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Foreword to the second English edition 

The first edition of Volume 1 of the series of textbooks "Photogrammetry" was pub-
lished in German in 1982. It filled a large void and the second and third editions were 
printed soon afterwards, in 1985 and 1990. The fourth edition was published in English 
in 1992, translated by Peter Stewardson. The following three editions were published 
in German in the years 1995, 1997, and 2003, making seven editions in all. The English 
edition was re-printed in 2000. 

Volume 1 was additionally translated into several languages, including Serbocroatian, 
by Prof. Joksics, Technical University Belgrade; Norwegian, by Prof. Oefsti, Univer-
sity of Trondheim; Greek, by Dr. Vozikis and Prof. Georgopoulos, National Technical 
University of Athens; Japanese, by Prof. Oshima and Mr. Horie, Hosei University; 
Italian, by Prof. Dequal, Politecnico Torino; French, by Prof. Grussenmeyer and O. 
Reis, Ecole Nationale Superieure des Arts et Industries de Strasbourg; Hungarian by 
Prof. Detreköi, Dr. Melykuti, S. Mihäli, and P. Winkler, TU Budapest; Ukrainian by 
S. Kusyk, Lvivska Politechnika; and Turkish, by Prof. Altan, Technical University of 
Istanbul. 

This second English edition is a translation of the seventh, German, edition by Dr. Ian 
Harley, Professor Emeritus, and Dr. Stephen Kyle, both of University College London. 
They not only translated the text, but they also made valuable contributions to it; their 
comments and suggestions led to a clearly improved edition. Compared to the first 
English edition there are major changes. Analogue and analytical photogrammetry are 
reduced significantly, most importance is given to digital photogrammetry, and, finally, 
laser scanning is included. Terrestrial as well as airborne laser scanning have gained 
great importance in photogrammetry. Photogrammetric methods are, with small adap-
tations, applicable to data acquired by laser scanning. Therefore, only minor additions 
to photogrammetry were necessary to cover the chapter on laser scanning. Compared 
to the previous German edition there are, especially, updates on digital cameras and 
laser scanners. 

The original German version arose out of practical research and teaching at the Vi-
enna University of Technology. Volume 1 first introduces the necessary basics from 
mathematics and digital image processing. It continues with photogrammetric acquisi-
tion technology with special consideration of photo-electrical imaging (CCD cameras). 
Particular attention is paid to the use of the Global Positioning System (GPS) and Iner-
tial Measurement Units (IMU) for flight missions. The discussion on photogrammetric 
processing begins with orientation methods including those based on projective geom-
etry. The orientation methods which are discussed for two images are extended to 
image blocks in the form of photogrammetric triangulation. 



vi Foreword 

In the discussion of stereo-plotting instruments most attention is given to digital soft-
copy stations. In addition to automatic processing methods, semiautomatic methods, 
which are widely used in practice, are also explained. This textbook first treats dig-
ital orthophoto production, and then includes three-dimensional virtual worlds with 
photographic texture. 

This selection and arrangement of material offers students a straightforward introduc-
tion to complex photogrammetry as practised today and as it will be practised in the 
near future. It also offers practising photogrammetrists the possibility of bringing them-
selves up-to-date with the modern approach to photogrammetry and saves them at least 
a part of the tedious study of technical journals which are often difficult to understand. 
For technically oriented neighbouring disciplines it provides a condensed description 
of the fundamentals and standard processes of photogrammetry. It lays the basis for 
that interdisciplinary collaboration which gains ever greater importance in photogram-
metry. Related, non-technical disciplines will also find valuable information on a wide 
range of topics. 

For the benefit of its readers, the textbook follows certain principles: didactics are put 
before scientific detail; lengthy derivations of formulae are put aside; theory is split into 
small sections alternating with practically-oriented passages; the theoretical basics are 
made clear by means of examples; and exercises are provided with solutions in order 
to allow self-checking. 

This series of textbooks is a major contribution to photogrammetry. It is very sad that 
Prof. Kraus, who died unexpectedly in April 2006, cannot see it published. At that time 
the translation was already in progress. Final editing was performed by Dr. Josef Jansa 
and Mr. Andreas Roncat from the Vienna Institute of Photogrammetry and Remote 
Sensing. Thanks are also due to the many people at the Institute of Photogrammetry 
and Remote Sensing who did major and minor work behind the scenes, such as drawing 
and editing figures, calculating examples and exercises, making smaller contributions, 
proofreading, composing the I4TgX text, etc. This book, however, is truly a book by 
Prof. Kraus. 

Karl Kraus was born in 1939 in Germany and became Professor of Photogrammetry 
in Vienna in 1974. Within these 32 years of teaching, counting all translations and 
editions, more than twenty textbooks on photogrammetry and remote sensing bearing 
the name Karl Kraus were published. Many examples and drawings in this textbook 
were supplied by the students and collaborators of Prof. Kraus in Vienna. With deep 
gratitude the entire Institute of Photogrammetry and Remote Sensing looks back at the 
time spent with Karl Kraus and forward to continuing the success story of this textbook. 

Norbert Pfeifer Vienna, Summer 2007 
Professor in Photogrammetry 
Institute of Photogrammetry and Remote Sensing 
Vienna University of Technology 



Notes for readers 

This textbook provides an introduction to the basics of photogrammetry and laser scan-
ning. References to Volume 2, Chapters B, C, D, and E, refer to 

Kraus, Karl: Photogrammetry, Volume 2, Advanced Methods and Appli-
cations, with contributions by J. Jansa and H. Kager. 4th edition, Diimmler, 
Bonn, 1997, ISBN 3-427-78694-3. 

Volume 2 is a completely separate textbook and is currently out of print. It covers 
advanced topics for readers who require a deeper theoretical knowledge and details of 
specialized applications. 
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Chapter 1 

Introduction 

1.1 Definitions 

Photogrammetry allows one to reconstruct the position, orientation, shape and size of 
objects from pictures; these pictures may originate as photochemical images (conven-
tional photography) or as photoelectric images (digital photography). Laser scanner 
images, a third group, have arrived in recent years; laser scanner images have distance 
information associated with every picture element. The results of a photogrammetric 
analysis may be: 

• numbers—coordinates of separate points in a three-dimensional coordinate sys-
tem (digital point determination), 

• drawings (analogue)—maps and plans with planimetric detail and contour lines 
together with other graphical representation of objects, 

• geometric models (digital)—which are fed in to information systems, 

• images (analogue and/or digital)—above all, rectified photographs (orthopho-
tos) and, derived from these, photomaps; but also photomontages and so-called 
three-dimensional photomodels, which are textured CAD models with textures 
extracted from photographs. 

That branch of photogrammetry which starts with conventional photographs and in 
which the processing is by means of optical-mechanical instruments is called analogue 
photogrammetry. That which is based on conventional photographs but which resolves 
the whole process of analysis by means of computers is called analytical photogram-
metry. A third stage of development is digital photogrammetry. In that case the light 
falling on the focal plane of the taking camera is recorded not by means of a light-
sensitive emulsion but by means of electronic detectors. Starting from such digital 
photographs, the whole process of evaluation is by means of computers—human vi-
sion and perception are emulated by the computer. Especially in English, digital pho-
togrammetry is frequently called softcopy photogrammetry as opposed to hardcopy 
photogrammetry which works with digitized film-based photographs1. Photogramme-
try has some connection with machine vision, or computer vision, of which pattern 
recognition is one aspect. 

'See PE&RS 58, Copy 1, pp. 49-115, 1992. 
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In many cases interpretation of the content of the image goes hand in hand with the 
geometrical reconstruction of the photographed object. The outcome of such pho-
tointerpretation is the classification of objects within the images according to various 
different characteristics. 

Photogrammetry allows the reconstruction of an object and the analysis of its character-
istics without physical contact with it. Acquisition of information about the surface of 
the Earth in this way is known nowadays as remote sensing. Remote sensing embraces 
all methods of acquiring information about the Earth's surface by means of measure-
ment and interpretation of electromagnetic radiation2 either reflected from or emitted 
by it. While remote sensing includes that part of photogrammetry which concerns itself 
with the surface of the Earth, if the predominant interest is in geometric characteristics, 
one speaks of photogrammetry and not of remote sensing. 

1.2 Applications 

The principal application of photogrammetry lies in the production of topographic 
maps in the form of both line maps and orthophoto maps. Photogrammetric instru-
ments function as 3D-digitizers; in a photogrammetric analysis a digital topographic 
model is formed, which can be visualized with the aid of computer graphics. Both the 
form and the usage of the surface of the Earth are stored in such a digital topographic 
model. The digital topographic models are input in a topographical information sys-
tem as the central body of data which, speaking veiy generally, provides information 
about both the natural landscape and the cultural landscape (as fashioned by man). A 
topographic information system is a fundamental subsystem in a comprehensive geoin-
formation system (GIS). Photogrammetry delivers geodata to a GIS. Nowadays a very 
large proportion of geodata is recorded by means of photogrammetry and laser scan-
ning. 

Close range photogrammetry is used for the following tasks: architectural recording; 
precision measurement of building sites and other engineering subjects; surveillance 
of buildings and documentation of damage to buildings; measuring up of artistic and 
engineering models; deformation measurement; survey of moving processes (for ex-
ample, robotics); biometric applications (for example, computer controlled surgical 
operations); reconstruction of traffic accidents and very many others. 

If the photographs are taken with specialized cameras, photogrammetric processing is 
relatively simple. With the help of complex mathematical algorithms and powerful 
software, however, the geometric processing of amateur photographs has now become 
possible. This processing technology is becoming more and more widely used, espe-
cially now that many people have their photographs available on their computers and, 
in addition to manipulation of density and colour, are frequently interested in geometric 
processing. 

2See DIN 18716/3. 
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1.3 Some remarks on historical development3 

Technologies arise and develop historically in response both to need and to the emer-
gence and development of supporting techniques and technologies. With the invention 
of photography by Fox Talbot in England, by Niepce and Daguerre in France, and 
by others, the 1830s and 1840s saw the culmination of investigations extending over 
the centuries into optics and into the photo-responses of numerous chemicals. Also 
at that time, rapid and cost-effective methods of mapping were of crucial interest to 
military organizations, to colonial powers and to those seeking to develop large, rela-
tively new nations such as Canada and the USA. While the practical application of new 
technology typically lags well behind its invention, it was very quickly recognized that 
cameras furnished a means of recording not only pictorial but also geometrical infor-
mation, with the result that photogrammetry was born only a few years after cameras 
became available. Surprisingly, it was not the urgent needs of mapping but the desire 
accurately to record important buildings which led to the first serious and sustained 
application of photogrammetry and it was not a surveyor but an architect, the German 
Meydenbauer4, who was responsible. In fact it is to Meydenbauer that we should be 
grateful, or not, for having coined the word "photogrammetry". Between his first and 
last completed projects, in 1858 and 1909 respectively, on behalf of the Prussian state, 
Meydenbauer compiled an archive of some 16000 metric images of its most important 
architectural monuments. 

Meydenbauer had, however, been preceded in 1849 by the Frenchman Laussedat, a 
military officer, and it is he who is universally regarded as the first photogrammetrist 
despite the fact that he was initially using not a camera but a camera lucida, working 
on an image of a facade of the Hotel des Invalides in Paris. The work of both of 
these scientists had been foreshadowed by others. In 1839 the French physicist Arago 
had written that photography could serve "to measure the highest and inaccessible 
buildings and to replace the fieldwork of a topographer". Earlier than this, in 1759, 
Lambert, a German mathematician, had published a treatise on how to reconstruct 
three-dimensional objects from perspective drawings. 

The effective production of maps using photogrammetry, which was to become a tech-
nological triumph of the 20th century, was not possible at that time, nor for decades 
afterwards; that triumph had to wait for several critical developments: the invention 
of stereoscopic measurement, the introduction of the aeroplane and progress in the de-
velopment of specialized analogue computers. For reasons which will become clear to 
readers of this book, buildings provided ideal subjects for the photogrammetric tech-
niques of the time; topographic features most certainly did not. Without stereoscopy, 
measurement could be made only of very clearly defined points such as are to be found 
on buildings. Using cameras with known orientations and known positions, the three-
dimensional coordinates of points defining a building being measured photogrammet-

3 Permission from the publishers to use some of the historical material from "Luhmann, T., Robson, 
S., Kyle, S., Harley, I.: Close Range Photogrammetry. Whittles Publishing, 2006" is gratefully acknowl-
edged. That material and this present section were both contributed by one of the translators, Ian Harley. 

4A limited bibliography, with particular reference to historical development, is given at the end of this 
chapter. 
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rically were deduced using numerical computation. The basic computational methods 
of photogrammetry were established long ago. 

By virtue of their regular and distinct features, architectural subjects lend themselves 
to this technique which, despite the fact that numerical computation was employed, 
is often referred to as "plane table photogrammetry". When using terrestrial pictures 
in mapping, by contrast, there was a major difficulty in identifying the same point on 
different photographs, especially when they were taken from widely separated camera 
stations; and a wide separation is desirable for accuracy. It is for these reasons that so 
much more architectural than topographic photogrammetry was performed during the 
19th century. Nonetheless, a certain amount of topographic mapping by photogramme-
try took place during the last three decades of that century; for example mapping in the 
Alps by Paganini in 1884 and the mapping of vast areas of the Rockies in Canada by 
Deville, especially between 1888 and 1896. Jordan mapped the Dachel Oasis in 1873. 

In considering the history of photogrammetry the work of Scheimpflug in Austria 
should not be overlooked. In 1898 he first demonstrated double projection, which 
foreshadowed purely optical stereoplotters. In particular his name will always be asso-
ciated with developments in rectification. 

The development of stereoscopic measurement around the turn of the century was a 
momentous breakthrough in the history of photogrammetry. The stereoscope had al-
ready been invented between 1830 and 1832 and Stolze had discovered the principle 
of the floating measuring mark in Germany in 1893. Two other scientists, Pulfrich in 
Germany and Fourcade in South Africa, working independently and almost simultane-
ously5, developed instruments for the practical application of Stolze's discovery. Their 
stereocomparators permitted stereoscopic identification of, and the setting of measur-
ing marks on, identical points in two pictures. The survey work proceeded point by 
point using numerical intersection in three dimensions. Although the landscape could 
be seen stereoscopically in three dimensions, contours still had to be plotted by inter-
polation between spot heights. 

Efforts were therefore directed towards developing a means of continuous measure-
ment and plotting of features, in particular of contours—the "automatic" plotting ma-
chine, in which numerical computation was replaced by analogue computation for re-
section, relative and absolute orientation and, above all, for intersection of rays. Digital 
computation was too slow to allow the unbroken plotting of detail, in particular of con-
tours, which stereoscopic measurement seemed to offer so tantalisingly. Only analogue 
computation was fast enough to provide continuous feedback to the operator. In several 
countries during the latter part of the 19th century, much effort and imagination was di-
rected towards the invention of stereoplotting instruments, necessary for the accurate 
and continuous plotting of topography. In Germany Hauck proposed such an apparatus. 
In Canada Deville developed what was described by Ε. H. Thompson as "the first auto-
matic plotting instrument in the history of photogrammetry". Deville's instrument had 
several defects, but its design inspired several subsequent workers to overcome these, 

5Pulfrich's lecture in Hamburg announcing his invention was given on 23rdSeptember 1901, while 
Fourcade delivered his paper in Cape Town nine days later on 2ndOctober 1901. 
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including both Pulfrich, one of the greatest contributors to photogrammetric instrumen-
tation, and Santoni in Italy, perhaps the most prolific of photogrammetric inventors. 

Photogrammetry was about to enter the era of analogue computation, a very foreign 
idea to surveyors with their long tradition of numerical computation. Although many 
surveyors regarded analogue computation as an aberration, it became a remarkably 
successful one for a large part of the 20th century. 

In Germany, conceivably the most active country in the early days of photogrammetry, 
Pulfrich's methods were very successfully used in mapping; this inspired von Orel in 
Vienna to design an instrument for the "automatic" plotting of contours, leading ulti-
mately to the Orel-Zeiss Stereoautograph which came into productive use in 1909. In 
England, F. V. Thompson was slightly before von Orel in the design and use of the 
Vivian Thompson Stereoplotter; he went on to design the Vivian Thompson Stereo-
planigraph, described in January 1908, about which Ε. H. Thompson was to write that 
it was "the first design for a completely automatic and thoroughly rigorous photogram-
metric plotting instrument". The von Orel and the Thompson instruments were both 
used successfully in practical mapping, Vivian Thompson's having been used by the 
Survey of India which bought two of the instruments. 

The advantages of photography from an aerial platform, rather than from a ground 
point, are obvious, both for reconnaissance and for survey; in 1858 Nadar, a Paris 
photographer, took the first such picture, from a hot-air balloon 1200 feet above that 
city, and in the following year he was ordered by Napoleon to obtain reconnaissance 
photographs in preparation for the Battle of Solferino. It is reputed that balloon pho-
tography was used during the following decade in the American Civil War. The rapid 
development of aviation which began shortly before the first World War had a decisive 
influence on the course of photogrammetry. Not only is the Earth, photographed ver-
tically from above, an almost ideal subject for the photogrammetric method, but also 
aircraft made almost all parts of the Earth accessible at high speed. In the first half, and 
more, of the 20th century these favourable circumstances allowed impressive develop-
ment in photogrammetry, although the tremendous economic benefit in air survey was 
not fully felt until the middle of that century. On the other hand, while stereoscopy 
opened the way for the application of photogrammetry to the most complex surfaces 
such as might be found in close range work, not only is the geometry in such cases of-
ten far from ideal photogrammetrically but also there was no corresponding economic 
advantage to promote its application. 

In the period before the first World War all the major powers followed similar paths in 
the development of photogrammetry. After the war, although there was considerable 
opposition from surveyors to the use of photographs and analogue instruments for map-
ping, the development of stereoscopic measuring instruments forged ahead remarkably 
in very many countries; while the continental European countries broadly speaking 
put most of their effort into instrumental methods, Germany and the Austro-Hungarian 
Empire having a clear lead in this field, the English-speaking countries focused on 
graphical techniques. It is probably true that until about the 1930s the instrumen-
tal techniques could not compete in cost or efficiency with the British and American 
methods. 



6 Chapter 1 Introduction 

Zeiss, in the period following WWI, was well ahead in the design and manufacture 
of photogrammetric instruments, benefiting from the work of leading figures such as 
Pulfrich, von Orel, Bauersfeld, Sander and von Gruber. In Italy, around 1920, Santoni 
produced a prototype, the first of many mechanical projection instruments designed 
throughout his lifetime, while the Nistri brothers developed an optical projection plot-
ter, shortly afterwards founding the instrument firm OMI. Poivilliers in France began 
the design and construction of analogue photogrammetric plotters in the early 1920s. 
In Switzerland the scene was dominated by Wild whose company began to produce in-
strumentation for terrestrial photogrammetry at about the same time; Wild Heerbrugg 
very rapidly developed into a major player, not only in photogrammetric instrumenta-
tion, including aerial cameras, but also in the wider survey world. As early as 1933 
Wild stereometric cameras were being manufactured and were in use by Swiss po-
lice for the mapping of accident sites, using the Wild A4 Stereoautograph, a plotter 
especially designed for this purpose. Despite the ultra-conservative establishment in 
the British survey world at that time, Ε. H. Thompson was able to design and build a 
stereoplotter in the late 1930s influenced by the ideas of Fourcade. While the one such 
instrument in existence was destroyed by aerial bombing, the Thompson-Watts plotter 
was later based on this prototype in the 1950s. 

Meanwhile, non-topographic use was sporadic for the reasons that there were few suit-
able cameras and that analogue plotters imposed severe restrictions on principal dis-
tance, on image format and on disposition and tilts of cameras. 

The 1950s saw the beginnings of the period of analytical photogrammetry. The expand-
ing use of digital, electronic computers in that decade engendered widespread interest 
in the purely analytical or numerical approach to photogrammetry as against the pre-
vailing analogue methods. While analogue computation is inflexible, in regard to both 
input parameters and output results, and its accuracy is limited by physical properties, 
a numerical method allows virtually unlimited accuracy of computation and its flex-
ibility is bounded only by the mathematical model on which it is based. Above all, 
it permits over-determination which may improve precision, lead to the detection of 
gross errors and provide valuable statistical information about the measurements and 
the results. The first analytical applications were to photogrammetric triangulation, a 
technique which permits a significant reduction in the amount of ground control re-
quired when mapping from a strip or a block of aerial photographs; because of the very 
high cost of field survey for control, such techniques had long been investigated. In 
the 1930s, the slotted template method of triangulation in plan was developed in the 
USA, based on theoretical work by Adams, Finsterwalder and Hotine. Up until the 
1960s vast areas were mapped in the USA and Australia using this technique in plan 
and one of the many versions of the simple optical-projection Multiplex plotters both 
for triangulation in height and for plotting of detail. At the same time, precise analogue 
instruments such as the Zeiss C8 and the Wild A7 were being widely used for analogue 
triangulation in three dimensions. 

Analytical photogrammetric triangulation is a method, using numerical data, of point 
determination involving the simultaneous three-dimensional orientation of all the pho-
tographs and taking all inter-relations into account. Work on this line of development 
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had appeared before WWII, long before the development of electronic computers. An-
alytical triangulation demanded instruments to measure photo coordinates. The first 
stereocomparator designed specifically for use with aerial photographs was the Cam-
bridge Stereocomparator designed in 1937 by Ε. H. Thompson. Electronic recording 
of data for input to computers became possible and by the mid-1950s there were five 
automatic recording stereocomparators on the market and monocomparators designed 
for use with aerial photographs also appeared. 

Seminal papers by Schmid and Brown in the late 1950s laid the foundations for theo-
retically rigorous photogrammetric triangulation. A number of block adjustment pro-
grams for air survey were developed and became commercially available, such as those 
by Ackermann. 

Subsequently, stereoplotters were equipped with devices to record model coordinates 
for input to electronic computers. Arising from the pioneering ideas of Helava, comput-
ers were incorporated in stereoplotters themselves, resulting in analytical stereoplotters 
with fully numerical reconstruction of the photogrammetric models. Bendix/OMI de-
veloped the first analytical plotter, the AP/C, in 1964; during the following two decades 
analytical stereoplotters were produced by the major instrument companies and others. 

Photogrammetry has progressed as supporting sciences and technologies have supplied 
the means such as better glass, photographic film emulsions, plastic film material, aero-
planes, lens design and manufacture, mechanical design of cameras, flight navigation 
systems. Progress in space technology (both for imaging, in particular after the launch 
of SPOT-1 in 1986, and for positioning both on the ground and in-flight by GNSS) and 
the continuing explosion in electronic information processing have profound implica-
tions for photogrammetry. 

The introduction of digital cameras into a photogrammetric system allows automation, 
nowhere more completely than in industrial photogrammetry, but also in mapping. 
Advanced computer technology enables the processing of digital images, particularly 
for automatic recognition and measurement of image features, including pattern cor-
relation for determining object surfaces. Procedures in which both the image and its 
photogrammetric processing are digital are often referred to as digital photogrammetry. 

Interactive digital stereo systems (e.g. Leica/Helava DSP, Zeiss PHODIS) have existed 
since around 1988 (Kern DSP 1) and have increasingly replaced analytical plotters. 
To some extent, photogrammetry has been de-skilled and made available directly to a 
wide range of users. Space imagery is commonplace, as exemplified by Google Earth. 
Photogrammetric measurement may be made by miscellaneous users with little or no 
knowledge of the subject—police, architects, model builders for example. 

Although development continues apace, photogrammetry is a mature technology with 
a history of remarkable success. At the start of the 20th century topographic mapping 
of high quality existed, in general, only in parts of Europe, North America and India. 
Although adequate mapping is acknowledged as necessary for development but is still 
lacking in large parts of the world, such deficiencies arise for political and economic 
reasons, not for technical reasons. Photogrammetry has revolutionized cartography. 
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Chapter 2 

Preparatory remarks on mathematics 
and digital image processing 

Section 2.1 concerns itself entirely with introductory mathematics. Section 2.2 includes 
notes on digital image processing in preparation for procedures of digital photogram-
metric processing. 

2.1 Preparatory mathematical remarks 

The various techniques for photogrammetric processing assume knowledge of basic 
mathematics. While important mathematical matters may have been treated in lec-
tures and textbooks, some mathematical themes of importance for photogrammetry are 
compiled in what follows. 

2.1.1 Rotation in a plane, similarity and affine transformations 

Given, a point P(x, y) in a plane coordinate system (see Figure 2.1-1) which has been 
rotated through an angle a in an counterclockwise direction relative to a fixed coordi-
nate system, we wish to find the coordinates (X, Y) of the point Ρ with respect to the 
fixed coordinate system. 

If we introduce the cosines of the angles between the coordinate axes and use matrix 
notation we have: 

X = χ cos a — y sin α 
y = χ sin a + y cos a (2.1-1) 

c o s ( Z x X ) c o s ( Z y X ) 
c o s ( Z x Y ) c o s ( Z y Y ) (2.1-2) 

Representing matrices and vectors by means of bold symbols this becomes: 

X = Rx , (2.1-3) 

R is called a rotation matrix. It is square but not symmetric. The elements of R are the 
cosines of the angles between the coordinate axes. 
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Figure 2.1-1: Plane rotation Figure 2.1-2: Introduction of the unit 
vectors 

Properties of the rotation matrix R 

The question arises whether the four elements r ^ may be freely chosen or whether they 
must satisfy certain conditions. To answer this question we introduce the unit vectors 
i and j (Figure 2.1-2) along the coordinate axes χ and y. We express their components 
in the XY system as: 

i = / c o s o A (2.1-4) 
y sin a J J \ cos a J v ' 

A comparison between Equations (2.1-1) and (2.1-4) shows that the elements r,k of the 
rotation matrix are none other than the components of the unit vectors i and j. 

R = ( i , j) (2.1-5) 

The two mutually orthogonal unit vectors must, however, satisfy the orthogonality con-
ditions in Equation (2.1-6)'. These conditions are formulated in Equation (2.1-6) as 
inner, or scalar, products of the two vectors in which transposition is signified by the 
superscriptT. 

iT i = cos2 α + sin2 α = 1 = r2, + r\x 

j T j = sin2 α + cos2 α = 1 = r\2 + r2
2 (2.1-6) 

i T j = — cos α sin α + sin α cos α = 0 = τ \ \τη + τι\τ22 

A matrix which satisfies the orthogonality conditions is known as an orthogonal ma-
trix2. If the four elements of the rotation matrix must satisfy the three orthogonality 

1 More strictly, one orthogonal condition and two normalizing conditions. 
2In amplification of the preceding footnote, when d e t R = 1 the matrix is said to be a proper or-

thogonal matrix and when det R = — 1 the matrix is said to be improper. In the latter case the matrix 
represents a rotation and a reflection. 
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conditions, only one parameter may be freely chosen; in general this parameter is the 
rotation angle a. 

Numerical Example. 
f x \ - f 0 3 6 0 6 9 ^ f x \ 
[ Υ J ~ \ 0.19 0.27 J [ y j 

In the above case, the orthogonality conditions are not fulfilled; the transformation does 
not represent a rotation. We deal with this transformation at the end of this section. 

( X \ _ ( 0.6234 -0.7819 \ f x \ 
\Y ) ~ V 0.7819 0.6234 ) \y ) 

Here the orthogonality conditions are fulfilled; this means that under this transforma-
tion a field of points will be rotated. 

Exercise 2.1-1. Consider a rectangle in an xy system, the vertices being transformed 
into the XY system using the matrices of both numerical examples. Using the results, 
consider the characteristics of both transformations. 

Exercise 2.1-2. Think about the characteristics of the transformation when just one of 
the three orthogonality conditions of Equation (2.1-6) is not fulfilled. 

Exercise 2.1-3. Consider a matrix which brings about both a rotation and a mirror 
reflection. (Answer: rn = cos a ; r n = sin a ; r2\ = sin α; Γ22 = — cos a). 

Inverting the rotation matrix R 

By definition, multiplication of the inverted matrix R _ 1 by the matrix R gives the unit 
matrix I: 

R _ 1 R — I 

On the other hand multiplication of the transposed matrix R T with the matrix R also 
gives the unit matrix (Equations (2.1-5) and (2.1-6)): 

As a consequence, we see that the following important result holds for the rotation 
matrix: 

R _ 1 = R T (2.1-7) 

Reverse transformation 

If one wishes to transform points from the fixed XY system into the xy system, one 
obtains the desired rotation matrix as follows: 
From Equation (2.1-3): 

X = R x 
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Premultiplication by R T gives: 

R T X = R T R x = Ix = χ 

Rewriting this result: 

χ = R T X = r\ι r21 
r 12 r22 

Exercise 2.1-4. How would Equations (2.1-1), (2.1-2), (2.1-4) and (2.1-5) appear if 
the rotation of the xy system had been made in a clockwise sense with respect to the 
X Y system? 

A transformation with a non-orthogonal matrix (see the first numerical example) is 
known as an affine transformation. It has the following characteristics: 

• orthogonal straight lines defined, for example, by three points in the xy system 
are no longer orthogonal after the transformation. 

• parallel straight lines defined, for example, by four points in the xy system, re-
main parallel after the transformation. 

• line-segments between two points in the xy system exhibit a different length after 
the transformation. 

• on the other hand, the ratio of the lengths of two parallel line segments is invariant 
under the transformation. 

The affine transformation is of the form: 

• αιο and a2o are two translations (or, more exactly, the X Y coordinates of the 
origin of the xy system) and 

• oil, a n , a2i and a22 are four elements which do not satisfy the orthogonality 
conditions of Equation (2.1-6) and which consequently allow not only different 
scales in the two coordinate directions but also independent rotations of the two 
coordinate axes. 

In order to determine the six parameters α ^ one requires at least three common points 
in both coordinate systems. 

Numerical Example. Given three points with their coordinates in both systems, we 
wish to find the six parameters a ^ of the affine transformation. 

(2.1-8) 

in which 



14 Chapter 2 Preparatory remarks on mathematics and digital image processing 

Pt.No. X y X Y 
23 0.3035 0.5951 3322 1168 
24 0.1926 0.6028 3403 2061 
50 0.3038 0.4035 1777 1197 

Using the linear Equations (2.1-8) we obtain the following system of equations 

/ I 0.3035 0.5951 \ ( «10 \ / 3322 \ 
1 0.3035 0.5951 O20 1168 

1 0.1926 0.6028 a n 3403 
1 0.1926 0.6028 an 2061 

1 0.3038 0.4035 a21 1777 

V 1 0.3038 0.4035 y \ «22 / 1,1197 ) 

of which the solution is 

fX \ _ f-1425 \ / - 1 7 1 . 5 8063.4 λ f x\ 
3713 / \ —8063.7 164.0 J J 

One obtains a similarity transformation by replacing the nonorthogonal matrix A of 
Equation (2.1-8) with an (orthogonal) rotation matrix R and introducing a unit scale 
factor, m. The similarity transformation is of the form: 

In order to determine the four parameters of the plane similarity transformation (two 
translations αιο and 020, a scale factor m and, for example, a rotation angle a of the 
rotation matrix R ) one requires at least two common points in each coordinate system. 
The solution of this problem is discussed in Section 5.2.1. 

Note: a square in the xy system remains a square after the transformation; it is simply 
shifted, rotated and changed in scale. Against that, after an affine transformation it 
becomes a parallelogram. 

2.1.2 Rotation, affine and similarity transformations in 
three-dimensional space 

Based on Equation (2.1-2), the rotation in space of a point Ρ with coordinates (x, y, ζ) 
in a fixed coordinate system, X Y Z , may be formulated as follows, using the cosines 
of the angles between the coordinate axes: 

f X \ /cos (ZxX) cos (ZyX) cos {ZzX) \ f x\ 

y = cos (ZxY) cos (ZyY) cos (ZzY) 2/ (2.1-10) 
\Z J \ cos (ZxZ) cos (ZyZ) cos (ZzZ) ) \z J 
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Figure 2.1-3: Rotation in three-dimensional space 

X = R x ; 
m Π2 n 3 

R . = I Γ21 T-22 r23 
r-ii r 3 2 r 3 3 

(2.1-11) 

In a similar manner to that of Equation (2.1-5), the matrix R can be formed from the 
three unit vectors shown in Figure 2.1-3; R = (i, j , k).3 It is simple to write out the 
following six orthogonality4 relationships among the nine elements rik for the three-
dimensional case. 

i T i - j T j 
i T j = j T k = 

= k ' k = 1 
k T i = 0 

(2.1-12) 

That is, a rotation in three dimensions is prescribed by three independent parameters. 
In photogrammetry we frequently use three rotation angles ω, φ and κ about the three 
coordinate axes. In this case, a hierarchy of axes is to be observed, as can be clearly 
demonstrated with gimbal (or Cardan) axes (Figure 2.1-4): 

The three unit vectors with their components n t are related, through their vector products, as fol-
lows: 

= j x k = 

+ 

Γ22 Γ23 
T32 f"33 

r 12 ΤΊ3 
?"32 3̂3 

r\2 ri3 
Γ22 V23 

Γ22Γ33 — Γ32Γ23 
r32r-l3 — Γ12Γ33 
rnrn — Γ22Π3 

j = k χ i 
k = i x j 

4More accurately, three orthogonality conditions and three normalizing conditions (see also the foot-
note to Equation (2.1-6) on page 11). 
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κ 

c i ? 

<T> 
φ 

Figure 2.1-4: Rotations about the axes in gimbals 

X =X(o 

primary secondary tertiary 

Figure 2.1-5: Hierarchy of the three rotations about the coordinate axes 

If one performs an ω rotation, the attitudes in space of the other two axes are changed 
accordingly. If, however, one rotates in φ, only the κ axis, and not the ω axis, is 
affected. Rotation about the κ axis changes the attitude of neither of the other two axes. 
An arbitrary rotation of the xyz system as illustrated in Figure 2.1-3 can therefore be 
effected by means of three rotations ω, φ and κ. In each case the rotation is to be seen 
as counterclockwise when viewed along the axis towards the origin. 

The transformation into the X Y Z system of a point P , given in the xyz coordinate 
system, may therefore be defined in terms of the three rotation angles ω, φ and κ. In 
this case the matrix R of Equation (2.1-11) has the form5 (see Appendix 2.1-1): 

5 In the following equation, the functions cos and sin are abbreviated by c and s, respectively. 
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'ωφκ — (2.1-13) 

Exercise 2.1-5. Show, using trigonometrical relationships, that the nine elements of 
the rotation matrix (2.1-13) fulfill the orthogonality conditions (2.1-12). 

If the sequence of the rotations is defined in a different order, the elements of the matrix 
(2.1-13) are also changed (see Appendix 2.1-1 and especially Section Β 3.4, Volume 2). 
As in Equation (2.1-7) the inverse of the rotation matrix, R _ 1 , is the transposed matrix 
R T , by virtue of the orthogonality conditions (2.1-12). To summarize, three differ-
ent interpretations have been given for the elements of the three-dimensional rotation 
matrix R: 

• cosines of the angles between the axes of the two coordinate systems 

• components of the unit vectors of the rotated coordinate axes with respect to the 
fixed system 

• trigonometric functions of rotation angles about the three axes of a gimbal system 

Two successive rotations 
First rotation: X] = R i x 
Second rotation: X2 = R2X1 
Complete rotation: 

By multiplication, the rotation matrices, Ri and R2, are combined as a single rotation 
matrix R: 

Since matrix multiplication is not commutative, the order of multiplication of the ma-
trices must be strictly observed. In the transposed matrix R T the sequence must be 
reversed: 

Xi = R2 R1 χ = Rx (2.1-14) 

R — R2R1 (2.1-15) 

RT — ( R 2 R i ) t — R { R j (2.1-16) 

Example (of Equation (2.1-13)). 
Given: ω = —1.3948 gon = - Γ 1 5 Ί 9 " 

ψ = 0.1041 gon = 5'37" 
κ = -0.8479 gon = -45'47" 

Required: elements of the rotation matrix R 
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Checks (see also Appendix 2.1-1): 

sin</j = rj3 =>• ψ — 
tan κ = —r\2/r\\ =>· κ = 
tana; = — r23/r33 =φ· ω — 

0.1041 gon 
-0 .8479 gon 
-1 .3948 gon 

5'37" 
—45'47" 

—1°15'19" 

The nine elements r^ must satisfy the orthogonality conditions6; one checks that 
R T R = I: 

( 0.999910 0.013319 0.001635 
-0.013351 0.999671 0.021907 

\ -0 .001343 -0 .021927 0.999759 

0.013351 -0 .001343 \ / 1.000000 0.000001 0.000000 
0.999671 -0.021927 0.000001 1.000000 0.000000 
0.021907 0.999759 V 0.000000 0.000000 1.000001 

0.999910 
0.013319 
0.001635 

Example (of Equation (2.1-14)). We are given a point Ρ in an xyz system which is 
rotated by ωι, φ\, κ\ relative to an X\Y\Z\ coordinate system. The X\Y\Z\ system is 
then rotated by ωι, ψ2, «2 relative to an X2Y2Z2 system. 

We wish to find the final coordinates Χι, Y2, Z2 of the point Ρ and the angles ω, ψ, κ 
by which the xyz system is rotated relative to an X2Y2Z2 system. 

Given coordinates of P: 

χ = 
-43 .461 
-83 .699 
152.670 

First rotation: 
ωι 
Ψ\ 
Κ\ 

Second rotation: 

R i = 

U>2 
Ψ2 
K2 

r 2 = ι -

-1 .3948 gon = -1°15'19" 
+0.1041 gon = 5'37" 
-0 .8479 gon = -45'47" 

0.999910 0.013319 0.001635 
-0.013351 0.999671 0.021907 
-0.001343 -0 .021927 0.999759 

-0 .1726 gon = 
-1 .0853 gon = 

-101.3223 gon = 

-9 '19" 
-58'36" 

-91°11'24" 

0.020770 0.999639 -0 .017047' 
0.999782 -0 .020727 0.002710 
0.002355 0.017100 0.999851 

For didactical reasons, the notation of a matrix multiplication A B = C is often written in "Falk's 

scheme": Β 
A C 
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First solution (two stage) 
First rotation of Ρ (to XxY\ Zx) 

0.999910 0.013319 0.001635' 
-0.013351 0.999671 0.021907 
-0.001343 -0.021927 0.999759 

Second rotation of Ρ (to X2Y2Z2) 

-0.020770 0.999639 -0.017047 \ 
-0.999782 -0.020727 0.002710 

0.002355 0.017100 0.999851 / 

-43.461 
-83.699 
152.670 

-44.3223' 
-79.7467 
154.5268 

-44.3223 
-79.7467 
154.5268 

' -81 .432 ' 
46.384 

153.036 

= Xi = R i x 

X2 — R2X1 

Second solution (one stage) 
Rotation matrix R = R2R1 for the combined rotations: 

0.999910 
-0.013351 
-0.001343 

0.013319 0.001635 
0.999671 0.021907 

-0.021927 0.999759 

-0.020770 0.999639 -0.017047 \ 
-0.999782 -0.020727 0.002710 
0.002355 0.017100 0.999851 J 

Transformation of Ρ (to X2Y2Z2)'· 

-0.034091 
-0.999419 

0.000784 

0.999407 0.004822 
-0.034096 0.000621 
-0.004798 0.999988 

-0.034091 0.999407 0.004822 
-0.999419 -0.034096 0.000621 

0.000784 -0.004798 0.999988 

-43.461 
-83.699 
152.670 

-81 .432' 
46.384 

153.036 
= X 2 = R x 

From the definition of the elements of the rotation matrix R (see Equation (2.1-13)) 
calculate the angles ω, ψ and κ through which the point Ρ has been rotated with respect 
to the X2Y2Z2 system. 

ω = -0 .0396 gon = -2Ό8" 
φ = 0.3070 gon = 16'35" 
κ = -102.1708 gon = - 9 Ρ 5 7 Ί 3 " 

Note: ωι + is not equal to ω; similarly for φ and κ. 
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Exercise 2.1-6. Transform the rotated point Ρ (X2, Yi, Ζ2) back into the xyz system, 
in two stages and in one stage. 

In three-dimensional space also, a transformation with a non-orthogonal matrix is 
called an affine transformation. The characteristics of the plane affine transforma-
tion apply also to a three-dimensional affine transformation (see Section 2.1.1). The 
three-dimensional affine transformation has the form: 

X \ / α ι ο \ ί an a i 2 a i 3 \ / 
γ = Ö20 + I a-21 0,22 0,23 I 2/ I ; X = ao + Ax (2.1-17) 
Ζ ) \ α30 / \ α31 <232 a33 / \z ) 

in which: 

• aio. a20 and a^o are three translations (alternatively, the XYZ coordinates of the 
origin of the xyz system). 

• αϊ ι, a i2 , . . . , 033 are the nine elements of R; they do not satisfy the orthogonality 
conditions (2.1-12) and consequently they admit not only different scales in the 
three coordinate directions but also six independent angles of rotation of the three 
coordinate axes (Note: a coordinate axis is defined by two angles). 

In order to determine the 12 parameters a^ , one requires at least four corresponding 
points in each coordinate system (by reason of this number of parameters one speaks 
sometimes of a 12 parameter transformation. Section 4.4.3 contains a numerical exam-
pie). 

The three-dimensional similarity transformation follows from this if one substitutes 
an (orthogonal) rotation matrix R for the non-orthogonal matrix A and introduces 
a uniform scale factor m. The three-dimensional similarity transformation has the 
following form: 

X\ ( flio \ / Πι Π2 rl3\ / x\ 
Y = fl20 + rn r2i r22 r23 y ; X = ao + mRx (2.1-18) 
z J \ <230 / \ r31 7-32 r-33 / \z ) 

For the determination of the seven parameters of a three-dimensional similarity trans-
formation (three translations αιο, «20 and 030, one scale factor m and three rotation 
angles ω, ψ and κ defining R as in Equation (2.1-13)), at least seven suitable equations 
are required. These equations (for example, two in X, two in Y and three in Z) may 
be obtained from three corresponding points in the two systems. The solution of this 
non-linear problem is dealt with in Section 4.1.1. 

Note: a cube remains a cube after a three-dimensional similarity transformation; it 
is simply translated, rotated and changed in scale. After an affine transformation it 
becomes a parallelepiped. 
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Figure 2.1-6: Positive and 
negative positions 
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Figure 2.1-7: Metric image 

2.1.3 Central projection in three-dimensional space 

To be able to reconstruct the position and shape of objects we must know the geometry 
of the image forming system. Many of the cameras used in photogrammetry, some-
times known as metric cameras, produce photographs which can be considered, with 
adequate accuracy, as central projections of the three-dimensional objects in view. (In 
Sections 2.1.3 to 2.1.7 we generally assume that we are dealing with analogue pictures.) 
Figures 2.1-6 and 2.1-7 show some definitions. 

Ο . . . centre of perspective of a three-dimensional bundle of rays (also, the 
camera location) 

PP . . . principal point with coordinates ξο,ηο 
c ... principal distance (sometimes referred to as the camera constant) 

Μ . . . fiducial centre (as a coarse approximation, the point of intersection of 
the straight lines joining the fiducial marks) 

The relationship between the coordinates ξ and η of an image point P' and the coordi-
nates Χ,Υ,Ζ of an object point Ρ is illustrated in Figure 2.1-8 and is mathematically 
formulated in Equation (2.1-19)7 (for the derivation of these collinearity equations, as 
they are usually called, see Appendix 2.1-2). 

7Notation used in this book: 

ξ,η ... two-dimensional image coordinates 
x,y,z ... coordinates in a local three-dimensional coordinate system (frequently model 

coordinates) 
Χ,Υ,Ζ ... coordinates in a control coordinate system (sometimes called a global system; 

frequently the national coordinate system) 
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Figure 2.1-8: Relationship between image and object coordinates 

r „ (Χ - X0) + r2i (Y - Yp) + r3i {Z - Zp) 
ξ ξ 0 Cm {X - Xo) + 7-23 (Y - Yo) + r33 (z - Zo) 

(2.1-19) 
m (X - Xo) + 7-22 (Y - Yo) + r 3 2 (Z - Zo) 

η ηο Cru(X-Xo) + r23(Y-Yo) + r33(Z-Zo) 

The parameters r,^. appearing in Equations (2.1-19) are the elements of the rotation 
matrix R which in this case describes the three-dimensional attitude, or orientation, 
of the image with respect to the X Y Z object coordinate system. If so desired, the 
elements rik can be expressed in accordance with Equation (2.1-13) in terms of the 
three angles ω, φ and κ, which are, respectively, rotations about the X axis, the Υω axis 
and the Ζωφ axis, as defined in Figure 2.1-5. 

Solving the Equations (2.1-19) for the object coordinates X and Y gives: 

X = X0 + (Z- Zo) 

Y = Y0 + (Z- Z0) 

Πι (ξ - ξο) + Π2 (η - ηο) - rue 
Γ31 {ξ - ξο) + 7-32 (ν - ηο) - T-33C 

7-21 (ξ ~ ξθ) + 7-22 (η ~ ηο) ~ T-23C 
Γ31 (ξ ~ ξθ) + 1*32 {η ~ ηο) - 7*33C 

(2.1-20) 
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Equations (2.1-19) mean that to each object point there is one image point. Equa-
tions (2.1-20) draw our attention to the fact that, because the Ζ coordinates are on the 
right hand side, to each image point there are infinitely many possible object points. 
From a single metric image alone it is not possible to reconstruct a three-dimensional 
object. To do so one also needs either a second metric image of the same object taken 
from a different place or additional information about the Ζ coordinate (for example 
the information that all object points lie on a horizontal plane of known height). 

The transformations formulated in Equations (2.1-19) and (2.1-20) assume a know-
ledge of the following independent values: 

ξο, Vo • · · image coordinates of the principal point P P ^ j 21) 
c . . . principal distance 

The above three parameters are known as the elements of interior orientation8. They 
fix the centre of projection of the three-dimensional bundle of rays with respect to the 
image plane. 

The following six parameters are the elements of exterior orientation. They define the 
position and attitude of the three-dimensional bundle of rays with respect to the object 
coordinate system. 

Χο,Υο,Ζο . . . object coordinates of the camera station ^ 
3 parameters defining the rotations of the image (for example, ω, ψ, κ) 

To specify the central projection of an image a total of nine parameters is required, 
which may be determined in various ways. The values of the three constants of interior 
orientation are specific to the camera and are normally determined, at least in the first 
instance, by the manufacturer in the laboratory. He tries to ensure that, as closely 
as possible, the fiducial centre coincides with the principal point (ξο = ηο = 0). In 
terrestrial photogrammetry the six elements of exterior orientation can be established 
directly. On the other hand, the elements of exterior orientation of an individual image 
from a photographic flight are not known with sufficient accuracy—unless GPS (Global 
Position System) and an IMU (Inertial Measurement Unit), both very expensive, are 
installed. An alternative, indirect method must be used, involving control points; these 
are points for which both image coordinates and object coordinates are known. If the 
interior orientation is known one requires three control points, for each control point 
yields two Equations (2.1-19) from which the exterior orientation may be computed. 

8In normal English, the orientation of an object implies direction or angular attitude. Photogrammet-
ric usage, deriving from German, applies the word to groups of camera parameters. Exterior orientation 
parameters incorporate this angular meaning but extend it to include position. Interior orientation para-
meters, which include a distance, two coordinates and a number of polynomial coefficients, involve no 
angular values; the use of the terminology here underlies the connection between two very important, 
basic groups of parameters. 



2 4 Chapter 2 Preparatory remarks on mathematics and digital image processing 

Example (with Equations (2.1-19)). 
Given: 

Interior orientation: 

Projection centre Ο: 

c — 152.67 mm 
ξο = 0.00 mm 
ηο — 0.00 mm 

/ 362530.603 \ 
X0 [m] = 61215.834 

\ 2005.742 J 

Rotation matrix: 

/ -0.034091 0.999407 0.004822 \ 
R = -0.999419 -0.034096 0.000621 

V 0.000784 -0.004798 0.999988 J 

Object coordinates of two points: 

/ 363552.124 \ / 362571.087' 
Pi [m] : 61488.048 P2 [m] : 61198.320 

\ 588.079/ \ 596.670 

To find: image coordinates of both points 

Solution with Equations (2.1-19): 

D / [ , f ζ — -33.288 λ p / r , ί ξ = 1.628 
P\ [ m m ] : U = 110.074) : L = 5.182 

2.1.4 Central projection and projective transformation of a plane 

Without restricting the generality of the statements, one can consider all the object 
points to lie in a plane (Z = 0 in Figure 2.1-8)9. Equations (2.1-20) then read as 
follows: 

= αιξ + α2η + ä 3 

ci£ + ο2η + c3 
(2.1-23) 

Υ _ + b2T? + h 
διξ + δ2η + c3 

9One finds the derivation for a sloping plane, which leads to the same result, in Mikhail, E., Bethel, 
J., McGlone, C.: Modern Photogrammetry. John Wiley & Sons, 2001. 
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The coefficients ait bi and c.t are related to the parameters of Equations (2.1-20) as 
follows: 

ä\ — Xorn - Z0rn 
02 = Χθ?32 ~ ZqT\2 

Dividing the numerators and denominators of Equations (2.1-23) by C3, we obtain the 
following expressions for the relationship between image ξ,η and object coordinates 
X,Y: 

_ α\ξ + α2η + a^ 
+ 02η+ I (2.1-24) 

ci£ + 02η + 1 
From these equations it follows that: 

• a single picture suffices for the reconstruction of a plane object. 

• eight independent parameters define the central projection of a plane object. 

The reduction in the number of independent parameters from nine to eight may, at 
first sight, seem surprising. It arises from the fact that, in the case of a plane object, 
relationships exist among the original nine elements. In the special case when the 
photograph and the plane object are parallel, it is easy to see (Figure 2.1-9) that Z0 and 
c are no longer independent of each other; we need only to know the ratio ZQ JC. 

Figure 2.1-9: Two geometrically identical metric images with different values of Zq 
and c, but with the same value of the ratio Z 0 / c 

We now turn to the question of how the eight parameters can be found in the general 
case and how other details may be determined from the photographs. Supposing that 



26 Chapter 2 Preparatory remarks on mathematics and digital image processing 

we have four control points10 (image and object coordinates known), then the eight co-
efficients can first be determined from Equations (2.1-24). Then the object coordinates 
Xi and Yi of each new point Pi can be determined from its image coordinates and 
m-

Numerical Example. We are given both the image coordinates and the object coordi-
nates of four control points A, B, C, D and the image coordinates of P, one of many 
new points for which the object coordinates are to be found. 

Image coordinates Object coordinates 
ξ [mm] η X [ m] Y 

A -33.288 110.074 1488.05 3552.12 
Β 32.183 101.785 2229.38 3507.46 
C -45.762 -74.337 1376.40 1899.76 
D 28.472 -96.643 2086.48 1600.12 
Ρ 1.628 5.182 ? ? 

After multiplication by the denominator from Equations (2.1-24) we obtain eight si-
multaneous linear equations of the form: 

ξαι + ηα2 + α3 - Χξο\ - Χηο2 = Χ 
ξ6ι + φ2 + b3 - Y^ci - Υηο2 = Υ 

/ - 0 . 0 3 3 2 8 8 0 . 1 1 0 0 7 4 1 0 0 0 4 9 . 5 3 4 - 1 6 3 . 7 9 6 \ / 0.1 \ ( 1 4 8 8 . 0 5 \ 
0 0 0 - 0 . 0 3 3 2 8 8 0 . 1 1 0 0 7 4 1 1 1 8 . 2 4 3 - 3 9 0 . 9 9 6 α ι 3 5 5 2 . 1 2 
0 . 0 3 2 1 8 3 0 . 1 0 1 7 8 5 1 0 0 0 - 7 1 . 7 4 8 - 2 2 6 . 9 1 7 a3 2 2 2 9 . 3 8 
0 0 0 0 . 0 3 2 1 8 3 0 . 1 0 1 7 8 5 1 - 1 1 2 . 8 8 1 - 3 5 7 . 0 0 7 bi 3 5 0 7 . 4 6 

- 0 . 0 4 5 7 6 2 - 0 . 0 7 4 3 3 7 1 0 0 0 6 2 . 9 8 7 1 0 2 . 3 1 7 ί>2 1 3 7 6 . 4 0 
0 0 0 - 0 . 0 4 5 7 6 2 - 0 . 0 7 4 3 3 7 1 8 6 . 9 3 7 1 4 1 . 2 2 2 b3 1 8 9 9 . 7 6 
0 . 0 2 8 4 7 2 - 0 . 0 9 6 6 4 3 1 0 0 0 - 5 9 . 4 0 6 2 0 1 . 6 4 4 Cl 2 0 8 6 . 4 8 

V 0 0 0 0 . 0 2 8 4 7 2 - 0 . 0 9 6 6 4 3 1 - 4 5 . 5 5 9 1 5 4 . 6 4 0 / \C2 J \ 1 6 0 0 . 1 2 / 

The solution of these equations is: 

a i = 8021.065 6, = -4066.292 Cl = -1.330 
a2 = -1084.217 b2 = 7360.815 c2 = -0.728 
a3 = 1821.069 b3 = 2479.221 

From Equations (2.1-24) the object coordinates of Ρ are: 

_ 8021.065 χ 0.001628 - 1084.217 χ 0.005182 + 1821.069 
-1.330 χ 0.001623 - 0.728 χ 0.005182 + 1 

= 1839.43 m 
_ -4066.292 χ 0.001628 + 7360.815 χ 0.005182 + 2479.221 

-1.330 χ 0.001628 - 0.728 χ 0.005182 + 1 
= 2525.74 m 

10If the interior orientation is known, three control points suffice (see Section 4.2.1). 
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In the special case where the image and object planes are parallel (that is to say, ω 
ψ = 0), the three-dimensional rotation matrix takes the form: 

cos κ — sin κ 0 ' 
R = I sin κ cos κ 0 

0 0 1 

Inserting R in Equation (2.1-20) gives: 

Z o 

X = X0 + — (cos κ (ξ - ξ0) - sin κ(η - η0)) 

Zo 

Υ = Yq + — (sin«(ξ - ft) +cosk(t? - η0)) 

Writing this in matrix notation and introducing the quantity mB = Zo/c we arrive at: 
Xo 
YQ 

m B 
cos κ — sin κ 
sin κ cos κ V-Vo 

(2.1-25) 

Taking Section 2.1.1 into account, one reaches the conclusion that in this special case, 
the photographic image is geometrically equivalent to a map; it is only an object plane 
reduced in scale (as well as rotated and translated). Equation (2.1-25) is a plane simi-
larity transformation (2.1-9). The image scale, or the map scale11, is 1 : where: 

m B = 
Zo (2.1-26) 

Equation (2.1-26) can also be derived geometri- ___ 
cally (Figure 2.1-10): cj_ 

If we assume not only that the image plane is par-
allel to the X Y plane of the object coordinate sys-
tem but also that z° 

then 

K = X0 = Y0= ξ0 = η q = 0 

s c 1 
— = — — const. = 
S Z0 rnB Figure 2.1-10: Image as map 

Example. Camera axis perpendicular to the fa£ade (c = 157.65 mm, Zo = 50.4 m). 
See Figure 2.1-11. 

11A scale is defined by the ratio 1 : me- We call m e the scale number. 
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Figure 2.1-11: Image scale = map scale 

Exercise 2.1-7. What would be the maximum error to be found in this "photographic 
map" (an orthophoto) if an element of the fagade projected 50 cm from the plane de-
fined as ZQ — 50.4 m? (For the solution see Equation (7.2-1) or Exercise 7.2-1.) 

Comment: With the expression (2.1-24), which portrays the relationship between XY 
coordinates in the object plane and ξη coordinates in the image plane, we depart from 
the idea of a central perspective bundle of rays. In place of the central perspective 
bundle of rays with its nine elements of interior and exterior orientation, projective 
geometry provides the mathematical relationship between a plane object and its image. 
(Employing projective geometry one can write the mathematical relationship between 
an object (a plane or a straight line) and its image as created by central perspective 
without making use of the position and orientation of the image in relation to the ob-
ject.) 

Projective geometry is an alternative to central perspective with the following charac-
teristics: 

• the mathematical relationship is linear as opposed to the non-linear bundle Equa-
tion (2.1-19). 

• as a result, no initial values are necessary when, for example, the transformation 
parameters have to be computed by means of control points. 

• the elements of interior orientation are not necessary; this means that projective 
geometry is very suitable for non-metric images, such as amateur pictures. 

• even if the elements of interior orientation are known, as with metric images, one 
cannot make use of them, except indirectly. 
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• the affine transformation, the characteristics of which are enumerated in Sec-
tion 2.1.1, is included as a special case in the projective transformation Equa-
tions (2.1-24). (If one puts c\ = C2 = 0, one obtains the affine transforma-
tion with its six parameters. Against that, central perspective (collinearity) equa-
tions (2.1-19) or (2.1-20) cannot be applied to images which have been produced 
by means of an affine process.) 

Exercise 2.1-8. Given four control points in the ξη image system (1(0,0), 2(1,0), 
3(0,1), 4(1,1)) and in the X Y object system (1(0,0), 2(2,0), 3(0,4), 4(2,4)), as 
well as the ξη coordinates of a new point 5(0.5,0.5), find the eight parameters of the 
projective transformation using Equations (2.1-24) and also the object coordinates of 
the new point. (Solution: αϊ = 2, ü2 = 0, 03 = 0, &ι = 0, 62 = 4, 63 = 0, c\ = 0, 
C2 = 0; X Y coordinates of the new point, 5, are (1,2). Comment: The projective 
transformation (2.1-24) even deals with this typical affine deformation.) 

2.1.5 Central projection and projective transformation of the straight 
line 

Without loss of generality, the X axis (Y = 0) and the ξ axis (η — 0) can be adopted 
as the corresponding straight lines in the object plane and the image plane respectively. 
From the first of the two Equations (2.1-24) we then obtain the following equation: 

χ = 0 ^ + 0 3 
+ 1 

The three coefficients 01, <23 and ci describe the central projection of a straight line. 
They can be determined from three control points; every other point on the line in the 
image can subsequently be transformed into the object line. 

Equation (2.1-27) evolves from the projective transformation (2.1-24) in which the 
elements of interior and exterior orientation are unknown. In projective geometry one 
may prefer to use the cross-ratio, rather than Equation (2.1-27); the cross-ratio for four 
collinear points is invariant under projective transformation and, it goes without saying, 
under central projection (see the second solution of the exercise below for a definition 
of the cross-ratio). 

Example (of the reconstruction of a straight line in the object space). We are given a 
photograph of a street with lane markings in a straight line APBQC (Figure 2.1-12). 
The lane marking AB is 4.50m in length and the separation BC is 5.00m. Points Ρ 
and Q on the skid marks are to be reconstructed. 

1st solution (using Equation (2.1-27)) 
Image and object coordinates of the three control points A, Β and C: 

ξ [mm] X[m] 
A 0.00 0.00 
Β 38.40 4.50 
C 68.30 9.50 
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Figure 2 . 1 - 12 : Straight lines in the image 

(2 .1 -27) for A: 0 = 

(2 .1 -27) for B: 4 . 5 0 = 

(2 .1 -27 ) for C: 9 . 50 = 

ojO + a3 
c i 0 + 1 

α ι 3 8 . 4 0 + α 3 

ci 3 8 . 4 0 + 1 

α ι 6 8 . 3 0 + ο 3 

c i 6 8 . 3 0 + 1 

a 3 = 0 

a i = 0 . 09747 

ci = - 0 . 0 0 4 3 8 

Substitution of the image coordinates ξρ and in Equation (2 .1 -27) gives Xp and 

Xq'· 

ξ [mm] X [ m ] 
Ρ 
Q 

33 . 50 
4 4 . 9 0 

3 .83 
5 .45 

2nd solution (using the cross-ratio) 

AB AC _ 
~PB'^C~ P'B' ' P'C' 

4 . 5 0 9 . 50 38 . 40 68 .30 

P B 5 .00 + P B 4 . 9 0 34 .80 

AB AC _ A'B' A'C' 
QB :QC~ ~ΟΒ' ' ~QC' 

4 .50 9 . 50 38 .40 68 .30 

QB 5 . 00 - QB 6 . 50 23 .40 

Ρ Β = 0 .67 

QB = 0 .95 

Exercise 2 .1-9 . Consider the solution if, instead of point C, the vanishing point F , 
with coordinate ξρ — 221 .0 mm is given; that is, Xf = 00. (Hint: X F must be infinite 
in Equation (2 .1-27) , as is achieved when 221 .0c i + 1 = 0 . ) (Solution: Xp = 3 .82 m, 
X Q = 5 . 46 m.) 
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Exercise 2.1-10. Show that for four points the four expressions (2.1 -27) can be inserted 
in the cross-ratio formulation. (Hint: Choose the origin of coordinates for both X and 
ξ in the point A: aj = 0.) 

2.1.6 Processing a stereopair in the "normal case" 

Photogrammetry is used above all for the reconstruction of three-dimensional objects 
from metric images. In Section 2.1.3 we reached the conclusion that two photographs 
of the same object are necessary for this. The analysis proves to be especially simple 
if both camera axes are normal to the base (the base is the straight line between the 
two perspective centres) and parallel to each other (Figure 2.1-13). This is known 
as the "normal case". This condition is very difficult to achieve in the case of aerial 
photographs although one seeks to approximate it as closely as possible. 

Xo\ = Yoi — Υθ2 = Ζοι = ζ02= 0 
X-02 = Β 
ξοι = ηοι = ξθ2 = = 0 
ωι = UJ2 = Ψ\ = Ψ2 = Κι = Κζ 

In the "normal case" the three-dimensional rotation matrix R (2.1-13) becomes the unit 
matrix for both pictures: 

1 o o 1 

R = I 0 1 0 
0 0 1 

In the "normal case" the relationship between image and object coordinates as formu-
lated in Equations (2.1-20) simplifies as follows: 
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Image 1 

X = Z — (2.1-28) 
—c 

Y = Z — (2.1-29) 

Image 2 

X = B + Z ^ - (2.1-30) 
—c 

Y = Z— (2.1-31) 
—c 

Equations (2.1-29) and (2.1-31) imply that: 

Vi = V2 => Vi ~ V2 — Ρη = 0 (no 77-parallaxes) 

Γ pi* 

Figure 2.1-14: Two metric images without η-parallaxes 

The final formulae for the calculation of the object coordinates Χ, Υ, Ζ from the 
image coordinates ξ and η follow from Equations (2.1-28) to (2.1-31). We begin with 

£1 £2 the Equations (2.1-28) and (2.1-30); that i s , - Z — = Β - Z - : 
c c 

Ζ - c B - — 
6 - 6 Ρς 

Y = - Z ^ - = (check) (2.1-32) 
c c 

X= -Z^ 
c 

The difference £1 — £2 — Ρς (£-parallax) can be measured directly in some photogram-
metric instruments (Section 6.4.1); in others the original image coordinates £t and £2 
are measured and the difference ρζ computed. Not only can the Formulae (2.1-32) be 
derived from Equations (2.1-20) but also, more simply, using ratios directly obvious 
from Figure 2.1-15. 
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Figure 2.1-15: Geometrical derivation of the relationships (2.1-32) 

Exercise 2.1-11. A statue is photographed with a stereometric camera (Section 3.8.2) 
conforming exactly to the "normal case" with base Β — 1.20 m and principal distance 
c = 64.20 mm. The values in the table below are measured in the image for points 
Ρ and Q. Calculate the length of the line-segment PQ in object space. (Answer: 
2.655 m.) 

6 [mm] 771 [mm] Pi mm] 
Ρ -3.624 34.202 18.321 
Q 29.876 14.809 16.983 

2.1.7 Error theory for the "normal case" 

Formulae (2.1-32) describe how we arrive at the object coordinates X, Y, and Ζ from 
the quantities which can be measured in the picture, ξι, η\ and £2 or, in other cases, 
Ρζ (the image coordinate ryi is usually also measured and provides a check). In this 
section we enquire into the accuracy of these indirectly acquired object coordinates. In 
so doing we assume that the values for both the principal distance c and the base Β are 
without error. 

From the first relationship in the Equations (2.1-32) one obtains the following expres-
sion for the mean-square error σζ· 

cB Ζ Ζ 
σζ — -yCp, = — (2.1-33) pi 4 c Β κ 

The ratio Β /Ζ is known as the base/distance ratio (or in the case of aerial photographs 
the base/height ratio). The ratio Z/c is called, from Equation (2.1-26), the photo-scale 
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number TUB although only in the special case of parallelism between object and im-
age planes can one speak with justification of a scale number for the whole picture 
(Section 2.1.4). The mean-square errors σχ and ay of the X and Y coordinates are 
then derived using the rules of error propagation applied to the corresponding Equa-
tions (2.1-32). 

Ζ Ζ2 

σζ = ™ΒβσΡξ = 

σ γ = ] J + ( § ' σ η ) = + ( τ η Β σ η ) 2 (2.1-34) 

σχ = \l{^mBBap() + ( m s c 7 « ) 2 

Numerical Example. 
Given12: Image coordinates ξ\ = ηι = 50 mm ± 7 μπι 

Accuracy of measured parallaxes σΡί = ±5 μπι 
Principal distance c = 150 mm 

To be found: the root mean square errors of the object coordinates as functions of 
the photo scale number and the base/distance ratio Β /Ζ . (Take note of the units of 
measurement shown in the last column.) 

B/Z = 1 : 1 Β/Ζ = 1 : 3 Β/Ζ = 1 : 10 Β/Ζ = 1 : 20 
mB σχ,γ σζ σχ,γ σζ σχ,γ σζ σχ,γ σζ Units 

50000 0.36 0.25 0.43 0.75 0.90 2.50 1.70 5.00 m 
10000 0.72 0.50 0.86 1.50 1.81 5.00 3.41 10.00 dm 

1000 0.72 0.50 0.86 1.50 1.81 5.00 3.41 10.00 cm 
100 0.72 0.50 0.86 1.50 1.81 5.00 3.41 10.00 mm 
25 0.18 0.13 0.22 0.38 0.45 1.25 0.85 2.50 mm 

Table 2.1-1: Accuracy of photogrammetry as a function of photo scale 1 : and of 
base-distance ratio Β jZ 

Using this table and the Formulae (2.1-34) we can make the following generalized 
statements concerning photogrammetric accuracy: 

• assuming a constant base/distance ratio, the root mean square errors in all three 
coordinates are directly proportional to the photo scale number. Any desired 
accuracy can, therefore, be achieved by means of an appropriate choice of photo 
scale. 

12Measurement accuracy will be more closely considered in Sections 4.6 and 6.1.1. 
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• for a constant photo scale, the root mean square error in the Ζ coordinate is in-
versely proportional to the base/distance ratio. The root mean square error in the 
XY coordinates, however, increases only slowly as the base/distance ratio de-
creases. If the base ratio is somewhat less than 1 : 1, all three object coordinates 
will be equally accurate. 

• with a constant base, the root mean square error in the Ζ coordinate increases as 
the square of the distance, Z, from the camera. 

For very rough estimation of accuracy: 

• for the moment, ignore the first term in the expressions for σχ and σγ from 
(2.1-34) and 

• replace the accuracies σξ, ση and σΡ( with a generalized accuracy figure for im-
age measurement σΒ · 

As a result we derive the following easily remembered rules of thumb: 

Ζ 
σζ — τηΒ~σΒ B (2.1-35) 

σχ = σγ = τηΒσΒ 

Exercise 2.1-12. Using a metric camera and the "normal" disposition of photographs a 
land-slide is to be monitored from a slope on the opposite side of a valley. An accuracy 
of σχ = σγ = σζ = ±10 cm is required. What is the greatest distance from which 
this land-slide can be monitored (measurement accuracy σΒ = ±6μιυ)? What base 
length should be chosen? Hint: One should use the Formulae (2.1-35). (Answer: 
Ζ — Β — 1666 m.) Supplementary exercise: How much can the base be reduced for 
areas at half the distance? (Answer: Β = 416 m, Β/Ζ = 1 : 2; in this case the root 
mean square error in the X and Y coordinates will be smaller than that demanded: 
σχ = σγ = ±5 cm.) 

Exercise 2.1-13. What is the root mean square error in the length of the line-segment 
PQ of Exercise 2.1-11? The values in the above table should be used for σξ, ση and 
σρ . (Answer: 2.655 m ± 1.0 mm.) 

2.2 Preliminary remarks on the digital processing of images 

The mathematical methods described in Section 2.1 are also, of course, necessary in 
digital photogrammetry. In addition one requires some procedures from digital image 
processing. In this section we cover some aspects of digital image processing which 
are of interest in photogrammetry. 
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2.2.1 The digital image 

An analogue photograph appears in a light-sensitive coating on a (tough) supporting 
layer. (In analogue or analytical photogrammetry the supporting layer is usually film.) 
A digital photograph is recorded by electronic means.13 

In analogue pictures geometrical shapes such as points, straight lines and so on are 
interpreted visually and are defined in an abstract way, as is customary in analytical 
geometry. The left of Figure 2.2-1 shows a straight line and six points as represented 
in analytical geometry or in an illustration. In Sections 2.1.3-2.1.6 everything is dealt 
with on the basis of such geometry. 

In digital images there are no abstract points and lines. Picture elements, usually 
square, take the place of image points. Instead of a straight line, which in analytical 
geometry runs from a point, we find a stepwise string of adjacent picture elements. 

The usual word for picture element is pixel. 

The right hand side of Figure 2.2-1 shows a digital image corresponding to the six 
points A-F and the straight line G. A digital image can be formed such that all pixels 
which lie on points and lines receive a value which stands out against the value of the 
background pixels. The two images in Figure 2.2-1 approach each other more closely 
the smaller the size of the picture element becomes; that is, the better the geometrical 
resolution of the digital image. The high degree of abstraction of analytical geometry 
is, however, never achieved in pixel geometry.14 

D . ' E 

C ' . F 

A · B· 

G 

Figure 2.2-1: Analytical geometry (left) and pixel geometry (right) 

A few special features of pixel geometry should be touched on with the help of Fig-
ure 2.2-1: 

a) the two separate points D and Ε merge together in the digital image. 
13 For that reason digital photogrammetry is also known in English as "soft copy photogrammetry" 

as opposed to "hard copy photogrammetry" which uses photography recorded on film (PE&RS 58(1), 
pp. 49-115, 1992). 

14Limits to the numerical representation of numbers in a computer, e.g. the image coordinates ξ and 
η, lead to similar (negative) effects in analytical photogrammetry as does the finite pixel size in digital 
photogrammetry. 
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b) it is strictly necessary that the pixels belonging to one geometrical shape be spe-
cially labeled, for example with what is called a chain code; starting from the 
position of the initial pixel this defines the next pixel by means of a pointer (right, 
left, above, below, . . . ) . The criterion "all neighbouring pixels" is in fact inad-
equate. In pixel geometry, for example, two neighbouring points of the straight 
line G are joined together just as much as the two separate points A and Β (Fig-
ure 2.2-1). 

c) the formation of geometrical objects with the help only of neighbour relation-
ships, in this context better described as connectivity relationships, leads to dif-
ferent results, depending on the criterion used. 4-neighbourhoods (4N) and 8-
neighbourhoods (8N) are common in digital image processing (Figure 2.2-2). 

1- s 8N 

Figure 2.2-2: 4N and 8N relationships 

Using a 4N the points Β and C remain as separate points; using an 8N all the 
points A — F are combined. Incidentally, if the pixels representing the points A -
F were to be shifted one pixel to the right, then using an 8N connectivity all the 
relevant pixels of Figure 2.2-1 would be assigned to a single geometrical object. 

d) In analytical geometry, separations are usually determined by means of Eucli-
dean distance defined in the direction of the normal to the straight line. In pixel 
geometry, on the other hand, distance measure is determined using criteria which 
are indicated in Figure 2.2-2. In Figure 2.2-2 the Euclidean distance of point Β 
from the straight line G is somewhat less than the corresponding distance of 
point F ; that is to say, point F is further removed from the straight line than 
point B. Application of an 8N, however, results in the pixel representing the 
point F being closer to the string of pixels representing the straight line G than 
the pixel representing point B15. 

The picture elements arranged in a raster or a matrix carry information. Their value 
range depends on the recording equipment and on the computer used. Very commonly 
the values range between 0 and 255 which clearly exceeds the ability of the human 
eye which can discriminate between about 50 different shades. Information with 256 
different states can be represented by 8 bits (28 combinations of bits). A group of eight 
bits is combined as a byte in most computers. In very sensitive recording equipment the 

15In this connection one also speaks of a Euclidean metric and of raster data metrics (see, for example, 
Bill, R.: Grundlagen der Geo-Informationssysteme. Band 2, Wichmann, 1999, and the literature cited 
therein for further reading). 
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image data may even be registered with 16 bits, that is with 2 bytes (216 = 65536 com-
binations). 

In information technology, besides binary representation, one also comes across octal 
and hexadecimal forms. The table below sets out pixel values in the different notations 
opposite each other: 

Decimal Octal Hexadecimal Binary bit pattern 
0 000 00 00000000 
1 001 01 00000001 
2 002 02 00000010 

127 177 7F 01111111 
128 200 80 10000000 

254 376 FE 11111110 
255 377 FF 11111111 

Table 2.2-1: Different representations of pixel values 

In normal black and white images the pixel values are known as grey values (usually 
black is coded as 0 and white as 255). In binary images there are only two grey values; 
the value zero can represent the extraneous background and the value one the signif-
icant image information. The right hand side of Figure 2.2-1 shows a binary image. 
Colour images have three spectral layers which are registered on three image matri-
ces of equal size. These images are usually represented by 24 bits (eight bits for each 
colour layer with Red, Green and Blue as the primary colours for a so-called RGB 
reproduction). 

Exercise 2.2-1. In Figure 2.2-1 place a line below and parallel to the existing line 
such that in the corresponding digital picture it does not touch the string of pixels 
representing the straight line G. Avoidance of contact should be established once in a 
4N pattern and once in an 8N pattern. 

2.2.2 A digital metric picture 

A digital metric image is a digital photograph which meets the requirements of pho-
togrammetry. The basic prerequisites are that the image should have been formed by 
central projection and that the perspective centre should be fixed in relation to the im-
age. Such a metric image was defined in Section 2.1.3 in which the analogue image 
was discussed. We now turn to the digital metric image. 

The digital metric image is formed in the image plane of a digital (metric) camera. The 
digital metric image consists of a (two-dimensional) matrix G with picture elements 
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gij (Figure 2.2-3). The row index i runs from 1 in steps of 1 to I, the corresponding 
column index j from 1 to J. The picture element dimensions are Δξ χ Αη. 

112 η 

9u 

PP 

1 ^ j J 
Δη 

Figure 2.2-3: Digital metric image 

In a metric digital image a relationship is required between pixel position and ξη im-
age coordinate values. In Figure 2.2-3 we have introduced an image coordinate system 
lying half a pixel width outside the image matrix and rotated 100 gon (= 90°) clock-
wise from our accustomed image coordinate system. In a digital metric camera no 
special fiducial marks are necessary to define the image coordinate system as are re-
quired in a metric film camera. 

Multiplication of the index i of the matrix by Αξ gives the image coordinate ξ of the 
mid-point of the pixel gij; correspondingly the index j multiplied by Αη gives the im-
age coordinate η. The conventional measurement of image coordinates in analogue 
photographs is replaced in digital photographs by location of the respective pixel. Lo-
cation of the pixel by a human operator is completed with a mouse click. If possible, 
however, pixel identification and measurement should be automatic—even into the sub-
pixel range; that is to say, with accuracy better than the pixel dimensions. 

For photogrammetric processing of digital photographs one requires the interior ori-
entation exactly as with analogue photographs. In Figure 2.2-3 the position of the 
principal point PP is given in the ξη image coordinate system. In the case of appropri-
ately small pixels it is adequate just to know the pixel in which the principal point lies. 
One can continue with this idea by regarding the indices i and j directly as the image 
coordinates ξ and η. In this case, assuming square pixels, the principal distance c is in-
troduced in units of Δξ(= Αη). It is easy to see that the collinearity equations (2.1-20) 
and the Equations (2.1-32) relating to the "normal case" retain their validity despite 
these unfamiliar units of measurement in both image and camera space. 
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2.2.3 Digital processing in the "normal case" and digital projective 
rectification 

After finding homologous points in two digital metric images which conform to the 
"normal case", and using the relationships (2.1-32), the object coordinates Χ , Y and Ζ 
of individual points can be found from the image coordinates, the base (which is part 
of the exterior orientation) and the interior orientation. (Note: the image coordinates 
in (2.1-32) are referred to the principal point P P as origin.) It should be remembered 
that, in the processing of a "normal" image pair as outlined, the same mathematical 
relationships are called upon in the case of digital metric images as in the analogue 
case. In the processing of digital image pairs the identification of homologous points 
in the two photographs invites complete automation. Not until Section 6.8.3 do we 
approach this subject. 

In this section we turn to the evaluation of an individual digital photograph of a plane 
object. We have already learnt, in Section 2.1.4, not only the mathematical relation-
ship between the image plane and the object plane but also the analytical procedure. 
Four control points are necessary for the determination of eight independent parame-
ters; after the solution of the relevant equations the object coordinates X and Y can 
be calculated for new points from their measured image coordinates ξ and η (see the 
numerical example in Section 2.1.4). 

With the support of the same mathematics we can also, as we shall shortly see, transfer 
the whole digital photograph into the object plane. Since projective geometry comes 
into use (see the comment at the end of Section 2.1.4), in this case we speak of projec-
tive rectification. The result is a digital orthophoto, therefore a geometrically correct 
(undistorted) digital photograph. The conversion of the distorted digital image (the 
original picture) into the digital orthophotograph, which is in the (two-dimensional) 
object coordinate system, is done with the help of Equations (2.1-24). This conversion, 
typical of operations with digital images, will be clarified in what follows. 

Because of their arrangement within the image matrix, we know the ξη coordinates 
of the mid-points of all the pixels of the original distorted image. In Figure 2.2-4 
these mid-points are labeled with small black-filled circles. We find the corresponding 
positions in the object coordinate system using Equations (2.1-24); in Figure 2.2-4 this 
is signified by the abbreviated notation (Χ, Υ) = / ( ξ , η). Naturally, on account of the 
distortion of the original image, the X Y positions found for all the original pixels do 
not fall in an orthogonal raster. The required mid-points of the pixels in the resultant 
image, the digital orthophoto, with their indices i and j, are shown in Figure 2.2-4 with 
small open circles. We have a set (a sample) of arbitrarily arranged points which are to 
be brought into a new pattern, an orthogonal raster; in digital image processing this is 
known as resampling. 

Nearest neighbourhood assignment of grey values 

One of the possible techniques for assigning the grey value within such a resampling 
is the nearest neighbour method. In this technique the grey value of the original pixel 
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is given to that position in the new image matrix which lies nearest, as measured by 
coordinate differences, to the transformed mid-point of the pixel. In the example of 
Figure 2.2-4 the grey value <72,4 of the original image will be brought to position (i,j) = 
(2,3), that of <?3i4 to position (i,j) — (3,2), and so on. 

