-12, the box culvert
was selected, giving a table showing its position, diameter, type of material, and other information.

 FIGURE 20-12   Selection from the Roadway Characteristics Inventory GIS showing relevant
information for a specific feature. (Courtesy 3001, Inc.)
 

The plan calls for 5-year updates to be performed to keep the information in the GIS current.
Updates will consist of revisiting previously surveyed features to report on their current condition, as
well as obtaining information for new features. Due to the high accuracy of the GIS database and its
completeness, it is anticipated that the RCI will provide for better decision making now and in the
future.

20-9   Multipurpose Land Information System
The city of Sulphur, Louisiana, established a high-accuracy GIS to provide spatial information for a
variety of needs. Users of the information include the police, fire, and public works departments. To



achieve high accuracy, the spatial positioning of the GIS was based on GPS control surveys.
Additional data layers, created through photogrammetric techniques, were tied to the GPS control.
These include a topographic map, digital orthophotography, and a digital elevation model. The system
also includes parcel boundaries based on tax assessor data, utility information, stormwater facilities,
fire hydrants, and crime incident locations.

This multipurpose GIS supports a variety of uses. For example, if the public works department
needs to perform maintenance on a section of sewer pipe, the GIS user can point and click on the pipe
and all customers connected to the sewer line will be listed. Notices can then be mailed to these
customers to inform them of the impending service interruption. Figure 20-13 shows a portion of the
GIS with parcels, buildings, streets, stormwater facilities, water lines, and sanitary sewer lines. A
section of sewer pipe was selected, and the table lists the affected addresses. This illustrates just one
of the many uses of this multipurpose GIS.

 FIGURE 20-13   Sanitary sewer facility map from the Sulphur, Louisiana, GIS showing addresses
affected by pipe maintenance. (Courtesy 3001, Inc.)
 

20-10  Summary
The examples presented in this chapter are only a very small sample of the many ways in which GISs
are being applied in problem solving. And as indicated by these examples, photogrammetry is being
widely used to provide the spatially accurate data layers needed to enable GISs to function. In
particular, the examples verify that digital orthophotos are a very commonly used photogrammetric
product in GISs. Georeferenced satellite imagery is also frequently used in applications where lower
image resolution is suitable. By virtue of their positional accuracies, areawide coverage capabilities,
and cost effectiveness, photogrammetric products will continue to be used as data layers in many GIS
applications. The references which follow cite numerous other GIS applications where
photogrammetry and remote sensing play vital roles.
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Problems
  20-1.   Contact the utility service provider in your local area. Describe how it is using GIS to support
its operation. Note where photogrammetry is being used to provide data for the GIS.

  20-2.   Repeat Prob. 20-1, except contact your local tax assessor’s office.

  20-3.   List 10 layers of information which would be useful in a GIS for fire rescue and emergency
medical assistance.

  20-4.   List 10 layers of information which would be useful in a GIS for landfill site selection.

  20-5.   Give five examples of GIS applications in which digital orthophotos would be useful.

  20-6.   Cite five examples of GIS applications in which digital elevation models would be useful.

  20-7.   Give five examples of GIS applications in which topographic data produced by
stereocompilation would be useful.



  20-8.   Browse the National Wetlands Inventory website at www.fws.gov/wetlands and write a brief
description of the available products and services.

http://www.fws.gov/wetlands


APPENDIX A
Units, Errors, Significant Figures, and Error Propagation

 

A-1  Units
The solution of photogrammetric problems generally requires some type of length, angle, or area
measurement. Length measurements can be based on either the metric system of meters, centimeters,
millimeters, micrometers, etc., or the English system of feet and inches.

While the metric system is preferred for linear units, the English system is still widely used in
the United States. Conversion between the two systems is frequently necessary, and it can be
complicated by the fact that two common conversion standards exist. Prior to 1959, the accepted
metric-English conversion was that 1 m is exactly equal to 39.37 in, or 12 m equals 39.37 ft. This is
the basis of the so-called U.S. survey foot. In 1959 that conversion was officially changed to 1 in is
exactly equal to 2.54 cm or 0.3048 m equals 1 ft, which is the international standard foot. The
difference between these definitions is approximately 1 part in 500,000 and is therefore negligible in
most circumstances. Use of a particular definition is essentially a matter of accepted standards,
although in some cases legislative statute dictates the use of a specific conversion. In a practical
sense, the only situation of concern occurs in converting geographic coordinates whose values have in
excess of six significant figures. In this text, the international standard conversion will be used unless
the U.S. survey standard is specifically indicated.

The following list of length, angle, and area unit equivalents should be helpful to students using
this book:

       1.  Length equivalents
              a.  Metric
                    1 meter (m) = defined standard
                    1 micrometer (μm) = 0.000001 m*
                    1 millimeter (mm) = 0.001 m*
                    1 centimeter (cm) = 0.01 m*
                    1 kilometer (km) = 1000 m*
              b.  English
                    12 inches (in) = 1 foot (ft)*
                    3 ft = 1 yard (yd)*
                    5280 ft = 1 mile (mi)*
              c.  Metric-English (international standard)
                    2.54 cm = 1 in*
                    1 m = 3.2808399 ft
                    0.3048 m = 1 ft*
                    1 km = 0.6213712 mi
              d.  Metric-English (U.S. survey foot)
                    1 m = 39.37 in*
                    1 m = 3.2808333 ft
                    0.30480061 m = 1 ft
                    1 km = 0.6213699 mi



      2.  Angle equivalents
            π = 3.141592654
            1 circle = 2π radians (2π rad) = 360 degrees (360°) = 400 grads or gons (400g)*
            1° = 60 minutes (60′)*
            1′ = 60 seconds (60″)*
            1 rad = 57.29578° = 57°17′44.8″ = 206,264.8″
            1° = 0.01745329 rad = 1.111111g

            1g = 0.9° = 54′ = 3240″*
            1g = 0.01570796r

      3.  Area equivalents
              a.  Metric
                    1 hectare (ha) = 10,000 m2*
                    1 km2 = 100 ha*
              b.  English
                    1 acre = 43,560 ft2*
                    640 acres = 1 mi2*
              c.  Metric-English (international standard)
                    4046.856 m2 = 1 acre
                    1 ha = 2.471054 acres
                    0.4046856 ha = 1 acre
              d.  Metric-English (U.S. survey foot)
                    4046.873 m2 = 1 acre
                    1 ha = 2.471044 acres
                    0.4046873 ha = 1 acre

A-2  Errors
In the processes of measuring any quantity, factors such as human limitations, instrumental
imperfections, and instabilities in nature render the measured values inexact. Due to these factors, no
matter how carefully a measurement is performed, it will always contain some error. Photogrammetry
is a science which frequently requires measurements, and therefore an understanding of errors—
including how they occur and how they are treated in computation—is important. Before learning
about errors, it is helpful to have an understanding of the concepts of accuracy and precision.

Accuracy can be defined as the degree of conformity to the true value. A value which is very
close to the true value has high accuracy, and a value that is far from true has low accuracy. Since the
true value for a continuous physical quantity is never known, accuracy is likewise never known;
therefore, it can only be estimated. An acceptable method for assessing accuracy is by checking
against an independent, higher-accuracy standard.

Precision, on the other hand, is the degree of refinement of a quantity. The level of precision can
be assessed by making repeated measurements and checking the consistency of the values. If the
values are very close to each other, the measurements have high precision; and if the values vary
widely, the measurements have low precision.

An error is defined as the difference between a particular value and the true or correct value.
Whenever a measurement is made of a continuous physical quantity (such as distance), the result will
contain some amount of error. Errors can be categorized as random errors, systematic errors , and
mistakes. Mistakes or blunders are gross errors caused by carelessness or negligence. Common
examples of blunders are point misidentification, a transcription error in recording a value, and



misreading of a scale. Large blunders can generally be avoided or detected and eliminated through
careful procedures and subsequent quality control checks. Small blunders can be particularly
troublesome when they are large enough to render the results unsatisfactory, yet small enough that
they are undistinguishable from acceptable random errors. Blunders can be prevented by exercising
care and remaining alert while measurements are being taken. If they occur, they can usually be
detected by careful checking and then eliminated.

Systematic error in a measurement is an error which follows some mathematical or physical law.
If the conditions causing the error are measured and properly modeled, a correction can be calculated
and the systematic error eliminated. Systematic errors will remain constant in magnitude and
algebraic sign if the conditions producing them remain the same. Because their algebraic sign tends to
remain the same, systematic errors accumulate, and consequently they are often referred to as
cumulative errors. Examples of systematic errors in photogrammetry are shrinkage or expansion of
photographs, camera lens distortions, and atmospheric refraction distortions.

After blunders and systematic errors have been eliminated, the errors that remain are called
random or accidental errors. Random errors are generally small, but they can never be avoided
entirely in measurements. They do not follow physical laws as systematic errors do, and therefore they
must be dealt with according to the mathematical laws of probability. Random errors are as likely to
be positive as negative; hence they tend to compensate each other and consequently are often called
compensating errors. Random errors occur in photogrammetry, for example, in estimating between
least graduations of a scale, or in indexing a scale.

A-3  Significant Figures
When real numbers are used to represent measured or computed values, it is important to convey the
value’s precision as well as the number itself. One approach for indicating precision involves
enforcement of the rules of significant figures. The technically proper method for representing
precision involves statistics, although significant figures generally yield satisfactory results and are
substantially easier to use.

By definition, measured values have a number of significant figures equal to the number of digits
that are certain, plus one estimated digit. As an example, suppose a distance of 24.37 mm is measured
with a scale whose smallest graduations are 1/10 mm. The first three digits are certain, and the fourth
(7) is estimated on the scale between the 0.3- and 0.4-mm graduations; thus it is also significant. It is
important to record all significant figures in measurement. Rounding off or failing to record the last
estimated digit (even when it is a zero) is a waste of the extra time spent in obtaining that added
precision. Conversely, if more than the actual number of significant figures is recorded, a precision is
implied which, in fact, does not exist.

While nonzero digits are always significant, zeros in a recorded value may or may not be
significant, depending upon the circumstances. The following rules apply:

       1.  Zeros between nonzero digits are significant.

    Examples:
    1001 four significant figures
    200.013 six significant figures
    4.05 three significant figures

      2.  Zeros to the left of the first nonzero digit serve only to position the decimal point and are not



significant.

    Examples:
    0.003 one significant figure
    0.057 two significant figures
    0.00281 three significant figures

      3.  Zeros to the right of nonzero digits which are also to the right of a decimal point are significant.

    Examples:
    0.10 two significant figures
    7.50 three significant figures
    483.000 six significant figures

      4.  Zeros to the right of the rightmost nonzero digit but to the left of an implied decimal point are
not significant unless specified by placing a bar over the rightmost significant zero or by
moving the decimal point to the left and expressing the number in scientific notation. In this
book, scientific notation will be used only on rare occasions since it is more difficult to
visualize.

    Examples:
    380 = 3.8 × 102    two significant figures
    three significant figures
    four significant figures
    three significant figures

In computations using measured values, it is important that answers be given to a number of
significant figures consistent with the number of significant figures in the data used to compute them.
Specifying an answer to less than the proper number of significant figures does not take advantage of
the precision achieved in measuring the quantities, and giving the answer to more significant figures
than are justified is misleading because it implies precision that does not exist.

In adding and subtracting, the calculations are performed without regard to significant figures,
but the answer is rounded off to the column dictated by the least-precise value. The least-precise value
in a set of numbers that are being added or subtracted is that value whose rightmost significant figure
is farthest to the left relative to the decimal point.

Examples:

In multiplication and division, the number of significant figures in answers is equal to the least



number of significant figures of any data used in the calculation.

Examples:

In multiplying or dividing by exact constants (or taking reciprocals), the constants do not govern the
number of significant figures in the answer.

Examples:

In mixed calculations, significant figures must be determined by taking into account the order in
which the calculations are performed.

Examples:

Solve for i:

Note the use of the overbar which serves as a mnemonic to indicate the rightmost significant figure.
This avoids rounding of intermediate results, which can contaminate the answer in some cases.

Trigonometric functions involving angles are complicated with regard to assessing the proper
number of significant figures. A good method for determining significant figures is to vary the
rightmost significant figure in the value by one unit and compute the function a second time, noting
the amount of change from the original computed result. This can be readily seen by subtracting the
two values and noting the leftmost significant figure in the difference.



Examples:

Therefore the answer = 0.1317 (round off in the ten-thousandths place, the position of the first
significant figure in the difference).

Therefore the answer = 0.9999996 (round off in the ten-millionth place, the position of the first
significant figure in the difference).

Therefore the answer = 24.56° (round off in the hundredths place, the position of the first significant
figure in the difference).

In this text the term nominal is frequently used to imply nearness to a given value, e.g., a nominal
6-in-focal-length camera. Nominal in this context may be assumed to imply two additional significant
figures (a nominal 6-in-focal-length camera lens therefore means a focal length of 6.00 in).

In making computations it is important to carry out intermediate values to more than the required
number of significant figures so as not to contaminate the final result . This is easily achieved by
storing intermediate values in a calculator’s memory storage registers and recalling them as needed. If
this is not feasible, carrying one additional digit in intermediate computations should give adequate
results.

A-4  Error Propagation
Often it is necessary to estimate the error in a computed quantity which is indirectly determined from
measurements that contain error. This can be accomplished through statistical error propagation. Full
error propagation assumes that errors in the variables of the equations are correlated; i.e., error in one
variable is dependent upon error in other variables. Full error propagation is generally not necessary
when computing a value as a function of measurements. In its simplest form, error propagation
assumes that errors in the measurements are independent. Assume that the computed value F, as
shown in Eq. (A-1), is a function of n independent variables x1, x2, …, xn, which have standard errors
σ1, σ2, …, σn, respectively.

(A-1)
 
The standard error of the computed value is given by Eq. (A-2).

(A-2)



 
Example A-1
Compute the value of h and its standard error, based on the following relief displacement equation:

 
where
 

Solution   First, compute h.

 
Next, apply Eq. (A-2).
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Problems
  A-1.   Convert the following lengths to inches:
            (a)  23.9 cm
            (b)  2.00 mm



            (c)  0.4681 m
            (d)  22.33 mm

  A-2.   Convert the following lengths to millimeters:
            (a)  1.776 in
            (b)  14.92 in
            (c)  1.71 ft
            (d)  0.834 ft

  A-3.   Make the following length conversions:
            (a)  Express 92.54 m in feet
            (b)  Express 100.00 ft in meters
            (c)  Express 6.67 km in miles
            (d)  Express 6.67 mi in kilometers

  A-4.   Convert the following angles to degrees, minutes, and seconds.
            (a)  10.023°
            (b)  0.050g

            (c)  –8.539g

            (d)  0.04681rad

  A-5.   Convert the following angles to grads:
            (a)  70°03′00″
            (b)  10°47′37″
            (c)  11.07°
            (d)  0.1509rad

  A-6.   Convert the following angles to radians:
            (a)  4.245°
            (b)  15°59′22″
            (c)  13.435g

            (d)  0.0074g

  A-7.   Make the following area conversions.
            (a)  Express 1.9817 m in square feet.
            (b)  Express 9761 ft2 in hectares.
            (c)  Express 101.0 m2 in square feet.
            (d)  Express 21,451 ft2 in square meters.

  A-8.   How many significant figures are in the following numbers?
            (a)  2000
            (b)  43.0
            (c)  0.006
            (d)  10,400
            (e)  3001
            (f)  42°04′10″

  A-9.   Express the answers to the following problems to the correct number of significant figures.



            (a)  76 + 3.17 + 0.5 + 17.125
            (b)  4.8 × 508 ÷ 95.3
            (c)  The reciprocal of 152.98
            (d)  161.5 × (135.0 – 133.7) ÷ 212.0
            (e)  (100.2)2

            (f)  
            (g)  The average of 72.32, 72.33, 72.30, and 72.37
            (h)  sin(89.7°)

A-10.   Compute the estimated error in hA based on the following parallax equation:

 
 where

hC = 54.31 m
pa = 98.04 mm
pc = 90.10 mm
H = 916.2 m σH = ±1.0 m

_____________
* The asterisk denotes an exact conversion factor; other factors are correct only to the digits shown.



APPENDIX B
Introduction to Least Squares Adjustment

 

B-1  Introduction
As discussed in Sec. A-2, all measurements contain error. With appropriate care, blunders can be
avoided; and if an appropriate mathematical model is used, compensation for systematic errors can be
provided. No matter how much care is taken, however, random errors will still remain. The
theoretically correct method of treating these errors is known as least squares adjustment. Least
squares is by no means a new method. Karl Gauss, a German mathematician, used the method as early
as the latter part of the 18th century. Until the invention of computers, however, it was employed
rather sparingly because of the lengthy calculations involved. In order to introduce least squares, some
fundamental background concepts will be presented first.

B-2  Definitions
The following definitions of terms necessarily must precede a discussion of least squares:

Observations. Directly observed (or measured) quantities which contain random errors.
True value. The theoretically correct or exact value of a quantity. From measurements, however,
the true value can never be determined, because no matter how much care is exercised in
measurement, small random errors will still always be present.
Error. The difference between any measured quantity and the true value for that quantity. Since
the true value of a measured quantity can never be determined, errors are likewise indeterminate,
and hence they are strictly theoretical quantities. Errors may be estimated by comparing
measured or computed values with those obtained by an independent method known to have
higher accuracy. For example, error in a ground distance obtained through scaling from a vertical
photograph can be estimated by comparing it with a ground-surveyed value obtained with an
electronic distance-measuring device.
Most probable value. That value for a measured or indirectly determined quantity which, based
upon the observations, has the highest probability. The most probable value (MPV) is determined
through least squares adjustment, which is based on the mathematical laws of probability. The
most probable value for a quantity that has been directly and independently measured several
times with observations of equal weight is simply the mean, or

 

(B-1)
 
In Eq. (B-1), Σx is the sum of the individual measurements, and m is the number of observations.
Methods for calculating most probable values of quantities determined through indirect observations,
which may or may not be equally weighted, are described in later sections of this appendix.

Residual. The difference between any measured quantity and the most probable value for that



quantity. It is the value which is dealt with in adjustment computations, since errors are
indeterminate. The term error is frequently used when residual is in fact meant, and although
they are very similar, there is this theoretical distinction.
Degrees of freedom. The number of redundant observations (those in excess of the number
actually needed to calculate the unknowns). Redundant observations reveal discrepancies in
observed values and make possible the practice of least squares adjustment for obtaining most
probable values.
Weight. The relative worth of an observation compared to any other observation. Measurements
may be weighted in adjustment computations according to their precisions. A very precisely
measured value logically should be weighted heavily in an adjustment so that the correction it
receives is smaller than that received by a less precise measurement. If the same equipment and
procedures are used on a group of measurements, each observation is given an equal weight.
Weights are discussed further in Sec. B-6.
Standard deviation. A quantity used to express the precision of a group of measurements.
Standard deviation is sometimes called the root mean square error, although that designation is
somewhat inaccurate. It may also be called the 68 percent error, since according to the theory of
probability, 68 percent of the observations in a group should have residuals smaller than the
standard deviation. An expression for the standard deviation of a quantity for which a number of
direct, equally weighted observations have been made is

 

(B-2)
 
In Eq. (B-2), S is the standard deviation, Σv2 is the sum of the squares of the residuals, and r is the
number of degrees of freedom. In the case of m repeated measurements of the same unknown quantity
(a common occurrence in photogrammetry), the first measurement establishes a value for the
unknown, and all additional measurements, m – 1 in number, are redundant. The units of standard
deviation are the same as those of the original measurements.

Example B-1
The 10 values listed in column (a) below were obtained in measuring a photographic distance with a
glass scale. Each value was measured using the same instrument and procedures; thus equal weights
are assumed. What are the most probable value and the standard deviation of the group of
measurements?



 

      1.  By Eq. (B-1), the most probable value for a quantity that has been directly and independently
measured several times is

 
      2.  Residuals listed in column (b) above are obtained by subtracting the MPV from each

measurement. The squared residuals are listed in column (c).
      3.  By Eq. (B-2), standard deviation is

 

B-3  Histograms
A histogram is a graphical representation of the distribution of a group of measurements or of the
residuals for a group of measurements. It illustrates in an “easily digestible” form the nature of
occurrence of random errors. A histogram is simply a bar graph of the sizes of measured values, or the
sizes of residuals, as abscissas versus their frequency of occurrence as ordinates. An example
histogram of residuals for 50 measurements of a photo distance is shown in Fig. B-1.



 FIGURE B-1   Histogram for 50 measurements of a photographic distance.
 

Histograms graphically display the following information about a particular group of
measurements:

      1.  Whether the measurements or residuals are symmetrically distributed about some central value.
      2.  The total spread or dispersion in the measured values or in the residuals.
      3.  The precision of the measured values. (A tall, narrow histogram represents good precision,

while a short, wide one represents poor precision.)

Histograms of varying shape will be obtained by different personnel and for variations in
equipment used. Many comparator measurements of a photographic distance, for example, would
likely produce a very narrow histogram with a high ordinate at the center. A histogram of the same
distance measured the same number of times with an engineer’s scale, and plotted at the same scale,
would be wider, with a much lower ordinate value at the center.

When a histogram of residuals is plotted, the residuals are calculated and classified into groups
or classes according to their sizes. The range of residual size in each class is called the class interval.
The width of bars on a histogram is equal to the class interval, and for the example of Fig. B-1 it is 3
µm. It is important to select a class interval that portrays the distribution of residuals adequately. The
value selected will depend upon the total number of measurements in the group. Usually a class
interval that produces from 8 to 15 bars (classes) on the graph is ideal. The number of residuals within
each class (frequency of residuals) is then counted and plotted on the ordinate scale versus the residual
size for the class on the abscissa scale.



B-4  Normal Distribution of Random Errors
In the remaining discussion it is assumed that all error distributions are normal. This is a good
assumption in photogrammetry since most distributions are in fact normal or very nearly normal.

A normal distribution, or gaussian distribution as it is often called, is one in which the graph has
the typical bell-shaped curve shown in Fig. B-2. It is symmetric about the ordinate for a residual of
zero. For a very large group of measurements, this curve may be obtained in much the same way as a
histogram except that the sizes of residuals are plotted on the abscissa versus their relative
frequencies of occurrence on the ordinate. The relative frequency of residuals occurring within an
interval Δv is simply the ratio of the number of residuals within that interval to the total number of
residuals. If the number of measurements is infinitely large and if the size of the interval is taken as
infinitesimally small, the resulting curve becomes smooth and continuous, as shown in Fig. B-2.

 FIGURE B-2   Normal distribution curve.
 

The equation of the normal distribution curve is

(B-3)
 

 where y = ordinate of normal distribution curve, equal to relative frequency of ccurrence of residuals
between the size of v and v + Δv

σ = standard deviation
e = base of natural logarithms
µ = mean of distribution (µ = 0 in Fig. B-2)
x = abscissa



The derivation of Eq. (B-3) is beyond the scope of this text, but it can be found in references listed at
the end of this appendix. In Fig. B-2 the probability of a residual occurring between the limits of v and
v + Δv is equal to the crosshatched area under the curve between those limits. It is the product of the
ordinate y and the interval Δv. For any single measurement of a group of measurements, the
probability that its residual occurs between any two abscissas on the curve (such as between –S and +S
of Fig. B-2) is equal to the area under the normal distribution curve between those abscissas. Since for
a group of measurements all residuals must fall somewhere on the abscissa scale of the normal
distribution curve, the total area under the curve represents total probability and is therefore equal to
1.0. The area under the curve between any two abscissas may be found by integrating Eq. (B-3)
between those two abscissa limits. The integration is beyond the scope of this text, but it is pertinent
to point out that the area between –S and +S (shown as shaded in Fig. B-2) is 68 percent of the total
area under the curve. Hence S is called the 68 percent error, as previously mentioned.

B-5  Fundamental Condition of Least Squares
For a group of equally weighted observations, the fundamental condition which is enforced in least
squares adjustment is that the sum of the squares of the residuals is minimized . This condition, which
has been developed from the equation for the normal distribution curve, provides most probable
values for the adjusted quantities. Suppose a group of m equally weighted measurements were taken
having residuals v1, v2, v3, …, vm. Then, in equation form, the fundamental condition of least squares is
expressed as

(B-4)
 

Some basic assumptions which underlie least squares theory are that the number of observations
being adjusted is large and that the frequency distribution of the errors is normal. Although these basic
assumptions are not always met, least squares adjustment still provides the most rigorous error
treatment available, and hence it has become very popular and important in many areas of modern
photogrammetry. Besides yielding most probable values for the unknowns, least squares adjustment
enables precisions of adjusted quantities to be determined; and it often reveals the presence of large
errors and mistakes so that steps can be taken to eliminate them.