η 
direct 

(Χ,Υ) = ί(ξ,η) • J 

0 0 0 0 0 

0 0 0 0 0 

0 > 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

- •X 

Figure 2.2-4: Direct rearrangement 

The rectification outlined in Figure 2.2-4 is called a direct rectification or, in a general 
form, as a direct rearrangement. It has the disadvantage among other things that it can 
lead to gaps in the resulting digital image. The much more widely used technique is 
that of indirect rectification or rearrangement. It is summarized in Figure 2.2-5. 

• • • • 

• • • cr • 

• • • 
O* • 

• • • • 

indirect 
(ξ,η) = ηχ,Υ) 

1-

Υ* 

Ο 0 0 0 0 

0 0 0 0 

0 0 0 

0 0 ND 0 0 

0 0 0 0 0 

- • x 

Figure 2.2-5: Indirect rearrangement 

It starts with an originally empty image matrix with indices i and j in the object coor-
dinate system. In general the number of pixels in this image matrix will be somewhat 
larger than that in the original image. Subsequently the mid-points of these pixels are 
transformed into the original image using the inverse transformation, which we go into 



42 Chapter 2 Preparatory remarks on mathematics and digital image processing 

more closely at the end of this section. The grey value at that position in the origi-
nal image can be found using, for example, the nearest neighbour method and can be 
copied into the new image, the digital orthophotograph. For example, in position i = 3, 
j = 3 of the resulting image of Figure 2.2-5, the grey value computed at the inverse 
point shown within the cell ξ = 2, η = 3 will be inserted; likewise in position i = 4, 
j = 3, the grey value computed in ξ = 3, η = 4 will be inserted, and so on. 

Bilinear interpolation of grey values 

A disadvantage of the nearest neighbour method is that in the most unfavourable case 
the grey values assigned may be displaced from their correct positions by as much as 
half a pixel. These displacements may lead to a shift, in the worst case, of up to one 
pixel of the transformed image; in general it leads to a sawtooth effect and to variable 
widths of bands of pixels representing lines. 

An interesting alternative to nearest neighbour is bilinear interpolation, in which case 
the desired grey value is found, as a function of ξη coordinates, from the four neigh-
bouring values g\, <72, <73 and 94 using bilinear interpolation (Figure 2.2-6). 

1 Λ 

Ö 

Figure 2.2-6: Bilinear grey value interpolation 

The equation for bilinear interpolation is: 

9 = 9(ξ, V) = αο + αχξ + α2η + α3ξη (2.2-1) 

If one were to consider the grey value as height above the ξη plane, then Equation 
(2.2-1) would describe a surface of which the height would be linear with respect to 
ξ for a fixed η and vice versa. Such a surface is known as a hyperbolic paraboloid. 
We introduce local coordinates ξ'η' referred to the upper left-hand corner of the square 
comprised of the mid-points of the four neighbouring pixels of the original image. The 
determination of the parameters ao, a\, and «3 from the four grey values g\, g2, <73 
and (74 then becomes especially simple. If the pixel size is Δ (Figure 2.2-6), then: 

92 
93 

\9iJ 

(\ 0 0 0 \ 
1 Δ 0 0 
1 0 Δ 0 

\ l AAA2 J 

ί a0\ 
αϊ 
α2 

\ °3 / 

(2.2-2) 
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The simple structure of the coefficient matrix makes it easy to write a general solution: 

(2.2-3) 

Exercise 2.2-2. Check that the general solution given in (2.2-3) is correct. (The prod-
uct of the matrices of (2.2-2) and (2.2-3) should be the unit matrix.) 

f °o\ ( 1 0 0 0 \ f g i \ 
αϊ - 1 / Δ 1/Δ 0 0 92 
a2 - 1 / Δ 0 1/Δ 0 93 

\ «3 / ^ 1/Δ2 - 1 / Δ 2 — 1/Δ2 
i M V w 

Substituting expressions for ao, a\, ai and aj from Equation (2.2-3) in Equation (2.2-1) 
leads to the desired interpolation formula: 

+ 1 Δ " W ) 9 3 + Δ ^ 5 4 

c v 
Δ2 92+ 

(2.2-4) 
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Ο 

180 

140 

150 

Numerical Example. We choose Δ = 1; ξ' and η' vary be-
tween 0 and 1. With respect to an origin at the upper left-
hand corner, the coordinates of the point whose grey value we 
wish to interpolate are ξ' = 0.75 and η' — 0.25. It follows 
from Equation (2.2-4) that: 5(0.75,0.25) = 0.1875 χ 160 + 
0.5625 χ 180 + 0.0625 χ 140 + 0.1875 χ 150 = 168 

Exercise 2.2-3. Check the result found in this numerical example by means of linear 
interpolation along lines parallel to the sides of the square and passing through the 
interpolated point. 

Bilinear interpolation involves more computation than nearest neighbour but has the 
advantage that no shifts appear. The contrast in the original image is, however, some-
what reduced. If this attenuation in contrast is to be avoided one should move to higher 
order interpolation including, for example, 16 pixels16. 

Inverse transformation equations for indirect projective rectification 

The inverse transformation equations (ξ, η) — / " ' (Χ, Y), which are necessary for in-
direct transformation (Figure 2.2-5), are still to be formulated. In the projective trans-
formation, from a mathematical view point, neither image plane nor object plane takes 
precedence over the other. That is to say, in the Equations (2.1-24) ξ and X as well as 
η and Y can be interchanged. The eight parameters for the inverse transformation can 

16See, for example: Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close Range Photogrammetry. 
Whittles Publishing, 2006. 
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therefore be found in the same way from eight linear equations, assuming four control 
points. 

It is also possible, however, to formulate the inverse transformation equations for in-
direct rectification in terms of the eight parameters of the direct projective transfor-
mation, (Χ,Υ) — / (ξ , η), Equations (2.1-24). After much re-arrangement of Equa-
tions (2.1-24) one obtains: 

^ _ (&2 ~ c2b3)X + (a3c2 - a2)Y + (α2&3 ~ aib2) 
(&1C2 - b2ci)X + (a2ci - aic2)Y + (α^2 - a2b\) ^ ^^ 

_ (63C1 - bi)X + (ai - a3C])y + (0361 - 0163) 
^ (b\c2 - b2c\)X + (a2c\ - ajc2)Y + {a\b2 - a2b\) 

Exercise 2.2-4. Starting with Equations (2.1-24) derive Equations (2.2-5). (A very 
elegant solution is possible using homogeneous coordinates. (Appendix 2.2-1). 

Numerical Example. Let us take up once more the numerical example of Section 
2.1.4. Equations (2.2-5) give the following inverse transformation equations, in which 
both denominator and numerator have been divided by (a\b2 — a2b])\ 

0.00016776X - 0.00000441 Y - 0.2945585 
0.0002333IX + 0.00013323Y - 1 

0.00001409X + 0.00019114Y - 0.4995346 
0.0002333 IX + 0.00013323y - 1 

If one exchanges the ξη coordinates and the XY coordinates in Equations (2.1-24) 
and solves the corresponding linear equations as shown in Section 2.1.4, one arrives at 
identical transformation parameters. With object coordinates X = 1839.43 m and Y — 
2525.74m for the point P , it emerges that the image coordinates are ξ — 1.628 mm 
and η = 5.182 mm as already known from Section 2.1.4. 

A practical example of digital projective rectification 

Figure 2.2-7 is an oblique picture of a fagade, which can be regarded as a plane. The 
photograph was taken with a Kodak DCS 460c digital camera (Section Ε 3.5, Vol-
ume 2). Coordinates were known for four control points in the object plane; their image 
coordinates were found after identification of the corresponding points in the original 
image matrix. The transformation parameters for a projective rectification were subse-
quently evaluated and the whole of the picture was digitally rectified, the result being 
shown in Figure 2.2-8. The size of the pixels at object scale is 2 cm χ 2 cm. 

Instead of the projective transformation of an arbitrary quadrangle, it seems at first 
glance that affine transformation of two triangles might offer an alternative. The two 
triangles to be transformed in this way are reproduced in Figure 2.2-7. Figure 2.2-9 
illustrates the error occurring in the case of the affine transformation. This error can be 
estimated with the help of Equation (2.1-27) or of the cross-ratio. It is that much larger, 
the larger the triangle chosen and the larger the tilt of the picture (see Section 7.3.2d). 

ξ = 
η = 
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Figure 2.2-7: Oblique digital photograph 

Figure 2.2-8: Rectangular section of the fa9ade projectively rectified 

Figure 2.2-9: Affine transformation of two triangles 
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Exercise 2.2-5. In the above example estimate the error of the affine transformation 
along the diagonal running from top left to bottom right. Hint: Choose a point in 
Figures 2.2-7 and 2.2-8 somewhere in the middle of the diagonal. One then has three 
points on a straight line with known image and object coordinate ξ and X, respectively; 
using the method of Section 2.1.5 one can state the projective transformation relation-
ship for points on this diagonal. One then transforms the midpoint of this diagonal into 
the object plane and compares its X coordinate with that of the midpoint in the object 
plane. The difference can be verified as the error arising as a result of moving from a 
projective to an affine transformation (Figure 2.2-8 to Figure 2.2-9). 



Chapter 3 

Photogrammetric recording systems 
and their application 

Metric images are produced by a metric camera which lies at the centre of Section 3.1. 
If the photons arriving at the image plane of a metric camera are recorded by a chemical 
sensor, then an analogue metric image is produced. This analogue technology is dis-
cussed in Section 3.2. If the photons in the image plane are recorded by an electronic 
sensor, then a digital metric image is obtained. Digital image recording is handled in 
Section 3.3. Section 3.4 describes a hybrid technique. It starts with an analogue film in 
the camera; a subsequent digitization of the film negative or corresponding photograph 
also results in a digital metric image. 

3.1 The basics of metric cameras 

A metric photograph has been defined so far as an exact central projection (Sections 
2.1.3 and 2.2.2) in which the perspective centre is at a distance c from the principal 
point of the photograph. The parameters of this simplified mathematical-geometric 
model, namely the principal distance c and the image coordinates ξο and ηο of the prin-
cipal point (PP) of the photograph, are defined as the elements of interior orientation. 
This idealized model does not correspond exactly to reality, however. The inevitable 
errors of the lens, the camera and the photograph itself must be considered if the highest 
accuracy is to be achieved. 

3.1.1 The interior orientation of a metric camera 

The geometric theory of optical systems postulates for a combination of lens elements 
two principal planes Η, H ' (the object-space and image-space principal planes) in 
which the one reproduces the other at a scale of 1 : 1 perpendicular to the axis. For 
an optical system consisting of air-glass-air the two optical principal points, i.e. the 
intersections of the principal planes with the optical axis OA, coincide with the two 
nodal points Ν and N'. These are defined in such a way that the central rays, to be 
discussed in more detail with the help of Figure 3.1-3, pass through the system without 
deviation and form the same angles τ to the optical axis at Ν and N ' (Figure 3.1-1, 
r ' = τ). 
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Optical 
principal planes Image plane 

Η Η' 
Object space Image space P' 

Image point 

Optical axis N=0 PP 
Principal point 

Object point p Object distance V Image distance 
— s'=c s e 

Figure 3.1-1: Idealized geometric image formation of an optical system. Ν, N ' = 
nodal points = perspective centres O, O' 

In this idealized case, Ν is the object-space perspective centre Ο, N ' is the correspond-
ing image-space perspective centre O' and the principal distance c is equal to the image 
distance s'. The image distance s' and the object distance s are always measured from 
the principal planes. In practical amateur photography, however, the distance to be set 
on the focusing mechanism of the camera is D = (s + e + s'), i.e the distance of the 
object from the image plane. 

The optics of photogrammetric cameras are thick, usually asymmetric objectives. The 
individual lenses are made from different types of glass so as to ensure that imaging 
errors are corrected to the greatest possible extent. The aperture stop AS is usually 
not in the centre of the objective (Figure 3.1-2). We must therefore pose the question: 
where is the physical perspective centre? 

All the rays from an object point that pass through the objective must pass through the 
aperture. The apparent image of the aperture stop, as seen from the object, therefore 

Optical axis 

Aperture stop 

Figure 3.1-2: Cross-section of a typical photogrammetric objective (Wild 21 NAg II, 
/ / 4 ) 
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limits the effective bundle of rays forming the image point; this apparent image is 
called the entrance pupil (EP). Its centre is the object-space perspective centre O. The 
analogous exit pupil (EP ' ) lies in the image space of the objective. 

Exercise 3.1-1. How can the distance VO of the entrance pupil from the vertex V of 
the objective be determined by theodolite? 

EP AS 

Figure 3.1-3: The definition of the centre of the entrance pupil Ε Ρ as the object-space 
perspective centre O. Dot/dashed lines show central rays. V = vertex 

The real photogrammetric objective and the idealized model of it described above (Fig-
ure 3.1-1) differ significantly: 

a) the optical axis should contain the centres of all spherical lens surfaces. After the 
cementing and assembly of all individual lenses and the mounting of the objec-
tive in the camera relative to the mechanical focal-plane frame, small errors will 
inevitably have accumulated. The reference axis of photogrammetry is therefore 
not the optical axis OA, but a calibrated, (i.e. standardized) principal ray PRA 
which in object space is perpendicular to the image plane and passes through the 
centre of the entrance pupil (Figure 3.1-4). Its physical extension intersects the 
image plane in the principal point of autocollimation PPA (see explanation and 
definition below). 

b) the angles τ are defined at the centre of the entrance pupil and not at the nodal 
points. Since the entrance pupil usually does not lie in the principal plane H, it 
follows that τ ' is not equal to r . 

c) the mechanically realized principal distance s'm defined by the focal-plane frame 
of the camera differs slightly from the optical principal distance s' which pro-
vides the sharpest image. 

d) the image plane is not rigorously perpendicular to the optical axis. 

In essence, the result of these small errors is that the angles r ' in image space are not 
equal to the angles r in object space. We therefore define a mathematical perspective 
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EP EP' IP 

I 

Figure 3.1-4: The definition of the image-space perspective centre 0'M. PRA = (auto-
collimation) principal ray, PPa = principal point of autocollimation in the image plane 
IP, EP = entrance pupil, EP' = exit pupil, 0'P = physical perspective centre, c = 
principal distance, ρ = image height = 1, Ap = (radial) optical distortion 

centre 0'M which lies at a perpendicular distance c, the principal distance, from the 
principal point of autocollimation PPa and which reproduces the angles τ as closely 
as possible. Residual errors lead to optical distortions Ap. 

The elements of interior orientation, so far defined as ξο, r?o and c, must therefore be 
extended to include the radial optical distortion Ap: 
Equation of interior orientation 

Photogrammetric cameras are mostly calibrated in a laboratory with the help of an op-
tical goniometer (Figure 3.1-5). Firstly, before mounting the camera in the instrument, 
the observing telescope T\ is set in its zero position as defined by autocollimation with 
the telescope T2. The camera is then mounted with the centre of the entrance pupil 
E P , i.e. its object-space perspective centre O, in the axis of rotation and rotated about 
E P until the mirror image of the cross-hairs of the telescope T2 is superimposed on 
the cross-hairs (autocollimation). A flat glass plate with a small reflecting surface is 
placed on the image plane (focal-plane frame) of the camera for this purpose. On the 
side facing object space this plate also carries precise graduations. In the previously 
defined zero position of telescope T\, the operator now observes the principal point of 
autocollimation PPA which will be considered as the origin of the p-scale. The oper-
ator then points T\ to various graduations on the p-scale along each semi-diagonal of 
the square image frame and observes the corresponding angles r . The radial optical 
distortions can then be computed from the differences Ap — ρ - co tan r , where co is 
the best known value of the principal distance (Figure 3.1-6). 

ρ = c tan τ + Ap (3.1-1) 
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Collimating telescope (fixed) 

Reflecting flat glass plate 
. with graduated surface 

f " in image plane (p-scale) 

Photogrammetric camera (fixed) 

EP = rotation axis 
of telescope Ti 

x-measurements 

Measuring telescope T, 

Figure 3.1-5: Schematic diagram of a photo-goniometer 
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The results are usually asymmetric, the curves do not coincide. Amongst other reasons, 
this asymmetry is caused by errors of centering of the individual lens elements. The 
asymmetry can be greatly reduced by choosing another reference point, slightly dif-
ferent from the principal point of autocollimation PPA- The reference point resulting 
from best symmetry is known as the principal point of best symmetry PPS. 

The juxtaposition of two reference points, the principal point of autocollimation PPA 
and principal point of best symmetry PPS, has the following practical consequences: 

a) the distortions must be recalculated and given with respect to the PPs (Fig-
ure 3.1-7). 

b) when correcting for distortion (Section 3.1.3), the PPs is used as reference point. 

c) the mathematical perspective centre lies a distance c in front of the PPA', ξο and 
ηο in the central projection equations (2.1-19) and (2.1-20) are the coordinates of 
the PPA· 

d) the rotations incorporated in the matrix elements r^ of the central projection 
equations (2.1-19) and (2.1-20) are with respect to the principal axis of autocol-
limation. (Its component in object space, determined by autocollimation (Fig-
ure 3.1-5), is perpendicular to the image plane, as required by the central projec-
tion (Figure 3.1-4).) 

Figure 3.1-7: Radial distortion of the four semi-diagonals of Figure 3.1-6, referred to 
PPs, and the resulting mean curve 

The change of principal distance Ac is finally computed in such a way as to bring the 
mean curve as close as possible to the p-axis (balanced radial distortion, Figure 3.1-8). 

Exercise 3.1-2. How does a change of principal distance affect distortion? (Solution: 
linearly dependent on p.) 

The camera manufacturers are obliged to deal with radially symmetric distortion (e.g. 
Figure 3.1-8). For the most demanding accuracies the radial distortion is separately 
given for the 4 semi-diagonals, which effectively means details are given about radially 
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Figure 3.1-8: Mean radial distortion with |Apmax| = |Δρ,^η| 

asymmetric distortion. In addition to radial distortion there also exists tangential dis-
tortion. This originates principally from the centering errors of individual lenses in the 
objective. It is always an asymmetric distortion and is generally an order of magnitude 
less than radial distortion. 

Modern photogrammetric objective lenses have a radial distortion within ± 5 μηι, and 
in film-based aerial metric cameras, radial distortion is, in fact, smaller than ± 3 μηι1. 
Photogrammetric images taken with old objective lenses have radial distortion up to 
30 μιη. Objectives which have not been specially developed for metric cameras can 
display radial distortions of up to 100 μιη (Figure 3.1-9). 

Figure 3.1-9: Distortion curve for Sonnar 4/150 objective from Rollei (focal length^ 
150 mm, smallest aperture (Section 3.1.4)= 4) 

From the point of view of analytical and digital photogrammetry, larger optical dis-
tortions, if accurately known, are not a significant disadvantage. However, changes 
in distortion values are certainly a problem since, in general, such changes cannot be 
determined. These changes occur mainly in unstable cameras due to changes of focus, 
vibrations and impacts, etc. 

In a metric camera there must exist a coordinate system in which, amongst other para-
meters, the principal point is given. This photo or image coordinate system is realized 
differently in analogue and digital cameras. 

'E.g. Light, D.: PE&RS 58, pp. 185-188, 1992. 
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Figure 3.1-10: Image coordinate system in an analogue metric camera (film camera, 
left) and a digital metric camera (digital camera, right) 

In analogue metric cameras which work with film, fiducial marks are located in the 
image plane and are imaged on every photograph (Figure 3.1-10, left). With the help 
of these fiducial marks, measurements taken in the image, and normally located in 
an arbitrary comparator coordinate system, can be related to the camera used to take 
them (Section 3.2.1). In digital metric cameras, the mathematical relationship between 
image matrix and camera is never lost: the image points are measured within the image 
matrix whose coordinate system is defined in the camera (Figures 2.2-3 and 3.1-10, 
right). 

The interior orientation of a metric camera is specified in a calibration certificate by 
the following data. Note that there are differences between film cameras (F) and digital 
cameras (D). 

• F/D: date of calibration 

• F/D: principal distance, c 

• F: calibrated coordinates of the fiducial marks stated in a coordinate system 
which, in principle, can have an arbitrary origin and rotation but in practice cor-
responds very closely to the ideal configuration (Figure 3.1-10, left) 

• F: the principal point of autocollimation PPA, and the principal point of best 
symmetry PPS, are given in this (arbitrary) coordinate system. In most metric 
cameras, both these principal points and the fiducial centre FC (intersection of 
connecting lines between fiducial marks, see Figure 3.1-10, left), lie within a 
circle of radius < 0.02 mm. 

• D: coordinates of principal point of autocollimation PPA and principal point of 
best symmetry PPs are given in the ξη image coordinate system (Figure 3.1-10, 
right). 

• F/D: radial distortion, for example in the form of a piecewise linear function 
(Figure 3.1-11). In higher quality cameras, the radial distortion is given on 4 
semi-diagonals. 
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Figure 3.1-11: Radial distortion of a 21 NAgll objective lens manufactured by Wild 
(now Leica Geosystems) 

• F/D: information on image quality (see Section 3.1.5) 

• D: exact pixel sizes Αξ and Αη (Figure 2.2-3) 

• D: for a 3-line camera (see Section 3.3.1) at least the ξ coordinates of the three 
linear arrays 

• F/D: type of light used in the laboratory calibration, since the wavelength influ-
ences the imaging properties of the optics and therefore also the distortion. (From 
Figure 3.1-3 it can be seen that the aperture defines the perspective centre O; the 
physical perspective centre plays a decisive role in the calibration, Figure 3.1-4.) 

• F/D: the range used in the calibration, since focusing influences the imaging 
geometry of the optics and therefore also the distortion 

The last three mentioned items of information are of some importance to close-range 
photogrammetry. Standard photogrammetric analysis methods do not require this in-
formation. A short selection of further reading related to the specialized methods in 
close-range photogrammetry: Fräser, C., Shortis, M.: PE&RS 58, pp. 851-855, 1992. 
Fryer, J., Brown, D.: PE&RS 52, pp. 51-58, 1986. Luhmann, T., Robson, S„ Kyle, S., 
Harley, I.: Close Range Photogrammetry. Whittles Publishing, 2006. 

3.1.2 Calibration of metric cameras 

In the previous section we learnt about laboratory calibration with a goniometer. This 
is used for very high quality cameras in the expectation that the elements of interior 
orientation remain unchanged over a long period of time. 

Calibration can also be carried out by photographing a test field. Such test fields have 
a relatively large number of control points with known X Y Z object coordinates. The 
ξη photo coordinates of the control points are first measured. With this information, 
and by means of the equations of central projection (2.1-19), both the elements of 
exterior orientation and the elements of interior orientation can be calculated in a single 
analysis. (For details, see Section 5.3.4). The system of equations (2.1-9) can also be 
extended by polynomial coefficients in order to determine also the unknown optical 
distortions (Section 3.1.3). When using test field calibration it is assumed that, between 
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making the test field exposures and recording the region of interest or object to be 
measured, the elements of interior orientation remain unchanged. 

In many photogrammetric tasks, a calibration of the camera during the execution of the 
project is expected. The procedure in this case may be called self-calibration or on-the-
job calibration. Mathematically, self-calibration proceeds in the same way as a test field 
calibration. Self-calibration merges together the elements of calibration and objection 
reconstruction. The self-calibration method makes use not only of control points with 
known X Y Z coordinates but also of the unknown target points of interest which appear 
in multiple images. Self-calibration at close-range additionally makes use of conditions 
of orthogonality and planarity imposed by artifacts and also, or alternatively, an array 
of plumb lines. 

Volume 2 in this series of textbooks has a full Chapter Ε devoted to calibration. Con-
cepts and practical guidelines for close-range calibration can be found in: Luhmann, T., 
Robson, S., Kyle, S., Harley, I.: Close Range Photogrammetry. Whittles Publishing, 
2006. 

Exercise 3.1-3. Without determining distortion, how many control points are required 
for a test field calibration using a single image? (Solution: 5.) What happens if all 
control points lie in a plane perpendicular to the camera axis? (Solution: singularity.) 

3.1.3 Correction of distortion 

A correction for the objective lens distortion, as determined by laboratory calibration 
with a goniometer, by test field calibration or by self-calibration, must be applied to the 
image coordinates of the measured target points. The simplest case in which the image 
coordinates are corrected for radially symmetric distortion in the form of a piecewise 
linear function is first discussed (Figure 3.1-11). 

For each individual image point P ' , whose image coordinates ξ and η have been de-
termined, the calculation is as follows. It is assumed that the image coordinate system 
has provisionally been located with its origin at the principal point of best symmetry, 
PPS (Figure 3.1-12): 

• calculation of radial offset ρ — χ/ζ1 + η2 

• extraction of radial distortion value Ap at position ρ on the distortion curve of 
Figure 3.1-11 

• reduction of radial distortion correction Ap into components Αξ and Αη for image 
coordinates ξ and η (these relationships can be seen in Figure 3.1-12): 

Δξ = -Ap 
η 

Αη = -Ap (3.1-2) 
Ρ Ρ 

When correcting distortion in a digital metric image, the finite size of the pixels must 
be taken into account. The correction values Αξ and Αη (3.1-2) do not, in general, cause 
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Figure 3.1-12: Correction of radial distortion 

an "integer shift" of the original pixel; a resampling of the original image matrix on 
the orthogonal grid of a new matrix would be required, as explained in Section 2.2.3. 
Since some potentially significant loss of information is associated wtih every resam-
pling, this should not be done solely for distortion correction. Instead, all image-related 
corrections (e.g. also refraction, Section 4.5.1) should be accumulated and only at the 
end of the process should the unavoidable resampling take place (Section 4.5.4). 

The test field calibration or self-calibration generates a radial distortion polynomial. 
The following polynomial has proved itself in practice2: 

<7i3, 5i4 · · · (known) polynomial coefficients (indices have been deliberately 
chosen to emphasize the link with Equations Β (5.2-9) and 
Β (5.2-10) in Volume 2). 

ρ . . . Radial offset of image point from the principal point of best sym-
metry PPs 

Po •·• (known) radial offset at which Ap is zero. In the distortion curve 
of Figure 3.1-8, po — 85 mm, in the distortion curve of Figure 
3.1-9, po = 20 mm. 

Correction of radial distortion defined by a polynomial curve is done in the same way as 
distortion defined by a piecewise linear function. In the former case, Ap is determined 
from Equation (3.1-3) at position p, in the latter case from the piecewise linear function 
in Figure 3.1-11. The process then continues with Equation (3.1-2). 

Δρ = gi3p(p2 - pi) + 9up(p4 - Po) (3.1-3) 

2E.g. Fryer, J.: In Atkinson (ed.): Close Range Photogrammetry and Machine Vision. Whittles 
Publishing, pp. 156-179, 1996. 
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Individual polynomials are applied in cases of radially asymmetric distortion compo-
nents or a possible tangential distortion (e.g. Equations Β (5.2-11) and Β (5.2-12) in 
Volume 2)3. 

Exercise 3.1-4. A point with image coordinates ξ = -8 .342 mm and η — 23.593 mm, 
referred to the principal point of best symmetry PPs, is to be corrected for distortion 
as defined in Figure 3.1-11. (A graphical estimation of Ap from Figure 3.1-11 is suffi-
cient.) (Solution: ξ = -8 .343 mm, η = 23.595 mm.) 

3.1.4 Depth of field and circle of confusion 

This section is devoted to the question of the extent to which an objective lens can 
sharply image an object which is extended in depth, i.e. in the direction of imaging. 
The familiar basic lens equation of optics for sharp imagery is: 

f ... (constant) focal length of the optical system 
s ... (variable) object distance 

s' ... image distance, which only corresponds to principal distance c in ideal-
ized case (Figure 3.1-1). In reality, it agrees only approximately with the 
principal distance which is purely geometrically defined (Figure 3.1-4) 

In the alternative Newtonian form, with s = (x+f) and s' = (a ; '+/) , the lens equation 
is: 

xx' = f2 (3.1-5) 

Thus, for every object distance s there is a defined optical image distance s', at which, 
apart from the effects of lens errors and diffraction effects, all rays emanating from an 
object point at distance s and passing through the aperture of diameter d meet to form a 
theoretical image point (Figure 3.1-13). This focused optical image plane I P therefore 
contains the sharpest possible image of the corresponding focused object plane OP. 

Objects in front of and behind the preset object distance will therefore be imaged with 
some degree of unsharpness, since the rays meet in a point behind or in front of IP. 
In IP there exists therefore a "circle of confusion" of diameter u. We seek now those 
object distances sn (near limit of depth of field) and s/ (far limit) which produce the 
same diameter u of a circle of confusion, so that we can say that all objects between 
Sf and sn, the depth of field, will be imaged in IP with a circle of confusion less than 
or equal to u. The dimension u is the measure of the sharpness of the image (circle of 
confusion), and will not be exceeded in the range of the depth of field. We try to achieve 
a diameter of the circle of confusion of less than 20 μπι in a film camera. The pixel size 
of CCD sensors may vary between 10 and 2 μπι. Therefore, the diameter of the circle 

3 An example of distortion correction using piecewise linear functions along the 4 semi-diagonals can 
be found in: Kraus, K„ Stark, E.: BuL 41, pp. 50-56, 1973. 
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Figure 3.1-13: Derivation of depth of field and circle of confusion 

of confusion should vary between 2 and 10 pixel, respectively. From Equation (3.1-4) 
we have: 

*' = — t s'n = — f = (3.1-6) 
8 - J S n - f 1 Sf - f 

We see from Figure 3.1-13 that: 

d u 

S'n ~ S Sf S' - S'f 

(3.1-7) 

Introduce Equation (3.1-6) in (3.1-7) and rewrite to obtain: 

d S f ο d S f CX 1 Q\ Sf = Tt 7 J\ (3.1-8) 
df + u ( s - f ) J d f - u { s - f ) 

We normally multiply numerator and denominator by f / d , so that the /-number or 
aperture stop k = f/d(= focal length / aperture diameter) appears in one position, 
only, with a clear effect: 

s f 2 s f 2 

Sn = f Sf = f (3.1-9) 
/ 2 + J-u{s - f ) f 2 - J-u(s - f ) 

If sn and sj are given for a particular standpoint, we can find s from Equation (3.1-9), 
as follows: 

s = 2 S ^ L · (3.1-10) 
S n + Sf 

So we have the object distance to be set for which u is as small as possible. 
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To derive the (finite) distance s for which s/ = oo, so that the depth of field extends 
from sn to infinity, we must set the denominator of Equation (3.1-9 b) to zero: 

soo = / ( - + Λ « / - = (3.1-11) W ) u 

An important practical question is the diameter of the circle of confusion Ui when the 
object distance is s* and the preset focusing distance is s. We define ut <0 for Si > s 
and solve Equation (3.1-9) for w :̂ 

tn = - ^ ' - γ - (3.1-12) 

Numerical Example. 

a) Given: sn — 16.8 m, Sf — 36.8m, / = 100mm, f / d = 8. Required: s, un, Uf. 
Equation (3.1-10) gives s = 23.2m. Equation (3.1-12) gives un — 0.020mm 
and Uf must equal un. 

b) Given: A camera of focal length 64 mm with a fixed focusing distance of 25 m 
(Wild P32, Section 3.8.3). It is to be used to photograph objects at distances from 
si = 8 m to S2 — 12.5 m. 

Required: u\, «2 and for the aperture stops / / 8 , 11, 16, 22. 

With the assumption that c « s' « / , which can be used for larger object distances as 
indicated by Equation (3.1-4), Equation (3.1-12) leads to the results in Table 3.1-1. 

f / d s 1 = 8 m S2 — 12.5 m S3 = 00 

8 44 21 -21 
11 32 15 -15 
16 22 11 -11 
22 16 8 -8 

Table 3.1-1: Diameters of circle of confusion for the Wild P32 camera for s = 8, 12.5 
and 00 (see Section 3.8.3). Tabulated values of u in μπι 

Exercise 3.1-5. What is the significance of the negative sign in the last column of 
Table 3.1-1? (Solution: The object distance, in this case S3 = 00, is larger than the 
object distance covered by the focusing mechanism, in this case s = 25 m.) 

Finally, we need a relation which will yield the setting for that object distance, known 
as the hyperfocal distance, which will give a depth of field from sn to 00. In Equa-
tion (3.1-10) divide denominator and numerator by s / ; then, as s j tends to infinity: 

β 
sao=2sn Sn = ^ - (3.1-13) 
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The corresponding circle of confusion ua0 is derived from Equation (3.1-11): 

Exercise 3.1-6. A metric camera has a focal length of 64 mm and a fixed focus of 10 m. 
Compute the depth of field (s„, Sf) for a maximum permissible circle of confusion of 
0.05 mm diameter for the aperture stops f/4,5.6, 8,11,16,22. (Solution: For example, 
for k = 8, sn — 5.1 m, Sf — 336 m.) 

Exercise 3.1-7. An aerial camera with c = 305 mm is required to give equally sharp 
photographs for the photo scales of 1 : 1500 and 1 : 50000. Compute the best focusing 
distance s and the maximum circle of confusion to be expected for this range for the 
aperture stops f / 4 , 5.6, 8, 11. (Solution: s = 900m, u = 12μπι, e.g. for / / 8 . ) 

The necessity to consider depth of field very closely is an important constraint in close-
range photogrammetry which does not occur in "long range photogrammetry" where 
fixed focus cameras are used (Section 3.7.1 ff.). The following possibilities exist in 
close-range photogrammetry to accommodate the optical requirement for sharp imag-
ing with the photogrammetric requirement for interior orientation which, to achieve 
optimal accuracy, does not, in principle, change: 

a) fixed-focus cameras: s and c are fixed, the camera is used only for objects within 
its depth of field (Example: Wild and Zeiss stereocameras, Section 3.8.2). 

b) calibrated focusing rings: An additive constant to the principal distance is spec-
ified for each ring. The rings fit so precisely that the other elements of interior 
orientation are not significantly changed (Example: Wild P31, Figure 3.1-14, 
Section 3.8.3). 

c) cameras with variable principal distance: Certain principal distances are cali-
brated and the corresponding settings indicated by index marks on the focusing 
knob of the camera (Example: Zeiss UMK, Figure 3.1-15, Section 3.8.3 and the 
widely used semi-metric cameras, Section 3.8.4). 

In practice, a circle of confusion of 50 μπι is often adopted. Depending on the pixel 
size, the corresponding dimension in pixel units can be derived. More stringent de-
mands are often impossible to meet in close-range photogrammetry. 

Exercise 3.1-8. The Wild P31 precision terrestrial camera (see Table 3.8-2) has, with 
the focusing ring for s = 25 m, a principal distance of 99.13 mm. What is the focal 
length of the lens? (Solution: 98.74 mm.) There is another focusing ring which is 
3.05 mm thicker. At what object distance will this ring give the sharpest images? (So-
lution: 2.93 m.) What is then the depth of field (sf - sn) at f / 8 and with u = 0.05 mm? 
(Solution: 0.69 mm.) What is the constant to be added to 99.13 mm to give the princi-
pal distance for sharp images of objects at a distance of 10 m? (Solution: +0.59 mm.) 

/2 
(3.1-14) 
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« I t I t t 
Figure 3.1-14: Circle of confusion of the Wild P31 precision metric camera (c = 
100 mm) for the various focusing rings at s = | and for an aperture stop f/22. (The 
line u = k is explained in Section 3.1.5.1 on diffraction blurring.) 

t t t t t t t 
Figure 3.1-15: Circle of confusion of the focusable Zeiss UMK 10/1318 universal 
metric camera (c = 100 mm) for the calibrated distances s = | and for an aperture stop 
/ / 3 2 . (The line u = k is explained in Section 3.1.5.1 on diffraction blurring.) 
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3.1.5 Resolving power and contrast transfer 

The wave nature of light and the consequent diffraction at a circular aperture make 
it impossible to generate an ideal, i.e. dimensionless, image point. Instead, the wave 
energy forming a "point" image is distributed in a central diffraction disc containing 
about 84% of the total energy, together with interference rings around the disc contain-
ing 7%, 3%, . . . (see Figure 3.1-16). In general, the energy in the interference rings is 
insufficient to have an effect on the emulsion or sensor located in the image plane of 
the camera; the sensor therefore records only the central diffraction disc. Also, at the 
edge of the central disc the energy is too low to produce an image. Experience shows 
that of the theoretical total diameter utk of the central diffraction disc4 

uth [μπι] = 2.44Α;λ where k — f / d aperture stop „ _ 
λ = wavelength in [μπι] 

only a diameter of about 

u — O.TSuth (3.1-16) 

is visible on a photographic emulsion used as sensor (see Figure 3.1-16). 

3.1.5.1 Diffraction blurring 

A very practical rule of thumb can be derived for the diffraction blurring u: if we 
set Equation (3.1-15) in (3.1-16), we have for the average wavelength of visible light 
λ = 0.55 μηι 

= ^ (3.1-17) 

Diffraction theory shows, therefore, that no photographically imaged point can be 
smaller than the aperture stop number, expressed in [/im]. 

Numerical Example (using a photographic emulsion as sensor). 

Jfc = 8 Equation (3.1-15): uth = 2.44 χ 8 χ 0.55 = 11 μπι 
Equation (3.1-16): w(photograph)= 0.75 χ 11 = 8 μπι 

k — 22 Equation (3.1-16): «(photograph) = 22 μπι 

The minimum distance Ämm between two diffraction discs which can just be distin-
guished as two points depends on the diffraction blurring u and the minimum energy 
difference which can be distinguished in the image from the corresponding sensor (Fig-
ure 3.1-16). 

<5min « I (3.1-18) 

This minimum distance due to diffraction cannot quite be achieved in practice. 
4Serway/Beichner: Physics for Scientists and Engineers. Saunders College Publishing, 5lh ed., p. 

1222, 2000. 
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Radiation 
energy 

Figure 3.1-16: Distribution of light energy for two object points caused by diffraction 
at the aperture 

3.1.5.2 Optical resolving power 

The imaging quality of an optical system such as a metric camera is generally defined 
by its resolving power. The optical resolving power, or optical resolution, states how 
many dark lines per millimetre can just be distinguished in the image from the equally 
wide gaps between them. Figure 3.1-17 shows a test card used to determine resolving 
power which is expressed in lines per millimetre ([L/mm]) or line pairs per millimetre 



Section 3.1 The basics of metric cameras 65 

Figure 3.1-17: Resolution test chart (Leica Geosystems) 

([Lp/mm]); both expressions are equivalent.5 

Based on the presentation above, it is possible to state the influence of diffraction on the 
resolving power. The diffraction-limited point separation of ό^η [μ·πι] = k/2 (Equa-
tions (3.1-17) and (3.1-18)) results in a resolution limit for an optical system with 
photochemical image recording, i.e. film-based photography, of: 

„ Γτ . , 103 [/xm/mml 2000 , 
tfmax Lp/mm - / V 1

 J = —Γ- (3.1-19 
(5min [/im] k 

Numerical Example. 

k = 22 (small aperture) (3.1-19): Rmax = 91 Lp/mm = 2300dpi 
Width of line pair = 1/91 = 0.011 mm = 11 μπι 
Width of dark line and gap = 11/2 = 5.5 μπι 
(Ignoring blooming, which can amount to a few micrometres 
(Section Β 2.2, Volume 2)) 

k = 8 (medium aperture) (3.1-19): fimax = 250 Lp/mm = 6350 dpi 
Width of line pair = 1 /250 = 0.004 mm = 4 μπι 
Width of dark line and gap — 4/2 — 2 μπι 
(Ignoring blooming, which can amount to a few micrometres 
(Section Β 2.2, Volume 2)) 

Diffraction is only one factor which influences the resolution of an optical system. The 
blurring resulting from spherical and chromatic aberration also impairs the resolution. 

5 Particularly in the printing industry the resolution (R) is expressed not in [L/mm] or [Lp/mm] but 
in [dpi] (dots per inch). Since 1 inch is equivalent to 25.4 mm, the following relationship is obtained: 
1 : 25.4 = R [L/mm] : Η [dpi]. 
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Aberration and other lens errors can be reduced by using a small aperture, i.e. by elim-
inating the edge rays, though this procedure increases diffraction blurring. 

The optimum resolution is achieved with that aperture at which the sum of the opti-
cal and diffraction blurring is a minimum (Figure 3.1-18). We call this the "critical 
aperture", since any smaller aperture will increase the diffraction blurring. 

Figure 3.1-18: The definition of critical aperture for two different, good objectives 

The optical resolving power depends on the contrast of the line pattern in object space, 
i.e. from the difference in brightness between the lines and the gaps between them. 
When object contrast is high, the resolving power can be twice as good as when contrast 
is low. (Figure 3.1-21 goes into this in more detail.) 

The optical resolving power decreases from the centre of the image towards the edge. 
Reasons for this are the light fall-off (Section 3.1.6) which reduces contrast towards 
the edge of the image field and the increasing blur from centre to edge as a result of 
spherical and chromatic aberration. 

A practical example will help to illustrate the variation in optical resolving power 
within the image plane. This example will also demonstrate the derivation of a rep-
resentative optical resolution using a weighted averaging technique which gives the 
area weighted average resolution, AWAR. A Wild P31 terrestrial metric camera (Sec-
tion 3.8.3) was tested with the chart shown in Figure 3.1-17, the optical resolving 
power determined in a number of annular zones (Figure 3.1-19, left) and the results 
finally averaged (Figure 3.1-19, right). 

Film-based aerial metric cameras currently have an optical resolution of 90Lp/mm6 . 
The resolution is, in fact, determined by exposure of a glass plate supporting a photo-
graphic emulsion with a much higher resolution (e.g. 400Lp/mm). 

For users of photogrammetry in particular, the quality in the image plane is not of 
primary importance. They are instead more interested in the transfer from the image 

6E.g. Light, D.: PE&RS 58, pp. 185-188, 1992. 
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Area A [mm2] Average R [L/mm] 
230 93 
730 85 
1280 75 
1660 75 
1990 75 
2420 71 
1640 63 
580 53 

ΣΑ = 10530 L(AR) = 759070 
AWAR = (Σ(ΛΑ)/(ΣΛ) = 72L/mm 

(a) optical resolution for individual (b) calculation of averages to determine 
annular zones AWAR 

Figure 3.1-19: Additional details: aperture number 8, principal distance 10 cm, dis-
tance of test chart from camera 25 m, high contrast in daylight 

plane to the object. The question to be answered is, which details can still be recognized 
with a metric camera? This question will be answered for the P31 terrestrial camera 
(Figure 3.1-19, Section 3.8.3) and for aerial metric cameras. 

Wild P31: 

• optical resolution = 72Lp/mm, principal distance = 10 cm, imaging range 
= 25 m 

• width of line pair in image = 1 /72 = 0.014 mm = 1 4 μιη 

• width of dark line and gap in image = 14/2 = 7 /im 

• width of dark line and gap at object = 7 χ 25/0.1 = 1750 μπι = 1.7 mm. 

Aerial metric camera: 

• optical resolution = 90Lp/mm, principal distance = 30 cm, flying height 

- 2 km. 

• width of line pair in image = 1/90 = 0.011 mm = 1 1 μιη 

• width of dark line and gap in image = 11/2 = 5.5 μπι 
• width of dark line and gap at object = 5.5 χ 2000/0.3 = 36000μπι = 

3.6 cm. 

Terrestrial cameras can therefore identify objects in the millimetre range, aerial cam-
eras correspondingly in the centimetre range. 
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Exercise 3.1-9. Recalculate the estimates for aerial cameras with the following para-
meters: 

a) same flying height but a principal distance of 15 cm, (solution: 7.2 cm), 

b) same principal distance but with flying heights of 1 km and 5 km (Solution: 
1.8 cm and 9 cm). 

3.1.5.3 Definition of contrast 

Contrast is a measure of the difference in intensities I between (neighbouring) parts 
of an object or image (Figure 3.1-20). Intensity differences can either be expressed 
as a direct ratio or a relative difference. Using the largest and smallest intensities, the 
contrast as direct ratio is designated Κ and defined as: 

tf = W / m i n (3-1-20) 

The contrast as relative difference is designated C. The difference between the largest 
and smallest intensity is usually given with respect to the intensity sum as follows (see 
also Equations (3.1-24) and (3.1-25): 

m̂ax -̂ min /"II O - - — — (3.1-21) Jmax ι m̂in 
Contrast in digital images is defined by the differences in grey values g. The grey level 
range, generally 255 (Section 2.2.1), is used to normalize the contrast: 

C = ( 3 ' 1 " 2 2 ) 

In an analogue photograph (Section 3.2.2.3), the contrast is expressed using the den-
sity differences in the exposed and developed film. The density difference ΔD is the 
logarithm of contrast Κ above: 

AD = \ogK = log(7max/-imin) (3.1-23) 

For example, if /max = 100 /mm , then AD = 2. 

3.1.5.4 Contrast transfer function 

The resolving power is an insufficient, although important, measure of imaging quality. 
The resolving power gives an indication of the smallest details which can be seen in the 
image. The extent to which differences between bright and dark areas of larger details 
are transferred can only be answered by the more refined theory of the contrast transfer 
function. 

The theory of the contrast transfer function uses a contrast as defined in Equation 
(3.1-20). Figure 3.1-20, left, defines the object contrast C as: 

C = [ l ~ [ 2 (0 < C < 1) (3.1-24) 
-<i + h 
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-Object 

Figure 3.1-20: Left: object contrast. Right: image contrast 

Image 
' plane 

In the imaging process the optical system reduces this object contrast. In the image 
plane a reduced image contrast C' is observed (Figure 3.1-20, right): 

c = (0 <C'< 1) (3.1-25) 
ι + li 

The reduction in contrast becomes even larger as the line pattern becomes narrower. 
The object and image contrast must therefore be defined in terms of the width (wave-
length) Δ or ί of the pattern (Figures 3.1-17 and 3.1 -20). In the transfer function theory, 
the reciprocals of these values are used, i.e. the frequencies7 F and / , instead of the 
values themselves (Figure 3.1-20). The frequency indicates the number of line pairs 
(Lp) per unit of length. 

The relationship between image contrast C and object contrast C is, by definition, the 
contrast transfer function CTF(f) or CTF(F). A dependency on image frequency / 
is preferred, which in general is stated in line pairs per millimetre ([Lp/mm]): 

CTF(f) = ^ (3.1-26) 

It is common to normalize the contrast transfer function CTF(f) by setting CTF(0) — 
1. (CTF(0) means the contrast transfer for infinitely wide lines.) Figure 3.1-21 shows 
the contrast transfer function for a single optical system and three different object con-
trasts (the various definitions of contrast are investigated in Section 3.1.5.3). The sig-
nificantly better imaging properties for objects with high contrast can clearly be seen. 

The resolution is shown in Figure 3.1-21. It indicates the narrowest line pair which 
can still be detected, in other words the line pattern with the highest frequency. The 
resolution therefore indicates the limiting case; it provides no information about the 
imaged quality of object patterns with lower frequencies. Figure 3.1-22 shows, for 
example, the contrast transfer function for two optical systems which, by chance, have 
the same resolving power. System 1, however, is significantly better than system 2. 

7It is more accurate to speak of spatial frequency rather than temporal frequency. Temporal frequency 
is used for phenomena dependent on time (e.g. the propagation of electromagnetic radiation) and spatial 
frequency for effects dependent on spatial location (in other words, from coordinates in a coordinate 
reference system). 
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a) High contrast 
Κ = 1000 : 1 
AD = 3 
C = 0.998 

b) Medium contrast 
Κ = 6.3 : 1 
AD = 0.8 
C = 0.73 

c) Low contrast 
Κ = 1.6 : 1 
AD = 0.2 
C = 0.23 

Figure 3.1-21: Contrast transfer function CTF(f) and resolution (R) for three differ-
ent object contrasts 

CTF 

Figure 3.1-22: Contrast transfer functions for two optical systems with the same re-
solving power R 

There is a large amount of literature available on the contrast transfer function and the 
related modulation transfer function. For a very small selection see: Inglis, Α., Luther, 
Α.: Video Engineering. 2nd ed., Mc Graw-Hill, New York, 1996. Graham, R.: Digital 
Imaging. Whittles Publishing, 1998. 

3.1.6 Light fall-off from centre to edge of image 

If a camera were constructed using only a single (thin) lens, then the irradiance would 
reduce from the centre of the image to the edge according to the cos4 r law (r is the 
off-axis angle). This means that areas with the same surface properties (e.g. a newly 

R R 
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cropped field), and under the same conditions of illumination, at an off-axis angle of 
50gon (45°), would have only 25% of the image brightness at the edge of the image 
compared with the centre. 

With multiple element lenses (compound lenses), the angle of view can be reduced near 
the aperture and the light fall-off reduced. Objective lenses in modern metric cameras 
have a light fall-off which can be described by a cos™ τ law where the exponent η lies 
between 1.5 and 2.5. 

Light fall-off can be compensated by the use of a circular graduated filter; this is a grey 
filter whose density decreases towards the edge. Light fall-off can also be compen-
sated by post-processing, for example using digital image processing (Section 3.5.1.3 
or Section C 1.3.1.2, Volume 2). 

Numerical Example. A newly cropped field has a grey value of g = 170 when imaged 
at the centre of the field of view by a metric camera with a digital sensor. According to 
the cos2 5 τ rule, a newly cropped field at an off-axis angle of 50gon (45°) has a grey 
value of 170 χ 0.7072 5 = 170 χ 0.42 = 71. Before cropping, the corresponding values 
are: image centre: g — 60; at an off-axis angle of 50gon (45°): g = 60 χ 0.42 = 25. 
The contrast reduction, from image centre to image edge, of a field before and after 
cropping is therefore (Equation (3.1-22)): 

J-jq gQ 7 j 
Image centre: C = — — — = 0.43 Image edge: C = ——-— = 0.18 

3.2 Photochemical image recording 

A light-sensitive, photographic emulsion is an extremely efficient medium for record-
ing the incoming photons at the image plane of a metric camera. In Section 3.2.1 we 
examine the issues relating to the use of glass or film for supporting the emulsion. This 
section also evaluates the correction of film deformation. A wide range of optical and 
chemical aspects of photography are discussed in Section 3.2.2. Film resolution, con-
trast and suitability for aerial photography complete the discussion in the final three 
sections. 

3.2.1 Analogue metric image 

An image recorded using a film-based metric camera is, after exposure, taken to a 
darkroom, developed, fixed, washed, dried and then stored under various conditions of 
temperature and humidity. Also, the diapositives and paper prints of the photographs 
must be developed and dried. For further photogrammetric analysis it is necessary to 
take into account the changes of scale and shape of the photographs resulting from 
these processes. 
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3.2.1.1 Glass versus film as emulsion carrier 

The deformations of photographic materials are, above all, dependent on the emulsion 
carrier (Figure 3.2-1) which must be chemically inert and highly transparent. 

111111111111111111 1 Μ 11 Μ 1111 1 M I Protective coating 
Light-sensitive layer (7-20 μιτι) 
also called the emulsion 

As such, glass plates and films are used in photogrammetry (see Table 3.2-1). Glass 
plates are no longer used in aerial photogrammetry. Glass is heavy, easily breakable, 
relatively unflat, but stable. The adhesion of the light-sensitive emulsion is less efficient 
than with film and therefore deformations of the emulsion tend to be larger8. 

Type of base Thickness [mm] Flatness [μπι] Note on flatness 
Glass plates 

(15 χ 15 to 24 χ 24 cm) 
1.3-3.0 
1.3-3.0 

6.0 

30-50 
20-30 
5 - 1 0 

Flat 
Ultraflat 
Mirror glass 
ground 

Films9 

(Width to 
24 cm) 

Polyester base 
e.g. Estar thin 

thick 

0.06 ± 0.003 
to 

0.18 ±0.005 

5 - 2 0 Depending 
on the 
vacuum or 
pressure 
plate 

Table 3.2-1: Thickness and flatness of films and plates (aerial photogrammetry) 

Glass plates, usually with a smaller format than used in aerial photogrammetry, are 
sometimes used in terrestrial photogrammetry since only a few photographs at a time 
are required. However, a range of terrestrial cameras make use of film cassettes or 
magazines and a pressure plate for film flattening (see Section 3.8.3). 

Film in aerial metric cameras (Section 3.7.2.1) is flattened by means of a vacuum de-
vice. Film is less stable than glass. Its deformations are dependent on: temperature, 
relative humidity, tension in handling, storage and ageing (Table 3.2-2). There is a 

8Calhoun, J.M. et al.: Photogr. Eng. 29, pp. 661-672, 1960. 
9Kodak Data for Aerial Photography. Kodak Puhl. M-29, Rochester USA, 1982. 
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distinction between reversible and irreversible deformations. Age deformations are 
irreversible. Deformations can be conformal, corresponding to a similarity transfor-
mation, Equation (2.1-9), or affine, corresponding to an affine transformation, Equa-
tion (2.1-8). The linear deformations shown in Table 3.2-2 can be 30% different in 
the longitudinal direction compared with the lateral direction. Systematic deforma-
tions can be corrected. Non-systematic film deformations10, which cannot be corrected 
without excessive effort, lie in the range ±3 — 7 μνα. 

Base Unit Relative change of length caused by 
Temperature Rel. humidity Development and 

per 1°C per 1 % RH ageing 
Black/ Colour 1 week 1 year 
white film at 50° C at 25°C 
film & 20% 

RH 
& 60% 

RH 
PETP 0.06 %0 0.02 0.035 0.050 0.9 0.4 

/im/20cm 4 7 10 180 80 
PETP 0.18 %c 0.02 0.015 0.020 0.2 0.2 

μηι/20 cm 4 3 4 4 4 

Table 3.2-2: Film-base deformations for polyethylene terephthalate (PETP), thin 
(0.06 mm = 2.5 mil), thick (0.18 mm = 7 mil). (Kodak states film thickness in 
1 /lOOOinch = 1 mil.) RH = rel. humidity11 

3.2.1.2 Correcting film deformation 

This section considers the task of re-creating the imaging bundle of rays from the ana-
logue metric image. For this purpose, fiducial marks are required whose reference co-
ordinates are available in a calibration certificate (Section 3.1.1). These fiducial marks, 
which are also imaged on the photograph, are measured with a comparator, essentially 
in an arbitrary coordinate system. This results in measured coordinates for the fiducial 
marks. Transformation parameters are then calculated which enable the conversion of 
all measured image points from the current comparator coordinate system of the pho-
tograph into the reference coordinate system of the metric camera. Within the scope of 
this transformation, systematic film deformations are corrected. 

Various transformations are available for the correction of systematic film deformation. 
In order to achieve a reliable result, due regard must be taken with respect to the number 
and arrangement of fiducial marks (Section Β 7.2.2.1, Volume 2). Table 3.2-3 gives the 
recommended transformation for typical arrangements of fiducial marks: 

10ASP-Manual of Photogrammetry. 4lh ed., p. 335, Falls Church, 1980. 
"Rüger, W. et al.: Photogrammetrie. 4th ed., VEB Verlag für Bauwesen, Berlin, 1978. 
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Number and 
arrangement of 
fiducial marks 

Transformation 
Film deformation 
which can be 
eliminated 
(significant part 
only) 

Number and 
arrangement of 
fiducial marks 

Number of Number of 
measurements unknowns 

Film deformation 
which can be 
eliminated 
(significant part 
only) 

4 fiducial marks at the 
centres of the image 
edges (Figure 3.1-10) 

Plane similarity transform (2.1-9)12 

8 measurements 4 unknowns 

conformal part, i.e. 
a uniform scale 
deformation 

4 fiducial marks in the 
corners of the image 

Plane affine transformation (2.1-8) 

8 measurements 6 unknowns 

affine part, i.e. 
differing scale 
changes on the 
longitudinal and 
transverse axes 

8 fiducial marks 
(Figure 3.7-7) 

Bilinear transformation (2.2-1) in 
both the ξ- and η directions13 

16 measurements 8 unknowns 

affine part and 
additionally 
different scale 
changes on 
opposite facing 
image edges 

Table 3.2-3: Correction of film deformation by means of plane transformations for 
different arrangements of fiducial marks (see also Section Β 7.1.1, Volume 2) 

Exercise 3.2-1. Calibration (camera) and measured (comparator) coordinates of 4 fidu-
cial marks in the centres of the image edges, together with measured coordinates of one 
of a number of photo points P, are listed in the following table: 

Fiducial marks Calibration/camera Measured/comparator 
Photo point coordinates [mm] coordinates [mm] 

£ η ? rf 
1 1113.002 1000.008 1115.133 1000.985 
2 1000.001 1112.998 1002.111 1113.956 
3 886.994 999.995 889.103 1000.935 
4 1000.004 887.002 1002.161 887.971 
Ρ ? ? 1024.334 964.847 

12A plane affine transformation (2.1-8) would be mathematically possible, but it could be dangerous 
to extrapolate into the image corners. If different scale changes along the axes are still of interest in 
this configuration of fiducial marks, then differing scale corrections can be made using the calibrated and 
measured separations of the fiducial marks along the ξ and η directions. (In the solution to Exercise 3.2-3 
an adequate 5 parameter transformation is given for this.) 

This bilinear interpolation would also be possible with four fiducial marks in the image corners, but 
there would be no overdetermined solution in this case. A data error would not be detected and the result 
would be in error. However, if the properties of a bilinear transformation using four fiducial marks remain 
of interest, the data should first be checked for the presence of gross errors by means of an initial affine 
or similarity transformation. 
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Find the coordinates ξ and η of the photo point in the coordinate system of the metric 
camera. Hint: A similarity transformation is appropriate. Its four unknown transforma-
tion parameters can be calculated from the 8 measurement equations using the method 
of least-squares adjustment of indirect observations (Appendix 4.1-1). The non-linear 
Equations (2.1-9) should be linearized. A more elegant solution is achieved using a 
Helmert transformation (Section Β 5.1.1.3, Volume 2): 

0.0000221 λ / 1024.334 λ _ / 1022.198 λ 
1.0000000) V 964.847 ) ~ \ 963.903 J 

Exercise 3.2-2. Calibration (camera) and measured (comparator) coordinates of 4 fidu-
cial marks in the corners of the image, together with measured coordinates of one of a 
number of photo points P , are listed in the following table: 

Fiducial marks Calibration/camera Measured/comparator 
Photo point coordinates [mm] coordinates [mm] 

ξ η ξ! v' 
1 1106.004 1106.003 1104.412 1104.313 
2 893.994 1106.000 892.382 1100.602 
3 894.002 894.000 896.107 888.550 
4 1106.006 893.993 1108.123 892.241 
Ρ ? ? 916.241 1009.421 

Find the coordinates ξ and η of the photo point in the coordinate system of the metric 
camera. Hint: An affine transformation is appropriate. It should only be used for data 
control in the analysis. The final transformation is made, in this case, by a bilinear 
transformation. Eight linear equations provide the solution for the eight unknowns. 
(More exactly, the corresponding four unknowns for each coordinate axis are deter-
mined from the four corresponding linear equations.) 

Solution: 
ξ = - 1 7 . 4 9 8 + 0.999804ξ' +0.017688?/ -1.8565 χ 10"7ξ'τ/ 
η = 21.389 - 0.017239ξ' +0.999642?/ -2.1678 χ ΙΟ'1 ξ'η' 

Coordinates for point Ρ: ξ = 916.246 mm, η = 1014.453 mm 

In addition, the corrections to the ξ' and ^'-coordinates should be represented graph-
ically. Both translations need not be taken into account in the graphical presentation 
which, for convenience, can be done separately for each coordinate in the form of 
lines of equal correction value. The bilinear property should be visible in the graphical 
result. 

Exercise 3.2-3. Re-arrange the affine and similarity transformations such that there 
are only two translations, a rotation and individual scale factors πΐξ and m , in both 
coordinate directions. 

ξ\ _ (-1.6529λ 
η ) \ -0.5320 J 

+ 0 9995493 Γ 1 ' 0 0 0 0 0 0 0 
-+- v .yyyjwo ι 0_0 0 00221 
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+ cos a — sin a 
sin a cos a 

πιξξ' 
Solution: 

( ξ \ = (aoi 
\V J V a°2 J V sin a cos a J y τηηη' 

In linearized form with small angle da as well as m^ = 1 + drri( and m , = 1 + dmv: 

ξ = aoi + ξ'άτης - η'da + ξ' 
η = ao2+ ξ'da + η'άπΐη + η' 

Exercise 3.2-4. Repeat Exercise 3.2-1 using this 5 parameter transformation. 

-2 .2152 λ 
-0 .8235 ) 

1.0000000 -0.0001858λ /0.9999026 x 1024.334 
0.0001858 1.0000000 J ^ 0.9999514 χ 964.847 

1022.198 λ 
963.880 J 

In addition to film deformation, it may also be possible to account for departures from 
planarity (Table 3.2-1). Its distorting effect on the bundle of rays is greater with wider 
angle lenses. With an off-axis ray of 50gon (45°), a flatness error causes an error in 
the ξη-image plane in the ratio 1 : 1 . 

In cameras which do not have a vacuum back or pressure plate, lack of film flatness can 
be corrected using a reseau. Semi-metric cameras which use such reseaus are discussed 
in more detail in Section 3.8.4. 

Exercise 3.2-5. How large is the correction Ap resulting from the spherical deforma-
tion of a glass plate emulsion carrier given by d = 30 μπι (principal distance c = 
152 mm, format = 23 cm χ 23 cm)? (Solution: for ρ = 0,40,80,120 and 160 mm, 
Ap — 0 ,7,8, —2, —30 μηι.) 

Exercise 3.2-6. Consider a square in object space, placed symmetrically and perpen-
dicularly to the camera axis. Evaluate the deformations resulting from the following 
distortion of the glass plate: a) spherical towards the object, b) spherical away from the 
object, c) cylindrical towards the object. 
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3.2.2 Physical and photochemical aspects 

Aerial photographs are taken from moving aircraft (40 - 220 m/s, 80 - 440 knots, 150-
800 km/h), sometimes from great heights, through the atmosphere. Since only short 
exposure times can be allowed (1/250-1 /1000 s), there is often very little light avail-
able to form the photograph. The atmosphere causes strong reduction in contrast and 
change in colours. Practical aerial photography therefore poses many photographic 
problems, the most important of which are considered below. 

3.2.2.1 Colours and filters 

The visible part of the electromagnetic spectrum, i.e. the part to which the human 
eye responds, extends approximately from a wavelength of 400 nm to 700 nm (Fig-
ure 3.2-2). The photographic process covers a range from 300 nm to 1000 nm, i.e. 
includes part of the ultraviolet (UV) and near infra-red (IR) spectra. It does not cover 
either the medium or the thermal infra-red. If all wavelengths of visible light are uni-
form in intensity, the eye sees white light. This white light can be split into a large 
number of monochromatic spectral lines which are seen as saturated "spectral colours". 

Photographic 
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Figure 3.2-2: The spectral range of photography, together with the transmission and 
absorption characteristics of filters for the additive and subtractive primary colours 
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If we group these in bandwidths of 100 nm, we obtain the three "mixed" colours blue, 
green and red, the three additive primary colours. Other colours can be created by 
adding various proportions of these three primary colours, for example by superim-
posing them in projection. A uniform mixture of the three primary colours produces 
white. The addition of pairs of additive primary colours produces the subtractive pri-
mary colours cyan, yellow and magenta. These colours are called subtractive since 
they are created by subtracting one primary colour from white light: 

Cyan = Blue + Green = White - Red 
Yellow = Green + Red = White - Blue (3.2-1) 
Magenta = Red + Blue = White - Green 

Such subtractions are achieved by absorption filters which absorb part of the light 
reaching them and transmit the remainder. If white light falls on the filter, the trans-
mitted part gives the filter colour, the absorbed part, which if added to the filter colour 
would give white, is called the complementary colour. 

Subtractive and additive primary colours are complementary in pairs. Two colours 
complementary to each other and superimposed in projection, i.e. added together, pro-
duce white. 

Blue + Yellow = White 
Green + Magenta = White 
Red + Cyan = White (3.2-2) 
Blue + Green + Red = White 
Yellow + Magenta + Cyan = White 

Figure 3.2-2 shows the relations of the six primary colours. Each colour filter in a 
subtractive primary colour absorbs the complementary additive primary colour and 
transmits the other two additive primary colours. A yellow filter, for example, transmits 
green and red. A combination of filters of two subtractive primary colours (e.g. cyan 
and magenta) transmits only the part of white light which is the additive primary colour 
to both filter colours (blue in this example)14. 

Exercise 3.2-7. Why is a yellow filter also known as a minus-blue filter? 

Exercise 3.2-8. Which description of a UV-absorbing filter is more correct: a UV filter 
or a UV-blocking filter? 

Supplementary filters in front of the objective are used in practical photography to 
prevent unwanted light from reaching the photographic emulsion (e.g. UV-blocking 
filters in high mountains, yellow filters in hazy weather (Section 3.7.5)). The entire 
visible spectrum must be blocked with infra-red filters for infra-red photography (Sec-
tion 3.2.2.6), so that only the infra-red rays form the photograph (Figure 3.2-10). 

Filters are not, as shown in Figure 3.2-2, 100% effective. A green filter, for example, 
can only transmit about 80% of green light, while the other colours are not completely 

14A detailed treatment of colour theory is given in: Wysecki, G., Stiles, W.: Colour Science. Wiley, 
2000. 
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blocked. About 20% blue and 35% red will be transmitted (Figure 3.2-3). The filter 
quality must be determined by measuring the intensities of the different transmitted 
wavelengths. Figure 3.2-4 shows the opacity and transmission of typical filters used in 
aerial photogrammetric cameras. These highly precise filters have a very steep "cut-
off" or edge and therefore block very exactly from a certain wavelength. They absorb 
as much as possible of the unwanted light and as little as possible of the desired light. 

Figure 3.2-3: Transmission characteristics of a green filter. Above: Transmission Τ in 
% of light falling on the filter. Below: Similar, but on a semi-logarithmic scale 

3.2.2.2 The photochemical process of black-and-white photography 

The exposure (see Section 3.2.2.3) produces a latent image in the layer of light-sensi-
tive silver halide crystals (AgBr, AgCl, Agl etc., size 0.2 μηι) embedded in the gelatine 
of the emulsion, which can be made visible by the negative development process (for 
example with hydroquinone, alkalis and potassium bromide). Here the silver is sep-
arated from the bromine. The unexposed silver bromide is converted in a fixing bath 
(sodium thiosulphate = hypo) into a silver salt easily soluble in water and released. 
The remainder of about 5% is then removed by washing. Only metallic silver remains 
finally in the exposed photograph, with the areas of high exposure blacker than those 
of lower exposure. In the reversal process the exposed silver bromide is released in the 
predevelopment (bleaching), while the unexposed silver bromide remains. It is then 
uniformly exposed and finally developed as a positive, fixed and washed. The uniform, 
intermediate exposure can be replaced by chemical processing with sodium sulphide 
(instant-photo process!). 
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Figure 3.2-4: Spectral transmission/absorption curves of filters for aerial photogram-
metric cameras; Τ . . . Transmission, Ο . . . Opacity 
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3.2.2.3 Gradation 

The relation (Figure 3.2-6) between exposure Η and density D of a negative or positive 
is of great practical importance for the judging of photographic materials, processes 
and results. The density D is measured in a densitometer. A densitometer generates a 
constant luminous flux Φο (measured in lumen ([lm])) and measures the proportion Φ 
transmitted through the film. The ratio Φ/Φο is called the transparency τ , the reciprocal 
Φο/Φ = 1 / r is called the opacity O. The logarithm of the opacity is the density D. 

A density D — 2 means therefore that only 1 /100 of the luminous flux Φο falling on 
the film is transmitted through the film and that 9 9 / 1 0 0 is absorbed; for D — 1, one 
tenth of the incident luminous flux is transmitted. A density D = 0 indicates complete 
transparency or τ = 1 (see also Section 3.1.5.3). 

The logarithmic definition of density accords with the Weber-Fechner law which states 
that the sensitivity of human sense organs, at least in the middle range of the usual 
exciting intensities, is proportional to the logarithm to the base 10 of the exciting in-
tensity. A logarithmic grey wedge, i.e. a series of densities increasing logarithmically, 
therefore appears as a linear scale to the eye. 

The exposure Η is defined as the product of the il luminance Ε falling on the emulsion, 
measured in [lux] = [lumen/metre2] (1 lx = 1 l m / m 2 ) , and the exposure time t, and is 
expressed in lux seconds (lx χ s). The gradation 7 is defined as 7 = tan a , where a is 
the slope angle of the straight portion of the density curve (also called the characteris-
tic curve) in the range of normal exposure (see Figure 3.2-6). The gradation depends 
upon the photographic material and its age, the development chemicals as well as the 
developing temperature and time. If 7 > 1, we have a "hard" photographic material or 
process which increases contrast: small differences of exposure produce larger differ-
ences of density. If 7 < 1, i.e. for "soft" materials or processes, the relation is reversed. 
If 7 = 1, i.e. "normal", the differences of density reproduce 1 : 1 the differences of 
exposure. The correct exposure for hard films, which is preferred for use in aerial pho-
tography, is much more difficult to judge than for soft films. The solarization point 
takes its name f rom the photographic effect in which the image of the sun is lighter in 
a negative than that of the surrounding sky. Apparently an excessive exposure leads to 
desensitization of the silver halide. 

The normal exposure range between points P2 and P4 of the density curve (Figure 
3.2-6) is known as the dynamic region of the density. In black-and-white films it is 
around 0 . 2 - 2 . 5 Ζ λ 

Since the maximum resolution in the photograph occurs in the lower third of the normal 
range of exposure, photogrammetric photographs should be just barely exposed and not 
too long developed. The practical consequences are that exposures must be carefully 
measured and, usually, that test photographs must be made. 

(3.2-3) 

(3.2-4) 
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Figure 3.2-6: The characteristic curve 
E\ = Base point for film speed definition (DIN, ASA; ISO), AD = 0.1 above fog 
E2 = Base point for film speed definition (AFS, EAFS), AD = 0.3 above fog 
(see Section 3.2.2.4) 

Exposure meters measure the illuminance Ε as spot or integral measurements. In spot 
exposure measurement15, a series of spot measurements is taken along the direction of 
flight to determine the minimum and maximum illuminances. The series is continually 
refreshed. A photograph is so exposed that the minimum density lies always at point 
Pi, but not below it, most of the photograph lies around point P3 and the maximum 
density (except for specular reflections such as those of the sun off water surfaces) lies 
above point P3, but never above point P4. Modern exposure meters regulate aperture 
and exposure time automatically and give warnings if points P2 or P4 will be exceeded. 
In this case, the film and development specifications must be changed. For integral 
exposure measurements, which can only measure the average object brightness over 
the entire photograph, one selects the aperture and exposure time for point P3 and 
hopes that nothing will be under- or over-exposed. 

3.2.2.4 Film sensitivity (speed) 

The sensitivity, or speed, of a photographic emulsion is defined as the reciprocal of that 
exposure H&d which produces a defined density difference AD above fog level, under 

15Zeth, U.: VT 32, pp. 147-151, 1984. 
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precise conditions of radiation, exposure and development16. The German Standards 
Institute (Deutsches Institut für Normung (DIN)) defines a logarithmic system known 
as DIN speeds, according to Equation (3.2-5) and based on that exposure HAD which 
produces a density difference AD — 0.1 above fog level (point E\ in Figure 3.2-6). The 
American National Standards Institute (ANSI)17 adopts an arithmetic system rather 
than logarithmic, according to Equation (3.2-6). The International Standards Organi-
zation (ISO) standard adopts both the DIN and ANSI speeds. Table 3.2-4 shows a 
comparison between the two systems. 

SPIN = 10 log H ° (3.2-5) 
n&D=o.i 

SANSI = 0.8 v
 H o (3.2-6) 

tlhO=0.1 

Ho = Unit exposure = 1 lx s (for visible light); Had in lx s 

DIN ANSI HAD=0.1 DIN ANSI Had=0.1 
0 0.8 1.0 16 32 0.025 
1 1 0.79 17 40 0.020 
2 1.2 0.63 18 50 0.016 
3 1.6 0.50 19 64 0.013 
4 2 0.40 20 80 0.010 
5 2.5 0.32 21 100 0.0079 
6 3 0.25 22 125 0.0063 
7 4 0.20 23 160 0.0050 
8 5 0.16 24 200 0.0040 
9 6 0.13 25 250 0.0032 
10 8 0.10 26 320 0.0025 
11 10 0.079 27 400 0.0020 
12 12 0.063 28 500 0.0016 
13 16 0.050 29 640 0.0013 
14 20 0.040 30 800 0.0010 
15 25 0.032 40 8000 0.0001 

Table 3.2-4: Comparison of DIN and ANSI film speeds. HAD=o.i in lux seconds is that 
smallest exposure (= illuminance χ time) which just produces a density of AD = 0.1 
above fog level. 

There exists in the USA a further standard18 for black-and-white aerial films, not the 
same as the DIN and ANSI standards. It is derived according to Equation (3.2-7) from 

1 6Alog Η = log HB ~ logHE\ = 1.30 must yield a AD = DB - DE ι = 0.80 ± 0.05. Β is the 
corresponding point on the characteristic curve between points P2 and P4 (Figure 3.2-6). 

"Formerly the American Standards Association (ASA). 
18See ANSI Standard PH 2.34-1969. 
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a unit of 3/2 times that exposure which produces, for a precisely specified "average" 
development, a AD — 0.3 above fog level (point Ej in Figure 3.2-6, AFS = Aerial Film 
Speed). 

SAFs = I J ^ - (3.2-7) 
i nAD=0.3 

For development conditions different from those of the standard and for colour films, 
the speed is quoted in EAFS (= Effective AFS). The advantage is that one can develop 
in any way thought suitable, but must also supply the corresponding information19. 

Exercise 3.2-9. Calculate the film speeds according to the various standards for the 
density curve in Figure 3.2-6. 

3.2.2.5 The colour photographic process 

Black-and-white films record only grey tones, but colour films contain further, impor-
tant information. Colour films are composed of three light-sensitive layers which are 
so treated in development that each layer becomes a colour filter. 

Positive and negative colour films 
The three light-sensitive layers are shown diagrammatically in Figure 3.2-7. Each layer 
is sensitive to a particular spectral range, though each of them is sensitive to blue. 
Therefore, a yellow filter layer Y is interposed between layers I and II, which prevents 
blue light (Figure 3.2-2) from passing through to the lower layers and is dissolved 
in development. Each colour-sensitive layer contains a colour-coupler or dye for the 
complementary colour, with which in negative films the exposed part and in positive 
films the unexposed part is dyed. Figures 3.2-7 and 3.2-8 show, in a simplified way, 
the layers and the effects of development. 

Positive colour infra-red film 
Colour infra-red, or false-colour, film has layers sensitive to infra-red, green and red 
rather than to blue, green and red light. These layers are coupled to the colours cyan, 
yellow and magenta so that in white transmitted light the colours red, blue and green 
appear, though these do not correspond to the natural colours of the object. This film 
is therefore also known as false colour film. Since all three layers are also sensitive to 
blue light, a yellow filter must be used (Figure 3.2-10). A yellow filter layer in the film 
is therefore not necessary (Figure 3.2-9). 

19Graham, R., Read, R.E.: Manual of Aerial Photography. Focal Press, London, 1986. 
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Figure 3.2-7: Positive colour film (colour reversal process). Red, green and blue are 
the three additive primary colours, yellow is introduced as an example of a mixed 
colour. Grey areas: reduced silver. Y = Yellow filter layer. 
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Figure 3.2-9: Positive false-colour film 
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3.2.2.6 Spectral sensitivity 

The layers of black-and-white and colour films are sensitized by various chemicals 
(mostly catalysers) for light of particular ranges of wavelength (Figure 3.2-10). The 
layers are not, however, equally sensitive to each wavelength. The spectral sensitivity 
S\ defines the sensitivity as a function of the wavelength Λ. It is, by analogy with the 
overall sensitivity, expressed as the reciprocal of that exposure (in lx s) which produces 
under standardized conditions a particular difference of density (usually AD = 1.0) 
above fog level. 

log 5«, (A) = log H o (3.2-8) 
ttAD= 1.0{λ) 

Ho is here not the unit exposure (Section 3.2.2.4), but a defined constant reference 
exposure to which the exposures at all wavelengths are referred. 

Orthochromatic emulsions are sensitive to blue-green light and therefore unsuitable 
for red object details. Since the sensitive layer integrates light of all wavelengths, 
the loss of the red influence leads to better differentiation in the blue-green range. 
Orthochromatic emulsions are therefore frequently used in terrestrial photogrammetry. 
They also have a practical advantage in that they can be developed under a red safety 
light in often improvised darkrooms in the field. 

Panchromatic emulsions reproduce the full visible spectral range in the naturally cor-
responding grey tones. They must be developed in complete darkness. 

Infra-red sensitive black-and-white emulsions are also sensitive to wavelengths from 
blue to red and must therefore be exposed through infra-red filters if one requires only 
the infra-red details in the photograph (see also Figure 3.2-4 and Section 3.2.3). The 
film must also be developed in complete darkness. 

(Normal) colour and false-colour films are primarily used for photo-interpretation, 
though they are all suitable for aerial photogrammetry since they have a sufficiently 
fine grain and thin layers. Where film is still required, precision photogrammetry nev-
ertheless continues to use the fine-grained, medium-speed black-and-white films. 

The human eye can resolve many more tones and hues of colour than it can of grey 
tones. Colour photographs therefore contain significantly more information than do 
black-and-white photographs and thus also help to simplify interpretation during ste-
reoscopic observation. The relatively small extra costs of colour photography are well 
justified for interpretation tasks. 

In (normal) colour film, the red sensitive layer receives not only the red object illu-
mination between 600 and 700 nm, as indicated in the idealized Figure 3.2-7, but also 
part of the green object illumination (500 to 600 nm) and even part of the blue object 
illumination (Figure 3.2-10). (Normal) colour is also, to some extent, a false colour 
film. 

In false colour film, the colour separation is worse than in colour film (Figure 3.2-10): 
the infra-red sensitive layer, which appears as red, not only receives the infra-red object 
illumination but also very large parts of the green and red object illumination. 
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Practical guidelines concerning the various types of film are given in Section 3.2.3. 

3.2.2.7 Resolution of photographic emulsions 

The decisive factor in the resolution of a photograph itself is the grain. The "grains" in 
undeveloped emulsions are the small silver halide crystals embedded in the gelatine. 
They range in size from a few nm (in emulsions of very low speed, but high resolution) 
to a few /xm (in high speed emulsions). After development, the "grains" are clumps of 
metallic silver molecules with diameters from 0.5 to 2.0 μπι. 

Kodak specifies a procedure for measuring granularity indirectly20. A microdensito-
meter with a circular aperture of 48 μπι diameter is used to scan part of the film with a 
relatively even density D = 1.0 and to derive the mean density distribution ση- This 
value, multiplied by 1000, is called the Root Mean Square Granularity (RMSG) . 

RMSG = 103<7D (3.2-9) 

A value of RMSG of 13 means that D — 1.0 ± 0.013 under these conditions. The 
smaller the value of RMSG, the higher the resolution of the film can be (see Ta-
ble 3.2-5). If a section of film with another density D had been used, instead of 
D — 1.0, experience shows that another RMSG would result. According to Diehl21: 

RMSG(D) = RMSG(D — (3.2-10) 

For the best aerial films (Table 3.2-5) the RMSG = 6, i.e. D — 1.0 ± 0.006. Ac-
cording to Equation (3.2-10), for a section of film with D = 2.0 then RMSG(2.0) = 
6(2.0 + 1.5)/2.5 = 8, i.e. D = 2.0 ± 0.008; for a section of film with D = 0.3 the cor-
responding values are RMSG (0.3) = 6(0.3 + 1.5)/2.5 = 4.3, d.h. D = 0.3 ± 0.0043. 

The resolution of photographic emulsions is determined by test charts (Figure 3.1-17), 
imaged by a camera onto the emulsion layer under test. This provides the total resolv-
ing power RT of the sensor combination "metric camera with photochemical record-
ing" which depends on the resolving power of the optics Ro and the resolving power 
of the photographic emulsion RP as follows22: 

W = W + W ( 3 - 2 - n ) 
±hrp J I Q Ibp 

From the observed total resolving power RT and the known resolving power R0 of 
the optics, determined for example with a very high resolution emulsion in a separate 
calibration (Section 3.1.5.2), the resolving power of the photographic emulsion, Rp 
can be calculated from Equation (3.2-11). 

Numerical Example. Observed: RT = 72Lp/mm; known: R0 = 90Lp/mm (Sec-
tion 3.1.5.2); calculated from Equation (3.2-11): RP — 120Lp/mm. 

Kodak Publication M-29. Rochester, USA, 1982. 
21 Diehl, H.: IAPRS XXIX(Bl), pp. 1-6, Washington, 1992. 
22Meier, H.-K.: BuL 52, pp. 143-152, 1984. 
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With low object contrast, modern films have a resolving power between 40 and 
250Lp/mm; when object contrast is higher, the resolving power is two to three times 
better. 

Numerical Example. The width of a line pair for an aerial metric camera with R0 = 
90Lp/mm was determined in Section 3.1.5.2. The question now arises, to what extent 
do these figures degrade when film with a resolving power Rp = 100Lp/mm is taken 
into account? 

Equation (3.2-11): \/R2
T = 1/902 + 1/1002 =» RT = 67Lp/mm 

Line pair width in image = 1/67 = 0.015 mm = 15 μπι 
Width of dark line (or of gap) in the image = 15/2 = 7.5 /im 
Width of dark line (or of gap) at the object (image scale 1 : 6666) = 7.5 χ 6666 = 
50000 μιη = 5.0cm (ignoring blooming, Section Β 2.2) 

The contrast transfer function, introduced in Section 3.1.5.4, provides more detailed 
information about imaging quality than the resolving power. Also in this section, the 
contrast transfer function CTF(f)o for the optics of a metric camera was introduced. 
The photographic emulsion has its own contrast transfer function CTF(f)p. Both 
are combined to give the contrast transfer function CTF(f)T of the complete system 
(optics plus photographic emulsion) as follows: 

An example is shown in Figure 3.2-11. It shows the contrast transfer function for film, 
in addition to two contrast transfer functions for the optics, one for the centre of the 

CTF(f)τ = CTF(f)0 CTF(f)P (3.2-12) 

CTF 

t 

0 «- f[Lp/mm] 
25 50 75 100 

Figure 3.2-11: Contrast transfer function of an objective lens for r = 0° and τ = 45°, 
as well as for film. The thick lines show the resultant contrast transfer functions for a 
film-based camera. 
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image (off-axis angle τ = 0°) and one for the edge of the image (r = 45°). The thick 
solid line is the total contrast transfer function resulting from the combination of film 
and optics (r = 0°) transfer functions according to Equation (3.2-12); the thick dashed 
line is the corresponding combination at (r = 45°). 

3.2.2.8 Copying with contrast control 

The density range of an aerial photograph, AD = Dmax — Dmin, can reach a value as 
high as AD = 2.5 (Section 3.2.2.3) as a result of shadows cast by objects or clouds on 
the one hand and by snow, rock or fields on the other, or as a result of the gradation of 
the film. This corresponds to a contrast of 320 : 1 (Section 3.1.5.3). Electronic copying 
devices permit the global density differences ADg of large areas to be reduced while 
at the same time increasing the detail contrast ADd (Figure 3.2-12). The negative is 
scanned by a cathode-ray spot. The light passing through the copy is sensed and either 
the intensity I or the scan velocity ν is instantaneously changed. If copying material 
with a hard gradation is used (7 = 4, Figure 3.2-6), the detail contrast within the spot 
area (variable size between 2 and 144 mm2) will be greatly increased. The electronic 
control of density reduction in larger areas is so adjusted as to give densities between 
about 0.3 and 1.4. A disadvantage is that at the edges of the photograph, as well as at 
other contrast edges, there is a 2 to 3 mm wide transition zone where illumination is 
not optimal and detail resolution is impaired. 

a) density distribution in negative 
b) density distribution in positive with reduced global contrast ADg and increased 

detail contrast ADd 

Figure 3.2-12: Copying with contrast control (abscissa = image plane) 

3.2.3 Films for aerial photography 

Table 3.2-5 shows details of nine typical aerial films. The resolving power of each film 
is given for two different object contrasts (Section 3.1.5.3). High contrast is represented 
by Κ = /max : /min = 1000 : 1 (log Κ = density difference AD — 3). Similarly, low 
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Table 3.2-5: Films for aerial photography. The terms "resolution" and "granularity" 
are treated in Section 3.3.3. Pan + emulsions have an extended spectral sensitivity for 
red light. 
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contrast is represented by a contrast Κ = 1 . 6 : 1 (log Κ = density difference AD = 
0.2). The different sensitivities of black-and-white films are needed to allow pho-
tographs to be taken in different seasons, even in late autumn. Panchromatic black-and-
white films are used for topographic mapping, i.e. for wide-area recording of ground 
detail. Black-and-white infra-red films are more suitable when only vegetation is of 
interest, for example for a forestry inventory (Sections 3.2.2.6 and 3.7.5). 

Colour and false colour (colour infra-red) films are primarily used for photo interpre-
tation23. The human eye can differentiate many more shades of colour than shades 
of grey. Colour images contain significantly more information than black-and-white 
images. Since they have been available with a sufficiently fine grain and thin film 
base, all are suitable for the analysis of metric aerial photographs. Where film is still 
required, fine grained, medium sensitivity black-and-white films are still preferred in 
high precision photogrammetry. 

Aerial films have a length from 26 to 140 m and are developed either in film developing 
machines24 in a continuous process or in tanks with automatic forward and reverse 
winding. They are dried after processing in special drying machines in which the film 
is drawn slowly over a drum while clean air is blown onto it. The handling of the film 
must impose no mechanical stress and a leader and trailer, each of about 1.5 to 2 m 
length, must be provided. 

3.3 Photoelectronic image recording 

It is becoming much less frequent for a photographic emulsion to be used as the sensor 
in the image plane of a metric camera. Instead, an electronic sensor which directly 
supplies a digital image (Section 2.2.2) is becoming more common. In Section 3.3.1 
the principle of opto-electronic sensors is presented. These devices are suitable for 
digitally recording optical radiation, that part of the electromagnetic spectrum covering 
visible and infra-red light (Figure 3.2-2). Sections 3.3.2 and following discuss the 
quality of image recording by opto-electronic sensors. 

3.3.1 Principle of opto-electronic sensors 

Solid state sensors are exclusively used nowadays for digital image recording in pho-
togrammetric cameras. They consist of a large number of detectors which register the 
photons of the incident light falling on the image plane of the camera. The principle 
of opto-electronic image recording by means of semi-conducting elements (preferen-
tially made of silicon) is illustrated in Figure 3.3-1 for a linear array sensor. In the 
semi-conducting elements under the electrodes, the photons of the incident light build 
up an electrical charge by creating electron-hole pairs. This charge is proportional to 
the number of incident photons (the photo-electric effect). 

^Literature: Arnold, R.H.: Interpretation of Airphotos and Remotely Sensed Imagery. Waveland PR 
Inc., 2004. 

24For example, the Kodak Versamat Ektachrome and Aerochrome RT Processor 1811 (1984). 
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a) 

b) 

Photons of the incident light 

• · · 
• · . 

• · • 

4 1 \ 
*> 

1 + 
* 

Electrodes 
Insolator 
Semi-conductor 

Active detectors 

Transfer and readout registers 
(shielded) 

a) generation of charge in semi-conductor according to the intensity (number of 
photons) of the incident light. 

b) transfer and read-out registers arranged next to the active detectors 
c) read-out principle by means of CCD (charge coupled device): the charges are 

shifted at regular time intervals (ίο, t\, t 2 , . . . ) by one element to the right and 
quantized when they reach the last element. 

Figure 3.3-1: Linear array sensor25 

The varying charges in the individual semi-conducting elements must be read out. For 
this purpose the charges are passed in parallel to a transfer register and from there read 
out in series (Figure 3.3-lb). Figure 3.3-lc shows the charges after they have been 
passed to the transfer register. The quantities of charge here are the ones produced by 
the photons in the active detectors. 

25With acknowledgement to Schenk, Τ.: Digital Photogrammetry. TerraScience, 1999. Figure 3.3-2 is 
also taken from this source. 
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The transfer register also consists of semi-conducting elements which are sensitive 
to light; they must therefore be covered. To determine the amount of each charge, 
the transfer register has an additional element with its own electrode. At time to this 
holds no charge. At time t\ all the charge packets are shifted by one element to the 
right (Figure 3.3-lc). With the electrode at this additional element, the amount of 
charge currently resident can be converted into an analogue electrical signal which can 
subsequently be digitized. At time t\ this charge is the one generated by the last active 
detector in the array, at time ^ it is the charge from the last but one detector, and so on. 

This technology based on charges coupled with semi-conducting elements is today 
dominant. This gives rise to the abbreviation CCD for charge coupled device, with the 
abbreviation itself in common use, for example in reference to CCD cameras. 

Figure 3.3-1 shows a CCD linear array sensor. For photogrammetric requirements, 
CCD area arrays are more appropriate. Figure 3.3-2 shows such a CCD area array 
sensor. It consists of: 

• a number of active detectors arranged in rows 

• transfer registers between the rows 

• a serial read-out register 

In this case only half the image plane is covered by active detectors; the other half is 
taken up by the transfer registers. This configuration is known as an interline transfer 
sensor. Since this development there have been other technical solutions in which the 
entire image plane is covered with active detectors (full frame sensor). 

Some current technical details for CCD sensors prove the high development level of 
this technology but also show its limits. At present, the largest CCD area arrays have 
4096 χ 4096 = 4K χ 4K = 16M detectors and CCD linear arrays have up to 20K 
detectors. 

To achieve a high resolution, which is crucially dependent on the number of detectors, 
mapping flights dispense with CCD area arrays and instead use linear arrays, for exam-
ple with 20k detectors, in a push broom configuration. This ensures that 20K detectors 
determine the resolution rather than 4K detectors; resolution is therefore increased by 
a factor of 5. 

A digital line camera with a CCD linear array is shown in Figure 3.3-3, left. For each 
image line there are individual elements of exterior orientation. In a digital line camera, 
the six elements of exterior orientation therefore change from imaged line to imaged 
line. In metric cameras which use CCD area arrays or film, the six elements of exterior 
orientation only change between each full two-dimensional image (from image plane 
to image plane). 

For the spatial recording of an object it is a condition that each object element is imaged 
by two rays from different directions. The digital line camera (Figure 3.3-3, left) does 
not meet this requirement within a flying strip. If instead a 3-line camera is employed 
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Serial readout register 

Figure 3.3-2: CCD area array sensor in interline transfer mode 

Figure 3.3-3: Line camera (left) and 3-line camera (right) 

(Figure 3.3-3, right) then every object element within a flying strip is recorded from not 
just two but three directions; objects recorded in this way can be spatially reconstructed. 

If the time required to read out the charges is significantly longer than the reaction 
time to build up the charges in the detectors, and if the CCD camera, for example in 
an aircraft, moves during this time, then a mechanical shutter of the type used in film 



Section 3.3 Photoelectronic image recording 97 

cameras must be employed to limit the exposure time. A mechanical shutter is not 
necessary in CCD cameras where the read-out frequency is very high, particularly in 
line cameras. 

Boyle, W.S., Smith, G.E.: Bell Systems Technical Journal, Volume 49, pp. 587-593, 
1970 (a key publication relating to CCD technology). Graham, R.: Digital Imaging. 
Whittles Publishing, 1998. Toth, C.: In Fritsch, D„ Spiller, R.: Photogrammetric Week 
'99, Wichmann Verlag, pp. 95-107, 1999. 

3.3.2 Resolution and modulation transfer 

The recording quality of opto-electronic image sensors, in terms of their resolution and 
contrast transfer, is primarily influenced by the size of the pixels Αξ χ Αη. The size of 
the pixel at the object is given by projecting the surface of an individual detector ele-
ment through the camera optics onto the surface of the object, for example the Earth's 
surface. For vertical images taken of flat ground, the size of a pixel Αχ χ Ay on the 
ground surface, commonly referred to as "the footprint" (Figure 3.3-3), is given by: 

Αχ=-Αξ Ay=-An (3.3-1) 
c c 

h... flying height, c . . . principal distance or focal length 

For images taken with a CCD sensor, the illumination intensity I within a pixel is av-
eraged to a representative value I. Figure 3.3-4 shows the relationships for an intensity 
profile along the y direction, i.e. at right angles to the direction of flight. 

Figure 3.3-4: Average intensity value within a pixel 

The illumination intensity function I ( y ) along a profile can be given as a Fourier series: 

oo 
I ( y ) = I0 + ^ Ck cos(2nF k y - ipk) (3.3-2) 

fc= ι 
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J0 . . . Average intensity value along the entire profile length L 
Fk ... Spatial frequencies of the individual component waves of the series. 

They are the reciprocals of the wavelengths Lk, i.e. Lk = 1 /Fk. The 
wavelengths derive from Lk — L/k, where k runs from 1 to (theoret-
ically) oo. 

Ck ... Amplitudes of the component waves 
φκ . . . Phases of the component waves. 

A representative mean value I within a pixel is given by the following integral taken 
over the range [y — A y / 2 , y + A y / 2 ] : 

= h 11{z)dz ( 3 ' 3 ~ 3 ) 

v - t y 

The solution to this integral is: 

m = Ό + ΣΓ=ι c o s ( 2 , F k y - V k ) ^ 

= + 

Comparison with the original intensity function I(y) indicates that the amplitudes Ck 
are attenuated to the values C'k as a result of imaging with the detectors. In Sec-
tion 3.3.5.3, the contrast transfer function C T F ( F k ) was defined using the ratio of the 
amplitudes of a square wave function. Since signal analysis is based on the theory of 
Fourier series, the usage of square waves is replaced by sine waves, and consequently, 
the term "contrast transfer function" by "modulation transfer function" M T F ( F k ) . 

The MTF can be stated mathematically as26 

Here the pixel size in the ground is no longer designated by Ay but by Ayr, which is 
the footprint of the detector element D. 

In Figure 3.3-5 the modulation transfer function is plotted against F k A y D and L k / A y o · 

The abscissa gives the intensity as a function of frequency Fk and the lower scale as a 
function of wavelength Lk. 

The modulation transfer function (3.3-5) becomes unity27, i.e. there is no attenuation 
of the intensity profile I(y), when either the detector size AyD or the frequency Fk be-
comes zero. The first case implies an infinite number of infinitesimally small detectors, 
the second case that the intensity profile I(y) has a constant value within the footprint, 
i.e. an infinitely long wavelength. 

26The function sin x / x is known as sinc(.x) function, which resembles a damped sinusoidal oscillation. 
Figure 3.3-5 shows the first positive lobe of the function. 

27The limit of sin(a;)/x is unity when χ —> 0. 
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MTF(FkAyD) a 

theoretical R 

1 1 . • > FkAyD= 
A>t 
Lk 0 0,25 0,5 

actual R 

00 4 2 

Figure 3.3-5: Modulation transfer function MTF and resolution R of a detector 

The modulation transfer function (3.3-5) becomes zero, i.e. the variations in the inten-
sity profile are eliminated in the imaging process, when FkAyD = 1. This occurs when 
the wavelength of the intensity variations has the same size Ay η as the footprint, i.e. 
L = Ayo- Any shorter wavelength, where L < Ayu, cannot be recorded correctly, 
even though non-zero values may be obtained. The limiting case, where MTF be-
comes zero, corresponds to the point where the resolution can no longer be digitized 
with that detector. (A related definition of resolution for an analogue photograph is 
shown by Figure 3.1-21.) This is a theoretical resolution. Due to the limited sensitivity 
of the detector, the actual resolution lies around the value FmaxAyD « 0.7 (where the 
amplitude of function (3.3-5) reaches some 40% of its maximum) and is dependent on 
the opto-electronic sensor used (Figure 3.3-5). In practice, the width of a line pair L^n 
which can just be resolved by a detector with a projected extent on the object surface 
of AyD is therefore: 

Between the limits 0 < Fk < Fm a x the intensity amplitudes are attenuated. The higher 
the frequency (or smaller the wavelength), the larger the attenuation. This attenuation 
can be corrected by use of an inverse filter (Section 3.5.2.2). The above considerations 
are not sufficient for deciding if a certain wave pattern, with frequencies higher than the 
limiting case, can potentially be reconstructed from a digital image, since another para-
meter, the sampling interval, also plays an important role. One should bear in mind that 
the considerations in this section presume an infinitesimally narrow sampling interval, 
i.e. continuous sampling. For a proper assessment of the frequency-related digitization 
quality, detector size and detector spacing must not be treated independently. 

Width of line pair ( = Lmm — 1/Fmax) « \AAyD (3.3-6) 
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3.3.3 Detector spacing (sampling theory) 

The previous section concentrated on the imaging properties within the area of a sin-
gle detector element, which was continuously moved across the object. The shortest 
intensity waves which can be resolved by a detector with dimension Αη0 have a wave-
length of /min = ΙΛΑηο, corresponding to a frequency of /max = 0.7 /Αη0. Following 
Equation (3.3-1), the dimensions Δy D , Lmm and Fmax, which refer to the object, can be 
replaced by Αηο, lmin and /max which refer to the image. The shortest wave compo-
nent which can, with certainty, be resolved by a detector of size Αηο is represented in 
Figure 3.3-6. 

In the previous section an infinitesimally narrow spacing Αη3 of the detector has been 
presumed. In practice, this spacing is finite. The question now arises as to the spacing 
required between detectors in order to record the shortest component wavelength in an 
image. The sampling theorem states that the sampling interval Ar/S must be smaller than 
half the wavelength of the sampled wave28. Figure 3.3-6 shows an adequate sampling 
interval Αη8, which, in the case of a CCD camera, corresponds to the detector spacing. 
It can be seen that the detector spacing must be significantly smaller than the detector 
dimension Αη0

29. 

The sampling interval or detector separation Αη3 can also be related to the resolution 
R, expressed, for instance, in line pairs per millimetre (Lp/mm). Here the width of 
a line pair corresponds to the wavelength Zmm in Figure 3.3-6, yielding the maximum 

28The sampling theorem is also known as the Shannon-Nyquist Theorem and the limiting frequency 
as the Nyquist frequency. (Jerri, A.J.: The Shannon Sampling Theorem—Its Various Extensions and 
Applications: A Tutorial Review. Proc. of the IEEE 65(11), 1977.) 

29In commercially manufactured CCD sensors, the reverse is the case (Figures 3.3-1 and 3.3-2). By 
using an array of microlenses in front of the detectors, the effective (and larger) detector area is imaged 
onto the actual and physically smaller detector surface. 
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detector spacing Αη3: 

Αη3 [mm] < 1 / (2R [Lp/mm]) (3.3-7) 

In practice, the numerator 0.7 is chosen30, as indicated in Figure 3.3-6, i.e. 

Αη3 [mm] = 0.7/(2R [Lp/mm]) (3.3-8) 

If the intensity profile is sampled at an interval larger than the values derived from 
Equation (3.3-8), the result is an undersampling. Artificial (low-frequency) patterns are 
then generated in digital images, caused by the interference of the higher frequencies 
in the image with the frequency of the sampling interval. This effect is known as 
aliasing31. A demonstrative example can be seen in Figures 2.2-7 to 2.2-9, where 
artifacts appear in the window blinds. The sampling interval has a value which clearly 
cannot fully record the original texture in the slats of the blinds. 

Equation (3.3-6) permits a comparison between the resolution of a CCD sensor and 
photographic film. From Table 3.2-5, a film with a resolution of 100 Lp/mm can 
be found32. This corresponds to a line pair width of 10 μτη in the image. In order 
to achieve the same resolution with an electronic sensor, the pixels must have the 
following size (derived from Equation (3.3-6): Ar)s = 0.7/(2 χ 100) = 3.5 μπι). 
The analogue photograph provides the given resolution across an image format of 
23 cm χ 23 cm. In order for CCD technology to deliver the same quality just by 
replacing the film plane by a CCD chip, it would require 66000 detector elements 
(= 230000/3.5) along one side of the image. It is difficult to imagine such a number 
of pixels in area CCD arrays, even in the long term. 

In area CCD arrays, sampling interval and detector size are more or less identical and 
given by the detector arrangement on the sensor plane. In the case of linear array sen-
sors, as they are used in line cameras, the same is valid within the line, while perpendic-
ular to the sensor line, i.e. in the direction of flight, the sampling interval is variable and 
depends on the relation between flying speed above ground (projected into the image 
plane) and readout rate. Flight planning has to take this into consideration, particularly 
in order to avoid undersampling. 

Exercise 3.3-1. For a camera with an image format of 23 cm χ 23 cm, there is an 
equivalence in resolution of 100 Lp/mm between film and a (fictitious) electronic 
sensor having 66000 χ 66000 electronic detectors. Nowadays, CCD sensors with 
10000 χ 10000 elements with 9 μτη pixel width are realistic. What is the correspond-
ing resolution in the image plane? If the flying height is kept the same as with a film 

30Note: the factor 0.7, which has been applied in the previous section to determine the largest detector 
size, is not related to the factor 0.7 here. While in the first case the detector size has been reduced in 
order to detect a reasonably high amplitude (noticeably greater than zero), here the detecting interval is 
reduced in order to guarantee the reconstruction of a certain minimum wavelength (noticeably different 
from the Nyquist frequency). 

31Smoothing filters, which suppress high frequencies (prior to digitization) in order to avoid aliasing, 
are known as anti-aliasing filters. 

32Note: the specified resolution is valid for the film and not necessarily for an exposed image. A pho-
tograph's resolution also depends on negative effects due to the lens, filters and atmospheric disturbances. 
How the cumulative resolution may be calculated, can be found in Section 3.2.2.7. 
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camera, how must the principal distance c be changed for the CCD camera in order to 
achieve the same resolution on ground as film would deliver? What ground area would 
be covered compared to the film camera? (Solution: c must be 2.57 times longer. 
Area covered by the digital camera would be just 2.3% of the area covered by the film 
camera of the same resolution.) 

Exercise 3.3-2. Reconsider the situation in the case where the camera optics have 
a resolving power of 90Lp/mm (Hint: Make use of Equation (3.2-11)). (Solution: 
67 Lp/ mm.) 

Further reading for Sections 3.3.2 and 3.3.3: Schenk, Τ.: Photogrammetry. Terra Sci-
ence, 1999. Holst, G.C.: CCD Arrays, Cameras and Displays. SPIE Press, JCD Pub-
lishing, 1996. Inglis, A.F., Luther, A.C.: Video Engineering. 2nded„ McGraw-Hill, 
1996. 

3.3.4 Geometric aspects of CCD cameras 

When CCD cameras are employed for photogrammetric purposes it is, as a rule, neces-
sary to have knowledge of the interior orientation. The required parameters are defined 
in the calibration certificate (Section 3.1.1) and are: 

• the principal distance 

• the coordinates of the principal point of autocollimation and principal point of 
best symmetry 

• the objective lens distortion. 

In addition, CCD cameras must also provide information on the positions of the active 
detector elements and the planarity of the recording surface defined by the surfaces 
of the detectors. Nowadays, detectors can be arranged in an orthogonal grid with a 
positional accuracy of around 0.2 μηι, a deviation which can normally be ignored in 
photogrammetric processing. In contrast, lack of flatness can be in the order of 10 /um. 
This should be taken into account in precise analyses, particularly where a wide field 
of view is employed. 

In digital photogrammetry, the correction of lens distortion is similar to that in analyt-
ical photogrammetry (Section 3.1.3). The pixels must be "shifted" by the correction 
values Δξ and Αη (Equation (3.1-2)). This would disturb the pixels from their arrange-
ment in a strictly orthogonal grid. In order to preserve a strictly orthogonal structure 
which is convenient for image processing, a resampling is required, as described in 
Section 2.2.3. However, it is expedient to adopt a virtual image in the solution, as 
explained in Section 4.5.4. 

Correction for lack of flatness is done in a similar way and in the following steps: 
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• convert the Αζ (height) deviations of individual detector elements into radial 
shifts Ap in the image plane using the formula Ap — Αζ tan r , where τ is the 
off-axis angle of the imaging ray on the image plane 

• resolve Ap into component corrections Αξ and Αη by means of Equation (3.1-2) 

• continue the process by means of a virtual image (Section 4.5.4) 

In cameras which work with video analogue signals and frame grabbers (Section 3.8.7), 
pixel positioning is done through line synchronization. Irregularities which may oc-
cur in this process can lead to displacements between image lines (line jitter) and 
also within individual lines (pixel jitter). A typical line shift is illustrated in Fig-
ure 3.3-7. The correct image is indicated on the left. The centre diagram shows the 
image recorded with displaced lines and pixels; the output using pixels in an orthogo-
nal grid (right) results in a distorted image. 
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Figure 3.3-7: Effect of line jitter .33 

Finally it should be noted that the electronic signals in analogue videocameras drift 
by relatively large amounts during the warm-up phase. In practice, therefore, a corre-
sponding time delay should be observed before use. 

Further reading: Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close Range Pho-
togrammetry. Whittles Publishing, 2006. Shortis, M., Beyer, H.: In Atkinson (ed.): 
Close Range Photogrammetry and Machine Vision. Whittles Publishing, Caithness, 
UK, pp. 106-155, 1996. 

3.3.5 Radiometric aspects of CCD cameras 

3.3.5.1 Linearity and spectral sensitivity 

The electrical signals delivered by CCD sensors are largely proportional to the number 
of photons incident on the detectors. Departures from linearity can be held to within 

33Taken from Dähler, J.: Proceedings of the ISPRS Intercommission Conference on "Fast Processing 
of Photogrammetric Data", pp. 48-59, Interlaken, 1987. 
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1 % of the true value34 but there are very large departures from linearity when the semi-
conductor elements are close to saturation. In fact, very large amounts of radiation 
cause an "overflow" into the neighbouring detector elements. The result is blooming, 
similar to the effect which also occurs with very bright objects imaged onto film. 

The spectral sensitivity (Section 3.2.2.6) of the silicon sensors normally used ranges 
from 400 to around 1100 nm, i.e. from visible light into near infra-red, thus consider-
ably wider than that with analogue photography. 

3.3.5.2 Colour imaging 

Imaging in multiple spectral regions, i.e. colour imaging, is possible in several ways 
with CCD cameras. One variant, which is preferred when employing CCD area arrays, 
involves the use of a cluster of several cameras. The individual cameras in the cluster 
are provided with identical sensors, each sensitive in the range 400 to 1100 nm. How-
ever, different filters which select different parts of the spectral region are attached to 
the front of the objective lenses. For example, if normal colour images are required 
then there are three cameras in the cluster. The first camera has a blue filter, the second 
a green filter and the third a red filter (Figure 3.2-2). If a colour infra-red image is 
required then the first camera has a green filter, the second a red filter and the third 
an infra-red filter (Figures 3.2-2 and 3.2-10). To display a colour infra-red image, for 
example on a colour monitor, the image matrix from the first camera is represented in 
blue, the second in green and the third in red (see Figure 3.2-9). 

A cluster solution is only realistic for satellite and aerial photography. In these cases 
the imaging distances are so large that, despite the small relative displacements of 
the cameras, identical images are obtained. At close ranges an alternative solution is 
required. One solution makes use of a single camera with a single detector field. The 
imaging for the three separate colours takes place sequentially. For each exposure a 
different filter from one of the sets mentioned above is positioned in front of the lens. 
Between each exposure, the object and the camera's interior and exterior orientation 
must remain fixed. 

Another solution also employs a single camera with a single detector field. This so-
lution achieves colour separation with a filter mask placed in front of the detectors. 
There are various arrangements of filters. Figures 3.3-8 shows two arrangements of 
(R)ed, (G)reen and (B)lue filters. For natural objects, the distribution of the green in-
tensities comes close to the brightness distribution. For capturing images with a wide 
range of brightness levels, the right-hand arrangement has a certain advantage. Full 
image arrays for each colour are then created by interpolation between the pixels of the 
individual colours. 

There is a very elegant solution for colour images from digital line cameras. The 
rays from every object point are divided into three separate and displaced components 
by means of a beam splitter. Before each component ray then reaches one of three 

34Dierickx, B.: OEEPE-Publication 37, p. 66,1999. This publication also discusses CMOS technology 
which may one day replace CCD technology. 
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Figure 3.3-8: Filter masks for CCD colour imaging 

parallel linear CCD arrays, it passes through a colour filter. The type of filter used 
is an interference filter which provides a better colour separation than the individual 
layers of colour film whose spectral sensitivities have a relatively significant overlap 
(see Figure 3.2-10). 

All the techniques of colour separation presented here can be applied beyond the three 
basic colours. Particular importance is attached to imaging in the four spectral regions 
blue, green, red and near infra-red. In contrast, analogue photography can only simul-
taneously record three colour regions. 

3.3.5.3 Signal-to-noise ratio 

The radiometric sensitivity across the whole spectrum, comparable to the general sensi-
tivity of film (Section 3.2.2.4), is defined for CCD sensors by the signal-to-noise ratio, 
SNR: 

SNR = — (3.3-9) 
σ3 

S ... electric signal intensity, as . . . standard deviation of system noise 

An SNR value of unity means that the signal S, which contains the relevant informa-
tion, has the same magnitude as the noise a s : in this case the signal disappears amongst 
the noise and no relevant information can be extracted from it. 

CCD sensors can reach a maximum SNR of approximately 1000 : 1 and sometimes 
more. The maximum SNR is the dynamic range DRs of the sensor. In order to quantize 
the recorded illumination intensity, a step size interval of 2a s should be chosen35, i.e. in 
this example the dynamic range of the digital image DRj = DRs/2 = 1000/2 = 500; 
a pixel must therefore be represented by 9 Bits (29 = 512). 

Noise a s has various sources. Amongst these are dark current noise in which photons 
are generated by thermal effects rather than incident light from the object, charge trans-
fer noise due to inefficiencies in transferring charges between neighbouring detectors 
during the read-out process, transmission noise in which signals are deformed during 

35Baltsavias, E. in Fritsch/Spiller: Photogrammetric Week '99, Wichmann Verlag, pp. 155-173, 1999. 
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transmission and before analogue-digital conversion and quantization noise caused by 
rounding errors in the analogue-to-digital conversion. 

A test card with homogeneous surface properties and illumination is used for the de-
termination of detector noise, a method comparable with the determination of film 
granularity (Section 3.2.2.7). The noise a s can be determined from the variation in 
grey level. Variations in illumination and surface properties can falsify results. It is 
possible to allow for these effects by making a series of exposures with the same ex-
terior orientation and, from the spread of results for individual pixels then deduce the 
standard deviation a s . 

The signal-to-noise ratio SNR depends on various parameters. In the following dis-
cussion, only the principal parameters for the SNR as a general function / ( ) will be 
evaluated: 

SNR = /(Αη, At,...) (3.3-10) 

Αη ... Detector size (Section 3.3.2) At ... Available integration or exposure time for recording photons 

The parameters of function (3.3-10) interact with one another. The SNR, which can 
also be called radiometric resolution, improves under the following conditions: 

• with larger Αη, which means that geometric resolution is worse 

• with a longer exposure time 

Both types of resolution (radiometric and geometric) must be carefully balanced ac-
cording to priorities in the construction of imaging sensors. In photogrammetry, geo-
metric resolution has the higher priority. When resolution is discussed in photogram-
metry, then geometric resolution is implied. 

The resolution types mentioned are also relevant to analogue photography. Radiometric 
resolution is expressed by the general sensitivity (Section 3.2.2.4) or the granularity 
(Section 3.2.2.7). Geometric resolution is given in the form of line pairs/millimetre 
(Lp/mm). 

3.4 Digitizing analogue images 

The explanations above have shown that the geometric resolution of analogue photog-
raphy is significantly higher than the geometric resolution of current opto-electronic 
(area array) sensors. For many years to come, therefore, objects will be recorded by 
light-sensitive film in metric cameras when executing the most accurate photogrammet-
ric tasks. However, in order to apply the methods of digital photogrammetric analysis, 
film can be digitized after development. 
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3.4.1 Sampling interval 

The sampling interval, which equates to the distance between each pixel in an orthogo-
nal grid, must be compatible with the resolution in the analogue image in order to avoid 
loss of information. Section 3.2.2.7 discussed the geometric resolution RT of a "pho-
tographic emulsion" sensor. For current films it varies between 50 and 100Lp/mm. In 
a similar way to the sampling theorem, the digitization sampling intervals A(s and Αη3 
in both coordinate directions should be chosen as follows36: 

Αξ3 [mm] = Αηβ [mm] = 0.7/(2Λ) (3.4-1) 

Numerical Example. Adequate sampling intervals for the analogue images mentioned 
above are between 3.5 and 7μπι (e.g.: Αξβ = Αη3 = 0.7/(2 χ 50) = 0.007 mm = 
7 μπι). 

The sampling interval should not be confused with the size of the detector elements. 
In an ideal situation there is no difference between the detector dimensions and the 
sampling interval. This concept lies at the basis of Figure 2.2-3 and many related 
diagrams. However, in Section 3.3.3 it was shown that size of the detectors could 
certainly be larger than the sampling interval. A larger detecting surface also improves 
the radiometric resolution (Section 3.3.5.3). 

The sampling interval required on the basis of the geometric resolution of an analogue 
image, generates a very large amount of data. To store a pixel generally requires 8 bits 
corresponding to 1 byte. At a sampling interval of 7 /im, a 23 cm χ 23 cm metric image 
requires a storage capacity of approximately 1 gigabyte, where 1 GB « (230000/7)2. 
For a colour image it would be 3 GB. This quantity of data only applies to a single 
image. In digital photogrammetry, data is required from many images, although only a 
few must be simultaneously resident in computer memory. From these considerations 
and many others (e.g. Section C 1.1.1.1, Volume 2), when scanning images a sampling 
interval between 7 and 30 μπι is chosen in practice. 

3.4.2 Grey values and colour values 

The discussion will initially be limited to the digitizing of an analogue black-and-white 
photograph. The grey values are measured by means of a densitometer or several 
densitometers (Section 3.2.2.3). A densitometer transmits a constant stream of light φο 
and uses a CCD sensor to measure the component not absorbed by the film. The light 
source and CCD sensor are illustrated in Figure 3.4-1 for a flat-bed scanner, a widely 
used design. The film carrier is moved with respect to the light source and sensor. The 
right hand side of Figure 3.4-1 indicates that a diffuse light source is employed and that 
several CCD detectors receive the component of the light which is not absorbed. 

36It is interesting to note the connection between the sampling interval, i.e. pixel size Δ, and the 
parameter dots per inch [dpi], employed in the printing industry. Making use of the footnote in Sec-
tion 3.1.5.2, the relationship is: R [dpi] = 25.4 χ 1000/Δ [μιτι], A 7 μπι pixel therefore corresponds to 
3629dpi = 25.4 χ 1000/7. 

"Taken from Kölbl, O.: OEEPE-Publication 37, pp. 135-150, 1999. 
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Figure 3.4-1: Flat-bed scanner with diffuse light source 

Film 

CCD detector 

.37 

The CCD detectors measure the light which is not absorbed and there exists a lin-
ear relationship between this quantity of light and the charges developed in the semi-
conductors (Section 3.3.1). The charges are quantized and converted by the scanner 
into grey values g. The logarithms of the grey values g must have a linear relationship 
with the densities of the corresponding elements of the film (Section 3.2.2.3). 

Figure 3.4-2 shows the relationship between the density D of the exposed and devel-
oped film and the logarithm of the quantized grey values g for a specific scanner. There 
is good linearity up to a density of 2.0 but not in darker regions. The steep curve in 
very dark regions indicates that here the scanner does not satisfactorily reproduce the 
density gradations. 

density D 

Figure 3.4-2: Density of a reference pattern with respect to grey value g (Scanner: 
DSW 300 from LH Systems, pixel size 12.5 /mi)38 

Practical tip: Film negatives often generate high densities. To create the conditions 
for optimal digitizing, a contact copy onto transparency film (Section 3.2.2.8) is rec-
ommended. The layers in positive colour film are generally highly saturated. When 
digitizing colour films, the radiometric demands on the scanner are therefore greater 

38Taken from Baltsavias, E„ Kaeser, Ch.: OEEPE-Publication 37, pp. 111-134, 1999. 
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than when digitizing black-and-white films. Figure 3.4-2, in fact, results from calibra-
tion with a colour film. 

Black-and-white images have a density range of 0.1 - 2.0D, positive colour films a 
range of 0.3-3.5Z) (source: see footnote ). The density dispersion σο of developed 
film lies around ±0.006 in areas with a density of ID (Table 3.2-5 shows the RMSG 
which is 1000 times greater than σρ; see also Table Ε 4.2-1, Volume 2). For less dense 
regions, say 0.3.D, σο lies around ±0.0043. If a quantization step corresponding to 
twice the standard deviation of the density dispersion is chosen for the detector charges 
(Section 3.3.5.3), then the following dynamic ranges DRi for grey and colour levels 
are obtained: 

• black-and-white film: DRj = 2.0/0.0086 ~ 223 

• colour film: DRi = 3.5/0.0086 « 407 

8 bits (28 = 256) are therefore just sufficient to represent grey values in black-and-
white films. For colour films the 8 bits normally used for image data are clearly too 
few. 

The interaction between geometric and radiometric resolution, mentioned in Section 
3.3.5.3, also applies to scanning. For example, sampling with large pixels delivers a 
better radiometric quality, i.e. a better signal-to-noise ratio, than sampling with small 
pixels (Table Ε 4.2-1, Volume 2, provides empirical values). 

3.4.3 Technical solutions 

In addition to flat-bed scanners (Figure 3.4-1), there also exist drum scanners where the 
film is mounted onto a cylindrical drum. Drum scanners are widely used in the printing 
industry. In photogrammetry, flat-bed scanners take precedence; they generally have a 
smaller format than drum scanners. 

With regard to the arrangement of light-sensitive detectors, there are three different 
principles of construction: 

• single detector, which is driven line by line across the film, usually by means of 
rotation 

• linear array, which is moved in strips across the film. Several thousand detectors 
are arranged in a single array 

• area array, which records partial images. These partial images are combined 
into a complete image by means of a reseau whose crosses have known coordi-
nates. The reseau can be marked on a glass plate which is placed on the film 
(Figure 3.4-3). The reseau can also be introduced into the image during expo-
sure. This requires a reseau to be incorporated into the recording film camera 
(Section 3.8.4). 
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Radiometric calibration of a scanner is particularly difficult with linear and area array 
scanners. Each detector in the array must have the same sensitivity, otherwise patterns 
of stripes (linear arrays) or blocks (area arrays) are produced. However, to a large 
extent these patterns can be removed in digital post-processing. 

In photogrammetry, the positional accuracy of the pixels resulting from the digitizing 
process is of considerable importance. For currently available photogrammetric scan-
ners, the average accuracy of an image coordinate lies around ±1.3 - 2.3 μηι39. A 
precondition here is that the scanner's calibration certificate provides reference coordi-
nates for the detectors, or at least for a few evenly spaced detectors (further details in 
Section Ε 4.2.1, Volume 2). In contrast, repro scanners have significantly larger posi-
tional errors but, in general, provide a better radiometric quality than photogrammetric 
scanners. 

Among others, photogrammetric scanners are currently offered by the following com-
panies (product names in brackets): Leica Geosystems (DSW), Microsoft-Vexcel (Ul-
traScan), Wehrli (RM) and Intergraph (PhotoScan). 

3.5 Digital image enhancement 

Digital images, either directly recorded in a metric camera or produced indirectly by 
digitizing an analogue image, can be enhanced through the methods of digital image 
processing. These improvements are made with regard to the optimal conditions for 
both visual interpretation of the images and automated analysis of the images. 

Image enhancement is the central theme of this section; digital image analysis (ex-
traction of 2D and 3D data) will be discussed later, particularly in Section 6.8. The 
following discussion is limited to black-and-white images (colour images are handled 
in Section C 1.3.4, Volume 2) and starts with contrast and brightness enhancement. 

39Baltsavias, E., Kaeser, Ch.: OEEPE-Publication 37, pp. 111-134, 1999. 



Section 3.5 Digital image enhancement 111 

3.5.1 Contrast and brightness enhancement 
In these procedures, the grey values g^ of the original image matrix G are transformed 
to grey values g^ in the enhanced matrix. The simplest transform function is: 

9ij-=cgij+d (3.5-1) 

c . . . parameter responsible for contrast, d . . . parameter responsible for brightness 

With this transform function, the grey levels of individual pixels are altered indepen-
dently of one another. Viewing all the grey levels together in an image results in a 
change of contrast for which parameter c is responsible. Parameter d alters the image 
brightness. Figure 3.5-1 shows how contrast and brightness of a digital image can be 
altered by the choice of c and d. 

Contrast enhancement can also be applied differentially (Figure 3.5-2). Other functions 
can also be chosen in place of the linear transform function. Figure 3.5-3 suggests two 
general functions. 

By making contrast enhancement a function of grey level, the sensitivity of the human 
eye can also be taken into account. CCD sensors generate grey levels which are propor-
tional to the number of photons falling on the individual detectors. To the human eye, 
grey value sequences appear linear when they follow a logarithmic curve to base 10 
(see Section 3.2.2.3 and also Sections 3.3.5 and 3.4.2). Conversion using a logarithmic 
transform function is therefore a standard procedure in digital image processing and 
extremely efficiently implemented in many systems. 

In order to save computing time, transformations such as the one in (3.5-1) are solved 
by the use of look-up tables, abbreviated to LUT. To this end, transformation values 
gtj are computed for all grey levels gtJ, usually in the range 0 - 2 5 5 , and stored in a 
table. When an image is processed it is then only necessary to "look up" the position 
gij in the LUT and extract the corresponding grey value g r j ; in this way the modified 
grey levels are obtained without computation. 

When grey values are manipulated as described, care must be taken to ensure that 
the new grey values g^ continue to lie within the available value and dynamic ranges 
(for example from gm\n = 0 to gmax = 255). For values lying outside the ranges the 
following conditions are applied: 

if 9ij > ömax ("too bright"), then set gl3 = gmax 

(3.5-2) 
if 9ij < 3 m i „ ("too dark"), then set g^ = gmm 

By a suitable choice of transformation parameter it is possible to avoid exceeding the 
limits of the value range. For example, parameters c and d in function (3.5-1) can be 
chosen as follows: 

255 
c = d = -cgmin (3.5-3) 

9 max 9 mm 
The extent to which a human observer judges the quality of an image is dependent 
on the frequency distribution of the grey values; in other words, the human eye ex-
pects a "balanced" image containing grey values across the entire range. Figure 3.5-4 
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Figure 3.5-1: Contrast and brightness enhancement with a linear transform function 
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Figure 3.5-2: Contrast enhancement with different linear transform functions applied 
to different grey level regions 

9 

Contrast is: 

— increased in dark regions 
reduced in bright regions 

— reduced in dark regions 
increased in bright regions 

9 

Figure 3.5-3: Contrast enhancement dependent on grey level 

shows the frequency h(g) with respect to grey value g. This representation is called a 
histogram. 

An interesting possibility for altering the grey level distribution in an image lies in 
modifying its grey level histogram. Although many changes can be implemented in 
this way, two types of histogram modification have achieved particular importance. 
Both offer the observer a balanced distribution of grey levels. One of the modifications 
is histogram equalization and the other is histogram normalization (Figure 3.5-4). 

The discussion will first look at histogram equalization and then at histogram normal-
ization. 

zoo 

255 



114 Chapter 3 Photogrammetric recording systems and their application 

Figure 3.5-4: Frequency distribution (histogram) of a real image (REAL) and ideal 
image (IDEAL-uniformly distributed, IDEAL-normally distributed) 

3.5.1.1 Histogram equalization 

To a first approximation this represents a balanced image although, from a statistical 
point of view, the objective is an equal distribution of grey levels. The procedure is 
called histogram equalization because the frequency distribution is "levelled". As is 
generally the case with histogram modifications, the required transformation is based 
on cumulative frequency distributions, here using Sh{g) for the cumulative frequency 
distribution of the real image G being processed and Sh (g) for the ideal modified image 
g. For histogram equalization, the cumulative frequency function of the modified image 
is a sloping line. Figure 3.5-5 shows the functions for the real and ideal images whose 
frequency distributions are shown in Figure 3.5-4. These functions are also known as 
cumulative histograms. 

Figure 3.5-5 also indicates how to access the look-up table, i.e. the tabulated relation-
ship between real grey level g and ideal grey level g. For any grey level g, the cumula-
tive frequency Sh(g) (T in Figure 3.5-5) indicates how often this grey level and lower 
values appear in the real image. By setting this cumulative value Sh(g) equal to the cu-
mulative frequency Sh(g) (<— in Figure 3.5-5), the ideal grey value corresponding to g 
is directly obtained on the g axis (J. in Figure 3.5-5). In this way the corresponding ideal 
value g is found for every grey level g and the transformation function for histogram 
equalization is thereby defined through the look-up table. The histogram equalization 
requires no additional outside information; it can therefore run automatically. 

3.5.1.2 Histogram normalization 

An image with equally distributed grey levels (derived from histogram equalization, 
Section 3.5.1.1) is not (yet) visually balanced. The human eye can differentiate medium 
grey levels better than bright or dark regions. It is possible to take account of this char-
acteristic by introducing a normal distribution of frequencies as the ideal target func-
tion. In this case the required transformation function is given by a look-up table based 
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Figure 3.5-5: Cumulative frequency distributions of a real (REAL) and ideal im-
age (IDEAL-uniformly distributed = Histogram equalization), whose frequencies are 
given in Figure 3.5-4 

Figure 3.5-6: Cumulative frequency distributions of a real (REAL) and ideal im-
age (IDEAL-normally distributed = Histogram normalization), whose frequencies are 
given in Figure 3.5-4 

on the cumulative frequency distribution Sh {g) of the required normal distribution and 
the cumulative frequency S}L(g) of the real image. Figure 3.5-6 shows both these cu-
mulative distributions which relate to the frequency distributions of Figure 3.5-4. 

The corresponding values g and g in this look-up table are found by the same proce-
dure as used for histogram equalization. The necessary cumulative frequency distri-
bution Sh(g) for the normal distribution can be found in textbooks on statistics and 
least squares adjustment. The user can determine the form of the normal distribution 
by defining the standard deviation and average value. For digital images with a grey 
level spread of 0 - 2 5 5 , values of ± 6 0 for standard deviation and 127 for the average 
have proven themselves in practice. When these values are used internally in software, 
histogram normalization can take place fully automatically. 



116 Chapter 3 Photogrammetric recording systems and their application 

Numerical Example (of histogram normalization). Until now the methods have been 
explained on the basis of continuous frequency and cumulative frequency distributions. 
Using the discrete distributions generated by real images, the target objective can only 
be achieved approximately. The limitations are even more significant when the grey 
level range is very small. For reasons of clarity this numerical example will be limited 
to an image with only 16 grey levels. 

The frequency distribution will be stated in percentages. Columns (1) and (2) in Ta-
ble 3.5-1 provide the starting information. The cumulative distribution S^ig) is cal-
culated from the frequencies h(g) by successive addition. Relative frequencies are 
shown in Figure 3.5-7 and cumulative frequencies in Figure 3.5-8. After histogram 
normalization a relative frequency h(g)tMg is expected which corresponds to a normal 
distribution. Such a normal distribution, in this case with standard deviation of ±3, 
is shown in column (4) of Table 3.5-1 and has been drawn in Figure 3.5-7. The cu-
mulative distribution corresponding to this normal distribution is given in column (5) 

9 Kg) Sh(g) MfiOtarg Sh{g) targ g 
% % % % 

(1) (2) (3) (4) (5) (6) 
0 1 1 1 1 0 
1 1 2 1 2 1 
2 2 4 3 5 2 
3 3 7 4 9 3 
4 6 13 7 16 4 
5 7 20 9 25 5 
6 7 27 12 37 6 
7 8 35 13 50 7 
8 6 41 13 63 8 
9 6 47 12 75 9 
10 7 54 9 84 10 
11 9 63 7 91 11 
12 10 73 4 95 12 
13 8 81 3 98 13 
14 9 90 1 99 14 
15 10 100 1 100 15 

100 100 

9 m Sh(g) 

(1) (2) (3) 
0 1 1 
1 1 2 
2 2 4 
3 3 7 
4 13 20 
5 7 27 
6 14 41 
7 13 54 
8 9 63 
9 10 73 
10 8 81 
11 9 90 
12 0 90 
13 0 90 
14 0 90 
15 10 100 

100 

Table 3.5-1: Histogram normalization 

(1) and (2) 
(3) 
(4) 
(5) 
(6) 

Table 3.5-2: Result of 
histogram normalization 

given grey levels with relative frequencies 
cumulative frequencies calculated from (2) 
required relative frequency 
cumulative frequencies calculated from (4) 
which together with (1) form the look-up table 
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of Table 3.5-1. Figure 3.5-8 is the corresponding diagram. Following the procedure 
sketched in Figure 3.5-6, Figure 3.5-8 shows how, for a grey level g — 9, the corre-
sponding target grey level is found (and in this example g = 7). The entire look-up 
table is given in columns (1) and (6) of Table 3.5-1. Using this look-up table the new 
image can be created. The result of the histogram normalization, expressed as rela-
tive frequencies h(g) and cumulative frequencies Sh(g)is presented in Table 3.5-2 and 
Figures 3.5-9 and 3.5-10. 

sh(g) target 

h(g) 
2 0 • • 

h ( 9 ) t a r g e , i n % 

0 1 2 3 4 5 6 7 8 9 101112131415 
I I I I I I I Ί I I I I I ! I I—- g 

0 1 2 3 4 5 6 7 8 9 101112131415 

Figure 3.5-7: Given relative frequen- Figure 3.5-8: Given cumulative fre-
cies and target relative frequencies quencies and required cumulative fre-
(dotted line) for a histogram normal- quencies (shaded) of a histogram nor-
ization malization, together with the construc-

tion of the look-up table 

h(g) 
2 0 -

h(g)«™«in% s„(g) 
1 0 0 · · 

5 0 - -

Sh(g).ame. i n % 

0 1 2 3 4 5 6 7 8 9 101112131415 

Figure 3.5-9: Result of histogram nor-
malization (relative frequencies) com-
pared with target result 

Η 

-t-t 
0 1 2 3 4 5 6 7 8 9 101112131415 

Figure 3.5-10: Result of histogram 
normalization (cumulative frequen-
cies) compared with target result 
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Exercise 3.5-1. Perform a histogram equalization on the data contained in columns (1) 
and (2) of Table 3.5-1. (Solution: Forgiven grey levels g = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 
1 1 , 1 2 , 1 3 , 1 4 , 1 5 the corresponding grey levels g = 0 , 0 , 0 , 0 , 1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 1 1 , 1 2 , 
13,15). Draw the corresponding diagram. (Details of the solution can be found in 
Section C 1.3.1.1, Volume 2). 

Comment on the result: 

• the objective of histogram normalization is only approximately achieved with 
digital images 

• histogram normalization of digital images normally involves loss of information. 
The original pixels with grey levels g = 4 , 5 are converted to grey level g = 4, 
grey levels g — 7 , 8 to g = 6 and grey levels g = 9 , 1 0 to g = 7. 

• there are normally gaps in the grey level sequence after histogram normalization 
of digital images. There are no pixels with grey levels g = 12 ,13 ,14 

In spite of the negative comments, histogram normalization plays a significant role in 
practice, particularly when the starting images have a very skewed frequency distribu-
tion. An impressive example f rom practice is presented further below (Figure 3.5-12). 
Because of the disadvantages, which occur with both histogram normalization and 
equalization, often only the simpler method of expansion, commonly called stretching, 
is employed. Here the given grey level range is mapped onto the available grey level 
range by distributing the original values, without grouping, evenly across the available 
grey level scale. Naturally this also produces gaps in the grey level sequence. An ex-
pansion is only possible when the frequency distribution of the given image has places 
where there are no grey levels, which often occurs at the beginning or end of the dis-
tribution. Isolated grey levels, particularly near the boundaries of the distribution, can 
also be grouped into a single grey level in order to create "space" for the expansion. 
An expansion method implemented in many image processing systems first calculates 
the average value m and standard deviation σ of the grey levels. The following assign-
ments are then made: 

• average value m (given image) corresponds to 127 (new image). 

• grey level range — 2σ to m (given image) corresponds to 1 to 127 (new image). 

• grey level range m to + 2 σ (given image) corresponds to 127 to 255 (new image). 

Grey levels outside the range m ± 2σ are ignored. If there are too many in this class, 
the factor 2 can be replaced by a larger one. 

The following section explains two further contrast and brightness enhancements typi-
cally employed in photogrammetry. 
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3.5.1.3 Compensation for light fall-off from centre to edge of image 

Light fall-off follows a cos™ τ law (n lies between 1.5 and 2.5; τ is the off-axis angle, 
see Section 3.1.6). If there is no graduated filter in front of the objective lens at the 
time of exposure, light fall-off from image centre to edge is significant (see numerical 
example in Section 3.1.6). 

A relative contrast and brightness adjustment is discussed next, which derives its trans-
formation parameters directly from the image content. For this purpose a reasonably 
large circular patch surrounded by concentric annular rings is defined at the centre of 
the image. Within the central area and one of the surrounding rings, several image 
regions are located which should have equal grey levels (for example, similar ground 
types). Grey levels gR\ng and ĉentre for the corresponding regions are then related by 
means of a regression line; the result provides the transformation function (3.5-1) for 
the annular ring under evaluation. 

Figure 3.5-11: Transformation function to compensate for light fall-off from image 
centre to image edge 

Figure 3.5-11 shows grey levels for 3 corresponding image regions, used to define the 
regression line. With the aid of the transformation function, every grey level f/Rmg 
within a ring can be converted to a grey level ĉentre which is free of the effects of light 
fall-off. 

This procedure is executed for each annular ring. Parameters c and d of the corre-
sponding transformation function (3.5-1) can be further modified by the physically 
based cos™ τ law. 
Exercise 3.5-2. The following grey levels for two corresponding image regions at the 
image centre and outer ring are found in the original image: 

5Ring ^Centre 

Open fields on flat ground 
Highway 

25 
120 

50 
200 

Derive the transformation function and the corrected grey level for a pixel at the image 
edge with a value of g = 100. (Solution: gcentre = 168.) 
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3.5.1.4 Histogram normalization with additional contrast enhancement 

The second example is related to electronic film copying with contrast control, pre-
sented in Section 3.2.2.8. In particular, the copying devices increase contrast in local 
areas. During digital image enhancement it is also the case that such a local improve-
ment in contrast should take place together with a global improvement. 

In digital photogrammetry, histogram normalization with additional contrast enhance-
ment is used in place of a copying device providing contrast improvement. Figure 
3.5-12a shows a digitized aerial film positive with a very limited contrast range. A his-
togram normalization is first performed. Figure 3.5-12b shows the result which makes 
use of a normal distribution with a standard deviation of ±60 and average value of 127. 
Figure 3.5-13a shows the frequency distribution h(g) before histogram normalization 
and the corresponding distribution h(g) after normalization. The transformation func-
tion Fi for this global contrast adjustment is shown in Figure 3.5-13b. 

For additional local contrast enhancement, Kalliany40 has developed a filter whose 
effectiveness has been proven in use at the Vienna University of Technology's Insti-
tute for Photogrammetry and Remote Sensing (Institut für Photogrammetrie und Fern-
erkundung)41 . Here grey levels i n a 3 x 3 o r 5 x 5 neighbourhood are averaged and the 
average value m compared with the grey value g of the central pixel. The difference 
is transformed by function F2 (Figure 3.5-13b). The steep rise at the beginning of the 
curve has the effect of a contrast enhancement. The remaining part of curve F2 is not 
of significance; it would effect an attenuation in contrast if there were very large differ-
ences between the average value and the grey level of the central pixel. The enhanced 
difference, with appropriate sign, is added to the average value and assigned to the 
central pixel. Figure 3.5-12c shows part of Figure 3.5-12b which has been enhanced in 
this way (result in Figure 3.5-12d). 

Both modifications to contrast, global and local, do not need to be executed sequen-
tially; they can be carried out in a single processing step by the following operator: 

g = Fx{m + (sign(5 - m)F2\g - m|)) (3.5-4) 

g . . . grey level of the central pixel in the original image matrix 
m ... average value of the grey levels i n a 3 x 3 o r 5 x 5 neighbourhood 
Fi . . . global transform function from histogram normalization 
F2 ... local transform function which can be selected externally 
g . . . grey level of the result for the central pixel 

It is appropriate to indicate the size of the region within which the grey levels are 
averaged: in small scale aerial photos with short-range changes in texture, a 3 χ 3 
region should be chosen; at medium to large scales a 5 χ 5 region has proven to work. 
Figure 3.5-12d was generated using a 5 χ 5 region. 

40Ecker, R„ Kalliany, R., Otepka, G.: In Fritsch/Hobby (Eds.): Photogrammetric Week '93. Wich-
mann Verlag, pp. 143-155, 1993. The examples in this section are taken from this publication. 

4 1A filter with a similar effect has been developed by Wallis and, amongst other places, published in: 
Pratt, W.: Digital Image Processing. A Wiley-Interscience publication, New York, 1991. 
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a) photo as delivered by photo scanner (see Figure 3.5-13(a) for histogram) 
b) result of histogram normalization with t ransform function F\ in Figure 3.5-13 

(b) (see Figure 3.5-13 (a) for histogram) 
c) part of Figure 3.5-12b, before applying a local contrast operator 
d) result of local contrast enhancement with t ransform function F i of Fig-

ure 3.5-13(b) 

Figure 3.5-12 
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255 

255 0 
(a) Histogram h(g) of Figure 3.5-12a 
and histogram h(g) after histogram 
normalization (result shown in Fig-
ure 3.5-12b) 

(b) Transform function F\ for global contrast 
enhancement and function Fi for local con-
trast enhancement 

Figure 3.5-13 

3.5.2 Filtering 

The purpose of filtering is to separate the wanted from the unwanted. Undesirable 
image content, for example, is the noise from the electronic recording sensors (Sec-
tion 3.3.5.3). However, filtering is also employed in order to enhance indistinct image 
information. Human observers, for example appreciate strongly pronounced edges in 
an image. 

Filtering can take place in the spatial domain (Section 3.5.2.1) or in the frequency 
domain (Section 3.5.2.2). 

3.5.2.1 Filtering in the spatial domain 

A very simple filter is the moving average. In this case the grey levels gij of the new 
image G are derived from an averaging of the grey levels g^ in the original image 
matrix G. It is formulated as follows: 

j η η 
~9ii = (2n + l)2 Σ Σ 9i+k,j+i η > 1 (3.5-5) 
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Numerical Example (for η = 1). Given matrix G (Figure 3.5-14, left). By application 
of Equation (3.5-5) it is possible to obtain, for example, image element g22' 

922 = ^ ( 1 0 + 1 4 + 2 + 1 1 + 13 + 10 + 9 + 25 + 8) = 11 

G G 

10 14 2 11 12 I 
I 

11 13 10 9 9 ; 11 11 9 

9 25 8 7 10 
1 

1 13 13 11 

11 13 14 15 13 1 
1 

14 15 14 

12 18 17 19 20 
1 

Figure 3.5-14: Moving average 

By means of a filter matrix W, Equation (3.5-5) can be alternatively written: 

τι η 

9ij = Σ 9i-k,j-lWn+\+k,n+l+l (3.5-6) 
k=—n l= — n 

Equation (3.5-6) describes an operation known as convolution and the filter matrix W 
is therefore known as a convolution operator. Equation (3.5-6) can be expressed more 
simply as: 

G = G * W (3.5-7) 

For the moving average, the convolution operator or filter matrix W is: 

(w\\ W\2 W\3 \ J / 1 1 1 \ 

W21 «722 TÜ23 J = - I 1 1 1 J (3.5-8) 
W31 u>32 W33 / V 1 1 1 / 

The central pixels can be assigned a higher weight in the filter matrix W which creates 
a general arithmetic mean from the neighbouring grey levels. For example, such a 
matrix known as a binomial filter can be formed with the aid of binomial coefficients: 

W - 1 ( 2 4 2 ) 

When the binomial filter is enlarged, it approximates to the Gaussian filter. This name 
expresses the fact that the elements of filter matrix W correspond to a two-dimensional 
Gaussian bell curve. It should also be noted that the sum of all elements Wy always 
equals unity. 
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Exercise 3.5-3. Filter Figure 3.5-14, left, using operator (3.5-9). Comment on the grey 
levels in the new image compared with the grey levels after convolution by means of a 
moving average (Figure 3.5-14, right). (Solution: e.g. 322 = 13.) 

Comment: The negative signs in front of k and I in Equation (3.5-6) have the effect of 
opposing directions for the indices in filter matrix W and image matrix G. However, 
with symmetrical filter matrices such as the moving average, this is of no importance. 

Filtering with a moving average results in an attenuation of (high frequency) noise. Ad-
mittedly, (high frequency) image information, i.e. edges, is also attenuated. The mov-
ing average with operator (3.5-8) has reduced the grey level difference in Figure 3.5-14 
from 18 ( = 25 - 7) to 6 ( = 15 - 9). 

The opposite effect, i.e. an increase in grey level differences, can be achieved with a 
Laplacian operator. It is obtained through a double differencing of neighbouring grey 
levels: 

First difference in ξ direction: 

First difference in η direction: 

: 9i+\,j — 9i,j (3.5-10a) 

dg\ 

8η) = gi'j+l ~ 9i'j (3.5-10b) 

Second difference in ξ direction: 

S I . = ( I ) , - ( 9 , , , - · · ' ' ' · ' · ' ' · · ' ( 3 · 5 " π ) 

Second difference in η direction: 

Finally by addition of (3.5-11) and (3.5-12): 

v29i,j (ßj^J + ( f ^ ) = 9i+i,j + 9i-i,j + 9i,j+i +9i,j-1 ~49i,j (3.5-13) 

However, the algorithm (3.5-13) can also be interpreted as a convolution with the fol-
lowing operator: 

/ 0 1 0 
W = ( 1 - 4 1 I (3.5-14) 

VO 1 0 
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This operator (V2) is called the Laplacian operator. A related operator which also 
includes the diagonals of the convolution matrix is: 

The convolution of the photo in Figure 3.5-15 with this operator produces Figure 3.5-16 
as a result. Both the operator (3.5-15) and the Laplacian operator (3.5-14) generate 
positive and negative pixel values; prior to visualization they must therefore be shifted 
into "positive". 

The Laplacian operator, and all others of similar construction, extract the edges in an 
image. This property is of great importance for automated image processing and will 
be discussed in further detail in Sections 6.8.3.4 and 6.8.7.2. Subtracting the image 
of extracted edges from the original image produces an image with enhanced edges 
(details can be found in Section C 1.3.3, Volume 2). Figure 3.5-17 shows the result of 
this subtraction, i.e. Figure 3.5-15 minus Figure 3.5-16. 

In practice the intermediate result of an image of extracted edges can be avoided and 
the original image directly convolved with the following operator: 

If operator (3.5-15) is used in place of the Laplacian operator (3.5-14) in the combina-
tion operator (3.5-16), the following operator for an edge enhanced image is obtained: 

Note: the elements of operators which enhance edges have a sum equal to unity; ele-
ments of operators which extract edges have a sum equal to zero. 

Exercise 3.5-4. Create the convolution of Figure 3.5-14, left, with operator (3.5-16). 
Comment on the grey level differences in the new image compared with the grey level 
differences after convolution with a moving average (Figure 3.5-14, right). 

3.5.2.2 Filtering in the frequency domain 

Filtering in the frequency domain starts with a spectral analysis. Here the grey level 
image is reduced to its component waves, characterized by amplitude and wavelength 
or frequency. The grey levels gij in the original image represent a function in the spatial 
domain, dependent on indices i and j or image coordinates ξ and η. By means of a 
spectral analysis, achieved through a Fourier transformation, the amplitude spectrum, 
dependent on frequency / , is obtained. 

(3.5-15) 

(3.5-16) 

(3.5-17) 
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Figure 3.5-15: Original photo Figure 3.5-16: Convolution of Figure 
3.5-15 with operator (3.5-15) 

Figure 3.5-17: Photo with enhanced 
edges 

The relationship between spatial and frequency domains will be demonstrated with a 
simple example. Imagine a (continuous) grey level profile g(ry), consisting of three 
wave components g\(η) = 50sin(27r0.0177), <72(»7) = 16.7 sin(27r 0.03 77) and 53(77) = 

10 sin(2?r 0.05 η). The three waves are shown in Figure 3.5-18, left. The sum of these 
component waves is the grey level profile g(η), represented in the spatial domain of the 
cube (Figure 3.5-18, right). The related frequency domain shows the three component 
waves with their amplitudes C as a function of frequency / . 

Figure 3.5-19 illustrates the filtering in the frequency domain. By means of a Fourier 
transform, the original image is converted into its amplitude spectrum C ( f ) . Using 
a freely chosen modulation transfer function MTF(f), the amplitudes can be trans-
formed into new amplitudes C (see also Equation (3.1-26)). The result is a filtered 
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Figure 3.5-19: Filtering in the frequency domain 
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amplitude spectrum C(f) from which the filtered image can be generated by means of 
an inverse Fourier transform. The equation for the inverse Fourier transformation has 
already been given (Equation (3.3-2)). 

In the filtered image of Figure 3.5-19, the amplitude with the smallest frequency ( / = 
0.01) was somewhat attenuated, the amplitude with the mid frequency ( / = 0.03) more 
strongly attenuated and the component wave with the highest frequency was elimi-
nated. Since the high frequency parts of an image generally contain the noise, this can 
therefore be reduced by using the modulation transfer function in Figure 3.5-19. In this 
regard it is usual to refer to a low-pass filter which suppresses the high frequencies and 
allows the low frequencies to pass through. 

The opposite is a high-pass filter. This can be employed to reverse the effects of a re-
duction in contrast caused by a detector (Section 3.3.2). For this purpose the reciprocal 
of the function (3.3-5), i.e. 1 /MTF, must be used for filtering in the frequency domain. 

Exercise 3.5-5. For filtering in the frequency domain, sketch the modulation transfer 
function which removes the contrast reduction caused by image recording with a detec-
tor. The transfer function causing contrast reduction during image recording is shown 
in Figure 3.3-5. 

Filtering in the frequency domain can be converted into filtering in the spatial domain 
and vice versa. A simple comparison indicates: 

• averaging (Equations (3.5-8) and (3.5-9)) correspond to low-pass filtering. 

• edge-enhancement operators (3.5-16) and (3.5-17) correspond to high-pass fil-
tering. 

Further reading: Albertz, J., Zelianeos, K.: Phia, pp. 161-174, 1990. Gonzalez, R.C.: 
Digital Image Processing. Prentice Hall, 2002. Schenk, Τ.: Digital Photogrammetry, 
Volume 1. TerraScience, 1999. 

3.6 Image pyramids/data compression 

Image pyramids enable efficient management of image data (Section 3.6.1) and com-
pression methods reduce the amount of image data (Section 3.6.2). 

3.6.1 Image pyramids 

Figure 3.6-1 shows an image pyramid. The geometric resolution in the rows and 
columns is reduced by a factor of 2 from level to level. The pixels at the next lower res-
olution can be determined in various ways, the simplest method being the elimination 
of every second row and column of the current resolution. However, in order to keep 
the information loss smaller when changing to a coarser resolution, the grey levels at 
the coarser resolution are often derived from the grey levels of the finer resolution by 
means of a Gaussian or binomial filter, e.g. using the filter matrix (3.5-9). 
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Figure 3.6-1: Image pyramid with 512 χ 512, 256 χ 256, 128 χ 128 and 64 χ 64 pixels 

Exercise 3.6-1. Create two reduced images from Figure 3.5-14, left, one by eliminat-
ing every second row and column and the other by application of the binomial filter 
(3.5-9). 

Compared with the original image, the storage space required, for all pyramid levels, 
increases by a third. 

Exercise 3.6-2. Prove this statement with an image pyramid based on an original image 
with 512 χ 512 pixels. 

This additional storage requirement offers, however, many advantages which will be 
evaluated later in further discussions of metric image analysis. 

Further reading: Ackermann, F., Hahn, Μ.: in Ebner, Η., Fritsch, D., Heipke, C.: Dig-
ital Photogrammetric Systems, pp. 43-58, Wichmann Verlag, 1991. Li, M.: PE&RS 
57, pp. 1039-1047, 1991. Pan, J.-J., Li, S.-T.: IAPR XXIX(B2), pp. 474-478, Wash-
ington, 1992. Kropatsch, W., Bischof, H„ Englert, R.: in Kropatsch, W„ Bischof, H.: 
Digital image analysis. Selected techniques and applications, pp. 211-230, Springer, 
2000. 

3.6.2 Image compression 

A reminder about the storage requirement for high resolution, metric images serves as 
an introduction to this section. According to Section 3.4.1, the storage requirement 
for a 23 cm χ 23 cm metric image with 7 μνη χ 7 μιτι pixel size is around 1 GB. The 
processing of a large array of images, which can consist of several hundred, would 
necessitate a storage capacity which current hard disks do not offer in medium priced 
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computers. Data transfer between hard disk and memory, and over a computer network, 
would also be too time-consuming. 

It is for this reason that compression methods are in demand. Here it is necessary to 
distinguish between lossless and lossy compression methods. With a lossless method 
the original image can be reconstructed from the compressed image without loss of 
information; with lossy methods a certain loss of information occurs during recon-
struction, which may also be called decompression. As would be expected, with lossy 
compression methods a significantly higher compression factor can be achieved. The 
compression factor is the ratio of the number of bits in the original to the number of 
bits in the compressed image. 

The method of run-length encoding is a lossless compression. It utilizes the redundancy 
between neighbouring pixels. Here, for example row by row, successive pixels with 
identical grey levels are grouped together and only the one representative grey level, 
together with the repetition number, is stored. Run-length encoding achieves only a 
small compression factor with photographs. In small-scale photographs there is almost 
no reduction in storage, in large-scale photographs, particularly for close range work, 
a compression factor of 3 : 1 can be achieved in the best case. 

Lossy compression methods are considerably more interesting. Here a small loss of 
information can be accepted in return for high compression. The JPEG compression 
method42 is very well known and can reduce photographic storage to a third without 
appreciable information loss. In JPEG compression the digital image is broken down 
into tiles of 8 χ 8 pixels. By means of a Discrete Cosine transform (DCT, closely re-
lated to the Fourier transform) there is a transition from the spatial to the frequency 
domain within each tile (Section 3.5.2.2). The amplitude spectra are then low-pass 
filtered, and saved in compressed form. The degree to which the amplitude spectra are 
filtered is controlled by the "quality factor" which also influences the loss which oc-
curs on reverse transformation into the spatial domain. Loss of grey level information 
occurs with JPEG compression, as well as losses and shifts of grey level edges, which 
is very important from a photogrammetric perspective. Figure 3.6-2 illustrates such 
losses and shifts. On the left are edges extracted from the original image (perhaps with 
operator (3.5-15)). In the middle are edges from a decompressed JPEG image which 
was made from an original image compressed by a factor 10. As a result of image 
shifts caused by this procedure, smoothed features appear, as well as artifacts which 
develop in particular at the edges of the independently filtered 8 x 8 tiles. 

The disadvantages of JPEG compression can be compensated, to some extent, by use of 
a wavelet transform instead, allowing a more flexible sub-division of the original image 
based on frequency properties43. The high quality of wavelet-based compression can 
be seen in the extracted edges shown on the right of Figure 3.6-2. Although the same 
compression factor as in the JPEG compression has been chosen, there are hardly any 
shifts or artifacts compared with the original image. In practice there are a number of 

42Joint Photographic Experts Group, h t t p : / / w w w . j p e g . o r g / 
""Literature: Pennebaker, W.B., Mitchell, J.L.: JPEG Still Image Data Compression Standard. 

Springer, 1993. Usevitch, B.E.: A Tutorial on Modern Lossy Wavelet Image Compression: Founda-
tions of JPEG 2000. IEEE Signal Processing Magazine, Volume 18(2), pp. 22-35, 2001. 
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from the original image from a decompressed im- from a decompressed im-
age which had previously age which had previously 
been compressed by a fac- been compressed by a fac-
tor of 10 using the JPEG tor of 10 by a wavelet-
algorithm based method 

Figure 3.6-2: Extracted edges44 

wavelet-based compression methods in use and the JPE group has also announced the 
use of such a method. 

A totally different approach to compression lies in extracting relevant image informa-
tion rather than storing the grey values. Where images contain small, elliptical object 
features as a result, for example, of applying circular or concentric ring targets to object 
surfaces, then the relevant information, in this case the image coordinates of the target 
centre points, should be extracted as soon as possible, for example using algorithm 
(6.8-21). In this way, the image matrix is reduced to the image coordinates of the criti-
cal features. This high reduction method is currently offered by cameras equipped with 
the corresponding "intelligence" (microcomputer and software, also known as "smart 
cameras"). 

3.7 Aerial cameras and their use in practice 

Before discussing these cameras in detail, a section on flight planning is appropriate. 

3.7.1 Flight planning 

The main task of aerial surveying is the three-dimensional recording of natural and 
man-made features on the ground. It is a requirement of stereophotogrammetry that 
every point on the ground is imaged in at least two metric photographs (Section 2.1.3). 
This requirement is met when the images within a strip of photographs overlap by 
50%. In single image photogrammetry (Section 2.1.4 and, in particular, Chapter 7) it 
is sufficient when every point on the ground appears in only one metric image. 

'"Taken from Schiewe, J.: PFG 1998(1), pp. 17-25. 
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Our attentions will now be turned to the stereophotogrammetry for which metric cam-
eras with a square image format are employed45. The area to be mapped is imaged 
in a sequence of photographs forming parallel strips which together create a block of 
photographs. The geometrical relationships (Formulae (3.7-1)) involved in the flight 
planning are illustrated in Figure 3.7-1 for flat ground. 

Figure 3.7-1: The geometry of flight planning for flat ground46 

In Figure 3.7-1 and in Formulae (3.7-1), symbols have the following meaning: 

A . . Distance between flight lines/strips 
Β . . Base (between consecutive images) 
c . . Principal distance 
s . . Image side (to edge!) 
h . Flying height above ground 
Ζ . Ground height 
ν . . Flying speed over ground 
L . Length of a strip/block 
Q · . Width of block 

45 Although current aerial cameras such as the UltraCam or DMC provide rectangular images, in the 
following text only square images are considered for reasons of simplicity. 

46Taken from Albertz/Kreiling: Photogrammetric Guide, Wichmann, 1980. 
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Photo scale number rot = h/c 
Image side in ground units S — srrib 

Base in photograph b — B/rrn, 

Flying height above ground h = crrii, 

Absolute flying height Z0 — h + Ζ 

Forward overlap (%) I = 100 = ( 1 - ^ ) 100 

Side overlap (%) q = -100 = ( 1 - ~ I 100 

s V s 
A 

S 

Ground area of one photograph Fb = S 2 = s2ml lb 

Baselength for 1% forward overlap Β = S I 1 — 

Distance between strips for A = S —^ 
% side overlap 

100, 

1 0 ° ; (3.7-1) 

Number of models in a strip nm = + l j 
(length L)47 

Number of photographs in a nb = nm + 1 
strip 

Number of strips in a block ns — + 1J 
(width Q)47 

Area of a stereoscopic model Fm = (S — B)S 
New area for each model in a Fn = AB 
block 

Β [ml 
Time between photographs At [s] = . . > 2.0 

(see Section 3.7.2) 
υ [m/s] 

Comments: 

a) every pair of overlapping images in a strip should correspond to the "normal 
case" for stereopairs (Section 2.1.5). In practice, this "normal case" is never ex-
actly achieved in aerial surveying and it is necessary to deal with a near "normal 
case". Individual images do not have their camera axes exactly vertical but only 
near vertical. Assuming there are no extensive navigation aids in use and no sta-
bilization devices for the camera mounting, these departures from ideal amount 
to the following in practice: 

47 [ J = Largest integer number 
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• rotation about the longitudinal (fore and aft) axis of the aircraft (roll angle) 
±5gon (4.5°), 

• rotation about the transverse (wing tip to wing tip) axis (pitch angle) ±3 gon 
(2.7°), 

• deviation from nominal heading (yaw angle): ±15 gon (13.5°), 
• variation in flying height ±2%, 
• deviation from flight path around ±200 m. 

b) even for an ideal flight plan, a forward overlap I — 50% and a side overlap 
q = 0% would not be sufficient. To process the entire block of photographs 
(see references to aerotriangulation in Chapter 5), neighbouring strips, as well 
as stereomodels within a strip, must overlap to some extent. For this reason, 
and also because of the departures from an ideal imaging configuration listed in 
paragraph (a), a forward overlap I = 60% and a side overlap q = 25 - 30% are 
planned. 

For single image photogrammetry, equal forward and side overlaps are chosen 
with I = q = 25- 30% (Section 2.1.4 and, in particular, Chapter 7). 

c) Figure 3.7-1 and Formulae (3.7-1) assume flat ground. Where there are large 
height differences, the recommended forward and side overlaps should be de-
signed for the highest ground. At lower heights the overlaps are then larger. For 
flight planning over mountainous terrain, good knowledge of height variations is 
necessary. 

Exercise 3.7-1. Take a topographic map, 1 : 50000, of a mountainous region and draw 
in the edges of a strip flown in a direction that crosses the ridges and valleys roughly 
at right angles. Smallest photo scale 1 : 30000, c = 150 mm. Then draw the axis of a 
second strip, parallel to the first, which has a minimum side overlap of 30%. Draw, in 
a different colour, the edges of this second strip and finally measure the maximum side 
overlap of the two strips. 