B-6  Weighted Observations
Weights of individual observed values may be assigned according to a priori estimates, or they may be
obtained from the standard deviations of the observations, if available. Assuming uncorrelated
observations, an equation expressing the relation between standard deviation and weight is

(B-5)
 
I n Eq. (B-5), wi is the weight of the ith observed quantity, and Si

2 is the square of the standard
deviation, or variance of that observation. Equation (B-5) implies that weight is inversely
proportional to variance. If measured values are to be weighted in least squares adjustment, then the



fundamental condition to be enforced is that the sum of the weights times their corresponding squared
residuals is minimized, or, in equation form,

(B-6)
 

B-7  Applying Least Squares
In the “observation equation” method of least squares adjustment, observation equations are written
which relate measured values to their residual errors and the unknown parameters. One observation
equation is written for each measurement. For a unique solution, the number of equations must equal
the number of unknowns. If redundant observations are made, then more observation equations can be
written than are needed for a unique solution, and most probable values of the unknown parameters
can be determined by the method of least squares. For a group of equally weighted observations, an
equation for each residual error is obtained from each observation. The residuals are squared and

added to obtain the function . To minimize the function, partial derivatives are taken with respect
to each unknown variable and set equal to zero. This yields a set of equations called normal equations
which are equal in number to the number of unknowns. The normal equations are solved to obtain the
most probable values for the unknowns.

Example B-2
As an elementary example illustrating the method of least squares adjustment by the observation
equation method, consider the following three equally weighted measurements taken between points
A, B, and C of Fig. B-3:

 

 FIGURE B-3   Measurements for least squares adjustment example, Example B-2.
 

These three equations relate the two unknowns x and y to the observations. Values for x and y could be
obtained from any two of these equations; therefore, the remaining equation is redundant. Notice,
however, that the values obtained for x and y will differ, depending upon which two equations are
solved. It is therefore apparent that the measurements contain errors. The equations may be rewritten
as observation equations by including residual errors as follows:



 
To arrive at the least squares solution, the observation equations are rearranged to obtain expressions

for the residuals; these are squared and added to form the function  as follows:

 
The above function is minimized, enforcing the condition of least squares, by taking partial
derivatives with respect to each unknown and setting them equal to zero. This yields the following two
equations:

 
The above equations are the normal equations, and expressed in simplied form they are

 
Solving the simplied normal equations simultaneously yields x = 1.533 and y = 1.433. According to
the theory of least squares, these values have the highest probability. Having the most probable values
for the unknowns, the residuals can be calculated by substitution back into the original observation
equations, or

 
The above example is indeed simple, but it serves to illustrate the method of least squares

without complicating the mathematics. Least squares adjustment of large systems of observations is
performed in the same manner.

B-8  Systematic Formulation of Normal Equations
In large systems of observations, it is helpful to utilize systematic procedures to formulate normal
equations. Consider the following system of m linear observation equations of equal weight containing
n unknowns:



(B-7)
 
In Eqs. (B-7) the aij’s are coefficients of the unknown Xj’s; the Li’s are the observations; and the vi’s
are the residuals. By squaring the residuals and summing them, the function Σv2 is formed. Taking
partial derivatives of Σv2 with respect to each unknown Xj yields n normal equations. After reducing
and factoring the normal equations, the following generalized system for expressing normal equations
results:

(B-8)
 
It may be similarly shown that normal equations may be systematically formed from weighted
observation equations in the following manner:

(B-9)
 
In Eqs. (B-9) the terms are as described previously, except that the wi’s are the relative weights of the
individual observations.



The formulation of normal equations from observation equations may be further systematized by
handling the systems of Eqs. (B-8) or (B-9) in a tabular manner.

Example B-3
Using the tabular method, form the normal equations for Example B-2.

Solution

 
For this example, normal equations are formed by satisfying Eqs. (B-8) as follows (note that because
of the commutative property of multiplication, ai1ai2 = ai2ai1.):

 
Substituting the appropriate values from the above table yields the required normal equations as
follows:

 

B-9  Matrix Methods in Least Squares Adjustment
It has been previously mentioned that least squares computations are quite lengthy and are therefore
most economically performed on a computer. The algebraic approach—Eqs. (B-8) and (B-9)—for
forming normal equations, and for obtaining their simultaneous solution, can be programmed for
computer solution or set up in a computer spreadsheet. The procedure is much more easily adapted to
matrix methods, however. Readers may wish to consult references listed at the end of this appendix
for a review of matrix terminology and operations.

In developing matrix equations for least squares computations, analogy will be made to the
algebraic approach presented in Sec. B-8. First, observation Eqs. (B-7) may be represented in matrix
form as

(B-10)
 



where

 
Upon studying the following matrix representation, it will be noticed that normal Eqs. (B-8) are

obtained as follows:

(B-11)
 
In the above equation, ATA is the matrix of normal equation coefficients of the unknowns.
Premultiplying both sides of Eq. (B-11) by (ATA)–1 and reducing, results in:

(B-12)
 
In the above reduction, I is the identity matrix. Equation (B-12) is the basic least squares matrix
equation for equally weighted observations. The matrix X consists of most probable values for
unknowns X1, X2, X3, …, Xn. For a system of weighted observations, the following matrix equation
provides the X matrix of most probable values for the unknowns:

(B-13)
 
In Eq. (B-13) the matrices are identical to those of the equally weighted equations, with the inclusion
of the W matrix, which is a diagonal matrix of weights and is defined as follows:



 
In the preceding W matrix, all off-diagonal elements are shown as zeros. This is proper when the
individual observations are independent and uncorrelated; i.e., they are not dependent upon each other.
This is often the case in photogrammetric applications.

Example B-4
Solve Example B-2 by using matrix methods.

The observation equations of Example B-2 may be expressed in matrix form as follows:

 
where

 
Solving matrix Eq. (B-12) gives

 
Note that this solution yields exactly the same values for x and y as were obtained through the
algebraic approach of Example B-2.  

B-10   Matrix Equations for Precisions of Adjusted Quantities
The matrix equation for calculating residuals after adjustment, whether the adjustment is weighted or
not, is

(B-14)
 
The standard deviation of unit weight for an unweighted adjustment is



(B-15)
 
The standard deviation of unit weight for a weighted adjustment is

(B-16)
 
I n Eqs. (B-15) and (B-16), r is the number of degrees of freedom and equals the number of
observation equations minus the number of unknowns, or r = m – n.

Standard deviations of the adjusted quantities are

(B-17)
 
In Eq. (B-17),  is the standard deviation of the ith adjusted quantity, i.e., the quantity in the ith row
of the X matrix; S0 is the standard deviation of unit weight as calculated by Eq. (B-15) or (B-16); and 

. is the element in the ith row and the ith column of the matrix (ATA)–1 in the unweighted case, or
the matrix (ATWA)–1 in the weighted case. The matrices  and  are the covariance
matrices.

Example B-5
Calculate the standard deviation of unit weight and the standard deviations of the adjusted quantities x
and y for the unweighted problem of Example B-4.

    (a)  By Eq. (B-14), the residuals are

 

    (b)  By Eq. (B-15), the standard deviation of unit weight is

 

    (c)  Using Eq. (B-17), the standard deviations of the adjusted values for x and y are calculated as



 
In part (c) above, the numbers 0.6667 within the radicals are the (1,1) and (2,2) elements of the (ATA)–1

matrix of Example B-4. The interpretation of the standard deviations computed under part (c) is that
there is a 68 percent probability that the true values for x and y are within ±0.047 of their adjusted
values. Note that for this simple example the magnitudes of the three residuals calculated in part (a)
were equal, and that the standard deviations of x and y were equal in part (c). This is due to the
symmetric nature of this particular problem (illustrated in Fig. B-3), but this is seldom, if ever, the
case with more complex problems.  

B-11   Practical Example
The following example is presented to illustrate a practical application of least squares in
photogrammetry. The example also shows the method of calculating the coefficients of a polynomial
which approximates the symmetric radial lens distortion curve for an aerial camera (see Sec. 4-11).

Example B-6
From the calibration data of an aerial camera given in the table below, calculate the coefficients of a
polynomial which models the symmetric radial lens distortion curve.

 
Solution   As presented in Sec. 4-11, a polynomial of the following form is the appropriate model for
symmetric radial lens distortion:

(B-18)
 
In Eq. (B-18), Δr is the symmetric radial lens distortion at a radial distance r from the principal point.
The k’s are coefficients which define the shape of the distortion curve. One equation of the form of
Eq. (B-18) can be written for each radial distance at which the distortion is known from calibration.
Since there are four k’s, four equations are required to obtain a unique solution for them. From
calibration, distortions are determined for six radial distances; hence six equations can be written, and
the k’s may be computed by least squares. In polynomial equations of this type, there is commonly a
problem with ill-conditioning of the normal equations due to having numbers raised to large powers.
To reduce this problem, it is useful to convert the radial distances to meters so that when raised to the
seventh power, the result is less than 1. This is not a foolproof approach, although it is effective in



many cases.
Based on the calibration data, the following observation equations, in the matrix form of Eq. (B-

10), may be written (note that the radial distances have been converted to meters):

 
The least squares solution in the form of Eq. (B-11) gives

 
Solving this equation for the unknowns gives the following:

 
By using these k’s in Eq. (B-18), estimates for radial lens distortions (in millimeters) for any value of
r (in meters) may be readily calculated.  
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Problems
  B-1.   A photogrammetric distance was measured 10 times using the same equipment and procedures
with the following results: 76.74, 76.69, 76.70, 76.72, 76.69, 76.75, 76.72, 76.77, 76.70, and 76.71 mm.
Calculate the most probable value for the photo distance and the standard deviation of the group of
measurements.

  B-2.   Repeat Prob. B-1, except that the following 15 measurements were obtained: 44.29, 44.37,
44.40, 44.38, 44.43, 44.37, 44.39, 44.39, 44.42, 44.38, 44.44, 44.40, 44.37, 44.41, and 44.42 mm.

  B-3.   Compute the most probable values of unknowns x1, x2, and x3 for the following observation
equations, using a computer spreadsheet, and calculate the standard deviations of the adjusted
quantities.

 
  B-4.   Suppose the constant terms 15, –12, 23, and –4 of the four equations of Prob. B-3 represent
measurements having relative weights of 2, 3, 1, and 4, respectively. Using weighted least squares,
calculate most probable values for x1, x2, and x3 and determine the standard deviations of these values.

  B-5.   Repeat Prob. B-3, except that the four equations are as follows:

 
  B-6.   If the constant terms –20, 23, 12, and 5 of Prob. B-5 represent measurements having relative
weights of 4, 2, 1, and 2, respectively, calculate the least squares solution for the unknowns and



determine their standard deviations.



APPENDIX C
Coordinate Transformations

 

C-1  Introduction
A problem frequently encountered in photogrammetric work is conversion from one rectangular
coordinate system to another. This is because photogrammetrists commonly determine coordinates of
unknown points in convenient arbitrary rectangular coordinate systems. These arbitrary coordinates
may be read from comparators or stereoscopic plotters, or they may result from analytic computation.
The arbitrary coordinates must then be converted to a final system, such as the camera photo
coordinate system in the case of comparator measurements, or to a ground coordinate system, such as
the state plane coordinate system in the case of stereoplotter or analytically derived arbitrary model
coordinates. The procedure for converting from one coordinate system to another is known as
coordinate transformation. The procedure requires that some points have their coordinates known (or
measured) in both the arbitrary and the final coordinate systems. Such points are called control points.
Figure C-1 shows the effects of applying three common transformation types.



 FIGURE C-1   Effects of different coordinate transformations. (a) Conformal coordinate
transformation. (b) Affine coordinate transformation. (c) Projective coordinate transformation.
 

C-2  Two-Dimensional Conformal Coordinate Transformation
The term two-dimensional means that the coordinate systems lie on plane surfaces. A conformal
transformation is one in which true shape is preserved after transformation. To perform a two-
dimensional conformal coordinate transformation, it is necessary that coordinates of at least two
points be known in both the arbitrary and final coordinate systems. Accuracy in the transformation is
improved by choosing the two points as far apart as possible. If more than two control points are



available, an improved solution may be obtained by applying the method of least squares.

 FIGURE C-2   (a) Arbitrary XY two-dimensional coordinate system. (b) Ground EN two-dimensional
system.
 

A two-dimensional conformal coordinate transformation consists of three basic steps: (1) scale
change, (2) rotation, and (3) translation. The example illustrated in Fig. C-2 is used to demonstrate the
procedure. This example uses the minimum of two control points. Section C-4 describes the procedure
when more than two control points are available. Figure C-2a shows the positions of points a through
c, whose coordinates are known in an arbitrary XY system. Figure C-2b illustrates the positions of the
same points, labeled A through C in a (ground) EN system. The coordinates of A and B are known in
the ground system, and it is required to determine the coordinates of C in the ground system.

Step 1: Scale Change
By comparing Figs. C-2a and b, it is evident that the lengths of lines ab and AB are unequal, hence the
scales of the two coordinate systems are unequal. The scale of the XY system is made equal to that of
the EN system by multiplying each X and Y coordinate by a scale factor s. The scaled coordinates are
designated as X′ and Y′. By use of the two control points, the scale factor is calculated in relation to the
two lengths AB and ab as

(C-1)
 
Step 2: Rotation
If the scaled X′Y′ coordinate system is superimposed over the EN system of Fig. C-2b so that line AB
in both systems coincides, the result is as shown in Fig. C-3. An auxiliary axis system E′N′ is
constructed through the origin of the X′Y′ axis system parallel to the EN axes. It is necessary to rotate
from the X′Y′ system to the E′N′ system, or in other words, to calculate E′N′ coordinates for the
unknown points from their X′Y′ coordinates. The E′N′ coordinates of point C may be calculated in



terms of the clockwise angle θ by using the following equations:

 FIGURE C-3   Scaled X′Y′ coordinate system superimposed onto the EN ground coordinate system.
 

(C-2)
 
Rotation angle θ, shown in Fig. C-3, is the sum of angles α and β which are indicated on Figs. C-2a
and b. From coordinates of the two control points, these angles are calculated as

(C-3)
 
Step 3: Translation
The final step in the coordinate transformation is a translation of the origin of the E′N′ system to the
origin of the EN system. The translation factors required are TE and TN, which are illustrated in Fig. C-
3. Final E and N ground coordinates for points C then are

(C-4)



 
where the translation factors TE and TN are calculated as

(C-5)
 
Note from Eqs. (C-5) that these translation factors may be calculated in two different ways by using
either control point A or B. It is advisable to calculate them by using both points, to obtain a
computation check.

Working sketches are recommended in computing coordinate transformations to aid in reducing
the likelihood of mistakes. Caution should be exercised to ensure that correct algebraic signs are
applied to the coordinates used in the transformation equations.

Example C-1
Assume that in Figs. C-2a and b the arbitrary and ground coordinates of points A through C are as
follows:

 
It is required to compute the coordinates of point C in the ground EN system.

Solution

          (a)  The scale factor is calculated from Eq. (C-1) as

 
               The arbitrary coordinates are then expanded to the X′Y′ system, which is equal in scale to the

ground coordinate system, by multiplying each of the arbitrary coordinates by the scale
factor. After multiplication, the X′Y′ coordinates are as follows:



 

          (b)  The rotation angle, calculated by Eqs. (C-3), is

 
               Rotation Eqs. (C-2) are then solved to obtain E′ and N′ coordinates. The solution in tabular

form is as follows (with sin θ = 0.720363, and cos θ = 0.693597):

 
          (c)  The translation factors TE and TN are calculated next, using Eqs. (C-5) as follows:

 
               By adding the translation factors to  and  the following final transformed E and N

coordinates are obtained for point C:

 
In the above example, although only one unknown point (point C) was transformed, any number

of points could have been transformed by using just the two control points.

C-3  Alternative Method of Two-Dimensional Conformal Coordinate
Transformation

When a computer is used, it is advantageous to compute coordinate transformations by an alternative
method. In this method, equations involving four transformation coefficients are formulated in terms
of the coordinates of the two or more points whose positions are known in both coordinate systems.
The formation of the equations follows the same three steps discussed in Sec. C-2. The procedure
consists of first multiplying each of the original coordinates of points a and b by a scale factor. The
following four equations result:



(C-6)
 
Equations (C-6) are now substituted into Eqs. (C-2), except that the subscripts of Eqs. (C-2) are
changed to be applicable for points A and B. This substitution yields

(C-7)
 
Finally, translation factors TE and TN, as described previously, are added to Eqs. (C-7) to yield the
following equations:

(C-8)
 

Let a = s cos θ and b = s sin θ. Notice that two new variables are being introduced, which are
independent functions of two existing variables. This is essential so that the total number of unknown
coefficients will remain the same. By substitution, Eqs. (C-8) become

(C-9)
 
Because both the XY and EN coordinates for points A and B are known, Eqs. (C-9) contain only four
unknowns, the transformation parameters a, b, TE, and TN. The four equations may be solved
simultaneously to obtain values for the unknowns. When the four transformation factors have been
computed, an E and an N equation of the form of Eqs. (C-9) may be solved to obtain the final
coordinates of each point whose coordinates were known only in the XY system.

By this method, the transformation can be performed without ever determining the scale and
rotation parameters directly. If, for some reason, it is necessary to determine the scale and rotation
parameters, these values can be derived from the values of a and b as follows:



(C-10)
 

(C-11)
 
In Eq. (C-11), it is necessary to use the full circle inverse tangent function (typically called ‘atan2’ in
computer languages and spreadsheets) since the value of θ can cover the full range from –180° to
+180°. With a scientific calculator, this full range can generally be achieved by using the rectangular-
to-polar conversion capability.

Example C-2
Solve Example C-1 by using the alternate method.
          (a)  Formulate Eqs. (C-9) for the points whose coordinates are known in both systems.

 
          (b)  The simultaneous solution of the above four equations yields the following:

 
          (c)  Using the four transformation parameters, the final EN ground coordinates of point C are

calculated as follows:

 
          (d)  (Optional step) Compute the values for s and θ, using Eqs. (C-10) and (C-11), respectively.

 

C-4  Coordinate Transformations With Redundancy
In some instances, more than two control points are available with coordinates known in both the



arbitrary and final systems. In that case, redundancy exists and the transformation can be computed by
using a least squares solution. In this method, as discussed in App. B, the sum of the squares of the
residuals in the measurements is minimized, which, according to the theory of probability, produces
the most probable solution. The least squares method has the additional advantages that mistakes in
the coordinates may be detected and that the precision of the transformed coordinates may be
obtained. For these reasons, it is strongly advised to use redundancy in coordinate transformations
whenever possible.

In the least squares procedure, it is convenient to use the alternate method discussed in Sec. C-3.
Two observation equations similar to those of Eqs. (C-9) are formed for each point whose coordinates
are known in both systems. Residuals v are included in the equations to make them consistent, as
follows:

(C-12)
 
If n points are available whose coordinates are known in both systems, 2n equations may be formed
containing the four unknown transformation parameters. The equations are solved by the method of
least squares to obtain the most probable transformation parameters. Transformed coordinates of all
required points may then be found by using the transformation factors as illustrated in step (c) of
Example C-2.

It is theoretically correct in least squares to associate residuals with actual observations. In Eqs.
(C-12), however, the X and Y coordinates are observed, yet residuals are only associated with the E
and N control coordinates. Although there is a more rigorous least squares technique available to
handle this situation, the easier approach shown above is commonly used and has been found to yield
entirely satisfactory results.

C-5  Matrix Methods in Coordinate Transformations
Coordinate transformations involve rather lengthy calculations and are therefore best handled on a
computer. Matrix algebra is ideal for computer calculations and is therefore convenient for
performing transformations.

To illustrate the application of matrix algebra in two-dimensional conformal coordinate
transformation by least squares, assume that coordinates of three control points A, B, and C are known
in both the XY system and the EN system. Let their coordinates be of equal reliability so that their
weights are equal. Assume also that transformation into the EN system is required for points D
through N, whose coordinates are known only in the XY system.

First, six observation equations of the form of Eqs. (C-12) are developed, two for each control
point A, B, and C, as follows:



(C-13)
 
In matrix representation, the above six equations are

(C-14)
 
In matrix Eq. (C-14), A is the matrix of coefficients of the unknown transformation parameters, X is
the matrix of unknown transformation parameters, L is the matrix of constant terms which is made up
of control point coordinates, and V is the matrix of residuals in those coordinates brought about by
measurement errors. More specifically, these matrices are

 

As discussed in App. B, matrix Eq. (B-12) is used to solve this equally weighted system for the
transformation parameters. The final transformation of all points D through N into the EN system is
performed as discussed in step (c) of Example C-2. This phase of the computation is also readily
adapted to matrix methods.

C-6  Two-Dimensional Affine Coordinate Transformation
The two-dimensional affine coordinate transformation is only a slight modification of the two-
dimensional conformal transformation, to include anisotropic scaling (i.e., different scale factors in
the x and y directions) and to compensate for nonorthogonality (nonperpendicularity or skewing) of
the axis system. The affine transformation achieves these additional features by including two



additional unknown parameters for a total of six. As will be shown, the derivation of the
transformation equations depends on the measurement characteristics of the arbitrary coordinate
system.

A two-dimensional affine transformation consists of four basic steps: (1) scale change in x and y,
(2) correction for nonorthogonality, (3) rotation, and (4) translation. Figure C-4 illustrates the
geometric relationship between the arbitrary coordinate system xy and the final coordinate system XY.
In this figure, the nonorthogonality of x and y is indicated by the angle ε. The rotation angle necessary
to make the two systems parallel is θ, and translations ΤX and ΤY account for the offset of the origin.
The four steps of the derivation are as follows:

 FIGURE C-4   General two-dimensional affine coordinate transformation relationship.
 

Step 1: Scale Change in x and y
To make the scale of the arbitrary system xy equal to that of the final system XY, each coordinate is
multiplied by its associated scale factor, sx and sy. This results in a correctly scaled coordinate system
x′y′ as given in Eqs. (C-15).

(C-15)
 
Step 2: Correction for Nonorthogonality
When x and y coordinates are measured from axes that intersect at a right angle, the x distance
(coordinate) is measured perpendicularly from the y axis, which means the distance is at the same
time parallel to the x axis. Similarly, the y distance is measured perpendicularly from the x axis and is
therefore parallel to the x axis. When the xy axes are nonorthogonal, measuring an x distance
perpendicularly from the y axis does not result in a distance that is parallel to the x axis. The
analogous situation applies with the y distance. To derive the relationship, the specific measurement



characteristics of the system must be identified.
Several geometric possibilities exist; however, two configurations are most common and are

illustrated in Figs. C-5a and b. In both figures the x′y′ measurement systems have already been scaled
in accordance with step 1. The first configuration, illustrated in (a), is appropriate for most
comparators where separate x and y carriages provide independent movement in both directions. The
x′ coordinate is measured parallel to the x′ axis from the origin to the point, and the y′ coordinate is
measured parallel to the y′ axis from the origin to the point. The second configuration, shown in (b), is
appropriate when one is using satellite imagery that is acquired in a scanning fashion while the earth
rotates beneath. The resulting image has a distinct parallelogram shape. In this configuration the x′
coordinate is measured parallel to the x′ axis from the y′ axis to the point, and the y′ coordinate is
measured perpendicular to the x′ axis. For the configuration of Fig. C-5a, the correction for
nonorthogonality is given by Eqs. (C-16).

 FIGURE C-5   (a) Two-dimensional affine relationship for typical comparator. (b) Two-dimensional
affine relationship for typical scanning-type satellite image.
 

(C-16)
 
Equations (C-17) express the relationship for the configuration of Fig. C-5b.

(C-17)
 
Step 3: Rotation
Rotation by the angle θ is accomplished in the same fashion as in the two-dimensional conformal
coordinate transformation presented in Sec. C-2. Equations (C-18) give the relationship between the
x″y″ system and the X′Y′ system which is parallel to the final XY system after rotation by angle θ.



(C-18)
 
Step 4: Translation
The final step is to translate the origin by ΤX and ΤY to make it coincide with the origin of the final
system, as shown in Eqs. (C-19).