Exercise 3.7-2. What overlap results when photographs are flown along a course down 
the centre of a U-shaped valley when the forward overlap at the edge of the strip is 
to be 60%? Flying height above the valley floor is 1200 m, the highest points to be 
photographed lie 400 m above the valley floor, and the principal distance is 152 mm. 
(Solution: 73.3%.) 

d) the required flying height and photo scale depend on the required resolution on 
the ground (Sections 3.1.5, 3.2.2.7, 3.3.2) and the required accuracy of the pho-
togrammetric end product (Sections 4.6 and 6.7). 

e) for the various applications in photogrammetry, metric cameras with different 
objective lenses are required, i.e. lenses with different fields of view or principal 
distances. The lenses vary from normal to super wide angle and their parame-
ters are listed in Table 3.7-1. The standard format for aerial film cameras is 
23 cm χ 23 cm. The base-to-height ratios, stereomodel areas and flying height 
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Field of view: Diagonal 

Field of view: Image side 

Angle 
Normal Intermediate Wide Super wide 
62gon 85gon lOOgon 140gon 
(56°) (77°) (90°) (126°) 

47gon 64gon 83gon 117gon 
(42°) (58°) (75°) (105°) 

Principal Distance c [cm] 

Ratio of Principal Distance 
to image diagonal 

Base-to-height ratio for 
60% forward overlap 

Stereomodel area (in A) 
(h = const.) 

Flying height above ground 
(in z), area = const, 
scale = const. 

30 

1 : 1 

21 

2 : 3 

15 

1 : 2 

yl/4 A/2 

2z 1.5z 

Single image photogrammetry 
High mountain regions 
Interpretation 
Orthophotos 
Cities 

1 : 4 

1 : 3 1 : 2 2 : 3 1 : 1 

2.9 A 

0.6 ζ 

Applications and 
evaluation criteria 

5verview flights 
Height accuracy 

Lower flight costs 
Stereophotogrammetry 

(Table 2.1 -1 and Section 4.6) 

Table 3.7-1: Most common objective lenses used in aerial surveying (standard image 
format 23 cm χ 23 cm, h = flying height above ground) 

above ground shown in the table have been derived with the aid of this format, 
the various principal distances and the relationships in (3.7-1). The lower part 
of the table indicates the applications in which cameras with longer principal 
distances and those with shorter principal distances tend to be used. 

Exercise 3.7-3. Check the fields of view given in Table 3.7-1 using the image format 
and the corresponding principal distances. 

f) the depth-of-field problem (Section 3.1.4) does not exist with aerial photographs 
due to the relatively large flying height. Aerial metric cameras are generally fo-
cused at 1000 m, i.e. according to Equation (3.1-4) flying heights between 500 m 
and infinity lie within the acceptable depth of field. 
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Exercise 3.7-4. An aircraft flies with a metric camera at an absolute flying height of 
3000 m. The ground height varies between 500 m and 1200 m. State the greatest image 
blur (diameter of cricle of confusion) for exposures with a principal distance of 15 cm 
and an aperture of 11. (Solution: 1.2 μπι.) 

g) if defined map sheet edges must be taken into account within a strip, there are 
two possible solutions: use of aimed single images or dense image sequences. 
For flights requiring aimed single images (also called a point flight) very good 
navigational aids are required in order to fly to, and "hit", the selected target 
area. GPS (Global Positioning System) significantly eases the problem of a point 
flight. Flights which adopt a dense image sequence, from which the best placed 
images can be selected, require a forward overlap of around 90%. 

In addition to the flight parameters mentioned above, particular attention shoud be 
given to flying speed υ when flight planning with digital line cameras. To ensure that 
individual image lines can be sequenced together without gaps, the following condition 
must be met: 

ν = Axfs (3.7-2) 

ν . . . flying speed 
Δχ . . . detector dimension projected onto the ground (Equation (3.3-1)) 
fs ... scan frequency. 

Numerical Example. A digital line camera with a scan frequency of 750 Hz (750 lines 
are read out per second), a pixel size of 6 /im and a focal length principal distance) 
of 80 mm, should be flown at the following speed when at a flying height of 2 km: 

V = ^ Μ Γ 7 5 0 = 1 1 2 - 5 m / s - 400km/h 

In practice a speed of around 300 km/h would be set in order to deal with any pitch an-
gle changes (paragraph a) above) and to achieve some overlap of pixels in the direction 
of flight (see Section 3.4.1). A digital line camera (Figure 3.3-3) provides records for 
single image photogrammetry. In contrast, the 3-line camera provides images suitable 
for stereophotogrammetry. The elements of a 3-line camera can be chosen so that, for 
example, the combination of the a and b line correspond to a wide angle view and the 
combination of the a and c lines, or c and b lines, correspond to a normal angle of view 
(Figure 3.3-3, right). 

As part of flight planning, a navigation plan is produced. This can either be an enlarged 
aerial photograph or, better, a good topographic map. It contains: 

• the area of interest without any rounding off, i.e. the region which absolutely 
must be recorded, normally stereoscopically 

• obstacles in the flight path 
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• restricted areas which on no account must be overflown (e.g. army training 
grounds, foreign countries) 

The region marked on the navigation plan must be sufficiently large to accomodate a 5 
to 10 km extension at both ends of the strips which allows for navigation manoeuvres. 
At the end of the strip an incremented numbering, absolute flying height and heading 
(in sexagesimal degrees) is added. An additional sheet contains the following infor-
mation, for each strip if required: project identification, purpose, date; rrib, c, Z0,1, q; 
minimum film requirement, film type; organizational details such as agreed targeting 
of points (control points, new points, etc.), proximity of international borders, flights 
only in overcast weather, etc. 

Standards exist for quality control of survey flights, e.g. DIN standards: Schwebel, R.: 
PFG 2001(1), pp. 3 9 ^ 4 . 

3.7.2 Metric aerial cameras 

Large format, aerial film cameras, which are presently most commonly used in prac-
tice, will be discussed in more detail in the first Section 3.7.2.1. Digital aerial cam-
eras, which record the illumination intensity electronically using a CCD area array, 
are then discussed in Section 3.7.2.2. Finally, digital 3-line cameras are presented in 
Section 3.7.2.3. 

3.7.2.1 Large format, metric film cameras 

Figure 3.7-2 is a schematic diagram of the most important components of an aerial 
film camera. They are designed for serial photography in which a sequence of related 
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Coupling for 
drive ana vacuum 

Control instrument 
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Film magazine Film-transport indicator 
Vacuum 

p ^ i E 
Lens 

c 

J Lens 

\ d 
' — 

\ d 
Shutter Filter Aperture 
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Figure 3.7-2: Schematic diagram of an aerial film camera 
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metric images is recorded. (German information sources may refer to these as "Reihen-
messkameras" (RMK), i.e. serial metric cameras.) A film cassette contains around 400 
exposures. Above the port is the camera mount which, in the simplest versions, can 
be levelled manually by footscrews and has rubber or steel spring fixings for vibration 
damping. The mount carries the drive unit which can be rotated about a vertical axis 
and which contains all the elements required for operating the imaging cycle. The lens 
cone, containing the required lens type, is inserted in the drive unit. The film magazine 
is placed on the focal-plane frame of the lens cone and contains the pressure platen and 
the mechanisms for creating the vacuum and pressing the platen against the focal-plane 
frame. 

After every exposure command, the imaging cycle runs automatically as follows: 

• expose. 

• in modern cameras, shift the image plane during exposure (image motion com-
pensation, to be discussed in more detail in Section 3.7.4). 

• raise the pressure platen and release the vacuum. 

• transport the film and advance the photo number counter. 

• apply the vacuum again (also known as pneumatic flattening). 

• press the platen against the photo frame plane. 

The camera is now ready for another exposure and awaits the next exposure command. 
The operator can generate this manually by pressing a button for "aimed single pho-
tographs" or it can be generated automatically for serial photographs. The imaging 
cycle requires about 1.6 to 2.0 s, a time which defines the shortest possible interval 
between photographs. 

In the viewfinder the camera operator sees the ground moving past. Combined with 
the viewfinder telescope is the overlap control which sets the required forward overlap 
when the set of moving curved lines appear to move at the same speed as the ground. If 
the lines move faster than the image of the ground, the operator must slow them down 
manually, or accelerate them if they are moving too slowly. When the lines move at the 
same speed as the image of the ground, the photographs will be released at the proper 
intervals to generate the required forward overlap. 

The drift angle is also adjusted via the viewfinder. A ground point imaged on the central 
line must appear to move along this line if the camera is correctly oriented. If it moves 
off at an angle a to this line, the camera must be rotated by this angle a and the aircraft 
heading correspondingly adjusted (Figure 3.7-4) to ensure the correct ground track. 
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Principal distance, to ensure 
use of the correct image frame 
Image frame 
Side overlap 20% 
Side overlap 30% 
Warning mark for aimed photographs 
Forward overlap 60% (beginning of base) 
Level bubble 
Flight direction 
Moving lines of the overlap regulator 
Direction of motion of the moving lines 

Figure 3.7-3: Viewfinder image (Wild RC10) 

The following information can also be seen in the viewfinder (Figure 3.7-3): 

• the image frame for the selected objective lens 

• the base end points, for example for 60% forward overlap 

• the side overlap, for example for 20% and 30% 

• horizontal control by means of an image of the level bubble 

• warning mark for aimed single photographs 

The requirement for a photogrammetric image to be close to a central projection en-
sures the need for a central shutter instead of a focal-plane shutter and a very short 
exposure time (1 /250 - 1/1000s). Figure 3.7-5 shows a central shutter used by the 
manufacturer Zeiss. 

Shorter exposure times require a compensating increase of light. Therefore, during 
exposure time the shutter needs to be fully open as long as possible. The condi-
tions are indicated in Figure 3.7-6. The required exposure time is determined by an 
exposure meter (Section 3.2.2.3), taking into account to the sensitivity of the photo-
graphic material and the prior choice of aperture. The reverse procedure is sometimes 
required, i.e. the exposure time is specified and, from the exposure reading the cam-
era system determines the appropriate aperture. The moment of exposure is the mean 
time: tm = 0.5 (ίο +1\) · If precise positioning and orientation sensors are built into the 
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Required track Course to be set 

\ 
a) 

κ = 0 κ= -a 0 

a) If the aircraft flies along its nom- b) The course is corrected by the an-
inal course, a side wind will drive it gle κ = - a . The camera is rotated 
along a different course or track over the by κ = + a . The true ground track of 
ground. The drift angle is determined the aircraft now lies in the required di-
by checking the apparent motion of a rection and a selected ground point will 
selected point on the ground. appear to move along the central line. 

aircraft (Section 3.7.3), then the moment of exposure tm must be synchronized with 
these. In a metric camera, the flash exposure of the fiducial marks must be made at the 
moment of exposure tm. 

An analogue metric image not only contains the image itself in the 23 cm χ 23 cm 
format but an auxiliary image displaying extensive additional data (Figure 3.7-7) which 
can be supplied in analogue or digital form. The auxiliary image or, more accurately, 
the data it contains, can be divided into two groups. One contains strictly necessary 
information, the other contains optional data. 

Strictly necessary auxiliary information: 

• the number of symmetrically distributed fiducial marks should be 8 (previously 
4 were common) in order to support sufficient redundancy for the transformation 
of fiducial marks. Identifiers for fiducial marks, such as numbers, are necessary 
in order to identify them automatically in the digitized images. 

Figure 3.7-4: Principle of drift correction 
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Figure 3.7-5: Example of a rotary shutter (Zeiss Oberkochen), left closed, right open. 
A is the drive. The lamellae 1 rotate faster than lamella 2. The sword lamella 3, 
controlled by the overlap regulator, is swung aside relatively slowly by the eccentric 
4 while lamella 2 is not yet in the open position. Lamella 2 opens while lamellae 1 
are still closed, before opening very rapidly. The speed of rotation of the lamellae 
determines the exposure time. The closing procedure is the same in reverse. 

Aperture opening 
100% 

t] Exposure time 

Figure 3.7-6: The shutter efficiency is an optimum when the cross-hatched area is as 
small as possible, i.e. the shutter is fully open as long as possible. The shutter must 
therefore be opened and closed as fast as possible. 
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1) eight fiducial marks (with number) 
2) ninth, asymmetric fiducial mark 
3) brief name of project (data pad) 
4) date (data pad) 
5) time 
6) photo number 
7) camera (lens) number 
8) principal distance 
9) magazine number (data pad) 

Figure 3.7-7: Auxiliary data imaged with 
miniplots of instruments 

10) data of exterior orientation 
11) overlap 
12) photo scale 
13) circular level 
14) coarse height indicator 
15) exposure time, aperture 
16) image motion (length) 
17) grey wedge 

a photograph; left: digital, right: analogue 

• if the fiducial marks do not have identifiers then a ninth, asymmetrically placed 
fiducial mark, is required in order to identify automatically the fiducial marks in 
a digitized image, as well as to determine automatically the orientation of the 
image48 (laterally correct, mirror reversed, rotated). If the additional mark is 
missing then the level bubble or centre of the clock (Figure 3.7-7) can be used 
instead. 

• the principal distance for re-creating the interior orientation and a possible deter-
mination of scale 

• the date, camera number and film cassette or pressure platen number in order to 
have a link to both the flight plan and the calibration certificate 

• project name and incrementing image number for managing larger image blocks 
48Ellenbeck, K.H., Waldhäusl, P.: BuL 52, pp. 70-71, 1984. 
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Optional auxiliary information: 

• grey wedge or colour chart for contrast control and colour adjustment during 
photographic post-processing and for brightness and contrast enhancement, as 
well as colour adjustment of digitized metric images 

• current exposure data: aperture, exposure time and image motion compensation 
(Section 3.7.4) 

• clock to record moment of exposure so that the agreed (midday) period for flying 
can be checked and, for example, the direction of north in the image can be 
determined from time of day and direction of shadows 

• information relevant to exterior orientation: 

- level bubble to detect a poorly levelled aircraft. Centrifugal forces will also, 
of course, affect the bubble. 

- Coarse height measurement of absolute flying height to an accuracy of 
around ±50 m. Combined with a coarse ground height, this enables an 
average image scale to be derived. 

- GPS position and IMU orientation which are only available in expensive 
multi-sensor systems (Section 3.7.3). Since post-processing is generally 
required to provide good quality values, they maybe exposed on film later 
on. 

Leica Geosystems (formerly Wild, LH Systems) currently offers the RC30 camera 
system (Figure 3.7-8). Technical details include: Interchangeable lens cones with 
principal distances of 8.8, 15 and 30cm, largest aperture of / / 4 , 100Lp/mm reso-
lution, exposure times between 1/1000 and 1/100s. For further details: h t t p : / / 
w w w . l e i c a - g e o s y s t e m s . c o m / c o r p o r a t e / e n / n d e f / l g s _ 5 7 6 3 2 . h t m 
(November 2006). 

Intergraph (formerly: Z/I Imaging, Carl Zeiss Jena, Carl Zeiss Oberkochen) currently 
offers the RMK TOP camera system (Figure 3.7-9). RMK TOP15 (15 cm princi-
pal distance, aperture between / / 4 and / /22 ) , RMK30 (30 cm principal distance, 
aperture between f/5.6 and / /22) , Objective lens distortion < 3 /xrn, rotary shut-
ter (Figure 3.7-5), exposure times between 1/500 and l /50s , two different circu-
lar graduated filters (Section 3.1.6) with a transmission in the centre of 35% and 
60%, 8 numbered fiducial marks, shortest interval between photographs 1.5 s. Further 
details: h t t p : / / w w w . i n t e r g r a p h . c o m / r m k t o p a s c s / d e f a u l t . a s p (No-
vember 2006). 

Both camera systems can be combined with GPS and IMU (Section 3.7.3). In addition 
there are components for image motion compensation (Section 3.7.4). 
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Figure 3.7-8: RC30 with viewfinder 
(Figure 3.7-3) from Leica Geosystems Figure 3.7-9: RMK TOP from Intergraph 

3.7.2.2 Digital cameras with CCD area sensors 

There are now aerial cameras with CCD area sensors which significantly fulfil the 
quality requirements demanded by photogrammetry. One problem is the number of 
pixels which are currently available in arrays up to 7K χ 4K; aerial photogrammetry 
requires a multiple of this (Section 3.3.1). A second problem is the read-out time: this 
must lie within the shortest interval between photographs, between 1 and 2 s. 

With its DMC (Digital Mapping Camera), Intergraph has solved these problems by 
mounting four CCD cameras in the camera housing in place of a single CCD camera, 
each with 7K χ 4K pixels and synchronous exposure. The four images overlap only 
to a limited extent (Figure 3.7-10, top). During post-processing a single metric image 
is created with around 13500 (normal to flight path) χ 8000 (along flight path) pixels. 
The pixel size is 12 μτη and field of view is 82gon (74°) (normal to flight path) and 
49gon (45°) (along flight path). In other words, the DMC corresponds to a wide angle 
camera normal to the flight path and to a normal angle camera along the flight path 
(Table 3.7-1). Image recording uses 12 bits per pixel. 

Exercise 3.7-5. The following data are redundant: principal distance, field of view, 
pixel size and number of pixels. Consider to what extent the DMC data are free of 
contradiction. 

In addition to the four panchromatic camera heads, the DMC has three cameras for 
the spectral regions blue, green and red, and a fourth camera for near infra-red (Sec-
tion 3.3.5.2). These last four cameras have a resolution which is worse by a factor of 
around 4 compared with the panchromatic camera, i.e. approximately the same area is 
recorded by a multi-spectral image (3000 χ 2000 pixel) as is covered by 4 images in 
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*· flight path 

Figure 3.7-10: The DMC from Intergraph (top) and UltraCam-D from Microsoft-
Vexcel (bottom) 

panchromatic mode (Figure 3.7-10, top). 

Like the RMK TOP (Figure 3.7-9), the DMC can be coupled with a GPS and IMU 
(Section 3.7.3). The DMC likewise has a facility for image motion compensation (Sec-
tion 3.7.4.2). 

Further reading and information: Hinz, Α., Dörstel, C., Heier, Η.: IAPRS ΧΧΧΙΙΙ(Β2), 
pp. 164-167, 2000. h t t p : / /www. i n t e r g r a p h . c o m / r m k t o p a s c s / d e f a u l t . 
a s p (November 2006). 

Microsoft-Vexcel has also presented a digital photogrammetric camera, named the 
UltraCam-D, with very similar technical features to the DMC. In addition it has the 
following specifications: 

• pixel size on the ground at a flying height of 300 m: 3 cm (at this extremely 
low altitude the system requires 50 pixel for image motion compensation, Sec-
tion 3.7.4.2) 

• minimum interval between images: 0.75 s 

• geometric accuracy in image plane: < ± 2 μιη 

A prominent difference between the UltraCam-D and DMC is that the four panchro-
matic CCD cameras are arranged in a row along the direction of flight and are not 
synchronously exposed. Exposures are delayed such that the perspective centres of 
the four images are approximately at the same location in the ground coordinate sys-
tem ("syntopic exposure"). Each camera has one, two or four CCD area arrays in the 
image plane, arranged such that the final composite image is built up of 3 χ 3 tiles 
(Figure 3.7-10, bottom). A further difference between the cameras is that the objec-
tive lenses of the four panchromatic cameras in the UltraCam-D each cover the entire 
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image format of 11500 (normal to flight path) χ 7500 (along flight path) pixels. In 
contrast, each lens in the DMC covers only the format of its corresponding image tile 
of 7K χ 4K pixels (Figure 3.7-10, top). The second camera in the UltraCam-D cluster, 
with 4 CCD area arrays (one in each corner), defines the geometric extent of the final 
composite image, created by post-processing from the nine image tiles each with 4K 
χ 2.7K pixels (Figure 3.7-10, bottom). 

Further reading and information: Leberl, F., Gruber, Μ., Ponticelli, Μ., Bernoegger, 
S., Perko, R.: ASPRS Meeting, Anchorage, Alaska, 2003. www. v e x c e l . com (No-
vember 2006). 

3.7.2.3 Digital 3-line cameras 

The concept of the digital 3-line camera (Figure 3.3-3, right) is due to Hofmann49. 
Digital 3-line cameras were initially designed for space missions50 and were then 
adapted for aerial use, in some cases requiring significant additional development work. 
The HRSC-A (High Resolution Stereo Camera-Airborne) from the German Aerospace 
Centre (Deutsches Zentrum für Luft- und Raumfahrt (DLR)) is an adopted model for 
airborne sensing and has been successfully used for photogrammetric sensing51. 

The following text will deal in more detail with the ADS (Airborne Digital Sensor) 
from Leica Geosystems. In contrast to other multispectral line cameras, the ADS40 
uses a sensor arrangement called tetrachroid which splits up the incoming light beam 
into the four spectral regions of blue, green, red and near infra-red. By this principle, 
the exact co-registration of all colour ranges from one object detail can be guaranteed. 
There is no need for any colour fusion or resolution merging for generating true colour 
and colour infra-red images. In addition to the tetrachroid, three panchromatic line 
sensors (covering the range from blue to red) are responsible for the forward (40°), 
backward (16°) and nadir looking data acquisition. Two models are available: the first 
model has one nadir looking tetrachroid sensor, which is mainly intended for colour 
orthophoto production. The second model has one nadir looking and one backwards 
looking tetrachroid for more universal applications including colour stereo compila-
tion. The nadir looking panchromatic line is complemented by a second line staggered 
by half a pixel. This reduces the sampling interval which leads to a more reliable re-
construction of object frequencies. All sensor lines consist of 12000 individual sensor 
elements. 

The combination with GPS and IMU is a valuable addition to digital cameras with 
CCD area arrays, but is not strictly necessary. However, with digital line cameras such 
as the ADS, such a combination is extremely important (Section 3.7.3). ADS with 
image motion compensation will be considered in Section 3.7.4.3. 

49Hofmann, O.: BuL54(3),pp. 105-121, 1986. 
50Wewel, F., Schölten, F., Neukum, G., Albertz, J.: PFG 1998(6), pp. 337-348. Reulke, R„ Scheele, 

Μ.: PFG 1998(3), pp. 157-163. Sandau, R„ Eckhardt, Α.: IAPRS XXXI(Bl), pp. 170-175, 1996. 
5'Neukum, G.: in Fritsch/Spiller: Photogrammetric Week '99, Wichmann Verlag, pp. 83-88, 1999. 
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Further reading and information: Flicker, P., Sandau, R., Walker, S.: OEEPE-Pub-
lication No. 37, pp. 81-90, 1999. Sandau, R. et al.: IAPR 33(B1), pp. 258-265, 
2000. h t t p : / / w w w . l e i c a - g e o s y s t e m s . c o m / c o r p o r a t e / e n / n d e f / 
l g s . 5 7 627 . h tm (November 2006). 

3.7.3 Satellite positioning and inertial systems 

Use of the well established GPS (Global Positioning System)52 for navigation purposes 
during flying missions will be discussed first. For this purpose a modest accuracy is 
sufficient. In the subsequent sections the use of satellite and inertial systems for exterior 
orientation control will be presented. 

3.7.3.1 Use of GPS during photogrammetric flying missions and image exposure 

With regard to its original concept, GPS can be advantageously used for navigating 
photogrammetric flying missions. An additional application for either aerial film cam-
eras or CCD area array cameras makes use of the GPS to release the shutter for individ-
ual exposures. For this purpose the aircraft's position must be continuously monitored 
in real time by the GPS and compared with the planned positions of the perspective 
centres given in the coordinate system of the GPS system currently in use. On the ba-
sis of this comparison, individual exposures can be made under computer control. Such 
an application of GPS can provide aimed single images (Section 3.7.1). The overlap 
regulator (Section 3.7.2) is then largely redundant. 

For this application, GPS is used in kinematic mode with the C/A (Coarse/Acquisition) 
Code (wavelength = 293.1 m). In this mode, the distance of the GPS receiver from the 
satellite is determined by electronic distance measurement using the transmission time 
t of the signal and its known speed of propagation c = 299762 km/s. The C/A code 
is repeated after one millisecond (ms) and unambiguous range measurement with this 
code is possible up to 300 km. 

The method of trilateration applied to the ranges measured simultaneously from the 
aircraft receiver to three GPS satellites, enables the calculation of receiver coordinates 
in WGS84 (World Geodetic System 1984), in which GPS satellite parameters are cur-
rently provided. Since the receiver clock cannot be exactly synchronized with the 
satellite clocks, an unknown time difference At must be taken into account. It is there-
fore necessary to measure range to at least four GPS satellites simultaneously. (Ranges 
which incorporate the unknown time difference are known as pseudo ranges.) 

The position of individual imaging locations, initially provided in the geocentric, Carte-
sian coordinate system of WGS84, can be converted into geographical coordinates φ 
and Λ and ellipsoid height h, for example using the formulae given in Section Β 5.3.1, 
Volume 2. In modern aerial survey systems, the geographical coordinates φ and λ and 

52In addition to the American GPS there is also the comparable Russian GLONASS. GALILEO is a 
third satellite positioning system currently being deployed by the European Union. A general term for 
such systems is GNSS (Global Navigation Satellite Systems). In this textbook "GPS" is also used as a 
synonym for these other systems. 



148 Chapter 3 Photogrammetric recording systems and their application 

ellipsoid height h are recorded during the flight onto the individual metric images (see 
Figure 3.7-7). Accuracy is at the C/A level, i.e. some tens of metres. The accuracy of 
GPS-supported navigation of the flying mission lies around ±50 m53. If it is assumed 
that, on average, an acceptable deviation between planned and actual imaging location 
is ± 5 mm in the image, then this accuracy is sufficient for flying missions which deliver 
an image scale smaller than 1 : 10000 (— 5/50000). More accurate navigation is only 
required for flights delivering very large image scales. 

The navigational accuracy of GPS in kinematic mode can be raised to a few metres 
when differential GPS (DGPS) is employed. In this case two receivers are required: 
one receiver remains at a (fixed) reference station whose coordiantes are known; the 
other receiver is located in the aircraft. Both receivers are positioned absolutely us-
ing the C/A code. At the (fixed) reference station corrections can be calculated and 
transmitted by telemetry in real time to the receiver in the aircraft. The function of a 
fixed reference station is being increasingly taken over by a network of permanently 
installed GPS stations. 

3.7.3.2 Accurate determination of exterior orientation elements by GPS and 
IMU 

The coordinates of the imaging locations can be determined by GPS and the angles 
which define the attitude of a given image can be determined by IMU (inertial mea-
surement unit). Nowadays with DGPS a positional accuracy of around a decimetre can 
be achieved "on the fly". Instead of time-of-flight measurement with the C/A code, a 
phase comparison technique using the relatively short wavelengths of both GPS carrier 
waves is used (LI = 0.1905 m, L2 = 0.2445 m). With phase measurement only the 
residual part of a single wavelength is determined and some multiple of the full wave-
length (0.1905 m or 0.2445 m) must be added to this in order to calculate the actual 
range. 

The GPS literature list at the end of this section provides several methods to eliminate 
the ambiguity. After solving for the ambiguity, the GPS receiver counts the increase or 
decrease of integer multiples of the wavelength compared with a starting value. The 
measured distances between a GPS receiver and a GPS transmitter are strongly dis-
torted by atmospheric influences. These error sources have a similar effect on neigh-
bouring receivers such that the differences between the receivers are largely free of 
the influences of the (systematic) errors. The differences between the original distance 
equations provide the components of a vector between both receivers. Provided one 
receiver is located at a point with known coordinates (the reference station) then the 
vector, applied to this station, provides the coordinates of the second receiver which is 
located in the aircraft. 

Cycle Slips and the Multipath effect can, however, interrupt the almost continuous 
determination of the vector from the (stationary) reference station to the GPS antenna 
in the aircraft. Bridging techniques are required which will be discussed below. 

"Becker, R„ Barriere, J.: PE&RS 59, pp. 1659-1665, 1993. Arnold, H., Schroth, R.: in 
Fritsch/Hobbie (Eds.): Photogrammetric Week '93, pp. 53-62, Wichmann Verlag, Karlsruhe, 1993. 
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Exact positioning of the GPS antennae in the aircraft takes place approximately every 
second. Depending on aircraft speed, this corresponds to separations in position of 
around 50 to 100 m. These nodal points can be connected by a spatial curve54. A 
spatial flight path supported by GPS points is illustrated in Figure 3.7-11. Time acts as a 
parameter along this curve. If the individual exposures follow this time scale, normally 
GPS time ( tm in Section 3.7.2), then by interpolation it is possible to determine the 
coordinates of the antenna tips Ai at the times when the images are exposed. This 
synchronization is possible within about 1 ms, i.e. at an aircraft speed of 250 km/h the 
error is some 7 cm. 

Figure 3.7-11: Photo strips with GPS positioning (Af. interpolated positions of an-
tenna tips, Poi: perspective centres) 

For the transfer to the coordinates of the perspective centres Poi the angular attitude 
of the sensor, e.g. the aerial film camera, is required at the moment of exposure (Fig-
ure 3.7-11). These three orientation parameters are also of considerable interest in 
completing all six elements of exterior orientation for every image. 

However, GPS only provides the positions of the imaging locations Ai and, from the 
known time intervals between exposures, the speed along the flight path of the GPS 
antenna mounted in the aircraft. Other measurement systems, which provide the posi-
tion as well as angular orientation of the sensors are (I)nertial (N)avigation (S)ystems 
(INS)55. These make use of the inertia of a mass in relation to its acceleration ä. Ac-
cording to Newton's second law of motion, force / is the product of mass m and 
acceleration ä, i.e. / = mä. (For clarification: a = distance, da/dt = ά = ν = speed, 
dv/dt = ä = acceleration.) 

Figure 3.7-12 shows one of the measurement principles. A force, acting along the axis 
of a cylinder to which a known mass is connected through an elastic spring, causes a 

54Lancaster, P., Salkauskas, K.: Curve and Surface Fitting. Academic Press Ltd., 1986. 
55We distinguish between INS and IMU. While the INS is a complete navigation system, the IMU is 

just one of its components which measures acceleration and attitude changes. 
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Figure 3.7-12: Deflection method of measuring acceleration 

change in position of the mass and a resultant deflection on a scale also attached to the 
cylinder. This deflection is a measure of the corresponding acceleration ä of the mass. 
From the acceleration determined in this way, speed is obtained by integration over 
time; a further integration over time provides the distance or, effectively, position. 

In order to record the movement of a mobile vehicle, in this case an aircraft, it is 
necessary to have three accelerometers, arranged orthogonally to one another (Fig-
ure 3.7-13). Three accelerometers are insufficient to completely determine the move-
ment of a vehicle and directional information is also required. This is determined 
continuously by three gyroscopes (gyros), one mounted on each axis of rotation (Fig-
ure 3.7-13). Nowadays optical gyroscopes are mostly used. An optical gyroscope with 
a simple constructional principle is illustrated in Figure 3.7-14. 

Two contra-rotating monochromatic beams of light are introduced into a circular op-
tical waveguide. If the device has not rotated then, after the beams have traversed the 
waveguide, they arrive simultaneously at their starting point, i.e. without any phase 
difference. However, if the circular waveguide rotates with angular velocity ά, then 
the beam travelling in the direction of rotation has a greater distance to cover to reach 
the starting point which has now moved ahead (Figure 3.7-14, left); for the beam trav-
elling in the opposite direction the path is shortened (Figure 3.7-14, right). When the 
beams are brought together after completing the circular path, a relative phase shift Αφ 
is detected from which the angular velocity can be determined as follows:56 

Co . . . speed of light in vacuum: 299792 km/s 
Λ . . . wavelength of light beam, e.g. 0.6 μπι 
F ... circular area enclosed by the light guide (fibre optic) which can be 

multiplied by a factor η through the use of η windings of the fiber 

(3.7-3) 

56Taken from: Schwarz, W.: Schriftenreihe des Deutschen Vereins für Vermessungswesen, Volume 22, 
pp. 54-97, 1996. This publication provides a comprehensive presentation of kinematic sensors. 
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Yb 

Figure 3.7-13: Body coordinate axes for a strapdown inertial navigation system 

Rotation in Rotation in 
same direction opposite direction 

Figure 3.7-14: Optical gyroscope for an intertial system 

By integration of the angular velocity ά, for example over the time difference (£, — tg), 
the angle of rotation a can be determined (Figure 3.7-14). 

Table 3.7-2 shows the three currently available accuracy classifications for inertial nav-
igation systems57. The mid accuracy class is appropriate for determining the exterior 

57Schwarz. K.-P.: in Fritsch, D„ Hobbie, D.: Photogrammetric Week'95, pp. 139-153, 1995. The 
stated tilt accuracies relate to roll and pitch; yaw angle (heading) is a factor 3 to 5 less accurate. At the 
Photogrammetric Week 2001 the following accuracies, achieved during practical tests, were reported: 
GPS positioning between ± 5 and ± 3 0 cm, IMU orientation for roll and pitch angle between ± 3 and 
± 5 mgon (10" and 16", resp.) and for the heading angle ± 8 mgon (26"). 
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orientation of aerial photographs and is reasonably priced. Over short time periods it 
provides positional accuracy at the decimeter level. An aircraft's tilt can only be deter-
mined by an IMU. Over a period of one minute, an accuracy of 5 mgon (15") can be 
achieved which is sufficient for standard requirements. At a flying height of 2000 m, 
this corresponds to a planimetric error of 15 cm on the ground. 

Time interval System accuracy 
high medium low 

Position 
I s 0.01-0.02 m 0.03-0.1m 0.3-0.5 m 
1 min 0.3-0.5 m 0 . 5 - 3 m 3 0 - 5 0 m 
l h 300-500 m 1 - 3 k m 200-300 km 
Tilt 
I s < 1" 10"-15" 30" -2 ' 
1 min 1" - 2 " 15"-20" 10'-20' 
l h 10"-30" 3 0 " - 3 ' 1° - 3 ° 
Price (US$) « 1000000 » 100000 » 10000 

Table 3.7-2: Three accuracy classes for inertial navigation systems 

As can be seen from Table 3.7-2, an IMU's positional accuracy is only acceptable 
over short time periods. A Position and Orientation System (POS) therefore combines 
GPS with IMU. GPS supplies position and speed and supports the IMU. The IMU 
provides direction and tilt and densities the relatively large separations between GPS 
measurements which, as already mentioned, are between 50 m and 100 m at a recording 
interval of 1 s. In contrast, the IMU's recording interval is around 0.01 s (100 Hz). Short 
interruptions in GPS recording (cycle slips, etc.) can also be bridged with the IMU. 

Figure 3.7-15 shows the arrangement of the most important sensors in a POS, together 
with an imaging sensor. Great care must be taken to determine the relative positions 
of the three illustrated sensor modules. Details of a corresponding calibration can be 
found in specialist literature58. The relationships are relatively simple if all the sensors 
are fixed to the aircraft:59 

• from the GPS coordinates of the antenna tips Ai, the perspective centres Pot can 
be calculated along the spatial directions delivered by the IMU (Figure 3.7-11). 

• if the coordinate axes of the imaging sensor and IMU are strictly parallel then 
the rotation angles of the IMU directly correspond to the rotation angles of the 
image sensor60. 

58E.g. Shin, E„ El-Sheimy, N.: ZfV 127(1), pp. 4 1 ^ 9 , 2002. Heipke, Ch. et al.: OEEPE Publication 
No 43, 2002. 

59If the inertial system is fixed to the aircraft or vehicle, it is known as a strapdown system, as shown 
in Figure 3.7-13. 

60This type of configuration cannot generally be made to a sufficient accuracy. Deviations from the 
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Figure 3.7-15: Imaging sensor together with GPS and IMU in a Position and Orienta-
tion System (POS) 

The relationships are considerably more complicated when there is continuous banking 
to compensate for the drift angle and, on the basis of the IMU gyroscope, the imaging 
sensor platform is continually tilted, in other words stabilized. In this case the rota-
tions must be recorded with timing information in order to establish the relationships 
between all three sensor groups during post-processing. This procedure is greatly sim-
plified if at least the imaging sensor and IMU are fixed to the same tilting platform so 
that their relative positions remain unchanged throughout the entire flying mission. 

The POS data are valuable for processing aerial images taken with either film or CCD 
area array cameras but their importance is not so great as when processing images 
taken with digital line cameras. POS data are also essential for airborne laser scanners, 
discussed in Section 8.1. This will be discussed in more detail in Section 3.7.3.3. 

A position and orientation system is marketed by Applanix under the name POS/AV. 
Further reading and information: Lithopoulos, E.: in Fritsch/Spiller: Photogrammetric 
Week '99, Wichmann Verlag, pp. 53-57, 1999. www. a p p l a n i x . com. The German 
company IGI offers a comparable system (e-mail: i n f o @ i g i - c c n s . com). 

3.7.3.3 Gyro-stabilized platforms and particular features of line cameras and 
laser scanners 

On flying missions with a digital line camera (Section 3.3.1) and/or a laser scanner 
(Section 8.1), aircraft navigation along the planned route will also, of course, employ 
GPS in a similar way to a flying mission with film or CCD area array cameras. This 
usage was discussed in Section 3.7.3.1. 

ideal are known as misalignments. The transformation of IMU rotations into rotations of the imaging 
sensor or into the coordinate system of the image processing software generally involves the successive 
multiplication of several rotation matrices. 
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Gyroscopes provide rotation angles as a function of time. Using this information, an 
image sensor's platform can be continually stabilized. Compensation can therefore be 
made for the considerable changes in roll, pitch and yaw angles (Section 3.7.1) dur-
ing a flight. Such gyro-stabilized platforms are available for the large format, aerial 
film camears mentioned at the end of Section 3.7.2.1 and the CCD area array cameras 
discussed in Section 3.7.2.2. However, the mechanical and electronic complexity as-
sociated with a gyro-stabilized platform does not, in general, justify their use for such 
cameras. Roll, pitch and yaw angles can either be extracted from POS information 
during photogrammetric processing or, if a POS was not employed, by means of aero-
triangulation (Chapter 5). This is possible because with these sensors the recording of 
a single image effectively takes place at a single point in time61. 

The situation is different with dynamic image recording, as is the case when using a 
single or 3-line camera or a laser scanner. Images taken without the use of a gyro-
stabilized platform show large distortions as a result of the flight dynamics, and these 
are much worse with line cameras than with laser scanners. Certainly such images can 
be processed with the aid of POS information. However, conditions for processing are 
significantly improved if line cameras, and possibly also laser scanners, are mounted 
on gyro-stabilized platforms. The IMU should also be mounted on this platform. An 
accurate IMU need then only record small "residual" tilts, which is a considerable 
advantage in the design and construction of such a device. 

However, the constant rotations of the gyro-stabilized platform continually alter the 
relationship between the GPS measurements and the imaging sensor or laser scanner, 
as can be appreciated in Figure 3.7-15. In order to provide a continuous "eccentricity 
vector" between GPS antenna and the reference point of the imaging sensor, continuous 
recording of the gyro-stabilized platform rotations is necessary. A separate gyroscope 
system is required to stabilize the mounting platform and this must be: 

• fixed to the aircraft 

• able to measure large rotations 

• less accurate than the gyroscopes in the IMU which is fixed to the imaging sensor 

In summary it can be said that the exterior orientation of a line camera alters from im-
aged line to imaged line and that therefore the direct recording of the six orientation el-
ements by GPS and IMU is obligatory. For laser scanners, the exterior orientation even 
alters for each range measurement. With film and CCD area array cameras the POS 
information is, in contrast, only an interesting option, as will be seen in Section 4.1. A 
gyro-stabilized platform is here not strictly necessary; however, it improves the qual-
ity of the image and makes processing easier, particularly for dynamically recorded 
images. 

6 lMore exactly: during exposure there should be no large shifts or rotations of the camera. To some 
very reasonable extent, a gyro-stabilized platform improves image quality, particularly for longer expo-
sure times (Section 3.7.4.1). 
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Further reading for Section 3.7.3 (selected examples only): Hofmann-Wellenhof, Β., 
Lichtenegger, Η., Collins, J.: GPS—Theory and Practice. Springer, 1997. Hutton, J., 
Lithopoulos, E.: PFG 1998(6), pp. 363-370. 

3.7.4 Image motion and its compensation 

The blur which an optical system produces in an image arises from the following 
sources: 

• from the spread in depth of a three-dimensional object, which cannot be sharply 
focused onto a single image plane (Section 3.1.4) 

• from the wave nature of light, which results in diffraction at the aperture stop 
(Section 3.1.5.1) 

• from the resolving power of the optics (Section 3.1.5.2) 

• from the resolution of the emulsion in film cameras (Section 3.2.2.7) 

• from the size of the opto-electronic sensor elements and their geometric arrange-
ment in digital cameras (Section 3.3.2) and film scanners (Section 3.4.1) 

Further blurring of the image occurs as a result of image motion of the object or camera 
during the time the shutter is open. The following discussion concentrates on aerial 
photogrammetry. 

The theoretical image motion u t h of an object in the image plane is (Figure 3.7-16): 

c vt _ , „ 
uth = vt- = — (3.7-4a) 

η rrib 

103υί 
= — (3.7-4b) 

i.orrib 

ν = velocity in [km/h] u = image motion in [mm] 
t = exposure time in [s] = image scale number 

During the exposure time t the image moves over the image plane and the energy in 
the illumination is distributed. Only in places where sufficient light energy falls on 
the chemical or electronic sensor will the image become visible. A single object point 
becomes a "line" in the image. If the chemical or electronic sensors could react to the 
smallest possible level of illumination energy, then the length of the "lines" would be 
given by Equation (3.7-4a). In fact, the sensors react only to a certain minimum energy, 
so that the "lines" in the image are shortened. (When a camera is subject to vibration, 
particularly in a helicopter, double images can appear.) On the basis of current film 
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Image plane 

Object V t 

Figure 3.7-16: Theoretical image motion 

sensitivities used in photogrammetry, the "shortened" image movement u amounts to 
around half the theoretical image movement: 

140vt ν 
u « 0.5uth = = 140ci-

mb h 
(3.7-5) 

c in [mm] υ in [km/h] t in [s] 
h in [m] u in [/im] 

Numerical Example (to estimate the image motion). 
from linear motion from rotation 

Velocity ν 
Exposure time t 
Principal distance c 
Flying height h 
Image scale 1 : m^ 
Theoretical image motion uth 
Image motion u visible in practice 

300 km/h 
l /300s 
150 mm 
1500 m 
1 :10000 
28 μπι 
14 μιη 

2gon/s = 170 km/h 
1/300s 
150 mm 
1500 m 
1 : 10000 
16 μπι 
8 //m 

The blurring of the image caused by image motion significantly reduces the resolu-
tion. Meier62 shows that a theoretical image motion of 1.5 times the reciprocal of the 
resolution is just tolerable in practice. 

uth,ma\ < 1-5R -1 (3.7-6) 

62Meier, H.K.: BuL, pp. 65-77, 1960. 
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Numerical Example (of the maximum permissible exposure time for which the image 
motion remains tolerably small). 

Given: R = 80Lp/mm 
Equation (3.7-6): Uth = 19/im 
Equation (3.7-5): u « 10 μτη 
Given: V = 300 km/h, c = 150 mm, h 
=> mb = 10000 
Equation (3.7-5): tmax = 1/440 s « 1/500 s 

Whether an exposure time of 1 /500 s is acceptable depends upon the overall sensitivity 
of the film to be used and the object brightness (season, time of day, weather, light 
intensity...). 

Exercise 3.7-6. What is the largest acceptable image scale for a flying speed of 
300 km/h and an exposure time of 1/300 s (R = 40Lp/mm)? (Solution: 1 : rri,m-m — 
1 : 7400.) 

Compensation for image motion is particularly required at low flying heights and large 
image scales. There are a number of solutions. 

3.7.4.1 Compensation of image motion in aerial film cameras 

In modern aerial cameras, the image motion due to the aircraft's forward movement can 
be compensated during exposure by a computer controlled displacement of the film's 
pressure plate with a velocity of v' = uth/t = vc/h (see Equation (3.7-4a)). This is 
known as Forward Motion Compensation (FMC). 

This type of motion compensation eliminates the most significant part of the image 
blurring, but it does not eliminate the effects of: 

• the three rotations of the aircraft; gyro-stabilized camera mounts are necessary 
to compensate for this effect (see also the ends of Sections 3.7.3.2 and 3.7.3.3). 

• the variations of flying speed, unless the actual flying speed ν for image motion 
compensation is taken on line from the overlap control (Figure 3.7-3), or the 
navigation system. 

• differences of ground heights. To compensate for these, the image motion com-
pensation must be at least partially separated from the overlap control system. 
The overlap must be controlled so as to ensure overlap in the highest parts of the 
ground (see Section 3.7.1c); the image motion compensation, on the other hand, 
must be set to achieve sharp imaging for the most important parts of the ground 
(the valleys, up to the average ground height). 

Exercise 3.7-7. With the data of the numerical example above, compute the remaining 
image motions: for the three rotations of the aircraft of about 2gon/s, for height dif-
ferences of ±500 m and for variations of flying speed of ±20 km/h. (Solution in [μπι]: 
uu=uv = 13, uK — 9, uAh = 7, uAv = 1.) 
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Exercise 3.7-8. What is the loss in resolution of the film camera introduced in the 
numerical example of Section 3.2.2.7 (RT = 67Lp/mm, which according to Equa-
tion (3.2-11) derives from R0 — 90Lp/mm and RP = 100Lp/mm), if a theoretical 
image motion of u th = 28 μπι (see first numerical example of this section) is taken 
into account? (Solution: From Equation (3.7-6), which only has an empirical basis: 
-RimageMotion = 54Lp/mm; applying this to an expanded version of Equation (3.2-11): 
RT — 42Lp/mm; there is therefore a reduction in resolution from 67Lp/mm to 
42Lp/mm.) 

Exercise 3.7-9. What is the deterioration in the modulation transfer function MTF(f) 
of the full system introduced in Figure 3.2-11 when the above image motion u th = 
28 μπι is taken into account? 

Tip: As modulation transfer function for MTF(f)imageMotion use the sine function 
(3.3-5) with values MTF(0)imageMotion = 1 and MTF(54 L p / m m ) I m a g e M o t i o n = 0. To 
evaluate Equation (3.2-12) use MTF(f)0 and MTF(f) P from Figure 3.2-11. 

Another solution for image motion compensation is to "nod" the camera by a small 
angle very quickly during exposure. 

Exercise 3.7-10. Calculate the angular velocity of nodding (pitch angle velocity) in 
order to compensate for the image motion of 28 μπι in the above numerical example. 
(Solution: 3.5gon/s = 3.15°/s). 

3.7.4.2 Image motion compensation for digital cameras with CCD area arrays 

For as long as the camera shutter is open, an image of the ground moves continuously 
across the focal plane in the direction of flight at a speed of w = vc/h. At the moment 
the shutter opens to take a photograph (t = 0, say) an image of a particular narrow 
strip of ground at right angles to the direction of flight will start to be imaged on the 
sensor elements of row η; in general the exposure will be insufficient. At time (t + Δί), 
where Δί can be calculated from w and the pixel dimensions, an image of the same 
strip of ground will fall on, and start to be recorded on, row (n + 1); again the exposure 
will be insufficient. Immediately before this, however, the charge packets from row η 
were moved to row (n + 1). This process can be repeated several times, row by row, at 
intervals of Δί; the image of that particular strip of ground is therefore integrated over 
a number of rows of sensor elements, resulting in an image with an adequate signal-to-
noise ratio. Finally, readout of all rows is initiated; that is to say, readout of the whole 
array. In this way, during the period when the shutter is open, the whole image has 
been shifted electronically to keep pace with the moving image of the ground, rather 
than being shifted mechanically as in analogue cameras. 

This method of FMC is called Time Delay Integration. Very high demands are made of 
the readout process when the CCD arrays are large since, within exposure times which 
are a fraction of a second, all the pixels in the array must be read several times (see 
also Section 3.3.1). The limitations on FMC for film cameras mentioned at the end of 
Section 3.7.4.2 above also apply to motion compensation with TDI. 
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The DMC from Intergraph and the UltraCam-D from Microsoft-Vexcel (Section 3.7.2.2) 
incorporate TDI for motion compensation. 

3.7.4.3 Image motion compensation for digital line cameras 

A compensation for image motion, caused by forward movement of the aircraft, would 
only be possible with TDI in digital line cameras if every linear array was composed of 
several parallel lines of detectors. The ADS from Leica Geosystems has not made use 
of this possibility. In consideration of the very high read-out rate of 800 Hz, achieved 
with very sensitive detectors, motion compensation at mid to high altitudes is not re-
quired. 

3.7.5 Effective illumination in aerial photography 

In Section 3.2.2.8 the exposure Η was defined63 as the illuminance Ε falling on the 
emulsion, or opto-electronic detector, times the exposure time t. But what is Ε for an 
aerial photograph? Of the total radiation from the sun reaching the atmosphere about 
one-third is immediately reflected back into space by the atmosphere. The remainder 
is subject to extinction (absorption plus scattering) in the atmosphere, caused by air 
molecules and aerosols (suspended particles from 0.01 to 100 μνα in diameter such as 
dust, water droplets in haze, fog and clouds, and ice crystals). Short wavelengths are 
scattered much more strongly than long wavelengths, hence the blue sky we see. The 
remainder of the sun's direct radiation, Sd, (emitted at zenith angle Zi , Figure 3.7-17), 
together with the skylight, Ss, form the global radiation which finally illuminates the 
ground. The two components of this total incident light on an object vary in proportion 
from Sd : Ss — 3 : 1 at a solar altitude of 50° and with a cloudless sky, to 1 : 30 in 
light haze. 

Photographs can be taken without difficulty under a sky completely covered by a high 
layer of cloud. The greater degree of scattering lightens the shadows of objects but also 
reduces the contrast (see Section 3.1.5), thus reducing measuring accuracy. In order to 
increase the contrast various yellow filters are used according to the haze conditions. 

An object on the ground absorbs a part of the total incident light; the remainder is 
diffusely reflected from the natural and artificial rough surfaces forming the ground, 
some at a zenith angle ZR towards the camera. This reflected component mixes with the 
scattered light which does not reach the surface (haze light), and is further scattered by 
the atmosphere and aerosols. The strong contrast reduction caused by the total amount 
of blue scattered light is minimized by placing a yellow filter in front of the objective. 
The 12-15 individual lens elements are also coated with an anti-reflex coating. 

63In this textbook on photogrammetry we use photometric units. In remote sensing, radiometric units 
are common. In place of illuminance Ε the irradiadiance is used; in place of luminous intensity I the 
radiant intensity is used, etc. 
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Sun (radiant illuminance I) Illuminance Ε 

Figure 3.7-17: Raypath from sun to image plane 

The result of the superimposition of haze light on the light reflected from the object is 
that contrast decreases with increasing height. Films with greater gradation (7 = 1.4-
1.8) are therefore used for small-scale photographs from greater flying heights. 

The non-absorbed, reflected part of the white (sun) light is an important information 
carrier. Studies of the spectral reflectance of various types of ground objects show: 

a) that the reflected light covers strongly differentiated parts of the spectrum, so 
permitting object colours to be differentiated (Figure 3.7-18, upper left); 

b) that even at a uniform spectral distribution, the reflected light can vary greatly in 
intensity; 

c) that the reflectance of vegetation is almost constant in visible light (in the green 
part of the spectrum somewhat more than in the blue and red), but that significant 
differences in intensity occur in the near infra-red (Figure 3.7-18, lower part) and 
for this reason colour infra-red films (Section 3.2.2.5b) or black-and-white infra-
red films (Section 3.2.3) are used for classifying vegetation types. 

The object brightness, now defined as the integrated intensity over all wavelengths of 
the reflected visible light, can lead to extreme differences of density in the photograph 
(Table 3.7-3). The scattered light (Figure 3.7-17) causes, however, a significant reduc-
tion of the overall contrast. 
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Figure 3.7-18: Spectral reflectance of various ground objects as a percentage of the 
incident light 

Numerical Example. The ratio of object brightnesses of a tarred road and new snow, 
from Table 3.7-3, is 8 : 80 = 1 : 10. If we add a haze brightness of 20, the ratio 
above is reduced to 28 : 100 = 1 : 3.6. For the same haze brightness, the contrast of 
a coniferous forest to new snow is reduced from 3 : 80 = 1 : 27 to 23 : 100 = 1 : 4.3 
and the contrast of a coniferous forest to a tarred road from 3 : 8 = 1 : 2.7 to 23 : 28 = 
1 : 1.2! (Contrast is defined here as a ratio, see Section 3.1.5.3.) 

Coniferous forest 1. . .3 
Water 3 
Tarred road 8 
Dry meadow 7.. . 14 
Wet sand, deciduous forest 18 
Yellow, dry sand 31 
Light, dry concrete 35 
Old snow 42.. .70 
New snow 80.. .85 

Table 3.7-3: Total reflectance as a percentage of object illuminance 

3.7.6 Survey aircraft 

Naturally, it is possible to convert almost any type of aircraft for aerial photography 
by cutting a port for the camera in the bottom of the fuselage. The selection of a 
type must satisfy certain performance characteristics, however. Relatively slow aircraft 
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are preferred for large-scale photographs (currently permitted minimum flying height 
is around 300 m above open ground and around 1 km over densely populated areas). 
However, for rapid flight to and from the area of interest and to the required flying 
height a fast speed64 and rate of climb are desirable. Since the flights to and from 
the area of interest are expensive, it is desirable to complete the whole job in one 
flight and therefore the maximum possible flight endurance is demanded. Projects in 
developing countries often require the use of short landing strips, i.e the use of STOL 
aircrafts (short take-off and landing). Oxygen masks are needed above a height of 
4000 m. A pressurized cabin is much more comfortable, if only from the point of 
view of temperature. The camera port must then be sealed by an expensive plate of 
optical glass which must cause no additional distortion, but which must be capable 
of withstanding the stresses caused by pressure and temperature differences (AT can 
easily reach 50 Kelvin). An alternative solution here is a remotely operated camera. 
The navigation instrument with overlap regulator is then placed inside the cabin over 
a smaller sealed port while the camera is outside the pressurized part of the fuselage 
above an open port. 

Camera ports in the centre of the width of the floor have under them an axially symmet-
ric air cushion which, seen as an optical component, cause less asymmetric distortion 
by refraction than do ports at the side of the floor. It must be possible to close the port 
at take-off and landing in order to prevent mechanical damage to the port glass or the 
camera. 

High-wing aircraft give the camera operator a good view downwards, an important aid 
in navigation during the approach flight, particularly for large-scale photographs. An 
intercom system is essential for communication between crew members. Navigation, 
including exposure release, is increasingly done with GPS and for large scale work 
with DGPS (Section 3.7.3.1). 

Aerial-photography flights in central Europe must take full advantage of every day of 
good weather. IFR65 (blind flying) equipment is therefore essential for take-off and 
landing through ground mist. The time available for photography is limited not only 
by the weather, however, but also by such factors as shadow lengths, which should 
usually not exceed 3.5 times the object heights. Flights under full, high cloud cover 
are possible in summer; they may even be desirable, for example for photographs of 
cities, so as to reduce the loss of detail in shadows. The resulting photographs have 
relatively weak contrast, however, and the height accuracy may suffer as a result of 
loss of detail contrast66. Sometimes a flight may be expressly required before trees are 
in leaf, although stereoscopic acuity in the maze of shadows may be so poor that the 
forest floor cannot be measured. These factors, taken together, produce a maximum 
flying time, in central Europe, of about 300 flying hours with about 120 flights, per 

64Airspeed is still given in knots (nautical miles per hour). The conversion formula is: lknot = 
0.515 m / s = 1.852 km/h. 

65IFR = Instrument Flight Rules 
66Waldhausl, P.: Results of the Vienna Test of OEEPE Commission C. Institute for Applied Geodesy, 

Frankfurt, pp. 13-41, 1986. 
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year and machine. The result is that each hour of photographic flight is relatively 
expensive67. 

3.8 Terrestrial metric cameras and their application 

The photographs for terrestrial photogrammetry are usually taken with the cameras 
in fixed positions. Photographs at large distances, camera to object, are only used in 
special cases, for example for topographic surveys by expeditions and for glaciological 
research. In general, the objects are much closer and the camera must therefore be 
focused on finite distances and the depth of field (Section 3.1.4) has to be considered. 

The most important applications in close-range photogrammetry are: 

• architecture and civil engineering (surveys of old and new buildings, documen-
tation of buildings and damage to buildings, etc.) 

• computer Aided Facility Management (internal building surveys, etc.) 

• conservation of monuments (preserving cultural assets by photographic records, 
which can be used at any time for restoration or reconstruction of the monuments) 

• archaeology (documentation and surveys of excavations) 

• biophotogrammetry (measurements of living creatures) 

• forensic photogrammetry (scenes of crimes, most often used for documentation 
and reconstruction of the details of traffic accidents) 

• industrial photogrammetry (automobile design, production control, assembly 
control) 

• mobile mapping (surveys along traffic routes) 

• computer-controlled vehicle navigation (robotics) 

• support and control for medical operations 

The "normal case" of terrestrial photogrammetry will be outlined in the following Sec-
tion 3.8.1, after which terrestrial cameras will be presented. This presentation starts 
with cameras based on chemical sensors. These fulfill the rigorous conditions of met-
ric cameras but in the concluding discussion the strict demands of photogrammetry 
are relaxed and the discussion moves to off-the-shelf (amateur) cameras. Electronic 
sensors then take the place of chemical sensors. 

67 A review of the more common survey aircraft can be found in Albertz/Kreiling: Photogrammetric 
Guide, 4th ed., Wichmann, Karlsruhe, pp. 112-117, 1989. 
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3.8.1 "Normal case" of terrestrial photogrammetry 

The "normal case" of stereophotogrammetry was presented in Section 2.1.5. In the 
"normal case", both camera axes are perpendicular to the base and parallel to one 
another. In Section 2.1.5 the object coordinate system is configured for aerial pho-
togrammetry, i.e. the direction of photography is the opposite direction of the Ζ axis 
(Figure 2.1-13). In terrestrial photogrammetry, the direction of photography is the di-
rection of the y axis (Figure 3.8-1)68. 

Figure 3.8-1: The horizontal "normal case" 

The horizontal "normal case" is derived from the "normal case" of aerial photogram-
metry (Figure 2.1-13) by substituting69 ωι = ω2 = lOOgon = 90°. Equations (2.1-32) 
and (2.1-34) become, for the "normal case" of terrestrial photogrammetry: 

X = y— — B-
c Ρξ 

y = B— (3.8-1) 
Pi 

m Dvi m 
ζ = y— = Β — = y— 

C Ρξ c 

The XYZ coordinates have been replaced by xyz coordinates. This expresses the fact that the 
object coordinate system in the normal configuration is a local xyz system which can be arbitrarily 
oriented in 3D space, for example with vertical base Β or with tilted camera axes. 

69In order to avoid singularities in the conversion of rotation matrix elements into rotation angles, 
the angles a, ν and κ are often used in terrestrial photogrammetry instead of the angles ω, ψ, κ (Sec-
tion Β 3.4.2, Volume 2). Here α (primary) is the azimuth of the camera axis, and ν (secondary) is the 
angle between the camera axis and the vertical (nadir distance). In terrestrial photogrammetry the rotation 
matrix Β (3.4-6) from Volume 2 is therefore used instead of the rotation matrix of Equation (2.1-13). 
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3.8.2 Stereometric cameras 

To reconstruct spatial objects at close ranges, it can be a great convenience to obtain the 
required two metric images simultaneously using a single camera system known as a 
stereometric camera. Such a stereometric camera is illustrated in Figure 3.8-2. In most 
systems the base is fixed and very accurately known. A common base length is 120 cm 
and these devices are often known as fixed base cameras. When using a fixed base, 
which has a metric camera at each end and is configured for the "normal case", the 12 
exterior orientation elements of both cameras are known with respect to the local xyz 
coordinate system. With this type of photogrammetry, no control points are required, a 
considerable advantage in practical use. Control points, or other control elements such 
as measured lengths, are recommended only for checking purposes. However, control 

Central control unit 
Orientation device for aperture, exposure t ime etc. 

Figure 3.8-2: Schematic diagram of a stereometric camera 
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points are necessary if the photogrammetric results must be supplied in a global XYZ 
system rather than a local xyz system. 

Despite the great advantages of stereometric cameras, they play a secondary role in 
practice. The fixed base has the effect that the average error in the direction of the 
camera axes, i.e. in the y direction, increases with the square of the distance (Equa-
tion (3.8-2b)). Stereometric cameras should therefore be available with different base 
lengths; the most flexible solution is a rail along which a variable base can be individ-
ually set. 

Numerical Example. The accuracy behaviour of stereometric cameras will be ex-
amined on the basis of data from Zeiss and Wild cameras. These stereometric cam-
eras were constructed with base lengths of 120 cm and 40 cm. Evaluation of For-
mula (3.8-2b) results in the following accuracies (c = 60 mm, σρ£ = ±7 μπι): 

Base 120 Base 40 
y Η cTy [mm] y [in] συ [mm] 

3 0.9 2 1.2 
6 3.5 3 2.6 
10 10 6 11 
20 39 10 29 

Table 3.8-1: Depth accuracy of stereometric cameras with a base of 120 cm and 40 cm 
(c = 60 mm, σρ( = ±7 μπι) 

Exercise 3.8-1. The Zeiss and Wild stereometric cameras are fixed focus cameras. The 
Zeiss camera with a base of 120 cm is focused at 9 m and the 40 cm base is focused at 
4 m. For these cameras calculate the circles of confusion for the distances given in 
Table 3.8-1 (aperture setting / / l l ) . For both camera systems also calculate the depth 
of field for a maximum circle of confusion of 40 μπι diameter and give recommenda-
tions for the use of the Zeiss stereometric camera with respect to expected accuracies 
(Table 3.8-1). 

Exercise 3.8-2. Give the 12 elements of exterior orientation for a stereometric cam-
era with respect to the local xyz system. (Solution: Corresponds to details given on 
Figure 2.1-13.) 

3.8.3 Independent metric cameras 

Independent metric cameras are preferable to stereometric cameras when the base 
should be increased in order to achieve optimal accuracy at increased object ranges. 
Figure 3.8-3 shows a universal independent metric camera. To determine elements of 
exterior orientation there are levelling bubbles and horizontal and vertical angle set-
tings. By means of forced centering the camera can be replaced by another measuring 
instrument such as a theodolite. These components for determing the elements of ex-
terior orientation are, however, used less and less (Section 3.8.8). 
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4 & 

Figure 3.8-3: Schematic diagram of a terrestrial metric camera 

The camera illustrated in Figure 3.8-3 has a rectangular format which can be set in 
either landscape or portrait orientation. To further accommodate a particular imag-
ing situation, for example photographing tall buildings, Wild cameras incorporated an 
offset principal point. Three typical configurations of the image field are shown in 
Figure 3.8-4. 

The technical data for the Wild P31 Universal Terrestrial Camera, a system comprising 
three interchangeable precision metric cameras, are summarized in Table 3.8-2. Optical 
distortion is smaller than 4 //m. Glass plates or cut-film in special holders can be used 
(see also Table 3.2-1). Calibrated intermediate focusing rings control the depth of field 
(Section 3.1.4 and in particular Figure 3.1-14). The optical resolving power of the P31 
has already been given in Section 3.1.5, in particular with Figure 3.1-19. 

The smaller version of the P31 is the Wild P32. It is designed to be mounted on a 
theodolite telescope. Principal distance c = 64 mm. The P32 can also use glass plates 
(64 mm χ 89 mm) or roll film. The principal point is offset by 10 mm. It has a fixed 
focus distance of 25 m (see numerical example b in Section 3.1.4). 

Jenoptik Jena has manufactured the universal terrestrial camera UMK with a format of 
13 cm χ 18 cm. There are five different objective lenses from narrow angle to super 
wide angle. The UMK's construction corresponds largely to Figure 3.8-3. Calibrated 
focusing controls the depth of field (Section 3.1.4, and in particular Figure 3.1-15). 
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Figure 3.8-4: The various image-field arrangements for Wild cameras with offset prin-
cipal point 

Field of view Super wide angle Wide angle Normal angle 
Principal distance c [mm] 45 100 202 
Aperture stops 5 , 6 . . . 22 8 . . . 22 8 . . . 22 
Exposure times [s] ß , 1 , . . . , 1/500 
Usable format to edges of 
image70 [mm] 92 χ 118 84 χ 117 ( 9 0 - 83) χ 118 
Principal point 
displacement [mm] 0 19 12 
Standard focusing [ m] 7 25 35 
Intermediate rings for 
other distances no yes yes 
Plates (P) or film (F) Ρ P,F P,F 

Table 3.8-2: Technical data for Wild P31 

70The object extent which can be measured can be seen in Figure 3.8-9. 
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3.8.4 Semi-metric cameras 

Semi-metric cameras occupy a position between metric and amateur cameras. Fig-
ure 3.8-5 contrasts a semi-metric camera with a metric camera. The key component of 
a semi-metric camera is the reseau. This is a (stable) glass plate on which an array of 
crosses at intervals of several millimetres is marked. The reseau is exposed on every 
image. The reseau crosses have known coordinates for their centres which are deter-
mined prior to mounting the plate in the camera. Measured values for these points are 
acquired when individual images taken with the camera are processed. A transforma-
tion71 onto reference coordinates significantly eliminates distortion and unflatness in 
the film. In a sense, this transformation provides a metric image in the plane of the 
stable glass plate on which the reseau is marked. 

Camera body 

Image plane 

a) Metric camera 

Camera body 

b) Partial-metric camera 

Shutter 

Roseau points 

Reseau 

/ 

Shutter 

system 

F i l m -
Image f rame—ι 

Fiducial marks—«ι 

Figure 3.8-5: Metric camera (left) and semi-metric camera (right)72 

The following comments can be made with regard to calibration and the elements of 
interior orientation: 

• the optical distortion of semi-metric cameras is usually significantly greater than 
in metric cameras (Figure 3.1-9 shows a typical distortion curve for a semi-metric 
camera). Numerical correction of optical distortion (Section 3.1.3) is therefore 
absolutely necessary for high accuracy applications. 

7 1The bilinear transformation (Section 3.2.1.2) is a suitable transformation for each grid square. Since 
the 8 unknowns of the bilinear transformation are derived without any overdetermination from the 4 
reseau crosses in the corners of the square, a prior check of the data using a similarity or affine trans-
formation is recommended (see Table 3.2-3). An interesting alternative is the derivation of a closed 
interpolation function for the entire image by simultaneous use of all measured reseau points. An ap-
propriate method is based on interpolation by least squares, which can also largely eliminate (filter out) 
random measurement errors (Section Β 9.5.1.3, Volume 2). 

72Taken from Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close Range Photogrammetry. Whit-
tles Publishing, 2006. This textbook discusses semi-metric cameras in some detail, since semi-metric 
cameras play a significant role in close range measurement. 
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• semi-metric cameras can be focused to almost any distance. Calibration data 
exists for marked focal positions. The location of the perspective centre over 
time is not as stable as in a metric camera (indicated in Figure 3.8-5); the position 
of the perspective centre is therefore only approximately known. 

• semi-metric cameras are often calibrated using test fields. In applications de-
manding high accuracy there would also be an on-the-job calibration (Sections 
3.1.2 and Ε 3.4, Volume 2). 

The image format of semi-metric cameras varies from small format up to full metric 
camera format. Medium format cameras (6 cm χ 6 cm) are most widely represented. 
Commercially available lenses vary from super wide angle to telephoto. 

Semi-metric cameras using the reseau principle are available from Geodesign, Hassel-
blad, Leica, Linhof, Pentax and Rollei. A list is available in Luhmann, T., Robson, S., 
Kyle, S., Harley, I.: Close Range Photogrammetry. Whittles Publishing, 2006 (see Ta-
ble 3.8, p. 143). Wester-Ebbinghaus (Ph.Rec. 76, pp. 603-608, 1990) has made major 
contributions to the development of semi-metric cameras. 

3.8.5 Amateur cameras 

Amateur cameras can only be used in photogrammetry to a limited extent. The sim-
plicity of the photography is offset by the complexity of analysis and processing. This 
is discussed in Volume 2 of this series of textbooks. As regards calibration, only on-
the-job calibration is a realistic option (Section 3.1.2 and Ε 3.3, Volume 2). The par-
ticular detail of defining the image coordinate system, in which the (initially unknown) 
perspective centre is determined during on-the-job calibration, is discussed in the fol-
lowing section (Figure 3.8-6). 

3.8.6 Terminology and classification 

The classification of photogrammetric cameras into terrestrial and aerial cameras de-
rives from practical experience. From a methodological point of view, however, the 
following classification is relevant: 

• metric cameras, specially developed for photogrammetry. 

• semi-metric cameras, not originally intended for measuring purposes, but which 
have been developed for photogrammetry even though not all the elements of 
interior orientation may be stable. 

• non-metric cameras, which can be used for low-accuracy photogrammetric ap-
plications, particularly when supported by modern, non-specialist software pack-
ages. 

Cameras can also be classified according to the internal features used to define interior 
orientation: 
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• fiducial-mark cameras, specially developed for photogrammetry, with 4, 8 or 
more fiducial marks. 

• reseau cameras, which have a glass plate supporting a regular grid of crosses 
placed in front of the image plane. This grid can be used to detect, in particular, 
film deformation and lack of flatness. 

• frame cameras, which have no fiducial marks, but sharply imaged edges. The 
"indirect" fiducial marks, formed by the corners of the frame, replace the fiducial 
marks and are located by intersecting lines derived from measurements of points 
on the frame edges (see Figure 3.8-6). 

Figure 3.8-6: Typical 35 mm film. The frame sides are measured at the points shown 
and the corners determined exactly by intersection of the lines. 

• false-frame cameras, e.g. Polaroid Land Camera, in which the image is bounded 
not by a fixed frame in the camera, but by a paper frame which is then removed. 
The interior orientation cannot be reconstructed and such photographs can hardly 
be used for photogrammetry. A similar situation occurs when only an enlarged 
part of an image is available. 

Exercise 3.8-3. An object is to be reconstructed using two images. Consider the num-
ber of unknown elements of interior orientation when using the following cameras: 

• metric camera (Solution: no unknowns.) 

• calibrated and stable reseau camera (Solution: no unknowns.) 

• uncalibrated but stable reseau camera (Solution: 3 unknowns and additional 
polynomial coefficients for the optical distortion) 

• partially stable amateur camera or frame camera with the same focus setting for 
both images (Solution: 3 unknowns and additional polynomial coefficients, both 
for the optical distortion and for the film deformation.) 

• amateur or false-frame camera (e.g. two different image details) (Solution: 6 
unknowns and additional polynomial coefficients, both for the optical distortion 
and for the film deformation.) 
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3.8.7 CCD cameras 

In close range photogrammetry film cameras have been more or less completely re-
placed by digital cameras. The lower geometric resolution of digital cameras can be re-
placed, if necessary, by choosing a shorter imaging distance to the object. Of particular 
interest is the data flow in a complete photogrammetric system when data acquisition 
is made not with a film camera but with a digital camera. In analytical photogramme-
try, considering the need to develop the film, there is inevitably an interruption in the 
process; this is an off-line technique. In contrast, digital photogrammetry can offer an 
on-line process from data acquisition through to the presentation of results. By means 
of this real-time photogrammetry new application areas can be opened up (robotics, 
computer-controlled medical operations, etc.). 

CCD cameras used in close range application normally have a single CCD area array 
sensor (Section 3.3.1) covering the entire image format. In order to increase the geo-
metric resolution there are digital cameras which sequentially sample the image in the 
image plane, using the same principle already discussed when digitizing photographs 
(Section 3.4, in particular Figure 3.4-3). When using a digital scanning camera there 
must be no appreciable movement between camera and object during the scan. In 
addition, the real-time property mentioned above is compromised. 

Only a few manufacturers have been able to provide small numbers of CCD cameras 
which, based on their geometric stability, can be classed as digital metric cameras, 
(e.g. Figure 3.8-773). Integral arrays of 4K χ 4K detectors (and higher) are already 
commercially available. 

In addition to their medium format film cameras, many manufacturers offer as an al-
ternative digital semi-metric cameras. A CCD area array sensor is used in place of the 
film magazine (e.g. Figure 3.8-8). 

WWW addresses for digital metric cameras: www. r o l l e i . de , www. i m e t r i c . 
com, www . g e o d e t i c . com. 

For moderate accuracy demands there are inexpensive standard CCD video cameras on 
offer which follow television standards. 

Video cameras were used in the past as electronic imaging devices in real time pho-
togrammetry. They operate according to diverse standards (for instance, CCIR/PAL 
in Europe and EIA/NTSC in the US), which are quite similar with differences mainly 
in the frame frequency (25 vs. 30 image frames per second) and the number of lines 
per image (625 vs. 525 lines). It is important to mention that they use an analogue 
technique. If digital images are required, additional frame grabbers with analogue-
to-digital converters have to be employed. Due to the analogue nature of the signal, 
various perturbing influences can be observed and high quality imaging with an ac-
ceptable geometric stability for photogrammetric purposes needs very careful set-ups. 
Motion pictures have never had significant importance in photogrammetry and, where 

73The photogrammetric close range systems, to which these cameras belong, reduce the images to the 
coordinates of targeted points at a very early stage (Section 3.6.2). 
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Figure 3.8-7: INCA 3 digital metric 
camera from Geodetic Systems, Inc. 
(GSI) 

Figure 3.8-8: AIC integral from Rollei 

they have been employed, video movie cameras have been "misused" as still image 
cameras. 

The predecessors of today's digital cameras were often called "still video cameras". 
The new generation of digital consumer cameras excels the former still video technol-
ogy concerning stability, resolution, convenience and price. Cameras with a sensor 
array of up to 10 Megapixels are becoming standard, some professional models have 
more impressive specifications. Still, most of these cameras have all the shortcomings 
of a typical amateur camera: unstable zoom lenses, careless mounting of the sensor 
plate, automatic settings which can rarely be adjusted manually and often cannot be 
reset to certain predefined values or cannot even be fixed. Conventional digital cam-
eras are also not suited to certain industrial applications. Some manufactures offer 
special cameras for very specific applications (e.g. DALSA (www. d a l s a . com), JAI 
(www. j a i . com), TVI (www. t v i v i s i o n . com)). From the photogrammetric point 
of view they also belong to the category "amateur cameras". 

Further reading for Section 3.8.7: Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close 
Range Photogrammetry. Whittles Publishing, 2006. Shortis and Beyer: In Atkinson 
(ed.): Close Range Photogrammetry and Machine Vision, Whittles Publishing, UK, 
pp. 106-155, 1996. 

3.8.8 Planning and execution of terrestrial photogrammetry 

Guide values for the maximum possible object distance or smallest possible image 
scale can be derived from the required accuracy of coordinates which, on the ob-
ject, are parallel to the image plane. This is done by inverting the Formulae (3.8-2a) 
and (3.8-2c), restricted to the second term (see also Equation (2.1-35)). Using For-
mula (3.8-2b), the smallest possible base can then be derived from the required accu-
racy in depth (a relevant example is solved in Exercise 2.1-12). On this basis it can be 
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decided if a stereometric camera with a fixed base can be used or if images must be 
taken with an independent camera. 

After clarifying the issue of accuracy it is then necessary to decide from where the 
object can be imaged most advantageously for photogrammetric purposes, i.e. the area 
within which camera stations can be located and where line-of-sight restrictions must 
be avoided. In this procedure the field of view, or more accurately the focal length and 
image format, can be decided. Large object distances demand long focal lengths, short 
ranges not infrequently require super wide angles. The depth of field is also important 
for planning the optimal object distances and it is necessary to stay within the depth-of-
field limits of sn and 57 (see Section 3.1.4). A variety of cameras and objective lenses 
is valuable in making these decisions. 

Finally, the object extent acquired by the images must be taken into account when 
planning terrestrial photogrammetry. The width of an object acquired by a stereopair 
of images can be seen in Figure 3.8-9. The relationship between base B, object range 
y, object width ΟIV, principal distance c and usable image width s (from edge to edge) 
is illustrated in Figure 3.8-9 and expressed in Equation (3.8-3) which allows for a 5 mm 
safety margin at the image edges. (For CCD cameras 100 pixels should be chosen as a 
safety margin.) 

* - 1 0 m m = (3.8-3) 
c y 

Considerations relevant to the optimal baselength, which is a very critical parameter in 
planning, can be summarized as follows: 

• the required accuracy of depth measurement συ (Equation (3.8-2b)), 

• the need to view into object recesses, taking into account that spatial location of 
an object point requires it to be visible from at least two camera stations, 

• recording the object with as few images as possible. 

The greater the required accuracy of the result, then the greater the base/distance ratio 
B/y must be; i.e. for a given y the base must be larger. When using independent 
metric cameras the base/distance ratio B/y can be held constant by scaling the base 
in proportion to the distance. The range error συ then is directly proportional to y, 
according to Equation (3.8-2b). However, with fixed base stereometric cameras the 
base cannot be changed; συ therefore varies in proportion to y2. If a photogrammetric 
error analysis shows that a fixed base stereometric camera will not give the required 
accuracy in a particular case, an independent camera with freely selectable baselength 
must be used instead. 

Working with independent metric cameras is similar to aerial photogrammetry. Cam-
era stations are not exactly determined and the camera axes are not exactly oriented 
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Figure 3.8-9: Planning the horizontal "normal case" 

but aligned approximately according to the "normal case". The elements of exterior 
orientation are therefore derived from control points and tie points74. 

This has a number of advantages: 

• photography is accelerated. 

• systematic errors in interior orientation, as well as exterior orientation during 
photography and processing, are largely detected by the control points. 

• photography can be made from unstable platforms such as ladders or lifting plat-
forms, for zenith views the camera can be laid on the ground pointing upwards, 
or it can simply be used hand-held. The most important issue is often to ensure 
good and accurate ray intersections at the object. 

Figure 3.8-10 is intended to encourage some solutions. 

Where an object to be recorded is not roughly flat, such as a building facade, but has 
some significant extent in all directions, such as a complete building, then a configura-
tion of multiple images surrounding the object is required. Four images are sufficient 
if they are directed at the object corners; in this configuration every object point would 
appear in at least two images. In contrast, with four images each looking perpendicular 
to the object sides a three-dimensional measurement of the object is not possible. 

74When determining control points inside buildings, in narrow streets, on balconies which overhang 
one another etc., a software package is required which does not separate out plan and height determination 
but works directly in 3D space (Waldhäusl, P.: Vermessungswesen und Raumordnung, pp. 128-139, 
1979). 
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1) horizontal and/or tilted images from the ground, (approximately) horizontal base 
2) approximately orthogonal images with an approximately horizontal base, taken 

from a lifting platform 
3) stereoimagery with an approximately vertical base, orthogonal to the object 

fa9ade 

Figure 3.8-10: Various camera configurations 

If an all-round configuration of eight images is created, as shown in Figure 3.8-11, the 
following advantages are obtained: 

• the diagonal images contribute to a very stable network. 

• every object point is recorded in at least three images; this produces results of 
high accuracy and reliability. 

• the perpendicular images are little distorted; they are very suitable for producing 
orthophotos. 

The imaging configuration shown in Figure 3.8-11 has one disadvantage: there are no 
image pairs which correspond approximately to the "normal case". The photogrammet-
ric operators, with their stereoscopic vision, would use an approximately "normal case" 
(Section 6.1.2) for stereoscopic processing, for example of a facade with many three-
dimensional details. With due regard for the various processing options, the imaging 
configuration of Figure 3.8-11 should be modified or extended such that, in place of 
just one perpendicular image there are two, with an appropriate base. Simple tools exist 
to aid the approximate alignment of the camera axes perpendicular to the object plane 
(e.g. a regular grid in the viewfinder, aiming at the camera's reflection in a window or 
polished surface of the fagade). 
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Figure 3.8-11: Recording an object with all-round imaging75 

This section on planning, which has a continuation in Section 5.7, will be concluded 
with comments on the application area known as Mobile Mapping. This type of data 
acquisition makes use of a road vehicle equipped with the following sensors (Fig-
ure 3.8-12): 

• GPS receiver which determines position with reference to a specific GPS refer-
ence station 

• inertial measurement unit (IMU) which determines the angular attitude of the 
camera, as in aerial survey use (Section 3.7.3.2), and which also supports GPS 
positioning 

• odometer which determines distance travelled by counting the rotations of the 
wheel 

• barometer which provides a coarse measurement of height 

• digital stereometric camera or single digital camera 

• laser scanner which provides polar (spherical) coordinates to points on the road 
surface (Chapter 8) 

75Other object forms and imaging configurations have been analysed with respect to accuracy and 
reliability and are discussed in Section Β 4.5, Volume 2. 
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GPS •·'·••·* 
reference station 

Figure 3.8-12: Mobile Mapping System76 

Where a single metric camera is used, the base is defined between successive images 
and is roughly oriented in the direction of travel when the road is straight. Analysis 
of the images is very difficult because corresponding object elements are imaged in 
successive images at very different scales. 

For sampled object points, such mobile mapping systems achieve an accuracy of around 
±30 cm at a speed of 60km/h77. 

Further reading on mobile mapping: Novak, K.: ZPF 59, pp. 112-120, 1991. Benning, 
W„ Aussems, T.: ZfV 123, pp. 202-209, 1998. Gajdamowicz, K., Öhman, D„ Rise, 
K.: Journal of the Swedish Society for Photogr. and RS, Nr 2002(1), pp. 103-112, 
2002. He, G., Novak, K., Feng, W.: IAPRS 30, Commission II, pp. 480-486, 1992, 
and Commission V, pp. 139-145, 1992. 

Exercise 3.8-4. An object with an extent of 2 m χ 3 m is to be photographed by a 
Rollei Scanning Camera RSC and the format is to be filled with the object's image. 
The number of pixels in a full image is 4200 χ 6250 and in the scanning array's partial 
image 512 χ 512. What is the resolution of the full image? (Solution: width of line 
pair = 0.67 mm.) What would be the resolution of the partial image only? (Solution: 
maximum width of line pair = 8.2 mm.) Values should be calculated with respect to 
the object surface. 

76Provided by the ikv working group at the Institut für Geodäsie der Universität der Bundeswehr, 
Munich. 

77Schwarz, K.P., El-Sheimy, N.: IAPRS XXXI(B3), pp. 774-785, Vienna, 1996. 
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Exercise 3.8-5. Repeat the exercise above for a CCIR video camera. (Solution: maxi-
mum width of line pair = 6.7 mm.) 

Exercise 3.8-6. Repeat the exercise above for a Wild P32 (Section 3.8.3) with a total 
resolving power (film and optics) of 75 Lp/mm. (Solution: maximum width of line 
pair = 0.45 mm.) 

Exercise 3.8-7. An 18 m wide and 12 m high, almost flat fagade is to be photographed 
at height of 8 m from the full width balcony of the building opposite. Stereophotogra-
phy is required which will deliver an accuracy of σχ = σζ = ±0.5 cm in the plane of 
the faijade and a y — ± 1 cm normal to the facade. The building opposite is 20 m away. 
Accuracy within the image can be assumed to be ±10μπι . Is the Wild P32 sufficient 
or must the P31 be used (for camera data see Section 3.8.3)? (Solution: The P32 is 
sufficient.) What baselength should be used? (Solution: 6.25 m.) What is the image 
scale? (Solution: 1 : 312.) How many photographs are required? (Solution: 2.) What 
is the base/distance ratio? (Solution: 1 : 3.2.) How many times must an image be 
enlarged to obtain an orthophoto at a scale of 1 : 50? (Solution: 6.3 times.) 



Chapter 4 

Orientation procedures and some 
methods of stereoprocessing 

This chapter deals with the reconstruction of shape and position of an object point by 
point from two images. In much of Chapter 4, the alignment of the two photographs 
approximates to the "normal case". In the case of aerial survey one speaks of near 
vertical photographs. The base is generally chosen so that the two pictures overlap each 
other by about 60% (Figure 4.0-1). Such pictures can be observed stereoscopically, or 
"in three dimensions" (Section 6.1.2), when one sees a stereoscopic model, sometimes 
also called an optical model, of the photographed object. In several passages of this 
chapter we also deal with the general case where the photographs depart from the 
"normal case". 

β 

Photograph 1 Photograph 2 

Figure 4.0-1: The "model area" (overlap) in two nearly vertical photographs 

Stereoprocessing in the narrow sense, that is, the creation of three-dimensional digital 
models of the photographed objects, is preceded by a quite extensive preparation phase, 
which is generally called orientation. This preparatory phase is crucially dependent on 
whether or not the elements of exterior orientation of the two photographs are known. 
In principle, photogrammetric processing leads to the computational re-establishment 
of the geometric relationship of the cameras to the global coordinate system at the time 
of exposure and, then, to the digital reconstruction of the object from corresponding 
image points or image elements. 

The orientation of the photographs is considerably simplified if the interior orientation 
of the pictures is known—as, in general, is assumed in this chapter. It is also presumed 
that we have photographs taken with a metric camera on film or with CCD sensors 
(Section 3.7.2.2) or by means of three-line digital cameras (Section 3.7.2.3). 
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4.1 With known exterior orientation 
Here we distinguish between the cases of two metric photographs (film or CCD sen-
sor, Section 4.1.1) and that of metric images taken with a three-line sensor camera 
(Section 4.1.2). 

4.1.1 Two overlapping metric photographs 

The elements of exterior orientation are available when the pictures were taken: 

• with terrestrial stereometric cameras (though only with respect to a local object 
coordinate system, Section 3.8.2), or 

• with a terrestrial metric camera when the position and attitude of the camera have 
been accurately determined (Section 3.8.8), or 

• with aerial survey cameras of which the position and attitude have been accu-
rately established in post-processing of the corresponding GPS/IMU recordings 
from the photo flight (Section 3.7.3.2). 

When using GPS and IMU, one speaks of direct georeferencing. GPS and IMU allow 
direct transformation into a terrestrial coordinate system, normally the national coor-
dinate system. One speaks of indirect georeferencing when the elements of exterior 
orientation are determined in a roundabout way using control points. 

The photogrammetric processing of a stereopair with known exterior orientation starts 
with the measured image coordinates ξι, η\ and ξ2, η2 of the corresponding points 
Pi and P2 (Figure 4.0-1). The following relationships (4.1-1), derived from Equa-
tions (2.1-20), define intersection of rays in three dimensions; they may be used to find 
the object coordinates Χ, Υ, Ζ of the point Ρ : 

X = Xoi + { Z - Z 0 i ) k x i 

Y = Ybi + ( Z - Z 0 l ) k y l 

X = X02 + (Z - Z(yi)kX2 

Y = Y 0 2 + (Z - Z02)ky2 

The quantities k are derived from the elements of the interior and exterior orientation 
together with the four measured image coordinates. Since the coordinates X(H, YQ% and 
Zoi of the perspective centres are known, there are four linear equations in the three 
unknown object coordinates Χ, Y and Z. 

Provided the Z-coordinate axis is roughly parallel to the direction of photography (as in 
the case of aerial images), then from the first and the third of the four Equations (4.1-1) 
we have: 

X02 — Zo2kx2 + Zo\kx\ — X01 

Image 1 

Image 2 

(4.1-1) 
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The X coordinate may be found from the first or the third equation, while Y can be 
found from both the second and the fourth equations (providing a check). The two 
slightly different Y values are then averaged. 

For the "normal case" of photogrammetry (which, as we know, is arrived at directly 
when using stereometric cameras) the relationships (4.1-1) become especially simple, 
as one can see with the help of Equations (2.1-32) or (3.8-1). 

The equation systems (4.1-1) and (4.1-2) can also be used during the processing of 
images which depart greatly from the "normal case". The solution for intersection out-
lined above is, however, not rigorous in the case of such a general camera arrangement. 
The redundancy cannot really be used by an averaging of the different Y values, but 
must be dealt with using least squares estimation from the original measurements, that 
is the image coordinates ξι, ή\ and £2, % (Appendix 4.1-1). In this estimation prob-
lem we have four (non-linear) observation equations in three unknowns. Using the 
collinearity equations (2.1-19) we derive four linearized observation equations: 

= 

"Vi 

VÜ2 = 

"Vi 

äx) dx + {sr <"-+(§§) dZ - ((,-(«) 

0 
(νι-νϊ) 

dY 

> 
dY-

(4.1-3) 

The partial derivatives ()° are evaluated from the relationships in Appendix 2.1-3 us-
ing approximate values for the unknown coordinates. ξ® 2 and rfj 2 are computed image 
coordinates derived from Equations (2.1-19) using the approximate values for the un-
known object coordinates and the known elements of interior and exterior orientation. 
Approximate values for the unknown object coordinates can be determined by means 
of relationships (4.1-1) and (4.1-2). 

Numerical Example. In the exact "normal case" the approximate solution and the 
rigorous solution result in identical answers (why?); nevertheless we wish to compute 
such a case by means of least squares estimation because the computational effort of 
the least squares solution will can be kept small for the "normal case". Β = 1.20 m, 
c = 64.20 mm. 

Image coordinates: 
ζ [mm] η [mm] 

Image 1 
Image 2 

3.624 
-14.697 

34.202 
34.196 

Approximate values from (2.1-32): -Z° = 4.205 m, Y° = 2.240 m, X° = 0.237 m. 

The design matrix A (Appendix 4.1-1) is developed using the partial derivatives which 
are found in Exercise 2.1-18 (Appendix 2.1-3). The image coordinates η® 2 (4.1-3) 
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to be calculated for the vector 1 of observations (Appendix 4.1-1) come from the (sim-
ple) central perspective equations (2.1-28) to (2.1-31) of the exact "normal case": 

A = 

( 15.268 0 0.861 \ 
0 15.268 8.133 

15.268 0 -3.496 
γ 0 15.268 8.133) 

1 imml 

( 0.00559 \ 
0.00271 
0.00564 

\ -0.00329 ) 

After setting up and solution of the normal equations and calculating the accuracy one 
finally obtains (Appendix 2.1-3): 

0.23700 \ 
2.24000 + 

-4.20500 

0.00037 
-0.00001 
-0.00001 

±0.23 mm 
±0.75 mm 
±1.36 mm 

0.23737 m ' 
2.23999 m 

-4.20501 m 

The solution of a three-dimensional intersection using least squares has the great ad-
vantage that, as a by-product of the adjustment computation, the accuracy of the new 
points is also found. The accuracies calculated in the above numerical example are too 
optimistic because the elements of exterior orientation were taken to be error-free. In 
Volume 2 (Sections Β 3.5.7 and Β 3.5.8), extended adjustment formulae are dealt with 
for the case of imperfect elements of interior and exterior orientation. 

Publication No. 43 of the EuroSDR (European Spatial Data Research, former 
OEEPE—Organisation Europeenne d'Etudes Photogrammetriques Experimentales) 
concerned an international test of direct georeferencing. The results achieved were 
roughly in accord with those given in Section 3.7.3.2. See also Cramer, M.: GIS 
6/2002, pp. 3Ί-Α2. 

In principle, with known exterior orientation one requires no control points. In many 
cases, nevertheless, control points are incorporated in the processing; on the one hand, 
this provides checks and, on the other hand, improves the known elements of exterior 
orientation. 

4.1.2 Metric images with a three-line sensor camera 

When taking images with a three-line sensor camera, a GPS/IMU recording must be 
made simultaneously, from which at every point in time the elements of exterior ori-
entation are available with a relatively higher accuracy (Sections 3.7.3.2 and 3.7.3.3). 
When one identifies a point P, either manually or automatically, then the three time-
stamps t\,t2 and ti are known from the indices of the three rows; these are the times at 
which the point Ρ was imaged in the three lines one after the other (Figure 4.1-1). Cor-
responding to these three time-stamps, the elements of exterior orientation available 
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from the GPS/IMU records are taken: 

*o(«2), Yo(t2), Z0(t2),üj(t2), <p(t2), n{t2) 

Χ*(ί3), Yo(f3), ω(ί3), ν»(ί3), κ(ί3) 

(4.1-4) 

As a result, the prerequisites exist for a three-dimensional intersection, using three di-
rections, to determine the XYZ coordinates of the point P. To do so, the equation 
system (4.1-1) or (4.1-3) is extended to a third picture; that is, there are six observa-
tion equations for the three unknowns. In calculating the quantities k, the following 
calibrated values for the ξ coordinates are used: 

• for kx\, kyi the distance a, 
• for kx2, ky2 the distance 0 and, (4.1-5) 
• for kx3, kys the distance - b. 

The η coordinates of the three image points Pi, P2 and P3 differ only slightly from 
each other. 

Figure 4.1-1: Object point Ρ in the three images of a three-line sensor camera 

In processing the three scan lines, if the elements of exterior orientation obtained from 
the GPS and IMU are available only with limited accuracy and are to be improved, 
control points are introduced in the procedure. This matter is discussed in Section 5.5. 

4.2 With unknown exterior orientation 

In this case, using control points, we must find the following twelve elements of orien-
tation for two images, whether on film or on CCD chip: 

02(t2) 

Picture 1: Χ0ι, *οι, Z0\, ω{, ψ\, κ ι 
Picture 2: Χ02, Υ02, Ζο2, ω2, φ2, κ2 

The different methods of solution may be classified in three groups: 
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• separate orientation of the two images (see Section 4.2.1) 

• combined, single-stage orientation of the two images (see Section 4.2.2) 

• two-step combined orientation of a pair of photographs (see Section 4.2.3) 

4.2.1 Separate orientation of the two images 

Here it is assumed that for each image at least three control points are known (Fig-
ure 4.2-1). For each image at least six equations (2.1-19) can be written in the six 
unknowns, which are underlined below: 

& = /(£o, ε,Χο,Υ^), Ζο,ω, κ, X i , Y i , Z i ) 
t = 1,2,3 (4.2-1) 

Vi = /{νο,ο,Χβ,Υβ,^,ω,φ,κ,Χί,Υί,Ζι) 

After linearizing them using approximate values the six equations can be solved (iter-
atively, Newton's method) for the six unknowns. The procedure is known resection in 
three dimensions. 
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Overdetermined resection in three dimensions is solved using the method of least 
squares estimation (Appendix 4.1-1). Each point Pi provides two linearized obser-
vation equations for the observations & and ήί (instead of writing out the partial deriv-
atives ( w h i c h are calculated using the approximate values for the unknowns, we 
use the quantities a and b introduced in Appendix 2.1-3): 

v^i = a2<iXo + a^dYo + a^dZ^ + α^άω + α^άψ + αηάκ — — ξ®) 

ν η ί = b2dXo + b^dYo + ^ciZo + b$duj + b(,άφ + b j d n — (ήί — η 

ξ® and η® are the image coordinates computed from Equations (2.1-19) using the known 
elements of interior orientation, the known control point coordinates Xj,Yj,Zj and the 
approximate values for the unknown elements of exterior orientation. For the first 
iteration, in the case of near-vertical photographs taken in a West-East flying direction, 
one can use the following approximations: = φ° = κ° = 0. Values introduced 
from a GPS-supported navigation system in the aircraft normally provide sufficiently 
accurate first approximations for yo°, ZQ (Section 3.7.3.1). 

Numerical Example. We are given image coordinates and ground coordinates of the 
following points: 

ξ [mm] 77 [mm] Y[m] Z[m] 
1 -86 .15 -68.99 36589.41 25273.32 2195.17 
2 -53 .40 82.21 37631.08 31324.51 728.69 
3 -14 .78 -76 .63 39100.97 24934.98 2386.50 
4 10.46 64.43 40426.54 30319.81 757.31 

The elements of interior orientation are: c = 153.24 mm, ξο — Vo = 0. 

Since we are concerned here with a near-vertical photograph, we can use simple pro-
portion as for a truly vertical photograph to find approximate starting values for the 
camera position. From two control points Pi and P j one gets: 

{ c { X j - X i ) + ( - j Z j - ( i i Z i ) H t i j - & 

X i - t ^ Z f t - Z f b / c 

Y i - m ( Z l - Z \ ) l c 

The two control points Pi and P j should lie at approximately equal ground heights 
Zi and furthermore their ξ-coordinates should not be too close together. One would 
therefore use either points Pi and Pj or points P2 and P4. 

Solution: 

X0 = 39795.45 m / 0.99771 0.06753 0.00399 \ 
Y0 = 27476.46 m R = -0.06753 0.99772 -0.00211 
Z0 = 7572.69m \ - 0 . 0 0 4 1 2 0.00184 0.99999/ 

Calculation and presentation of the accuracies are omitted. 

7° -Z0 — 

— 

yO _ 
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The computation of resection is frequently required in photogrammetry. For this reason 
there are many solutions; efforts have been concentrated on linear equations which 
work without initial approximations. A successful linear solution exists for four control 
points as fully described in Volume 2 (Section Β 4.1.2). It is not, however, a least 
squares adjustment so the accuracy is limited. If the highest accuracy is demanded one 
will regard the results of this method as approximations and then complete a precise 
computation with the observation equations (4.2-1). 

On many flying missions nowadays the position of the camera station is already very 
accurately determined by GPS (Section 3.7.3.2). The attitude of the photograph, how-
ever, is not always recorded with IMU. In such a case the missing orientation angles 
can be found using the equation system (4.2-2), without the terms for dXo, dYo and 
dZo. 

An alternative for finding the elements of orientation is the Direct Linear Transfor-
mation (DLT). The DLT establishes the relationship between the two-dimensional im-
age coordinates and the three-dimensional object coordinates by means of a projective 
transformation, with which we are already acquainted for the case of plane objects 
(Sections 2.1.4 and 2.2.3b) and which for three-dimensional objects may be extended 
in the following form (an elegant derivation using homogeneous coordinates is to be 
found in Appendix 4.1-1): 

aiX + a2Y + ατ,Ζ + a,4 
~~ c\X + c2Y + c3Z + 1 

(4.2-3) 
_ biX + b2Y + b3Z + b4 

V ~~ ciX + c2Y + c3Z + 1 

These transformation equations are linear with respect to the transformation parameters 
ο», bi? Cj (Section 2.1.4 contains a numerical example for a plane object; the computa-
tional steps outlined there are no different from those for a three-dimensional object). 
Each control points leads to two equations. Therefore, for the determination of the 
eleven transformation parameters a*, bt, a a minimum of six control points is needed 
(more accurately, for the sixth control point only one of the two image coordinates 
needs to be measured). The fact that there are eleven transformation parameters is sur-
prising. In Section 2.1.3 we established that a central projection of three-dimensional 
space is defined by nine independent parameters (three for the interior orientation and 
six for the exterior orientation). The additional two parameters in the DLT can be 
interpreted as an extension of the interior orientation to allow a scale difference be-
tween the two image coordinate axes and non-orthogonality of these axes. Projective 
photogrammetry, therefore, usually discards a Cartesian coordinate system. 

The parameters of the DLT cannot be interpreted physically. While the eleven para-
meters aj, bi, Ci can indeed be successfully expressed in terms of the parameters of 
interior and exterior orientation, accounting for a known interior orientation within a 
computation is difficult. Hence, the DLT is most suitable for the processing of non-
metric images, such as amateur photographs, video images and so on (Section 3.8.6). 
Nonetheless, DLT is also used for the evaluation of metric images. The results of the 



188 Chapter 4 Orientation procedures and some methods of stereoprocessing 

DLT, which are easy to obtain on account of the linearity of the DLT equations, are used 
as approximations for a subsequent adjustment based on central perspective relations. 
Valuable information concerning the interior orientation can be extracted from this rig-
orous adjustment, its accuracy considerably enhanced. In Volume 2, Section Β 4.7.1, 
the DLT is dealt with in detail. 

Separate orientation of the two images, for example by means of resection, making use 
of the relationships (4.2-2), has disadvantages which can be formulated as follows with 
reference to Figure 4.2-1: 

• no use is made of the information that the homologous rays intersect each other 
(as, for example, in the new object point Pa,). 

• one needs at least three full control points (with known Χ , Υ, Ζ) in the stere-
opair as opposed to the procedures described below; for these later methods the 
minimum requirement is just two plane control points (with known X, Y) and 
three height control points (with known Z). 

4.2.2 Combined, single-stage orientation of the two images 

The image coordinates of the control points and some new points are measured (Fig-
ure 4.2-1). For each control point there are four equations (2.1-19) in the twelve un-
knowns: 

ζα — / ( £ 0 ; ci2Loi >^01 <4̂1> Ψγΐ ! 
Image 1 

Vn = Χ^^Υ^γ,^,ω^,ψ^, Κχ,Χί,Υί, Zi) 
(4.2-4) 

ζί2 = C , Ä 0 2 > ^ 0 2 ' : 2 i 
Image 2 

Vi2 = f(m,c,2Lo2,Yü2'^2'til2,ip2,K2iXi,Yi,Zi) 

For each new point there are in fact three further unknowns (with double underlining 
below), but also four additional equations as follows (2.1-19): 

ζιΐ = / ( £ 0 , C, Xo! , Yj0l, Zq! , ωχ, ψχ, , Χ±, Υ±, Ζ±) 

Image 1 
Vn = f(vo, c, Xjqi , Zoi, Zjoi , ωλ , ψ_χ, κχ, X±, Ζ±) 

(4.2-5) 
ζί2 = /(&, C,Xo2,£>2>^> to, 

Image 2 

First, it is necessary to linearize the Equations (4.2-4) and (4.2-5) using suitable first 
approximations (Appendix 2.1-3); these systems of equations are usually highly over-
determined. Subsequently the linearized equations are to be solved by means of least 
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squares estimation (Appendix 4.1-1). The results of the computation are the twelve 
elements of exterior orientation and the object coordinates Χ, Υ, Ζ of the new points. 
For this combined, two-image resection1 in the following example, a tally of the obser-
vations and unknowns involved may be given: 

Given: 

Observations: 

Unknowns: 

Redundancy: 

Exercise 4.2-1. 
same interior orientation, but that it is unknown. Give your critical opinion of this 
exercise especially from the viewpoint of comprehensive checking of the computation. 
(Answer: In this case, there are 24 observations and an equal number of unknowns. 
That is to say, the system of equations is soluble but gross errors cannot be discovered. 
Note that for this special, degenerate, case of least squares one still needs the partial 
derivatives αϊ and b\ of Appendix 2.1-3.) 

Since arbitrarily many control points and new points may be introduced in this method 
and since the adjustment is based on the indirect observation equations (4.2-4) and 
(4.2-5) (which equations establish the direct connection between the unknowns and the 
original observations, the image coordinates), this method of orientation is the most 
accurate. It is a one-step solution, in contrast to the following procedure which splits 
the orientation into two steps and ignores the correlations between the results of the 
first step in solving the second. A disadvantage of the one step solution is that addi-
tional operations are unavoidable in order to find approximate values, as described in 
Section 4.2.1. 

4.2.3 Two-step combined orientation of a pair of images 

The orientation procedure shown in Figure 4.2-2 works in two steps. In the first step 
a stereomodel in an arbitrary three-dimensional xyz coordinate system is created from 
the two photographs. In the second step this model is transformed into the X Y Z co-
ordinate system. The procedure is most easily understood if we begin with the second 
step: 

'There is a single, special word in German for this procedure: "Doppelbildeinschaltung", literally 
"double image insertion". As is frequently the case, there is no word in English for this German word. 
One might call it "two image resection" but, more frequently, one would simply say that the problem was 
solved using the "bundle method" (Section 5.3). 

2 metric images with 
3 control points and 
3 new points 

· 12 coordinates, 1st image 
• ^ 12 coordinates, 2nd image • ^ 

=> 24 observations in all Δ · 
6 rotations of the two images 
6 coordinates Xo, Yo, Zq of the two perspective centres 
9 coordinates Χ, Υ, Ζ of the three new points 
=>· 21 unknowns in all 

24 - 21 = 3 

Revise the above summations assuming that both images have the 
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o-v V> 

V 

Figure 4.2-2: Two-step orientation procedure 
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Second step: The relation between the model coordinates x, y, ζ and the object coor-
dinates Χ, Υ, Ζ can be expressed by the equations (see also Figure 4.2-2): 

in which: 

Xu, Yu, Zu ... are the object coordinates of the origin of the xyz system 
m . . . is the scale number of the xyz system 
R . . . is the matrix of the three-dimensional rotation of the xyz system into 

the XYZ system defined in terms of the three rotations Ω, Φ, Κ 
See Equations (2.1-11) and (2.1 -13) or Appendix 2.1-1. 

The seven parameters, Xu, Yu, Zu, Ω, Φ, K, m, are called the elements of absolute 
orientation. Equation (4.2-6) represents a three-dimensional similarity transformation 
(2.1-18). 

At least seven equations are required for the computation of the seven elements. Equa-
tion (4.2-6) gives us: 

• three equations for a full control point (Χ, Υ, Ζ all known) 

• two equations for a horizontal, or plan, control point (Χ, Y both known) 

• one equation for a height control point (Z known). 

The absolute orientation requires at least two plan control points and three (non-col-
linear, in plan) height control points; alternatively, it requires two full control points 
and a height control point not collinear in plan with the full control points. Further 
details of absolute orientation, especially in the over-determined case, are dealt with in 
Section 4.4. 

Exercise 4.2-2. On the basis of the matrix (2.1-13) write out the individual equations 
for a full control point, for a plan control point and for a height control point. 

First step: When the photographs were taken, each individual point on the object 
could be thought of as having given rise to two rays, one towards each camera, and 
hence to two image points. If the positions and orientations of the images with respect 
to each other are correctly restored, all such pairs of homologous rays will once again 
intersect, in points which define the surface of the model in the xyz system. 

Since seven of the twelve unknown elements of exterior orientation can be determined 
by the absolute orientation, five unknowns remain for the first step. Therefore it is 
reasonable to assume that a necessary condition for relative orientation is that the ho-
mologous rays from at least five well distributed points intersect and that if this is 
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achieved, all other pairs of homologous rays will intersect, thus forming a complete 
photogrammetric model2, see Section 4.3. 

The procedure required to achieve the above state is called relative orientation, since 
only the relative positions and orientations of the two bundles of rays are determined. 
There is no reference to the XYZ coordinate system and no control points are required 
for relative orientation. 

The condition for correct relative orientation, the intersection of each of five pairs of 
homologous rays in a model point, may be formulated using the scalar triple product 
of the three vectors b, p) t, ρ2% (Figure 4.2-3 and Equation (4.2-7a)). The scalar triple 
product, which is composed of the scalar product of one of three vectors with the vector 
product of the other two vectors, gives the volume of the parallelepiped of which three 
concurrent edges have the lengths and directions of the three vectors concerned. If the 
three vectors are coplanar their scalar triple product is zero, because the vector product 
of two of them is then perpendicular to the third and thus their scalar product vanishes. 
Equation (4.2-7b), which is frequently called the coplanarity condition and which is 
the condition that homologous rays intersect at each of five points, expresses the basic 
condition for relative orientation. 

X 

Figure 4.2-3: Condition for intersection, or coplanarity 

b T ( p H x p 2 i ) = 0 i — 1,. . . ,5 (4.2-7a) 

The scalar triple product can also be written using the following determinant: 

D = 
bx Pli,x P2i,x 
by P\i,y P2i,y 
bz P\i,z P2i,z 

— 0 i= 1,. (4.2-7b) 

2This two stage process brings to mind the definition of photogrammetry given at the very start of 
Section 1.1. In relative orientation a model is created which reproduces the form of the object; absolute 
orientation determines the scale, position and orientation of the object with respect to the ground coordi-
nate system. Instead of absolute orientation one could use the term georeferencing. 
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Sections 4.3 and 4.4 are devoted, respectively, to relative orientation and to absolute 
orientation. 

4.3 Relative orientation 

4.3.1 Relative orientation of near-vertical photographs 

The coplanarity condition (4.2-7) is considerably simplified if it can be assumed that 
the photographs are almost vertical. It is first necessary to set out the relationship 
between the image coordinates and the model coordinates under the assumption of 
near vertical photographs. In this case in the relationships (2.1-20), instead of the 
object coordinates Χ, Υ, Z, the model coordinates x, y, ζ are introduced and, instead 
of the orientation elements, increments to the orientation elements. The quantities used 
can be seen in Figure 4.3-1: 

o, 

ξο — Vo — χο\ = 2/oi = 0, 

ω — άω, 
φ = dtp, 
κ = du, 

(4.3-1) p.(*,y,z) x&2 = bx, 
2/02 = dby 

Z02 = zoi + dbz 

h = zqi — z. 

Figure 4.3-1: Orientation elements 
in the case of near-vertical images 

For small rotations the matrix R (2.1-13) simplifies to: 

(4.3-2) 

For photograph 1, therefore, from Equation (2.1-20): 

= (-h) 
ξι — η\άκ\ — οάψ\ 

χ — 
ξ\άψι + ηιάω\ - c 

Division of both numerator and denominator by — c gives: 

— — + —άκι + άψ\ 
* = — - — 

1 , ^Α 1 Η άψ\ αωι 
c c 
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Expanding the expression on the right-hand side in terms of the series 1/(1 + x) = 
1 - χ + x2 — . . . and ignoring second and higher order products of small quantities 
gives: 

, , χ 6 - ηιάκι - cdipi 
X = (—h) — ; -ξιάφι + η\άω\ - c 

= i-h) (—— + %άψ\ - ^^-(koi + —άκι + άψχ 

\ c cz cz c 

An expression for the y coordinate may be found in a similar way: 

, , χ ξιάκι +ηι +cduι y= — ; — Λ 

-ξ\αψ\ + η\άω\ - c 

= (—h) f—— — ^άωχ + — — άκ\ — άω\ \ η ηί· nL η Rearrangement then gives us the following relationship between the model coordinates 
x, y, h (h instead of z), the image coordinates of a point P, the orientation elements 
and the principal distance for picture 1 : 

x\ = h ( ^ — ( 1 + ^ ) άφι + ^γ-άωχ — ^άκλ 
(4.3-3) 

'Γ 

C \ c2 J & ' c 

c cz \ cz / c Taking into account a shift of origin to O2, a similar process gives corresponding rela-
tionships for picture 2: 

= bx + (h + dbz) ( - - ( l + άψ2 + —dw2 -\ r \ rA r-i r X2 = bx + (h + dbz) ( - - ( 1 + , . . 
V c V cz / c? c 

- ( 4 - 3 " 4 ) 

y2 = dby + {h + dbz) ( ^ - ^ψάφ2 + ( 1 + \ ) άω2 + 
VC C V C J c 

Setting y\ equal to j/2 gives the condition for intersection of two rays, (4.2-7), in the 
case of near-vertical photographs: 

0 = dby + Idbz + + ψώρ, - (1 + 1 ) dun 

_ _ ϊ ψ ά ψ 2 + Λ + ή ) ^ + k d K 2 

In Section 2.1.5 we introduced the definition of y-parallax, ρη — η ι — %· We may 
therefore rewrite the condition for intersection as: 

Pr, =ydby + ψ-dbz + ^^-άφι - (c + — ) άω\ - ξ\άκ\ - άψ2 
h h c \ c j c 

(4.3-5) 
/ 2 \ 

+ ( c+T^-)dw2 + ξ2άκ2 
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Equation (4.3-5) expresses the η parallax, in the case of near-vertical photographs, as 
a function of eight orientation elements. Consideration of the effects of small physical 
translations and rotations of the photographs shows that not all eight elements can, 
however, be computed from measured η parallaxes. Equal but opposite small rotations, 
dn ι and du2, of the left and right photographs about their (near-vertical) axes will have 
the same relative effect on the η parallax as a small change, dby, in the y position of the 
right-hand photograph. 

Clearly, not all three of dn\, dni and dby may be computed simultaneously from mea-
sured //-parallaxes; it is possible to compute the following pairs of elements from mea-
sured ^-parallaxes: dn\, άκ2\ άκ\, dby\ dK2, dby. Likewise, either but not both of άψ\ 
and db2 can be found since they have the same relative effect; and either but not both 
of άω\ and (Ιω2 can be found. Three of the elements of orientation included in Equa-
tion (4.3-5) must be excluded from the computation; if, for instance, both άω\ and άω2 
were to have been included, the matrix of observation equations, corresponding to that 
found in the following numerical example, would have been singular or almost singu-
lar. The implication in Section 4.2.3 that only five elements of orientation were to be 
found in relative orientation is confirmed. 

Of the possible choices of five orientation elements for the computation of numerical 
relative orientation of two near-vertical photographs, the following two variants are 
usual: 

Relative orientation using rotations only. The photographs are rotated only, their 
positions meanwhile remaining unchanged; this is known as independent relative ori-
entation and in the US as the "swing-swing method". 

ρη = —ξ\άκ\ + $,2dK2 + ——dipi — + ^c + — ^ di02 (4.3-6) 

For approximately vertical photographs the image coordinate η\ is approximately equal 
to 772; the coefficients of duj\ and άω2 are almost identical, apart from their signs. One 
can choose to determine either άω\ or du;2, but not both; άω2 has been chosen in Equa-
tion (4.3-6). 

Relative orientation using only elements of the second photograph. One photo-
graph remains fixed while the other is translated and rotated; this is frequently known 
as dependent relative orientation and often as the "one-projector method". 

ρη — ydbv + ^dbz - + ( c + — ) duj2 + £ 2 ^ 2 (4.3-7) 
h h c \ c J 

It can be seen that, of the six elements of orientation of the right-hand photograph, 
only five occur in Equation (4.3-5). For near vertical photographs, within the limits 
of approximation applied in this section, translation b^ of the right-hand photograph 
does not influence the 77-parallaxes. This may be seen as further confirmation that the 
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measurement of five 77-parallaxes, or the intersection of five pairs of homologous rays, 
suffices for relative orientation. 

If more than five η-parallaxes have been measured, a least squares solution may be 
used (Appendix 4.1-1), in which case Equation (4.3-6) or (4.3-7), augmented by the 
residual vPn is regarded as observation equation with the substitution of the residual 
vPv as the constant term. 

Numerical Example (of relative orientation of independent images). We are given the 
image coordinates (in [mm]) of eight points and the principal distance c = 152.67 mm. 

Point 6 »7i 6 m Ρη=ι71 - m 
1 93.176 5.890 6.072 5.176 0.714 
2 -27 .403 6.672 -112 .842 1.121 5.551 
3 83.951 107.422 - 4 . 8 7 2 105.029 2.393 
4 -11 .659 101.544 -99 .298 95.206 6.338 
5 110.326 -97 .800 34.333 -99 .522 1.722 
6 -12 .653 -87 .645 -96 .127 -93 .761 6.166 
7 37.872 40.969 -48 .306 37.862 3.107 
8 41.503 -37 .085 -42 .191 -40 .138 3.053 

We wish to compute the elements of relative orientation and their accuracies. From 
Equation (4.3-6) the observation equations are of the form: 

"pv = + iidki + ^^-άφι - + ( c + ^ ) di02 - ρη 
ξινι 

c c 

The observation equations in matrix form are (Appendix 4.1-1): 

/ - 9 3 6 4 0 153 ^ 
27 - 1 1 3 - 1 1 153 

- 8 4 - 5 59 3 225 
12 - 9 9 - 8 62 212 

- 1 1 0 34 - 7 1 22 218 
13 - 9 6 7 - 5 9 210 

- 3 8 - 4 8 10 12 162 
- 4 2 - 4 2 - 1 0 - 1 1 163 j 

( dkx \ 
dkj 
dtp 1 
άφ 2 

V düJ2 J 

( 0.714 \ 
5.551 
2.393 
6.338 
1.722 
6.116 
3.107 

\ 3.053 / 

which we may write as: 
ν = A x — 1 

The normal equations have the form (Appendix 4.1-1): 

A T A x = Α τ1; χ = ( A T A ) " 1 A T 1 

The solution of the normal equations gives: 

άκι = 1.73 gon = 1°33' dn2 = - 0 . 8 2 gon = 
άψι = - 0 . 3 4 gon = - 1 8 ' άψ2 = 0.05 gon = 
du2 = 1.40 gon = 1°16' 

-44' 
3' 
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The weight coefficient matrix is (Appendix 4.1-1): Q = (A T A) 1 

/ 70 63 05 00 29 Ν 
63 62 06 00 28 
05 06 13 03 02 
00 00 03 13 00 

^29 28 02 00 13 j 

Standard deviation of an observation ρη: 

η . . . number of observation equations (= 8) 
u ... number of unknowns (= 5) 

Standard deviation of an element of orientation: = σρη ̂ Jqkk 

aKi = 0.009VaÜÖÖ7Ö = ±15 mgon (49") 
σΚ2 = 0.009^0.00062 = ±14 mgon (45") 
σφι = σψ2 = σωι = 0.009νΌ.00013 = ±7 mgon (23") 

While the procedure put forward in this Section 4.3.1 is exceedingly instructive, it is 
inadequate, especially for error analysis, when the photographs have large tilts. For 
photographs with arbitrarily large tilts, relative orientation and error analysis are dealt 
with in Sections 4.3.2 and 4.3.6. 

Exercise 4.3-1. The rotation matrix (4.3-2) is orthogonal only to a first order of accu-
racy. If the matrix is to meet the conditions for orthogonality with errors no larger than 
10~6, how large can the angles ω, φ and κ be? (Answer: 0.6 gon (32')). 

Exercise 4.3-2. There is an obvious and very strong correlation between some of the 
unknowns of relative orientation as can be seen from the matrix of weight coefficients, 
Q, given above. Among other things this leads to the fact that accuracies of functions 
of the orientation elements should be found by applying the general rules of error 
propagation. How large is the standard error of the difference Ακ — κ\ — «2? (Answer: 
±4.4 mgon = ±14") 

4.3.2 Relative orientation and model formation using highly tilted 
photographs 

We restrict ourselves initially to relative orientation using rotations only. In deriving 
linearized equations for the case of highly tilted photographs we cannot, as we did in 
the preceding section (see Equations (4.3-1) and (4.3-2)), adopt the unit matrix for a 
first approximation to the attitude of the pictures; we must use general rotation matri-
ces. Figure 4.3-2 represents the relative orientation of tilted pictures. The three vectors 
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b, pi and P2 must be coplanar for a minimum of five points. We wish first to consider 
relative orientation using rotations only and we set ω\ = 0. The Ci axis is thus at right 
angles to the y axis of the model coordinate system (Figure 4.3-2). 

p 

Figure 4.3-2: Relative orientation of tilted photographs using rotations only 

With respect to their separate image coordinate systems the two vectors pi and p2 have 
the following components: 

Pi P2 = I V2 (4.3-8) 

We transform these vectors into a common coordinate system, the xyz model coordi-
nate system, using the two rotation matrices R i and R2. 

pi = Ri(wi = 0, φι,κι) P2 = R-2(W2,^2,«2) (4.3-9) 

Each of the two rotation matrices R i and R2 can be written as the product of one 
matrix R° rigorously computed but based on approximate rotation angles and a matrix 
riR representing incremental rotations (corresponding to that of Equation (4.3-2)): 

6 
PI - dR iR? [ 771 P2 = riR2R^ I 772 (4.3-10) 

The third vector shown in Equation (4.3-10) is the base vector b; it lies in the direc-
tion of the χ axis of the model with an arbitrarily chosen unit length. From Equa-
tion (4.2-7b) coplanarity of the three vectors p i , p 2 and b, corresponding to point PL, 
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is expressed by Equation (4.3-11) in which, as in Figure 4.3-2, the index i is omitted 

D = 
1 Pi,χ P2,x 

0 Pl,y P2,y 

0 Pi,ζ P2,z 

= P\,yP2,z ~P\,zP2,v — 0 (4.3-11) 

From the coplanarity equation (4.3-11) we may derive the following equation in the 
increments to the five unknowns for relative orientation using rotations only: 

/ 3 D λ0 / d D \ ° ( d D \ ° J 

The partial derivatives ()° are evaluated as in Appendix 4.3-1 using the approximate 
values for the unknown angles. The determinant D° is evaluated as follows: 

a) working out the rotation matrices R , and using Equation (2.1-13) and the 
approximate values for the unknown rotation angles ψ\, κ°ν ψ\ and κ\ 

b) computing the components of the vectors p^ and p® from Equation (4.3-9) us-
ing the measured image coordinates ξι,ηι and ξ2,η2 of homologous points, the 
principal distance c and the rotation matrices R® and R! 

c) from Equation (4.3-11) evaluating the determinant D° — yp\ z — p2 yP°\ z 

Following the first iteration which results in increments, άφ®, άκ®, άω®, άφ\ and άκ^, re-
spectively, to the approximate values, the steps a), b) and c) above are repeated and the 
partial derivatives ()° of Equation (4.3-12) are computed anew as in Appendix 4.3-1. 
After stopping the iterations we have the elements of relative orientation, so that for-
mation of the model can proceed, using intersection (Section 4.1) with the values: 
Zoi = 2/01 = Zo\ = ω \ = 2/02 = Z02 = 0, x02 = 1. 

Numerical Example (Continuation of the Numerical Example of Section 4.3.1). The 
results obtained in that example were ω\ — 0, ψ\ — -0 .34 gon = -18 ' , κ,\ — 
1.73 gon = 1°33', ω2 = 1.40 gon = 1°16', ψ2 = 0.05 gon = 3', κ2 = -0 .82 gon = 
-44 ' . These are used as approximate values for the second iteration, applying Equa-
tion (4.3-12). After some iterations we arrive at the following results which do indeed 
depart considerably from the simplified solution of Section 4.3.1: 

ωι = 0 ω2 = 1.387 gon = P14 '54" 
ψ\ = -0 .455 gon = -24 '34" φ2 = -0 .096 gon = - 5 Ί 1 " 
κι = 1.708gon = 1°32Ί4" κ2 = -0 .838gon = - 4 5 Ί 5 " 

Model formation is performed using these final values. 

Exercise 4.3-3. Compute the xyz model coordinates of points 1 to 8 of the numerical 
example in Section 4.3.1 and of both perspective centres, using the elements of relative 
orientation from the above numerical example and adopting the value for the base 
bx = 100 mm. Solution (from Equations (4.1-3)): 
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Point χ [mm] y [mm] ζ [mm] 
1 107.236 9.563 -173.269 
2 -30.721 6.888 -177.348 
3 96.141 128.340 -178.034 
4 -15.472 117.838 -177.894 
5 140.093 -116.509 -186.622 
6 -10.627 -101.529 -176.316 
7 44.222 49.029 -178.058 
8 50.827 -41.946 -177.727 

Oi 0.000 0.000 0.000 
O2 100.000 0.000 0.000 

For the dependent relative orientation (using elements of the right-hand photograph 
only) the three vectors required for the coplanarity equation are as follows (Ri = I): 

Pi = I P2 = R-2(W2,<P2,K2) b = i (4.3-13) 

The coplanarity equations (4.2-7b) are set up using these three vectors; subsequently 
the observation equations (corresponding to Equation (4.3-12)) and the partial deriva-
tives (as in Appendix 4.3-1) have to be evaluated, and so on. 

This section should be concluded with a note of criticism. In the strict sense of ad-
justment by the method of least squares, the corrections (often called residuals) should 
apply to the original observations, in this case to the image coordinates ξι, η\ and ξι, r/2, 
and should not, as in the Equation system (4.3-12), relate to the "pseudo-observation" 
the function3 D. This imprecision can be remedied in one of two ways: one is by 
changing to the Gauss-Helmert model of adjustment by least squares and the other is 
by adapting the combined, single-stage orientation of Section 4.2.2 to relative orienta-
tion. 

4.3.2.1 Gauss-Helmert model of relative orientation 

The vectors pi and are functions of the observations ξι, η\ and £2, V2 in (4.3-9). 
In the coplanarity equation the residuals υ and the unknown elements of orientation 
appear. A strict relative orientation leads to the Gauss-Helmert solution, also known 
as the general case of least squares estimation. 

( f + ( f O ° * v + ( f ) \ 2 + ( ι + ( « ) V . ( 4 3 1 4 ) 

3 "Residuals" when applied to a quantity other than the original measurements are also called "alge-
braic residuals". 
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The partial derivatives for the unknowns and for the determinant D° have been fully 
discussed in connection with Equation (4.3-12). These derivatives can be derived from 
the relationships (4.3-9) and (4.3-11): 

3D dD 
•qT — 7*1,21 P2,ζ - 7*1,31 P2j3/ 7j— = 7*l,22P2,z ~ n,32P2,i/ 
„ ™ (4.3-15) 
dD dD 
S T = 7*2,31 Pi,y - 7*2,21 Pi,ζ = "̂2,32 Pi ~ 7*2,22 Pi,2 9ξ2 δη2 

The indices in r 1,32, for example, refer to the element in the third row and the sec-
ond column of rotation matrix R4. Details of the solution of the estimation prob-
lem (4.3-14) are to be found in the adjustment literature4. The partial derivatives 
of (4.3-15) have to be re-calculated from iteration to iteration, especially when one 
has begun from very poor approximations for the rotation matrices and Ri>. 

4.3.2.2 A combined, single-stage relative orientation 

The single-stage solution for the 12 elements of external orientation of two pictures was 
described in Section 4.2.2; for relative orientation this takes on a special form. Since 
there are no control points but just new points, Equations (4.2-5), only, are applicable, 
i.e. two homologous points leading to four observation equations. The unknowns are 
the model coordinates, Xi, yt, ziy for each pair of homologous points together with the 
five unknowns of dependent relative orientation, άφ\, dn\, du>2, άψ2 and άκ2- Of the 
original 12 unknowns in Equations (4.2-5), the following are known: xoi = yoi = 
zoi = 2/02 = -202 = ωι = 0, £02 = 1 (compare Figures 4.2-1 and 4.3-1). 

Literature relevant to Sections 4.3.1 and 4.3.2: Rinner, K.: Phia, pp. 41-54, 1942. 
Schut, G.: Phia XIV, pp. 16-32, 1957/58. Thompson, E.H.: Phia 23, pp. 67-75, 1968. 
Blais, J.A.R.: Can. Surv. 26, pp. 71-76, 1972. Stefanovic, P.: ITC-J (1973), pp. 417-
448. Molnar, L.: Geow. Mitt, der TU Wien, vol. 14, 1978. Mikhail, Ε., Bethel, J., 
McClone, C.: Introduction to Modern Photogrammetry. John Wiley, 2001. 

4.3.3 Alternative formulation of relative orientation 

Since the orientation of two overlapping pictures is a central problem in photogramme-
try and in computer vision, it is hardly surprising that many different formulations have 
been developed. In Section 4.3.2 we learnt of a method typically used in photogram-
metry, a technology which normally works with metric photographs. The formulation 
presented in what follows is more frequently associated with computer vision, in which 
the use of images without known interior orientation predominates. This alternative 
formulation also offers very interesting insights into the relative orientation of metric 
images. 

4See, for example, Mikhail, E., Observations And Least Squares. IEP-A Dun-Donnelley, New York, 
1962. 
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We start with the basic equation (4.2-7a) of relative orientation with three coplanar 
vectors b, pi and p2. The value of a scalar triple product is independent of the ordering 
of its terms. We choose the following form for the coplanarity condition: 

p | ( b x p 2 ) = 0 (4.3-16) 

It can be shown that the cross product b χ p2 can be written as in Equation (4.3-17) in 
which the elements of the skew-symmetric matrix Β come from the vector b: 

b χ pa = Bp 2 = (4.3-17) 

Exercise 4.3-4. Expand the cross product b χ and show that the result is the same 
as that found from the matrix multiplication of (4.3-17). 

All skew-symmetric matrices are singular; in particular detB = 0, as is easily shown: 
d e t B = 0 (b2

x) + bz(-bxby) + by(bxbz) = 0. 

Here we limit ourselves to the case of independent relative orientation (Figure 4.3-2). 
Taking the base vector as bT = (1,0,0) the coplanarity equation (4.3-16), as expressed 
in the form of (4.3-17) becomes: 

p T b P 2 = pT I Ρ2 — 0 (4.3-18) 

The two vectors pi and p2 (see Equations (4.3-9)) are derived from the image coordi-
nates ξι, ηι and ξ2, η2, the principal distance c and the rotation matrices Ri and R2, 
which describe the attitudes of the two pictures with respect to the model coordinate 
system. The matrices C\ and C2, describing the interior orientation of the two images, 
may be introduced into Equations (4.3-9), generalized by the inclusion of the coordi-
nates of the principal point, ξο and ηο, and usually identical for metric photographs: 

ξι ~ξο,\ \ / 1 0 —£0,1 
PI = R] I 771 - 770,1 = R] 0 1 -770,1 

0 - ci / V 0 0 -C! 

(4.3-19) 
= R i Q (6,771,1)T 

/ 6 - £0,2 \ / 1 0 £0,2 
P2 = R2 \ m - m,2 J = R2 0 1 -770,2 

\ 0 - C 2 / \ 0 0 - c 2 

= R2C2(6,r?2, l)T 

With this representation, the coplanarity equation (4.3-18) reads as follows: 

(£i,7?1,1)CTRTBR2C2 I 7)2 1 - 0 (4.3-20) 
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The matrix F is known as the fundamental matrix of relative orientation or the cor-
relation matrix. Provided that we are dealing with metric images, the fundamental 
matrix F can be computed using the parameters of relative orientation, that is to say, 
the two rotation matrices R i and R2 (Section 4.3.2), the known matrix Β (4.3-18) and 
the known matrix C of the interior orientation. Although the relationship (4.3-20) de-
scribes a relationship between the image coordinates ξι, η\ and ξι, Vi of corresponding 
points in two images, it is not possible, given image coordinates in one image, to find 
the corresponding image coordinates in the other image. This becomes clear from the 
following expansion of the coplanarity equation (4.3-20): 

£ \ & f u + i \ m f n + i \ f n + & m h \ + m m h 2 + m h ? > + & h \ + m h 2 + h'} = 0 (4.3-21) 

With known matrix elements fik and, for example, both image coordinates ξι and 771, 
one has a single linear equation in the two unknowns £2 and ηι· Adopting arbitrary 
coordinates 772 one can, therefore, compute matching coordinates £2· 

As a consequence, we know that corresponding to a point in one picture there is a 
straight line in the other picture on which the homologous point must lie. (This result 
is pursued further in Section 6.8.5.5, as illustrated in Figure 6.8-9.). 

An interesting application of the coplanarity equation (4.3-21) lies in the relative orien-
tation of images for which the interior orientation is unknown. Since Equations (4.3-19) 
contain the coordinates of the principal point (ξο,ηο) it is possible for the image coor-
dinates £1,771 and £2^2 of homologous points to be referred to an arbitrary coordinate 
system. Division by one of the 9 elements fik of the matrix of Equation (4.3-21) re-
duces their number to 8. As the divisor one should select the largest possible element, 
which may be a different element fik in different cases. We choose thus the nine 
elements become /ifc=/jfc//33· In this way, for each pair of homologous points in two 
pictures, we get the following linear equation for a least squares estimation (Appen-
dix 4.1-1): 

ν = ξ \ ξ 2 f u + ξ l η 2 f n + ξlf \3+ξ2ηlf2\+mη2f22+ηlf23+ξ2f3\+η2h2 = - 1 (4.3-22) 

Since Equation (4.3-22) has eight unknowns fik and since each pair of points provides 
only one such equation, it would seem that this kind of relative orientation requires 
eight homologous points. The solution using Equations (4.3-22) does not involve the 
elements of interior orientation, even when they are known, but has more than five un-
knowns. It was shown in the postscript to Exercise 4.3-4 that the matrix Β is singular; 
therefore the F matrix, which contains Β as a factor, is also singular and, thus, not 
all eight of the fik are independent; in fact the number of independent unknowns is 
seven. The two additional unknowns, beyond the five of conventional relative orienta-
tion, represent general (unknown) parameters of interior orientation. The question of 
the conversion of the elements fik resulting from a relative orientation using the above 
Equations (4.3-22) into the parameters of conventional relative orientation will not be 
considered here. It should certainly be mentioned here that, if the interior orientation 
is known but not is employed for relative orientation using Equations (4.3-22), it is 
possible to derive the five standard elements of relative orientation from the values fik• 
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In conclusion, it remains for the link with projective geometry to be presented. The 
coplanarity equation (4.3-20) contains eight matrix elements fik: 

(fn hi fn\ ίξι\ 
hi hi hi \\m = 0 (4.3-23) 

V/31 hi 1 / V 1 / 

This representation may be compared with the projective relationship between an ob-
ject plane and an image plane, especially when it is expressed using homogeneous 
coordinates (see Equation (2.2-1-1) of Appendix 2.2-1). The two image planes in a 
relative orientation are projectively related to each other, though not "point to point" 
but "point to straight line", as already mentioned above. 

How the unfamiliar elements of relative orientation f ^ may be introduced into pho-
togrammetric processing will be discovered in Section 6.8.5.5. 

Exercise 4.3-5. In Section 4.3.1 the image coordinates £ι, η\ and ηι of eight cor-
responding points in two metric images are given. Determine the relative orientation 
using Equations (4.3-22). 

Solution: 

fn fn /i3 \ / -0 .000018 0.000284 -0.005009 \ 
hi hi h-i = -0.000302 0.000071 -0.576408 
hi hi 1 / V -0.017098 0.550187 1 ) 

Exercise 4.3-6. This solution, however, takes no account of the fact that the determi-
nant det F must vanish. If this additional constraint is introduced in the least squares 
estimation, one is dealing with an adjustment by the method of least squares with a 
constraint equation5. 

fn fn fn\ ( 0.000001 -0.000040 -0.008565 \ 
hi hi fi3 = 0.000031 0.000039 -0.261240 
hi hi 1 J \ - 0 .002044 0.263777 1 J 

The additional constraint equation markedly influences the result in this example. 

Exercise 4.3-7. Write the F matrix for the "normal case" of photogrammetry (Sec-
tion 2.1.6) and derive the coplanarity equation from it. 

Solution: 

/ 0 0 0 \ 
If unit baselength is chosen (||b|| = 1),B = 0 0 - 1 

V o i Oj 

5The solution may be found, for example, in Mikhail, E., Observations And Least Squares. IEP-A 
Dun-Donnelley, New York, 1962. 
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/0 00\ / ξ 2 \ 
(4.3-20): (ξι,ηι, 1) 0 0 c ) l η2 = -βη2 + οηι=ηί-η2=0 

\ 0 - c 0 j \ l ) 

The coplanarity equation for the "normal case" of a stereopair leads to the statement 
that there are no //-parallaxes, as has already been stated in Section 2.1.6. Further 
note: Because fe = 0 in the exact "normal case", relative orientation by means of 
Equation (4.3-22) will fail. 

Literature: Brandstätter, G.: Mitt, der TU Graz, Folge 87, 2000. Haggren, Η., Niini, 
I.: The Photogr. Journal of Finland 12, pp. 22-33, 1990. Hartley, R„ Zisserman, 
Α.: Multiple View Geometry in Computer Vision, Cambridge University Press, 2000. 
Mayer, H.: Journal of the Swedish Society for Photogrammetry and Remote Sensing 
2002(1), pp. 129-141, 2002. Förstner, W.: IAPR 33(B3/1), pp. 297-304, Amsterdam, 
2000, and PFG (2000), pp. 163-176. Ressl, C.: IAPR 34(3A), pp. 277-282, Graz, 
2002. 

4.3.4 Relative orientation of near-vertical photographs by 
y-parallaxes 

Following the excursion into an alternative relative orientation, in particular for non-
metric photographs, we turn again to relative orientation of metric images. In the 
following we assume approximately vertical photographs, just as in Section 4.3.1 in 
which the relative orientation was solved in terms of ^-parallaxes, that is differences 
in image coordinates (η\ - η2). For analogue photogrammetric instruments (which 
receive no attention in this new edition of the textbook) a relative orientation using 
y-parallaxes was commonly used, the y-parallaxes being measured in the stereomodel. 
Although orientation with y-parallaxes is no longer of any practical significance, the 
formulae are well suited for assessment of accuracy and for consideration of "critical 
surfaces". 

When carrying out relative orientation in an analogue instrument, any existing x-
parallax should be removed before the observation of y-parallax; x-parallax is of no 
significance in relative orientation (see Figures 4.3-3 and 4.3-4). 

For a relative orientation using model parallaxes py rather than image parallaxes ρη, the 
relationships (4.3-6) and (4.3-7) must be transformed such that model-related values x, 
y and py replace the values ξ, η and ρη which refer to images. The following relations 
are valid for near-vertical photographs (see Figure 4.3-1): 

h h h h, h, ,, „ „^ 
py « -Ρη, -m, χ « - 6 ~ - 6 + b (4.3-24) 

c c c c c 

Substituting these results in Equation (4.3-6) gives: 

py = -χάκι +(x- b)dn 2 + ^άψι - ^ ~ ^ άψ2 + h( 1 + ^Λ άω2 (4.3-25) 
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J r 

\y-parallax 

χ-parallax 
\ / 
N,< 

Figure 4.3-3: .r-parallax after the re-
moval of y-parallax in a relatively ori-
ented model 

Figure 4.3-4: «/-parallax after removal 
of the z-parallax in a model before rel-
ative orientation 

Exercise 4.3-8. Derive corresponding equations for dependent relative orientation. 

The elements of relative orientation can be estimated by least squares using observed 
y-parallaxes and the associated model coordinates x, y and h (instead of z) in Equa-
tion (4.3-25). If the ^/-parallaxes are measured in specially chosen positions, explicit 
expressions can be derived for the required five unknowns. With mountainous or rela-
tively flat ground, however, different procedures are necessary. 

4.3.4.1 Mountainous country (after Jerie) 

In this procedure one chooses six corresponding points, at which to measure the y-
parallax, and which are constrained to lie (Figure 4.3-5) 

• on two parallel lines in the model, separated in the χ direction by a distance b 
and 

• on three parallel lines, separated in the η direction in the image planes by dis-
tances δ (y direction in the model) 

Under these conditions the following ratio remains constant for point i where 
i = 3 , . . . , 6. 

ψ = *= r (4.3-26) 
hi c 

Let 
R = 1 + r2 (4.3-27) 



Section 4.3 Relative orientation 207 

Defining the constant R as in (4.3-27) and introducing it in (4.3-25) we get the follow-
ing observation equations for independent relative orientation: 

άκι d,K 2 άψι άψ2 άω2 

V\ 0 -b 0 0 hi ~Py, 
v2 -b 0 0 0 h2 ~Py 2 
v3 0 0 br h3R -Pyi 
v4 -b 0 br 0 h4R ~Py4 
V5 0 -b 0 —br h5R 
V6 -b 0 —br 0 h6R ~Pyt 

(4.3-28) 

Forming the normal equations gives (Appendix 4.1-1): 
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άκ ι dK2 άψ\ άψ2 du> 2 

3 b2 

3 b2 

lb2r2 

26V2 

—6/12 — bh4R — bh(,R 

—bh\ - bh?,R - bh5R 

brhAR — brheR 

brh$R — brh$R 

h\ + h\+ 

R2(h2 + h2 + h2 + h2) 

KPyi +Py4 +Py6) 
KPy ι +Pyi +Py5) 
-br{Py4 Pye) 

-br{pm -Py5) 

-hipm - h2pyi-

h$Rpm — hARpyA— 

h5RPy5 - h6RPye 

The solution of the normal equations is: 

άω2 — - ((-2hi + h-iR + h5R)(2pyi - pm ~py5) + 

( -2 / i 2 + hAR + h6R)(2py2 - pyi - py6)) / 

( ( - 2 hi + h3R + h5R)2 + ( - 2 / i 2 + hAR + h6R)2) 

1 R 
d<P2 = ^(Pyi ~Pys) + + 

1 R (4.3-29) 
άΨ\ = 2fr(Py< ~Pye) + + 

dn 2 = - ^ (pm + py3 + pys) + ^ (/ii + h^R + h5R)du> 2 

du ι = - ^ (pyi + pm + py6) + ^ (/i2 + hAR + h6R)du}2 

Explicit expressions for the orientation elements of dependent relative orientation can 
be derived in a similar manner6. 

Numerical Example (of Equation (4.3-29)). 
Given: Principal distance c = 152.64 mm 

Model base 6 — 170.00 mm 
Point separation in image δ — 80.00 mm 

Observed: Parallaxes in the model py and vertical distances h from the six orientation 
points in the model to the perspective centres: 

Ρ h [mm] py [mm] 
1 245 0.2 
2 232 -0 .70 
3 225 0.14 
4 225 -0 .99 
5 240 0.82 
6 250 0.70 

6Jerie, H.G.: Phia (1953/54), pp. 22-30. 
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Substitution in expressions (4.3-29) gives the following values for the elements of ori-
entation result: 

dm = 0.82 gon = 44' dn2 = 

άψχ = -0.53 gon = -29 ' άφ2 = 

άω 2 

4.3.4.2 Flat ground (after Hallert)7 

For approximately flat ground one can assume that h = const. The six orientation 
points (also known as Gruber points) then lie on a rectangular grid both in the model 
and in the images (Figure 4.3-6 shows the image space). 

In a similar manner to that for Equations (4.3-28) and (4.3-29) one can form the obser-
vation equations corresponding to the six orientation points, the normal equations and 
their solutions in explicit form: 

ά κ ι = (pm ( 6 c 2 + 4 < j 2 ) + P m ( 6 c 2 + 8 5 2 ) 

~(Pv3 +Pm)(3<? + 2<52) - ( Ρ * + + P * ) ( 3 c 2 - 2δ2)) 

d K i = " JL· (pri] ( 6 ° 2 ( 6 c 2 + 4 s 2 } 

~(Pm + Pvs)(3c2 - 2<52) - (pVi + +p7?6)(3c2 + 2δ2)) ( 4 .3.3o) 

ά ψ ι = ~ Ρ η ^ 

d(P2 = 2^2 (Pm ~Ρη5) 

^ = 4J2 (~2Pm - 2Pm + Pn3 + Pv* + Pvs + 

7Hallert, B.: Über die Herstellung photogrammetrischer Pläne. Diss. Stockholm 1944, 118 p. 

0.55 gon = 30' 

-0.20 gon = -11 ' 

0.43 gon = 23' 
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Exercise 4.3-9. Derive Equations (4.3-30) by establishing the observation equations, 
the normal equations and their solution. 

Exercise 4.3-10. In (4.3-29) substitute a constant value for h(= c), the value b in place 
of δ (Figure 4.3-6) and ρη in place of py. Then check the agreement between (4.3-30) 
and (4.3-29). 

4.3.5 Critical surfaces in relative orientation 

It is appropriate to ask whether relative orientation procedures lead to a unique and sta-
ble result for every imaginable form of object surface and location of exposure stations. 
We can most simply answer this question by considering the relationships (4.3-29). 

A critical situation can arise with respect to the elements of orientation κι,φχ and 
ψ2 if the base b is zero or very small, since the denominator in the relevant expressions 
then vanishes or almost vanishes. If the base is very small or, to put it another way, the 
forward overlap is very large, the two profiles on which the orientation points lie move 
very close together. It is not surprising then that no solution is possible using Jerie's 
method. Although such stereomodels are to be avoided on account of their very poor 
accuracy (in the first of Equations (2.1-34) the base Β appears in the denominator) the 
relative orientation can be solved by applying, for example, the Formula (4.3-6) using 
corresponding points lying outside the profiles beneath the perspective centres. 

If there is a very small value of r or of δ, the elements ψ\ and ψ2 are indeterminate 
when using the relationships (4.3-29). In this case all the orientation points lie more or 
less beneath the base (Figure 4.3-5). Such a situation arises in practice if in either the 
upper or lower margins of the pictures no corresponding points can be found (see also 
Section 4.3.6). This may happen because of the presence of water surfaces, forested 
areas, clouds, and so on. 

Regarding the orientation element ω2 it is necessary to consider whether the denomi-
nator in the first Equation of the system (4.3-29) can become, or approach, zero. The 
form of the denominator leads one to suspect that a critical situation may occur if the 
profiles 3, 1, 5 and 4, 2, 6 (Figure 4.3-5) have the same shape, especially if they are 
symmetrical about points 1 and 2. Thus we arrive at one of the four identical conditions 
for a possible critical surface: 

h2 = h\R 

Equation (4.3-27): h2 = h4( 1 + r2) 

Equation (4.3-26): h2 = h4(l + ^ f ) 

(4.3-31) 

(4.3-32) 
'4 

Re-arranging: y\ = h4{h2 - h4) (4.3-33) 

Equation (4.3-33) shows that the triangle whose vertices are the points 2, 4 and O2 has 
a right-angle at 4 (Figure 4.3-7); regarding 021 as the base of the triangle, j/4 is the 
height while Λ,4 and (h2 - h4) are corresponding segments of the base. Thus 02 lies 
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on a circle passing through points 2 and 4 (and also 6). Since profiles 3, 1, 5 and 4, 
2, 6 have the same shape, the ground surface for which relative orientation cannot be 
performed is a right circular cylinder containing both camera stations, Ο ι and 

If, instead of Equation (4.3-31), we examine the relationships 2h\ = h^R + hsR and 
2h2 = h4R + h^R, we can derive more general conditions for critical surfaces in 
relative orientation. For example, a circular cylinder whose axis does not lie in the 
vertical plane containing the base (the line joining the two perspective centres), but 
which is parallel to that plane, is also a critical surface. Furthermore, the two circular 
profiles 3, 1, 5 and 4, 2, 6 can have different radii; that is, a conical surface containing 
Ο ι and O2 is a critical surface. Nor is it necessary for the base, 0 \ 0 2 , to be a generator 
of the cone; it is necessary only that the points Οχ and 02 should lie on a conical surface 
which also contains the relative orientation points on the object surface. Further details 
may be found in the technical literature.8 

8Hofmann, W.: DGK, Reihe C, Heft 3, 1953. Rinner, K.: JEK Band IIIa/1. Brandstätter, G.: IAPR 
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Exercise 4.3-11. Show that the denominator in the άω2 of Equation (4.3-29) is zero 
for the case shown below in which the axis of the circular cylinder is not in the vertical 
plane containing the base, and thus that the ground surface is a critical surface relative 
to O. 

Hint: Use the cosine rule to express the length s in the two triangles and hence show 
that 2/i2 = (1 + ( S / c ) 2 ) ( h 4 + h6). 

In what way do the critical surfaces manifest themselves in relative orientation? Dif-
ficulties arise in the solution of the normal equation system because the equations are 
singular or ill-conditioned. Even when the normal equations can be solved, this leads 
to very large standard deviations in the ω-ι unknown (see also Section 4.3.6). 

Some of the following possibilities may improve the situation: 

a) flying with a different type of camera. Figure 4.3-8 illustrates cross-sections of 
ground forming critical surfaces for each of three camera types (normal angle, 
wide angle and super-wide angle); the axis of the critical cylinder is taken in the 
direction of flight. Only when the landscape is very mountainous can it provide a 
critical surface for super-wide angle cameras. On the other hand, using a normal 
angle camera the relative orientation can relatively frequently be insoluble or, 
when the ground surface corresponds approximately to the form of the critical 
cylinder, simply very unreliable. 

31(B3), Vienna, 1996. Brandstätter concerned himself with critical surfaces in relation to alternative 
methods of relative orientation. The relationship to two-dimensional resection in ground surveying 
should also be mentioned. As is well known, the position of a new point, A, from which three con-
trol points are observed with a theodolite, cannot be determined if the control points and A lie on a 
circle. The two circles in Figure 4.3-7 and the circle in the figure of Exercise 4.3-11 correspond exactly 
to this situation. 
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N A 

Figure 4.3-8: Critical cylinders in relation to camera type 

b) fly across, rather than along, valleys. 

c) in the relative orientation include only points which do not lie on or near the 
critical surface. 

d) after absolute orientation of a model which is free of parallax, but which is de-
formed as a result of errors in relative orientation, corrections to the elements of 
relative orientation may be derived from residual height errors at check points. 
(See Section 4.3.6.2 or special literature.)9 

e) computation of a combined, single-stage orientation of the two images (Sec-
tion 4.2.2) or computation of a bundle triangulation (Section 5.3) including all 
the photographs in the block. 

4.3.6 Error theory of relative orientation 

Standard deviations of the elements of relative orientation are dealt with in the first sec-
tion while in the following section (Section 4.3.6.2) deformations of photogrammetric 
models arising from certain errors of relative orientation are discussed. 

4.3.6.1 Standard deviations of the elements of orientation10 

At the end of all orientation procedures using least squares an estimate of the standard 
deviation of the computed elements is obtained (Appendix 4.1-1). An error compu-
tation of this kind is given in the numerical example of Section 4.3.1. In order for 
such accuracy measures to be evaluated, it is necessary to establish accuracy values 

9Regensburger, K.: Photogrammetrie. VEB Verlag für Bauwesen, Berlin, 1990. 
l0Literature: Gotthardt, Ε.: BuL 15, pp. 2-34, 1940. 
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for the "standard case" of relative orientation, which we define as involving approxi-
mately flat, level ground and six orientation points as in Figure 4.3-6. Application of 
the rules of error propagation to Equations (4.3-30) results in the following expressions 
for standard deviations of the orientation elements in this standard case: 

σψι — σφι 

σω2 

It is assumed in the above formulations that the ^-parallaxes are measured with equal 
accuracy σΡν at all six orientation points and that no correlation exists among the 77-
parallaxes. 

For individual types of cameras and using an assumed value of σΡτ], for example 
σρ = ±5 /im, one can apply Equation (4.3-34) to compute accuracy estimates, as 
in the following Table 4.3-1. For example, for a normal angle camera: 

σ ω = Ϊ 9 ^ 2 ° · ° 0 5 ρ = ± 1 0 m g ° n ( 3 2 " ) 
The other values can be calculated in a similar manner: 

Camera type σω σ φ 

Format and p.d. [cm] [mgon (")] [mgon (")] [mgon (")] 
Normal angle 

(23 χ 23, c = 30) 
±10(32) ±8 (26) ±34(110) 

Wide angle 
(23 χ 23, c = 15) 

±5(16) ±4(13) ±10(32) 

Super-wide angle 
(23 χ 23, c = 8.5) 

±3(10) ±2(6) ±5(16) 

Table 4.3-1: Accuracy of elements of relative orientation for different camera types 

This table has great significance in practical photogrammetry. In any particular case 
the operator, or the software, assesses the extent to which the accuracy from this table 
is acceptable or not acceptable. We now carry out such an assessment for the specific 
results given in the numerical example of Section 4.3.1, in which case a wide angle 
camera was used. The calculated standard deviations (σΜ = ±15mgon (49"), σΚ2 — 
±14 mgon (45"), σψι = σψ2 = σωι = ±7 mgon (23")) slightly exceed the target values 
from Table 4.3-1. This excess stems from the accuracy of the parallax measurements: 
a standard deviation of ±9 μη\ was estimated, while Table 4.3-1 is based on ±5 μτη. 
The excess can, however, just be tolerated. The values may clearly exceed the targets 
(a factor of more than two should not be accepted), for the following reasons; in each 
case a remedy is given: 

V3 c 
2 

δΜΐ + δ2 

δ2σΡη (4.3-34) 

J2 3 c4 

+ Tö + Τ TJCT. 4 δ4 Pn 
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• insufficient accuracy in measurement of image coordinates or η-parallaxes. 
Remedy—repeat the measurements. 

• a critical surface for the relative orientation. Remedy—the measures quoted in 
Section 4.3.5. 

• poor distribution of homologous points (for example, arising from inability to 
match points on water surfaces). Remedy—computation of a bundle triangula-
tion (Section 5.3) including all photographs of the block. 

The orientation elements constitute an important interim result on the way to the final 
photogrammetric result, the reconstituted object points. Monitoring these interim re-
sults is of great importance in quality control. The accuracy of the object points, which 
will be considered in Section 4.6, is of still greater interest for the user. 

4.3.6.2 Deformation of the photogrammetric model 

A relative orientation can be performed with only a specific, limited accuracy and the 
resulting elements of orientation will therefore contain specific errors. The question 
arises as to how such errors in orientation result in deformations of the stereomodel. 
We limit the following discussion to distortion of the ζ coordinate. In general, model 
deformations in height are more critical than those in plan (x, y). 

Determination of heights in the stereomodel depends on a;-parallaxes. It is neces-
sary, therefore, to derive relationships between x-parallaxes, px = x\ — x2 (x\ and x2 
are model coordinates related to the first and second pictures respectively) and small 
changes to the orientation elements. 

From the first of each of the sets of Equations (4.3-3) and (4.3-4): 

hc Η , , h Px = x2~ x\ = -ςι ~ \h-\ y- άψ\ Η τ—αω\ ακ\ -bx ξ2 η ι η*- / η η 

C \ & ) Cr C 

With reference to the relationships (4.3-24) the image-related quantities can be replaced 
and instead of the expression (/i£i/c — h^2/c — bx) the small quantity (—dbx) can be 
introduced: 

„ (x — b) ( x2\ xy 
px = -dbx —dbz -hll + j^j άψ\ + ~ ydnι 

(4.3-35) 
(x — b)\ {x — b)y 

+h ( 1 -I 2— J άφ2 άω2 + ydn2 

It can be seen from Figure 4.3-9 that: 

dz = Jpx (4.3-36) 
b 
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O, b o2 

Figure 4.3-9: Relation between the x-parallax and the height error dz in the stereo-
model 

Substitution in Equation (4.3-35) finally gives us the desired relationship between er-
rors in the orientation elements and the resulting height error in the model, dz. 

dz — -dbx 
(x — 6) ί h2 χ2 \ xy yh 

-dbz — I ——I—— J άφι + —άω\ —dn\ 
\ b b J b b 

+ + 

b 

(x-b)2 (x — b)y yh 
άφ2 άω2 + —du 2 

b b 

(4.3-37) 

The effects of the most important terms in Equation (4.3-37) are illustrated in Fig-
ure 4.3-1011; in that figure instead of dbz (see Figure 4.3-1) we have used dbz2 and we 
have added the element dbz 1, equivalent to a negative db2. We can see from the various 
diagrams of Figure 4.3-10 that absolute orientation will remove the effects of (small) 
errors in the relative orientation, except for that arising from error in duj and part of that 
caused by άφ. 

It should be clearly mentioned that these deformations are superimposed on the surface 
of the model; it is as if the height reference plane, the xy plane, of a model free of errors 
in relative orientation is distorted into an inclined plane, a cylinder, a paraboloid and 
so on. 

Exercise 4.3-12. In the mathematical literature one usually finds x2/a2 - y2/b2 = 2ζ 
as the equation to a hyperbolic paraboloid. Under what conditions does this reduce to 
the equation given above, that is, ζ = cxy in which c is a constant. (Answer: putting 
a = b and rotation of the axes by π/4.) 

"Albertz and Kreiling: Photogrammetric Guide. 4th ed., 1989. 
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db 

Tilted plane 

Parabolic cylinder 

- f - d « . 

Hyperbolic paraboloid 

Tilted plane 

Figure 4.3-10: Model deformations in height 

Numerical Example. 
Given: Principal distance c = 85 mm, format 23 cm χ 23 cm 

Photo scale number rrib — 10000 
Forward overlap 60% 
=> base (actual) = 920 m (Equation (3.7-1)) 
Side overlap 25% 

=> max. y coordinate (actual) = 862 m (Equation (3.7-1)) 

a) (Ιωι deformation 
Let the error du^ be 30mgon (or 1'37"), which is ten times the standard devi-
ation given in Table 4.3-1. We wish to find the maximum height error arising 
from this error; the maximum height error will appear along the line χ = 0; 
Equation (4.3-37) gives: 

= = 8 6 2 ^ = 0.41m 
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Using four height control points in the corners of the model, this will be reduced 
during absolute orientation to about ±20 cm. 

b) άψ2 deformation 
Let the error άψ2 be 20mgon (or 1'05"), which is again ten times the standard 
deviation given in Table 4.3-1. We wish to find the maximum height error arising 
from this φι error. From Equation (4.3-37): 

(h2 {x-b)2\J 

Figure 4.3-11: Bowing of the model as a result of άψ2 
As well as the bowing of the model, there is a constant vertical displacement, dz: 

h? J 8502 20 
dzk = —άψ2 = -^r.r— = 0.25 m 

b 920 ρ 

This is in addition to a term varying as the square of the χ coordinate; this will 
be a maximum when χ = 0: 

( r — h)2 20 
dzQ = y ' άψ2 = 920— = 0.29 m 

b ρ 

Under absolute orientation, the uniform displacement in a vertical direction will 
be removed completely and the effect of the quadratic term will be reduced to 
approximately 1/4 of the maximum value (see Figures 4.3-10 and 4.3-11). The 
maximum remaining error from the bowing of the model will amount to dzq/4 = 
29/4 cm = 7 cm. 

Although we have considered very large errors in orientation, du2 and άψ2, the result-
ing height errors in the model are of the same order of magnitude as the standard de-
viation of height measurement, σζ. According to Equation (4.6-1) σζ is about ±10 cm 
for well defined points using this camera, flying height and overlap. In practice, there-
fore, the model deformations are of little significance by comparison. Large orientation 
errors and therefore large model deformations can arise only with an unfavourable dis-
tribution of homologous points (choice limited, for example, by water surfaces) or, in 
some cases, in the presence of a critical surface (Sections 4.3.6.1 and 4.3.5). 

Model deformations are, however, caused not only by orientation errors but also by 
sources of systematic error such as lens distortion and film shrinkage. The effects 
of these systematic errors on the geometrical correctness of the stereomodel are very 
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complicated. They can manifest themselves as y-parallaxes larger than the measuring 
accuracy after relative orientation as well as in large residual errors at the control points 
after absolute orientation. A part of the y-parallaxes caused by these systematic errors 
is removed during relative orientation, although these parallaxes do not belong to the 
relative orientation. As a consequence, the orientation elements are wrong and this, 
therefore, results in model deformations. Such systematic errors produce correlations, 
especially among the xyz coordinates of neighbouring object points. To a great extent 
the inclusion of additional parameters in the mathematical model overcomes this prob-
lem (see Section Β 3.5.6 and Β 5.2.4 in Volume 2 as well as the relevant literature12). 