(C-19)
 
Combining the four steps for configuration (a) gives Eqs. (C-20).

(C-20)
 
Equations (C-20) can then be simplified as shown in the following steps, yielding Eqs. (C-21).

Step a

 

Step b

 

Step c



(C-21)
 
To simplify solutions involving Eqs. (C-21), the following substitutions are made.

Let

image

 

Making these substitutions into Eqs. (C-21) gives Eqs. (C-22), which are the final form of the affine
transformation. In Eqs. (C-22), the six unknown parameters sx, sy, ε, θ, TX, and TY, which appeared in
Eqs. (C-21) in a nonlinear form, have been replaced by six independent parameters a0, a1, a2, b0, b1,
and b2, resulting in a linear form.

(C-22)
 
After solving an affine transformation using Eqs. (C-22), if it is necessary to obtain values for the
original six parameters for configuration (a), they may be obtained as follows. Note that in the first
two expressions, the full circle inverse tangent function (e.g., atan2) must be used.

image

 



Combining the four steps for configuration (b) gives Eqs. (C-23).

image

(C-23)
 
Equations (C-23) can then be simplified as shown in the following steps, yielding Eqs. (C-24).

Step a

 

Step b

image

 

Step c

image

(C-24)
 
To simplify solutions involving Eqs. (C-24), the following substitutions are made.

Let

image

 

After making these substitutions into Eqs. (C-24), the same linear form of the affine transformation is
obtained as before, i.e., Eqs. (C-22). After solving an affine transformation using Eqs. (C-22), if it is
necessary to obtain values for the original six parameters for configuration (b), they may be obtained
as follows. Note that in the first two expressions, the full circle inverse tangent function (e.g., atan2)
must be used.



image

 
As noted above, the transformation equations [Eqs. (C-22)] are identical for either configuration

(a) or (b), and thus the method of solution is the same for both. The two derivations have been
presented, however, to enable computation of the transformation parameters after solution, a factor
that can be important in certain situations, for example in evaluating or calibrating equipment.

As with the two-dimensional conformal transformation, the application of the affine
transformation is a two-step procedure of: (1) determining the a and b coefficients, using points whose
coordinates are known in both the XY and xy systems, and (2) applying these coefficients to calculate
transformed XY coordinates for all other points from their xy coordinates. In correcting photo
coordinates in film photography, the fiducial marks are used to perform step 1, since their calibrated
XY coordinates are known from camera calibration, and their xy coordinates are available from
comparator measurements. For a given photograph, a pair of equations of the form of Eqs. (C-22) can
be written for each fiducial mark. If there are four fiducials, four X and four Y equations are obtained.
Any three of the fiducial marks could be used to obtain a solution for the unknown a’s and b’s. An
improved solution may be obtained, however, if all four fiducial marks are used and the system is
solved by least squares. In other applications where the geometric arrangement of common points
(control) is not predetermined, it is important that the control points do not approximate a straight
line, since this would lead to a very weak or even an indeterminate solution.

Example C-3
Calibrated coordinates and comparator-measured coordinates of the four fiducial marks for a certain
photograph are given in the following table. The comparator-measured coordinates of other points 1,
2, and 3 are also given. It is required to compute the corrected coordinates of points 1, 2, and 3 by
using the affine transformation.



image

 

Solution   Equations of the form of Eqs. (C-22), with residuals added for consistency, are formulated
for the four fiducial marks as follows:

image

 

In matrix representation, after switching of the terms to the opposite side, the above eight equations
are

(C-25)
 
In matrix Eq. (C-25), A is the matrix of coefficients of the unknown transformation parameters, X is
the matrix of unknown transformation parameters, L is the matrix of constant terms which consists of
calibrated fiducial coordinates, and V is the matrix of residuals in those coordinates brought about by
measurement errors. More specifically, these matrices are



image

 

Solving this system of equations using the method of least squares with equal weights as presented in
Sec. B-9, the following solution is obtained:

image

 

Calculation of residual matrix V gives the following:

image

 

Since all the residuals have small magnitudes, the solution is deemed acceptable and the transformed
coordinates of points 1, 2, and 3 are then computed as follows:



image

 
In computing affine transformations, it is strongly recommended that more than the minimum

number of common points be used and that the solution be obtained by least squares. In addition to
other benefits, least squares can reveal the presence of measurement mistakes through calculation of
residuals.

C-7  Three-Dimensional Conformal Coordinate Transformation
As implied by its name, a three-dimensional conformal coordinate transformation involves converting
from one three-dimensional system to another. In the transformation, true shape is retained. This type
of coordinate transformation is essential in analytical or computational photogrammetry for two basic
problems: (1) to transform arbitrary stereomodel coordinates to a ground or object space system and
(2) to form continuous three-dimensional “strip models” from independent stereomodels. Three-
dimensional conformal coordinate transformation equations are developed here in general, while their
application to specific photogrammetry problems is described elsewhere in the text where appropriate.

I n Fig. C-6, it is required to transform coordinates of points from an xyz system to an XYZ
system. As illustrated in the figure, the two coordinate systems are at different scales, they are not
parallel, and their origins do not coincide. The necessary transformation equations can be expressed in
terms of seven independent parameters: the three rotation angles omega (ω), phi (φ), and kappa (κ); a
scale factor s; and three translation parameters TX, TY, and Tz. Before proceeding with the development
of the transformation equations, it is important to define sign conventions. All coordinates shall be
defined as righthanded, i.e., systems in which positive X, Y, and Z are as shown in Fig. C-6. Rotation
angles ω, φ, and κ are positive if they are counterclockwise when viewed from the positive end of their
respective axes. For example, positive ω rotation about the x′ axis, is shown in Fig. C-6.



image

 FIGURE C-6   XYZ and xyz right-handed three-dimensional coordinate systems.
 

The transformation equations will be developed in the following two basic steps: (1) rotation and
(2) scaling and translation.

Step 1: Rotation
In Fig. C-6, an x′y′z′ coordinate system parallel to the XYZ object system is constructed with its origin
at the origin of the xyz system. In the development of rotation formulas, it is customary to consider the
three rotations as taking place so as to convert from the x′y′z′ system to the xyz system. The rotation
equations are developed in a sequence of three independent two-dimensional rotations. These
rotations, illustrated in Fig. C-7, are, first, ω rotation about the x′ axis which converts coordinates
from the x′y′z′ system to an x1y1z1 system; second, ϕ rotation about the once-rotated y1 axis which
converts coordinates from the x1y1z1 system to an x2y2z2 system; and third, κ rotation about the twice-
rotated z2 axis which converts coordinates from the x2y2z2 system to the xyz system of Fig. C-6. The
exact amount and direction of the rotations for any three-dimensional coordinate transformation will
depend upon the orientation relationship between the xyz and XYZ coordinate systems.



image

 FIGURE C-7   The three sequential angular rotations.
 

The development of the rotation formulas is as follows:

      1.  Rotation through the angle ω about the x′ axis is illustrated in Fig. C-8. The coordinates of any
point A in the once-rotated x1y1z1 system, as shown graphically in Fig. C-8, are

image
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 FIGURE C-8   Omega rotation about the x′ axis.
 

image

(C-26)
 
           Since this rotation was about x′, the x′ and x1 axes are coincident and therefore the x coordinate

of A is unchanged.
      2.  Rotation through ϕ about the y1 axis is illustrated in Fig. C-9. The coordinates of A in the twice-

rotated x2y2z2 coordinate system, as shown graphically in Fig. C-9, are

image

 FIGURE C-9   Phi rotation about the y1 axis.
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(C-27)
 
           In this rotation about y1, the y1 and y2 axes are coincident, and therefore the y coordinate of A is

unchanged. Substituting Eqs. (C-26) into (C-27) gives

image

(C-28)



 
      3.  Rotation through κ about the z2 axis is illustrated in Fig. C-10. The coordinates of A in the

three-times-rotated coordinate system, which has now become the xyz system as shown
graphically in Fig. C-10, are

image

 FIGURE C-10   Kappa rotation about the z2 axis.
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(C-29)
 
           In this rotation about z2, the z2 and z axes are coincident, and therefore the z coordinate of A is

unchanged. Substituting Eqs. (C-28) into (C-29) gives

image

(C-30)
 
           Factoring Eqs. (C-30) gives
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(C-31)
 
           Substituting m’s for the coefficients of x′, y′, and z′ in Eqs. (C-31) gives
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(C-32)
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(C-33)
 
Equations (C-32) may be expressed in matrix form as

(C-34)
 
where

image

 
The matrix M is commonly called the rotation matrix. The individual elements of the rotation

matrix are direction cosines which relate the two axis systems. These matrix elements, expressed in
terms of direction cosines, are

image

(C-35)
 



In the above matrix, cos xx′ is the direction cosine relating the x and x′ axes, cos xy′ relates the x and y′
axes, etc. Direction cosines are simply the cosines of the angles in space between the respective axes,
the angles being taken between 0° and 180°. It is an important property that the sum of the squares of
the three direction cosines in any row or in any column is unity . This property may be used to check
the computed elements of the rotation matrix for correctness.

The rotation matrix is an orthogonal matrix, which has the property that its inverse is equal to its
transpose, or

(C-36)
 
By using this property, Eq. (C-34) may be rewritten, expressing x′y′z′ coordinates in terms of xyz
coordinates as follows:

(C-37)
 
In expanded form, this equation is
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(C-38)
 
Step 2: Scaling and Translation
To arrive at the final three-dimensional coordinate transformation equations, i.e., equations that yield
coordinates in the XYZ system of Fig. C-6, it is necessary to multiply each of Eqs. (C-38) by a scale
factor s and to add the translation factors TX, TY, and TZ. [Recall that the x′y′z′ coordinates given by
Eqs. (C-38) are in a system that is parallel the XYZ system.] This step makes the lengths of any lines
equal in both coordinate systems, and it translates from the origin of x′y′z′ to the origin of the XYZ
system. Performing this step yields
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(C-39)
 
In matrix form, Eqs. (C-39) are

(C-40)
 
In Eq. (C-40), matrices M and X are as previously defined, s is the scale factor, and

image



 
In Eqs. (C-39), the nine m’s are not independent of one another, but rather, as seen in Eqs. (C-33),

they are functions of the three rotation angles ω, ϕ, and κ. In addition to these three unknown angles,
there are three unknown translations and one scale factor in Eqs. (C-39), for a total of seven
unknowns. A unique solution is obtained for the unknowns if the x and y coordinates of two horizontal
points and the z coordinates of three vertical points are known in both coordinate systems. If more
than the minimum of seven coordinates are known in both systems, redundant equations may be
written, which makes possible an improved solution through least squares techniques.

Solution of the three-dimensional conformal coordinate transformation is more complex than
that of the two-dimensional transformations presented earlier in this appendix. This added complexity
is due to the fact that Eqs. (C-39) are nonlinear in terms of the unknowns s, ω, ϕ, and κ. While it is
possible to directly compute values for the translation factors since their terms exist in a linear form,
it is more convenient to treat them as if they appeared in a nonlinear form. To solve these equations,
they are linearized by using a Taylor series expansion including only the first-order terms. Application
of Taylor’s series requires that initial approximations be obtained for each of the seven unknowns.
Each point P contributes as many as three equations (two if the point is horizontal only and one if the
point has just vertical control) which are linearized as shown in Eqs. (C-41).

image

(C-41)
 

I n Eqs. (C-41), (XP)0, (YP)0, and (ZP)0 are the right-hand sides of Eqs. (C-39) evaluated at the
initial approximations; (∂XP/∂s)0, (∂XP/∂ω)0, etc. are the partial derivatives with respect to the
indicated unknowns evaluated at the initial approximations; and ds, dω, dϕ, dκ, dTX, dTY, and dTZ are
corrections to the initial approximations which will be computed during the solution. The units of dω,
dϕ, and dκ are radians.

Substituting letters for partial derivative coefficients, adding residuals to make the equations
suitable for a least squares solution, and rearranging terms, the following equations result.
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(C-42)
 
To clarify the coefficients of Eqs. (C-42), the partial derivative terms, which must be evaluated at the
initial approximations, are as follows:

image

 

In a least squares solution, each point contributes up to three rows of coefficients to the A matrix, as
well as terms in the L and V matrices. In general, assuming points 1, 2, …, n are three-dimensional
control points, the following matrix equation results:

(C-43)
 
where



image

 

Equation (C-43) may be solved by using least squares Eq. (B-11), giving corrections which are then
added to the initial approximations for the unknowns, resulting in a better set of approximations. The
solution must be iterated (since only the first-order terms of Taylor’s series were used) until
negligibly small values are obtained in matrix X. Other techniques of testing for the convergence of an
iterative solution, such as convergence of the computed estimate of the standard deviation of unit
weight [see Eq. (B-15) for an unweighted adjustment or Eq. (B-16) for a weighted adjustment], may
also be used. The reader may consult references listed at the end of this appendix for a discussion of
these convergence techniques.

Once the solution has reached satisfactory convergence, the latest approximations for the
unknowns are the values for the transformation parameters. Then the transformed coordinates for each
point whose coordinates are known only in the original system are obtained by applying Eqs. (C-39).

C-8  Initial Approximations for the 3D Conformal Coordinate
Transformation

In solving nonlinear equations using Taylor’s theorem, it is important that good initial approximations
be obtained. If approximations for the 3D conformal coordinate transformation parameters are not
reasonably close to the final computed values, the solution will generally diverge (i.e., the corrections
get larger with each subsequent iteration instead of smaller), or the solution may converge to an
erroneous set of transformation parameters. In cases involving stereomodels formed from near-



vertical photography, ω and ϕ may be assumed to be zero. An approximation for κ may be determined
from the difference in azimuths of a common line in both systems, and an approximation for s may be
determined from the ratio of the length of a line in the control system over the length of the same line
in the arbitrary system. Approximations for the translation factors may then be found by rearranging
Eqs. (C-39), so that TX, TY, and TZ are isolated on the left side. By using previously determined initial
approximations for s, ω, ϕ and κ, and the two sets of coordinates for a common point on the right-hand
side, initial approximations for the translations may thus be determined.

When the assumption of near-vertical photography is invalid, such as when one is dealing with
terrestrial photography, an alternative method must be used to approximate ω, ϕ, and κ. One method
for accurately approximating these values is presented here. The method uses the azimuth-tilt-swing
(α-t-s) conversion to ω-ϕ-κ. A description of rotation in terms of azimuth, tilt, and swing can be found
i n Sec. D-9 and the method for conversion from α-t-s to ω-ϕ-κ can be found in Sec. D-11. The
approximation method can be divided into the following five steps:

Step 1: Compute the Normal Vectors for Three Points
The first step is to calculate the normal vectors to the plane formed by three points in both the
arbitrary and control systems. The normal vector, n, is defined as the vector orthogonal to the plane as
illustrated in Fig. C-11a. It can be calculated by using Eq. (C-44), the cross product of the vector from
point 1 to point 2 (p12) and the vector from point 1 to point 3 (p13). The components of the normal
vector relative to the origin are illustrated in Fig. C-11b.
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(C-44)
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 FIGURE C-11   (a) Normal vector, n, relative to the plane defined by three points. (b) Normal vector,
n, relative to the origin.
 

For the best results, the three points used to calculate the normal vectors should be chosen so that
they have the strongest geometric configuration of all possible combinations of three points. This can
be achieved by choosing three points that are the least collinear. The points that are the least collinear
are those that form a triangle with the largest altitude, h, the perpendicular distance from the longest



side to the point not on that side. This is illustrated in Fig. C-12. The formula for the square of the
altitude—where a is the length of the longest side of the triangle—is shown in Eq. (C-45).

(C-45)
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 FIGURE C-12   Altitude, h, of the triangle formed by three points.
 

Step 2: Calculate Tilt and Azimuth Using the Normal Vectors
The tilt of the normal vectors from both the arbitrary and control coordinates is the magnitude of their
angle from vertical, i.e., the negative z axis. The azimuth of the normal vector is the azimuth of the
projection of it onto the x-y plane. Values for these angles can be calculated using Eqs. (C-46) and (C-
47) from the components of the normal vector illustrated in Fig. C-11b. Note that the full circle
inverse tangent must be used in Eq. (C-47) to obtain the proper quadrant.

image

(C-46)
 

(C-47)
 
Step 3: Rotate the Points in Both Systems
Rotation matrices are formed, where the tilts and azimuths are those calculated in step 2 and the
swings are set to zero, for both the arbitrary and control coordinate systems. Equations (D-28) can be
used to do this. These matrices can then be applied to two points in both systems, resulting in the lines
between the points being horizontal, i.e., having equal z values.

Step 4: Calculate Swing for the Common Line
The azimuths of the rotated lines are calculated using the rotated points from step 3. The difference in



azimuth of these lines is the swing required to align the rotated arbitrary system with the rotated
control system. This intermediate swing is calculated using Eq. (C-48).

(C-48)
 
Step 5: Combine the Two Tilts, Two Azimuths, and One Swing into a Single Rotation Matrix to
Obtain Omega, Phi, and Kappa
A rotation matrix, Ma, is formed using the tilt and azimuth from step 3 for the arbitrary system and the
swing found in step 4. Likewise, the tilt and azimuth (swing is set to zero) for the control system
found in step 3 are used to form Mc. To form the overall rotation matrix, we multiply Mc by the
transpose of Ma as shown in Eq. (C-49).

(C-49)
 

The rotation parameters omega, phi, and kappa can be then obtained from M using the method
described in Sec. D-10.

Example C-4
Initial approximations are needed to solve for the 3D conformal coordinate transformation from a
close-range stereomodel to an object space system. Find initial approximations for all seven
transformation parameters given the following control and arbitrary coordinates:

image

 

Solution   The solution for the transformation parameters can be found by using the following steps:

Step 1: First, Eq. (C-45) is used to find the best geometrically configured points. The points that form
the triangle with the largest altitude are 101, 102, and 104, with h = 15.303 m in control coordinates.
Thus, these points are selected for calculation of the initial approximations for the transformation
parameters. The normal vector for the arbitrary coordinates, na is found using Eq. (C-44).



image

 

Similarly, the normal vector for the control coordinates, nc, is the following:

image

 

Step 2: The tilt and azimuth for each normal vector are calculated using Eqs. (C-46) and (C-47):

image

 

Step 3: Two rotation matrices are formed using the method in Eqs. D-28 and the tilts and azimuths
found in step 2 (swing is set to zero). The matrices are then applied to points 101 and 102 in both
systems yielding the coordinates of two pairs of points horizontal to the x-y plane. Points 101 and 102
in the arbitrary system:

image



 

Points 101 and 102 in the control system:

image

 

Step 4: Swing between the rotated lines, the difference in azimuth between the rotated points from
step 3, is calculated using Eq. (C-48).

image

 

Step 5: Rotation matrix Mc is the same as the one used on the control coordinates in step 3. Ma is
formed using tilta and azimutha in step 2 and swing calculated in step 4. These are used to calculate the
overall rotation matrix.

image

 

The method described in Sec. D-11 is then used to obtain ω, ϕ, and κ.

image

 
An approximation for scale can be obtained by taking the average ratio of distances between each



pair of common points in both coordinate systems, which results in s = 0.2997. Approximations for
translations can be found by taking the average of

 

using all common points, which results in TX = –620,450.008 m, TY = 96,100.010 m, and Tz = 1.185 m.
Using these initial approximations, the first iteration corrections to the transformation

parameters are

image

 

These small corrections indicate that the initial approximations were very close to the final value.

C-9  Two-Dimensional Projective Coordinate Transformation
Two-dimensional projective transformation equations enable the analytical computation of the XY
coordinates of points after they have been projected onto a plane from another nonparallel plane. The
most common use of these equations is in analytical rectification, i.e., calculating coordinates of
points in a rectified-ratioed photo plane based upon their coordinates in a tilted photograph. This
situation is illustrated in Fig. C-13. In the figure, a tilted photo with its xy photo coordinate axis
system (shown in the plane of the photo) is illustrated. The photo coordinates of the principal point o
are xoyo. The projection center (the origin of the x′y′z′ system) is at L, which is on the end of a
perpendicular to the photo plane from point o, such as Lo = f. The x′y′ axes are parallel to the photo xy
axes. The projection of points a, b, c, and d from the tilted photo onto the plane of the rectified-ratioed
photo occurs at A, B, C, and D, respectively. Positions of projected points in the rectified-ratioed photo
plane are expressed in the XYZ coordinate system shown in the figure.

In a simplified development of the equations for the two-dimensional projective transformation,
an X′Y′Z′ coordinate system is adopted which is parallel to the XYZ system and has its origin at L.
Using Eqs. (C-32), which were developed in the preceding section, the x′y′z′ coordinates of any point,
such as p of Fig. C-13, can be expressed in terms of X′Y′Z′ coordinates as follows:
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 FIGURE C-13   Geometry of two-dimensional projective transformation.
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(C-50)
 
In Eqs. (C-50), the m’s are functions of the rotation angles omega, phi, and kappa which define the tilt
relationships between the two plane coordinate systems xy and XY. These functions are described in
the preceding section. The other terms in Eqs. (C-50) are coordinates as previously described.
Consider now Fig. C-14, which shows the parallel relationships between the X′Y′Z′ and XYZ planes
after rotation. From similar triangles of Fig. C-14,



image

 FIGURE C-14   Parallel relationships that exist after rotation between X′Y′Z′ and XYZ planes in two-
dimensional projective transformation.
 

 
from which

(a)
 
Again from similar triangles of Fig. C-14,

 
from which

(b)
 



Also, intuitively the following equation may be written:

(c)
 
Substituting Eqs. (a), (b), and (c) into Eq. (C-50) gives

image

(C-51)
 
Factoring Eqs. (C-51) gives

(d)
 

(e)
 

(f)
 
Dividing Eqs. (d) and (e) by Eq. (f) yields

(g)
 

(h)
 

Referring to Fig. C-13, it can be seen that the x′y′ coordinates are offset from the photo
coordinates xy by xo and yo. Furthermore, for a photograph, the z coordinates are equal to –f. The
following equations provide for these relationships:

(i)
 



(j)
 

(k)
 

Substituting Eq. (k) into Eqs. (g) and h) and rearranging gives

(l)
 

(m)
 

Equations (l) and (m) contain a total of seven unknown parameters (f, ω, ϕ, κ, XL, YL, and ZL) as
well as the measured coordinates ,  , Xp, and Yp in the two coordinate systems. Two of the unknown
parameters, f and ZL, however, are not independent. By using the ratio of these two dependant
parameters as a constant, a single parameter, H can be used in their place. The relationship is shown in
Eq. (n).

(n)
 

Given Eq. (n), substitutions can be made for f and ZL in Eqs. (l) and (m) such that the ratio of the
two parameters is maintained. A value of 1 (unity) will be used in place of f, and H will be used in
place of ZL, giving the following equations:
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(C-52)
 

Equation (C-52) in its present form provides the perspective projection of a plane onto a tilted
plane. Perspective projection is the true physical relationship between an image coordinate system and
an object coordinate system. However, it is sometimes advantageous to generalize the relationship in
Eq. (C-52) to simplify calculations. The subscript p’s will be dropped and  and  will be replaced
with x and y at the start of this process. First, separate the terms containing X and Y in both the
numerator and the denominator.



image

 
Next, use the following definition:

 
and multiply both the numerator and the denominator by s.

image

 
Finally, we can define the following transformation parameters:

image

 

image

 
This gives the form of the two-dimensional projective transformation equations.

image

(C-53)
 

Notice that in Eqs. (C-53) there are eight transformation parameters, functions of the six
independent transformation parameters ω, ϕ, κ, XL, YL, and H, from Eq. (C-52). In order to maintain a



perspective projection relationship, one must reduce the degrees of freedom back to six by enforcing
two constraints on the eight transformation parameters of Eqs. (C-53). The constraints are based on
the orthogonality of rotation matrices described by Eq. (C-36).

image

 
However, these constraints are nonlinear, and are therefore not typically used since Eqs. (C-53)

can be rearranged into a linear form as will be shown later in this section. It should be noted that if the
constraints are not used, Eqs. (C-53) can result in coordinate transformations that are not possible with
true perspective projection, specifically the anisotropic scaling and skewing characteristic of affine
transformations. Thus it is simply called a projective transformation.

As developed, Eqs. (C-53) yield x and y tilted photo coordinates from X and Y rectified-ratioed
coordinates. It is customary, however, to perform rectification in the opposite sense, i.e., to compute X
and Y rectified-ratioed coordinates from x and y coordinates measured on a tilted photo. Since Eqs. (C-
53) are general, they can be written in the following form to enable computation of X and Y rectified-
ratioed coordinates in terms of x and y tilted photo coordinates.

image

(C-54)
 
In using Eqs. (C-54) for rectification, X and Y are ground coordinates of control points, and x and y are
coordinates of the same points in the photo coordinate system of the tilted photograph. As listed, these
equations are nonlinear due to their rational form. To facilitate their use with least squares, Eqs. (C-
54) can be rearranged as follows:

image

(C-55)
 
In Eqs. (C-55), measured xy and XY coordinates appear on the left-hand side. Technically, equations of
this form, as with all transformation equations in this section, should be treated by general least
squares techniques instead of the simpler method of observation equations. If, however, the measured
values of x, y, X, and Y on the left side of the equations are treated as constants and if X and Y on the
right side are treated as measured values, results sufficient for initial approximations, and in some
cases, final values can be obtained.

A pair of Eqs. (C-55) can be written for each control point, and since there are eight unknown
parameters, four control points are needed for a unique solution. It is strongly recommended that more
than four control points be used in the least squares solution, however. When equations of the type of
Eqs. (C-55) have been written for all control points, a solution can be obtained for the unknown
parameters.

These parameters can be used as final results to compute the rectified and ratioed coordinates of
all other points whose xy coordinates have been measured, or they can serve as initial approximations



for a nonlinear least squares solution to Eqs. (C-54).
Once initial approximations are obtained for the eight transformation parameters, the linearized

form of Eqs. (C-54) can be used to find the least squares solution. Equations (C-56) show the
linearized form of Eqs. (C-54), and Eqs. (C-57) shows the least squares observation equations. Note
that in the linearized equations, the partial derivatives with respect to parameters that do not occur in
the equations are omitted since their value is equal to zero (e.g., (∂YP/∂a1)0 = 0), however, the
subscripts of the partial derivative terms in Eqs. (C-57) are kept consistent to facilitate the
parameterization of the A matrix.
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(C-56)
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(C-57)
 

In the least squares solution, each point contributes two rows of coefficients to the A, L, and V
matrices. In a similar manner as the three-dimensional conformal coordinate transformation, for n
points the matrix equation in Eq. (C-58) is used. The solution is iterated until corrections in matrix X
are negligibly small.

(C-58)
 
The coefficients of Eqs. (C-57) evaluated at the initial approximations are as follows:



image

 
Besides using the two-dimensional projective transformation for rectification, it can be used to

transform comparator coordinates into the photo coordinate system defined by fiducial marks in film
photography. However, this should only be done if more than four fiducials are available. In this
instance, X and Y are calibrated coordinates of fiducial marks, and x and y are their comparator
coordinates.

C-10   Two-Dimensional Rational Polynomial Coordinate
Transformation

Many coordinate transformations have a similar formulation. For example, the two-dimensional affine
coordinate transformation in Sec. C-6 can be considered a specific form of the two-dimensional
projective coordinate transformation in Sec. C-9. That is, if a3 = b3 = 0 in Eqs. (C-54), the result is
effectively an affine relationship. Continuing with this idea, we can formulate a general equation for
some two-dimensional coordinate transformations as a rational polynomial shown in Eqs. (C-59).

image

(C-59)
 

It is important when using high-order rational polynomial transformations, as with all other
coordinate transformations, to make sure that the model used is not over-parameterized. Over-
parameterization occurs when non zero coefficients are included in the transformation equations that



add distortion that does not exist in the “true” relationship between the coordinate systems.
By including and excluding different terms in the numerator and denominator, one can create an

infinite number of variations of Eqs. (C-59). In addition, certain constraints on the equations can yield
different transformations. For example, if all nonlinear terms and coefficients in the denominators are
set to zero, and the following constraints are enforced: a1 = b1, a2 = –b2, the result is the 2D conformal
coordinate transformation. The most common use of rational polynomials is in transforming three-
dimensional object space coordinates to two-dimensional coordinates in satellite imagery. In this case,
the right-hand sides of Eqs. (C-59) include three coordinates, usually functions of latitude longitude
and height, and the left-hand sides are in terms of corresponding line and sample in the imagery.

C-11   Transformation Using Homogeneous Coordinates
In order to make transformation computations easier it is sometimes advantageous to embed points in
a higher dimension by appending an extra coordinate. If w ≠ 0, we say that  = (wx, wy, wz, w) are
homogeneous coordinates for point X = (x, y, z). Homogeneous coordinates are used extensively in
computer graphics and computer vision. A benefit of using homogeneous coordinates is that if w = 1,
we can apply a coordinate transformation using a single matrix. For example, rotation can be applied
to a point X = (x, y, z)T with homogeneous coordinates X = (x, y, z, 1)T by
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(C-60)
 

Translation can be applied by

image

(C-61)
 

Finally, scale can be applied by

image

(C-62)
 

To apply a three-dimensional conformal coordinate transformation, the product of T S and R can
be used (with a single scale factor, s = sx = sy = sz).



image

(C-63)
 

The following equation represents the same transformation as Eqs. (C-39) and (C-40) in
homogeneous coordinates:

(C-64)
 

Also, note that

(C-65)
 

Similar to the 3D case, two-dimensional homogeneous coordinates for a point (x, y) are all points
(wx, wy, w), where w ≠ 0. Since two-dimensional homogeneous points are embedded into 3D space, we
can easily interpret them graphically. Figure C-15 is a representation of the homogeneous coordinates
of a two-dimensional point as a three-dimensional line. Notice that point (wx, wy, w) intersects the
plane z = w at (wx, wy).

image

 FIGURE C-15   A three-dimensional line representing the set of homogeneous coordinates for a 2D
point.
 

The 2D affine transformation of a point in homogeneous coordinates can be represented by a
single matrix parameterized in the following way, using the same substitutions made in Eqs. (C-22):



image

(C-66)
 

Similarly, the 2D projective transformation can be represented using parameter definitions used
in Eqs. (C-53):

image

(C-67)
 

Notice in Eq. (C-57) that the resulting third coordinate, w, may not equal 1. In this case, X and Y
may be obtained by dividing the first two components by w. A result of this, the reverse
transformation from (X, Y, 1) to (x, y, 1) may not be obtained by simply applying the inverse of the
transformation matrix; one must take into account scaling by w. Also, note the distinction between the
2D projective transformation and the perspective projection transformation described in Sec. D-4.

Example C-5
An aerial photograph was taken over relatively flat ground. A 2D projective transformation was found
from the ground to the image coordinate system with the following parameters:

 
   a1 –0.002077558
   b1 0.088303315
   c1 –336.754
   a2 –0.088445581
   b2 –0.001989867
   c2 360.534
   a3 –0.000009327
   b3 –0.000034412

Using a spreadsheet program, parameterize the corresponding 2D projective rotation matrix, and
transform, using homogeneous coordinates, the following points:

image

 
As a check, use a reverse transformation to transform the points back to the ground coordinate

system.



Solution   The transformation matrix in the form of Eqs. (C-57) can be multiplied by a matrix where
the columns are comprised of the homogeneous coordinates of the points to be transformed yielding a
matrix with columns containing the homogeneous coordinates of transformed points:

image

 
Dividing by the third component of each column yields the transformed coordinates of the points:

image

 
Similar to the method above, the inverse of the transformation matrix multiplied by the

homogeneous coordinates of the transformed points yields the following:

image

 
Finally, divide each column vector by the third component, to yield the original matrix with



columns containing the original coordinates:

image

 

References
American Society for Photogrammetry and Remote Sensing: Manual of Photogrammetry, 5th ed.,

Bethesda, MD, 2004.
Blais, J. A. R.: “Three-Dimensional Similarity,” Canadian Surveyor, vol. 26, no. 1, 1972, p. 71.
Dewitt, B. A.: “Initial Approximations for the Three-Dimensional Conformal Coordinate

Transformation,” Photogrammetric Engineering and Remote Sensing, vol. 62, no. 1, 1996, p. 79.
Erio, G.: “Three-Dimensional Transformations for Independent Models,” Photogrammetric

Engineering and Remote Sensing, vol. 41, no. 9, 1975, p. 1117.
Fraser, C.S., G. Dial, J. Grodecki: “Sensor orientation via RPCs,” ISPRS Journal of Photogrammetry

and Remote Sensing, vol. 60, 2006, p. 182.
Ghilani C.: Adjustment Computations: Spatial Data Analysis, Wiley & Sons, Hoboken, NJ, 2010.
Mikhail, E. M.: “Simultaneous Three-Dimensional Transformation of Higher Degree,”

Photogrammetric Engineering, vol. 30, no. 4, 1964, p. 588.
———: “Discussion Paper: Simultaneous Three-Dimensional Transformation,” Photogrammetric

Engineering, vol. 32, no. 2, 1966, p. 180.
Schut, G. H.: “Conformal Transformations and Polynomials,” Photogrammetric Engineering, vol. 32,

no. 5, 1966, p. 826.
Yassa, G.: “Orthogonal Transformations,” Photogrammetric Engineering, vol. 40, no. 8, 1974, p. 961.

Problems
  C-1.   The following table contains arbitrary x and y coordinates of a group of points that were
measured from a digital map. The table also includes UTM coordinates for three of the points. Using a
two-dimensional conformal coordinate transformation, and least squares, calculate UTM coordinates
for the other points.



image

 
  C-2.   The following table contains x and y comparator coordinates for eight fiducial marks and three
additional photo image points. The table also contains calibrated coordinates for the eight fiducials.
Using a two-dimensional affine transformation, and least squares, calculate coordinates for the three
image points in the fiducial axis system.

image

 
  C-3.   For the data of Prob. C-2, use the two-dimensional projective transformation and least squares
to calculate coordinates for the three image points in the fiducial axis system.

  C-4.   Describe the concept of over-parameterization. What are the implications of this concept with
respect to the results of Probs. C-2 and C-3?

  C-5.   Coordinates X1, Y1, and Z1 for model I and X2, Y2, and Z2 for model II of an independent model
aerotriangulation are contained in the table below. Transform the model II coordinates into the model
I coordinate system, using a three-dimensional conformal coordinate transformation and least squares
(initial approximations of zero for omega and phi are sufficient).



image

 
  C-6.   Initial approximations are needed to solve for the 3D conformal coordinate transformation
between two close-range stereomodels. Find initial approximations for all seven transformation
parameters given the following control and arbitrary coordinates:

image

 



APPENDIX D
Development of Collinearity Condition Equations

 

D-1  Introduction
Collinearity, as illustrated in Fig. D-1, is the condition in which the exposure station of any
photograph, an object point, and its photo image all lie on a straight line. The equations expressing
this condition are called the collinearity condition equations. They are perhaps the most useful of all
equations to the photogrammetrist.

image

 FIGURE D-1   The collinearity condition.
 

In Fig. D-2, exposure station L of an aerial photo has coordinates XL, YL, and ZL with respect to
the object (ground) coordinate system XYZ. Image a of object point A, shown in a rotated image
plane, has image space coordinates x′a, y′a, and z′a, where the rotated image space coordinate system
x′y′z′ is parallel to object space coordinate system XYZ. Initially, it is assumed that the principal point
o is located at the origin of the xy photo coordinate system. A correction that compensates for this
assumption is introduced at the end of the development.



image

 FIGURE D-2   Image coordinate system rotated so that it is parallel to the object space coordinate
system.
 

D-2  Rotation in Terms of Omega, Phi, and Kappa
By means of the three-dimensional rotation formulas developed in App. C, an image point a having
coordinates xa, ya, and za in a tilted photo such as that of Fig. D-1 may have its coordinates rotated into
the x′y′z′ coordinate system (parallel to XYZ), as shown in Fig. D-3. The rotated image coordinates x′a,
y′a, and z′a, are related to the measured photo coordinates xa and ya, the camera focal length f, and the
three rotation angles omega, phi, and kappa. The rotation formulas are Eqs. (C-32). For convenience
they are repeated here:



image

 FIGURE D-3   Measurement xyz and rotated x′y′z′ image coordinate systems.
 

image

(D-1)
 
In Eqs. (D-1) the m’s are functions of the rotation angles omega, phi, and kappa. These functions are
given in Eqs. (C-33). Also note in Fig. D-3 that the value for za is equal to –f.

D-3  Development of the Collinearity Condition Equations
The collinearity condition equations are developed from similar triangles of Fig. D-2 as follows:

 
Reducing gives



(a)
 

(b)
 
Also, by identity,

(c)
 
Substituting (a), (b), and (c) into Eqs. (D-1) gives

(D-2)
 

(D-3)
 

(D-4)
 
Factoring the term z′a/(ZA – ZL) from Eqs. (D-2) through (D-4), dividing (D-2) and (D-3) by (D-4),
substituting –f for za, and adding corrections for offset of the principal point (xo, yo), the following
collinearity equations result:

(D-5)
 

(D-6)
 

D-4  Homogeneous Representation of the Collinearity Equations
As discussed in Sec. C-11, homogeneous coordinates can simplify the application of coordinate
transformations. One can also use homogeneous representation to develop the collinearity equations
by parameterizing a transformation matrix to project from three dimensions to two dimensions.
Equation (D-7) contains the perspective projection transformation matrix, P:



image

(D-7)
 
Note that

image

(D-8)
 

Effectively, the perspective transformation matrix yields the coordinates of the intersection of a
line from (Χ′, Υ′, Ζ′) to the origin with the plane at z = 1/a. Notice that the reverse transformation
cannot be obtained because the matrix P is not invertible. This means that, although we can find a
unique (x, y) for each point (Χ′, Υ′, Ζ′), we cannot find a unique (Χ′, Υ′, Ζ′) given some (x, y) using only
P.

If we consider (X′A, Y′A, Z′A) the coordinates of a ground point in the camera coordinate system,
we have the relationship shown in Eq. (D-9).

image

(D-9)
 

Since, the image coordinates (x, y) are where the line from (X′A, Υ′A, Z′A) to the origin (the
perspective center in the camera coordinate system) intersects the plane at z = –f, we can choose the
parameter a in the perspective transformation matrix as –1/f. Equation (D-10) is the homogeneous
representation of the collinearity equations:
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(D-10)
 
Note that

image

 



Multiplying both sides of Eq. (D-10) by this matrix and then dividing by their third components,
yields Eqs. (D-5) and (D-6). Note that the scale difference, w, between the image coordinate system
and the object coordinate system cancels out.

D-5  Linearization of the Collinearity Equations
Equations (D-5) and (D-6) are nonlinear and involve nine unknowns: the three rotation angles omega,
phi, and kappa which are inherent in the m’s; the three exposure station coordinates XL, YL, and ZL; and
the three object point coordinates XA, YA, and ZA. The photo coordinate measurements xa and ya are
constant terms, as well as the calibration parameters xo, yo, and f which are considered to be constants
in most applications of collinearity. The nonlinear collinearity equations are linearized by using
Taylor’s theorem. In linearizing them, Eqs. (D-5) and (D-6) are rewritten as follows:

(D-11)
 

(D-12)
 
 where      q = m31(XA – XL) + m32(YA – YL) + m33(ZA – ZL)

r = m11(XA – XL) + m12(YA – YL) + m13(ZA – ZL)
s = m21(XA – XL) + m22(YA – YL) + m23(ZA – ZL)

According to Taylor’s theorem, Eqs. (D-11) and (D-12) may be expressed in linearized form by taking
partial derivatives with respect to the unknowns:
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(D-13)
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(D-14)
 

In Eqs. (D-13) and (D-14), F0 and G0 are functions F and G of Eqs. (D-11) and (D-12) evaluated
at the initial approximations for the nine unknowns; the terms (∂F/∂ω)0, (∂G/∂ω)0, (∂F/∂φ)0, (∂G/∂φ)0,
etc. are partial derivatives of functions F and G with respect to the indicated unknowns evaluated at
the initial approximations; and dω, dφ, dκ, etc. are unknown corrections to be applied to the initial
approximations. The units of dω, dφ, and dκ are radians. Since the photo coordinates xa and ya are



measured values, if the equations are to be used in a least squares solution, residual terms must be
included to make the equations consistent. The following simplified forms of the linearized
collinearity equations include these residuals.

(D-15)
 

(D-16)
 
I n Eqs. (D-15) and (D-16), J and K are equal to xa – F0 and ya – G0, respectively. The b’s are
coefficients equal to the partial derivatives. For convenience these coefficients are given below and on
the next page. In these coefficients ΔX, ΔY, and ΔZ are equal to XA – XL, YA – YL, and ZA – ZL,
respectively. Numerical values for these coefficient terms are obtained by using initial
approximations for the unknowns.



image

 

D-6  Applications of Collinearity
The collinearity equations are applicable to the analytical solution of almost every photogrammetry
problem. As examples, Sec. 11-6 describes their use in space resection, in which the six elements of
exterior orientation of a tilted photograph are computed; and Sec. 11-10 explains how collinearity is
applied in analytic relative orientation, which is necessary in analytically extending control
photogrammetrically. Other applications are described elsewhere in this book. Regardless of the
particular problem, an x equation [Eq. (D-15)] and y equation [Eq. (D-16)] are written for each point
whose image or images appear in the photo or photos involved in the problem. The equations will
contain unknowns, the number of which will vary with the particular problem. If the number of
equations is equal to or greater than the number of unknowns, a solution is generally possible.



Initial approximations are needed for all unknowns, and these are usually easily obtained by
making certain assumptions, such as vertical photography. The initial approximations do not have to
be extremely close, but the closer they are to the unknowns, the faster a satisfactory solution will be
reached; and the result is a savings in computer time.

In solving a system of collinearity equations of the form of Eq. (D-15) and (D-16) for any
problem, the quantities that are determined are corrections to the initial approximations. After the first
solution, the computed corrections are added to the initial approximations to obtain revised
approximations. The solution is then repeated to find new corrections. This procedure is continued
(iterated) until the magnitudes of the corrections become insignificant. A system of collinearity
equations of the form of Eqs. (D-15) and (D-16) may be expressed in matrix form as

(D-17)
 
I n Eq. (D-17), m is the number of equations; n is the number of unknowns; mV1 is the matrix of
residual errors in the measured x and y photo coordinates; mAn is the matrix of b’s, the coefficients of
the unknowns; nX1 is the matrix of unknown corrections to the initial approximations; and mL1 is the
matrix of constant terms J and K. If the number of equations exceeds the number of unknowns, a least
squares solution may be obtained for the most probable values for the unknowns by using matrix Eq.
(B-12) or (B-13). Precision of the unknowns may be computed by applying matrix Eqs. (B-14) through
(B-17).

D-7  Development of the Coplanarity Condition Equation
The coplanarity condition equation is developed by using simple vector calculus. Consider the three
vectors in Fig. 11-2: the air base, B; the vector from the exposure station, L1 the imaged point in photo
1, a1 the object space coordinate system; and the vector from the exposure station, L2 the imaged point
in photo 2, a2 the object space coordinates. The formulas for the last two vectors mentioned (from
exposure stations to imaged points) are shown in Eqs. (D-18) and (D-19).

image

(D-18)
 

image

(D-19)
 

where MT is the rotation matrix from the image coordinate system to the object coordinate
system. If the rotation matrices and air base are correct for the two images, and image measurement
noise is ignored, then the triple-scalar product of the three vectors is equal to zero. The triple-scalar
product is the determinant of the matrix that has these three vectors as row entries. The equation for
the 3 × 3-matrix determinant/triple-scalar product is shown in Eq. (D-20).



image

(D-20)
 

Due to incorrect exterior orientation parameters and random measurement errors, Eq. (D-20) is
practically never equal to zero. In this case, the determinant equals the volume of a parallelepiped
constructed using the three vectors. The parallelepiped is a three-dimensional shape where each edge
has three other edges that are parallel and of equal length. Figure D-4 shows its construction.

image

 FIGURE D-4   Parallelepiped formed by three vectors used in the coplanarity condition equation.
 

By setting multiple observation equations Eq. (D-20) to zero, the goal when using coplanarity, in
a least squares sense, is to find the exterior orientation parameters that minimize the sum of the
squares of the volumes of the resulting parallelepipeds. Note that no object space coordinates of
imaged points are used in the coplanarity equation. This means that the object space control must
come from some of the exterior orientation parameters. A common application of coplanarity is to fix
seven of the twelve exterior orientation parameters of two images to perform relative orientation as
described in Sec. 11-5. However, observations of all exterior orientation parameters can be included
and adjusted based on the coplanarity equations of one or more points. Similar to collinearity, the
coplanarity condition equation is nonlinear and must be linearized using Taylor’s theorem.

Since using coplanarity involves calculating determinants, oftentimes very large numbers are
involved. This can lead to ill-conditioning in implementation. This is one reason that collinearity is
used more often than coplanarity. However, there are various methods to handle ill-conditioning, such
as the one described in Example B-6.

D-8  Linearization of the Coplanarity Equation
Equation (D-20) has twelve unknowns, two sets of six exterior orientation parameters associated with
the images involved. The linearized form of Eq. (D-20) is as follows:



image

(D-21)
 

The term H0 is Eq. (D-20) evaluated at initial approximations of the twelve unknowns. The terms 
, etc. are the partial derivatives of Eq. (D-20) with respect

to the unknown exterior orientation parameters evaluated at the initial approximations. Note that when
using coplanarity to perform relative orientation of two images, only five of the partial derivatives in
Eq. (D-21) will have nonzero values, since seven parameters are considered constants. The terms 

, etc. are corrections to be applied to the initial approximations. As with the
collinearity equations, a residual term must be included for consistency. However, since the
coplanarity equation includes multiple measurements, x1, y1, x2, and y2, residuals are in terms of the
entire equation. The simplified form of the linearized coplanarity equation is shown in Eq. (D-22).
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(D-22)
 

The partial derivative coefficients for Eq. (D-22) are given as follows:



image



image

 

where

image

 
D-9  Rotation in Terms of Azimuth, Tilt, and Swing
Instead of using omega, phi, and kappa as the rotation angles for transforming the tilted photo
coordinates into an x′y′z′ coordinate system parallel to the ground system, the rotation angles of
azimuth, tilt, and swing may be used. A tilted photo illustrating the azimuth α, tilt t, and swing s
angles is shown in Fig. D-5. In the figure the photo principal plane intersects the datum plane along
line NdPd. The rotation formulas are developed by initially assuming an x′y′z′ coordinate system
parallel to XYZ and then, by means of rotations, converting it to the xyz photo measurement system.
The origins of both image coordinate systems are taken at exposure station L.



image

 FIGURE D-5   Azimuth, tilt, and swing rotation angles.
 

The rotation equations are developed in a sequence of three separate two-dimensional rotations.
The x′y′z′ coordinate system is first rotated about the z′ axis through a clockwise angle α to create an
xαyαzα coordinate system. After rotation the yα axis will be in the principal plane of the photo. With
reference to Fig. D-6a, the coordinates of any point in the xαyαzα system are

image

 FIGURE D-6   Rotation in azimuth, tilt, and swing. (a) First rotation. (b) Second rotation. (c) Third
rotation.
 

image

(D-23)



 
The second rotation is a counterclockwise rotation t about the xα axis to create an xαtyαtzαt coordinate
system. After rotation, the xαt and yαt axes are in the plane of the tilted photograph. With reference to
Fig. D-6b, the coordinates of any point in the xαtyαtzαt system are

image

(D-24)
 
The third rotation is about the zαt axis through the counterclockwise angle θ. Angle θ is defined as

 
This third rotation creates an xαtθyαtθzαtθ coordinate system which coincides with the xyz tilted photo
system. With reference to Fig. D-6c, the coordinates of any point in the xyz system are

image

(D-25)
 
Because sin θ equals –sin s, and cos θ equals –cos s, these substitutions may be made into Eqs. (D-25),
from which

image

(D-26)
 
Substituting Eqs. (D-23) into Eqs. (D-24), in turn substituting into Eqs. (D-26), and factoring, the
following expressions for the x, y, and z coordinates of any point are obtained:

image

(D-27)
 
In Eqs. (D-27), the m’s are



image

(D-28)
 

D-10   Collinearity Equations Using Azimuth-Tilt-Swing Rotation
By simply substituting Eqs. (D-28) for the m’s into Eqs. (D-5) and (D-6), collinearity equations are
obtained which include azimuth, tilt, and swing as unknowns instead of omega, phi, and kappa. By
applying Taylor’s theorem, these azimuth, tilt, and swing equations can be linearized and used to
solve photogrammetry problems analytically. More frequently, however, the omega-phi-kappa
equations are used, and if the azimuth, tilt, and swing angles are desired, they are determined from
omega, phi, and kappa as described in the next section.