Exercise 4.3-13. Consider the processing of photographs from a stereometric camera 
(c = 60 mm, portrait format 80 mm χ 95 mm, Section 3.8.2) in which the right-hand 
camera makes an angle of 99.9 gon (89°55') with the base. The object distance is 10 m. 
Find what error arises in the direction of the camera axes (depth error); use formulae 
for the "normal case". (Answer: The error varies between 13 cm and 18 cm depending 
on the χ coordinate; see Figure 3.8-1.) 

Exercise 4.3-14. Repeat the above exercise for the case where the zenith distance of 
the right-hand camera axis is 100.2 gon (90° 11'); that is, the axis of the right hand 
camera is tilted downwards by 0.2 gon (11')· (Answer: The error varies between 0 cm 
and 14 cm depending on the χ and ζ coordinates.) 

4.4 Absolute orientation 

A procedure for the orientation of a stereopair was described in broad outline in Sec-
tion 4.2.3; absolute orientation is the second step. In absolute orientation the stereo-
model, which is defined with respect to an arbitrary coordinate system {xyz), is brought 
into a superior, or global, object coordinate system (XYZ) (Figure 4.2-2). The math-
ematical relationship is given by a three-dimensional similarity transformation. The 
seven parameters of this transformation are found using control points, points for which 
both the model coordinates and the object coordinates are known. 

4.4.1 Least squares estimation 

For a least squares computation by means of indirect observations (Appendix 4.2-1) 
Equation (4.2-6) has to be linearized. For the time being we assume that initial values 
are known for the seven parameters of absolute orientation with the model scale number 
m « 1. Using these values the original model coordinates χ are transformed into the 
object coordinate system. These transformed coordinates are denoted by X°. 

This means that: 

X « χ = X° => Ω = άΩ, Φ = άΦ, Κ = dK, m = 1 + dm, X u = dX„ (4.4-1) 

12Schwidefsky/Ackermann: Photogrammetrie. B.G.Teubner, Stuttgart, 1976. 
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As a result the linearized rotation matrix R (2.1-13) is given by: 

/ 1 -dK άΦ\ 

d R = dK 1 -άΩ (4.4-2) 

^ -άΦ dü 1) 

Expanding the product mR, where m = 1 +dm and ignoring second order terms gives: 

/ 1 + dm -dK άΦ \ 

(4.4-3) 

m R = (1 + dm)dR = dK 1 + dm -άΩ 

\ -άΦ dQ 1 + dm J 

( dm -dK άΦ\ 

dK dm —άΩ. 

\ -άΦ άΩ dm) 

in which I represents the unit matrix. Thus the linearized form of Equation (4.2-6) for 
a three-dimensional similarity transformation becomes: 

X = dXu + (1 + dm)ä RX° (4.4-4) 

Writing this in ordinary algebraic notation: 

X = dXu +X°dm +Z°dΦ -Y°dK 

Y = dYu +Y°dm -Ζ°άΩ +X°dK + y ° (4.4-5) 

Ζ = dZu +Z°dm +Υ°άΩ -Χ°άΦ +Z° 

For a least squares estimation by the method of indirect observations these simultane-
ous linear equations in the seven unknowns are rearranged as follows: 

vx = dXu +X°dm +Z°dΦ -Y°dK -{X - X°) 

vy = dYu +Y°dm -Ζ°άΩ +X°dK -(Y - Y°) (4.4-6) 

vz = dZu +Z°dm +Υ°άΩ -Χ°άΦ - ( Ζ - Z°) 

Equations (4.4-6) may be written in matrix form (Appendix 4.1-1) as: 

ν = A x - 1 (4.4-7) 

A full control point results in all three such equations, a plan control point in two and a 
height control point only in the last of Equations (4.4-6). The computation proceeds in 
the normal manner (Appendix 4.2-1), with the formation of normal equations and their 
solution: 

A T A x = AT l ; x = ( A T A ) " ' A T l (4.4-8) 

Since Equations (4.4-6) are only linear approximations, further iterations are normally 
required, unless the initial approximations are very good. 
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Numerical Example. We are given the model coordinates of five points: 

Μ 23 24 50 51 45 
X 0.303532 0.192638 0.303848 0.204120 0.246931 
y 0.595068 0.602834 0.403493 0.434574 0.594227 
ζ 0.034298 0.034116 0.026903 0.036672 0.034676 

The first three points are full control points; point 51 is a height control point. The 
corresponding object points have known coordinates in the control system, frequently 
the national coordinate system, as follows13: 

[m] 23 24 50 51 
X 3321.65 3402.84 1776.75 
Y 1167.56 2061.10 1196.79 
Ζ 579.48 579.80 493.19 574.62 

In addition, the following approximate values are known, for example from the flight 
plan (Section 3.7.1) or from one of the methods described in Section 4.4.3: 

x i 0 ) = -1400 m, Yu } = 3600 m, z f 1 = 300 m 

m(0) = 8000, Ω(°) = φ(°) = 0, Κ® = 300 gon (270°) 

Using these initial values the original model coordinates χ are transformed into ap-
proximate ground coordinates X°, by means of the following equation: 

/ - 1 4 0 0 \ / 0 1 0 \ ( x \ 
Y° = 3600 + 8000 - 1 0 0 y 
Z ° J \ 300 / \ 0 0 1 j \ z J 

In what follows we denote these coordinates by X (0 ): 

[m] 23 24 50 51 45 
χ ( ο ) 

y(o) 
3360.54 
1171.74 
574.38 

3422.67 
2058.90 

572.93 

1827.94 
1169.22 
515.22 

2076.59 
1967.04 
593.38 

3353.82 
1624.55 
577.41 

13The numerical stability of the computation will be compromised if the control coordinates are very 
large by comparison with the model coordinates; that is, if the origin of the ground coordinate system lies 
far outside the stereomodel (for relevant literature see, for example, Reinking, J.: ZfV 115, pp. 186-193, 
1990). For this reason one should ignore as many of the leftmost digits of the ground coordinate system 
as are identical for all control points. 
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The observation equation system (4.4-6) or (4.4-7) then becomes: 

( \ 3.361 0.574 -1 .172 \ 
1 1.172 -0 .574 3.361 

1 0.574 1.172 -3.361 
1 3.423 0.573 -2.059 

1 2.059 -0 .573 3.423 
1 0.573 2.059 -3 .423 

1 1.828 0.515 -1.169 
1 1.169 -0 .515 1.828 

1 0.515 1.169 -1 .828 
1 0.593 1.967 -2.077 

( dXu \ 
dYu 
dZu 

dmlO3 

dti 103 

<2Φ103 

V irfao3 / 

I -38.89 \ 
-4 .18 
+5.10 

-19.83 
+2.20 
+3.87 

-51.19 
+27.57 
-22.03 

\ - 1 8 . 7 6 

The following unknowns are found from Equations (4.4-8): 

dXu 

dYu 
dZu 

dm 

-82.50 m dSi 
54.29 m d4> 

-55 .16m dK 
0.008666 

-0.00238 
-0.01726 
-0.02083 

—0.152 gon 
-1 .099 gon 
— 1.326 gon 

- 8 ' 1 2 " 
-53 '24" 

—1°04'25" 

From Equation (4.4-4), using (2.1-13) to compute a rigorous form of the rotation ma-
trix, the following ground coordinates are found for the new point 45: 

-82 .50 \ / 0.999634 0.020825 -0.017256' 
54.29 + 1.008666 -0.020787 0.999781 0.002380 

-55.16 / \ 0.017302 -0.002020 0.999848 

3353.82 
χ I 1624.55 

577.41 -

/3323.22s 

1623.62 
\ 582.39 

In a manner identical to that for point 45, the model (control) points 23, 24, 50 and 51 
can be transformed into the ground system: 

[m] 23 24 50 51 45 
XW 3320.54 3401.85 1776.20 2042.31 3323.22 
y(i) 1166.84 2060.90 1196.29 1995.83 1623.62 
zw 580.37 578.18 493.96 575.50 582.39 

Using the (approximate) ground coordinates X"^ found in this way for the control 
points, an absolute orientation can be once again computed. For the second iteration 
the 1-vector of the observation equation systems (4.4-6) or, as the case may be, (4.4-7) 
is as follows: 

Γ = (1.11,0.72, -0.89,0.99,0.91, -1.38,0.50, -0.77, -0 .88) 
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The unknowns derived in the second iteration are: 

dXu = 0.05 m dh = -0.00034 = -0 .021 gon = - 1 Ό 2 " 
dYu = 0.23 m άΦ = 0.00021 = 0.013 gon = 42" 
dZu = —0.05 m dK = 0.00010 = 0.007 gon = 19" 
dm = 0.000308 

Now the ground coordinates for the new point 45 and the control points 23, 24, 50 and 
51 become: 

Μ 23 24 50 51 45 
X(2) 
γ( 2) 
z w 

3321.61 
1167.51 
579.40 

3402.86 
2061.15 

576.90 

1776.78 
1196.78 
493.28 

2042.90 
1996.62 
574.52 

3324.25 
1624.44 
581.27 

At this point we break off the iteration process since, as can be seen from the diminution 
in the unknowns from the first to the second iteration, a third computation would make 
no contribution worth mentioning. From a comparison of the coordinates with the 
given ground coordinates X, one obtains the following improvements v. 

[cm] 23 24 50 51 
vx - 4 2 3 
Vy - 5 5 - 1 
Vz - 8 10 9 - 1 0 

The weight coefficient matrix (Appendix 4.1-1): Q = ( A T A ) 1 

/ 5.098 0.020 0.021 -1 .287 0.046 -0 .236 0.671 \ 
0.020 5.254 -0 .518 -0 .673 0.622 0.040 -1 .265 
0.021 -0 .518 6.379 -0 .252 -1 .974 1.071 -0 .070 

-1 .287 -0 .673 -0 .252 0.455 -0 .007 -0 .004 -0 .000 
0.046 0.622 -1 .974 -0 .007 1.415 0.111 0.059 

-0 .236 0.040 1.071 -0 .004 0.111 0.473 0.009 
V 0.671 -1 .265 -0 .070 -0 .000 0.059 0.009 0.458 / 

The standard deviation in an observed coordinate: 

= ±12 cm expressed in the ground coordinate system 

±0.015 mm in the model coordinate system 
(1 : 8000) 

±12 μπι in the image ( m B ~ 10000) 

in which η = number of observation equations ( = 10) 
u — number of unknowns (— 7) 
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The root mean square error in the elements of orientation: σ^ = σο sjqkk 

&xu = ±0.28 m σα = ±0.0092 gon = ±30" 
&Yu = ±0.28 m am = ±0.000081 σΦ = ±0.0053 gon = ±16" 
σ χ = ±0.30 m σ κ = ±0.0052gon = ±15" 

An assessment of these accuracies appears in the following section. 

Exercise 4.4-1. Calculate the rotation matrix with which the xyz model coordinates 
may be transformed directly into the X Y Z ground coordinate system. Hint: As in 
Equation (2.1-14), the rotation matrix describing the resultant of successive rotations 
is obtained by multiplication of the matrices for the partial rotations. The result is: 

-0.020720 0.999640 -0.017045 \ 
-0.999783 -0.020677 0.002715 

0.002361 0.017098 0.999851 / 

Exercise 4.4-2. Repeat the numerical example assuming that point 50 is no longer a 
control point. Result: 

[m] 23 24 50 51 45 
X 3321.65 3402.84 1776.95 2042.02 3324.26 
Y 1167.56 2061.10 1196.74 1996.53 1624.44 
Ζ 579.48 576.80 493.58 574.62 581.25 

a X u = ±0.68 m σΩ = ±0.0113 gon = ±37" 
<ry" = ±0.69m a m = ±0.00018 σΦ = ±0.0074gon = ± 2 4 " 
aZu = ±0.56 m σ κ = ±0.0115 gon = ±37" 

Since, with this control point arrangement there is no redundancy, one would have been 
able to solve the problem (iteratively) on the basis of the linear equation system (4.4-5). 
The long way round using a least squares adjustment leads to the same result, including 
the error computation (see Equations (4.1-1-11) and (4.1-1-12) in Appendix 4.1-1). 
Estimation of the standard errors of the "corrections" is, however, not possible. We 
have adopted σο = ±12 cm from the numerical example above. 

Exercise 4.4-3. Taking as a starting point the result of Exercise 4.4-1 and the result 
of the relative orientation of Section 4.3.1, determine the rotation matrix defining the 
orientation of each of the images with respect to the ground coordinate system. 

Result: 

R ι = -

R 2 

0.006359 
0.999947 
0.008167 

-0.033555 
-0.999437 
0.001077 

0.999836 
0.006495 
0.016880 

0.998674 
-0.033488 
0.039095 

-0.016932' 
0.008057 
0.999824 

-0.039037' 
0.002387 
0.999235 
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Exercise 4.4-4. Repeat the above numerical example assuming that the xy coordinates 
are more accurate by a factor two than the ζ coordinates. (Solution: The ground coor-
dinates differ by about 1 cm at most. The explanation for this slight disparity is to be 
found in the introduction of Section 5.3.3.) 

Further remarks: Every now and then, especially in close range work, the problem 
arises in which one has to carry out a photogrammetric evaluation without control 
points, either in a single model or in a block of photographs. In such cases an ar-
bitrary object coordinate system may be adopted. For example, one can measure a 
distance S and adopt XYZ coordinates (0,0,0) and (S, 0,0) for the end points. If one 
adopts the value Ζ — 0 for an (arbitrary) third point the object coordinate system is 
defined, although with no redundancy. With an object coordinate system chosen in this 
very arbitrary manner, a least squares estimation, which is in reality no such thing (see 
Equations (4.1-1-11) and (4.1-1-12) in Appendix 4.1-1), will deliver (exterior) accura-
cies for the new points, dependent on the arbitrary selection of the object coordinate 
system. (On the other hand accuracies for distances—interior accuracy—which can be 
calculated from coordinate accuracies, taking into account correlations, are indepen-
dent of the object coordinate system chosen.) 

In order to reduce the uncertainty associated with an arbitrary selection of object coor-
dinate system, as hinted at above, the free net adjustment, as it is called, was developed. 
It is described in detail in Section Β 4.6.3 of Volume 2. To set up the theory of free 
net adjustment one requires the normal equations for an over-determined similarity 
transformation in three dimensions which can be derived from Equations (4.4-6). Let 
the model coordinates and the object coordinates referred to origins at their respec-
tive centroids be denoted by χ and X respectively; when this is done the translations 
dXu, dYu and dZu of Equations (4.4-6) vanish. With the substitutions X - X<0> — 

dX, Y - Y(0> = dY and Ζ - Z<0) = dZ, the normal equation system in the case of η 
full control points then becomes: 

f [x{0)2+ Ym+ zm] 0 

[F(0)2+^(0)2· ] [-x (0)F<0)] [-x ( 0 )z ( 0 )] / Η ™ Λ 

1 Γ_ν<°>¥°>1 

ο ο \ 

symmetric "χ(0)2 - F(0)2] 
(4.4-9) 

/ [x(0)dx + ¥{0)dY + zl0)dz]\ 

[z{0)dx-x{0)dz] 

The normal equation system (4.4-9) is also of service in the error theory of absolute 
orientation which follows. 
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4.4.2 Error theory of absolute orientation 

As a standard case we consider four control points in the corners of the model (Fig-
ure 4.4-la). Based on the normal equations (4.4-9) weight coefficients may be given 
for the four relevant elements of absolute orientation, that is the three angles and the 

scale. For this purpose we assume approximately flat level ground, that is Z<0i = 0, and 
we take the dimensions of the rectangle at the corners of which the control points lie 
as 92 mm χ 184 mm; under these conditions the matrix of the normal equations (4.4-9) 
becomes a diagonal matrix: 

qmm = y/\/(4 χ 462 + 4 χ 922) = 0.00486 m m - 1 

qna = y/l/(4 χ 9 2 2 ) = 0 . 0 0 5 4 3 m m " 1 

ςΦΦ = y / l / ( 4 x462)" = 0.01086mm"1 

<7kk = v / l / ( 4 x 4 6 2 + 4 x 922) = 0.00486 mm" 1 

Concerning the accuracy of the scale number m and the rotation K, a crucial matter 
is the accuracy in plan of the photogrammetric coordinates of the control points; the 
accuracy of the photogrammetric coordinates of the control points in height is decisive 
for the angles Ω and Φ. For well-measured control points these two accuracies amount 
to about ± 6 μιη in the image and ±0.06%o of the principal distance c (for normal-angle 
and wide-angle pictures) or ±0.08%o of the principal distance c (for superwide-angle 
pictures) (Section 4.6). Using these accuracies for plan and height coordinates and the 
weight coefficients given above, one obtains root mean square errors in this standard 
case as compiled in Table 4.4-1. 

Camera type 
Format, p.d. [cm] 

Cm 
[10-5] [mgoin (")] [mgoin (")] [mgoin (")] 

Normal angle 
(23 χ 23, c = 30) 

Wide angle 
(23 χ 23, c = 15) 
Super-wide angle 
(23 χ 23, c = 8.5) 

±2.9 

±2.9 

±2.9 

±6.2(20) 

±3.1(10) 

±2.4(8) 

±12.4(40) 

±6.2(20) 

±4.7(15) 

±1.9(6) 

±1.9(6) 

±1.9(6) 

Table 4.4-1: Accuracy of absolute orientation for different camera types 

The accuracy of absolute orientation, like that of relative orientation (Table 4.3-1), is 
independent of the image scale or of the object distance. As is Table 4.3-1, Table 4.4-1 
is of considerable significance in practical photogrammetry. On the basis of this table 
the operator, or the computer program, should judge in a particular case whether or not 
and to what extent the given accuracy values are acceptable. Such an assessment is car-
ried out below for the numerical example of Section 4.4.1. The root mean square errors 
arising in this particular case clearly lie above the values prescribed in Table 4.4-1. The 
excesses require some elucidation: 
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• for the photo scale number m the unfavourable ratio is 2.8 
(= 0.000081/0.000029). A factor 2 stems from the fact that in this particular 
case an estimated accuracy in plan coordinates of ±12 μιη was used and in the 
standard case an accuracy of ±6 μηι is assumed. A further cause of the large 
excess is the different number of plan control points; in the standard case there 
are four (Figure 4.4-la) and in this particular case only three. 

• for the heading angle Κ the ratio amounts to 2.7 (= 0.0052/0.0019). The causes 
of this large excess are the same as for the photo scale number just reviewed. 

• it is conspicuous with respect to the inclination angles Ω and Φ that the rela-
tionship in the standard case between the higher accuracy in Ω and that in Φ 
is reversed in this particular example. This apparent contradiction arises from 
the Κ rotation of the stereomodel through approximately 300 gon (270°). Taking 
account of this transposition, the ratios for the two angles are 1.7 
(= 0.0053/0.0031) and 1.5 (= 0.0092/0.0062). A factor of 1.3 arises because 
the particular case under consideration is based on an estimated height accuracy 
of ±12 /xm while the standard case an accuracy of ± 9 μιη (— 150000 χ 0.00006) 
is assumed. A further cause of the relatively large excess lies in the fact that the 
figure containing the control points in the image is somewhat smaller than the 
92 mm χ 184 mm rectangle of the standard case. 

b ) c ) 

Full control point 

e) f) 
Height control point 

a) standard situation 
b) inclination Φ poor 
c) inclination Ω poor 
d) inclinations Ω and Φ indeterminate, if the control points lie exactly on a straight 

line. 
e) heading angle Κ and model scale number m indeterminate 
f) heading angle Κ and model scale number m poorly determined 

Figure 4.4-1: Assessment of different control point arrangements for absolute 
orientation 
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Absolute orientation provides an important interim result in the photogrammetric pro-
cedure. For quality control of this important step the excess factor mentioned above 
should remain below 2. If it exceeds this value there are causes and consequences as 
follows: 

• determination of the model coordinates of the control points insufficiently accu-
rate. To improve matters: repeat the measurements. 

• poor distribution of the control points. In Figure 4.4-1 a number of poor control 
point patterns are presented; Figure 4.4-Id) illustrates a seriously bad arrange-
ment of control points. Remedy: Computation of a bundle triangulation (Sec-
tion 5.3) with inclusion of all the images in the block. 

From the viewpoint of reliability, a topic to be dealt with in Section Β 7.2.2.2 (Vol-
ume 2), the standard case of absolute orientation is improved by using pairs of control 
points in the model corners. In this case the prescribed values of Table 4.4-1 reduce 
by a factor 1 /y/2, as one may readily convince oneself with the help of the normal 
equations (4.4-9). 

The assessment above applies in the case of relatively flat models. In close-range 
photogrammetry, and in aerial photogrammetry among very high mountains, the stere-
omodels should be surrounded by control points in all three coordinate directions. For 
these cases specific reference values should be derived as outlined above. 

Exercise 4.4-5. With the control point arrangement of Figure 4.4-Id) the angles Ω and 
Φ cannot be determined. Show that this statement is true. (Solution: Consider the 
system of normal equations (4.4-9). 
For simplicity take = 0. Choose X '0> = aY1^. If the second equation is mul-
tiplied by the factor (-a) it becomes identical to the third equation. That is, the two 
rows of the matrix are linearly dependent, meaning that the matrix is singular.) 

Exercise 4.4-6 (Continuation of Exercise 4.4-5). Assess the result of this absolute 
orientation with only three control points in the light of Table 4.4-1. (Answer: The 
excess factors are 6.2 (m), 2.4 (Ω), 1.8 (Φ) and 6.1 (K). Since three of these factors 
exceed 2, the absolute orientation must be rejected. 

4.4.3 Determination of approximate values 

Least squares estimation assumes approximate initial values for the unknowns. Meth-
ods to find these values, suitable for automation, are given in this section. 

The first procedure assumes at least four full control points. For the connection of 
the model coordinates (x, y, ζ) and the object coordinates (Χ, Υ, Z) the (linear) three-
dimensional affine transformation (2.1-17), with its twelve unknowns suggests itself. 
The unknowns are three translations ao and nine matrix elements a,^. Each control 
point provides three linear equations; with four full control points twelve unknowns 
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may be found. With more than four full control points a least squares estimation should 
be carried out. 

The question must still be resolved as to how one gets the seven parameters of absolute 
orientation (4.2-6) from the twelve transformation parameters of the affine transforma-
tion. Comparison of the relationships (2.1-17) with (4.2-6) gives: αιο = Xu, a20 = Yu 
and <130 = Zu. The other elements a,fc of the affine transformation (2.1-17) differ from 
the elements r ^ of the three-dimensional similarity transformation (2.1-18) or (4.2-6) 
mainly on account of the scale number m. The relationship 

yja2u + α\λ Η l· ^33 = V3m (4.4-10) 

gives an approximate value for the scale number m. Finally, all the elements α^ can 
be divided by the scale number m so that by means of the relationships (2.1-1-8) of 
Appendix 2.1-1 the angles Ω, Φ and Κ can also be found14. 

Numerical Example. We take up the numerical example of Section 4.4.1, but replac-
ing the height control point with a full control point. 

Model coordinates 

Μ 23 24 50 51 
χ 0.303532 0.192638 0.303848 0.204120 
y 0.595068 0.602834 0.403493 0.434574 
ζ 0.034298 0.034116 0.026903 0.036672 

Object coordinates or national coordinates 

[m] 23 24 50 51 
Χ 3321.65 3402.84 1776.75 2043.11 
Υ 1167.56 2061.10 1196.79 1996.72 
ζ 579.48 576.80 493.19 574.62 

Setting up and solving the equations results in: 

/ -166.95 8068.09 -107.88x 

A = -8069.40 -167.42 39.82 
\ 20.49 137.51 8107.24 

-0.020685 0.999639 -0.013366 ' 
R° = I -0.999802 -0.020743 0.004934 

0.002539 0.017037 1.004490 

Equation (4.4-10) gives ra° = 8070. The elements of the approximate rotation ma-
trix R° are formed as follows: R° = ( l /m°)A. Using relationships (2.1-1-8) of 

"Further literature: Schmid, H.H., Heggli, S.: Mitt, des Inst, für Geod. und Photogr. an der ΕΤΗ 
Zürich, Nr. 23, 1978. 
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Appendix 2.1-1 one obtains the following approximate values for the angles: Ω 0 = 
- 0 . 3 gon = - 1 6 ' , Φ0 = - 0 . 8 gon = - 4 3 ' and K° = 298.7 gon = 268°50'. 

The solution using the three-dimensional affine transformation has two disadvantages: 
on the one hand, the method breaks down when the four control points lie in a plane 
and, on the other hand, in the presence of only three control points, which is the basic 
requirement for an absolute orientation, it cannot be employed. A solution free of 
these disadvantages can be found by creating orthogonal vectors in both coordinate 
systems from three full control points. Details of this procedure are to be found in 
Section Β 4.1.2.2 in Volume 2. Another method, with a detailed example, is included 
in Section Β 5.1.1.3, again in Volume 2, which solves for the absolute orientation of 
near-vertical photographs without the need for initial approximate values. 

4.5 Image coordinate refinement 

Image coordinates taken from photographs must be corrected in different respects. This 
correction is known as image coordinate refinement. We have already learnt of a num-
ber of corrections: 

• correction for lens distortion (Equation (3.1-3)). 

• correction for film deformation in metric cameras (Section 3.2.1.2) and in semi-
metric cameras (Section 3.8.4). 

• correction for aplanarity (lack of flatness) of the CCD detector array (Section 
3.3.4) 

• correction for positional errors of detectors in CCD cameras or in film scanners 
(Section 3.4.3). 

To meet demands for high accuracy one must also eliminate the influence of atmo-
spheric refraction and take into account the curvature of the Earth. 

4.5.1 Refraction correction for near-vertical photographs 

Because the atmospheric pressure, the temperature and the humidity vary along the 
path of a ray of light, so too does the index of refraction, which is dependent on these 
three quantities. This means that the rays which give rise to a photograph are bent. 
The position of the image point P' must, therefore, be corrected by an amount Ap in 
order to get the hypothetical metric image which would have been produced by central 
projection (Figure 4.5-1). 

In image space, the tangent to the curved light ray will appear to represent the direction 
OP. In the case of a near-vertical photograph the angle Ar between the light ray and 
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Ο (Χο,Υο,Ζο) 

Figure 4.5-1: The effect of atmospheric refraction on a vertical photograph 

the straight line OP can be represented with sufficient accuracy by a function of the 
angle τ and a coefficient Κ: 

At = Κ tan τ = Κ- (4.5-1) 
c 

It goes without saying that the coefficient Κ will vary according to the meteorologic 
data at the time of a particular photograph and, since the index of refraction varies 
with the wavelength, also with the wavelength to which the sensor is responsive. For 
a normal atmosphere stratified parallel to the surface of the Earth and for light in the 
visible wavelengths, Κ can be estimated as follows:15 

Κ = 0.00241 ( ^ 2 _ + 250 ~ Zo(Z2 - 6 Z + 2 5 0 ) ) ^ 

in which Zq = flying height above sea level (in [km]) 
and Ζ = height of the ground (in [km]) 

Normally it suffices to use approximate values of Zq and Ζ representative of the whole 
area being surveyed. 

l5Harris, W.D., Tewinkel, S.C. and Whitten, C.A.: Analytic Aerotriangulation. Coast and Geodetic 
Survey, Technical Bulletin No. 21, July 1962, corrected July 1963. Schut, G.H.: Ph.Eng. 35, pp. 79 -86 , 
1969. 
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It remains only to give the relationship using which the radial correction Ap can be 
found from AT (Figure 4.5-1): 

Ap C O S T SS Δ Τ Α / C 2 + p2 

c2+p2 

Ap « AT 
c 

Taking Equation (4.5-1) into account: 

+ ^ (4.5-3) 

Finally, using the relationship (3.1-2), the correction Ap can be resolved in the two 
coordinate directions ξ and η. 

In Table 4.5-1 the expressions (4.5-2) and (4.5-3) are evaluated for particular cameras, 
photo scales and radial distances. 

Photo scale c [mm] Zo [km] 
Correction Ap [μπι] Photo scale c [mm] Zo [km] ρ = 90 mm ρ = 130 mm 

1 : 10000 300 
150 
85 

3.5 
2.0 
1.3 

3 
2 
2 

5 
4 
5 

1 : 30000 300 
150 
85 

9.5 
5.0 
3.0 

8 
6 
6 

12 
11 
13 

1 : 100000 85 9.0 15 34 
1 : 800000 300 240 1 2 

Table 4.5-1: Correction of image coordinates for the effect of atmospheric refraction 
(Ground height Ζ = 0.5 km) 

One sees from this table that the corrections reach a sufficient number of micrometers 
to be taken into account in processing only in small-scale photographs, above all in 
the case of super-wide photography. In the case of very precise aerotriangulation for 
larger-scale projects, however, refraction also needs to be considered. The last row 
shows that satellite images are not adversely affected by refraction. 

In conclusion it must be mentioned that the Formulae (4.5-2) and (4.5-3) are valid only 
in the case of near-vertical photographs. With larger tilts it is necessary to move to 
more general formulae16. 

Exercise 4.5-1. An aerial photograph (c = 85 mm) was taken from a height of 9100m 
above sea level. Calculate corrections for the effect of atmospheric refraction at 25 
points of a 5 cm χ 5 cm rectangular raster. In the left-hand side of the image the ground 

16See, for example, Rinner, K.: JEK, Band IIIa/1, §§ 22-23. 
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is flat and level with a height of 600 m. It rises from the mid-line of the photographs 
with a slope of 30%. (Answer: In two corners of the picture Ap reaches 37 /im; in the 
other two corners Ap = 42 pm.) 

An important special case concerns horizontal photographs in terrestrial photogramme-
try. In this case the influence of atmospheric refraction is usually dealt with together 
with Earth curvature, although treating it separately is didactically more correct. Re-
fraction is actually a physical error in the formation of the image while Earth curvature 
is a geometrical "error" in the ground coordinates. 

4.5.2 Correction for refraction and Earth curvature in horizontal 
photographs 

As has already been indicated, the effect of Earth curvature is not a photogrammetric 
error but is related simply to the definition of coordinate systems. Photogrammetry 
provides coordinates in a three-dimensional Cartesian coordinate system in which the 
position of an object point is fixed by orthogonal projection on the respective coordi-
nate planes. In the field survey system, on the other hand, heights of ground points 
are referred to the ellipsoid while the X Y coordinates are more or less distorted by 
the mathematical projection of the ellipsoid onto a plane. For this reason the ground 
survey coordinates of control points should first be transformed into three-dimensional 
Cartesian coordinates before the start of the photogrammetric work. 

Fortunately, however, the differences between the ground survey coordinate system 
and a three-dimensional Cartesian coordinate system are small so that in practice the 
problem can be simplified. In Volume 2, Section Β 5.4, however, a full discussion 
appears. Here and in the following section the discussion is restricted to approximate 
solutions for the coordinate most strongly affected, namely the ground height. 

First, the effect of Earth curvature combined with atmospheric refraction for horizontal 
photographs is dealt with. The Earth is regarded as a sphere of radius R — 6370 km. 
The symbol Ζ is used for heights referred to the sphere as opposed to Ζ for heights 
referred to the three-dimensional Cartesian system (Figure 4.5-2). 

The effects of Earth curvature AE for the point Ρ are given by the well-known formula: 

(4.5-4) 

Standard textbooks on surveying17 give an approximate equation18 for trigonometric 
height measurement which takes account of Earth curvature and the influence of re-
fraction: 

17For example Kähmen, Η., Faig, W.: Surveying. 578 p., Walter de Gruyter, Berlin, 1988. 
18The approximation in this relation is too crude for large distances and large height differences, con-

ditions which, however, seldom arise in photogrammetric practice. 
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Figure 4.5-2: Atmospheric refraction and Earth curvature for a horizontal photograph 

% Ι 2 A2 

Ζ = ΖΫ + Αtana + Atana h ( l - f c ) — (4.5-5) 
2R 2R 

in which k ... refraction coefficient, usually taken as 0.13 

For photogrammetric point determination with horizontal photographs tan a may be 
replaced by the ratio η/c: 

— — Α Α Ζ ο + Ζ ^ , , Α 2 * ^ z = z0 + v-+v-t^— + (l-k)— (4.5-6) 
c c In 2H 

What is required, however, for use with the three-dimensional object coordinate system 
is the significantly simpler relation: 

~Z = ~ZQ + —(η + Δη) (4.5-7) 
c 

To compensate for the use of heights referred to the sphere rather than Ζ coordinates 
from the Cartesian coordinate system, the correction Αη is introduced to the image 
coordinates η. Subtraction of Equation (4.5-7) from (4.5-6) gives: 

A AZP + Z I N A2 

Finally, re-arranging gives the desired formula: 

+ (4.5-8) 
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If the image coordinates η are corrected by an amount Αη and if the photogrammetric 
measurements are made in the usual way, then the height coordinates, whether of con-
trol points or of new points, will be referred to the sphere; they will also be free of the 
influence of refraction. For the computation of the correction Αη, however, the distance 
A and the value Ζ are necessary. If Ρ is a new point the following procedure, suitable 
for automation, is recommended: 

• first measure the point photogrammetrically without correction for Earth curva-
ture and refraction 

• using the result so obtained, compute A, Ζ (with adequate accuracy) and Αη 

• finally, repeat the photogrammetric computation using the corrected image coor-
dinates. 

Table 4.5-2 gives some typical values for the correction Αη. 

A [km] 0.1 0.25 0.5 1 5 20 
Αη [μπι] 0.7 1.7 3.4 6.8 34 137 

Table 4.5-2: Corrections, Αη, to image coordinates for the influence of refraction and 
Earth curvature (c = 100 mm, k = 0.13, R = 6370 km, η = 0) 

It will be seen that, up to a few hundred metres object distance the correction is smaller 
than the measuring accuracy of a few micrometres, but may not be ignored for distances 
greater than about 1 km. 

Exercise 4.5-2. Compute the correction Αη and the Ζ coordinate for an extreme case 
with A = 5000m, Z0 = 1000m, η = 30mm, c = 100mm. (Result: Αη = 42.4/xm, 
Ζ = 2502.12 m). Additional exercise: Compute the Ζ coordinate using a refraction 
coefficient of 0.10. (Result: Αη = 43.6/zm, Ζ = 2502.18.) 

Exercise 4.5-3. Using the data of Table 4.5-2 compute the standard errors of both 
the correction Αη and the ground height Ζ under the assumption that the refraction 
coefficient k — 0.13 has a standard error of ±0.03. (Solution: for example, if A — 
5 km: σ&η = ±1.2 μπι, σ-χ = ±5.9 cm.) 

4.5.3 Earth curvature correction for near-vertical photographs 

In this section the influence of and correction for Earth curvature in near-vertical pho-
tographs is considered. A stereomodel produced photogrammetrically in the usual 
manner from two aerial photographs is referred to the three-dimensional Cartesian co-
ordinate system X Y Z (Figure 4.5-3). Heights from land survey, however, refer to a 
sphere with the Earth radius R. 

Earth curvature can be taken into account in the photogrammetric process as now de-
scribed. Control point heights Z, referred to the curved datum surface Ζ ο = 0, are 



236 Chapter 4 Orientation procedures and some methods of stereoprocessing 

reduced by the correction AE from Equation (4.5-4), in which A is the approximate 
distance of the particular control point from the centre of the stereomodel. The result 
of this operation is that the control point heights are referred to the tangent plane at the 
centre of the model, the X Y plane of a Cartesian coordinate system. Subsequently all 
object points are determined in this X Y Z system using the computed image coordi-
nates; finally all Ζ values are increased by the amount AE (Equation 4.5-4). 

It is also possible to take account of Earth curvature by "correcting" the image coordi-
nates in aerial photographs in a similar way to the correction in horizontal photographs. 
This "Earth curvature correction" is applied in the same way as the correction for re-
fraction. It has the opposite sign, however, and is significantly larger than the Ap 
refraction correction (Equation (4.5-3)). This makeshift Earth curvature correction is 
dealt with in more detail in Section 5.6. 
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So that an assessment may be made of the extent to which a correction for Earth cur-
vature is important, the maximum correction AZ?max in parts per thousand of the flying 
height is given in Table 4.5-3 for various photo scales. The value Δ£max (Figure 4.5-3) 
comes from Equation (4.5-4) in which By/5/2, the semi-diagonal of the model, is 
substituted for A: 

T^)2
 5 B2 

^ = ^2ll· = Tr (4·5"9) 

In view of photogrammetric height accuracy of 0.06%o for a measured point (Sec-
tion 4.6), Table 4.5-3 shows that Earth curvature must be taken into account: 

• for super-wide angle photographs from a photo scale of about 1 : 6000, 

• for wide angle photographs from a photo scale of about 1 : 10000 and 

• for normal angle photographs from a photo scale of about 1 : 20000. 

Photo scale Maximum Earth curvature correction ΔEmax Photo scale 
Η (%0 of the flying height) 

1:10000 
1:50000 

1 :100000 

0.08 
2.1 
8.3 

c = 85 mm 
0 .10 
0.49 
0.98 

c = 150 mm 
0 . 0 6 
0.28 
0 . 5 6 

c = 3 0 0 mm 
0 .03 
0 . 1 4 
0.28 

Table 4.5-3: Maximum Earth curvature correction AEmax at the corners of a stereo-
model with 60% forward overlap 

4.5.4 Virtual (digital) correction image 

In digital photogrammetry every completed correction to be implemented in the context 
of image coordinate refinement entails a resampling, that is a restructuring of the pixels 
in a new orthogonal raster (Section 2.2.3). As a rule every resampling is accompanied 
by loss of information. In view of the relatively large number of corrections which 
mount up in the course of image coordinate refinement a solution is sought which, if 
possible, manages with one single resampling. 

With a virtual correction image19 one achieves this aim. The procedure is explained 
with reference to Figure 4.5-4; it is a typical example which can readily be generalized. 
Let the digitized photograph have an arbitrary ξ'η' coordinate system (Section 3.4). A 
corrected image matrix is required in the ξη system, the coordinate system of a digital 
metric camera or a digital metric image (Figures 4.5-4 and 3.1-10). As in indirect 
resampling (Figure 2.2-5), an orthogonal raster is first defined in the digital image 

19The idea was adopted from T. Schenk (Digital Photogrammetry. TerraScience, Volume I, 1999). 
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• η ' 

V 

Lens distortion 

Refraction Δρ 

Principal point 

(ξ,,η') = ί·,(ξ,η) 

V 
ξ ξ' 

Figure 4.5-4: Digital metric image, in its position relative to the camera (left), with 
corrections for refraction and lens distortion; and transformed into the photograph as 
digitized (right) 

(Figure 4.5-4, left). Corrections are then computed for the mid-point of every pixel; on 
the left of Figure 4.5-4, for example, corrections have been introduced for refraction 
(Equation (4.5-3)) and lens distortion (Section 3.1.3). These corrections are recorded 
in a virtual correction image with a resolution in the subpixel range. The last step is the 
transformation into the digital photograph, an inverse transformation which is based on 
the fiducial marks and which eliminates film deformation; depending on the number 
and arrangement of the fiducial marks, the parameters of this transformation may be 
chosen accordingly (Section 3.2.1.2). 

The point whose position has been computed in the above three steps, is marked with 
a small circle on the right of Figure 4.5-4; finally, a grey level interpolation is carried 
out, as described in Section 2.2.3, and the interpolated grey value is transferred to the 
digital metric image. This position is likewise marked with a small circle in the left of 
Figure 4.5-4. 

By choice, the raster spacing in the digital photograph is somewhat smaller than the 
digitizing interval in the digitized photograph. The result is a digital metric image 
which can be evaluated in subsequent calculations involving the collinearity equations 
(Section 2.1.3) and the coplanarity equations (Section 4.2.3). 

4.6 Accuracy of point determination in a stereopair 

When the elements of exterior orientation are known the object coordinates of a new 
point can be computed directly (Section 4.1). If the elements of exterior orientation 
are unknown the object coordinates of new points may be obtained as a by-product of 
"two picture resection" (Section 4.2.2). The other orientation procedures permit the 
computation, using these orientation elements, of new points in the stereomodel. 
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A stereopair from aerial survey approximates to the "normal case". Therefore, for 
estimating the achievable accuracy of 3D point measurements in a model the theory 
described in Section 2.1.7 can be applied for any photo flight, if the flight parameters 
are known and information about the measurement accuracy of image coordinates is 
given. 

Leaving aside extremely large-scale aerial photographs (perhaps subject to image 
movement) the accuracy of object coordinates X and Y (plan accuracy) is directly pro-
portional to the image scale and is constant in relation to the image (Equation (2.1-35)). 
The camera type (normal angle, wide angle and so on) has no influence on the accuracy 
in plan. 

As may be seen form Equation (2.1-33), the height accuracy σζ is directly dependent 
on the measurement accuracy of the parallaxes, as well as being indirectly dependent 
on the base-height-ratio (B/Z) and on the photo scale (c/Z ) . σζ may also be regarded 
as either linearly or quadratically dependent in the camera-object distance Z. In both 
cases represented in Figure 4.6-1 the height accuracy σζ is linearly dependent on the 
camera-object distance Z. In the diagram on the left of Figure 4.6-1, both the base-
height BIZ and the principal distance c are the same for both camera arrangements; 
in the right-hand diagram the photo scale number mB = Z/c and the base B, and 
consequently also the forward overlap, are the same for both. The proportionality 
between the height accuracy σζ and the object distance for different camera types holds 
true only for the range from normal-angle to wide-angle cameras; the relationship is 
weaker for super-wide-angle photographs20. 

V V 

Zj Β = const., c = const. 

V 

\ 7 

/ 

/ 

/ / / s / 

>>>>I>/H>l'>>>»ll»i* 
Β = const., Zjc — const. 

Figure 4.6-1: Height accuracy directly proportional to the camera-object distance 

20Meier, H.K.: BuL 38, pp. 50-62, 1970. Stark, E.: BuL 44, pp. 5-14, 1976. Sievers, J., Schürer, Κ.: 
Verfeinerter Ansatz vor allem für variables Basisverhältnis und unterschiedliches Auflösungsvermögen. 
BuL 50, pp. 101-118, 1982. 
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From Equation (2.1-33) rules of thumb can easily be derived for rough estimation of 
accuracy. In this we limit ourselves to giving information on accuracy which is repre-
sentative of the whole stereomodel. Thus we ignore readily available information (see 
Section Β 5.2.3.1, Volume 2) about accuracies which vary within a stereomodel. To a 
large extent the information on accuracy is based on empirical investigations. 

The conditions under which these rules of thumb apply are: 

• forward overlap of 60% (possible cases deviating from this are specifically delat 
with; for example in the Numerical Example 2 of Section 6.7.2d) 

• at least four full control points in the corners of the model (indirect georefer-
encing); the control coordinates must exhibit markedly better accuracy than the 
measured coordinates. Alternatively elements of exterior orientation from GPS 
and IMU (direct georeferencing) with corresponding accuracy 

• image format 23 cm χ 23 cm (for film-based metric cameras) 

• good image quality such that with analytical plotting instruments a coordinate 
measurement accuracy of ± 6 μπι at image scale can be achieved 

The following values are applicable as guides in the case of targeted points or equally 
accurately defined points: 

Plan: CTxyjtajg) = ± 6 μπι χ image scale number m s 
Height: aXy( t a r g) = ±0.06%o of height above ground 

(normal angle and wide angle) (4.6-1) 
±0.08%o of height above ground 
(super-wide angle) 

If, in determining the object coordinates, one eliminates the systematic part of the im-
age coordinate errors by means of additional parameters in the mathematical model, a 
further increase in accuracy of up to 50% is possible (for details see Section 5.3.5). On 
the other hand poor quality image material can cause distinct reduction in the numerical 
values of the rules of thumb (4.6-1). 

These rules of thumb also apply to digital images if they have been generated by scan-
ning aerial films with an appropriate pixel size. In practice, scanning films with 15 μπι 
to 20 μπι has turned out as acceptable trade-off between sufficient radiometric quality 
and good resolving power. Experience has also shown that for manual measurement if 
well defined points in digital images an accuracy of 1/3 of a pixel can be achieved, i.e. 
5 μπι to 7 μπι in the case of the above mentioned pixel sizes. 

If the above-mentioned conditions do not apply, the rules of thumb will deliver un-
realistic results and Equation (2.1-33) should be used only for rough estimation; for 
example, if: 

• the accuracy of the image coordinates measurement differs significantly from 
6 μπι. Automatic point measurement using, for instance, lest squares matching 
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(see Section 6.8.1.2) can reach accuracies of 1 /5 to 1 /10 of a pixel and thus much 
higher accuracy. On the other hand, measurements in images digitized with large 
pixel sizes might be less accurate. In both cases the rules could still be applied, 
if the results are multiplied by the ratio of the actual measurement accuracy to 
6 μιη. 

• other photo flight parameters were used, for instance, forward overlaps signifi-
cantly greater than 60%. 

• digital aerial cameras were employed (such as Microsoft-Vexcel Ultracam, Inter-
graph DMC, Leica Geosystems ADS40). For digital cameras a generally valid 
rule of thumb is hard to define. There is no standardized principle for digital 
cameras and the geometric arrangement for image acquisition may differ signif-
icantly. 

Numerical Example. Images taken with a Zeiss RMK 15/23, with a photo scale of 1 : 
5000 and 60% forward overlap, were used for photogrammetric point determination. 
What is the accuracy of photogrammetrically derived coordinates when targeted points 
are involved? 

Using the rules of thumb (4.6-1): 

Camera arrangements can occur in practice, especially in high mountains, where the 
height accuracy varies quadratically with the camera-object distance. In all the cases 
sketched in Figure 4.6-2 the base Β and the principal distance c remain the same; 
only the camera-object distance varies. The left-hand example represents a flight over 
stepped landscape using a constant base and constant height above sea level; in the 
right-hand diagram the bases are equal but the flying height varies. 

Numerical Example. The second stereomodel on the left of Figure 4.6-2 represents 
pictures from a flying height above ground which is double that of the first stereomodel; 
the forward overlap in the second model is about 80%. As a result, the height accuracy 
given above (that of the first model) worsens as follows: 

In comparison with the model with the lower flying height on the right of Figure 4.6-2, 
the same deterioration of accuracy also arises in the stereomodel with the greater flying 
height. Incidentally, an even more severe reduction in accuracy arises in that area of 
the model which lies outside, in the direction of the base, the area between the image 
centres. There is certainly a great temptation in practice to use a stereomodel with 80% 
forward overlap covering the entire common area—with a base which is too short. 

σχγ = 5000 χ 0.0006 
σ ζ = 5000 χ 15 χ 6 χ ΙΟ"5 = 

= ±3 cm 
= ±4.5 cm 

σχγ = ± 3 x 2 = ±6 cm 
σζ = ±4.5 χ 4 = ±18cm(!) 
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V V V V X7 

B,c — const. B,c = const. 

Figure 4.6-2: Height accuracy proportional to the square of the camera-object distance 

Exercise 4.6-1. A photoflight has been planned over extremely mountainous country 
with a forward overlap of 60% and a base of 1000 m. Under these conditions the 
Formulae (3.7-1) show that for a 30 cm camera the flying height over the summits 
will be 3260 m and for a 21 cm camera it will be 2280 m. What accuracy is to be 
expected in the region of the summits and what in the valleys which lie 1000 m beneath 
the summits? (Answer: In the summit area, for the 30 cm camera, σζ = ±19.6 cm, 
and for the 21 cm camera σζ = ±13.7cm. In the valleys, for the 30cm camera, 
σζ = ±33.5 cm, and for the 21 cm camera σζ = ±28.4 cm.) 

It is worth noting that the superiority, by a factor of 1.43 (= 19.6/13.7), of the 21 cm 
camera over the 30 cm camera in the region of the summits is reduced in the valleys to 
1.18 (= 33.5/28.4).21 

In case of natural (non-targeted) points, the guide figures (4.6-1) for the accuracy must 
be increased by the uncertainty of definition. This uncertainty of definition can be 
related to the image as well as to the object. 

In principle, the uncertainties of definition related to the image and their effects on the 
standard deviation of the object points may be found by repeated measurements: 

21 The suggestion for this example came from Prof. Dr. P. Waldhäusl. 
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σ χ γ ( ° * ) = \ — ^ T f 
(4.6-2) 

IT.iZi-ZY 
σ Ζ{ nat) 

'UYi --Ϋ)2 

τι — 1 
ΙΈ(ζι- - Ζ ) 2 

η - 1 

where η . . . number of measurements and Χ , Υ, Ζ are arithmetical means 

Values related to the image depend on the image quality, the film type (colour, black& 
white, etc.), the pixel size, etc. In a practical project one will determine the accu-
racy values σΧ Υ(η 3ή and σΖ(ηΆΙ) for a number of types of points using the relation-
ships (4.6-2). In the most favourable case one obtains σΧΥ(ηίΛ} and σΖ(ηίΛ), the accura-
cies (4.6-1) for targeted or very precisely defined points. 

The uncertainty of definition related to the object may also be determined by repeated 
measurements; these can be made either terrestrially or photogrammetrically using a 
very large photo scale. Values of the related to the ground for some types of points 
have been collected in Table 4.6-1. 

Type of point Plan 
σΧΥ(0,def) [cm] 

Height 
σζ(ο,def) [cm] 

House and fence corners 
Manhole covers 
Field corners 
Bushes, trees 

7 - 1 2 
4 - 6 

2 0 - 1 0 0 
2 0 - 1 0 0 

8 - 1 5 
1 - 3 

1 0 - 2 0 
2 0 - 1 0 0 

Table 4.6-1: Uncertainty of definition of natural points22 

Starting with the object related uncertainty of definition, one must summarize by con-
sidering both contributions CT(targ) and def): 

Planimetry: a X Y ( n a t ) = 7 4 y ( t a r g ) + 4 υ ( ο , < μ ) 
/ (4 .6-3) 

Height : <7z(nat) = ^/4(targ) + 4 ( 0 , d e f ) 

Numerical Example. With what accuracy can the corners of houses and fields be 
measured from wide-angle photographs with about 60% forward overlap and a photo 
scale of 1 : 15000? (Use relevant mean values from Table 4.6-1.) 

House corners: σχγ - ^ (15000 χ 0.0006)2 + 9.52 = ±13 cm 

σζ = VX15000 x 15 x 0.00006)2 + 11.52 = ± 1 8 c m 

Field corners: σχγ = ^ (15000 χ 0.0006)2 + 602 = ±61 cm 

σζ = y/(15000 χ 15 χ 0.00006)2 = ± 2 0 c m 
22Waldhäusl, P.: Presented Paper, Commission IV, 14. ISP Congress, Hamburg, 1980. 
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The standard deviation of a distance a s can be found directly from the coordinate error 
σχγ· 

= σχΥ\ίϊ (4.6-4) 
The accuracy of distances derived from photogrammetrically measured coordinates is 
essentially independent of the distance. 

Exercise 4.6-2. Derive Formula (4.6-4) using the rules of error propagation. 

In the field of close range photogrammetry one is often less interested in the absolute 
accuracies σχγ and σζ and more interested in relative accuracy with respect to the 
largest dimension of the object S. For an object which fills the whole of the format of 
a standard aerial camera, therefore, the relative accuracy amounts to: 

ψ = ^ = ^ ^ = ^ = 2-6 χ 1 0 - ^ 0.026%o (4.6-5) 
S 23cm 23 38000 

We have, incidentally, already found this value to be the accuracy of the scale factor in 
absolute orientation (Table 4.4-1: ±0.000029 = 0.029%o). 

Especially on account of the small format of close range cameras one obtains lower 
relative accuracies than with large format aerial survey cameras. For a semi-metric 
camera with medium format (6 cm χ 6 cm, Section 3.8.8) the relative accuracy, likewise 
applying the value σξη = ± 6 μηι, comes to: 

= ±00006 = = 1 0 - = 0 (4.6-6) 
6 cm 6 10000 

In close range photogrammetry the photographs are frequently arranged in a less regu-
lar pattern than in aerial survey (Section 3.8.8). For this reason it is necessary to extend 
the simple accuracy guide (4.6-1) appropriately to suit the diverse camera arrangements 
of close range work. This topic is dealt with in detail in Volume 2 (Section Β 4.5.2). 

The empirical accuracies given by the relationships (4.6-1), (4.6-5) and (4.6-6) are 
chosen fairly conservatively. They can be considerably improved by means of further 
mathematical modelling of the photogrammetric process. This is considered in more 
detail in Section 5.3.5. 

The rules of thumb for accuracies of photogrammetric processing given in this section 
and in Section 6.7 are widely accepted in photogrammetric practice. In the calling 
of tenders for photogrammetric work, however, tolerances enjoy a greater degree of 
acceptance than the standard deviation or root mean square error. Tolerances and their 
empirical determination are considered in more detail in Appendix 4.6-1. 

Exercise 4.6-3. For purposes of road construction the heights of targeted points are 
to be found by photogrammetry with an accuracy of ±5 cm using a super-wide angle 
camera. If the forward overlap is to be 60%, what are the photo scale and flying height? 
(Answer: photo scale = 1 : 7350, flying height = 625 m.) 

Supplementary Exercise. What reduction in accuracy arises if, over a valley region 
200 m lower, the base is not increased? (Answer: The height accuracy in the valley 
area is a ζ — ±8.7 cm.) 
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Exercise 4.6-4. Is the alignment of the image rectangle of the 271 Imaging DMC (Fig-
ure 3.7-10) well chosen for a favourable height accuracy? (Answer: No.) How would 
the heighting accuracy be changed if the format were to be rotated by lOOgon (90°)? 
(Answer: By a factor 1.7 (= 13500/8000).) What advantage is there in the align-
ment of the rectangular format chosen by Z/I Imaging? (Answer: Fewer strips of 
photographs for a given flying height.) 



Chapter 5 

Photogrammetric triangulation 

We discuss first photogrammetric triangulation with aerial photographs, known as aero-
triangulation or aerial triangulation. We assume metric images recorded onto film or 
CCD area arrays. In Section 5.5 we will discuss the digital 3-line camera. 

5.1 Preliminary remarks on aerotriangulation 
Even without GPS and IMU information, aerotriangulation frees photogrammetry from 
the constraint of determining at least three control points by ground survey methods in 
every stereomodel. It is possible to bridge areas without such ground survey points. 
In Chapter 4 we limited the discussion to methods of data capture in two overlapping 
photographs, but in this chapter we treat the subject of simultaneous data capture in a 
block of such overlapping photographs. 

The results of aerotriangulation are the orientation elements of all photographs or stere-
omodels and the X Y Z coordinates of discrete points in a global coordinate system 
(usually the ground coordinate system). We speak then of photogrammetric point mea-
surement. The points may be: 

• points targeted before the flight 

• selected "natural" points in the photographs, usually with accompanying identi-
fication sketches 

• points automatically selected in digital metric images, their image coordinates 
thus being known (Section 6.8.3.5 and Section Β 2.4, Volume 2) 

Figure 5.1-1 illustrates the principle of aerotriangulation, without reference to support-
ing GPS and/or IMU information (this aspect will be discussed in Section 5.4). The 
example shows 18 photographs in three strips. The forward overlap of photographs 
within a strip is about 60%, the side overlap between strips about 25%. For the ori-
entation of this set of photographs, we have four full control points and four height 
control points. We require the orientation elements and the ground coordinates of new 
points. These new points tie models together within a strip and tie neighbouring strips 
together. For example, new point 7 occurs only in the photographs 12 and 13, new 
point 5 in the photographs 11, 12 and 13, new point 6 in the photographs 11, 12, 13, 
21, 22 and 23. 
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Figure 5.1-1: Set of photographs for a block adjustment 

We have already introduced two techniques which can be extended to deal with blocks 
of photographs. The first is the numerical orientation of the two bundles of rays of a 
stereopair of photographs (Section 4.2.2). In this technique, the 12 elements of exterior 
orientation of the two photographs and the coordinates of new points in the stereomodel 
are computed from the known coordinates of control points. The method can be readily 
extended to a large number of photographs, e.g. 18 in the example of Figure 5.1-1. The 
method is then known as a bundle block adjustment. It is discussed in Section 5.3. 

The second technique is numerical absolute orientation (Section 4.4). It is based on the 
assumption that a stereomodel has been formed by the numerical relative orientation 
of two overlapping photographs (Section 4.3). This stereomodel is then transformed 
into the ground coordinate system with the help of control points. The extension of 
the technique from a single model to a block of models implies that all models in 
the block—15 in the example of Figure 5.1-1—are absolutely oriented simultaneously. 
The method is then known as a block adjustment by independent models. It is described 
in the following section. 
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5.2 Block adjustment by independent models 

We start with a block of photographs with about 60% forward overlap between pho-
tographs in the individual strips and about 25% side overlap between neighbouring 
strips. The adjustment of a single strip by independent models is a special case of the 
more general block adjustment. 

The adjustment of the block by independent models begins with the model coordinates 
derived from the numerical relative orientations and formation of the stereomodels 
(Section 4.3.2). In the course of the block adjustment the individual models will be 
amalgamated into the single block and simultaneously transformed into the ground 
coordinate system. The individual stereomodels are thus the basic units of aerotrian-
gulation by independent models. 

As an introduction, we treat first the adjustment of planimetry only. This is a spe-
cial case of the general block adjustment which is a problem in three dimensions. A 
purely planimetric adjustment is a plane problem, i.e. we are concerned only with XY 
coordinates. 

5.2.1 Planimetric adjustment of a block 

We require the XY coordinates of new points in the ground coordinate system. Given 
are the model coordinates xy of the relatively oriented and levelled individual mod-
els. The levelling need only be approximate, but must be good enough to ensure that 
the influence of the "tilted" model heights on the xy coordinates is less than the pho-
togrammetric accuracy of the planimetric coordinates (Figure 5.2-1). 

Figure 5.2-1: Effect of levelling error on planimetric coordinates 

The models can be levelled, for example, by means of control points taken from rela-
tively small-scale topographic maps. For this purpose, in addition to the actual aero-
triangulation points, points in the stereomodels are chosen whose heights, or all three 
coordinates, can be measured approximately in a topographic map. The image coor-
dinates of these points are also measured and used, after the relative orientation, to 
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compute the corresponding model coordinates. The numerical absolute orientation can 
then be performed to level the model with these (approximate) control points. 

Exercise 5.2-1. Wide-angle photographs are taken at a scale of 1 : 8000 with a 15/23 
camera. A topographic map at a scale of 1 : 5000 is available, from which coordinates 
can be derived with an accuracy of ±30 cm. How large may be the height differences 
AZ in a model if we use this map for the levelling of the models before a planimetric 
block adjustment? (Solution: σχγ = ±4.8 cm (Equation (4.6-1)), AZmm « 80m.) 

The principle of a planimetric block adjustment is shown in Figure 5.2-2, while Ta-
ble 5.2-1 contains the initial data for the block adjustment. The model coordinates are 
in separate, independent, local coordinate systems for each model. Each of these co-
ordinate systems is displaced and rotated relative to the ground coordinate system and 
has an arbitrary scale. 

As initial data for the amalgamation of the individual models into one block in the 
ground coordinate system we have on the one hand the tie points which exist in more 
than one model (points 5, 6, 7, 8 and 9) and, on the other hand, the model and ground 
coordinates of the field-surveyed control points (points 1, 2, 3 and 4). 

The adjustment can therefore be defined as follows. The models are: 

• displaced (two translations Xu, Yu), 

• rotated (rotation angle κ) and 

• scaled (scale factor τη) 

• the tie points fit together as well as possible and 

• the residual discrepancies at the control points are as small as possible. 

The mathematical relation between a stereomodel (coordinates x, y) and the ground co-
ordinate system (coordinates X, Y) can be formulated from Equations (2.1-9), (2.1-5) 
and (2.1-4) (plane similarity transformation): 

The non-linearities in the unknowns m and κ can be eliminated by substituting 

so that: 

(5.2-1) 

TO cos κ = a 

TO sin κ = b 
(5.2-2) 

We obtain thus the linear equations 

X — Xu + xa — yb 

Y = Yu + ya - xb 
(5.2-3) 
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The extension of the system of equations (5.2-3) to a block of models is sometimes 
called a chained plane similarity transformation. One possible formulation1 of such a 
chained similarity transformation as a problem of adjustment of indirect observations 
is: 

Observation equations for a control point: 

vx = X_u + χ a — yb — X 
(5.2-4) 

Vy = Yu + ya + xb — Y 

Observation equations for a tie point: 

vx = X_u + xa - yb — 2L — 0 (5.2-5) 
vy = Yu + ya + xb - Y - 0 

The underlined terms are the unknowns. The observation equations (5.2-4) and (5.2-5) 
have an unusual form: although the corrections vx and vy derive from the inaccuracies 
in the model coordinates x, y, they are to be interpreted as corrections to the (known) 
ground coordinates Χ , Y (in (5.2-4)) and to the fictitious observations "0" (in (5.2-5)). 

The balance of unknowns and observations for the example of Figure 5.2-2/Table 5.2-1 
is: 
Unknowns: 4 x 4 = 1 6 transformation elements Xu, Yu, a, b 

5 x 2 = 1 0 tie-point coordinates X,Y 
==> 26 total 

Observations: 4 χ 4 χ 2 = 32 model coordinates χ,y 
=>• 6 redundant observations 

The 32 observation equations for the 26 unknowns of the schematic example of Fig-
ure 5.2-2 are shown in Table 5.2-2. 

After introducing the centroid coordinates χ and y, and assuming all observations have 
equal weight, the normal system of equations (4.1-1) shown in Table 5.2-3 is obtained. 
If we insert the numerical values of Table 5.2-1, we obtain the normal equations of 
Table 5.2-4. The introduction of coordinates referred to the centroid of each model has 
had the effect of reducing the submatrix of the transformation elements to a diagonal 
matrix. 

'Kraus, Κ.: ZfV 91, pp. 123-130, 1966. Van den Hout, C.M.A.: Phia21, pp. 171-178, 1966. 
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Model 1 Model 2 
Pt.No. X y Pt.No. X y 

1 148.29 573.28 2 366.93 558.43 
5 374.11 561.87 5 154.36 561.30 
6 362.77 147.41 6 130.40 143.24 
7 138.27 151.39 8 358.30 140.28 

Model 3 Model 4 
Pt.No. X y Pt.No. X y 

3 148.59 139.40 4 359.38 135.30 
6 362.10 542.71 6 140.31 578.42 
7 159.40 556.85 8 359.34 549.19 
9 345.67 128.76 9 141.97 149.87 

Ground coordinates of 
control points in m 

Pt.No. X Y 
1 4443.81 8338.54 
2 7658.37 7993.67 
3 4472.02 1071.18 
4 8348.54 1316.60 

Table 5.2-1: Initial data for the planimetric block adjustment of the block of Fig-
ure 5.2-2 (Model coordinates in [mm], ground coordinates of control points in [m]) 



252 Chapter 5 Photogrammetric triangulation 

Model 1 Model 2 Model 3 Model 4 
- * iff * * 

* 
iff 
00 * 

£ 

iff 
* 

iff 

7 
Τ 

7 
7 

7 
7 

7 
7 

7 
7 

7 
7 

7 
7 

7 
7 

7 
7 

7 
7 

7 
7 

7 
7 

It. 

a 
η -Ο 
Τι Ö 
Ν -Ο 
Ν a 

JO 

~a 

- _ — m — ̂ c — r-

f "H f "h f •-H f "H 

~H* "S ""?» ""s» "H" 

Nm ri CI csoo tsvo Ä^r1 sun" a«,» Λ".? 
[ I l l 
B Ä H S l H Ä H Ä 

Ί r— Ti vo ο co η» 
i»"» 

1 1 1 1 
t̂̂ nt̂ MvOr̂ vßiriMnMflOvfliy! 

-̂oo ^^ 
Si^.f Ä-*1» Ss·»? I Η ι Η ι Η ι Η 
H Ä H Ä H Ä H Ä 

» 3 
X 

Ti 3 * 
Ν a 

:N 3 X 

- 3 >< 

- - - -

„ „ ~ _ 

H 3 ) H 3 I H Ä H Ä H Ä H Ä H P i H Ä S S S S P S S S i H Ä H Ä H P I H P I 

Upper index = model number, lower index = point number 
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Table 5.2-4: Normal equations for the example in Figure 5.2-2, derived from the data 
of Table 5.2-1 
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The system of normal equations (Table 5.2-3) of the planimetric adjustment of a block 
has a very special structure which can be expressed in matrix form as: 

( M (SM".1) 
X] . . . unknown transformation parameters 
X2 . . . unknown tie-point coordinates 

D i , Ü 2 . . . diagonal matrices 
Ν τ , Ν . . . sparse submatrices which give rise to correlation between the un-

knowns xi and X2 
ni . . . vector of the absolute terms of the unknowns xi (the corresponding 

vector for the unknowns X2 is the null vector) 

As a result of the diagonal matrices in the normal equations (5.2-6), it is particularly 
easy to eliminate the unknowns xi or x 2 before solving the equations by the Gaussian 
or the Cholesky algorithm. 

a) normal equations after eliminating the transformation elements xi in (5.2-6): 

D L X L + N X 2 = NI Ί X L = D " 1 (N! - N x 2 ) 
N T x i + D2X2 = 0 J N T Dj~ 1 ni - N T D f ! N x 2 + D 2 x 2 = 0 

(5.2-7) 
( n t D - ! N - D 2 ) x 2 = N T D f 1 n i (5.2-8) 

This method of reducing the normal equations is particularly suitable for block 
adjustments with a large number of models and a small number of tie points. This 
situation is typical in analytical photogrammetry where the operator chooses a 
small number of tie points. 

b) normal equations after eliminating the tie-point coordinates X2 in (5.2-6): 

D l X l + NX2 = η , 1 x 2 = - D " 1 ( N T x i ) 
N t X I + D2X2 = 0 J D]X] — N D ^ ' 1 N T x i = n i

 K } 

( D l - N D j ' Ν τ ) X] = m (5.2-10) 

This method of reducing the normal equations is particularly suitable for block 
adjustments with a small number of models and a large number of tie points. 
This situation is typical in digital photogrammetry where a large number of tie 
points are selected. 

If new points occur only in one model (single points), we can write two observation 
equations (5.2-5) for each such point and compute the coordinates X , Y of the new 
points from Equation (5.2-8) or (5.2-9). Since these single points contribute nothing 
to the block adjustment by independent models however, it is better to eliminate them 
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from the initial data and then transform them in a separate process by the transforma-
tion parameters xi (Equation (5.2-7) or (5.2-10)) into the ground coordinate system. 

In order to keep the computing effort and storage requirements for larger blocks within 
reasonable limits, computer programs2 take advantage of the large number of zeros in 
the normal matrix when solving the normal equation (5.2-8) or (5.2-10). (This proce-
dure is treated in more detail in Volume 2, Section Β 5.2.2.) 

Exercise 5.2-2. 
3 Δ 1 > 1 1 Δ. 

© © © 
A 1 1 1 I λ. 

Model 1 
Pt. X y 
1 697.46 572.52 
2 698.64 463.63 
3 808.18 571.81 
4 808.50 475.26 

Model 3 
Pt. X y 
6 609.38 578.29 
7 610.80 461.60 
8 692.30 579.75 
9 692.89 464.34 

Given: The model coordinates of three models 
(in [mm]) and the ground coordinates (in [m]) of 
five control points. Required: Set up the obser-
vation equations according to Table 5.2-2 and 
perform the adjustment by indirect observations. 

Model 2 
Pt. X y 
3 686.90 542.66 
4 687.32 447.69 
5 759.46 494.88 
6 758.68 543.16 
7 760.64 440.05 
Ground coordinates 

of control points 
Pt. X Y 

1 1131.50 2331.50 
2 1138.62 1142.22 
5 3143.78 1782.21 
8 3951.05 2332.99 
9 3957.72 1201.05 

Solution: For example ax = 10.9228 ± 0.0018, 6, = -0.0542 ± 0.0018, = 
2341.04 ± 0.25 m,y3 = 2317.74 ± 0.25 m. 

5.2.2 Spatial block adjustment 

In a spatial block adjustment we compute the XYZ coordinates of points in the ground 
coordinate system. As initial data we have the xyz model coordinates of points in the 
stereomodels formed in relative orientation. In addition to the model coordinates of 
the tie points and control points, we introduce the model coordinates of the perspec-
tive centres (Figure 5.2-3), derived from the numerical relative orientation and model 
formation (see solution to Exercise 4.3-3). 

2For example: Ackermann, F., Ebner, Η. and Klein, Η.: BuL 38, pp. 218-224, 1970, and Ph.Eng. 39, 
p. 967, 1973. 
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Figure 5.2-3: Model connection with perspective centres 

The perspective centres stabilize the heights along the strip. A similar stabilization 
perpendicular to the strips is not possible, however, so that, as shown in Figure 5.2-4, 
chains of height control points perpendicular to the strips are required. A very good 
perpendicular stabilization of heights in the block could also be achieved by side over-
laps between strips of about 60%. 

Figure 5.2-4: Spatial block adjustment by independent models 

The principle of spatial block adjustment can be seen in Figures 5.2-3 and 5.2-4: the 
points in each model are defined in an independent, spatial coordinate system which 
can be transformed into the ground coordinate system by the seven elements of absolute 
orientation (Section 4.4). For the simultaneous absolute orientation of all models in the 
block, we have on the one hand the model coordinates of the tie points (including the 
perspective centres) and on the other the model and ground coordinates of the control 
points. 

The principle of spatial block adjustment can therefore be defined as follows. The 
models are: 
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• displaced (three translations Xu, Yu, Zu), 

• rotated (three rotations Ω, Φ, K ) and 

• scaled (scale factor m ) 

so that: 

• the tie points (including the perspective centres) fit together as well as possible 
and 

• the residual discrepancies at the control points are as small as possible. 

The mathematical relation between the model and the ground coordinate system was 
defined in Equations (4.2-6) and is known as a spatial similarity transformation. The 
mathematical formalism of the simultaneous computation of the elements of absolute 
orientation of all models in the block is, by analogy with the 2D case, sometimes called 
a chained spatial similarity transformation. 

The extension of spatial transformation (Equations (4.2-6)) to a chained spatial trans-
formation is in principle exactly the same as the extension of a plane transformation 
(Equation (5.2-1)) to a chained plane transformation (Equations (5.2-4) and (5.2-5), as 
well as Table 5.2-2). In contrast to the plane transformation, however, a spatial transfor-
mation is non-linear. We have already seen a method of linearizing the similarity trans-
formation of a single model in the system of Equations (4.4-5). The observation equa-
tions (4.4-6) for an adjustment by indirect observations have already been formulated. 
The observation equations (4.4-6) correspond to the observation equations (5.2-4) for 
a chained plane similarity transformation: the XYZ coordinates arising in the equa-
tions (4.4-6) correspond on the one hand to the (known) control point coordinates. On 
the other hand, for a new point the XYZ coordinates in equations (4.4-6) should be 
interpreted as (unknown) new point coordinates. Since such new points appear in sev-
eral models they have a connecting function within the block of stereomodels. Just as 
the system of observation equations in Table 5.2-2 can be found using the observation 
equations (5.2-4) and (5.2-5), so the system of observation equations for the spatial 
block adjustment with independent models can be found from the correspondingly 
adapted observation equation (4.4-6). Due to space restrictions a detailed presentation 
will not be made. 

In the system of observation equations for the spatial block adjustment with indepen-
dent models, the unknowns are small additions to the approximate starting values. (In 
contrast, no linearization and no starting values were necessary for the system of equa-
tions for planimetric block adjustment.) Automatic generation of approximate starting 
values to initialize the linearization is presented in Volume 2, Section Β 5.1. 
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5.2.3 Planimetrie and height accuracy in block adjustment 
by independent models 

The reduction in the number of field-surveyed control points—the objective of aero-
triangulation—leads in general to a reduction in accuracy compared with the absolute 
orientation of every model on four field-surveyed points in the model corners. For 
the application of aerotriangulation it is therefore of prime importance to be able to 
estimate this reduction in accuracy. 

In a spatial block adjustment, the planimetric accuracy is not affected by the accuracy 
of the model heights or by the layout of the height control points if the ground is 
relatively flat. Similarly, the height accuracy is independent of the accuracy of the 
model coordinates x, y and the layout of the planimetric control points. The planimetric 
and height accuracies are therefore treated separately. The results for planimetry are 
valid for planimetric as well as spatial block adjustment. 

5.2.3.1 Planimetric accuracy 

Since the X Y coordinates of the tie points are computed from a least squares adjust-
ment by indirect observations (Appendix 4.1-1), we can derive their accuracy—more 
correctly, the weight coefficients (cofactors) qxx and ςγγ—by inverting the normal 
equation matrix (Table 5.2-3). As a result of the symmetrical structure in X and Y, 
the weight coefficients qxx and qyy are identical; they are named qpp below. We 
then have the accuracy σβ,ρ of the coordinates X and Y of a tie point after the block 
adjustment: 

σο is the standard error of unit weight of the adjustment, i.e. the accuracy σχ or συ of 
a model coordinate χ or y, expressed in the ground coordinate system (see the com-
ment following Equation (5.2-5)). The quantity can therefore be regarded as a 
factor which, multiplied by the accuracy σΜ,ρ of the X Y coordinates in the individual 
models, gives the planimetric accuracy σβ,ρ of the block. 

Figure 5.2-53 shows these factors sßTpp for various sizes of blocks, each containing a 
control point in the four corners of the block. The quantity amax denotes the maxi-
mum planimetric error in the block, while CTmean denotes the root mean square of the 
planimetric error of all tie points in the block, i.e.: 

Numerical Example. Given: Aerial photographs at a scale of 1 : 6000. Each model 
has 4 tie points which are as accurately defined as targeted points. The block is com-
posed of 32 models (case dl in Figure 5.2-5) and is adjusted by independent models. 
Required: amax of the adjusted coordinates and for the entire block. 

3These and the further diagrams of planimetric accuracy were published by Ackermann (BuL 35, 
pp. 114-122, 1967). 

— \fqppoο = y/qppOM,p (5.2-11) 
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al (1 χ 2) = 1.31 σ„ 
= 1.44 σ ο 

ο » , = 3.02 σ 
σ„„ = 4.08 σ „ 

Figure 5.2-5: Planimetrie accuracy with four points in the block corners, for square 
blocks ns χ nm (ns... number of strips, nm... number of models in a strip) 

Accuracy in a single model (Equation (4.6-1)): gm,ρ = 0.0006 χ 6000 
- ±3.6cm 

Block accuracy (maximum error): ^B,p,max - ±2.28 χ 3.6 
±8.2cm 

Block accuracy (r.m.s.): &B,p,mean = ± 1 . 8 5 x 3 . 6 
= ±6.7 cm 

We see from Figure 5.2-5 that: 

• the accuracy falls significantly as the size of the block increases and 

• the maximum error occurs in the middle of the block edges. 

It is therefore obvious that if we wish to increase the overall accuracy we should pro-
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Figure 5.2-6: Planimetrie accuracy with a dense pattern of control points along the 
block edges, for square blocks ns χ nm 

vide a dense pattern of control points along the edges of the block. The success of such 
a strategy is shown in Figure 5.2-6. 

The accuracy 

• is almost independent of the size of the block and 

• is close to the accuracy in a single model. 

The question of further improvement in accuracy by introducing control points in the 
centre of the block is answered in Figure 5.2-7: 

Comparison with Figure 5.2-6 shows that: 

• control points inside the block bring no significant improvement in accuracy. 

Some generalization of these accuracy results for square blocks has been published 
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Figure 5.2-7: Planimetrie accuracy with a dense pattern of control points along the 
edges of the block and a control point in the centre of the block, for square blocks 
n s Χ Τίγγι 

by Ackermann4, Ebner5 and Meissl6 for the patterns of control points shown in Fig-
ure 5.2-8 (P I corresponds to Figure 5.2-6, i.e. the number i of bridged models corre-
sponds to two baselengths along the block edges; PA corresponds to Figure 5.2-5) and 
summarized in Equations (5.2-12), for which six tie points per model, as opposed to 
four in the model corners, were assumed. 

-PI : σΒ,Ρ,mean « (0.70 + 0.29 log n s ) a M , p 

P2 : <TΒ,P,mean ~ (0-83 + 0.02ηβ)σΜ ,ρ 

: <J Β,Ρ,mean « (0-83 + 0.05η8)σΜ,ρ 

ΡΑ : & Β, Ρ,mean « (0.47 + 0.25η 3)σΜ,ρ 

ns ... number of strips in the block 

Numerical Example (to verify Equations (5.2-12) for a square block with eight strips). 
Case 1 (block edges with dense control = g3 in Figure 5.2-6): 

Equation 1 of (5.2-12): as,p,mean ~ (0.70 + 0.291og8)aM,p ~ 0.96σΜ,ρ 
Figure 5.2-6: σΒ,ρ^η = 1-03σΜ,ρ 

Case 2 (four control points, in the corners of the block = gl in Figure 5.2-5): 

Equation 4 of (5.2-12): σΒ,ρ<ΠΚ3η ~ (0.47 + 0.25 χ 8)σΜ ,ρ « 2.47σΜ,ρ 
Figure 5.2-5: σΒ,ρ^an = 3.02σΜ,ρ 

4 B U L 3 6 , pp . 3 - 1 5 , 1 9 6 8 . 
5BuL 40, pp. 214-221, 1972. 
6ÖZfV, pp. 61-65, 1972. 
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Figure 5.2-8: Pattern of planimetric control points for the Equations (5.2-12). Note 
that the block size is variable; for PI the number of control points increases with the 
size of the block, for P2-P4 the number is constant (PCP = planimetric control 
point). 

The difference between 0.96 and 1.03 and between 2.47 and 3.02 can be tolerated 
for rough estimates of block accuracy such as concern us here. The difference arises 
partly from the fact that Equations (5.2-12) are based upon the use of six tie points in 
each model while Figures 5.2-5 to 5.2-7 are based upon the use of four tie points per 
stereomodel. 

Numerical Example (for project planning). Model control points are to be established 
by photogrammetry in an area of 10 km χ 10 km, with a coordinate accuracy of ± 10 cm. 
These control points will be natural points for which we assume an uncertainty of 
definition of ± 5 cm. Eight field-surveyed control points exist in the block, four in 
the corners and four in the middle of the edges (P3 in Figure 5.2-8). What scale of 
photography must be adopted? 