D-11   Converting from One Rotation System to the Other
Although the azimuth-tilt-swing expressions [Eqs. (D-28)] for the m’s differ from their corresponding
omega-phi-kappa expressions [Eqs. (C-33)], for any given tilted photo their numerical values are
equal. This is true because the m’s are actually direction cosines relating image and object coordinate
systems as described in Sec. C-7. Because of their equality, corresponding m’s may be set equal to
each other; for example, m11 = cos φ cos κ = –cos α cos s – sin α cos t sin s. This equality of m’s
enables conversions to be made between the omega-phi-kappa and azimuth-tilt-swing systems.

Before discussing the conversion method, it is necessary to establish limits on the ranges of
values for the two sets of angles. This is required since if each angle is allowed to have a full 360°
range, any particular rotation configuration will have two equally valid sets of angles in either the
azimuth-tilt-swing or the omega-phi-kappa system. For example, azimuth = 0°, tilt = 5°, and swing =
0° will generate the same rotation matrix as azimuth = 180°, tilt = –5°, and swing = 180°. Ranges for
azimuth, tilt, and swing which avoid this multiple-definition problem are

image

 
and ranges for omega, phi, and kappa are

image

 
Although not necessary, any of the ranges for azimuth, swing, omega, or kappa could be chosen as 0°
to 360°, if desired.



If omega, phi, and kappa for a particular photograph are known, numerical values for the m’s can
be calculated by Eqs. (C-33) and the tilt, swing, and azimuth determined from the following:

(D-29)
 

(D-30)
 

(D-31)
 
In Eqs. (D-30) and (D-31) it is essential that a full-circle inverse tangent function (such as atan2) be
used so that the full ranges for s and α can be determined. In the rare case where tilt is exactly 0° or
180°, both the numerator and denominator in each of Eqs. (D-30) and (D-31) will equal zero, resulting
in invalid results from a full-circle inverse tangent function. (Note that if the denominator is zero but
the numerator is nonzero, a properly implemented full-circle inverse tangent function will return valid
results.) In this situation where tilt is exactly zero, no principal line exists, and swing and azimuth are
undefined. However, by arbitrarily defining azimuth to be equal to zero, a value for swing can be
obtained from the rotation matrix. The original definitions of swing and azimuth will no longer apply
(see Sec. 10-2); however, the resulting values can still be properly used in photogrammetric equations.
When the tilt is exactly 0° (or 180°), the values for swing and azimuth can be obtained by

(D-32)
 

(D-33)
 
If the azimuth, tilt, and swing are known for a particular photo, conversion to omega, phi, and kappa is
also readily made as follows:

(D-34)
 

(D-35)
 

(D-36)
 

Once again, it is essential that a full-circle inverse tangent function be used with Eqs. (D-35) and
(D-36) so that values of omega and kappa in the proper ranges are computed. In the rare case where
phi is exactly ±90°, both the numerator and denominator in each of Eqs. (D-35) and (D-36) will be



zero, and the values for omega and kappa will be undefined. By giving an arbitrary definition of zero
for omega as indicated by Eq. (D-37), Eq. (D-38) may then be used to compute kappa.

(D-37)
 

(D-38)
 

Reference
American Society for Photogrammetry and Remote Sensing: Manual of Photogrammetry, 5th ed.,

Bethesda, MD, 2004.

Problems
  D-1.   State the condition of collinearity in photogrammetry.

  D-2.   Explain why linearized collinearity equations must be iterated a number of times before a
satisfactory solution is achieved.

  D-3.   Explain why the parallelepiped described in Sec. D-7 has zero volume when the exterior
orientation parameters of the corresponding two images are correct (or correct relative to each other).

  D-4.   Given the following values, compute the photo coordinates xa and ya, using Eqs. (D-5) and (D-
6). Express your answers to the nearest 0.001 mm.

image

 
  D-5.   Using matrix multiplication, show in steps (each consecutive matrix product) that Eq. (D-10)
is equivalent to Eqs. (D-5) and (D-6). Be sure to substitute the vector defined in Eq. (D-9).

  D-6.   Convert the following values of azimuth, tilt, and swing to omega, phi, and kappa. Express
your answers in decimal degrees to the nearest thousandth of a degree.
            (a)  α = 30.000°, t = 0.500°, s = -165.000°
            (b)  α = –145.000°, t = 97.000°, s = 23.000°
            (c)  α = 90.000°, t = 90.000°, s = -85.000°

  D-7.   Convert the following values of omega, phi, and kappa to azimuth, tilt, and swing. Express
your answers in decimal degrees to the nearest thousandth of a degree.
            (a)  ω = 7.800°, ϕ = –1.100°, κ= 0.000°



            (b)  ω = –115.000°, ϕ = 37.000°, κ= –10.000°
            (c)  ω = 0.000°, ϕ = 0.000°, κ = 0.000°



APPENDIX E
Digital Resampling

 

E-1  Introduction
The acquisition of a digital image involves discrete sampling of a continuous analog signal, for
example, the reflected energy from the ground. These digital samples are made in a (distorted) grid
pattern, with each grid cell or pixel containing a digital number (DN) representing the lightness or
darkness at its corresponding ground location. When a digital image is acquired, no attempt is made to
have the pixels line up with any particular map projection coordinates. It is therefore necessary to
perform resampling to obtain a digital sample at an intermediate (i.e., fractional) row, column
location. Resampling involves interpolation between existing pixels (DNs) to synthesize pixels that
correspond to fractional locations as illustrated in Fig. E-1. Determination of the appropriate
fractional locations is often the result of a coordinate transformation (see App. C).

image

 FIGURE E-1   Relationship between pixels from the originally sampled image and the resampled
image.
 

There are several techniques available for resampling digital images, although three particular
ones are by far, most prevalent. They are known as nearest-neighbor interpolation, bilinear
interpolation, and bicubic interpolation. Other, more computationally intensive techniques are
generally not employed since they tend to be sensitive to sensor noise which exists in digital imagery.

E-2  Nearest Neighbor



The nearest-neighbor interpolation is simplest of the three. As its name implies, the DN chosen will be
that of the image pixel whose center is closest to the center of the grid cell. From a computational
standpoint, all that is required is to round off the fractional row and column values to the nearest
integral value. Figure E-2 shows the DNs for a 4 × 4 subarea from a digital image. A pixel is
superimposed at a fractional location (R = 619.71, C = 493.39). Rounding these values to the nearest
integer yields 620 and 493 for the row and column indices, respectively. Thus, the resampled value is
56.

image

 FIGURE E-2   A 4 × 4 subarea of image pixels with superimposed grid cell at a fractional location.
 

E-3  Bilinear Interpolation
A second resampling method, which involves greater computational complexity, is bilinear
interpolation. In this approach, the four surrounding pixels are selected, and linear interpolation is
performed in two directions. This is illustrated by example, using the values from Fig. E-2. First,
linearly interpolated values DN1 and DN2 are computed along rows 619 and 620, respectively.
Equations (E-1) and (E-2) illustrate the calculation.

(E-1)
 

(E-2)
 
Next, a linear interpolation is performed in the column direction, yielding the result (DN) given in Eq.
(E-3).

(E-3)
 
Finally, since DNs are generally integers, the value from Eq. (E-3) is rounded to 59. Note that this
differs from the DN value of 56 obtained by using the nearest-neighbor method.

E-4  Bicubic Interpolation
Bicubic interpolation, also known as cubic convolution, is a third resampling technique which is
commonly used. Explanation of this technique requires a little background in sampling theory. First,



an assumption is made that the original signal has been sampled above the Nyquist rate, which is
generally satisfied for imaging sensors. The Nyquist rate is, in essence, the sampling frequency
required to faithfully record the highest (spatial) frequency content of the scene. Given this
assumption, the “sinc” function allows an (almost) exact reconstruction of the original scene. The
form of the sinc function is shown in Fig. E-3. (Note that in this figure, the argument for the sine
function is in radians.) If the images had an infinite number of rows and columns, and all pixels were
used for the interpolation, the sinc function would yield a perfect reconstruction. Practicality,
however, dictates that interpolations be carried out using only small neighborhoods surrounding the
interpolated pixel. A cubic spline approximation to the sinc function is the form generally used for
bicubic interpolation. The shape of the spline is given in Fig. E-4 while Eqs. (E-4) through (E-6)
express the functional relationship. For comparison, Fig. E-4 also shows the shape of nearest-neighbor
and bilinear interpolations expressed in the form of similar weighting functions. Note that the cubic
spline most nearly approximates the sinc function of Fig. E-3, whereas bilinear and nearest-neighbor
interpolations are less consistent approximations.

image

 FIGURE E-3   Form of the sinc function.
 

image

 FIGURE E-4   Shape of the bicubic, bilinear, and nearest-neighbor interpolations, in the form of
weighting functions h(x).
 

(E-4)
 

(E-5)
 

       
(E-6)



 

 where   a = free parameter equal to slope of weighting function at x = 1 (generally a = –0.5 yields
good results)

x = absolute value of difference between whole-number row or column and fractional row or
column

The computational process is analogous to that of bilinear interpolation in that it is performed
first along the rows and then down the single, fractional column. (The procedure is demonstrated with
a numerical example below.) The computations are conveniently expressed in matrix form, as shown
in Eq. (E-7). In this equation, the R and C matrices consist of coefficients derived from Eqs. (E-4) and
(E-5), and the D matrix contains the digital numbers from the 4 × 4 neighborhood surrounding the
interpolated pixel.

image

(E-7)
 
Interpolating across the rows (based on the fractional column position) is done by forming the product
DC. Subsequently, R is multiplied by the product to obtain the final interpolated value. In fact, the
sequence of multiplications does not matter; they can be performed from left to right in Eq. (E-7).

Referring to the example of Fig. E-1, the bicubic interpolation computation procedure begins by
computing the elements of the R matrix. Given the fractional row location (619.71), an interpolation
weighting function will be computed for the two rows above (618 and 619) and the two rows below
(620 and 621). The distance x from the fractional row is determined for each of the four surrounding
rows, and the corresponding function [Eq. (E-4) or (E-5)] is selected. The result of this computation is
listed in Table E-1. In a similar fashion, the elements of matrix C are computed, as shown in Table E-
2.
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 TABLE E-1   Row Interpolation Weight Matrix R Computed for Example of Fig. E-1. Slope Value of a
= –0.5 was Used
 



image

 TABLE E-2   Column Interpolation Weight Matrix C Computed for Example of Fig. E-1. Slope Value
of a = –0.5 was Used
 

Following these preliminary calculations, the matrix product from Eq. (E-7) is formed. This
product, using the example values, is shown in Eq. (E-8). The resultant value of 60.66 is then rounded
to 61, the nearest integer. Note that again this DN value differs from both the 56 of nearest-neighbor
interpolation and the 59 of bilinear interpolation.

image

(E-8)
 

E-5  Discussion of the Three Methods
The primary advantage of the nearest-neighbor method is that it is the fastest of the three techniques
in terms of computational time. It also has the advantage of not modifying the original image data,
which is important if remote-sensing image classification will be performed. However, since a
continuous interpolation is not being performed, the resultant appearance can be somewhat jagged or
blocky.

The primary advantage of bilinear interpolation is the smoother appearance of the result. This
appearance is slightly compromised by the fact that some high-frequency detail is filtered out. In
other words, edges in the scene are slightly less distinct. In terms of computational time, bilinear
interpolation is slower than nearest-neighbor interpolation but faster than bicubic interpolation.

Bicubic interpolation is the most rigorous resampling technique of the three on the basis of signal
processing theory. It achieves the smooth appearance without sacrificing as much high-frequency
(edge) detail as is characteristic of the bilinear interpolation. The reason for this is illustrated in Fig.
E-5. This figure shows a profile of four consecutive samples along a single row of a digital image. The
curve represents a smooth (cubic spline) interpolation of image brightness based on the samples at the
four dots. The dashed line represents the linear interpolation between the two center pixels. For the
indicated fractional column, the bicubic interpolation is able to capture the trend of the signal better
than bilinear interpolation. By capturing trends in the signal, the bicubic interpolation retains high
frequency information that would be clipped by the bilinear interpolation method. However, this
enhanced appearance comes at a penalty in terms of computational time.



image

 FIGURE E-5   Bicubic interpolation captures signal trend more closely than bilinear interpolation.
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Problems
  E-1.   Using the data from the example presented in this appendix, calculate a bicubic interpolation
using a slope parameter a = –1.

  E-2.   Using the 4 × 4 array of digital numbers from Fig. E-1, compute a resampled pixel value by
each of the three given methods corresponding to row = 619.35, column = 493.78. Use the value of a =
– 0.5 for the slope parameter of the bicubic interpolation method.



APPENDIX F
Conversions Between Object Space Coordinate Systems

 

F-1  Introduction
I n Chap. 5, descriptions of four fundamental object space coordinate systems were given. In this
appendix, mathematical formulas which can be used to convert coordinates between the various
systems are presented. Conversions differ from transformations in that conversions are exact
mathematical processes which simply change the mathematical representation of positions from one
form to another. Changing two-dimensional rectangular coordinates to polar coordinates is an
example of a conversion. A transformation, on the other hand, is not an exact mathematical process
per se, but is based on measurements and therefore contains errors. This is the key distinguishing
characteristic between conversions and transformations. If a different set of measurements is used, a
transformation may yield different results; but since a conversion is not based on measurements, it
will always be consistent.

Figure F-1 illustrates the sequence in which the conversions are accomplished. At the top of this
figure are map projections which assign plane coordinates XY based on developable surfaces. These
coordinates can be converted to geodetic coordinates of latitude ϕ and longitude λ. The two-way arrow
between the two coordinate systems in the figure indicates that the conversion can also be made in
reverse, i.e., conversion from geodetic to map projection coordinates. Following downward in Fig. F-
1, the next conversion represented is from geodetic latitude ϕ, longitude λ, and ellipsoid height h to
geocentric coordinates X, Y, and Z. Again, this conversion can be made in reverse. At the bottom of the
figure, the conversion of geocentric coordinates to local vertical coordinates Xl, Yl, and Zl is illustrated;
and as before, the conversion can be reversed. The conversions will always follow the path indicated
b y Fig. F-1. If conversion is to be made from map projection coordinates to local vertical, for
instance, calculation of geodetic and geocentric coordinates will be performed as intermediate steps.

image

 



FIGURE F-1   Object space coordinate conversion sequence.
 

In many cases, values of coordinates in the aforementioned systems may have as many as 10 or
11 significant figures. When performing coordinate conversions using values this precise, it is
essential to carry a large number of significant figures in the computations. A hand calculator having
10 significant figures may give marginal results. It is suggested that solutions be programmed on a
computer using double-precision variables or solved with a spreadsheet having at least 12 significant
figures. Off-the-shelf computer programs that perform these coordinate conversions generally use
suitable precision for internal calculations, but this should be verified to ensure accurate results. Note:
The examples in this appendix were solved using 16 significant figures.

F-2  Standard Ellipsoid Constants for GRS80
To define the size and shape of the ellipsoid, at least two constants are required. Generally, the
semimajor axis of the ellipsoid a and the flattening f are used. From these two defining constants,
other ellipsoid parameters can be derived.

The examples in this appendix are based on the GRS80 ellipsoid. Since many of the conversions
presented in this chapter require values for standard ellipsoid constants, they are presented here. From
Table 5-1 the values for a and 1/f are
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From these quantities, the values of b, e, e2, and e′2 can be computed as follows:

From Eq. (5-2):

 
From Eq. (5-4):

image

 
From Eq. (5-6):

 

F-3  Conversion Between Geodetic and Geocentric Coordinates
Conversion between geodetic ϕλh and geocentric XYZ is a three-dimensional process. Figure 5-5
illustrates the relationship between the two systems. Since geodetic coordinates are related to the



reference surface used, certain ellipsoid constants (a, e2, and e′2) are required in order to achieve the
conversion. To convert a position expressed in geodetic coordinates to geocentric coordinates, the
following equations, which can be found in standard geodesy texts, are used:

(F-1)
 

(F-2)
 

(F-3)
 
In Eqs. (F-1) through (F-3), the value N is the length of the normal to the ellipsoid at latitude ϕ and is
computed by

(F-4)
 
Conversion from geocentric coordinates to geodetic coordinates may be accomplished by the
following approach. First, longitude is calculated by dividing Eq. (F-2) by (F-1) and taking the inverse
tangent as follows:

(F-5)
 
In Eq. (F-5) it is essential that the full-circle inverse tangent be used since longitude can range from -
180° to +180°.

Latitude and height are not as easily isolated for direct solution. A number of methods exist for
this conversion, some of which are exact and others iterative. A particularly elegant method attributed
to Bowring (1976) is essentially an iterative approach, although accuracy to within about 1 μm can be
obtained for terrestrial applications without iteration. For applications far beyond the earth’s surface
(e.g., satellite applications), a single iteration will yield submillimeter accuracy for points anywhere
within the solar system. The applicable equations follow.

(F-6)
 

(F-7)
 
To iterate, using the value of ϕ computed by Eq. (F-7), compute an updated value for β by

(F-8)



 
and use the updated β value in Eq. (F-7) to obtain an updated value for ϕ.

Once the value for latitude has been computed, the ellipsoid height can be computed by

(F-9)
 
In Eq. (F-9), N must be computed from Eq. (F-4) while using the final value of ϕ. As the latitude
approaches the pole, the cosine term in Eq. (F-9) approaches zero, causing the solution for h to be
unstable. In that case, Eq. (F-3) can be rearranged to solve for h.

Example F-1
Given the following values of latitude, longitude, and ellipsoid height for a point, and the parameters
for the GRS80 ellipsoid, compute the XYZ geocentric coordinates of the point. Check by performing
the conversion in reverse.

image

 
Solution   Compute value of normal N by Eq. (F-4).

 
Compute XYZ coordinates by Eqs. (F-1) through (F-3).

image

 
Check   Compute the value of longitude by Eq. (F-5).

 
Compute the initial value for ß, using Eq. (F-6).

image

 
where



 
Compute the initial value for ϕ, using Eq. (F-7).

image

 
Since this example was based on a point at the earth’s surface, the resulting latitude value should

be sufficiently accurate; however, for demonstration purposes an additional iteration will be
performed.

Compute an updated value for β, using Eq. (F-8).

 
Compute an updated value for ϕ, using Eq. (F-7).

image

 
The final step is to compute the ellipsoid height. Using the value for ϕ computed above, compute

the length of the normal N.

 
Compute the value for h by Eq. (F-9).

 

F-4  Conversion Between Geocentric and Local Vertical Coordinates
Geocentric and local vertical coordinates are both three-dimensional cartesian coordinate systems.
The steps required to convert between these systems involve only rotations and translations. Figure 5-
6 shows the relationship between the geocentric XYZ and local vertical Xl Yl Zl systems. Initially, two
parameters ϕο and Xo are selected which specify the geodetic coordinates of the origin for the local
vertical system.

Step 1: Translation to Local Vertical Origin
Beginning with the geocentric XYZ axes with the origin at the center of the earth, a new system X′Y′Z′
with its axes parallel to the geocentric axes has been translated by Xo, Yo, and Zo such that its origin is
at the local vertical system origin. This new system is illustrated in Fig. F-2. Equations (F-10) express
the translated coordinates of a point P in the X′Y′Z′ system in terms of its XP YP ZP geocentric
coordinates after the translation.



image

 FIGURE F-2   The X′Y′Z′ coordinate system translated to the local vertical origin.
 

image

(F-10)
 
In Eqs. (F-10), Xo, Yo, and Zo are the coordinates of the local vertical origin computed from Eqs. (F-1)
through (F-3) using the values of ϕo and λo, and with ho = 0.

Step 2: Rotation of 90° + λo about the Z′ Axis
Figure F-3 illustrates the geocentric XYZ axes and the X′Y′Z′ axes as viewed from positive Z looking
toward the earth’s equatorial plane. A rotation of 90° + λo about the Z′ axis is applied to the X′Y′Z′
system to create an X″Y″Z″ system with its Y″ axis in the direction of local north (i.e., pointing toward
the pole in the meridian through the origin). Equations (F-11) express the coordinates of point P in the
X″Y″Z″ system in terms of X′P, Y′P, Z′P, and the longitude of the local origin λο.

image

(F-11)
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 FIGURE F-3   Rotation of 90° + λo about the Z′ axis.
 

Step 3: Rotation of 90° – ϕο about the X″ Axis
Figure F-4 illustrates the X″Y″Z″ system as viewed from the positive X″ axis toward the local vertical
origin. A rotation of 90° – ϕο will be applied to align the Z″ axis with the normal to the local vertical
origin. This gives the final Xl Yl Zl system. Equations (F-12) express the coordinates of point P in the Xl

Yl Zl system in terms of X″P, Y″P, Z″P and the latitude of the local vertical origin ϕo.

image
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 FIGURE F-4   Rotation of 90° – ϕo about the X″ axis.
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(F-12)
 
Substituting Eqs. (F-10) into Eqs. (F-11) and in turn substituting the result into Eqs. (F-12), and
expressing the result in matrix form, gives

image

(F-13)
 
Combining the two rotation matrices from Eq. (F-13) into a single rotation matrix M and dropping the
P subscripts gives

image

(F-14)
 
where

image

 
Equation (F-14) gives the final form of the equation for converting coordinates from geocentric XYZ
to local vertical Xl Yl Zl. In an optional step, false XYZ offsets can be added as a convenience to cause
all coordinates within the project area to be positive.

To convert coordinates of points from local vertical Xl Yl Zl to geocentric XYZ, Eq. (F-14) is
rearranged as follows:



image

(F-15)
 
Matrix M is an orthogonal matrix which has the property that its inverse is equal to its transpose, and
therefore Eq. (F-15) can be rewritten as

image

(F-16)
 
Equation (F-16) gives the final form of the equation for converting coordinates from local vertical Xl

Yl Zl to geocentric XYZ. If the optional false XYZ offsets were previously added, they must be
subtracted before Eq. (F-16) is used.

Example F-2
Convert the following XYZ geocentric coordinates to local vertical coordinates Xl Yl Zl having the
parameters listed below. Use ellipsoid parameters for GRS80. Check by performing the conversion in
reverse.

image

 
Solution
Compute the length of the normal to the local vertical origin by Eq. (F-4).

 
Compute geocentric coordinates of the local vertical origin by Eqs. (F-1) through (F-3).

image

 
Compute rotation matrix terms from Eq. (F-14).



image

 
Now solve Eq. (F-14), using the above rotation matrix M, for the local vertical coordinates.

image

 
Check   Convert back to the original geocentric coordinates, using Eq. (F-16).

image

 

F-5  Conversion Between Geodetic and Lambert Conformal Conic
Coordinates

Conversion of coordinates between the geodetic system of latitude and longitude, and the Lambert
conformal conic map projection, involves complex mathematics which are beyond the scope of this
text. The reader may consult references at the end of this appendix for details. The equations presented
in this section are from Snyder (1987).

As mentioned in Sec. 5-6, a Lambert conformal conic coordinate zone has a number of defining
constants in addition to the required standard ellipsoid parameters. These defining constants are,
respectively, ϕ1 and ϕ2, the latitudes of the standard parallels; ϕο and λο, the latitude and longitude of
the grid origin; and Eo and No, the false easting and false northing.

A forward procedure that can convert latitude and longitude ϕ and λ of a point to X and Y Lambert
conformal conic coordinates starts by computing a number of additional parameters which will be
constant for a given set of zone constants and ellipsoid parameters. They are



(F-17)
 

(F-18)
 

(F-19)
 

(F-20)
 

(F-21)
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After these initial parameters have been computed, the remainder of the forward procedure is as

follows. Beginning with the latitude ϕ and longitude λ of a point, compute the following:

(F-22)
 

(F-23)
 

(F-24)
 

(F-25)
 
An inverse procedure that can convert XY Lambert conformal conic coordinates of a point to latitude ϕ
and longitude λ requires the same additional parameters that were computed in Eqs. (F-17) through (F-
19). Given these parameters, and the XY coordinates, the latitude and longitude ϕ and λ can be
computed as follows:



(F-26)
 

(F-27)
 

(F-28)
 

(F-29)
 

(F-30)
 

(F-31)
 
 where    a = length of semimajor axis

e = first eccentricity

In Eqs. (F-26) and (F-28) the function sign(n) is +1 if n [obtained from Eq. (F-17)] is positive,
and it is -1 if n is negative. The inverse tangent function in Eq. (F-28) should be of full-circle range
since θ can theoretically range from –180° to +180°, although in practical cases the range will be far
less. Equation (F-30) provides an initial approximation for ϕ. This value is then used on the right-hand
side of Eq. (F-31) to compute a better approximation for ϕ. This and other successively better
approximations can be substituted on the right side of Eq. (F-31) until the value for ϕ stabilizes.