Trial 1, photo scale 1 : 15000: 

Distance between strips for 25% 
side overlap (Equation (3.7-1)): 
Number of strips (Equation (3.7-1)): 
Accuracy in single model 
(Equation (4.6-3)): 
Block accuracy (Equation (5.2-12)): 

Trial 2, photo scale 1 : 12000: 

A = 0.23 χ 15000(1 - 25/100) = 2590 m 

ns = [10000/2590 + 1J = 4 

cm, ρ = V92 + 52 = 10.3 cm 

σΒ,ρ = (0.83 + 0.05 χ 4)10.3 = ±10.6cm 
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A = 0.23 χ 12000(1 - 25/100) = 2070 m 

ns = [10000/2070 + 1J = 5 

σΜ,ρ = V7.22 + 52 = ±8 .8cm 

σΒ,ρ = (0.83 + 0.05 χ 5)8.8 = ±9.5 cm 

A photo scale of 1 : 12000 is therefore suitable for the task. 

Exercise 5.2-3. Repeat this example of project planning with the assumption that 16 
field-surveyed points are available (P2 in Figure 5.2-8). (Solution: Four strips at a 
photo scale of 1 : 15000 are sufficient.) 

The rules for accuracy shown above are also valid, to a rough approximation, for rec-
tangular blocks, but not for the extreme case of a single strip. Accuracy in a strip is 
therefore discussed separately in Section 5.2.3.4. The near-equality between block ac-
curacy and single-model accuracy for blocks with dense control around the edges—the 
most important case in practice—also holds good if the edges of the block are irregular. 

Up to this point, the accuracies quoted have all referred to the tie points in the corners 
of the models. Single points, i.e. points lying in one model only, will be less accurate. 
In the case d3 of Figure 5.2-6, the accuracy of single points is 1.33σΜ,ρ1, a decrease 
of about 33%, a value which can also be applied as a guide in blocks of other sizes and 
with other patterns of control. In the same publication, Ebner also studied the effect on 
accuracy of single points of using significantly more than four or six tie points in each 
model. For the same case d3 of Figure 5.2-6, 60 (!) tie points per model brought an 
improvement in accuracy of only about 25%. The number of tie points thus has little 
effect on the accuracy of the coordinates of single points after a block adjustment. 

In the interest of blunder detection and blunder location, however, the statements made 
above need to be revised: one should use at least eight tie points in each model, two in 
each corner, and groups of at least two control points rather than single control points. 
(This aspect is treated in depth in Volume 2, Section Β 7.2.2.4.) 

Exercise 5.2-4. A cadastral survey is to be performed by photogrammetry in an area 
of 5 km χ 5 km. The maximum difference between lengths derived from photogram-
metrically determined coordinates and lengths measured on the ground (check lengths) 
is to be As = 10 cm. Assume signalized points and compute the smallest photo scale 
together with the pattern of field-surveyed control points. Hint: A maximum error 
in length of As = 10 cm corresponds to a root mean-square planimetric accuracy of 
σρ = 10/(3\/2) = ±2.4 cm (division by 3: relation between maximum and root mean-
square error; division by y/2: Equation (4.6-4)). (Solution: Arrangement of control 
points as PI in Figure 5.2-8, 1 : m e = 1 : 4150, 8 strips. Alternatively, arrangement of 
control points as P2 in Figure 5.2-8, 1 : m j = 1 : 3960, 9 strips. Another alternative is 
the arrangement of control points as P3 in Figure 5.2-8, 1 : rriB — 1 : 2790, 12 strips.) 

7Ebner, Η.: Na. Ka. Verm. I, Heft 53, pp. 51-71, 1971. 
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5.2.3.2 Height accuracy 

The accuracy of heights after a block adjustment can be derived from an inversion of the 
normal equation matrix, in the same way as for planimetric accuracy. The analogous 
relation to Equation (5.2-11) is then: 

&B,Z — y/θζζσο = \/qzz(TM,z (5 .2-13) 

The height accuracy is primarily dependent on the number i of models between two 
chains of height control points (perpendicular to the strips). It is also good practice to 
improve the height accuracy along the upper and lower edges of the block by introduc-
ing height control points on these edges at intervals of i/2 models. The ideal pattern of 
height control is then as shown in Figure 5.2-9. 

-— i/2 models — 
ο -

ι models 

Figure 5.2-9: Ideal pattern of height control points 

Figure 5.2-108 shows the relation between the accuracy of heights of corner points in 
the models and the number of models i bridged between control chains. It shows the 
root mean-square value for the entire block (amc-dn) and the maximum value amax in the 
most unfavourable position in the block. The corresponding equations assuming six tie 
points are: 

<?B,Z,mean 
σΒ,Ζ, max 

(0.34 + 0.22ί)σΜ ,ζ 
(0.27 + 0 .3Η)σΜ , ζ 

(5.2-14) 

8Ebner, Η.: BuL 40, pp. 214-221, 1972 (Forster, B.C.: UNISURV G28, pp. 84-93, 1978, demon-
strates a further generalization). 
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— (mean) 

i (Number of models bridged) 

5 10 15 20 

Figure 5.2-10: Height accuracy of a block adjustment (σ Β) compared with the accu-
racy in a single model (ctm) 

Numerical Example. Given: Aerial photographs at a scale of 1 : 6000; 15/23 camera; 
tie points to the accuracy of signalized points; adjustment of a 72-model block by 
independent models, with the control pattern shown below: 

Λ-

Δ-

A- Δ Full control point 

ο Height control point 

Required: amax of the adjusted heights and amean for the height accuracy of the com-
plete block. 

Accuracy in a single model 
(Equation (4.6-1)): 
Block accuracy (maximum 
error): 
Block accuracy 
(representative value): 

&M,Z = ± 5 . 4 cm 

σΒ,ζ,max = ± ( 0 . 2 7 + 0.31 χ 6 )5 .4 = ± 1 1 . 5 c m 

σΒ,ζ,mean = ± ( 0 . 3 4 + 0 .22 χ 6 )5 .4 = ± 9 . 0 c m 

Exercise 5.2-5. What is the change in accuracy if four chains of height control points 
are used instead of three? (Solution: σβ,ζ,πηχ = ±8.2 cm, σΒ,ζ,mean = ±6.6 cm.) 

We see that, when compared with planimetric accuracy, particularly with dense control 
along the edges of a block, height accuracy is significantly less favourable. An interval 
of about three models between chains of height control is the maximum if we wish to 
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introduce no significant loss of accuracy compared with that of a single model—but 
we then affect adversely the economy of the entire process. As a compromise between 
accuracy and economy, an interval of at least four models between chains of control 
is usual. The introduction of GPS data9 (Section 3.7.3.2) into the block adjustment 
frees the adjustment from this very restrictive pattern of height control (Section 5.4 
and Section Β 5.3.5.2.2, Volume 2). 

In the interest of blunder detection and blunder location one should—as for planimet-
ric adjustment (see the end of Section 5.2.3.1)—introduce at least eight tie points per 
model, two in each corner, and provide control points in groups rather than as single 
points (see Volume 2, Section Β 7.2.2.4). In high mountain regions care should be 
taken that height control points do not only lie in the valleys or on mountain peaks; 
they should cover the full height range of the area. 

5.2.3.3 Empirical planimetric and height accuracy 

The theoretical accuracies of block triangulation by independent models shown above 
are based on the assumption of random errors in the individual models. The effects of 
varying accuracy within a model and the undoubted existence of correlations resulting 
from systematic errors are ignored. 

Nevertheless, extensive empirical tests of accuracy made on field-surveyed check 
points10 have confirmed the essential soundness of the theoretical results, so that we 
can use Equations (5.2-12) and (5.2-14) as rough approximations for project planning. 

5.2.3.4 Planimetric and height accuracy of strip triangulation 

The accuracy of points in a strip adjusted by independent models depends primarily on 
the number i of models bridged between control points. As before, we are interested in 
two values—a mean accuracy asimean which is representative for the strip as a whole 
and a maximum value as,max of the error occurring between control points. 

Since we must here also differentiate between signalized, natural and artificial points, 
it is convenient to relate the accuracy of strip triangulation, as , to the error, gm, of 
single models introduced in Section 4.6. 

The results of theoretical11 and empirical12 studies of accuracy of strip triangulation, 
which, in part, produce greatly different values, are sketched in Figure 5.2-11. The 

'Hein, G.W., van der Vegt, H.J.W., Andersen, O., Colomina, I.: Schriftenreihe des Inst, für Pho-
togrammetrie, Uni. Stuttgart, Heft 13, pp. 261-325, 1989. Lucas, J.R., Mader, G.L.: Journal of Surveying 
Engineering 115/1, pp. 78-92, 1989. Friess, P.: BuL 58, pp. 136-143, 1990. 

10OEEPE Publ. No. 8, 1973. 
"Ackermann, F.: DGK, C 87, 1965. 
12Stark, Ε.: OEEPE, No. 8, pp. 49-82, 1973; BuL 45, pp. 183-190, 1977. 
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single models (ctm) 

extreme simplification represented in this diagram has the practical advantage of simple 
interpretation; note, however, that differences of up to 50% from the values shown in 
Figure 5.2-11 can occur in individual cases. 

Numerical Example (of project planning). Signalized points along a strip must be 
measured with a planimetric accuracy, σρ, of ±3 cm and a height accuracy, σζ, of 
±5 cm. Because of the high cost of control, as few field-surveyed control points as 
possible are to be used. A 15/23 camera is to be used. The field-surveyed points are at 
the ends of the strip and in the middle. 

Trial 1. Photo scale 1 : 4500, with the following pattern of control points. 

Single-model accuracy (Equation (4.6-1)): σΜ,ρ = 0.0006 χ 4500 
= ±2.7 cm 

σ Μ Ζ = 0.00006 χ 15 χ 4500 
= ±4.0 cm 

Strip accuracy (Figure 5.2-11, i = 4): as,ρ — ±2.7 χ 1.2 
= ±3.2 cm 
= ±4.0 χ 1.5 
= ±6.0 cm 
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Trial 2. Photo scale 1 : 3000, with the following pattern of control points. 

Single-model accuracy: &M,P = 1-8 cm 
c m , ζ = ±2.7 cm 

Strip accuracy (Figure 5.2-11, i = 6): as,ρ = ±1.8 χ 1.4 
= ±2.5 cm 
= ±2.7 χ 1.9 
= ±5.1 cm 

Strip accuracy in the models central between the control points: 
a s , Ρ = ±1-8 χ 1.7 

= ±3. l c m 
a s , ζ = ±2.7 χ 2.2 

= ±5.9 cm 

The requirements for the strip as a whole are met, while the errors in the models be-
tween the control points are only just higher than allowed. 

This numerical example shows that the reduction in accuracy caused by increasing 
the number of bridged models is significantly less than the improvement in accuracy 
resulting from the increase in photo scale. 

5.3 Bundle block adjustment 

In a bundle adjustment of a strip or block of photographs, with at least 60% forward 
overlap and 20% side overlap, we compute directly the relations between image coordi-
nates and object coordinates, without introducing model coordinates as an intermediate 
step. Thus, the photograph is the elementary unit in a bundle adjustment. 

5.3.1 Basic principle 

Figure 5.3-1 shows the basic principle of a bundle block adjustment. 

The image coordinates and the associated perspective centre of a photograph define a 
spatial bundle of rays. The elements of exterior orientation of all bundles in a block 
are computed simultaneously for all photographs. The initial data consist of the image 
coordinates of the tie points (points existing in more than one photograph) together 
with the image coordinates and object coordinates of the control points. 

The adjustment principle can therefore be defined as follows: the bundles of rays are: 

• displaced (three translations XQ, YQ, ZQ) and 

• rotated (three rotations ω, ψ, κ) 
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Figure 5.3-1: Principle of a bundle block adjustment 

so that the rays 

• intersect corresponding rays as nearly as possible at the tie points and 

• pass through the control points as nearly as possible. 

The mathematical relationship between the image coordinates and the global ground 
or object coordinate system can be found in Appendix 2.1-2. The differential quotients 
for the corresponding collinearity equations can be found in Appendix 2.1-3. 

5.3.2 Observation and normal equations for a block of photographs 

We can now use the differential quotients in Appendix 2.1-3 to write down the lin-
earized observation equations of a least squares adjustment by indirect observations 
(Appendix 4.1-1), for (new) points P, whose image coordinates have been measured 
in the photograph with the index j . Each measured image point yields two observation 
equations. 

V^ij = 
0 

dY0j + 
ο 

(5.3-1) 

- Φ 
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while the expression for vv i j has a similar form. The unknowns are the six elements of 
exterior orientation of the photograph with the index j and the three ground coordinates 
of point Pi. If a ray passes through a fixed point, the terms dXiy dYi and dZt disappear. 

The differential quotients ()° are calculated from approximate values of the unknowns 
by the relations in Appendix 2.1-3. and 77? are image coordinates computed from 
Equations (2.1-19) with the help of the approximations to the unknowns, ξ^ and ή13 are 
the measured image coordinates. The necessary approximations to the unknowns can 
be derived in various ways. For example, for near-vertical photographs ωο = φ ° = 0; 
κ° is known from the flight plan. A block adjustment by independent models (Sec-
tion 5.2) yields the coordinates X°Y°Z° of the perspective centres and the coordinates 
XYZ of the new points (this problem is taken up again in Volume 2, Section Β 5.2.1). 

A schematic example with four photographs will help to clarify the procedure. The 
balance of observations and unknowns is: 

1A 2 A 

% 4 . 

i s . 6 . 

3 . 4 . 
(N) 
0 5 . 6 . 
.c 
CL· 7 A 8 A 

A1 A2 
@ 

. 3 
*-> 

. 5 . 6 £ 

Observed image coordinates (2 χ 6 χ 4) = 48 
Unknowns: 

3 x 4 = 12 perspective-centre coordinates 
3 x 4 = 12 rotations 
3 x 4 = 12 new-point coordinates 

=> 36 
Redundancy: 48 - 36 = 12 

Observation equations 
In place of the differential quotients ()° in observation equations (5.3-1), the following 
table uses variables a and b which are introduced in Appendix 2.1-3. 
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Xoi Yoi Zoi ωι ψ\ Xq2 Y02 Ζ02 ω2 ¥>2 «2 
«ξΐι 
« 7 ) 1 1 

« ξ 3 1 

« 7 ) 3 1 

«ξ12 

«7)12 

« ξ 3 2 

«7)32 

4 a° < 
6° bl 

a! < 
6° b°4 b°5 69 

Pt. 2 similarly 

Pts. 4,5,6 similarly 
α» a° a° a° a° «7° 

6° 6° 6° 6° 
Pt. 2 similarly 

a« «3° «4 ^ 
68 6§ 6§ 60 

Pts. 4,5,6 similarly 

XQ4 Y04 Z04 ΟΛ( ψ4 «4 -X3 Y3 ^3 X(, Υβ Ζ β 

n° n° n° 
a 8 9 " l O 

60 6° 6j0 

(7° 
8 u 9 u 1 0 

6° 6° h° 
° 8 9 ° 1 0 

(61 
( m i - ' / ? , ) 

( 6 1 - & ) 
(»Öl - » & ) 

(̂ 12 - r/?2) 

( 6 2 - ^ 2 ) 
(V32 ~ V32) 

In matrix notation: 

ν = Ax — 1 (5.3-2) 

Normal equations: 

A Ax = A 1 (5.3-3) 

If we replace A T A by Ν and AT1 by η the normal equations become: 

N x = η (5.3-4) 
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5.3.3 Solution of the normal equations 

The normal equations (5.3-4) of the schematic example given in Section 5.3.2 have the 
structure: 

Photo! Photo2 Photo3 Photo4 Pt3 Pt4 Pt5 Pt6 

Nil 

N22 

In matrix notation: 
N „ N 1 2 \ / X , \ = / m 
NJ2 N22 Y VX2/ VN2 (5.3-5) 

The upper left matrix N n is a hyperdiagonal matrix with submatrices each of 6 χ 6 
elements. The lower right matrix N2 2 is similarly a hyperdiagonal matrix with subma-
trices of 3 χ 3 elements. The inversion of the two hyperdiagonal matrices is particularly 
simple: each submatrix can be inverted independently. 

The system of normal equations reduced by the new-point coordinates x 2 can thus be 
formed with no great computing effort. By analogy with Equations (5.2-9) and (5.2-10) 
we have from Equation (5.3-5): 

( N n - N,2N2-2
1Ni2)xi = ni - N i 2 N ^ n 2 (5.3-6) 

An adjustment yields corrections to the approximate values of the elements of exterior 
orientation of each photograph and to the approximate coordinates of the new points. 
If the approximations are very poor, the corrected values must be treated as new ap-
proximations. The adjustment should be repeated until there is no further significant 
change in the unknowns. (Further details on the solution of the normal equations will 
be found in Volume 2, Section Β 4.4.) 
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Further treatment of bundle block adjustment will be found in: Wong, K.W., Elph-
ingstone, G.M.: Ph.Eng. 39, pp. 267-274, 1973. ASPRS-Manual of Photogramme-
try, 5th ed., Falls Church, 2004. Triggs, B„ McLauchlan, P., Hartley, R„ Fitzgibbon, 
Α.: Bundle Adjustment—A Modern Synthesis. Vision Algorithms'99, LNCS 1883, 
pp.298-372, 2000. 

5.3.4 Unknowns of interior orientation and additional parameters 

If amateur cameras are used instead of photogrammetric cameras, the elements of in-
terior orientation can also be determined within the bundle block adjustment. For this 
purpose, the elements of interior orientation are introduced as unknowns in the obser-
vation equations (5.3-1). The solution of the normal equations (5.3-3) then yields the 
elements of interior orientation of the particular camera used. The larger number of 
unknowns in such a bundle block adjustment obviously requires a larger number of 
control points and tie points. 

It is typical of photographs from amateur cameras that the theoretical central projec-
tion is significantly deformed by lens and film distortion. These influences can be taken 
into account in a bundle block adjustment by introducing correction polynomials in the 
observation equations, whose coefficients are determined in the adjustment. Such an 
adjustment is called a bundle block adjustment with additional parameters or with self-
calibration. The technique is not only used for amateur-camera photographs, but more 
and more for photographs taken with proper photogrammetric cameras. Additional 
parameters provide an extremely powerful method of compensating for systematic er-
rors. It is of no importance whether these systematic errors occur as a result of lens 
or film distortions or as a result of anomalies of refraction etc. This concept is further 
discussed in Volume 2, Sections Β 3.5.6 and Β 5.2.4. 

Further reading: Jacobsen, K.: Phia, pp. 219-235, 1982. Kilpelä, Ε, Helkilä, J, Inkelä, 
Κ.: Phia, pp. 1-12, 1982. 

5.3.5 Accuracy, advantages and disadvantages of bundle block 
adjustment 

Although the mathematical model of a bundle block adjustment differs significantly 
from that of block adjustment by independent models—central projection with the im-
age coordinates as observations on the one hand and spatial similarity transformation 
with the model coordinates as observations on the other hand—the rules of accuracy for 
independent-model adjustment (Section 5.2.3) can be applied, more or less, to bundle 
block adjustments. 

The "single-model accuracy", which is required by the rules in Section 5.2.3, however, 
can be based on the following accuracy guides. These apply to targeted and other corre-
spondingly accurate points in a regular block with 60% forward overlap and 20% side 
overlap, processed by a bundle block adjustment with additional parameters which re-
duce systematic errors. The values are 50% better than the guide values in Section 4.6. 
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In the case of analogue images, they are: 

Planimetry: ^ y ^ g ) = ± 3 μιη in the photograph χ image scale m e 
Height: crZUarg) — ±0.03%c of camera distance (NA - WA) (5.3-7) 

= ±0.04%o of camera distance (SWA) 

Exercise 5.3-1. Repeat the numerical examples of Section 5.2.3 under the assump-
tion that the block triangulation has been performed by the bundle method with addi-
tional parameters rather than by independent models. (Solution: Numerical example 
according to Figure 5.2-5: ομ,ρ = ±1 .8 cm, σΒ,ρ,πχ&η = ±3 .3 cm; numerical example 
according to Figure 5.2-6: gm,z = ±2.7 cm, crß,z,mean = ±4-5 cm.) 

Extensive details concerning the accuracy of the highly developed bundle block ad-
justment can be found, amongst other, in the following literature: Schwidefsky/Acker-
mann: Photogrammetrie. Teubner-Verlag, Stuttgart, 1976. Brown, D.C.: Ph.Eng. 43, 
p. 447, 1977. 

At the end of this section we list the advantages and disadvantages of bundle block 
adjustment relative to independent-model adjustment: 

Disadvantages: 

• non-linear problem, for which approximations can only be established after 
lengthy procedures 

• computer-intensive methods 

• always a spatial problem, so that separate adjustments in planimetry and height 
are not possible 

Advantages: 

• most accurate method of aerotriangulation (direct relation between image and 
ground coordinates without the intermediate step of model formation) 

• simple possibility of extending the technique to compensate for systematic errors 
(see Volume 2, Sections Β 3.5.6 and Β 5.2.4) 

• simple possibility of incorporating observed elements of exterior orientation into 
the adjustment (see Section 5.4) 

• possibility of using unconventional camera dispositions and amateur-camera 
photographs such as are often necessary in close range photogrammetry (Sec-
tion 5.3.4) 

• possibility of deriving the elements of exterior orientation to be set in particular 
analogue or analytical plotters. The photogrammetrie measurement of control 
points for subsequent stereoprocessing is then unnecessary. 
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5.4 GPS- and IMU-assisted aerotriangulation 

Aerotriangulation, as discussed in the previous paragraphs, is intended to determine 
the exterior orientation elements of the metric images. With GPS and IMU, which are 
increasingly used (Section 3.7.3.2), the exterior orientation elements can be directly 
determined and the images then processed using the methods of direct georeferencing 
(Section 4.1.1). In principle, GPS and IMU make aerotriangulation redundant. In prac-
tice, however, the following factors argue against direct georeferencing which employs 
only GPS and IMU information and makes no use of control points: 

• GPS positioning "on the fly" is relatively demanding and cannot, at present, 
reach the centimetre accuracy level which is the objective of precision aerial 
photogrammetry. 

• unavoidable cycle slips and/or multipath effects can disturb continuous GPS po-
sitioning. 

• the combined calibration of the three units, GPS, IMU and imaging sensor, is a 
very complex exercise in which there are often considerable shortcomings (Sec-
tion 3.7.3.2). 

• GPS values, which are determined in a global coordinate system, must be cor-
rected for various influences, such as the geoid, in order to correspond to the 
current ground (national) coordinate system in which the photogrammetric re-
sults are expected. In other words, GPS/IMU data often have datum problems 
with respect to the ground coordinate system. 

Instead of direct georeferencing by GPS and IMU, which is known as direct sensor 
orientation, GPS and IMU information should be used only to support aerotriangula-
tion. The combination of GPS and IMU data with control points for orienting image 
recording systems is known as integrated sensor orientation. 

The following discussion concentrates on GPS-assisted aerotriangulation. The per-
spective centres of the metric images can, as suggested in Section 3.7.3.2 (note in par-
ticular Figure 3.7-12), be determined in the global GPS coordinate system with the aid 
of GPS and IMU recording. Due to the previously indicated datum problems, amongst 
others, the GPS coordinates Xoj, Yoj and Zoj of the perspective centres cannot be intro-
duced as known parameters (i.e. constants) in the adjustment equations (5.3-1). (They 
would be better treated as "observed unknowns", see Section Β 3.5.7, Volume 2.) In-
stead, all perspective centres fixed by GPS should be grouped into a single model in a 
three-dimensional coordinate system, the GPS model, and processed in a hybrid block 
adjustment. Here the bundles of rays from each metric image (bundle block adjust-
ment, Section 5.3) and the GPS model just mentioned (spatial block adjustment with 
independent models, Section 5.2.2) are processed together. The ground coordinates of 
the perspective centres are regarded as unknowns in this hybrid block adjustment; the 
unknown perspective centres connect the ray bundles of the individual metric images 
and the GPS model. Each perspective centre with its three GPS coordinates provides, 
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in addition to the adjustment equations of the bundle block adjustment, three further 
adjustment equations. Within the hybrid block adjustment the GPS model is subject 
to three translations, three rotations and a scale change. These seven unknowns prin-
cipally eliminate the above mentioned datum problem between GPS data and ground 
coordinates. 

The other errors in the GPS data, mentioned above, are largely eliminated by a division 
into several GPS models. In particular, a GPS model for every image strip is very 
suitable. 

The GPS models support the perspective centres inside the photogrammetric blocks. 
GPS-assisted aerotriangulation therefore avoids the need for height control point chains 
(Section 5.2.3.2). Further details about GPS-assisted aerotriangulation and its accuracy 
can be found in Volume 2, Section Β 5.3.5. 

Where IMU data are available the process is similar. Thus, the IMU orientation angles 
Wj, ψ] and Kj should not be introduced as known parameters (constants) in the adjust-
ment equations (5.3-1). Instead, these orientation angles should be left as unknowns 
in every metric image and an "orientation angle model", the IMU model, introduced 
into a hybrid block adjustment. This IMU model should have some unknown parame-
ters, by analogy with the GPS model. A division into independent IMU models for 
individual strips is, in many cases, to be recommended. 

5.5 Georeferencing of measurements made with a 
3-line camera 

Aerial survey flights using 3-line cameras are only made in combination with GPS and 
IMU (Section 3.7.2.3). GPS determines the flight path, and IMU the angular orienta-
tion, of the 3-line camera. With this GPS/IMU information, the object coordinates of 
new points identified in the three strips can be simply determined (Section 4.1.2). This 
direct solution, or direct sensor orientation, will be expanded on in the following sec-
tions. For instructive reasons, the GPS/IMU information will initially be disregarded. 

In a 3-line camera (Figure 3.3-3, left), each line corresponds to a central projection 
with its own individual elements of exterior orientation. The six elements of exterior 
orientation change dynamically and are a function of time or line index. These six 
orientation functions are illustrated in Figure 5.5-1. Normally they are described by 
cubic polynomials between nodal points JVj (cubic spline interpolation). The separation 
of the nodes should be chosen such that the dynamically varying orientation elements 
are approximated to a sufficient accuracy by the successive cubic polynomials. 

The abscissae ti of the nodes Ni,which are often regularly spaced, are known; at each 
node the ordinates of the six orientation functions Xo(ti), Yo(i?;), Zo(tt), ω(ίί), φ(ίι), 
κ ( ί ί ) η are required. Interpolation is implemented between the nodes TV, by means of 
cubic polynomials whose coefficients can be determined from the nodes. (Details on 

13Figure 5.5-1 implies that the ωφκ rotations of the sensor take place about the three coordinate axes of 
the aircraft. In Figure 3.7-13 this coordinate system has been designated as the body coordinate system. 
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κ 

Figure 5.5-1: Flight path of a line sensor and 6 orientation functions 

cubic spline interpolation can be found in Lancaster, P., Salkauskas, K.: Curve and 
Surface Fitting. Academic Press Ltd., 1986.) 

The obvious question now arises as to how a point Ρ with coordinates xt, = (xb,yb, zt,)T in the XbVbZb 
body coordinate system can be transformed into the X Y Z object coordinate system. The following 
rotational axes are available for this exercise: 

• primary rotation ω (roll) about the Xb axis until the yb axis is parallel to the X Y plane. 

• secondary rotation ψ (pitch) about the yb axis (already rotated by ω) until the χι, axis also lies 
parallel to the X Y plane. 

• tertiary rotation κ (yaw/heading) about the Zb axis (already rotated by ω and ψ) until the Xb and 
yb axes are parallel to the X and Y coordinate axes. 

Using the rotational and axial directions introduced in Figure 2.1-5, the following result is obtained by 
analogy with the presentation of Appendix 2.1-1: 

X = RL^kXÖ (5.5-1) 

The rotation matrix ΈΙ ω φ κ introduced in Section 2.1.2 needs therefore only to be transposed. (This result 
is not surprising given the knowledge from Section 2.1.1 about reversal of transformations involving 
rotation matrices.) From the numerical form of a given rotation matrix, the roll, pitch and yaw angles 
of an aircraft (Section 3.7.1) can be determined with the help of the transposed algebraic form of the 
rotation matrix (2.1-13) in the usual way. 

Exercise 5.5-1. The rotation angles of a body coordinate system are to be determined from the matrix 
R.2 given in the numerical example of Section 2.1.2: Solution, making use of the formulations (2.1-1-8) 
in Appendix 2.1-1: ω (roll angle) = -1 .0886 gon ( -58 '47" ) , ψ (pitch angle) = 0.1499 gon (8'6"), κ 
(yaw angle/heading) = 101.3224gon (9Γ11'25") . 

Further reading: Baumker, Μ., Heimes, F.: OEEPE-Publication No. 43, pp. 197-212, 2002. 
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Before discussing the determination of the ordinates of the six orientation functions 
at all nodes, a particular feature of the 3-line camera (Figure 3.3-3, right) should be 
emphasized. If the three strips in the triplet are aligned along the same time index, then 
the lines arranged in vertical rows in Figure 5.5-2 have the same orientation elements; 
in other words: for all strips in a triplet a single set of six orientation functions Xo(U), 
Yo(U), Z0(ti), co(ti), ip(U), k(U) is required. 

Forward 

_JJt 
Nadir ? w - r 9 [Hy Y 1 

Figure 5.5-2: Image triplet from a 3-line camera showing the common line index 

The basic equations for georeferencing images from a 3-line camera are the observation 
equations (5.3-1). However, the six exterior orientation elements Xqj, Yoj, Zq3, Uj, ψ j , 
Kj, which would be inserted here for each line triplet, are replaced by the six ordinates 
Xo(ti), Yo(U), Z0(ti), oj(ti), <p(ti), n(ti) at all nodes Nt. Since the nodes Ni are 
considerably more widely spaced than the original lines, the number of unknowns in 
the adjustment is significantly reduced. (Details about this substitution can be found in 
Forkert, G.: Geow. Mitt, der TU Wien, vol. 41, 1994.) 

Every control point identified in a triplet of strips provides 2 x 3 = 6 adjustment equa-
tions for determining the nodes of the six orientation functions. The ξ coordinate in 
the forward-looking strip corresponds to line spacing a while the negative ξ coordinate 
in the backward-looking strip corresponds to line separation b (Figure 4.1-1). (The η 
coordinates of a point identified in the three strips are only slightly different.) Every 
tie point determined in a triplet of strips also provides 2 x 3 = 6 adjustment equations 
for the determination of the six orientation functions. Also with the tie points the ξ 
coordinates are known from the a and b values. In adjustment equations based on tie 
points, the (unknown) ground coordinates XiYiZi of a tie point also appear (see Equa-
tion (5.3-1)). A tie point in the overlapping region between two neighbouring triplets 
of strips provides 2 x 2 x 3 = 12 adjustment equations to determine the nodes of the 6 
orientation functions in each strip; the three (unknown) ground coordinates Xi,Yi, and 
Zi for such a tie point again appear in the system of equations. 
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Aerotriangulation, i.e. indirect georeferencing, can also be implemented with these ad-
justment equations. This would require many control and tie elements. Control and 
tie elements include control lines and tie lines in addition to control and tie points, as 
indicated in Figure 5.5-1, left (the relevant mathematical analysis can be found in Sec-
tion Β 4.3, Volume 2). The high number of control and tie elements can, however, be 
considerably reduced if the GPS/IMU information is included in the sensor orientation. 
Such a solution is very similar to GPS/IMU-assisted aerotriangulation (Section 5.4). 

For this purpose, the six orientation functions are determined for all strips from the 
acquired GPS/IMU data. The abscissae of the nodes Ni are taken from the indirect 
georeferencing explained above. The ordinates of the nodes Ni can be determined 
by interpolation between the GPS/IMU observations at the nodes Ni. Restricting fur-
ther discussion to the three orientation functions Xo(t), Yo(t) and Zo(t), the result is 
a single GPS model for the complete area of interest. This GPS model contains three-
dimensional Cartesian coordinates of all nodes Ν in a global GPS coordinate system. 
This GPS model can be jointly processed with the adjustment equations of the indirect 
georeferencing in a hybrid block adjustment, as explained in Section 5.4. In this hybrid 
block adjustment the ground coordinates of the nodes are treated as unknowns. The un-
known nodes Ν connect the GPS model and the orientation functions Xq(1), Yo(t) and 
Zo(t). Within the hybrid adjustment the GPS model is translated, rotated and re-scaled 
in order to compensate for possible datum problems and other error effects arising be-
tween the GPS data and the ground coordinate system. A division into separate GPS 
models for every strip can also be advantageous. In the same way as GPS models can 
be formed for the orientation functions Xo (t), Yo(t) and Zo(t), so IMU models can be 
setup for the orientation functions ω(ί), φ(ί) and κ(ί). 

The method presented here is a combination of direct and indirect sensor orientation, 
i.e. an integrated sensor orientation, which has proven itself in practice. 

Further reading for Section 5.5: Ries, C., Kager, Η., Stadler, P.: Publikation der 
Deutschen Gesellschaft für Photogrammetrie und Fernerkundung, Band 11, pp. 59-
66, 2002. Gervaix, F.: PFG 2002(2), pp. 85-91. Hinsken, L. et al.: ASPRS, St. Louis, 
USA, 2001. 

5.6 Accounting for Earth curvature and distortions due to 
cartographic projections 

Image coordinates are introduced as observations in the bundle block adjustment (Sec-
tion 5.3), in the GPS- and IMU-assisted aerotriangulation (Section 5.4) and in the geo-
referencing of images from 3-line cameras (Section 5.5). In a prior process the image 
coordinates are corrected for the effects of objective lens distortion, film deformation, 
unflatness of the CCD detector surface, positioning errors in the detectors of CCD 
cameras or film scanners and refraction, as explained in Section 4.5. This section on 
image coordinate refinement also treats the correction for Earth curvature. The method 
given (Section 4.5.3) cannot be directly applied to the wide areas normally covered in 
aerotriangulation. Alternatives to the Earth curvature correction are therefore required. 
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(a) the first method, which can be applied where there are relatively minor height 
differences and small image tilts, makes radial corrections to the image coordi-
nates in a similar way to refraction (see Equation (4.5-3)). This radial correction 
is given by the following equation (for the derivation of the formula see Sec-
tion Β 5.4.3, Volume 2): 

The ground coordinates of the control points, and the GPS locations of the per-
spective centres (where available) in ground coordinates, remain unchanged. 
Any available IMU data relating to roll and pitch angles can also be adopted 
without change. However, the heading angle (yaw angle), which is also provided 
by the IMU, is referenced to the meridian and so a convergence of the merid-
ian must be applied. The convergence of the meridian 7 is the angle between 
the meridian and the North/South gridline in the ground coordinate system, fre-
quently a Transverse Mercator coordinate system. It is given by: 

(b) a second method fundamentally solves the problem that the object coordinate 
system in photogrammetry is a three-dimensional Cartesian coordinate system 
and the ground coordinate system is not. The control points and GPS positions 
of the perspective centres are given in the ground coordinate system; the pho-
togrammetric results are expected in this coordinate system. The second method 
has the following steps: 

• the control points and the GPS positions of the perspective centres (if avail-
able) are transformed from the ground coordinate system into a tangential 
coordinate system. This is tangential to the Earth ellipsoid at the centre of 
the area of interest. 

• photogrammetric processing is done in this tangential system. 
• the photogrammetric results are subsequently transformed from the tangen-

tial system into the ground coordinate system. 

(5.6-1) 

ρ . . . radial distance from principal point 
h ... flying height above ground 
R ... radius of the Earth = 6370 km 
c ... principal distance 

7» = - λο) cos ψί (5.6-2) 

ψί, Xi . . . geographic coordinates of the point for which the 
convergence of the meridian 7, must be calculated 

Λο . . . datum meridian in the ground coordinate system 

The IMU information requires special treatment. The discussion is here restricted to 
the roll and pitch angles which are referenced to the physical plumb line. The Ζ coordi-
nates in the tangential Cartesian coordinate system are perpendicular to the X Y plane. 
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Depending on the rigour of the analysis, the plumb lines are perpendicular to the spher-
ical or ellipsoidal surface of the Earth; being specific, the tangents to the curved plum 
lines at the IMU's point of measurement are the datum for the IMU information. The 
IMU measurements must therefore be rotated by the angle between the physical plumb 
line and the Ζ axis of the tangential coordinate system. This correction, which depends 
on the IMU's measurement position as taken from the GPS data, can be calculated as a 
rotation matrix using either a spherical or ellipsoidal model of the Earth's surface and 
applied to the IMU data in the first calculation stage mentioned above. 

Details of this rigorous method, which include accounting for the geoid, can be found 
in Sections Β 5.3 and Β 5.4, Volume 2. 

Exercise 5.6-1. Table 4.5-3 shows the maximum Earth curvature in stereomodels for 
various image scales and camera types. Calculate the corresponding radial correction in 
the image using Equation (5.6-1). (Solution: for the 1st value in the 1st row: c = 85 mm, 
h = 850 m, ρ = 140 mm, Δρ = 25 μτη.) 

Further reading: Wang, S.: DGK, Reihe C, Nr. 263, 1980. Ressl, C.: VGI 89, Heft 2, 
pp. 72-82, 2001. Cramer, M.: DGK, Reihe C, Nr. 537, 2001. Heipke, C„ Jacobsen, 
K., Wegmann, H. (Eds.): OEEPE Publication No. 43, 2002. 

5.7 Triangulation in close range photogrammetry14 

The sets of photographs in close range photogrammetry are often widely different from 
the examples we have discussed so far, with 60% forward overlap and 20% side over-
lap. Instead of the photogrammetric stereomodel we have the photogrammetric bundle 
of rays or directions (see Figure 3.8-11). A photograph records simultaneously a bun-
dle of spatial directions to all object points visible in the photograph. The conversion 
of points initially recorded in the image plane into spatial bundles of rays occurs either 
by manual measurement of the image coordinates (analytical photogrammetry) or au-
tomatic target point recognition (digital photogrammetry). If measurement or recogni-
tion is monocular, object points must either be targeted or must be natural points which 
can easily be identified and accurately measurable in the individual photographs. For 
small objects with an extent of a few metres at maximum, there is also the option of 
projecting a pattern onto the object (see Section C 2.3, Volume 2. In Section 8.3 of this 
volume an interesting variant is described). 

The bundles of rays of the individual photographs are tied together by common object 
points. Figure 5.7-1 shows such a network of photogrammetric bundles. Unmarked 
camera stations are normally chosen (equivalent to free stations in surveying). The 
camera may also be used without a tripod, so that the exterior orientation of the bundle 
of rays is entirely unknown. The essential criteria for the photographs are: the individ-
ual object points must appear in at least two photographs, better in at least three, and 
the rays must not intersect at narrow angles. 

14A comprehensive textbook covering this topic may be found in Luhmann, T., Robson, S., Kyle, S., 
Harley, I.: Close Range Photogrammetry. Whittles Publishing, 2006. 
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A least squares adjustment of such a network of photogrammetric bundles is performed 
as a bundle block adjustment, described in detail in Section 5.3. The unknowns are the 
six elements of exterior orientation of each photograph and the three coordinates of 
each new point. Some control points are required on the edges of the object. 

The X Y Z coordinates of particular imaging stations (perspective centres), which have 
been determined by GPS or some other technique, can be introduced as known para-
meters (constants) in the adjustment equations (5.3-1). Due to the unavoidable inac-
curacies in perspective centre coordinates determined in this way, it is preferable to 
introduce the terms as "observed unknowns" in the sense described in Section Β 3.5.7 
(Volume 2). In this way, perspective centres determined by GPS, or some other method, 
take on the role of control points. 

In many cases, for example if the object is to be reconstructed in an arbitrary coordinate 
system, it is possible to dispense with control points and execute a free net adjustment, 
already mentioned in Section 4.4.1 and discussed in detail in Section Β 4.6.3, Volume 2. 
In order to ensure that the object reconstructed in a local coordinate system has the 
correct scale, at least one (reasonably long) known object point separation must be 
included in the adjustment. The reconstructed object can be levelled by including new 
points along vertical lines and on horizontal planes15. 

At close ranges, a significant part is played by information on object form, such as the 
distribution of points on straight lines, curves, planes and surfaces in three-dimensional 

15Some relevant publications include: Wester-Ebbinghaus, W.: IAPR 25(A3b), pp. 1109-1119, 1984, 
and ZfV 110, pp. 101-111, 1985. Fräser, C.: IAPR 27(B5), pp. 166-181, 1988. 
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space. The corresponding extension to photogrammetric triangulation is examined in 
Section Β 3.5.5, Volume 2. Section Β 4.1, Volume 2 also handles the very important 
and practical issue of calculating approximate values for close range bundle adjust-
ment. 

In close range work, semi-metric cameras (Section 3.8.4), amateur cameras (Section 
3.8.5) and video cameras (Section 3.8.7) are often employed. Camera calibration, or 
at least an improvement in the calibration, is incorporated within the photogrammetric 
triangulation (this was discussed in Section 3.1.2 under the theme of on-the-job calibra-
tion or self-calibration). For this purpose the adjustment equations (5.3-1) are extended 
beyond the unknown elements of interior orientation to include additional parameters 
which compensate for optical distortion and other error sources in such cameras, as 
already discussed in Section 5.3.5. 

Also at close range GPS and IMU are increasingly employed. One of the many com-
binations of GPS/IMU with digital cameras is the mobile mapping system presented at 
the end of Section 3.8.8, Figure 3.8-12. The bundle adjustment method plays a signifi-
cant role in evaluating the multi-sensor data from such systems. The bundle adjustment 
equations (5.3-1) should be re-arranged so that the perspective centre coordinates Xoj, 
Yoj, Z0j do not appear as unknowns in the equations but as directly observed parame-
ters (constants) or, better, as "observed unknowns" (Section Β 3.5.7, Volume 2). If 
IMU data are available then the angles Wj, ψ3, Kj should be handled in a corresponding 
way. The grouping of GPS and IMU data into GPS and IMU models, as introduced 
in Section 5.4 for GPS and IMU-assisted aerotriangulation, is not normally required in 
close range work. Potential datum and calibration problems, and other error sources, 
can be more easily handled in terrestrial applications than in survey flights16. 

For the arbitrarily configured bundles found in close range photogrammetry, the accu-
racy of close range bundle adjustment can only be very approximately estimated with 
the previous rules of thumb (4.6-1) and (5.3-7). Here it is a condition that the camera 
rays intersect the object points at good angles and the entire block is surrounded by 
control points. The critical parameter in deciding accuracy is, as always in photogram-
metry, the camera-object distance. 

Numerical Example. Signalized points on a truck are to be measured using a P31 
normal-angle metric camera (c = 20 cm, see Section 3.8.3), at distances of about 5 m 
from the truck. Equations (5.3-7) yield the following estimates of accuracy: 

perpendicular to the camera axis: σ = ±0.003 χ 5/0.2 = ±0.075 mm 
along the camera axis: σ — ±0.00003 χ 5000 = ±0.15 mm 

Where images fill the format with a useable extent of 100 mm, the relative accuracy 
(Section 4.6) is: 

Perpendicular to the camera axis: 3/100000 « 1/33000 = 0.03%o 

Exercise 5.7-1. How would the accuracy change if a P31 wide-angle camera (c = 
10 cm) were used instead of the normal-angle camera? The camera-object distance 

16Extensive further reading on mobile mapping can be found in Section 3.8.8. 
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could then be halved without increasing the number of photographs. On the other hand, 
the shorter distance (wider angle) may increase the number of dead (invisible) areas in 
the object. (Solution: σ (perpendicular to camera axis) = ±0 .075 mm, σ (along camera 
axis) = ±0 .075 mm.) 

More comprehensive accuracy rules than the rule-of-thumb methods of Equations 
(4.6-1) and (5.3-7) have been given by, amongst others, Fräser17, Grün18 and Schlögel-
hofer19. These take into account control point layout, object shape and the number and 
quality of the intersections of rays through new points (Schlögelhofer's results are pre-
sented in Section Β 4.5.2, Volume 2). Since networks of photogrammetric bundles vary 
widely from project to project, the computer programs for the adjustment must estimate 
the variance of each new point from the inversion of the matrix of normal equations. 
In this way, it is possible to check whether the intersections in the object points are too 
narrow, whether a sufficient number of rays intersect in a point and whether the num-
ber and layout of the control points are satisfactory (if no free network adjustment has 
been made). Luhmann et al.20 also promote computer-supported measurement plan-
ning using the inverse of the normal matrix. Various orders of network optimization 
are defined for this concept21. 

"Ph.Eng. 53, pp. 487-493 , 1987. 
18IAP, Commission V, Stockholm, 1978. 
19Geow. Mitt, der TU Wien, vol. 32, 1989 
20Luhmann, Τ., Robson, S., Kyle, S., Harley, I.: Close Range Photogrammetry. Whittles Publishing, 

2006. 
21Further reading: Fräser, C.: in Atkinson (ed.): Close Range Photogrammetry and Machine Vision, 

pp. 256-281 , Whittles Publishing, 1996. Mason, S.: Mitt. Nr. 53, Institut für Geodäsie und Photogram-
metrie, ΕΤΗ Zürich, 1994. 



Chapter 6 

Plotting instruments and 
stereoprocessing procedures 

Stereoprocessing is central to this section, in the narrow sense of reconstruction of 
three-dimensional object models from corresponding points and lines in two-dimen-
sional metric images. The determination of the elements of exterior orientation, either 
for the whole block (Chapter 5) or separately for individual stereomodels (Chapter 4), 
however, must precede the actual stereoprocessing. This section is to a large extent lim-
ited to the processing of two overlapping metric images. Automatic digital processing 
will certainly be considerably more robust and reliable when more than two images are 
dealt with simultaneously. A human operator can observe only two images in stereo 
simultaneously. For a human operator the process of measurement, or of matching cor-
responding points and lines in two overlapping photographs, can most conveniently, 
quickly and accurately be carried out with the help of stereoscopy. The different sys-
tems for stereoscopic observation as well as the principle of stereoscopic measurement 
are now considered, not only for analogue but also for digital images. 

6.1 Stereoscopic observation systems 

A short preamble on natural spatial vision is given before the introduction of the dif-
ferent stereoscopic systems used by photogrammetric operators. 

6.1.1 Natural spatial vision 

When we observe a point Ρ and its surroundings, the axes of the two eyes are both 
directed towards P ; this is known as convergence. In addition the focal length, and also 
the aperture, of the lenses in the eyes are changed so that a sharp image is generated on 
the retina; this is known as accommodation. In the plane of observation, defined by the 
eyebase BA (which varies around 65 mm) and the fixed object point P, there will be 
two different images of the one object, one on each retina. In Figure 6.1-1 can be seen 
the difference in parallax pA which relates to the difference in distance between the 
object point Ρ and its neighbouring point Q. For simplification in the representation, 
in Figure 6.1-1 the direction of Q from the left eye is the same as that of P; their images 
in the left-hand retina coincide. With the head held upright, the plane of observation 
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P,= Q 

Horizontal plane Vertical plane 
of observation 

Figure 6.1-1: Natural stereoscopic vision 

is approximately horizontal; for this reason we speak, in the context of natural spatial 
vision, of horizontal parallax and differences in horizontal parallax. 

The fusion of the two retinal images, differing in horizontal parallaxes, resulting in a 
perception of three-dimensional space, is known as stereoscopic vision or stereoscopy. 
The smallest perceptible difference in angle d*y — 7P — 7q determines the resolution 
of stereoscopic perception or the stereoscopic acuity. This angle d-y lies in the range 
of about 5" to 10". Monocular acuity, on the other hand, is of the order of about 30". 
In relation to the standard "minimum distance of distinct vision" of about 25 cm, the 
stereoscopic acuity lies in the interval 6 μιη to 12 /im and the monocular acuity is about 
40 μπι1. Photogrammetric measuring accuracy is distinctly better (see Sections 2.1.7 
and 4.6). 

This improvement arises from optical or digital enlargement of the images, so that 
the acuity of the human eye is not the limiting factor of the man-machine processing 
system. 

On the other hand images exhibiting such differences in horizontal parallaxes ρ a can 
be fused into a single three-dimensional image only when the angle d-y is smaller than 
about 1.3 gon (about 1°12')· If this angle is exceeded either the foreground or the 

'Albertz, J.: ZfV 102, pp. 490-498, 1977. In comparison with the accuracy of measuring individual 
image coordinates, the different monocular and stereoscopic acuities result in a higher accuracy in the 
measurement of ξ-parallaxcs, although not in the anticipated ratio of 1 : 6 to 1 : 3. Further reading, which 
also contains advice on additional literature, may be found in: Schenk, Τ.: Digital Photogrammetry. Terra 
Science, 1999. 
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background appears to dissolve into two separate images; one can easily verify this by 
experimentation (but see Section 6.1.2(a)). 

In contrast to the horizontal parallaxes ρ a (Figure 6.1-1), which lie in a plane con-
taining the eyebase B A , vertical parallaxes are defined as being perpendicular to the 
eyebase. Homologous rays emanating from object points produce no vertical paral-
laxes since the rays are of necessity coplanar. In natural stereoscopic vision there are, 
therefore, no vertical parallaxes. 

Exercise 6.1-1. For an observer lying on his side, his eyebase is vertical. Think criti-
cally about the implications for the definitions of horizontal and vertical parallaxes. 

6.1.2 The observation of analogue and digital stereoscopic images 

Suppose that two images have been taken with parallel axes normal to the base (the 
"normal case"); they will exhibit horizontal parallaxes in the direction of the base but 
no vertical parallaxes perpendicular to the base (Section 2.1.5). They can subsequently 
be presented to the two eyes. The observer interprets the horizontal parallaxes as sig-
nifying differences in depth in a virtual spatial image. One speaks also of a three-
dimensional image (3D picture). 

Before dealing more closely with the observation of stereoscopic images, principles 
should be set down as to how one arrives at stereoimages with horizontal parallaxes 
but without vertical parallaxes: 

• "normal case" photographs taken, for example, with a stereometric camera (Sec-
tion 3.8.2) 

• conversion of arbitrarily oriented photographs into the "normal case" using the 
elements of interior and exterior orientation (the favoured method in the process-
ing of digital metric images Section 6.8.5.2) 

• projection, with oriented projectors, of arbitrarily oriented photographs onto the 
xy plane of a relatively oriented stereomodel (the standard method in analogue 
photogrammetry with optical projection Section 6.3(a)) 

• observation of arbitrarily oriented photographs not in a common image plane but 
in two separated image planes; the photographs have previously been oriented 
according to the elements of relative orientation (standard method in analogue 
photogrammetry with mechanical projection instruments, Section 6.3(b)) 

• observation of arbitrarily oriented photographs in a common image plane while 
a mechanism is running in the background using the elements of relative orienta-
tion to remove vertical parallaxes (standard method of analytical photogramme-
try, Section 6.4) 
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(a) observation of analogue stereoscopic images 

In the observation of two stereoscopic photographs lying side by side at approximately 
25 cm, the minimum distance of distinct vision, an uncommon demand is made of 
the two eyes. With their axes almost parallel, that is with near-zero convergence, the 
eyes are being asked to accommodate at a short focussing distance, that is, they are 
being asked to overcome the unconscious reflex which normally imposes coordination 
of focus and convergence. After long practice and with the exercise of considerable 
will power, perhaps aided by the positioning of a sheet of card or paper between the 
two images so as to separate them visually, fusion can be achieved with the naked eye, 
resulting in a more or less sharp stereoscopic image. 

Stereoscopic observation can, however, be made significantly easier if one places the 
photographs under a lens stereoscope (Figure 6.1-2). The rays entering the eyes are 
almost parallel and, if the photographs are a distance / below the lenses, their virtual 
images are at infinity and may be viewed with ease and comfort. 

Large format photographs require the use of a mirror stereoscope (Figure 6.1-3). In 
most such instruments optical systems are placed above the lenses L\ and L2 so that 
sections of the images can be seen magnified. 

Figure 6.1-3: Mirror stereoscope {e\ + ej + e-i — / ) 
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In most analogue and analytical stereoplotters (for example Figure 6.3-2b) stereoscopic 
observation occurs by way of lenses or mirror stereoscopes in conjunction with com-
plicated optical systems. 

Some analogue stereoplotters employ superimposed stereoscopic images (see, for ex-
ample, Figure 6.3-1). Figure 6.1-4 shows superimposed stereoscopic images of a pyra-
mid. The eyes converge and accommodate in the accustomed way at a comfortable 
short distance but each eye sees both of the two-dimensional images. Suppose, how-
ever, that the left-hand image has been coloured cyan and the right-hand one red and 
that a filter in the complementary colour has been placed in front of each eye (Sec-
tion 3.2.2.1). Then each eye will see only one image in black, while the other image 
will disappear; the two black images will be fused in the usual manner into a three-
dimensional, stereoscopic image. This anaglyph system, as it is known, is very suitable 
for the printing of stereoscopic images. Coloured images, however, cannot be observed 
in this manner. 

Figure 6.1-4: Superimposed stereoscopic images of a pyramid (from cameras as illus-
trated in Figure 6.1-8). Solid lines for the left image, broken lines for the right 

(b) observation of digital stereoscopic images 

Digital stereoscopic images can also be observed with either a lens stereoscope or a 
mirror stereoscope if the two images are presented to the eyes, either on two screens 
side by side or on a single, split screen. The anaglyph system mentioned above can 
also be applied. 

Digital stereoscopic images offer other, very interesting, variations, one of which is 
sketched in Figure 6.1-5. The two images alternate on the same screen and are ob-
served through spectacles incorporating LCD shutters. An infra-red system controls 
the synchronization of the spectacles and the screen (Figure 6.1-5); if the frequency of 
alternation of the images exceeds 50 Hz a continuous stereoscopic image is observed. 

A second variant is shown diagrammatically in Figure 6.1-6. Under the control of a 
synchronizer the two images alternate in time in a bitmap memory and on a polar-
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Figure 6.1-5: Shutter glasses for stereoscopy 

Image display 
monitor 

Polarized screen 

Polarized 
glasses 

Figure 6.1-6: Polarization for stereoscopy 

ized screen. Stereoscopy results with the use of correspondingly polarized spectacles 
(Figure 6.1-6). Polarization today also uses LCD systems. 

Both these variants of stereo-observation can be used simultaneously by more than one 
person. As a result, difficult problems of interpretation can be discussed by a group 
while observing the stereomodel. 
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(c) additional information concerning stereoscopy 

The second set of methods for the stereoscopic observation of digital images, which 
may be denoted passive stereoviewing, requires simple spectacles, as opposed to the 
first methods which may be denoted active stereoviewing. From the point of view of 
the operator, both variants have advantages and disadvantages, the first usually provid-
ing better image quality since there is no filter while the second variant uses light and 
cheap spectacles. Stereoviewing over many hours is relatively demanding whichever 
variant is considered, especially when the frequency of the images is low. For this rea-
son, for detailed stereoscopic study many operators still prefer analytical stereoplotters 
with analogue images on film. At present great efforts are being made in research and 
development to produce stereoscopic images which could be viewed without specta-
cles, filters and so on. Such systems would offer many advantages. Interesting illusions 
can be produced also when observing stereoscopic images. If, for example, one inter-
changes the red and cyan filters in the anaglyph method, the tip of the pyramid in 
Figure 6.1-4 no longer appears to lie above the square base but beneath it. Instead of 
the orthoscopic effect the pseudoscopic effect is observed. When viewing aerial pho-
tographs pseudoscopically one gets an inversion of the relief in which mountain ridges 
become valleys, streams flow towards their source and so on. 

Stereoscopic perception can also be disturbed. Thus the limit of 1.3 gon (1°10') (Sec-
tion 6.1.1) should not be exceeded in the section of the image under observation. 
Schwidefsky/Ackermann gives another measure for the limiting value for stereoscopic 
vision: the difference in scale between the sections of the left and right images being 
viewed should not be greater than 14%. Since in high mountains and in terrestrial im-
ages this limit is frequently exceeded, provision of individual zoom controls for each 
image is of great assistance in stereoplotters. 

As well, the density or the colour of the two images should not be greatly different. 
The procedures for enhancement of digital images reviewed in Section 3.5 are also of 
great significance for stereoscopy. All in all, however, the human eye is very tolerant: 
even when one eye is presented with an RGB image (Red/Green/Blue) and the other 
eye with a B&W (Black and White) image a spatial impression (in colour) is obtained. 
The sole condition is that the intensities of the RGB image should, to a large extent, 
match those of the B&W image; one makes use of this when observing images from a 
three-line camera (Section 3.7.2.3). 

Provided that the geometrical parameters of the photographed scene are of no impor-
tance but that it is the significance of individual objects that is under investigation, 
one frequently dispenses with a complete orientation of the images and with three-
dimensional geometrical processing. Instead, for such photointerpretation one makes 
only a makeshift orientation as sketched in Figure 6.1-7 in which it is assumed that the 
photographs have been taken with the camera axis near-vertical, typically the case in 
air photo-interpretation. This consists simply of laying the two photographs on a plane 
surface for observation and aligning the principal point bases (Figure 6.1-7) whereby 
the vertical parallaxes are removed, admittedly only along this common straight line; 
with increasing distance of the image region from this favoured line, however, the 
vertical parallaxes increase, depending on such things as the tilts. Nonetheless, with 
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stereometers or parallax bars, as they are called, horizontal parallaxes, and thus the 
^-parallaxes between two particular points can be measured and from these the height 
difference between both 3D points computed. Detailed discussion of these methods 
and their limitations were to be found in older textbooks. 

Photo 1 

, pp1 
Ip2 

Photo 2 

pp2 , 

P P ^ 

Figure 6.1-7: Orientation of near-vertical images for stereoscopy 

(d) spatial impression in stereoscopic observation 

The question remains to be asked concerning the extent to which the virtual spatial 
image arising from two stereoscopic images is distorted with respect to reality. The 
relationships with respect to the photograph, both wide angle and normal angle, are 
shown on the left of Figure 6.1-8 and on the right are sketched those relating to stereo-
scopic viewing. BA is the eyebase. The virtual spatial image has come nearer to the 
observer by the factor H/DA ; Η is the flying height and DA the apparent distance at 
which the virtual model is formed. 

The quantity DA depends on the design of the stereosystem, on the observer and also 
on the image quality. Unexpectedly, DA is independent of the magnification of the ob-
serving equipment and also of the separation of the two images as they lie beneath the 
stereoscope. One can easily satisfy oneself with respect to this physiological phenom-
enon by experimental magnifications and shifting of the images. For lens and mirror 
stereoscopes with greatly differing magnifications and different image material the ap-
parent distance DA is found to lie in a range2 from 35 cm to 60 cm. In the case of dig-
itally superimposed images, as in Figures 6.1-5 and 6.1-6, DA is the distance between 
the eyebase and the screen; in this case DA can, in principle, be arbitrarily increased 
from the initial value of the minimum distance of distinct vision, approximately 25 cm. 

As the observed virtual 3D-image comes closer by the factor Η / D A its scale in relation 
to reality also decreases, to be precise, in object planes parallel to the image planes by 
a factor H/(cv), where Η is the flying height, c the principal distance of the taking 
camera and υ the enlargement factor of the stereo-observing instrument. For digital 
images on the screen υ is the zoom factor. 

Of greatest importance is the question of the degree to which, in the observation of 
stereoimages, the dimensions of objects in the direction of the camera axes are exag-
gerated in relation to vertical distances. Using the notation of Figure 6.1-8 this vertical 

2Miller, C.: Ph.Eng. 24, pp. 810-815, 1958, and 26, pp. 815-818, 1960. Collins, S.: Ph.Eng. 47, 
pp. 45-52, 1981. (For good stereo-observers DA is small.) 
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exaggeration factor is defined as: 

6 2 = Δ ^ : ΔΧ ( 6 · 1 " 1 ) 

The values ΑΧ and ΑΧ a can be expressed as the 71th part (for Figure 6.1-8 η = 4) of 
the camera base Β and of the eyebase Β A 65 mm) respectively: 

AX = Β/η AX A = Β A/η (6.1-2) 

The values AZ and AZA follow from the first relationship of the equation system 
(2.1-32), in which —Z is substituted for the flying height H: 

ΑΖ = Ηυ-ΗΡ = ^ - - ^ - = (6.1-3) 
Ρξ,υ Ρζ,Ρ Ρξ,υΡξ,ρ 

The parallax ρξ// is also there in the observation of the virtual spatial image, so that 
the "apparent principal distance" CA may be derived from the first relationship of the 
equation system (2.1-32) as follows 

CABA 
Da = => cA = — 

Ρξ,υ Β A 
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Then, in accordance with equation (6.1-3): 

Δ Ζ λ = 0ΑΒΑ
Ρξ'ρ-ρξ'υ = Dm,uBAPt,P-P(,u = DAPi,P-Pt,u 

Ρξ,υΡξ,ρ Ba Ρζ,υΡζ,ρ Ρς,ρ 

Substituting from Equation (6.1-2) to (6.1-4) in Equation (6.1-1) gives: 

_ D A P m l _ D A B _ Β BA Λ 
62 ~ BaC ~ BaH ~ Η ' DA ^ j 

Result: The height exaggeration factor ez is the ratio of the base/height factor B/H 
of the stereopair to the base/distance ratio Β A/DA in the observation of the virtual 
three-dimensional image. 

Table 6.1-1 gives the height exaggeration factor ez in the case of normal angle, wide 
angle and super-wide angle photographs with an image format of 23 cm χ 23 cm and a 
60% forward overlap (base/height ratios are given in Table 3.7-1). 

Normal angle Wide angle Super-wide angle 
c [mm] 300 150 85 
B/H 1 : 3.3 1 : 1.6 1 : 0.9 
ez 1.9 3.8 6.7 

Table 6.1-1: Height exaggeration factor ez in the observation of stereoimages with 
60% forward overlap when BA/DA = 65 : 400 = 1 : 6.2 

A disproportionate spatial impression, an increased spatial quality, is observable when 
examining normal aerial photographs stereoscopically. This exaggeration of relief in 
the virtual spatial image plays a significant role in photo-interpretation. In photogram-
metry, on the other hand, there is usually no need to worry about the phenomenon. 
The stereoscopic effect serves simply to hasten the matching of corresponding points 
in both images and to aid in accurate setting of the measuring mark on a required point 
in the spatial image. 

Exercise 6.1-2. Make a superimposed drawing in two complementary colours of Fig-
ure 6.1-4 and observe it, both orthoscopically and pseudoscopically, through filters of 
complementary colours. 

Exercise 6.1-3. In order to see an undistorted stereoscopic impression of images from 
Wild or Zeiss fixed-base stereocameras (Section 3.8.2), what camera-to-object distance 
should be used? (Answer: 2.5 m and 7.4 m, respectively, for camera bases of 40 cm and 
120 cm.) 

6.2 The principles of stereoscopic matching and measurement 

A (virtual) three-dimensional measuring mark is used for the geometric analysis of 
the stereomodel, the three-dimensional image, presented to the operator. The operator 



296 Chapter 6 Plotting instruments and stereoprocessing procedures 

sets this three-dimensional measuring mark on points and traces it along lines, in this 
manner abstracting information from the images, converting it to discrete values. The 
stereoplotter becomes a 3D digitizer. In this process of analysis the photogrammetric 
operator brings his knowledge and judgment to the choice of points and lines, interpret-
ing their significance and capturing their meaning in encoded form. In this way human 
vision, recognition and recall are put to service in the processing of the stereomodel. 
Machine vision, which is not considered in more detail until Section 6.8, attempts to 
transfer this whole process to the computer. 

This section concentrates on the design and operation of the three-dimensional mea-
suring mark mentioned above, beginning with those measuring marks used with lens 
and mirror stereoscopes. 

(a) beneath a lens or mirror stereoscope 

One uses two real measuring marks which can be moved over the surface of the 
two-dimensional images (Figure 6.2-1). The two images fuse into a virtual three-
dimensional image and, so long as no vertical parallax exists, the two measuring 
marks M\ and M2 also fuse into a single virtual three-dimensional measuring 
mark, known as the floating mark. If the right-hand mark moves from the posi-
tion (M2) to the correct M2, then the virtual three-dimensional measuring mark 
will appear to move from the position (M) to the position Μ in the virtual spa-
tial image. Shifting of the measuring marks in the two-dimensional images is 
perceived as a vertical displacement of the floating mark in the virtual spatial 
image. 

After the floating mark has been set on a definite object point, the real measuring 
marks M\ and Mi each coincide with the image of that point in their respective 
two-dimensional photograph. With appropriate measuring systems the image 
coordinates can be determined in each image (Section 6.4). 

Digital images may be viewed in analogue form as images on two screens or on 
a single split screen; in this case the cursors on the screen(s) can serve as the real 
measuring marks. 

(b) with digitally superimposed images 

The discussion is limited to digitally superimposed images that are displayed ei-
ther as alternating real image sequences (Figure 6.1-5) or as alternating polarized 
images (Figure 6.1-6). There is only a single cursor which one sees in both im-
ages. If the cursor is not located on homologous images then the floating mark 
is perceived as hovering either above or below the virtual surface. In order to 
set the floating mark on the virtual surface one or both of the images must be 
shifted in the direction of the base. The cursor then becomes a 3D cursor; its ap-
parent vertical movement relative to the virtual surface can be controlled by the 
operator, using a wheel on a mouse-like device. With the wheel one of the two 
images can be displaced in the direction of the base until the 3D cursor lies on 
the surface of the stereomodel (as in Figure 6.2-1). Following this stereoscopic 
setting on a point one knows the positions, in other words the image coordinates 
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marks 

ξ and η, in both images; so both corresponding points are located and stereo-
scopically matched. Using the recorded image coordinates and the elements of 
interior and relative orientation, or in other cases the exterior orientation, the xyz 
coordinates are computed in real time, or in the latter case the X Y Z coordinates 
(Sections 4.3.2 or 4.1). 

6.3 Analogue stereoplotters 

Between about 1910 and about 1970 probably more than a hundred different types of 
analogue plotters were designed and constructed. They are mentioned here for histori-
cal reasons and are of minor importance nowadays. 

In an analogue stereoplotter the position and orientation of the taking cameras is re-
produced at a reduced scale. The relationship is established, by means of optical and 
mechanical components, between the model of the object at a reduced scale and the 
two metric images at their original scale. Two principles of design which have been 
developed may be described either as optical projection or as mechanical projection. 

(a) principle of optical projection 
A widely used stereoplotter with optical projection was developed by the Amer-
ican firm Kelsh (Figure 6.3-1). Both projectors are set up for an image format 
of 23 cm χ 23 cm. They have the same interior orientation as the camera used 
to take the photograph. After setting of the exterior orientation the intersection 
points of corresponding rays define a true model without geometric distortion. 
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Figure 6.3-1: Kelsh-Plotter3 

Each projector may be rotated through angles ω, ψ and κ; this allows the rela-
tive orientation (independent model method) to be carried out. The rotations Ω 
and Φ required for absolute orientation (levelling the model) may be set using 
the footscrews (5). Since the model scale is determined by the ratio of the base 
length in the model to the base from the photoflight, the desired model scale may 
be set by shifts of both projectors. Note that the complete process of relative and 
absolute orientation may be carried out without computational aids. 

Stereoscopic observation is by the anaglyph method (Section 6.1.2(a)). A light 
spot on the table (6) is used as the floating mark for stereoscopic setting on the 
model surface. The links (10) ensure that the lamps (9) project corresponding 
portions of the images. 

(b) principle of mechanical projection 
In mechanical projection each straight line joining image point, perspective cen-
tre and object point is represented by a link, known as a space rod, usually in 
the form of a slender rod of cylindrical cross-section which rotates about one 
of the perspective centres. The principle of mechanical projection is briefly ex-
plained with reference to the Wild Aviograph (Figure 6.3-2a). The object point 
is driven in the x, y and 2 directions on a three-dimensional cross slide system. 
The space-rod is mounted 

• at the object point in a ball-joint 
• at the perspective centre in stationary gymbal axes (also known as a Car-

dan(ic) mount) 
3Kelsh, H.T.: Ph.Eng. 14, p. 11, 1948. 
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• at the image point in a ball-joint connected to the photo-carrier which may 
be translated in a plane 

The portions of the space rod connected to the ball-joints may be lengthened or 
shortened along their axes, often referred to as being telescopic. 

Each photo-carrier can be rotated through angles ω and φ, the axes of rotation 
passing through the respective perspective centre. In addition each image can be 
rotated in a plane about its principal point (κ rotation). The longitudinal tilt of 
the model Φ can be set on an adjustment screw (Φ in Figure 6.3-2a). The other 
inclination of the model for absolute orientation Ω is set directly with ω\ and ωι 
on the two photo-carriers. 

Corresponding to the principal distance is the distance of each perspective centre 
from that plane which is parallel to the tilted plane of the image and which passes 
through the centre of the image point ball-joint. This ball-joint, at the upper end 
of the space rod, moves the photo-carrier on a two-dimensional cross slide under 
the control of the space rod. 

A measuring mark M, a light-spot illuminated by the light source L (see the 
left-hand part of Figure 6.3-2b), is fixed in the lower, stationary part of the tilted 
photo-carrier. The beam-splitter F causes the measuring mark Μ to be reflected 
into the optical system and brought into coincidence with the image point Pi . 

After absolute orientation which, as has already been mentioned, can be carried 
out without numerical computation, the operator sees a virtual three-dimensional 
image not only of a section of the images but also of the measuring mark. Now 
he moves the x, y, ζ cross slides, and with them both images, until the two mea-
suring marks coincide with the image points Pi and P2; that is, the floating mark 
has been set stereoscopically on point Ρ and its object coordinates have been 
found. 

An important special feature of almost all analogue stereoplotters is the Zeiss 
parallelogram. On the one hand it allows the perspective centres to remain in 
fixed positions in the instrument and, on the other hand, it avoids the difficult 
problem of mechanical intersection of the space rods in order to find the object 
point. The base is introduced by relative movement not of the perspective cen-
tres, as in the Kelsh plotter, for example (Figure 6.3-1), but of the ends of the 
space rods; this is achieved in the Aviograph AG1 by adjustment of b and 
(Figure 6.3-2a). More information on the Zeiss parallelogram and on analogue 
stereoplotters is to be found in older textbooks. 
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L Illumination for the F Beam splitter 
measuring mark Κ Eyepiece 

Μ Measuring mark 
(b) Optical system 

Figure 6.3-2: Aviograph AG1 

6.4 Analytical stereoplotters 

It is an interesting fact that until the end of the first decade of the 20th century virtually 
all photogrammetry applied analytical methods. From that time for more than half a 
century analytical methods were displaced by analogue procedures in plotting. This 
situation is rapidly changing with the advent of high-speed computers. 

6.4.1 Stereocomparators 

It is very simple to explain the mode of operation of a stereocomparator in terms of the 
cross-slide system shown in Figure 6.4-1. 
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Figure 6.4-1: Diagram of a stereocomparator 

The two images may be moved in coordinate directions corresponding to the perpen-
dicular cross-slides. The two measuring marks M\ and Mi are fixed in the focal planes 
of the eyepieces. Images of parts of the photographs are also focused in these planes, 
so that the measuring marks may be set stereoscopically on object points (Section 6.2). 

Disregarding the zero settings for the time being, such a stereoscopic setting yields the 
image coordinates ξι and η\ on the lower cross-slides and the parallaxes ρς = ξ\ — ξι 
and ρη = ηι — r/2 on the upper cross-slides from which the image coordinates £2 and 772 
may be derived. So that these uncorrected image coordinates from the stereocompara-
tor scales may be transformed into the camera coordinate system, it is also necessary 
to measure the coordinates of the fiducial marks (Section 3.2.1.2). 

When the image coordinates are recorded by a human operator, the X Y Z object coor-
dinates of the measured points are found by computation using analytical photogram-
metry. Since in its early days photogrammetry was concerned exclusively with ter-
restrial photographs, usually conforming to the "normal case", the labour involved in 
calculation of object coordinates was kept within limits4. 

Advances in analytical photogrammetry received a very decisive stimulus with the de-
velopment of electronic data-recording and electronic data processing. At this point 
electronic data registration should be introduced. 

4In 1909 Eduard von Orel constructed the Stereoautograph, an instrument for "automatic" plot-
ting from stereoscopic photographs, circumventing this computational labour (Mitteilungen des k.u.k. 
Militärgeographischen Institutes XXX, pp. 63-93, Wien, 1910). In England F. V. Thompson was slightly 
before von Orel in the design and use of the Vivian Thompson Stereoplotter (Atkinson, K.B.: Ph.Rec. 
10(55), pp. 5-38, 1980. Atkinson, K.B.: Ph.Rec. 17(99), pp. 555-556, 2002). Both Thompson and Orel 
solved the simple equations of the "normal case" (3.8-1) by means of lineals; at one end these were 
fixed to the slides of the stereocomparator; at the other end they controlled a drawing device. The in-
struments permitted the continuous drawing of plan detail and contours. Recent publications touching 
on the historical development of the stereocomparator and the stereoplotter include Meier, H.-K.: ZfV 
128(1), pp. 6-10 ,2003, and Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close Range Photogrammetry. 
Whittles Publishing, 2006. 
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6.4.2 Electronic registration of image coordinates in the 
monocomparator 

An efficient system for the registration of image coordinates is explained on the ba-
sis of the precise comparator PK1 from the firm of Zeiss5 (Figures 6.4-2 and 6.4-3). 
Two glass scales at right angles to each other are fixed with respect to the baseplate. 
The image to be measured lies on a photo-carriage which can be translated in two di-
mensions without rotation; the left-hand and the upper borders of this photo-carriage 
each carries a series of equidistant lines. Two linear pulse generators measure the dis-
placements of the image. The measuring mark Μ is stationary. As in the instrument 
shown in Figure 6.4-1, it is situated in the focal plane of the optical system. The rel-
ative movements of the individual parts of the monocomparator can be studied with 
the aid of Figure 6.4-2 which shows, in broken and continuous lines respectively, their 
positions when measuring points 1 and 2. 

Base plate 

position for measurement of point 1 
position for measurement of point 2 

Figure 6.4-2: Principle of the Zeiss precision comparator PK1 

5Schwebel, R.: ZfV 104, pp. 157-165, 1979. 
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Figure 6.4-3: Linear impulse generator (Since it has no influence on the measuring 
principle, the parallel guidance system is not illustrated). The photograph, the photo-
carrier, the light source and the photodiode move together; the scale and the measuring 
mark are fixed. 

The linear pulse generator (Figur 6.4-3) warrants a closer examination. On the mea-
suring scale as well as on the photo-carriage, not only the width but also the separation 
of the lines is 20 μηι. Rays coming from the light source and falling on a line are fully 
absorbed; they are totally reflected from the regions between the lines on the photo-
carriage. When the lines on the photo-carriage are moved 10 μηι to the left from a 
position in which they are aligned with the graduations on the scale (Figure 6.4-3), 
only 25% of the emitted light falls on the photodiode D, which translates the incident 
light into electrical current in proportion to the intensity of illumination. If the photo-
carriage is then moved to the left the current will increase. The maximum of 50% is 
reached when the graduations on the photo-carriage are moved 20 μηι out of alignment 
with the graduations on the scale. A further movement to the left reduces the current, 
and so on. 

The number of minima and maxima transmitted from the diode D to a counting system 
defines the image coordinates as a multiple of 20 μτη intervals. Subdivision of the 
20 μηι intervals occurs through digitization of the electrical signal; in the case of the 
PK1 this is done in 20 steps which corresponds to an increment of 1 μηι. The image 
coordinates ξ and η which are passed to the computer are obtained by measuring the 
extreme value and digitizing the electrical signal. 

The accuracy of a comparator is very much dependent on its design, especially on the 
extent to which the Abbe comparator principle is fulfilled. This fundamental princi-
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pie means that the distance to be measured and the measuring scale should, so far as 
possible, lie in one straight line. 

The greater the distance d between the scale and the segment I to be measured (Fig-
ure 6.4-4), the larger the measurement error Al attributable to out-of-squareness, such 
as might be caused by a defective parallel guidance system of the photo-carriage. The 
Abbe comparator principle is strictly adhered to in the monocomparator PK1 (Fig-
ure 6.4-2) as opposed to the stereocomparator sketched in Figure 6.4-1 in which it is 
not. 

For this reason no great accuracy requirement is placed on the parallel guidance system 
for the photo-carrier in the PK1. The accuracy of the PK1 is more or less determined 
by the accuracy of the glass scales and the accuracy with which the measuring mark 
Μ can be held fixed in relation to the two scales. All these causes of error together 
result in a mean square coordinate error of only ±1 μτη, an error which is less than 
that arising for other unavoidable reasons in photogrammetry, such as irregular film 
distortion which can amount to about ±3 μτη (Section 3.2.1.1). 

Figure 6.4-4: Measurement of segment I without regarding the Abbe comparator prin-
ciple 

6.4.3 Universal analytical stereoplotter 

The union of a stereocomparator (Figure 6.4-1) and electronic image coordinate regis-
tration (Section 6.4.2) results in an analytical stereoprocessing instrument, with which 
the operator is able to register corresponding points in both images, upon which the 
3D coordinates of the object point are automatically determined in the computer linked 
to the instrument. Each photo-carrier requires its own electronic coordinate registra-
tion system, by virtue of which such an analytical stereoplotter may be classified as 
an image space plotter. Image coordinates are the starting point for command of the 
instrument and there is no feedback from the computer to the photo-carriages or the 
measuring mark. 
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Figure 6.4-5: Universal analytical stereoplotter 

The efficiency and generality of such an instrument can be increased in a fundamen-
tal way by means of a dominant incorporation of the computer in the processing, as 
illustrated by the schematic diagram in Figure 6.4-5. This kind of instrument is fre-
quently classified under the rather clumsy heading of an "analytical plotter with object 
coordinates primary" since the starting point for command of the instrument consists 
of the XYZ object coordinates6. Using two handwheels and a footwheel the oper-
ator sets an object point in the XYZ coordinate system; alternatively, a 3D mouse 
may be used as described in Section 6.2. From this xyz coordinate vector and using 
the elements of interior and exterior orientation, the computer determines the corre-
sponding image coordinates ξι,ηι,ξ2,η2, also taking account of all image refinements 
(Section 4.5). A prerequisite is that four servomotors should be capable of driving the 
two photo-carriages to the appropriate positions corresponding to image coordinates 
ζ\,ν\,ξ2,ν2', to accomplish this positioning operation four linear impulse generators 
(Figure 6.4-3) register with the computer the image coordinates corresponding to the 
current position of the photo-carriage. These coordinates are then compared with the 
required image coordinates and, corresponding to the existing differences, commands 
are given to the four servomotors for translation of the photo-carriers. This loop is re-
peated approximately 50 times per second. For all practical purposes the procedure is 
instantaneous; such processes, running rapidly under digital control through electronic 
data-processing, are known as real-time processes and programs necessary for them as 
real-time programs. 