Example F-3
Given the following values ϕ and λ for latitude and longitude of a point, and the specified zone
constants for a Lambert conformal conic projection, compute the X and Y coordinates for the point.
Use the parameters for the GRS80 ellipsoid. Check by performing the inverse conversion.
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Solution   Compute required mϕ values by Eq. (F-20).

image

 
Compute required tϕ values by Eq. (F-21).

image

 
Compute the additional parameters by Eqs. (F-17) through (F-19).

image

 
Compute the tϕ value required in Eq. (F-22).



image

 
Compute values for Eqs. (F-22) through (F-25).

image

 
Check   The check will be performed by inverse conversion, back to ϕ and λ. Compute values for ρ, t,
and θ by Eqs. (F-26) through (F-28).

image

 

image

 
Compute longitude by Eq. (F-29).

 
Now for the iterative part. First compute an initial approximation using Eq. (F-30).

 
Apply Eq. (F-31) to compute updated values for ϕ until it converges.



image

 
The next iteration produces a negligible change. Therefore,

 

F-6  Conversion Between Geodetic and Transverse Mercator
Coordinates

Conversion of coordinates between the geodetic system of latitude and longitude and the transverse
Mercator map projection also involves complex mathematics which are beyond the scope of this text.
Again, the reader may consult references at the end of this appendix for details. The equations
presented in this section are also from Snyder (1987).

As mentioned in Sec. 5-6, a transverse Mercator coordinate zone has a number of defining
constants in addition to the required standard ellipsoid parameters. These defining constants are ko, the
scale factor along the central meridian; ϕo and λo, the latitude and longitude, respectively, of the grid
origin; and Eo and No, the false easting and false northing. The longitude of the grid origin λo is
conventionally referred to as the longitude of the central meridian.

Unlike the Lambert conformal conic conversion equations, those of the transverse Mercator
involve series expansions, truncated to a limited number of terms. As such, the accuracy is not limited
strictly to the number of significant figures in the computations; instead, it is limited by the truncation
of the series. When the following procedures are used, the accuracy should be satisfactory (i.e.,
subcentimeter) as long as the points are limited to the defined region of the particular transverse
Mercator zone. Beyond that, the accuracy deteriorates, particularly in the direction of longitude. The
reader is therefore cautioned to use these conversion procedures only within the defined limits of the
zone.

A key parameter involved in transverse Mercator conversions is the meridional distance M from



the equator to a specific latitude ϕ. Calculation of M can be performed by a truncated series expansion
which is given in the following equation:
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(F-32)
 
In Eq. (F-32), a is the semimajor axis, and e the eccentricity. The value of ϕ (latitude) in the first term
must be in radians. This equation is accurate to within 1 mm for any latitude.

A forward procedure that can convert latitude ϕ and longitude λ of a point to X and Y transverse
Mercator coordinates begins by computing the following preliminary quantities T, C, and A.

(F-33)
 

(F-34)
 

(F-35)
 
where e′ = second eccentricity and λο = longitude of the grid origin (central meridian). Next, compute
the values
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The following equations complete the forward conversion to X and Y.

(F-36)
 

image

(F-37)
 
 where ko = scale factor at central meridian

e′ = second eccentricity



Eo, No = false easting and false northing, respectively

An inverse procedure that can convert transverse Mercator coordinates X and Y of a point to
latitude ϕ and longitude λ begins by computing the footprint latitude ϕ1. The footprint latitude is the
latitude at the central meridian that has the same Y coordinate as the point being converted. The
footprint latitude is computed by the following equations:

(F-38)
 

(F-39)
 

(F-40)
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(F-41)
 
In Eq. (F-38), Mo is the meridional distance from the equator to the latitude of the grid origin ϕο, as
computed by Eq. (F-32); No is the false northing; and ko is the scale factor at the central meridian. The
variable μ, in Eqs. (F-39) and (F-41), is the rectifying latitude and has units of radians. The units of ϕ1

in Eq. (F-41) are radians.
Next, compute R1, the radius of the meridional arc at the footprint latitude.

(F-42)
 
Then compute the parameters C1, T1, and N1 corresponding to the footprint latitude ϕ1 by Eqs. (F-34),
(F-33), and (F-4), respectively.
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Now compute the parameter D.



(F-43)
 
The inverse conversion is then completed by solving the following equations:
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(F-44)
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(F-45)
 
Example F-4
Given the following values for latitude ϕ and longitude λ of a point, and the specified zone constants
for the universal transverse Mercator zone 17 projection, compute the X and Y coordinates for the
point. Use the parameters for the GRS80 ellipsoid. Check by performing the inverse conversion.

image

 
Solution   Convert ϕ and λ to radians.

 
Compute values T, C, and A by Eqs. (F-33) through (F-35).

image

 
Compute the value of N by Eq. (F-4) and M and Mo by Eq. (F-32).



image

 
Now solve Eqs. (F-36) and (F-37) for X and Y.

image

 
Check   First, compute the footprint latitude by solving Eqs. (F-38) through (F-41).



image

 
Compute R1 by Eq. (F-42).

 
Compute C1, T1, and N1 by Eqs. (F-34), (F-33), and (F-4), respectively.

image

 
Compute parameter D by Eq. (F-43).

 
Compute ϕ and λ by Eqs. (F-44) and (F-45).



image
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Problems
  F-1.   Prepare a computer spreadsheet that will convert geodetic latitude, longitude, and ellipsoid
height to geocentric XYZ coordinates. Using the spreadsheet, convert the following geodetic
coordinates to geocentric. Use the GRS80 ellipsoid.
            (a)  ϕ = 42°06′42.3245″ north, λ = 93°33′45.2165″ west, h = 276.409 m
            (b)  ϕ = 37°03′41.2227″ north, λ = 122°32′56.1093″ west, h = 153.131 m
            (c)  ϕ = 27°59′26.9389″ north, λ = 86°56′31.0057″ east, h = 8847.734 m
            (d)  ϕ = 64°24′30.1990″ north, λ = 152°02′43.6737″ west, h = 6193.536 m

  F-2.   Prepare a computer spreadsheet that will convert geocentric XYZ coordinates to geodetic
latitude, longitude, and ellipsoid height. Using the spreadsheet, convert the following geocentric
coordinates to geodetic. Use the GRS80 ellipsoid.
            (a)  X = –1,777,460.052 m, Y = 2,921,841.730 m, Z = 5,370,754.340 m
            (b)  X = 855,525.030 m, Y = –5,487,931.094 m, Z = 3,125,080.292 m
            (c)  X = –4,592,671.234 m, Y = 2,537,259.009 m, Z = –3,617,548.719 m
            (d)  X = 4,054,206.962 m, Y = 2996.527 m, Z = 4,907,448.862 m

  F-3.   Prepare a computer spreadsheet that will convert geocentric XYZ coordinates to local vertical
coordinates Xl Yl Zl. Using the spreadsheet, convert the following geocentric coordinates to local
vertical. Use the GRS80 ellipsoid and a local vertical origin latitude ϕο = 29°30′00″ north and
longitude λo = 82°12′00″ west.
            (a)  X = 780,656.787 m, Y = -5,501,656.889 m, Z = 3,120,519.196 m
            (b)  X = 778,970.096 m, Y = -5,453,583.214 m, Z = 3,203,737.478 m
            (c)  X = 720,420.933 m, Y = -5,481,878.690 m, Z = 3,169,160.707 m
            (d)  X = 734,256.533 m, Y = -5,527,174.279 m, Z = 3,086,742.792 m

  F-4.   Prepare a computer spreadsheet that will convert local vertical coordinates Xl Yl Zl to geocentric
XYZ coordinates. Using the spreadsheet, convert the following local vertical coordinates to geocentric.
Use the GRS80 ellipsoid and a local vertical origin latitude ϕο = 29°24′00″ north and longitude λo =
81°50′00″ west.
            (a)  Xl = –18,738.640 m, Yl = 14,769.927 m, Zl = 1.981 m
            (b)  Xl = 7760.644 m, Yl = 2268.638 m, Zl = 45.884 m
            (c)  Xl = 5171.700 m, Yl = –6029.912 m, Zl = 43.388 m
            (d)  Xl = –25,068.884 m, Yl = –20,825.035 m, Zl = –30.919 m

  F-5.   Prepare a computer spreadsheet that will convert geodetic latitude and longitude to Lambert
conformal conic XY coordinates. Using the spreadsheet, convert the following geodetic coordinates to
Lambert conformal conic. Use the GRS80 ellipsoid and the following Lambert zone constants: ϕ1 =
42°44′ north, ϕ2 = 44°04′ north, ϕo = 42°00′ north, λo = 90°00′ west, Eo = 600,000 m, and No = 0.
            (a)  ϕ = 42°45′23.5233″ north, λ = 91°14′59.0517″ west
            (b)  ϕ = 44°23′51.3480″ north, λ = 90°09′20.2099″ west
            (c)  ϕ = 43°43′42.6206″ north, λ = 89°24′38.0503″ west
            (d)  ϕ = 44°27′15.0788″ north, λ = 91°21′26.7792″ west

  F-6.   Prepare a computer spreadsheet that will convert Lambert conformal conic XY coordinates to



geodetic latitude and longitude. Using the spreadsheet, convert the following Lambert conformal
conic coordinates to geodetic. Use the GRS80 ellipsoid and the following Lambert zone constants: ϕ1

= 45°34′ north, ϕ2 = 46°46′ north, ϕo = 45°10′ north, λo = 90°00′ west, Eo = 600,000 m, and No = 0.
            (a)  X = 498,129.633 m, Y = 142,242.591 m
            (b)  X = 565,869.445 m, Y = 85,860.635 m
            (c)  X = 616,953.581 m, Y = 40,639.790 m
            (d)  X = 534,976.172 m, Y = 184,256.842 m

  F-7.   Prepare a computer spreadsheet that will convert geodetic latitude and longitude to transverse
Mercator XY coordinates. Using the spreadsheet, convert the following geodetic coordinates to
transverse Mercator. Use the GRS80 ellipsoid and the following transverse Mercator zone constants:
ko = 0.9999411765, ϕo = 24°20′ north, λo = 81°00′ west, Eo = 200,000 m, and No = 0.
            (a)  ϕ = 28°37′39.5323″ north, λ = 82°02′35.0368″ west
            (b)  ϕ = 26°38′29.5273″ north, λ = 81°49′37.0588″ west
            (c)  ϕ = 27°25′37.3755″ north, λ = 81°46′40.8965″ west
            (d)  ϕ = 25°18′20.9991″ north, λ = 80°44′29.2206″ west

  F-8.   Prepare a computer spreadsheet that will convert universal transverse Mercator (UTM) XY
coordinates to geodetic latitude and longitude. Using the spreadsheet, convert the following UTM
coordinates to geodetic. Use the GRS80 ellipsoid and the following UTM zone constants: zone 17 ko =
0.9996, ϕo = 0°00′, λo = 81°00′ west, Eo = 500,000 m, and No = 0.
            (a)  X = 502,841.680 m, Y = 3,588,973.376 m
            (b)  X = 394,120.551 m, Y = 3,257,138.082 m
            (c)  X = 465,262.738 m, Y = 2,801,506.948 m
            (d)  X = 367,112.167 m, Y = 3,016,226.144 m
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 A 
A posteriori standard deviation
A priori standard deviation
Aberrations
Abscissa scale
Absolute orientation
      analytical plotters
      direct optical projection stereoplotters
Accelerometers, usage
Accidental errors
Accommodation
Accuracy, concepts
Acidic solution
ACSM. See American Congress on Surveying and Mapping
Adjacent flight strips, photography
Adjusted quantities
      precisions, matrix equations
      standard deviation
ADS80 airborne digital sensor (Leica)
Aerial film speed (AFS)
Aerial image, wavelet decomposition level
Aerial mapping:
      cameras, filters (usage)
      metric cameras, usage
Aerial mosaics:
      classes
      photographs, usage
Aerial photogrammetry, control
Aerial photographic mission
Aerial photographs:
      camera orientation
      examples
      overlapping pair
      stereopair, space intersection
      tilted aerial photographs, atmospheric refraction
      usage
Aerial photography
      acquisition
      atmospheric refraction
      availability
      classification
      crab, presence
      depth of field, impact
      exposure



      laser scan data, combination
      overlapping aerial photography, geometry
      photogrammetrist/photo interpreter collection
      planning
          neat model, usage (transparent template)
      stereoscopic plotting instrument design
      sun angle
      vertical photos, calculations
Aerotriangulation
      airborne linear array sensors
      analytical plotters, application
      computational strategies
      image points, photos (example)
      overlapped position, photos (block)
      pass points
          locations
      performing, methods (classification)
      planning
      reduced equation (structure)
          cross-strip ordering, usage
          down-strip ordering, usage
      usage
      value
Affine coordinate transformation
Affine transformation:
      application
      computation
      linear form, obtaining
      solving
      usage
AFS. See Aerial film speed
AGPS. See Airborne global positioning system
Air base
      computation
Air photo interpretation, employment
Air turbulence, impact
Airborne control
      usage
Airborne global positioning system (AGPS) systems, deployment
Airborne GPS control:
      bundle adjustment
      camera/IMU/GPS antenna, configuration
      flight strips, configuration
Airborne GPS positioning, considerations
Airborne GPS-INS system
Airborne laser scanning (ALS)
      Optech Orion airborne laser scanning system



      swath pattern
      system, swath pattern
      unfiltered/filtered ALS data
Airborne linear array sensors:
      distortion, air turbulence (impact)
      usage
Aircraft vibrations, detrimental effects
Air-to-glass interface
Alignment, correction
ALS. See Airborne laser scanning
Altimeters, usage
Altitude (h)
American Congress on Surveying and Mapping (ACSM)
American Society for Photogrammetry and Remote Sensing (ASPRS)
      founding
      photogrammetry definition
American Society of Civil Engineers (ASCE)
      Geomatics Division
Amplitude
Anaglyphic system
      complementary color filters, usage
Analog form (continuoustone image)
Analog plotters:
      absolute orientation
      analytical plotters, comparison
Analytic relative orientation
Analytical absolute orientation
Analytical aerotriangulation techniques, variations (evolution)
Analytical interior orientation
Analytical photogrammetry
      computations
Analytical plotters
      absolute orientation
      analog plotters, comparison
      application
      capabilities
      comparator, schematic representation
      components, schematic diagram
      interior orientation
      mathematical model, computation
      operation
          method
          schematic diagram
      operation, profiling mode
      orientation
      P-3 analytical plotter (Zeiss)
      real-time operation, top-down flow



      relative orientation
      reset capability
      SD3000 analytical plotter (Leica)
      system components
      three-dimensional operation
      usage
          modes
      vector superimposition
Analytical rectification
Analytical relative orientation
      collinearity, usage
      stereopair, example
Analytical self-calibration
      collinearity equations, usage
      example
      matrix equations
      numerical stability, concern
      usage
Analytical stereomodel
      formation
Analytical stereoplotters
      CAD computer
      encoders
      grid plate, placement
      half mark movement, approaches
      operator controls
      principal distance, setoff
      servomotors
      three-dimensional operation, flowchart
Angle equivalents
Angle of incidence
Angle of refraction
Angular distortion
Angular field of view
Angular orientation
      chaining
      expression
      omega-phi-kappa
Antenna-to-camera vector
Aperture:
      diameter
          decrease
          increase
      priority mode
      shutter speed, relationship
Arago, Francois
Area equivalents



Area-based digital image-matching techniques
Area-weighted average resolution (AWAR)
Artificial photogrammetric targets
Artificial targets
      disadvantages
      example
      usage
ASCE. See American Society of Civil Engineers
ASCII editor, usage
ASCII text editor, usage
ASPRS. See American Society for Photogrammetry and Remote Sensing
Asymmetric radial lens distortion
ATAN2
Atmospheric haze:
      cause
      scatter
Atmospheric refraction:
      aerial photography
      correction
          computation procedure
      distortions
          modeling, inadequacy
      impact
Atmospheric scatter
AutoBar exterior orientation device
Autocollimation, principal point
Automatic data recording
Auxiliary coordinate system, point requirement
Auxiliary tilted photo coordinate system
Auxiliary x’y’ image coordinate system
Average photo scale
Average terrain, map scales/contour intervals
AWAR. See Area-weighted average resolution
Azimuth (a)
      angular orientation
      calculation, normal vectors (usage)
      computation
      differences
      rotation
          angles
          example
Azimuth-tilt-swing rotation, usage

 B 
Backing, photographic film component
Back-surfaced mirror
Backward linear array sensor scans



Bandpass filter
Bandpass image
Base-classes
Base-height (B/H) ratio
      increase
Baseline vectors, computation
Basic control
be/h. See Stereoviewing
Best symmetry, point
ß angles, algebraic signs
Between-the-lens shutters
BGR. See Blue Green Red
B/H. See Base-height
Bicubic interpolation
      discussion
      shape
Bilinear interpolation
      advantage
      shape
Bilinear/bicubic interpolation, usage
Binary digits (bits)
Binary images
Binocular attachment
Black-and-white emulsions, sensitivities
Black-and-white infrared photographs
Black-and-white photographs, processing/printing
      steps
Blade-type lens shutters
Block-diagonal matrix, nonzero submatrices
Block-diagonal submatrix
Blue Green Red (BGR):
      color cube
      color space
      coordinates, conversion
          example
Blunders
      elimination
Blurring
Boresight angles
Boresight calibration, facilitation
Boresight rotation matrix
Bridging
      usage
Brightness factor
Bundle adjustment. See also Simultaneous bundle adjustment
      cause
      convergence



      failure
      initial approximations
      measurements
      post-bundle adjustment statistics
      quantities, obtaining
      results, interpretation
      self-calibrating bundle adjustment
Bundle of rays
Bureau of Reclamation
Bytes

 C 
C factor
C/A. See Coarse acquisition
Calibrated focal length (CFL)
      basis
Calibrated principal point
Calibration parameters:
      loosening, adjustment divergence
      weighted observations
Calibration target
      template
Camera calibration
      collimators, usage
      field methods
      goniometer laboratory procedure
      laboratory methods
      parameters
          loosening (examples)
      resolution test pattern
      stellar methods
Cameras
      angular field of view
      axis, inclination angle
          determination
          variable, importance
      body
      configuration
      controls
      exposure stations, angular orientation (impact)
      fiducial marks
      focal length, knowledge
      interior orientation
      lens
          distortion
          incident nodal point
      magazine



      Manual of Photogrammetry definition
      mounts
      orientation, aerial photographs
      resolution, calibration
      single-lens camera
Camera-to-antenna vector
Camouflage detection
Canadian Institute of Geomatics (CIG)
Carrier-phase processing, usage
CCD. See Charge-coupled device
Central meridian
CFL. See Calibrated focal length
Chain method, usage
Chaining
Characteristic curve. See also Photographic emulsions
      usefulness
Charge-coupled device (CCD)
      array
          distortions
      array/film
      elements
      frame, width
      solid-state CCD imaging array
Checkpoints, usage
Chip rate
Chi-squared test
CIG. See Canadian Institute of Geomatics
Clarke 1866 ellipsoid, usage
Close-range photogrammetry
      accuracy
      applications
          examples, parabolic antenna shape
      object depth, importance
      planning
      ship propeller size/shape, determination
Close-range photography:
      camera exposure stations, angular orientation (impact)
      geometric consideration
      planning, physical constraints
Close-range stereo coverage
CMOS. See Complimentary Metal-Oxide Semiconductor
Coarse acquisition (C/A):
      code
      tracking
Code-phase processing
Collimator targets, images
Collinearity



      applications
      modified collinearity equations, usage
      space intersection
      space resection
      usage
Collinearity condition
      equations, development
      examples
      expression
Collinearity equations
      azimuth-tilt-swing rotation, usage
      homogeneous representation
      linearization
      nonlinear characteristics
      quantities, determination
      usage
Color additive process
Color cube:
      blue-green-red color cube
      viewpoints
Color exposure, making
Color film
      cross section
      layers, color sensitivity
Color image:
      example
      representation
Color infrared emulsions, usage
Color infrared film (false-color film):
      development
      sensitivity
Color infrared image
Color infrared photographs
Color negative (color reversal film)
Color reversal film (color negative)
Color subtractive process
Color values, basis
Column/row image coordinates
Combination lens
Common line, swing (calculation)
Community rating system (CRS)
Comparator:
      monocomparators/stereocomparators, usage
      schematic representation
      two-dimensional affine relationship
Compensating errors
Complimentary Metal-Oxide Semiconductor (CMOS) devices



Composite orthophoto
Computer-aided drafting (CAD)
      CAD-unit measurements
      computer, usage
      drawings
      environment
      program
      systems
          analytical plotter interface
Computerized mapping systems, usage
Conformal applications
Conformal coordinate transformation
Conformal transformation
Conjugate principal points
      distances
Contact printer
Contact printing
Contact prints
Contours:
      direct compilation, stereoplotter (usage)
      direct tracing
      generation
      intervals
          factors
      locations, inconsistencies
      maps
          terrain, representation
      renditions
Contrast enhancement
Control configuration
Control points
      absence
      ground/image coordinates,
      horizontal control points
      images, blurred edges
      location
      number, minimum (usage)
      stereomodel coordinates
      vertical control points
Controlled aerial mosaics
Controlled digital mosaics
Converging lens
      focal length
Convex glass lens, light entry
Convolution
      cubic convolution
      kernel



      mathematical operation
      performing
Coordinate transformations
      application
      approach
      computation
          method, alternative
          working sketches, usage
      effects
      matrix methods
      redundancy, impact
Coordinates:
      computation
      correction, computation
      determination
      reduction
      systems
      transformation, preparation
Coplanarity
      equation
          linearization
          writing
      usage
Coplanarity condition
      equation
          development
          usage
          vectors, usage
      example
Cornea
Correction plate, usage
Correlated, term (usage)
Correlation
Correlation coefficients
      computation
      moving windows, usage
      selection
      summation terms, computation
Crab
      correction
Crabbed overlapping aerial photographs
Cross-strip ordering
      strategy
      usage
CRS. See Community rating system
Cubic convolution
Cubic spline approximation



Cylindrical intensity-huesaturation system, gray line position
Cylindroid

 D 
Daguerre, Louis
Darkness, degree
Data block
Data merging
Data reduction techniques
Datum nadir point
Datum plane
Datum principal line
Datum principal point
Dead reckoning
Decentering (symmetrical radial distortion)
      computation
      pattern
Decentering lens distortion
Deconvolution
Deeply coupled integration level
Degrees of freedom, definition
Delaunay triangulation
DEMs. See Digital elevation models
Densitometer, usage
Density
Depression angle
Depressions, appearance
Depth of field
      direct optical projection stereoplotters
Depth perception
      relationships
Derivative terms, interpretation
Developable surface
Developer
Developing, black-and-white photographic processing/printing step
Deville, Eduard
DFT. See Discrete Fourier transform
Diaphragm
      area
          calculation
      diameters
      light regulation
Diapositives (transparencies)
      centering
      direct optical projection stereoplotters
      preparation
Differential calculus, usage



Differential leveling
Differential positioning
Differential rectification (orthorectification)
Differential rotation, measurement
Differential tilt rotations
Digital CAD file, saving
Digital color image, display
Digital elevation models (DEMs)
      accuracy, effect
      automatic production
      automatically matched points, positions
      collinearity relationship
      compilation
      points
          matching
          positions
      rectangular DEM, three-dimensional representation
      usage
Digital form (pixel array)
Digital image (digital images)
      display
      example
      linear stretch contrast enhancement
      matching
      model
      processing, types
      production
      quantization levels, variation
      resampling, example
      spatial frequency
      spatial resolutions, variation (example)
Digital image-matching techniques, categories
Digital imagery, georeferencing
Digital imaging process, principles
Digital line graphs (DLGs), usage
Digital mapping:
      cameras
          formats
      systems, existence
      topographic features, representation
Digital mosaics:
      controlled digital mosaics
      semicontrolled digital mosaics
      uncontrolled digital mosaics
Digital number (DN)
      brightness, correspondence
      computation



      histogram, examples
      matrix
      representation
Digital orthophoto production process, schematic representation
Digital photogrammetry
Digital photographs:
      coordinates
      joining, tie points (usage)
      rectification
Digital printing, color-subtractive process
Digital rectification
      equipment, requirement
      usage, example
Digital resampling
Digital satellite image, Fourier transform (example)
Digital single-lens reflex camera, example
Digital surface model (DSM)
Digital terrain model (DTM)
      generation
Digital-frame cameras:
      classification
      image subsets, usage
Dimensionless representative fractions/ratios
Direct compilation:
      planimetric details
      stereoplotter, usage
Direct contact printing
Direct conversion
Direct optical projection instruments
Direct optical projection stereoplotters:
      absolute orientation
      components
      depth of field
      diapositives
      guide rods
      illumination lamps
      interior orientation
      kappa
      leveling screws
      main frame
      model
          scale/base, change/adjustment
          tilt, correction
      omega
      phi
      platen
      principal components



      principal distance
      projection distance
      projection systems
      projector bar
      projectors
      reference table
      relative angular relationship, recreation
      relative orientation
      tracing pencil
      tracing table
      viewing/tracing systems
Direction cosines
Discrete Fourier transform (DFT)
Discrete waveform laser scanning system
Displaced point, coordinates (determination)
Distribution curve
DLGs. See Digital line graphs
D-log E curve
DN. See Digital number
Down-strip ordering
      strategy
      usage
Drainage, features
Drift
Drying, black-and-white photographic processing/printing step
DSM. See Digital surface model
DTM. See Digital terrain model
Dual-frequency receivers, usage
Dynamic terrestrial photography
Dynamo close-range camera
      strobe attachment

 E 
Earth curvature:
      correction
      distortion
Easel plane
Edges:
      detection
          operator
      effects, indication
      information
      measurement
      multiscale representations
EFL. See Equivalent focal length
Electromagnetic energy, velocity
Electromagnetic spectrum, wavelength classification



Elements of exterior orientation (EOPs)
Elevation angle
Elevation layers, hydrography layers (combination)
Elevation model (preparation), DEM (usage)
Ellipsoid height:
      computation
      values
Emergent nodal point
Emulsions. See also Photographic emulsions
      photographic film component
E’N coordinates
EN ground coordinate system, scaled X’Y’ coordinate system (superimposition)
EN system
Encoders, usage
End lap (flight strip photograph). See also Percentage of end lap; Photographic end lap
      definition
      overlap area
      photo overlap
Engineering projects, photomaps (advantages)
English engineer’s scales
Enlargement:
      geometry
      ratios
Enlargement ratio
Environmental effects, groundwater resource monitoring
Environmental monitoring, photogrammetric applications
Environmental Protection Agency (EPA)
EOPs. See Elements of exterior orientation
EPA. See Environmental Protection Agency
Epipolar geometry:
      principle, usage
      softcopy plotters
      stereopair
Epipolar plane
Equally weighted observations
Equations, systematic formulation
Equivalent focal length (EFL)
Equivalent length
EROS Data Center, photo archive
Errors. See also Systematic errors
      definition
      evaluation
      propagation
Estimated digit
Exposure:
      control
      instant



      stations
          photographs
      variation
Exterior orientation elements
      determination
Exterior orientation parameters
      approximations
      measurements
      systemic variations
      variation
      weight matrix
Eye base
Eye base to perceived model height ratio

 F 
Falloff
False northing
False-color film (color infrared film):
      development
      sensitivity
Fast Fourier transform (FFT)
Feature-based digital
      image-matching
      techniques
Federal Emergency Management Agency (FEMA), floodplain management
Federal Geographic Data Committee
Federal Highway Administration
FFT. See Fast Fourier transform
Fiducial axis, principal point (coordinates)
Fiducial coordinates, computation
Fiducial marks
      absence
      calibrated coordinates
      comparator-measured coordinates
      coordinates
Field surveying:
      economic advantage
      usage
Field surveys:
      methods, usage
      usage
Field-surveyed control, accuracy
Field-surveyed ground control
Film. See Photographic film
Filtered ALS data
Filters
      purposes



      usage
First-level wavelet decomposition
First-surface mirror
      touching, avoidance
500 ELX camera (Hasselblad)
Fixing, black-and-white photographic processing/printing step
Flight and Sensor Control Management System
Flight height, planimetric accuracy
Flight lines:
      number
      spacing
          adjustment
Flight map
Flight path, orientation fixation
Flight plan
      example
      preparation, computer (usage)
      project area
Flight planning:
      importance
      template method
Flight strips
      configuration. See Airborne GPS control.
      overlap
      photographs
          end lap
          side lap
Flight-line axis:
      system
      usage
Flight-line photographic coordinates, image expression
Floating line
Floating mark
      placement
      principle
          example
          usage
Floodplain rating:
      example
      photogrammetric applications
Flying height
      aerial photography, usage
      computation
      determination
      increase, relief displacement (reduction)
      measurement
      scale variations



      variation
          impact
Flying spot scanners
FMC. See Forward-motion compensation
Focal length (lens). See also Calibrated focal length
Focal plane
      flatness
      shutters
Focal point
Focusable lenses, stability
Focusing, differences
Fog
Footprint latitude
Forward conversion
Forward linear array sensor scans
Forward procedure, impact
Forward-motion compensation (FMC)
Fourier transform:
      discrete Fourier transform (DFT)
      examples
      fast Fourier transform (FFT)
      usage
Fractional location, image pixels (4×4 subarea)
Frame aerial cameras:
      generalized cross section
      main parts
Frame cameras (frame sensors)
      single-lens frame cameras
French Academy of Science
Frequency
      domain
From system
Front nodal point
F-stop (f-number)
      occurrence
      setting
          variation
      shutter speed, relationship
Full error propagation, assumption
Full strip, rotations
Full-frame sensor
Full-waveform laser scanning system
Fully automatic mode

 G 
Gauss, Karl
Gaussian distribution



Gaussian kernel, usage
GCPs. See Ground control points
Geocentric coordinates
      conversion
      geodetic coordinate conversion
      local vertical coordinate conversion
Geodesy, concepts
Geodetic coordinates
      conversion
      Lambert conformal conic coordinates, conversion
      system
      transverse Mercator coordinates, conversion
Geodetic reference surfaces
Geodetic Reference System of 1980 (GRS80)
      ellipsoid constants
      ellipsoid parameters, usage
Geodetic-grade receivers, usage
Geographic information systems (GIS):
      analytical tool
      data, compilation
      development
      information layers, compilation
      objectives
      photogrammetric applications
      photogrammetry, relationship
      planimetric mapping, elementary methods
      relational database
      site development
      software packages
      usage
Geographic information systems (GIS) database:
      digital maps
      information
          complication
          layers, development
      modification
Geomatica
Geomatics Division (ASCE)
Geometric optics
      concept, point source (ray emanation)
Geometric resolution
Geometric strength
Georeferenced images
      assembly
      geometric accuracy
      schematic representation
Georeferencing



      application
      image alignment
      process
Geospatial Positioning Accuracy Standards
GIS. See Geographic information systems
Global navigation satellite system (GNSS) signals
Global Positioning System (GPS)
      algorithms, emergence
      antenna
          coordinates, translation
          geometric relationship
      antenna, configuration
      control, bundle adjustment. See Airborne GPS control.
      differential positioning
      fixes, interpolation
      fundamentals
      kinematic GPS positioning
      methods, usage
      onboard GPS-INS system
      receiver
      survey
      usage, increase
GLONASS
Goniometer
GPS–INS data, processing
GPS-INS integration
GPS-INS system. See also Airborne GPS-INS system
      accuracy/reliability
GPS/INS system
Grains
Graphical analysis
Gray level, quantification
Gray line
Grid DEMS, disadvantage
Grid plate:
      calibration
      placement
Ground control:
      coordinates
          equations
          observations
      errors
      establishment
      existence
      images
      planning
Ground control points (GCPs)



      relief, correction
Ground coordinates
      axis system
      calculation
      conversion
      groundel centers, association
      system
          strip model, adjustment
Ground coverage
      square, dimension
Ground distance, measurement
Ground elements (groundels)
Ground EN two-dimensional system
Ground nadir point
Ground registration
Ground system, coordinates
Ground-based system, three-dimensional coordinates
Groundwater resource area, monitoring
GRS80. See Geodetic Reference System of 1980
Guide rods (direct optical projection stereoplotters)
Gyroscopes (gyros):
      drift
      usage

 H 
Habitat layer, usage
Half marks
      movement, approaches
      spacing
H-and-D curve
Hard-copy photographs, usage
HARNs. See High-accuracy reference networks
Hasselblad 500 ELX camera
Heads-up digitizing
Height, isolation
Heliography
Hertz, wavelength
Hidden objects
High oblique images
High oblique photograph:
      components
      example
High-accuracy reference networks (HARNs)
High-altitude photographs, usage
High-altitude photography, ground coverage per photo
High-frequency information, loss
High-order rational polynomial transformations, usage



High-pass filter, application
High-pass operation
High-resolution digital sensors
Highway planning/design
Hinge point
Histogram
      equalization
          contrast enhancement, digital image
          example
      examples
      graphic display
      production
      shape, variation
Homogeneous coordinates:
      representation, three-dimensional line (usage)
      usage
Horizon, location (oblique photograph)
Horizontal accuracy
Horizontal angles:
      computation, oblique photographs
      measurement
Horizontal control
      establishment, field survey methods (usage)
      images
      points
          requirement
      surveys
Horizontal datums
      theoretical development
Horizontal plane, construction
Horizontal terrestrial photos, obtaining
Hough transform
Housing, gyroscopic stabilization
Hue:
      polar coordinates
      representation
          color value basis
Human eye
      cross section
      eye base
      focusing, differences
      intensity response
      lens, biconvexity
      object, appearance
Hybrid digital image-matching techniques
Hydrologic area units



 I 
ICP. See Iterative closest point
IHS. See Intensity-huesaturation
IKONOS:
      QuickBird, contrast
      satellite imagery
Illuminance
      decrease
      distance, inverse proportion
      image distance, impact
      increase
      proportion
      variation
Image pixels, 4×4 subarea
Image-matching techniques, usage
Images. See also Binary images; Digital images
      acquisition
          process
      alignment
      approximations, discovery
      classification
      coarseness
      color images
          representation
      color infrared image
      column/row coordinates
      coordinates
          system, rotation
      data, nonimage data (combination)
      digital image display
      digital rectification, usage (example)
      distance
          impact
      distortions, compensation
      enhancement
      formation (single-lens camera)
      interpretation, branches
      measured image coordinates, refinement
      measurements
          coordinate systems
          softcopy plotters
      one-point perspective image
      orientation
      plane
          distortion
      pyramid, formation
      quality, advantages



      resampling
      sharpness, degradation
      spacing, change
      systematic degradations, cumulative effect (representation)
      three-point perspective image
      two-point perspective image
Imaging device
IMU. See Inertial measurement unit
INCA3 digital close-range camera
Incidence, angle
Incident light ray:
      pencil
      refraction
Incident nodal point
Inclination angle, determination
Independent model
Indicated principal point
Indirect contouring
Inertial measurement device
Inertial measurement unit (IMU)
      configuration
      geometric relationship
      orientation, boresight angles (usage)
      output
Inertial navigation system (INS)
      capability
      mechanization
          usage
      navigation, dead reckoning
Inertial reference frame
Inertial-based navigation, basis
Infinite focus, plane
Inflatable antenna, size/shape (determination)
In-flight camera calibration
Information, inclusion
Infrared (IR) emulsions
Inner cone, usage
INS. See Inertial navigation system
Instant of exposure
Instrumentation:
      advancements
      developments
Integer ambiguity
Integration levels
Intelligent Digital Camera 3 (INCA3)
Intensity-hue-saturation (IHS) system
      conversion



Interference noise, Fourier transform
Interior orientation
      analytical interior orientation
      analytical plotters
      direct optical projection stereoplotters
      elements
      parameters, inclusion
International Earth Rotation Service
International Society for Photogrammetry and Remote Sensing (ISPRS), founding
International standard foot
International Standards Organization (ISO) number, usage
International Terrestrial Reference Framework (ITRF)
Interpolation:
      bicubic interpolation
      bilinear interpolation
      row interpolation weight matrix, computation
Interpretative photogrammetry
Intersect program, running
Intervalometer
Inverse distance weighting
Inward radial distortion
ISPRS. See International Society for Photogrammetry and Remote Sensing
Iterative closest point (ICP) algorithm
ITRF. See International Terrestrial Reference Framework

 J 
Journal of Spatial Science

 K 
K matrix, WC contributions
K value, computation
Kalman filter
Kappa
      angle, z2 axis (rotation)
      direct optical projection stereoplotters
      rotation
Kernels
      application
      Gaussian kernel, usage
      matrix
      values
Kinematic GPS positioning
Kinematic positioning technique
Kriging

 L 
Lambert, J. H.



Lambert conformal conic conversion equations
Lambert conformal conic coordinates, conversion
Lambert conformal conic projection
Land management, photogrammetric applications
Land use
      layer, land cover layer (combination)
      planning, photomaps (usage)
Laplacian convolutions
Laplacian edge detector
Laplacian kernels, usage
Laplacian operator
Laplacian weighting function
Large-scale edge information
Laser mapping systems, principle
Laser pulse. See Single laser pulse
Laser scan data
Laser scan data, aerial photography (combination)
Laser scanning:
      advantages
      term, usage
Laser scanning systems
      classification
      hardware
      oscillating mirror laser scanning system, scan pattern
      principles
      VMX450 mobile laser mapping system (RIEGL)
Latent image
Latitude:
      forward conversion
      illustrations
      isolation
      values
Laussedat, Aimé
Layers (information)
LCS. See Liquid crystal shutter
Leaf-type shutter, schematic diagrams
Least squares. See also Moving least squares
      adjustment
          initial approximations
          manual methods
          matrix methods
      application
      definitions
      examples
      fundamental condition
      matching
          iterative process



          subarrays, positions
      methods
      solution
      techniques
Left-handed coordinated system
Legs, centerlines (intersection)
Leica:
      ADS80 airborne digital sensor
      PAV 30
      PAV 80 gyro-stabilized aerial-camera mount
      RC30 aerial mapping camera
      SD3000 analytical plotter
Length equivalents
Lenses. See also Cameras
      analysis, simplification
      aperture diameter, increase
      biconvexity
      combination lens
      cone assembly
      converging lens
      cost
      distortions
          correction
      falloff
      focal length
      formula
      incident light ray, refraction
      light rays, impact
      light-gathering power
      optical axis
          light ray, parallelism
      optical glass
      plane
      plane of infinite focus
      resolution (resolving power)
      SAGA-F lens, cross-section
      simple lenses, usage
      speed
      stereoscope
      thick lens, nodal points
      vignetting
Leveling screws (direct optical projection stereoplotters)
Lever arm parameters
      facilitation
Light Detection and Ranging (LiDAR)
      elevations
Light meter, usage



Light rays:
      directions, change
      entry
      intersection
          creation
      passage
      refraction
Light velocity
Light waves:
      frequency/amplitude/wavelength
      point source emanation
Line pairs
Line perspective
Linear advance
Linear array imagery
Linear array sensors
      image
          illustration
      scans
Linear drift
Linear features
Linear regression
      computation, tabular form
Linear sensory array, orientation fixation
Linear stretch
      contrast enhancement, digital image
Linearized collinearity equations, solution
Line-pair test pattern
Lines
Liquid Crystal Display (LCD) computer monitors
Liquid crystal shutter (LCS):
      display, stereoviewing principle
      glasses, requirement
      rate alternation
Local polynomial surface
Local vertical coordinates
      conversion
      system
Local vertical origin:
      translation
      X’Y’Z’ coordinate system, translation
Longitude:
      calculation
      forward conversion
      values
Loosely coupled integration level
Loss of lock, problem



Low oblique digital photograph, example
Low oblique images
Low oblique photograph, example
Low spatial frequency, density trace (presence)
Low-pass filter
      application
      convolution, result

 M 
Main frame (direct optical projection stereoplotters)
Manhole, aerial photographs (examples)
Manual of Geographic Information Systems
Manual of Photogrammetry
      camera definition
      K computation
Manual of Photographic Interpretation
Manual of Remote Sensing
Manuscript map, placement
Mapping cameras
      three-dimensional coordinate system
Mapping data collection
Maps. See also Flight map
      editing
      manuscripts
      plotting
      projections
      scale
          concept
          optimum, selection
Material costs
Matrix (matrices):
      bandwidth
      equations, analytical self-calibration
      inverses, relationship
      product, formation
      study
Maximum-line-count method
Meades Ranch
Mean sea level (MSL)
Measured image coordinates, refinement
Mechanical projection
      stereoplotters
Mechanical projection stereoplotter
Mechanization. See also Inertial navigation system
      involvement
Median filtering
Medium, light rays (passage)



Megapixel
Meter-candle seconds
Metric engineer’s scales
Metric photogrammetry
Metric qualities
Metric system, preference
Metric terrestrial camera
Micrometer, usage
Microsoft UltraCam Eagle ultra-large digital aerial photogrammetric camera
Mirror stereoscope
      operating principles
Mirrors:
      back-surfaced mirror
      first-surface mirror
      plane mirrors, usage
Mistakes
Mixed calculations
Mobile TLS, usage
Model
      base, adjustment
      scale, change
      tilt, correction
Model height ratio, perception
Modified collinearity equations, usage
Modulation transfer:
      determination
      quantification
Modulation transfer function (MTF)
      curve
      Nyquist frequency, relationship
Monocomparators, usage
Monoscopic depth perception
Mosaics
      construction
      controlled digital mosaics
      semicontrolled digital mosaics
      semicontrolled mosaic, example
      uncontrolled digital mosaics
      work
Most probable value (MPV)
      definition
Mount
Moving least squares
Moving windows
      convolutions
      edge detection
      image convolution



      operations
          inputs
      3×3 position, convolution
      usage
MPV. See Most probable value
MSL. See Mean sea level
MTF. See Modulation transfer function
Multicollimators
Multiple reflections, creation
Multiplication, commutative property
Multipurpose GIS, usage
Multipurpose land information system, photogrammetric applications
Multiscale representation
Multispectral imagery

 N 
NAD. See North American Datum
NADCON
Nadir:
      datum nadir point
      ground nadir point
      location (oblique photograph)
      photographic nadir point
      point, fiducial coordinates (computation)
      vertical lines, intersection
Nadir linear array sensor scans
NAPP. See National Aerial Photography Program
NASA. See National Aeronautics and Space Administration
National Aerial Photography Program (NAPP)
National Aeronautics and Space Administration (NASA)
National Flood Insurance Program (NFIP), FEMA management
National Geodetic Vertical Datum of 1929 (NGVD29)
National High Altitude Photography (NHAP)
      aerial photos
      Program
National map accuracy standards (NMAS)
National Map Accuracy Standards, meeting
National Spatial Reference System (NSRS)
National wetlands inventory (NWI)
NAVD88. See North American Vertical Datum of 1988
Nearest neighbor
      interpolation, shape
      method, discussion
Near-vertical aerial photographs, images
Near-vertical photographs
      affine transformation, usage
      stereopair



Near-vertical photography, assumptions
Near-visible spectrum, white light (dissection)
Neat models, transparent templates (usage)
Negative
      ownership
      production
      reversal
Negative plane
NGVD29. See National Geodetic Vertical Datum of 1929
NHAP. See National High Altitude Photography
Niepce, Joseph
NMAS. See National map accuracy standards
Nodal points
Noise filter method
Nominal, term (usage)
Nonbanded reduced normal equations
Nonengineering applications, elements
Nonimage data
Nonimage data, image data (combination)
Nonlinear collinearity equations, linearization
Nonmetric cameras, calibration
      complication
Nonmetric terrestrial camera
Nonorthogonality, correction
Nonreferenced digital image, schematic representation
Nonreferenced satellite image
Nonzero coefficients, inclusion
Nonzero digits, significance
Nonzero submatrices
      appearance, cause
Normal color emulsions, usage
Normal equations
      formulation
Normalized cross-correlation
      coefficient
      correlation coefficient
North American Datum of 1927 (NAD27)
North American Datum of 1983 (NAD83)
      readjustment
North American Vertical Datum of 1988 (NAVD88)
NSRS. See National Spatial Reference System
Numerical relative orientation, calculation
NWI. See National wetlands inventory
Nyquist frequency
      modulation transfer function, relationship
Nyquist rate



 O 
Objects:
      apparent depth
      close-range stereo coverage
      density distributions
      density modulation
      depth, importance
      distance
          variation
      heights, parallax differences (equation)
      information
      inverted image
      location/marking, importance
      points, photo coordinates
      position, displacement
      relative sizes
      vertical heights
Object-space coordinates
      conversion sequence
      standard deviations, indications
      systems
          conversions
          image coordinate system, parallelism
Object-space positions, establishment
Oblique, nonrectified photograph, digital image
Oblique aerial photographs, exposure
Oblique photographs
      coordinate axis system
      horizon, location
      horizontal angles, computation
      nadir, location
      vertical angles, computation
Oblique photography, camera axis (inclination angle determination)
Oblique terrestrial photograph:
      exposure
      measurements, horizontal/vertical angles
Observations:
      definition
      equations
Off-diagonal nonzero element
Omega
      angle, x’ axis (rotation)
      direct optical projection stereoplotters
      rotation
Omega-phi-kappa (ω-ϕ-κ):
      angular orientation
      equations, usage



      kappa, rotation
      phi, rotation
      system, photograph (orientation)
One-point perspective image
On-screen digitizing
On-the-fly (OTF) ambiguity resolution, development
On-the-fly (OTF) integer ambiguities
On-the-fly (OTF) techniques
Operator controls, interface
Optech Orion airborne laser scanning system
Optical axis (lens)
Optical-mechanical projection
Optical-mechanical rectification
Optics
Orientation. See also Absolute orientation; Angular orientation; Interior orientation; Relative

orientation
      analytical plotters
      completion
      fixes
          establishment
      procedures, softcopy plotters
      software
Origin, vector (relationship)
Orthogonal matrix
Orthophotomaps
Orthophotos
      digital orthophoto production process, schematic representation
      generation
      production
      usage
Orthorectification:
      DEM accuracy, effect
      differential rectification
Oscillating mirror:
      comparison
      laser scanning systems, scan pattern
OTF. See On-the-fly
Outward radial distortion
Overbar, usage
Overlapping aerial photography, geometry
Overlapping pair, geometry (vertical photographs)
Overlapping vertical photographs
Over-parameterization, occurrence

 P 
P-3 analytical plotter (Zeiss)
Panchromatic emulsions



Panel points
      requirements
Paper media, stability
Parabolic antenna, shape (determination)
Parallactic angle
      changes, detection
      increase, B/H ratios (increase)
      perception
      stereoscopic depth perception
Parallax. See also Stereoscopic parallax; X parallax; Y parallax
      differences
          usage
      equations
      monoscopic measurement
      variation
      wedge
Parallax bar
      constant, determination
      schematic diagram
Parallax differences:
      elevations
          example
      measurement
      objects, heights (equation)
Parallax measurement
      flight axes, usage
      monoscopic methods
      photographic flight-line axes
      simple scale, usage
      stereopairs, orientation
      stereoscopic methods
          advantages
Parallelepiped:
      formation, vectors (usage)
      result
Parking lot images:
      convolution, Laplacian kernels (usage)
      high-pass filter, application
      image pyramid, formation
      large-scale edge information
      low-pass filter, application
      median filter, application
      noise
      Sobel edge detection, application
Partial derivatives:
      coefficients, letter substitutions
      nonzero values



Pass points:
      configuration
      generation
      locations
      measurement
PAV 30 (Leica)
PAV 80 gyro-stabilized aerial-camera mount (Leica)
PE. See Percent end
Pencil of rays
Percent end (PE) lap
Percent side lap, adjustment
Percentage of end lap (PE)
Perspective geometry, laws
Perspective projection
      provision
Perspective-projection transformation
      matrix
Phi
      angle, y1 axis (rotation)
      direct optical projection stereoplotters
      rotation
Photo. See Photographs; Photography
Photo control:
      establishment
      ground-surveyed network
      images
      number/location
      object-space positions, establishment
Photo coordinates. See Photographic coordinates
Photogrammetric control:
      artificial targets, usage
      establishment, field surveys (usage)
      field surveying, two-step procedure
      points
Photogrammetric Engineering and Remote Sensing (ASPRS)
Photogrammetric flight plans
Photogrammetric ground control survey, planning (importance)
Photogrammetric mapping, accuracy capabilities
Photogrammetric operations, bridging (usage)
Photogrammetric problems, analysis/solution
Photogrammetric products, scales/accuracies
Photogrammetric Record
Photogrammetric Record
Photogrammetric scanners
Photogrammetry:
      definition
      geographic information systems, relationship



      history
      imaging device, usage
      interpretative photogrammetry
      metric photogrammetry
      professional photogrammetry organizations
      techniques, advancements
      tool
      usage
      uses
Photographic base-height ratio (B/H)
Photographic coordinates
      comparator measurement
      correction
      measurements
          accuracy
          analytical methods
          constant terms
          scales, usage
      pairs, light ray representation
      refinement
      system, usage
      weight matrix
Photographic distance, histogram
Photographic emulsions:
      black-and-white emulsions, sensitivities
      characteristic curve
      characteristics
      color emulsions, layers
      darkness, degree
      density
      exposure
      grains
      infrared (IR) emulsions
      panchromatic emulsions
      spectral sensitivity
Photographic end lap
Photographic film:
      color film
      color infrared film (false-color film), sensitivity
      components
      cross section
      distortions
      film-advancing mechanisms
      film-based aerial mapping cameras
      film-flattening mechanisms
      flattening
          mechanisms, challenge



      photographic film, cross section
      sensitivity/speed (indication), ISO number (usage)
      speed. See Aerial film speed.
      total exposure
Photographic flight-line axes
Photographic measurements glass scales
      scales
Photographic nadir point
Photographic papers, distortions
Photographic photogrammetry
Photographic side lap
Photographs
      adjustment
          camera calibration parameters, loosening (examples)
          example
          input parameters
          output
          t-statistics
      angular attitude, INS capability
      black-and-white photographs, processing/printing
      block
          configuration
          graphical representation
      classifications
      connections
      digital coverage
      distance
          intersection
      end lap
      flight lines, location/marking
      high oblique photograph, example
      low oblique digital photograph, example
      low oblique photograph, example
      obscured area
      orientation
          problem
          stereoscopic orientation
      photo base
          determination
          stereopair
      pseudoscopic view
      rectification
      scale
      shared pass points, connections
      shrinkage/expansion
      spatial position/angular orientation
      stereopair, epipolar geometry



      stereoscopic viewing
      strips, control configuration (example)
      superposition
      tilt, problem
      two-photo adjustment, convergence
      types
      vertical aerial photographs, taking
Photography:
      index
      pictorial quality
      purpose
      scale
Photomaps
      advantages
      disadvantages
      preparation
Phototheodolites
Phototriangulation
Physical optics
Pictorial qualities
      considerations
Picture elements (pixels)
      color, representation
      input
      megapixels
      pattern
      superimposition
Picture format, diagonal
Pinhole box
Pinhole camera, principle
Plane, perspective projection
Plane mirrors, usage
Plane of infinite focus
Planimetric accuracy
Planimetric correctness, impact
Planimetric details, location
Planimetric feature:
      digitization
      direct compilation, stereoplotter (usage)
      tracing
Planimetric mapping, reflection instruments (usage)
Planimetric maps
Planimetric maps, compilation
Planimetry:
      inconsistencies
      renditions
Platen (direct optical projection stereoplotters)



      vertical movement
Plotters:
      analytical plotters
      softcopy plotters
      stereoplotters
Pocket stereoscope
      cost
      photographs, orientation
      schematic diagram
      usage
Point clouds
Point names, subscripts (correspondence)
Point of best symmetry
Point perspective
Point positioning
      errors
Point source:
      bundle rays, emanation
      light wave emanation
Points
      coordinates, transformation
Point-spread function
Polar stereographic Mercator
Polarized-platen viewing (PPV) system
      anaglyphic system, comparison
Polarizing filter screen:
      display, stereoviewing principle
      imaging, softcopy photogrammetric workstation
Polyconic Mercator
Polygons
Polynomial error curves
Polynomial transformation, usage. See Three-dimensional polynomial transformation
Positions:
      measurement
          examples
      reset, INS mechanization (usage)
Positive print, obtaining
Post-bundle adjustment statistics
PPV. See Polarized-platen viewing
Precise (P) code
Precise emphemeris
Precision:
      concepts
      matrix equations
Predicted ephemeris
Preprocessing operations
Preprocessing usage



Principal distance (direct optical projection stereoplotters)
Principal line
Principal plane
      side view
          tilting-lens optical-mechanical rectifier, schematic diagram
Principal point
      conjugate principal points
      coordinates
          relationship
      definitions, images
      distance
      example
      location
      origin, coordinates (reduction)
      parallax
      photo coordinates
      transfer, floating mark principle (usage)
Processed imagery (edges), sensor tilt (correspondence)
Processed linear array imagery
Professional photogrammetry organizations
Project area, example
Project complexities, variations
Project planning
      cost estimation/scheduling
      photography, purpose
      specifications
Projection distance (direct optical projection stereoplotters)
Projection printer, enlargement (geometry)
Projection printing
Projection systems, direct optical projection stereoplotters
Projective coordinate transformation
Projective transformation, complication
Projectors:
      bar tilt
      direct optical projection stereoplotters
      motions
Project-specific basis, list
Property management, photogrammetric applications
Pseudoranges
Pseudoscopic view
Pulfrich, Carl
Pulse spacing
Pupil
Pushbroom scanners
Pythagorean theorem

 Q 



Quantitative photogrammetric measurements, requirement
Quantization
QuickBird, IKONOS (contrast)

 R 
Radial distance:
      change
      illustration
Radial distortions
Radial lens distortion/corrections, relationship
Radiometric resolution
Radiometric scale
Random errors
      normal distribution
Random Sample Consensus (RANSAC)
Rapid static method
Rational polynomial coefficient (RPC)
      camera models
      model, sufficiency
Raw image
Raw linear array imagery
Rays, bundle
      emanation
RC30 aerial mapping camera (Leica)
RCI. See Roadway Characteristics Inventory
Rear nodal point
Receivers, components
Rectangular coordinates (measurement), algebraic signs (usage)
Rectangular DEM, three-dimensional representation
Rectangular project areas, coverage
Rectangular-to-polar conversion capability
Rectification
      analytical rectification
      control points, plot
      differential rectification (orthorectification)
      digital rectification
      geometry, display
      ground control points, relief (correction)
      optical-mechanical rectification
      tilted photographs
      two-dimensional projective transformation, usage
Rectified photographs
Rectified-ratioed coordinates
Rectified-ratioed photo, points (projection)
Rectifiers
Rectifying latitude
Red Green Blue (RGB) color space



Reference ellipsoids:
      definition
      parameters
Reference mark
Reference photo coordinate system, establishment
Reference table (direct optical projection stereoplotters)
Reference variance
Reflection instruments, usage
Refraction, angle
Refractive index
Regular grid, three-dimensional view (interpolation)
Relative frequencies
Relative orientation
      analytical plotters
      direct optical projection stereoplotters
      numerical relative orientation, calculation
      points, usage
Relative positioning
      carrier-phase methods
Relief displacement
      corrections, rectification (control point plot)
      evaluation, equation
      impact
      reduction
      tilted photograph
      vertical photograph
Relor program, running
Remote sensing:
      branches
      image classification, performing
Resampling:
      bilinear/bicubic interpolation
      nearest-neighbor method
Resect program, running
Residual:
      definition
      squares, sum (minimization)
Resolution (resolving power). See also Geometric resolution; Radiometric resolution; Spectral

resolution
      calibration
      importance
      test pattern
Retina
Retina, sensitivity
Reverse transformation, obtaining (problem)
RGB. See Red Green Blue
RIEGL VMX450 mobile laser mapping system



RIEGL VZ400 terrestrial laser scanner
Right-handed coordinated system
RMK TOP 15 aerial mapping camera (Zeiss)
RMS. See Root mean square
Roadway Characteristics Inventory (RCI)
      GIS, example
Roll diversity
Root mean square (RMS):
      calculation
      error
Rotated x′y′z′ image coordinate system, measurement
Rotating-disk lens shutters
Rotation:
      angles, computation
      azimuth/tilt/swing terms
      equations, development
      omega/phi/kappa terms
      parallel relationships
      parameters, obtaining
      systems, conversion
      X″ axis
      Z′ axis
Rotation matrix (matrices)
      combination
      computation
      formation
      multiplication
Rover
      receiver, movement
Row coordinate, usage
Row interpolation
      weight matrix, computation
RPC. See Rational polynomial coefficient

 S 
Safe lights, usage
SAGA-F (usage)
SAGA-F lens, cross-section
Sample correlation coefficient
Sampling frequencies, effect
Sanitary sewer facility map, example
Satellite image triangulation
Satellite lock, loss
Satellite photos, usage
Saturation:
      polar coordinates
      representation



          color value basis
Scale
      application
      change
      relationship
Scale factor
      quantification
Scaled X′Y′ coordinate system, superimposition
Scan angle
Scanner, geometric quality
Scanning-type satellite image, two-dimensional affine relationship
Scheimpflug condition
SD3000 analytical plotter (Leica)
Search array, example
Season, impact
Section lines
Sediment yield, GIS analysis
Self-calibrating bundle adjustment
Self-calibration adjustment, solution approach
Semianalytical aerotriangulation
      advantage
      control
      fundamentals
      involvement
      pass points, configuration
Semicontrolled aerial mosaics
Semicontrolled digital mosaics
      control/tie point configuration
Semicontrolled mosaic, example
Sequential angular rotations
Sequential independent model triangulation, usage
Sequential strip formation
Servomotors:
      impact
      usage
Seven-model strip, control extension (plan view)
Shadows
      digital image
Shared pass points, connections
Ship propeller size/shape, determination
Shoulder region
Shutter speed:
      aperture, relationship
      f-stop, relationship
      variation
Shutters
      efficiency



      leaf-type shutter, schematic diagrams
      light regulation
      priority mode
SIA. See Stereo-image alternator
Side fiducial:
      mark
      photographic coordinate system
Side lap. See also Photographic side lap
      definition
      flight strip photograph
      overlap
Signal noise
Significant figures
      determination
      number, equivalence
      value
Signs/lights, project-specific basis
Silver halide crystals
      exposure
      grains
Silver halide layers
Simple lenses, usage
Simultaneous bundle adjustment
Simultaneous Multi-camera Analytical Calibration (SMAC)
Sinc function, form
Single laser pulse, multiple returns
Single-lens camera
      image formation
      light pencils
Single-lens frame cameras
Single-lens reflex camera, example
Single-receiver point positioning
68 percent error
SMAC. See Simultaneous Multi-camera Analytical Calibration
Snell’s law
SNWA. See Southern Nevada Water Authority
Sobel edge detection, usage
Softcopy instruments, innovation
Softcopy mapping systems, image classification processes (usage)
Softcopy photogrammetric workstation, polarizing filter stereo imaging
Softcopy plotters
      absolute orientation
      advantage
      coplanarity
      epipolar geometry
      epipolar plane
      hinge point



      image measurements
      LCD, physical construction
      manual usage
      orientation procedures
      system hardware
      template
Softcopy stereoplotters
      impact
Solid-state CCD imaging array
Southern Nevada Water Authority (SNWA)
Space intersection
      collinearity, usage
      stereopair (aerial photos)
Space oblique Mercator
Space resection
      collinearity, usage
Spatial data collection
Spatial domain
Spatial frequency
      digital image
      variation
Spatial image, abstraction
Spatial position, expression
SPC. See State plane coordinate
Special-purpose topographic maps
Specific force, impact
Spectral resolution
Spectral transformations
Spectrum:
      electromagnetic spectrum, wavelength classification
      near-visible spectrum, white light (dissection)
      visible spectrum, white light (dissection)
Spider, usage
SPOT. See Système Pour d’Observation de la Terre
Spot elevations, weighted average
Square camera focal-plane format
Square grid, tilted photo image
ST-4 mirror stereoscope
      binocular attachment/parallax bar
Standard deviation, definition
Standard parallels
State plane coordinate (SPC) systems
Static terrestrial photography
Statistics, involvement
Statue of Liberty, digital image
      quantization levels, variation
      spatial resolutions, variation



Stereo display configuration
Stereo workstation, computer service
Stereocomparators, usage
Stereo-image alternator (SIA)
      synchronized shutters, usage
Stereometer
Stereometric cameras
Stereomodels
      analytical stereomodel
      arbitrary coordinate systems
      continuous strip
      level, problem
      manual interior orientation
      orientation, control (recommendation)
      pass points, locations
      perception
      planimetric features, digitization
      relative orientation
      scaling, horizontal control points (requirement)
Stereopairs
      analytical relative orientation
          performing
      automatically matched DEM, positions
      epipolar geometry
      images, usage
      obtaining
      orientation
      photo base
      space intersection
      taking
Stereoplotters (plotters)
      characteristics
      evolution
      mechanical/optical limitations
      projectors, comparison
      usage
Stereoscopes
      ST-4 mirror stereoscope
      usage
      Zoom 95 stereoscope
Stereoscopic coverage failure
      flying height variations, impact
      terrain variations, impact
      tilt, impact
Stereoscopic depth perception
      parallactic angle
Stereoscopic impression, creation



Stereoscopic methods
Stereoscopic model
Stereoscopic neat model, area coverage
Stereoscopic overlap area
Stereoscopic parallax
      error evaluation
      measurement, flight-line axes (usage)
      problems
      vertical aerial photographs
Stereoscopic photography, effectiveness
Stereoscopic plotters, classification
Stereoscopic plotting instruments
      design concept
      stereomodels (orientation), control (recommendation)
Stereoscopic viewing
      example
      facilitation
      geometry
      photographs, orientation
Stereoviewing
      base-height ratio (be/h)
          estimation
      display monitor, usage
      principle (alternating LCS shutter display)
      principle (polarizing filter screen display)
Stop bath, black-and-white photographic processing/printing step
Straight-line portion
Streets/highways, project-specific basis
Strip:
      adjustment
      cameras
      chain method, usage
      control extension, XYZ coordinates (error accumulation)
      cross-strip ordering
      down-strip ordering
      error propagation
      full strip, rotations
      lateral advance
      photo block, configuration
      photo number
      seven-model strip, control extension (plan view)
Strip model:
      adjustment
      sequential construction, independent models (usage)
Structures, project-specific basis
Subarrays
      average digital number, computation



      digital numbers
      pixels
      positions
      size, results
Sub-classes
Sub-images, usage
Support, photographic film component
Surface splines
Surveying and Land Information Science
Swaths
Swing:
      angular orientation
      definition
      rotation
          angles
          example
Symmetric radial distortion (decentering)
      computation
      pattern
Symmetric radial lens distortion
      coefficients
Systematic errors
      elimination
      measurement
Système Pour d’Observation de la Terre (SPOT)
      satellite, usage
      sensor systems

 T 
Tangential lens distortion
Targets. See also Artificial targets
      sizes, design
Taylor, Brook
Taylor’s series
      application
      first-order terms
          usage
Taylor’s theorem, usage
Telecommunication tower sites, example
Template (softcopy plotters)
Terrain:
      areas
      elevation
      representation, contour map (usage)
      three-dimensional pictorial view, DEM/orthophoto (usage)
      variations, impact
Terrestrial cameras



      types
Terrestrial laser scanning (TLS)
      data, georeferencing
      VZ400 terrestrial laser scanner (RIEGL)
Terrestrial photogrammetry
      advantage
      applications
      control
      prominence, continuation
      usefulness
Terrestrial photographs
Terrestrial photography
      control
      types
Test object, (low spatial frequency), density trace (presence)
Thick lens, nodal points
3dconf program, usage
Three-dimensional conformal coordinate transformation
      achievement
      approximations, requirement
      initial approximations
          swing calculation
          tilt/azimuth, calculation
          tilt/azimuth/swing, combination
          vector computation
      points, rotation
      rotation
      scaling
      sequential independent model triangulation, usage
      solution, complexity
      translation
      usage
Three-dimensional control points, requirement
Three-dimensional coordinates
      system
Three-dimensional digitizer
Three-dimensional ellipsoid, formation
Three-dimensional ground coordinates
      cubic polynomial function ratio, usage
      transformation
Three-dimensional impression, creation
Three-dimensional object space coordinates, determination
Three-dimensional operation:
      analytical plotters
      analytical stereoplotters, flowchart
Three-dimensional polynomial transformation, usage
Three-line linear array sensor scans



Three-line linear sensor array, orientation fixation
Three-line scanner:
      aerotriangulation
      geometry
      image scene collection
Three-point perspective image
Three-times-rotated coordinate system
Tie points:
      approximations, discovery
      configuration
      coordinates, photographs (connections)
      identification
      usage
Tightly coupled integration level
Tilt
      angular orientation
      calculation
      impact
      orientation angle
      rotation
          angles
          example
Tilt angle:
      determination
      display
Tilted aerial photographs, atmospheric refraction
Tilted photographs
      auxiliary tilted photo coordinate system
      auxiliary x′y′ image coordinate system
      effect
      geometry
      image displacements
      image point
      principal plane
          rectification, geometry (display)
      rectification
      relief displacement
      scale
      example
      square grid, image
      xy fiducial system, x′y′-tilted system (conversion)
Tilting-lens optical-mechanical rectifier, schematic diagram
Tilt-swing-azimuth (t-s-a):
      angular orientation, display
      system
TIN. See Triangulated irregular network
TLS. See Terrestrial laser scanning



Toe region
Topographic features, representation
Topographic mapping
Total exposure
      diaphragm area, shutter speed (product)
Tracing pencil (direct optical projection stereoplotters)
Tracing systems, direct optical projection stereoplotters
Tracing table (direct optical projection stereoplotters)
Traffic accident investigations, photogrammetry (usage)
Traffic management, photogrammetry (usage)
Transformation:
      affine transformation, usage
      coordinate transformation approach
      homogeneous coordinates, usage
      parameters
          coefficients, matrix
          computation
          usage
      performing
      projective transformation, complication
Translation factors:
      addition
      calculation
Translation parameters
Transparencies (diapositives)
Transportation:
      photogrammetric applications
      project-specific basis
Transverse Mercator
      coordinate zone, defining constants
      coordinates, conversion
      map projection
      projections, setup
Traversing
Triangle, h (altitude)
Triangulated irregular network (TIN)
      data points
      generalization
      models, construction
Triangulation. See also Delaunay triangulation
      horizontal angles, measurement
Trigonometric functions, angles (involvement)
Trigonometric leveling
      usage
Tri-lap area
      points, measurement
Trilateration



Triple-scalar product, zero value
True value, definition
Truly vertical overlapping photographs
Truly vertical photographs
T-statistics, examples
Two-dimensional, term (usage)
Two-dimensional affine coordinate transformation
      example
      nonorthogonality, correction
      relationship
      rotation
      translation
      x, scale change
      y, scale change
Two-dimensional affine relationship
Two-dimensional affine transformation
Two-dimensional conformal coordinate transformation
      method, alternative
      performing
      rotation
      scale change
      steps
      translation
Two-dimensional conformal transformation
Two-dimensional coordinate transformation parameters
Two-dimensional ellipse
Two-dimensional homogeneous points, embedding
Two-dimensional projective coordinate transformation
Two-dimensional projective rotation matrix, parameterization
Two-dimensional projective transformation:
      equations, form
      geometry
      representation
      rotation, parallel relationships
      usage
Two-dimensional rational polynomial coordinate transformation
Two-photo adjustment, convergence
Two-point perspective image

 U 
UltraCam Eagle ultra-large digital aerial photogrammetric camera (Microsoft)
Uncontrolled aerial mosaics
Uncontrolled digital mosaics
      construction
Unexposed emulsion, fog
Unfiltered ALS data
Unit equivalents/fractions



Unit weight, standard deviation
Units
Universal Transverse Mercator (UTM):
      projection
      system
Urban scenes, two-dimensional transforms
U.S. Army of Corps of Engineers
U.S. Department of Agriculture, aerial photography resource
U.S. Geological Survey (USGS):
      aerial photograph archive
      camera calibration
      parameters
      quadrangle maps, usage
      satellite image archive
U.S. survey foot
Utilities, project-specific basis
UTM. See Universal Transverse Mercator

 V 
Vanishing points
Variable terrain:
      ALS system, swath pattern
      vertical aerial photograph, usage
      vertical photograph, scale
Variances
      weight, inverse proportion
Vector
      azimuth
      orthogonal
      superimposition
Vegetation layer:
      example
      usage
Velocity
      reset, INS mechanization (usage)
VERTCON
Vertical accuracy
Vertical aerial photographs:
      example
      scale, example
      stereoscopic parallax
      taking
      usage
Vertical angles, computation (oblique photographs)
Vertical control
      establishment, field survey methods (usage)
      images



      point, usage
      points
      surveys
          differential leveling, usage
Vertical datums
Vertical exaggeration:
      analysis, diagrams
      calculation
      magnitude, expression
      stereoviewing
Vertical ground-surveyed photo control points
Vertical photographs
      example
      flight line
      flying height
      geometry
      ground coordinates
          example
      overlap
      overlapping pair
          geometry
      relief displacement
          equation
          example
          photographic example
      scale
          determination
          variations
      stereopair, air base
      two-dimensional view
Vertical plane, horizontal angle
Viewing systems, direct optical projection stereoplotters
Vignetting
Visible light, wavelengths (discernment)
Visible spectrum, white light (dissection)
VMX450 mobile laser mapping system (RIEGL)
VR mapping workstation
VZ400 terrestrial laser scanner (RIEGL)

 W 
Washing, black-and-white photographic processing/printing step
Water quality management:
      GIS project, location (example)
      photogrammetric applications
Wavelength
Wavelet decomposition. See First-level wavelet decomposition
Wavelet transform



Weather conditions
Weather conditions, problems
Weight, definition
Weighted observations
      equations
      system
Wetland analysis, photogrammetric applications
Wetland area, GIS database (example)
WGS. See World Geodetic System
WGS84 datum, usage
Whiskbroom scanners
White light, dissection
Wide-angle lenses, illuminance (decrease)
Wildlife management:
      GIS project
          study area
          vegetation layer
      photogrammetric applications
World Geodetic System of 1984 (WGS84)
Wrap-around effect, creation

 X 
x’ axis, omega rotation
X″ axis, rotation
      example
X coordinates, usage
X ground coordinates
X parallax
X plate coordinates, measurement
X value
XY coordinates
      forward/direct conversion
xy ground coordinate system, transformation
XY two-dimensional coordinate system
x′y′-tilted system
X′Y′Z′ coordinate system, translation
XYZ ground coordinates, computation
xyz image coordinate systems, measurement
XYZ model coordinates, computation
XYZ right-handed three-dimensional coordinate systems
xyz right-handed three-dimensional coordinate systems
XYZ stereoplotter controls

 Y 
Y coordinates, usage
Y ground coordinates
      standard deviations



Y parallax:
      causes
      flying height, variation (impact)
      photographs
          orientation, problem
          tilt, problem
Y plate coordinates, measurement
Y value
y1 axis, phi rotation

 Z 
Z′ axis, rotation
      example
Z coordinate:
      determination
      standard deviation
Z2 axis, kappa rotation
Zeiss P-3 analytical plotter
Zeiss RMK TOP 15 aerial mapping camera
Zenith, vertical lines (intersection)
Zeros, significance
Zigzagging pattern, generation
Zoom 95 stereoscope
Zoom stereoscope
Zoom transfer scope (ZTS)
      usage
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FIGURE 2-21   (a) Normal color image and (b) color infrared image. Note that healthy vegetation,
which appears green in the normal color image, appears red in the color infrared image. Circled tennis
courts are painted green but appear gray in the color infrared image.
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 FIGURE 2-27   (a) A view of the color cube from behind the origin and (b) a view of the color cube
from the opposite corner.
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 FIGURE 2-30   Representation of hue and saturation corresponding to Fig. 2-29.
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FIGURE 2-31   Illustration of the (a) color additive process and (b) color subtractive process.
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FIGURE 3-9   Solid-state CCD imaging array of 14,600 × 17,200 (250 million) pixels. (Courtesy
Teledyne DALSA.)
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