6Plans for a universal analytical stereoplotter were patented by U. Helava as early as 1957 (Phia 
XIV, pp. 89-96, 1957/58 and Ph.Eng. XXIV, pp. 794-797, 1958). It was another 20 years before the 
well-known firms extended their product range to include analytical plotters. Many references for further 
reading are to be found in: Petrie, G.: ISPRS Journal 45, pp. 61-89, 1990, and ITC-J, Volume 4, pp. 364-
383, 1992. 
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The control process by which the two photographs are moved under the stationary 
measuring marks M\ and Mj (see Figure 6.4-5) is set in motion by the operator of 
a universal analytical plotter using rotation of the two handwheels and the footwheel, 
that is by the setting of the object coordinates Χ, Υ, Z. If the object coordinates Χ, Υ, Ζ 
describe a continuous sequence of points on the surface of the object, the operator sees 
the floating mark moving smoothly along this point sequence on the stereoscopically 
observed model. The operator must aim to turn the handwheels and the footwheel 
in such a way that the floating mark remains in coincidence with the surface of the 
stereoscopically perceived object model. 

Exercise 6.4-1. Using aerial photographs (1 : mB = 1 : 30000) a stereomodel is 
set up in an analytical plotter. After introduction of the Earth curvature correction 
the terrain height differs by 75 cm between the middle of the model and the corners. 
Check whether this discrepancy agrees with the fact of Earth curvature. (Answer: This 
difference is exactly in accordance with Earth curvature for this stereomodel) 

6.5 Digital stereoplotting equipment 

Because analogue photographs are used in analytical stereoplotters, relatively expen-
sive components are necessary, for example drive mechanisms employing servomotors 
for the photo-carriages. If, on the other hand, digital photographs exist, translations of 
the two images can take place on the computer screen beneath stationary measuring 
marks. With such a digital stereo-processing instrument, therefore, the operator con-
trols the processing by moving a "3D mouse" (Section 6.2) on the table and rotating 
the handwheel. The "3D mouse" defines the X Y Z coordinates of a point sequence in 
the object model. If this digitized line runs along the object surface the operator sees 
the floating mark glide down this line in the stereoscopic model. Just as with an an-
alytical stereoplotter, the task of the operator consists of moving the "3D mouse" and 
rotating the handwheel so that the floating mark remains in contact with the perceived 
stereoscopic model. 

The requirement for digital displacement of both images in real time according to this 
principle of a digital stereoplotter is very demanding. For the observation of digital 
stereoimages (Section 6.1.2(b)) liquid crystals provide an image repetition frequency 
of at least 50 Hz for each of the two images. If two images in sequence are shifted by 
just one pixel, for a typical pixel size of 15 μιη the speed of displacement of the image 
is: 

50 Hz χ 15/im = 0.75 mm/s = 45mm/min 

That is a relatively low speed for operator digitizing of 3D lines in the stereomodel. 
Therefore, for higher digitizing speeds or in the case of images with a smaller pixel 
size, the image repetition frequency must obviously be raised above 50 Hz. 

A still greater problem than that of repetition frequency is the large image matrix of 
digitized photographs which, as an example, for an aerial photograph with a pixel 
dimension of 10 μπι amounts in total to 23000 χ 23000 pixels requiring approximately 
0.5 GByte of space. The mentioned image data management can be handled as follows 



Section 6.6 Computer-supported manual methods of analysis 307 

(Figure 6.5-1). The screen has for example 1280 χ 1024 pixels. In what is called the 
display memory of the graphic processor, which permits real-time access, a section 
of the total image is held available, perhaps four times larger than the screen. If the 
image excerpt on the screen approaches the edge of the segment in the display memory, 
the display memory is appropriately updated from the main storage of the computer, 
usually from a disk. For this purpose a precalculated direction of movement in the 
stereomodel, on the basis of the line already digitized, is very helpful. In the case when 
only coarse digitizing of a particular line is required (because, for example, the snake 
algorithm will carry out automatic refinement of the measurements, Section 6.8.7.1) a 
coarser image from the image pyramid (Section 3.6.1) can be held ready. As a result 
the region of the image from which the screen display can be updated in real-time is 
expanded. In many digital stereoplotters the zoom adjustment, controlled from the "3D 
mouse", occurs in conjunction with different levels of the image pyramid. 

Expected direction 
of roaming 

Digital 
image 

Computer 
screen 

Display 
memory 

Figure 6.5-1: Different portions of an image for roaming in real-time 

Further details of the roaming, so important for digital stereoplotters, may be found in 
Schenk, Τ.: Digital Photogrammetry, TerraScience, 1999, and elsewhere. 

As a result, digital stereoplotters are distinguished by the fact that they do not only 
permit manual operation but also reach a high level of automation. This is not con-
sidered in detail until Section 6.8. First various manual procedures, with considerable 
computer support, are dealt with. Subsequently (Section 6.7) the accuracy of computer 
supported processing is discussed. 

6.6 Computer-supported manual methods of analysis 
Dependent on the desired results there are various ways of working. Individual object 
points can be selected in analytical and digital plotters by manually changing the X Y Z 
coordinates, thus determining object coordinates (single point measurement). If one 
follows along a line in the model in three dimensions, such as the edge of a street or a 
wood, the coordinates of a dense sequence of points on this line are determined (line 
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measurement). If the Ζ coordinate is left unchanged and if the floating mark is kept in 
contact with the surface of the stereoscopic model while changing only the X and Y 
coordinates, a contour line is digitized (contour measurement). When measuring lines 
a choice may be made between recording at constant intervals in time or at constant 
intervals in distance. In areas of higher curvature a greater density of points results 
when recording at constant time intervals, for here the operator moves more slowly. 
The interplay of various methods of working will be examined more closely in the 
following sections. 

6.6.1 Recording in plan 

Photogrammetric processes are always three-dimensional. The nature of many tasks is 
such that only two-dimensional measurement is required (measurement in plan). The 
third dimension, the height, is always available, but is either ignored or registered as an 
attribute of the plan point. 

Figures 6.6-1 and 6.6-2 show typical results in plan. Figure 6.6-1 portrays photogram-
metric output from an analogue instrument (Section 6.3). It is a manuscript which 
must be revised and completed, a process which requires about as much time as for its 
production on the analogue plotter. Computer support, therefore, is of great economic 
importance in photogrammetric plotting. 

It is seen that, to a great extent in the large-scale field, computer-supported plotting 
delivers the final product. (Generalized representation at smaller scales, on the other 
hand, is carried out by cartographers, frequently by hand.) Prerequisites for creating 
the final product with a computer-supported system are convenient means of erasure, 
insertion and changing (editing) of recorded information. 

Figure 6.6-1: Photogrammetric manu- computer assisted photogrammetric 
Figure 6.6-2: Graphical output from 

script from analogue plotting plotting 
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Figure 6.6-2 shows a typical computer assisted photogrammetric product. Without 
going further into the algorithmic and technical computing side, the elements of such 
a plot are created as follows: 

Buildings: The operator drives around the corner points of a building in turn. After 
storing these points one by one the operator gives the command to "square up" the 
connecting lines. The area defined in this way can be automatically hatched. Many 
computer assisted plotting systems offer the further possibility that, when the operator 
has driven around all but one of corner points of a building, the computer completes 
the final one. 

Roads and railway lines: Instead of laboriously driving down long lines in plan as is 
necessary with an analogue plotter, the operator of a computer assisted plotter has only 
to set accurately on a few points; the computer then connects these by interpolation 
either with a polygon or with a higher order curve, as desired. A further possibility 
which is of special interest when plotting railway lines is that only one line is recorded 
in this way; the computer is instructed to add one, or more, parallel lines. 

Fences and hedges: With computer assisted plotting there is also a suite of commands 
for various kinds of lines in the object. Thus, in the graphical output, fences, hedges 
and so on are directly drawn in their final cartographic form. 

Symbols: As is the case for different kinds of lines, there is also a suite of commands 
for different kinds of object points. After the setting of the floating mark at a certain 
point and input of the command for the particular kind of object point, the desired 
symbol will be drawn at this point on the plan being output. The placement of symbols 
throughout the interior of a polygon can be particularly advantageous. The hatching of 
buildings has already been mentioned in this connection but drawing the symbols for 
trees, marshes and so on can also be very efficiently carried out in this way. 

Spot heights: Spot heights deserve special mention. A single point is set at the desired 
position with the attribute that this point should be appropriately represented on the 
plan and should have the terrain height attached. 

Text: Most computer-assisted systems also have a text generator. The operator man-
ually chooses the position for the lettering and then enters the letters or sequence of 
numbers using the keyboard; these will ultimately be drawn on the plan in their final 
form. 

Map sheet preparation: One great gain from this technology is that the map sheet can 
be prepared almost automatically. By that is meant the computer-controlled plotting of 
such items as the control points, the rectangular border, a map coordinate grid, refer-
ence to latitude and longitude, a legend or key and text. In so far as not only a plan but 
also elevations of the object have to be produced, a three-dimensional coordinate sys-
tem is defined and in individual drawings the appropriate two-dimensional coordinate 
system is portrayed. 

To conclude this section on plotting, field completion requires a brief mention. In 
field completion, details which are not recognizable in the stereomodel, or cannot be 
interpreted unambiguously, are gathered there and then on the spot. Field completion 
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also includes the registration of administrative information; this means such matters as 
differentiation between official and private buildings, classification of paths and roads, 
names of streets and places, limits of political and administrative units and so on. 

6.6.2 Determination of heights 

When it became possible, now many decades ago, to trace contours directly in the 
stereomodel, it represented a great advance in topographic mapping and became the 
highlight of analogue stereoplotting. While the procedure can also be used with ana-
lytical and with digital stereoplotters, the direct following of contours demands under-
standing of topography and great skill on the part of the operator. The operator should 
not stare at the floating mark but should rather look ahead continuously along the con-
tour. Directly drawn contours can be regarded as a cartographic end-product only at 
large scales and only for work of modest cartographic standard. Frequently it is neces-
sary in a re-working to adjust uncertainties and to make sharp bends at the breaklines 
more precise7. Figure 6.6-3 conveys an impression of the appearance of directly traced 
contours before any revision. 

Within forested areas in large-scale stereomodels the contour lines cannot be directly 
followed. One can frequently make do by measuring individual points in clearings 
with subsequent interpolation of the contours. Laserscanning, which is dealt with more 
closely in Section 8.1, offers an exceedingly interesting alternative in forested regions 
and when the demand for accuracy is high. In small-scale stereomodels contours can 
be followed directly even in forested parts. To do this one measures the tree height 
photogrammetrically at the edge of the forest and then, after appropriate change in 

7Finsterwalder/Hofmann: Photogrammetrie. de Gruyter, 1968. 
8Taken from E. Aßmus: Geow. Mitt, der TU Wien, vol. 8, 1976. 
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the height reading, moves the floating mark over the crowns of trees representing the 
forest canopy. Some operators on the other hand leave the height reading unchanged 
and dive, as it were, into the forest with the floating mark. In either case, contours in 
forest are considerably less accurate than on open land, a topic dealt with more closely 
in Section 6.7. Not only in forested areas but also in flat land, direct following of the 
contours is very risky; indeed on horizontal land contours are indeterminate. 

Hence, alternative methods of photogrammetric height evaluation are to be considered 
which have become so competitive that, with the exception of high mountains, they 
have more or less displaced direct tracing of contours. 

Figure 6.6-4 shows the result of a modern photogrammetric procedure whereby con-
tours are extracted indirectly from a digital terrain model (DTM). 

Figure 6.6-4: Contours determined indirectly from a digital terrain model (DTM), for 
comparison with those of Figure 6.6-3 

The recording of the ground begins with the three-dimensional digitizing of the break-
lines (shown as broken lines in Figure 6.6-4) marking streams and often ridges. After-
wards a static raster measurement, as it is called, takes place (Figure 6.6-5) in which 
the task of driving along a meandering path over the model is entrusted to the com-
puter, the operator meanwhile having only to control the Ζ movement. The recording 
of the XYZ coordinates during this operation is usually arranged in such a way that 
the points lie on a square grid in the XY plane. For increased accuracy the travel along 
the profiles is not continuous; before the X Y Z coordinates are taken the movement in 
XY comes to a complete stop. If satisfactory stereoscopic heighting is not possible at 
the pre-set XY position, because of vegetation or the presence of a house for example, 
that raster point is skipped or a substitute point near the defined XY point is used. 

By interpolation from this data and the digitized breaklines, the next step is to produce 
a Digital Terrain Model (DTM), sometimes known as a DEM or a DGM (elevation 
and ground respectively), from which by-products, for example contour lines, can be 
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derived. Such indirectly derived contour lines give a very good 3D impression (Fig-
ure 6.6-4); the integrated breaklines emphasize important geomorphologic elements. 

V 

X 

Figure 6.6-5: Static raster measurement 

6.6.3 Recording of buildings 

The high potential of stereophotogrammetry can be demonstrated on the basis of the 
recording of three-dimensional buildings. In this task the topological information, that 
is the connectivity between points, lines and surfaces is especially important. The 
topology in the case of simple buildings is captured in the computer-supported system 
in the form of standard models as knowledge bases. Figure 6.6-6 shows a graphical 
user interface with a ridge roof as a standard model. After having chosen the rele-
vant standard model the operator has only to measure manually the corner points of the 
building. In this way the topological model receives its scale. Before taking a measure-
ment on the building point in the stereoscopic model the operator clicks on the relevant 
building point in the topological model (Figure 6.6-6). If corner points cannot be set 
in the photogrammetric model they are added by the computer, using the corner points 
already measured and the geometric conditions implicit in the current standard model. 
In this work and in the case of two blended standard models (as, for example, a ridge-
roofed extension to a ridged roof such as those in Figure 6.6-7) this measurement of 
building points and building edges is of great benefit. To this end the operator clicks in 
the topological standard model (Figure 6.6-6) around the middle of the ridge on which 
the point to be measured will lie; then he sets a point in the stereomodel on the chosen 
building ridge. Such a working technique is designated topology assisted recording. 

To assist such a computer supported plotting system, more accurately a topology as-
sisted system, a superposition system is required. This offers the possibility for those 
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Figure 6.6-6: Graphical user interface for topology assisted recording (the standard 
model is known as a "primitive") 

Figure 6.6-7: Superposed building measurements in one image (Taken from: Rotten-
steiner. F.: Geow. Mitt., vol. 56, 2001.) 
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points and lines which have already been measured to be overlaid on one of the two dig-
ital photographs (Figure 6.6-7). For this purpose the X Y Z object coordinates are to be 
transformed into the relevant photograph, using the parameters of interior and exterior 
orientation and taking account of the image coordinate refinement (Section 4.5). Still 
better is a three-dimensional superposition in the optical stereomodel; this means a su-
perposition of the already measured features in both of the digital images. Apart from 
the check on accuracy which this provides, the operator is constantly kept informed of 
what he has already measured and what he still must do. 

Figure 6.6-8: Oblique view of photogrammetrically processed buildings (Taken from: 
Rottensteiner, F.: Geow. Mitt., vol. 56, 2001.) 

Figure 6.6-8 shows a rendered9 oblique view of an assembly of buildings which co-
incides to a large extent with Figure 6.6-7. As a result of the topological information 
concerning the building surfaces it is no problem to declare, for example, that roof sur-
faces are dark. In Section C 1.1.3, Volume 2 there is a description of how it is possible 
for the surface topology to be structured in a relational database. 

Incidentally, the Level of Detail (LoD) can also be efficiently regulated using the stan-
dard building model. In the above example a standard model without chimneys was 
used; larger extensions were, however, modelled. The final roof form in the case of a 
ridge roof with a ridge-roofed extension is formed by the blending of two ridge roofs 
as one can see for oneself in some of the blended buildings. Suites of CAD (Computer 
aided design) programs provide such blending functions. (The subject of more highly 
automated photogrammetric measurement of buildings is entered into in Section 6.8.8 
in this volume.) 

'Rendering: generation of a two-dimensional image from a three-dimensional model with the appli-
cation of various lighting effects (shadows, surface reflections, etc.). 
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The fa?ades of buildings cannot be acquired from aerial photographs. Facades must 
be captured with terrestrial photogrammetry, and evaluated either in two or in three 
dimensions. Figure 6.6-9 shows a typical example. The fa$ade was plotted with an 
analytical stereoplotter. Computer support is especially efficient in such work. Three-
dimensional geometric models of windows, ornamental features and such-like can be 
created, taking account not only of topology but also of proportions, and can be placed 
in multiple positions in the CAD model. In this way, for example, one of the windows 
can be accurately measured and then this window can be duplicated in positions chosen 
by the operator. In this kind of work the superpositioning system mentioned above is 
especially important for it allows the operator continually to check for any possible 
departures from a "standard window". 

I O S E P H O I I I A N S A 
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Figure 6.6-9: Fagade of the Gloriette of Schloss Schönbrunn (Plotted by: J. Tschan-
nerl, I.P.F.) 
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6.6.4 Transition to spatially related information systems 

Photogrammetric plotters can build up relatively universal systems with which a very 
wide variety of products can be generated. Thus, for example, when digitizing an ar-
bitrary three-dimensional line in real-time a running count of the plan distance can 
be computed and on a graphical output device a profile, showing height against dis-
tance, can be drawn, folded over and unwound. Or the computer can be commanded 
to drive the floating mark along geometrical figures in plan such as circles, polygons, 
and clothoids while the operator inputs the Ζ, height, coordinate. The result is a length 
profile over a pre-determined mathematical route traced in plan. 

The developments towards universal systems outlined above at present assume less 
and less importance: photogrammetric stereoprocessing equipment is taking on the 
task only of three-dimensional digitizing. Digital object models are constructed from 
the resulting data. As required, various derivatives are acquired from the object mod-
els such as contours, straight and curved profiles, slopes, curvatures, oblique views, 
shading, and others. 

In this connection several definitions are presented: digital object models are a simpli-
fication of the real world which originate through idealization and discretization and 
which are accessible for systematic use in electronic data processing. To the digital 
object models belong therefore not only the data, the three-dimensional coordinates of 
discrete points, but also 

• encoding of the significance of points, lines and surfaces 

• elements concerned with data structure 

• the algorithms for conversion from the discrete points to curves and surfaces 

If the digital object models are designed as the central database then the next step 
emerges a spatially related information system. 

These definitions can be still further refined in the case of topography: digital topo-
graphic models are a simplification of the natural and cultural landscape which arise 
through idealization and discretization and which are accessible for systematic use in 
electronic data processing. The digital topographic models are the central database of a 
topographic information system which is a subset of superior geo-information systems. 

Digital topographic models can be still further divided: 

• the digital terrain model (DTM: see Figure 6.6-10) refers to the surface of the 
terrain, without buildings or vegetation 

• the digital surface model (DSM: see Figure 6.6-10) refers to the surface with the 
inclusion of buildings and vegetation 

• the digital building model refers to the buildings, including their roofs 

• the digital street model refers to roads and street 

• etc. 
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DTM 

Figure 6.6-10: Terrain model (DTM) and surface model (DSM) 

6.7 Operator accuracy with a computer assisted system 

Measurement accuracies attained by the operator of a computer assisted photogram-
metric instrument are given in this section. With technology as it stands today, there is 
no need to differentiate between analytical and digital equipment. Rules of thumb are 
given for rough estimation of accuracy, which also serve well in project planning. The 
structure of the section is directed towards the products discussed in Section 6.6. 

6.7.1 Measurement in plan 

6.7.1.1 Point measurement 

With analytical and digital stereosystems, as explained in Section 6.6.1, objects are 
recorded, above all, through individually measuring single points which are connected 
by means of lines. The accuracy of point measurement was dealt with in Section 4.6 
and the following numerical example should recall the statements made there. 

Numerical Example. The photogrammetric plot in Figure 6.6-2 originated with a 
photoflight at a flying height of 1600 m using a 21 cm camera. What is the accuracy 
of the local path which was recorded point by point and that of the fence, likewise 
recorded point by point? What is the accuracy of the spot height? The photo scale 
comes to 1 : m B = 1 : 7600 (= 1600/0.21). 

According to the rule of thumb (4.6-1) the accuracies for very well defined points are 
as follows: 

Plan: σχγ = ±4.6 cm (= 7600 χ 0.0006) 

Height: = ±9.6 cm (= 160000 χ 0.00006) 
For natural points the uncertainty of definition in plan and in height, σ χ γ ^ 0 def) and 
σζ(o,def)> according to the relationships (4.6-3), must be taken into account. We make 
the following assumptions: for the local path aX Y(0 i i eq = aZ(o,def) = ±1 cm and for 
the fence CTxy(0 def) = a z ( f i M ) = ±8 cm, while for the spot height az{0,def) = ± 2 cm-

Using these values the relationships (4.6-3) yield the following accuracies for the plan 
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drawing of Figure 6.6-2: 

Local path: σχγ = ±4.7 cm σζ = ±9.7 cm 

Fence: σχγ — ±9 .2cm σζ = ±12.5cm 

Spot height: = ±9.8 cm 

Note: the point density along the lines must be chosen such that no significant er-
ror of interpolation will be introduced. The object-specific uncertainties of definition 
σχγ(o,def) and σΖ(o,def) should be evaluated in the photogrammetric instrument, prefer-
ably with large-scale images, by means of repeated measurements. 

Exercise 6.7-1. The accuracy needs to be improved, above all in height. For a practical 
project, for example with respect to the local path, one expects accuracy of σχγ — 
± 2 cm and σζ = ±2.5 cm. How can this accuracy be achieved? (Answer: Use of a 
15 cm camera (wide-angle) instead of a 21 cm camera. Making full use of the accuracy 
potential of bundle block adjustment with additional parameters (Section 5.3.4) and 
reducing the flying height.) 

For a first trial: 
Flying height 800 m, implying 1 : m s = 1 : 5300. 

For very accurately defined points: σχγ — ±1.6cm σζ = ±2 .4cm 

For the local path: σχγ — ±1.9cm σζ — ±2.6cm 

The requirement for plan accuracy is met. In height the value is slightly excessive; this 
can be remedied by a slight reduction in flying height. 

6.7.1.2 Processing of lines 

Continuous guiding of the floating mark along a line is afflicted with considerably 
greater inaccuracies than in single point setting. By empirical investigation as early as 
1954 Heißler10 found an accuracy of about 

Considering a drawing accuracy specification in final cartography of ±0.2 mm, an en-
largement ratio from image to graphical output no greater than 1 : 4.5 may be chosen. 
Such an enlargement ratio is perfectly normal when mapping at scales from 1 : 1000 to 
1 : 2000. It is not possible in small scale mapping, however, to use such high enlarge-
ments from image to plot, which would imply the use of very small-scale photographs; 
this is determined not by limits on graphical accuracy but by limits on interpretability 
of the content of images at very small scales. Thus, for example, the operator who must 
portray lines in plan in a topographical map at 1 : 50000 can only just make them out 
in photographs at about 1 : 60000. The optimal choice of photo scale in view of 

10BuL 22, pp. 67-79, 1954. 

σι — ±45 μχη at photo scale (6.7-1) 
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• accuracy in large scale mapping and 

• interpretability in small-scale mapping 

is expressed in the following rule of thumb (6.7-2) or in Table 6.7-1 (the parameter k 
varies between 200 and 300 depending on the quality of the aerial photographs and on 
the demands on the end-product): 

TUB = ky/rriM (6.7-2) 

1 : mM mB 
1 1000 6300 -9500 
1 5000 14000 -21000 
1 10000 20000 -30000 
1 25000 32000 -47000 
1 50000 45000 -67000 

Table 6.7-1: Relationship between map scale TUM and photo scale TO Β 

The draughting accuracy of ±0.2 mm plays a central role in the considerations of 
Heißler, mentioned above. With the digital graphical output of the results produced 
using analytical or digital instruments, the relationship between draughting accuracy 
and map scale is largely lost. The operator can choose, almost, any arbitrary scale for 
the graphical representation. Just as tricky are the zoom possibilities of the graphical 
systems which permit arbitrary enlargement of the content and give the user the im-
pression, because of the fine lines even when the enlargement is very high, of superior 
accuracy of the data set. These risks can be removed if, at the same time as the graph-
ical representation is magnified, the lines are intensified. The map scale numbers TO Μ 
given in Table 6.7-1 and in the Formula (6.7-2) refer to drawings in which one expects 
an accuracy of ±0.2 mm. Graphical representations with considerably worse accuracy 
than this do not warrant description as photogrammetric products. 

6.7.2 Height determination 

6.7.2.1 Directly drawn contours 

The conventional method of contouring in analytical and digital instruments is by direct 
tracing in the model (Figure 6.6-3 shows an example). The accuracy of such contours 
is dependent on the slope a of the land as first expressed by Koppe: 

= er ζ + ffc tan a (6.7-3) 
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σζ — 0.2%o of the distance from camera to ground, which is the accuracy of con-
tinuously traced lines from photographs with 60% forward overlap. Com-
pared with the accuracy of Equation (4.6-1) this is considerably worse 
since this is a dynamic event unlike the measurement of an individual 
point. In areas of forest this value is too optimistic. 

σο = 100 μτα (at photo scale) which is the plan accuracy of directly drawn con-
tours. This is distinctly worse than the plan accuracy of Formula (6.7-1) 
since the contours in the stereomodel are not marked in the photographs 
but have to be sought. 

For a statement of the accuracy—with reference to the object—of directly drawn con-
tours, in the case of aerial photographs in open terrain, Equation (6.7-3) is modified as 
follows: 

The dimensions for are the same as those chosen for h. 

Numerical Example. The contours of Figure 6.6-3 originated with a photoflight using 
a 15 cm camera and a photo scale of 1 : 30000. Equation (6.6-3) gives the following 
accuracy for the contours (flying height = 4500 m): 

In flat land, therefore, the height accuracy comes to ±0.9 m; on a 10% slope to ± 1.2 m; 
and on a 25% slope to ±1.7 m; and so on. In forested areas these figures are increased 
by a further ±2.0 m. 

6.7.2.2 Relationship between contour interval and heighting accuracy 

In topographic mapping it is usual to choose a contour interval which, in metres, is one 
thousandth of the map scale number; thus for a scale of 1 : 5000 a contour interval 
of 5 m.11 In flat country the interval should be reduced. In order that the character of 
the contours should not be negatively influenced, the mean square error of the contours 
should not exceed 1/4 to 1/8 of the contour interval, according to the quality demanded 
for the end product. 

"imhof favoured distinctly smaller contour intervals (Hake, G., Grünreich, P., Meng, L.: Kartogra-
phie. 8th ed., Walter de Gruyter, 2002). 

(6.7-4) 

h ... flying height above ground; 
c ... principal distance (in [mm]); 

tan α . . . slope of the ground 

σΗ[τα] = ±(4500 χ 0.0002+(0.10/150)4500tana) 

σΗ[m] = ± ( 0 . 9 + 3 tan a ) 
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Numerical Example (Continuation of the numerical example of Section 6.7.2.1). The 
contour lines of Figure 6.6-3 were produced for an orthophoto at 1 : 10000 with a con-
tour interval of 10 m, which is in accordance with the above rule of thumb. Depending 
on the quality stipulated for the end product, the accuracy of the contours should there-
fore lie between ±1.25 m and ±2.5 m. Since the maximum slope of the terrain is 25%, 
application of Formula (6.7-4) results in a heighting accuracy of ± 1.7 m—as is already 
reported above. The height accuracy of the contours is therefore too poor to meet very 
high quality map requirements; for medium quality it is satisfactory. This statement 
is valid for open country. In forested areas, with 25% slope, the height accuracy de-
teriorates to about ±2.6 m (— \/1.72 + 2.02), so that, even for very modest quality 
requirements, the accuracy of the contours is too poor. The contour lines which touch 
each other in Figure 6.6-3, bear eloquent witness to the poor height accuracy. Such 
contancting lines may appear, or even cross one another, especially in forested areas. 

Exercise 6.7-2. Re-consider the numerical example of Sections 6.7.2.1 and 6.7.2.2 
under the assumption that, instead of a 15 cm camera, a 21 cm camera is used. For 
reasons considered more closely in Section 7.3.2, the 15 cm camera is not popular for 
orthophoto work. (Answer: The vertical accuracy of contours for a 25% slope is, in 
open country, σπ = ±2.1 m and, in forested country, = ±2.9 m. This means that, 
perhaps, instead of a 10 m vertical interval a 12.5 m interval should be selected.) 

6.7.2.3 Contours obtained indirectly from a DTM 

Contours obtained indirectly via a digital terrain model (DTM) have the accuracy of 
the DTM. This amounts to: 

The dimensions for are the same as those chosen for h. 

The constant term in the expression (6.7-5), 0.15%o of the flying height, corresponds 
approximately to the vertical accuracy of static raster measurement (Figure 6.6-5). In 
forested country another value has to be added, as in Formula (6.7-3). 

Numerical Example. The contours in Figure 6.6-4, derived indirectly from a DTM, 
have the following accuracy (the parameters for the photoflight are those of Section 
6.7.2.1: 

a H [ m ] = ± ( 4 5 0 0 χ 0 . 0 0 0 1 5 + 0 . 1 5 χ 4 5 0 0 / 1 5 0 tan α ) 

a / i [m] = ± ( 0 . 7 + 4 . 5 tan α ) 

In flat, open country, therefore, the vertical accuracy of the contours comes to ±0.7 m, 
in land with a 10% slope to ±1.1 m, and with a 25% slope it is ± 1.8 m. 

(6.7-5) 

h ... flying height above ground; 
c ... principal distance ([mm]); 

tan α . . . slope of the ground 
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The choice of spacing for the static raster measurements, the choice of vertical interval 
in relation to the grid spacing of the DTM and also the geomorphologic quality of the 
interpolated contours should be closely considered. 

6.7.2.4 Measurement of buildings 

The recording of buildings, introduced in Section 6.6.3, proceeds through single point 
measurement in stereoplotters, mainly digital stereoplotters. Hence, the accuracy cor-
responds to that of single point measurement as reviewed in Section 4.6. 

Numerical Example. For the buildings of Figure 6.6-8 image material was available 
at a scale of 1 : 4500, taken with a 15 cm camera. On the basis of experience in this and 
similar projects, the following may be taken from Table 4.6-1 as the appropriate values 
for uncertainty of definition: — ± 7 cm, = ± 8 cm. Assuming these 
values, the following accuracies for stereoscopic recording of buildings are derived: 

σχγ = ± 7.5 cm = ±9.0 cm 

The accuracy of points on buildings measured from large-scale images will therefore 
be dominated by uncertainties of definition. 

Numerical Example. For the recording of the fagade of Figure 6.6-9 image mater-
ial was available at a scale of 1 : 290, taken with the 45 mm camera Wild P31 (Ta-
ble 3.8-2). The distance from camera to object was 13 m (= 290 χ 0.045). Because of 
visibility problems increasing with enlargement of the base, the full format of the P31 
in the base direction was not exploited. Two stereopairs were chosen each with a base 
of 7 m, giving a photo-base of 24 mm (= 7000/290). As is general at close range, the 
accuracy should be estimated not from Equation (4.6-1) for very well defined points, 
but from the relationship (2.1-35) in which one normally takes ± 6 μτη as the measuring 
accuracy at image scale. 

Accuracy in the facade, 

at right angles to the camera axis, = ±1.7 mm(= 290 χ 0.006) 

Accuracy perpendicular to the facade, 
in the direction of the camera axis, = ±3 .2mm(= 1.7 χ 13/7) 

Additionally, using Equation (4.6-3), an object-related uncertainty of definition should 
be taken into account; for a point on a fagade this is about ± 5 mm. 

Exercise 6.7-3. With the same positions of the camera, but using a 100 mm P31 camera 
instead of the 45 mm camera, how would the accuracies of this numerical example 
change? (Answer: Accuracy in the fa$ade = ±0.8 mm; accuracy perpendicular to the 
facade = ±1.4 mm. This increased accuracy comes at the cost of losing the upper 
portions of the facade—when using the "landscape" orientation of the camera they do 
not fall within the image.) 
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6.7.3 Checking of the results 

Photogrammetric processing should be validated at certain intervals by means of check 
measurements which, for example, are carried out with a photo scale distinctly larger 
than the original or with GPS measurements on the ground. Such comparative mea-
surements expose all error sources, beginning with potential errors in calibration of the 
camera, through possible inadequacies in the operator, up to errors in the photogram-
metric instrument and shortcomings in the software. This expensive procedure can, to 
a large extent, be replaced by checking of the model joins. In general errors are at their 
largest at the margins of the models, so that the discrepancies in measurements between 
two different stereomodels allow a good quality control. In this procedure errors in rel-
ative and absolute orientation are also revealed. Errors arising in the overlap zones of 
the stereomodels also give a very reliable basis for consideration of the oft-mentioned 
uncertainties of definition for object points and lines. 

For this section and the preceding Section 6.7.2, Appendix 4.6-1, dealing with empiri-
cal determination of standard deviations and tolerances, can be of interest as well. 

6.8 Automatic and semi-automatic processing methods 

Digital photographs open up the possibility of automatic processing. In place of au-
tomatic processing methods, names such as machine processing or procedures based 
on computer vision are also common. Some photogrammetric problems can be solved 
fully automatically, others only partly automatically. Partly automated procedures, 
which are treated in Sections 6.8.7 and 6.8.8, are known as semi-automatic procedures. 

The topic of automatic processing commences here with the correlation algorithms. 
They are central to many automatic procedures. Correlation processes take the place of 
humans at photogrammetric instruments. Instead of human sight and action, machine 
sight and action take over. 

6.8.1 Correlation, or image matching, algorithms 

Correlation algorithms solve the task of finding corresponding patches in two images, 
usually images taken from different camera positions. In this connection one speaks of 
image matching and also of the maximum similarity or best agreement of the two im-
age patches. One of the two images can even be a geometric figure, in which case the 
term pattern recognition is very appropriate. In the following passages a well-known 
correlation algorithm is explained on the basis of such pattern recognition. The geo-
metric figure might be a cross which may exist in the form of an artificially generated 
digital image (Figure 6.8-1, left). This image is known as the reference image or the 
reference matrix. One speaks also of a pattern matrix or a template. The second image 
may be known as the search image. 

The position of the cross, that is of the reference image, is sought in the second image. 
The terms search window or search matrix are used. In Figure 6.8-1 a 5 χ 5 template 
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is compared with a 12 χ 12 search window; for the sake of simplicity the grey levels 
are assumed to lie only between 1 and 9. 

The cross obviously lies in the search image in position i = 8 and j = 7. The automatic 
search for this position is made more difficult because 

• on the one hand the search image has faded out, that is the grey levels contain 
accidental defects, and 

• on the other hand, on account of the finite size of the detectors with which the 
search window was created, the grey levels are smeared, that is mixed pixels 
appear at the edges. 

1 1 9 11 
1 1 9 1 1 
9 9 9 9 9 
1 1 9 1 1 
1 1 9 1 1 

Template (cross) 

1 1 1 1 1 1 
1 2 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

2 
9 
9 2 11 

1 1 1 1 
1 1 1 1 

1 
9 9 9 9 2 1 

1 1 1 1 
1 1 1 1 

1 1 1 1 1 1 
1 1 1 1 1 1 

Search window 

Figure 6.8-1: Reference matrix (template) and search matrix (search window) 

For the sake of simplicity the solution of this correlation task is demonstrated, not in 
two dimensions but with reference to a one-dimensional example (Figure 6.8-2). 

6.8.1.1 Correlation coefficient as a measure of similarity 

The desired position of the template in the search window is found by calculating 
correlations. A measure for the correlation or similarity is the correlation coefficient r. 
This is computed as follows from the standard deviations σΓ and as of the grey levels 
gr and gs in both images and also the covariance ars between the grey levels of the two 
images: 

r ^ < ? r s = Σ(9ν - lh){gs - g l ) (6 8-1) 

>/E(Sr - E(Ss " 9s)2 

in which gγ and g J are the arithmetic means of the grey levels of the template and those 
of the corresponding section of the search window respectively. 
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Figure 6.8-2: Template and search window of a one-dimensional pattern 

The correlation coefficient r is evaluated for all possible positions of the template in the 
search window. The position with the largest correlation coefficient r is the position 
sought. 

Numerical Example (with reference to Figure 6.8-2). The correlation coefficient for 
the 1st position, computed with i = 1 , . . . , 7 (or k = 1 , . . . , 7), is: 

η = 
- 2 6 . 3 E ( g r - 4 . 4 3 ) ( g 6 - 2 . 4 3 ) 

y/U9r- 4.43)2 U9s- 2.43)2 10.5 χ 6.3 
= - 0 . 4 0 

The correlation coefficients for all possible positions are collected in the following 
Table 6.8-1 in which the matching ξ coordinates (the pixel size Αξ = ΙΟμπι) are also 
given: 

Position 1st 2nd 3rd 4th 5 th 6 th 

k 1 - 7 2 - 8 3 - 9 4 - 1 0 5 - 1 1 6 - 1 2 
r - 0 . 4 0 - 0 . 5 1 0.00 0.73 0.92 0.24 

40 50 60 70 80 90 

Table 6.8-1: Correlation coefficients for the example outlined in Figure 6.8-2 

The 5 th position is that sought; thus ξ = 80 μττι. The neighbouring correlation coeffi-
cients (r4 = 0.73 and = 0.24) mean that the optimal position must lie somewhat 
before ξ = 80 μιη. Thus a fit in the subpixel region is sought in a second step. 
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6.8.1.2 Correlation in the subpixel region 

The following will provide a fit in the subpixel region 

• formation of a continuous correlation function in the neighbourhood of the lar-
gest correlation coefficients and 

• determination of the maximum of this correlation function by setting the first 
derivative to zero 

Numerical Example (continued). The following second order polynomial is found 
from the last three ξ coordinates: 

r ( 0 = 24.96 + 0.67150ξ - 0.00435£2 

The first derivative is: 

r ' ( 0 =0 .67150-0 .00870$ 

Setting the first derivative to zero results in: 

ξ = 77.2 ^m 

Further details of this method, in particular in the subpixel region with two-dimensional 
images, are to be found in Section Β 6.1.2.2, Volume 2. 

A very widely used method of correlation in the subpixel region employs a least squares 
estimation method (Appendix 4.1-1) and is known as least squares matching (LSM). In 
LSM one starts from an approximate fit which can be first found using the correlation 
procedure described in Section 6.8.1.1. If, after the approximate fit, the template and 
the search window are referred to the same coordinate system, in our case that of ξ 
coordinates, then the required translation of the template with respect to the search 
window is only small, usually less than a pixel (Figure 6.8-3). Looking at the template 
and the search image together in Figure 6.8-3 one can conclude that the template should 
be moved somewhat to the left for an optimal fit, that is ξ < 80 μτη. 

Let this small translation be b. The positions of the two grey level ensembles gr and gs 
are therefore related as follows: 

<?*(£) = <?r (·£ + &) (6.8-2) 

Let the grey level gs contain a random component v. The right-hand side of Equa-
tion (6.8-2) must be linearized; since b is small, this results in the following equation: 

(6.8-3) 
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Figure 6.8-3: Template and search window after an approximate fit 

5r(£)>Ss(£) = corresponding grey levels in the two images, the number of such 
pairs of grey levels being determined by the size of the template 

(d(Jr(C)/9ξ) = the slope of the grey level profile of the template at the particular 
position; that is, (θςΓ(ξ)/δξ) = Ag/Αξ. For the first pixel Ag 
is taken as Ag = g2 - g\ and for the last pixel, the n th pixel, 
Ag = 9n — 9n—ι i for those pixels lying in between (1 < i < n) 
Ag is expediently chosen as Ag — gi+\ — gt ι; for these interior 
pixels Αξ is twice the pixel dimension. 

The procedure follows the formal system of adjustment by the method of indirect ob-
servations (Appendix 4.1-1) 

ν = A T v — 1, ν = ( A T A ) _ 1 A T 1 (6.8-4) 

The accuracy of the position unknown b comes out of the computation (Appendix 4.1-
1) after the standard deviation of unit weight σο has first been estimated from the el-
ements of the vector v. The standard deviation at, of the unknown b comes from the 
following: 

N = ( A T A ) , Q = Ν " 1 , σ6 = ν ^ σ 0 (6.8-5) 

The possibility of such error computation is a great advantage of the LSM over other 
correlation methods. 
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For our example the least squares equations are as follows (6.8-3): 

f 0 \ / 
0.4 2 
0.4 - 1 
0 b - - 1 

- 0 . 4 - 4 
- 0 . 4 0 

y o V 0 ) 

From the normal equation system 0.646 = 2, the required translation is found to be 
6 = 3.1; hence the final position of the template in the search window has the following 
ξ coordinate: ξ = 80 - 3.1 = 76.9 μπι. 

The standard deviation of unit weight σο may be obtained from the values 

ν = (0, -0 .76 ,2 .24 ,1 .00 ,2 .76 , -1 .24 ,0 ) T 

=>· σο = ^ 1 5 . 7 5 / ( 7 - 1) = ± 1.62 greylevels. The standard deviation of the ξ coor-
dinate, that is of the result of the correlation in the subpixel region, amounts to (Equa-
tion (6.8-5)): 

σ ( = σ 6 = λ / ΐ / 0 . 6 4 σ ο = ± 1 . 2 5 μ ™ , σ 0 = ± 2 . 0 u m 
greylevels 

In this simulated example the accuracy of positioning in the subpixel region is almost 
an order of magnitude better than the pixel size, which in our example is 10 μπι. This 
high accuracy has been confirmed many times in comprehensive correlations with real 
image data. 

The reference image and the search image frequently differ from each other not only 
to a small extent in positioning but also in grey levels. Following the example of 
Section 3.5.1, a parameter c (contrast adjustment) and a parameter d (brightness ad-
justment) may be introduced into the grey level gr. Equation (6.8-2) is extended by the 
inclusion of these two parameters: 

9s(0 = cgrti + b) + d (6.8-6) 

These equations can be linearized and re-arranged into correction equations for an ad-
justment by the method of indirect observations. The unknowns are the three parame-
ters b, c and d. The simultaneous determination of position in the subpixel region and of 
the adjustments for contrast and brightness is not always to be recommended as it can 
seriously impair the convergence, especially with a small correlation window and very 
faded grey levels. In these cases the adjustments for contrast and brightness should 
be performed before the LSM and a subsequent correlation in the subpixel region be 
performed using Equation (6.8-3). 

Exercise 6.8-1. Linearize Equation (6.8-6) and repeat the numerical example. Hint: 
The unknown 6 should be replaced by the unknown 6 = 6 c. (Answer: c = 0.69, 
d = 0.81, b = 3.1 μπι, 6 = 4.5 μπι.) 
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The formulation for LSM correlation in the subpixel region can very simply be ex-
tended for the two-dimensional correlation case. In this case the process is limited to 
the two translations 0ς and bn. Adjustments for contrast and brightness for the two 
image regions to be correlated are, therefore, abandoned. Following the example of 
Equation (6.8-3), the correction equations for the two unknowns bξ and bv become: 

v = ( % ) bt + ( Ψ ) b" " ^(ξ,ν) ~ 9ν{ξ,η)) (6.8-7) v ' (ξ,ν) V αη ' (ξ,ν) 

From this the following normal equation matrix for two-dimensional correlation is de-
rived: 

N = / Udgrm2 E(dgrm(dgr/dv) 

~ \ E ( d 9 r m ( d g r / d V ) j : ( d 9 r / d V ) 2 

In this matrix the summations are over all pixels in the particular correlation window. 
Equation (6.8-8) is the basis for what is known as an interest operator (Section 6.8.1.3) 
and for feature-based matching which is dealt with in Section 6.8.1.4. Before that, 
some general observations should be made concerning correlation: 

(a) the accuracy of the positioning depends decisively on step changes in grey lev-
els in the images. Large changes generate very large elements on the principal 
diagonal of the matrix Ν of the normal equations (Equations (6.8-4), (6.8-5) and 
(6.8-8)); large elements on the principal diagonal of the normal equation matrix 
lead to small weight coefficients (Equation (6.8-5)) and therefore also to small 
standard deviations of positioning. 

(b) enlargement of the reference matrix raises the accuracy if it means that additional 
step changes in grey level are thereby introduced. This increase in accuracy can 
also be estimated from the inverse of the normal equation matrix. 

(c) independent of its individual position in the digital image, a reference image 
always results in the same inverse N _ 1 of the normal equation matrix (Equa-
tion (6.8-8)); therefore, in order to recognize the same pattern in different places 
in the image, one has to evaluate N _ 1 only once. This characteristic is important 
in the processing of reseau photographs. 

(d) the correction equations (6.8-7) can be weighted differently; for example the 
central picture element can be given a higher weight. This brings to mind the 
higher sensitivity of the fovea in the human eye. 

(e) in the basic equation (6.8-2) aside from a translation b, a scale factor in the ξ 
coordinate of the reference image can also be introduced. Such an extension is 
necessary, for example, when template and search window have different pixel 
sizes. In the two-dimensional case the parameters of a similarity transformation 
or an affine transformation (Section 2.1.1) can be introduced. 

(f) in a more complex implementation the LSM usually requires a number of iter-
ations. Between individual iterations a resampling (Section 2.2.3) of the ξη raster 
of one of the two images is carried out. 

(6.8-8) 
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Exercise 6.8-2. How can Equation (6.8-1) be re-arranged in order to economize on 
computing time? Repeat the example of Table 6.8-1 only with use of the covariance 
a r s as the measure of similarity. Is it adequate to enlist the covariance as similarity 
measure? (Answer: Equation Β (6.1-1), Volume 2. In principle the covariance a r s can 
be used as a measure of similarity. All the same, for the introduction of threshold values 
which in practice are important, the correlation coefficient, which varies between zero 
and one, is significantly better suited.) 

Exercise 6.8-3. Repeat the whole of the exercise of this section under the assumption 
that the reference image comprises nine pixels which have the values g\ = gi = = 
g9 = 1,03 = 37 = 4,34 = g5 = g6 = 9. (Result: ξ = 76.8 ± 2.4 fim). Why does a 
reduction in accuracy now occur? (Answer: The sharpness of the grey level gradations 
has become less pronounced.) 

Exercise 6.8-4. Repeat the whole of the exercise of this section under the assumption 
that the pixels are not 10 μπι but 5 μπι in size. This results in a considerable rise in 
accuracy. (Result: σι, = ±1.06 μπι.) 

Exercise 6.8-5. Reduction in pixel size usually results in an increase in the noise com-
ponent in the digitized image. As a result the increased noise component is carried 
into the computation in which some of the grey levels in the search window are arbi-
trarily changed to g^ — 2, <77 = 9,g\ \ — 3 in the 10 μπι image. How accurate is the 
positioning of the template now with the 5 μπι pixels in the search window? (Result: 
&b = ±1.11 /im.) 

Further reading: Ackermann, F.: Schriftenr. d. Inst. f. Photogr. d. Uni Stuttgart, Heft 9, 
pp. 231-243, 1984. Rosenholm, D.: The Photogrammetric Record, 12(70), pp. 493-
512, 1987. Trinder, J.: IAPR 27(B3), pp. 784-792, Kyoto, 1988. Luhmann, T„ Rob-
son, S., Kyle, S., Harley, I.: Close Range Photogrammetry. Whittles Publishing, 2006. 
Schenk, Τ.: Digital Photogrammetry, TerraScience, 1999. See also Sections Β 6.1.2 
and C 2.2.1 in Volume 2. 

6.8.1.3 Interest operators 

Since the quality of the correlation depends strongly on the texture of both of the cor-
responding image patches it is to be recommended in many cases, before the actual 
correlation, to choose image positions especially suitable for correlation. Interest oper-
ators, as they are called, are suitable for this purpose. In this and the following section 
we assume two images overlapping each other. The reference matrix is thus a (smaller) 
excerpt from one of the two images. 

A very well known interest operator uses the accuracy measure for the two transla-
tions ϋξ and bri of the LSM from Equations (6.8-7) and (6.8-8). For this purpose one 
forms the grey level differences ( d g / d ξ ) := g^, 77)1+1,j — g^, v)i-i,j and (dg/Οη) := 

v)i,j+1 ~~ v)i,j-i a n d establishes, in the neighbourhood of one of the pixels, for 
example for a 7 χ 7 window, the matrix Ν of the normal equations (Equation (6.8-8)). 
The inverse Q of the normal equation matrix is directly usable for the analysis of 
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Figure 6.8-4: Marked pixels with a small value of t rQ 

accuracy. The trace of the matrix Q, denoted by "tr Q", should be as small as possible. 
The central pixels of such a window in which trQ is less than a specified threshold 
value are marked in Figure 6.8-4. 

Some markings lie on straight-line grey level edges, where an accurate correlation is 
possible only in a direction perpendicular to the edge; in the direction along the edge no 
accurate correlation is possible. On this ground the criterion for this interest operator is 
extended insofar as not only a small value for tr Q is sought but also a good distribution 
of edges in all directions. This second criterion can also be tested using the matrix Ν 
of the normal equations. Details can be found in Section Β 6.4.1.1, Volume 2. 

Interest operators can, for example, be applied in both images of a stereopair, indepen-
dently of each other. If the criteria for the interest operators are met in the correspond-
ing places in both images, it is guaranteed that an accurate correlation of the two image 
patches will be possible. The inclusion of interest operators makes automated process-
ing markedly superior to operator processing. Nevertheless, the good operator would 
still be inclined, even with poor texture in both images, to measure stereoscopically. 

Förstner was the first to report the interest operator outlined above which analyses 
the inverse of the normal equation matrix (6.8-8). In the literature it is known as the 
Förstner operator. Another interest operator comes from Moravec. For this interest 
operator the variance of the grey level differences of neighbouring pixels in a window 
is computed, and compared with a threshold value, along both the rows and the columns 
of the image as well as along both diagonals. Large variances offer good prospects for 
correlation. 

6.8.1.4 Feature based matching 

An interest operator extracts features in a digital image; they are more or less the 
intersection points of grey level edges. These points are positioned with single pixel 
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accuracy in the image matrix, in accordance with the Förstner operator introduced in 
Section 6.8.1.3. But, as a secondary product, the values for the chosen interest criterion 
also come up for the neighbouring pixels. As a result the possibility arises of finding, 
from all interest values, a continuous function over a surrounding area and of setting its 
first derivative to zero. In this way the position of a feature point in the subpixel region 
is found (an example of such a positioning in the subpixel region is to be found at the 
beginning of Section 6.8.1.2). 

In the processing of a stereopair of images the extraction of features in the subpixel 
region is carried out in both images independently of each other. Subsequently, corre-
sponding features in the two images are assigned to each other; this is yet to be spoken 
of (see, for example, Section 6.8.3.2). If two features are found to correspond the task 
of correlation is solved as well. Correlation through extracted features is known as 
feature based matching as opposed to area based matching. LSM, for example, is an 
area based matching correlation since within a region, or an area, the pixels from the 
reference image and the search image are directly connected with each other. 

Some points to note: The accuracy of feature based matching, lying somewhere around 
1 /4 pixel, is distinctly worse than that of LSM. Feature based correlation is, as a rule, 
more robust than LSM. A substantial disadvantage of LSM is that the approximate 
positioning required before the LSM step must be relatively accurate. Feature based 
correlation is rotation invariant, that is, the two images can be rotated relative to each 
other. Two-dimensional correlation using correlation coefficients (Section 6.8.1.1) can-
not be applied to images rotated with respect to one another. 

Literature: Förstner, W., Gülch, Ε.: Proc. Intercommission Workshop on "Fast Process-
ing of Photogrammetric Data", pp. 281-305, Interlaken, 1987. Baltsavias, E.: Disser-
tation, ΕΤΗ Zürich, Institut für Geodäsie und Photogrammetrie, Nr. 49, 1991. 

6.8.1.5 Simultaneous correlation of more than two images 

The human being can correlate only two images. More than two images can be simulta-
neously correlated using machine vision. For the simultaneous correlation of the three 
images from a three line camera, or three line scanner (Figure 5.5-2), an extension of 
correlation from two to at least three images is necessary. In Figure 6.8-5 three image 
excerpts are sketched, as they relate to each other after a coarse fitting. It is very clear 
that a fitting in the subpixel regions will bring about an improvement. Equation (6.8-7) 
can be used for this kind of subpixel fitting. Thus any possible simultaneous contrast 
and brightness fitting is abandoned; it suffices to use only translations 6ξ and bri while 
transformation with additional parameters (as is given in Section 6.8.1.2) is discarded. 

It is possible to fit image 2 with image 1 and image 3 with image 1 more accurately 
using Equations (6.8-7). If image 1 is shifted during these two fittings, two different 
positions for image 1 will have been found. If, during both the first positioning and the 
second, image 1 is held fixed, this shortcoming can be remedied: image 2 is shifted in 
the first case and image 3 is shifted in the second case. Up to this point the remain-
ing possible pairing, image 3 with image 2, has been disregarded. Separate pairwise 
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Figure 6.8-5: Multi-image correlation 

fittings thus have the disadvantage that not all possible pairings, in our case three, are 
simultaneously looked at and that multiple positions are possible. 

A possible variant is that one of the three images should be designated as master; we 
choose image 1. A subpixel fit of image 2 to image 1 can be carried out using the 
following equations, which result from relevant substitutions in Equations (6.8-7): 

V = (dgi/dOh,21 + (a52/Ö7?)6r),2i - (<?ι (ξ, η) - 92(ξ, η)) (6.8-9) 

Similarly, for the subpixel fit of image 3 to the (master) image 1, the following equa-
tions are derived: 

W = (0WÖO&£,31 + (^3/077)^,31 - (9ι(ξ,η)-93(ξ,η)) (6-8-10) 

The formation of the normal equations from Equations (6.8-9) together with Equa-
tions (6.8-10) leads to a system of normal equations in the four unknowns, which de-
compose into two smaller systems of normal equations, in one case in the unknowns 
6ξ,2ΐ and brh2\ and in the other case in the unknowns Ις^ι and 6^31. While these are 
indeed joint equations involving the grey levels of the three images, the grey level 
differences between image 3 and image 2 are not, thus far, minimized. 

Additional equations are, therefore, sought of which the absolute term contains the 
grey level difference (<&(£, η) ri)) and in which no further positioning unknowns 
appear. The four positioning unknowns in the Equations (6.8-9) and (6.8-10) actually 
define the geometric problem clearly because 6̂ ,32 appears in the difference (ί>ξ,2ΐ — 
6ξ,3ΐ) and bO,32 appears in the difference (6η,21 — ^,3i) · The extra equation which is 
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being sought comes from the difference of the two Equations (6.8-9) and (6.8-10): 

dgi, , dg2 

d 3 ö 5 3
 ( 6 ' 8 " 1 1 } 

The normal equations formed from Equations (6.8-9), (6.8-10) and (6.8-11) lead to a 
simultaneous correlation of three images. In the case of four or more images corre-
sponding equations are added. The LSM algorithm outlined can be called multiple-
patch matching. 

Exercise 6.8-6. Consider the correction equations for a four image correlation. (An-
swer: There are six unknown translations; the absolute terms read as follows: 
(5i - 92), (9i ~ 93), (9i ~ 54), (53 - 92), (94 ~ 92) and (g4 - g3).) 

A more general method, using a fictitious (master) image was given in Krupnik, A. 
(PE&RS 62, pp. 1151-1155, 1996), in which references to further literature can be 
found. 

6.8.2 Automated interior orientation 

In the case of photographs taken with a digital metric camera, the principal distance 
and the position of the principal point are known. The interior orientation of digital 
metric cameras is directly available for use. 

If, on the other hand, the photographs were taken with a film-based camera and the 
digital metric image originates in a subsequent digitization (Section 3.4), then the 
processing begins with the location of the individual fiducial marks. The same kind 
of task arises when the images are taken with reseau cameras (Section 3.8.4) or when 
digitizing of a reseau plate is utilized (Figure 3.4-3). 

What follows concentrates on the automated location of the fiducial marks. A reference 
matrix is produced for the particular fiducial mark. This is therefore a typical exercise 
in pattern recognition. 

In order to minimize the time and cost of the search process: 

• image pyramids are produced from the photographs (Section 3.6.1) and 

• relatively small search regions are defined in the vicinity of the standard positions 
of the fiducial marks (as, for example in Figure 3.7-7; it is required that when the 
image is laid in the scanner it should be rotated and shifted as little as possible 
from a standard position). 

For the different levels of pyramid one requires different reference templates to match 
different extracts from the image of the fiducial marks. Figure 6.8-6 shows these ex-
tracts for a typical fiducial mark. The pixel size is reduced in accordance with the 
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Figure 6.8-6: Negative image of a fiducial mark with three different extract sizes 

reduction in size of the extract. In the step using the coarsest pyramid the largest ex-
tract, with a wealth of detail, is required for recognition. At the level of this pyramid 
the correlation is performed with only the correlation coefficient as a measure of sim-
ilarity (Section 6.8.1.1). At the next pyramid level the result from the coarsest level is 
invoked as an approximate position so that a relatively small search region can be cho-
sen. Advancing in this manner is continued until the finest pyramid level. A subpixel 
correlation (Section 6.8.1.2) is always carried out at the level of the finest pyramid. In 
practice, at the finest level, the achievable accuracy lies between 1/10 and 1/5 pixel. 

Accurate location of the fiducial mark in the digitized metric image is one task; the 
other task is to establish which particular fiducial mark has been located. This is not a 
trivial task since the image may have been placed in the scanner right way round, upside 
down, rotated through 90 or whatever. It would be best if each individual fiducial had 
its own unambiguous identification markings, for example in the form of a pattern of 
lines. Another possibility which includes an additional, asymmetric fiducial mark may 
be mentioned with reference to Figure 3.7-7. 

Section Β 6.1, Volume 2 contains information on those forms of fiducial marks which 
are favourable for automatic measurement, on efficient computation for correlation 
coefficients, on the use of binary images instead of grey value images, etc. Examples 
of further literature on these subjects: Heipke, C.: ISPRS-Journal 52, pp. 1-19, 1997. 
Schenk, Τ.: Digital Photogrammetry. TerraScience, 1999. 

6.8.3 Automated relative orientation and automated determination of 
tie points 

The relative orientation of two overlapping metric images is a central task both in pho-
togrammetry and in computer vision. The mathematical bases of relative orientation 
were set out in Section 4.3. It remains unsaid, however, how the image coordinates 
of corresponding points in both digital images can be found. In recent years the au-
tomation of this measuring process has been developed successfully. The strategies 
that have been implemented for its solution in software packages depend above all on 
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the configuration of the camera stations and the orientations of the images as well as 
on the form of the object. 

6.8.3.1 Near-vertical photographs with 60% forward overlap taken over land 
with small height differences 

Near-vertical photographs with 60% forward overlap are discussed first. Figure 6.8-7 
shows such a stereopair. For correlation, reference matrices are chosen in the first 
image and search regions are defined in the second image. In order to get a good dis-
tribution of orientation points the system chooses the reference and search matrices 
in the standard positions, some times called the Gruber points (Section 4.3.4.2). This 
choice takes place at the coarsest pyramid level. In order to increase redundancy in 
the correlation, relatively large reference matrices are chosen. In highly distorted pho-
tographs, however, problems can arise with reference matrices that are too large; this 
can happen when there are large height differences in relation to the camera-object dis-
tance. The correlations in this first step can be carried out using correlation coefficients 
(Section 6.8.1.1); an estimate with subpixel accuracy is not necessary. 

Image 1 V 
• 

• 

> • • < 

A • 

/ 
H • • 

Figure 6.8-7: Reference matrices in the first image and search matrices in the second 
image for the coarsest pyramid level; additional reference matrices, containing interest 
points, and corresponding search matrices for a finer pyramid level in the neighbour-
hood of standard point number 5. 

The corresponding correlation windows found in this way are very good approxima-
tions to be used for correlations at a finer pyramid level. As indicated in Figure 6.8-7 
for standard position number 5 in the first image, a number of small reference matrices 
can be selected inside such a window. Feature points, which may be found using an in-
terest operator (Section 6.8.1.3) and around which the reference matrices are extended, 
can be of great service in making this choice. (Incidentally, the choice of the reference 
matrices in the first image at the coarsest pyramid stage can also be supported with 
interest operators.) As illustrated in Figure 6.8-7, the search window in the second im-
age can likewise be chosen to be relatively small, but clearly larger than the reference 
matrix. 
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It is sufficient for the relative orientation to run through three or four pyramid levels. 
Only at the level of the finest pyramid should subpixel estimation be performed, for 
example using LSM (Section 6.8.1.2), after matching using correlation coefficients. 
The result is six homologous locations in each of which, in general, a number of ho-
mologous points lie. As a result of the high number of orientation points provided by 
the automated procedure, the accuracy of the orientation elements is as a rule distinctly 
better—on average by a factor between two and three—than the accuracies given in 
Table 4.3-1 when using six orientation points. 

6.8.3.2 Near-vertical photographs with 60% forward overlap taken over land 
with large height differences 

With big height differences in relation to the camera-object distance the strategy out-
lined in Section 6.8.3.1 can fail, especially when there are large areas which are not 
visible in one or the other image. A first countermeasure consists of choosing search 
regions in the second image which are perceptibly larger, above all in the direction of 
the base. On account of the severe difference in scale which stems from the large height 
difference, correlation coefficient and LSM methods can also fail. For this reason fea-
ture based correlation (Section 6.8.1.4), which is independent of scale and rotation, is 
used; that is, in each image feature points are extracted with an interest operator and 
corresponding image points are subsequently sought. At the level of the coarsest image 
pyramid the properties of near-vertical photographs, which display only small differ-
ences in η coordinates between left and right images, are exploited in support of these 
correspondence analyses. The results from the coarser pyramids are good approxima-
tions, in both coordinate directions, for the finer pyramid levels. Relatively many errors 
are made in the process of finding matching points. The computation of the relative 
orientation must, therefore, be combined with gross error analysis. Data snooping and 
robust estimation, which are dealt with in detail in Section Β 7.2, Volume 2, are suitable 
for this purpose. 

Literature: Heipke, C.: ISPRS-J 52(1), pp. 1-19, 1997, which contains an extensive 
literature list, is relevant to Sections 6.8.3.1 and 6.8.3.2. 

6.8.3.3 Arbitrary configurations of photographs and objects with very complex 
forms 

In close range work, especially, many of the photographic configurations used (multi-
image photogrammetry) would exemplify the above heading. Automated relative ori-
entation in such a photogrammetric network is very difficult. First, using interest op-
erators, feature points are extracted, independently of each other, in both images. The 
so-called epipolar geometry, which is not considered more closely until Section 6.8.5, 
plays a central role in the subsequent process of allocating corresponding feature points 
to each other. To be sure, epipolar geometry requires approximate values for the ori-
entation elements; it may be possible to recover these by directly observing and identi-
fying at least five homologous points and subsequently computing relative orientation 
using the methods of Sections 4.3.2 or 4.3.3. In situations where the orientation must be 
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carried out without human intervention, the analysis of correspondence may be placed 
on a good foundation by the introduction of object recognition. Here, for example, 
feature points extracted using an interest operator are compared with each other and 
topologically similar patterns are sought in the first and second images. 

Literature: Haralick, R., Shapiro, L.: Computer and Robot Vision. Addison-Wesley, 
Reading, USA, 1992. Van Gool, L., Tuytelaars, T., Ferrari, V., Strecha, C., Vanden 
Wyngaerd, J., Vergauwen, M.: IAPRS 34(3A), pp. 3-14, Graz, 2002. 

6.8.3.4 Line-based (edge-based) relative orientation 

Prompted by the fact that human stereoscopic vision uses more lines and fewer points, 
Schenk12 proposed a method for automated relative orientation which uses extracted 
edges for the correlation. To this end, edges are first extracted independently in both 
images (Figure 6.8-21 shows an example in which relevant edges still have to be se-
lected and extracted). The form of the edges, for example the direction of the tangent as 
a function of the edge length, is then analysed and similarities in the lines of both im-
ages are selected. When corresponding edges have been found either of two procedures 
can be followed: 

• either, distinctive points along corresponding edges, for example corners, can be 
found and the relative orientation can be computed using these points following 
the algorithm of Section 4.3 

• or, a method based on associated lines can be used for the relative orientation. 

Formulae for relative orientation based on straight lines can be found, for example, in 
the work of Schwermann and Luhmann13. 

For relative orientation using only straight lines, it is necessary to observe three images 
together. An explanation: a straight line in the first image, together with the perspective 
centre of that image, defines a plane; the corresponding straight line in the second 
image, together with the perspective centre of the second image, defines a second plane, 
which intersects the plane from the first image in object space. This is a necessary, but 
not a sufficient constraint for relative orientation, since all such pairs will intersect in 
space, independent of the relative orientation of the two images. Therefore, no solution 
to relative orientation is possible, even with many pairs of corresponding straight lines 
in two images. A third image with a straight line corresponding to the lines in the first 
two images provides additional lines of intersection in object space; for correct relative 
orientation all of these lines must coincide. This can be used for a combined relative 
orientation of an image triple. 

In the future line photogrammetry, merely touched upon in this section, will gain in 
importance because, in the extraction of features, lines are more suitable than points. 

12Schenk, T.: Digital Photogrammetry. TerraScience, 1999. 
13Schwermann, R.: Veröffentlichung des Geod. Inst, der RWTH Aachen, Nr. 52, 1995. Luhmann, T., 

Robson, S., Kyle, S., Harley, I.: Close Range Photogrammetry. Whittles Publishing, 2006. 
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6.8.3.5 Tie points for automated aerotriangulation 

Up to this point in Section 6.8.3 only the automated establishment of corresponding 
points for relative orientation has been dealt with. The determination of tie points 
for a bundle block adjustment (Section 5.3) proceeds in a similar fashion. The posi-
tions of the reference matrices and the definitions of the search matrices for a block 
of near-vertical photographs with 60% forward and 20% side overlaps are sketched in 
Figure 6.8-8; it is an extension of the pattern of Figure 6.8-7 from two metric images 
to many. 
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Figure 6.8-8: Upper-left portion of a block of photographs with 60% forward and 20% 
side overlaps showing reference matrices and search matrices 

Using the strategies and algorithms given in Sections 6.8.3.1 and 6.8.3.2 one could 
establish the tie points pairwise, including the tie points between the strips. Of course 
in this way one would get only points that tied together the two images concerned. The 
accuracy of a bundle block adjustment is, however, increased in a fundamental way 
if it is possible to find unambiguous points lying in the overlap zones of all affected 
images. As can be gathered from Figure 6.8-8, that point which lies in the lower row 
of the second image of the first strip connects six images together. To determine a tie 
point in this area, therefore, the six-image correlation is to be applied (Section 6.8.1.5). 

Literature: Fritsch, D., Tsingas, V., Schneider, W.: ZPF 62, pp. 214-223,1994. Schenk, 
Τ.: ISPRS-J 52, pp. 110-121, 1997. 

6.8.4 Automated location of control points 

For indirect georeferencing, which also implies indirect sensor orientation, as well as 
for verification either of direct georeferencing or of direct sensor orientation, control 
points are required in the object coordinate system; generally speaking these are given 
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in the national coordinate system (see the introduction of Section 4.1.1 and that of 
Section 5.4). Location of control points in digital photographs is required at different 
stages of the photogrammetric process; in a sequence based on their importance in 
practice these are: 

• in metric photographs to which a bundle block adjustment (Section 5.3) is to be 
applied 

• in each of two metric photographs constituting a stereomodel which is to be 
included in a block adjustment using the method of independent models (Sec-
tion 5.2) 

• in a single metric photograph which has to be oriented using three-dimensional 
resection (Section 4.2.1), for example in the production of orthophotos (Sec-
tion 7.3) 

• in each of two metric photographs for their combined, single-stage orientation 
(Section 4.2.2) 

• in both of the two metric photographs constituting a stereomodel for which ab-
solute orientation is required (Section 4.4) 

Finding the control points in the images depends overwhelmingly on whether targeted 
or natural control points are available. The location of targeted (signalized) points 
is a pattern recognition task, comparable to the automated location of fiducial marks 
(Section 6.8.2). Undeniably, the location of targeted control points is considerably 
more difficult than the location of fiducial marks for the following reasons: 

• in the reference pattern, generally speaking, there is no supplementary geometri-
cal information, such as plays an important role in the recognition of targets. 

• as a rule, the background to the target is not uniform; there is disturbing infor-
mation present. 

• getting approximate values for the search window is not easily possible. 

• the targets are usually portrayed at different sizes in the image. 

For aerotriangulation, which is the standard procedure for the determination of the 
orientation elements of metric photographs, only a small number of control points are 
necessary (Sections 5.2.3 and 5.3.5); for this reason the approximate positioning and 
identification are frequently undertaken by the operator and only the fine measurement 
is entrusted to the computer. 

Further details are to be found in Section Β 6.2, Volume 2 and in the literature: for 
example Gülch, Ε.: IAPR 31(B3), pp. 279-284, 1996. Rottensteiner, F., Prinz, R.: 
VGI 84(2), pp. 189-195, 1996. 
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Targeted control points are to be found almost exclusively in close range photogram-
metry. In aerotriangulation the control points are usually natural points, such as corners 
of buildings, corners of the boundaries of agricultural land, and so on, but also larger 
ensembles of topographic elements. The recognition process for such control points is 
exceedingly difficult, especially in obtaining suitable reference matrices (further details 
and some sources of literature are to be found in Section Β 6.3, Volume 2). Höhle14 

extracted such a reference image from the topographic database of a geographic infor-
mation system (GIS) in conjunction with an obsolete, digital orthophoto. It goes with-
out saying that relatively many erroneous identifications resulted, but the high number 
of "GIS control points" in general permitted very reliable error removal. 

6.8.5 Inclusion of epipolar geometry in the correlation 

With the aid of epipolar lines, a two-dimensional correlation for finding corresponding 
points in two relatively oriented images can be reduced to a one-dimensional corre-
lation problem. Such a one-dimensional correlation is illustrated in the stereopair of 
Figure 6.8-9. Points are selected in the left-hand image, for example with an inter-
est operator (Section 6.8.1.3). The corresponding point in the right-hand image can 
lie only on the particular corresponding epipolar line. The reference matrix of the 
left-hand image is therefore shifted along the epipolar band in the right-hand image 
until the optimal correlation is reached. The saving in computer time arising from the 
one-dimensional correlation is of great significance in practical photogrammetry. Not 
only is there a great saving in computer time connected with the use of epipolar lines, 
however, but the reliability of the correlation is also much improved. 

Figure 6.8-9: Stereopair with four points in the left image and corresponding epipolar 
bands in the right image 

14Höhle, J., Potuckova, M.: PFG 6/2001, pp. 397-^04, see also Morgado, Α., Dowman, I.: ISPRS-J 
52, pp. 169-182, 1997. 



342 Chapter 6 Plotting instruments and stereoprocessing procedures 

6.8.5.1 Epipolar geometry after relative orientation using rotations only 

Epipolar geometry is illustrated in Figure 6.8-10. An epipolar line is the line of inter-
section of the plane of the photograph and an epipolar plane or basal plane. A basal 
plane is a plane containing the two perspective centres 0\ and O2 and a relevant object 
point P. All epipolar rays in a photograph intersect in the epipole K. The epipole is 
the point of intersection of the base Ο1Ο2 and the plane of the photograph. An epipole 
in one photograph is therefore the image of the other perspective centre. Thus a stere-
opair has two epipoles, the points K\ and K2 in Figure 6.8-10. Corresponding image 
points lie on the two epipoles. In the "normal case" of photogrammetry, the epipoles 
are imaginary points, coinciding in a single point at infinity in the direction of the base. 
For this reason it is probably preferable to use the term basal plane. 

Figure 6.8-10: Original images, normalized images and the epipolar rays for two cor-
responding image points, radiating from the epipoles K\ and K2 

When the relevant epipolar rays have been found in both images, a one-dimensional 
correlation can be carried out along these two epipolar rays. (The difficulties which 
arise from the diagonal course of the epipolar rays in the matrices of the original images 
should not be entered into here.) The obvious points from which to determine the 
epipolar rays are the epipoles K\ and K2 (see Figure 6.8-10). The image coordinates 
of Κ ι, for example, are obtained by substituting the model coordinates (6,0,0) of the 
perspective centre O2 in the collinearity equations (2.1-19) for the first image (see 
Equations (6.8-12)): 

_ ri\b + Γ2ΐ0 + Γ3ΐ0 _ r\2b + r^O + r^O 
ξΚι ~~ ~Crl3b + r 2 3 0 + Γ33Ο VK' ~ ~Cn3b + r230 + r330 
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Or, for the general case: 

(6.8-12) 

Exercise 6.8-7. Derive the coordinates of the epipoles of both of the photographs of 
Section 4.3.1 using the orientation angles from Section 4.3.2. Answer: The rotation 
matrices Ri and R2 must first be evaluated from the orientation angles: 

/ 0.999615 -0.026817 -0.007148 \ 
R, = 0.026818 0.999640 0.000000 

\ 0.007145 -0.000192 0.999974/ 

/ 0.999912 0.013170 -0.001502 \ 
R 2 = -0.013200 0.999676 -0.021780 

\ 0.001215 0.021798 0.999762 J 

The image coordinates of the epipoles, in [mm], are hence derived as: £«·, = 21351, 
ηΚχ = -573 , ξΚι = 101613, ηΚι = 1338. 

6.8.5.2 Epipolar geometry in normalized images 

The epipolar geometry of normalized images is especially simple. Normalized images 
are indicated in Figure 6.8-10 beneath the perspective centres. They correspond to 
the "normal case" of stereoprocessing (Section 2.1.5). In Section 2.1.5 the fact was 
recorded that in such an image pair no η parallaxes appear but only ξ parallaxes. This 
statement can also be put in terms of epipolar geometry: in the "normal case" the 
epipoles are infinitely distant so that in every instance two corresponding epipolar rays 
in the two images exhibit the same η coordinate (Figure 6.8-10). 

In human vision (Section 6.1.1), also, there are no η parallaxes (vertical parallaxes) but 
only ξ parallaxes (horizontal parallaxes). With such an image pair a person correlates 
the two images received on the retinas and from this derives the succession in depth of 
visible objects. Hence, in machine vision, correlation of normalized images emulates 
natural human stereoscopic vision. The ξ parallaxes in normalized images constitute 
what, in computer vision, is referred to as a disparity map. 

Normalized images are obtained in photogrammetry if the photographs are taken as 
"normal case" images, for example with a stereometric camera (Section 3.8.2). But 
normalized images can also be produced from arbitrarily configured photography. It is 
a precondition that the elements of orientation are known for both images. It is sup-
posed, first of all, that relative orientation by means of rotations only has previously 
been carried out (independent relative orientation, see Section 4.3). The connections 
are represented in Figure 6.8-10. ξι,η\ and ξι,ηι are the image coordinates of the orig-
inal metric image, ξ[,η[ and ξ^7^ those of the equivalent normalized images. The 
principal distance of the normalized images is c'. The origin of the local object co-
ordinate system, or model coordinate system, is set at 0 \ . The χ axis is taken in the 
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direction of the perspective centre O2. The ζ axis becomes, as it were, the camera axis 
of the first normalized image. The y axis is perpendicular to the xz plane. 

The mathematical relationship between the image coordinates ξ and η of one of the 
original metric images and the image coordinates ξ' and η' of the equivalent normalized 
image follows from the collinearity equations (2.1-19), in which 

• the specific position of the object coordinate system is noted 

• the (negative) principal distance c' is substituted in place of (Z — Z()) 

• ξο and ηο are set to zero 

ri2? + riirj - ruc' η = —c 
+ T23T]' ~ i"33c' 

Equations (6.8-13) may be re-arranged to give expressions for ξ' and η', corresponding 
to the Equations (2.1-20): 

_ + τηη - r}3c 
Γ?ΐ£ + fi2V — 7*33 C ς ' (6.8-14) 

, ,Γ2ΐξ + T22V - r23C 
V = - c — 7 — 

ί·3ΐξ + T32V - r33C 

Tik . . . are elements of the three-dimensional rotation matrix R derived from 
the angles of relative orientation performed using rotations only; that 
is, using u)\ = 0, ψ\, κ\ for the first image and ω2,φ2, «2 for the sec-
ond image. (The solution for Exercise 6.8-7 contains an example.) 

The conditions for the transformation of the original digital metric images into normal-
ized digital images are set out in these equations. A new image matrix is defined in the 
normalized image (Figure 6.8-11). In order that no pixels will be lost from the origi-
nal image, the principal distance c' is chosen to be somewhat larger than the original 
principal distance c. Taking this into consideration we are starting from the assumption 
that the pixel sizes in the original and in the normalized images are chosen to be the 
same. For every one of the pixels in the normalized image, with coordinates ξ', η', c', 
the required position in the original image can be found (Equations (6.8-13)). There a 
grey level interpolation over the neighbouring pixels can be carried out, as explained 
in Section 2.2.3. The result of this resampling are two normalized digital images, and 
therefore a normalized digital stereopair. 

With a normalized digital stereopair the complete stereomodel can be processed using 
one-dimensional correlation. Corresponding image points in the two normalized im-
ages lie on two lines in the images with the same η coordinates (η\ — r^). Reference 
matrices, or more accurately reference vectors, are best chosen in one image in the 
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Figure 6.8-11: Original digital image and digital normalized image 

neighbourhood of intersection points of grey level edges with the η coordinate lines. 
The larger search matrices, or more accurately search vectors, should be chosen in the 
other image, shifted by the base length (at image scale) along the η coordinate. In 
cases where the orientation elements still contain significant errors the search should 
be made along bands of lesser or greater width lying along the epipolar lines instead of 
along the epipolar lines. A small rectangle is used as the reference matrix; the search 
matrix is also defined as rectangle, but one that is somewhat wider and longer. 

6.8.5.3 Epipolar geometry in original, tilted metric photographs 

The transformation of tilted photographs into normalized images is relatively costly. 
When correlation is necessary for only a few points, the correlation should be car-
ried out in the original, tilted photographs along the epipolar rays. For this purpose a 
method must just be given for finding the epipolar rays in tilted metric photographs. 

The first important step, determining the epipolar points Κ ι and K 2 , has already been 
explained in Section 6.8.5.1. Then a point Pi is arbitrarily chosen in the first origi-
nal image. The points Pi and Κ ι define the epipolar ray in the original image (Fig-
ure 6.8-10). Subsequently the point -Ρι(ξι,τ?ι) is transformed into the first normalized 
image using Equations (6.8-14). The resulting point is f / ^ J , η [ ) . This point can be car-
ried over directly into the second normalized image as P i : ξ ' 2 = ; ή 2 = η[ . A constant 
could be added to the ξ coordinate correspondingly approximately to the base in the 
photograph. Finally the point Ρ 2 ( ξ 2 , V 2 , c') is transformed into the second original im-
age using Equations (6.8-13). The points P 2 and K 2 in the second original photograph 
fix the epipolar ray in that photograph; it corresponds to the epipolar ray through the 
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points P\ and K\ in the first original photograph. 

Exercise 6.8-8. Taking the image coordinates ξι and η\ in the first original image as 
starting point, find the epipolar rays for the eight points of the numerical example in 
Section 4.3.1. The rotation matrices of Exercise 6.8-7 should be used for this. (Check: 
Ignoring accidental errors, the points with the image coordinates £2 and r/2 must lie on 
the epipolar rays in the second original image.) 

6.8.5.4 Derivation of normalized images using the elements of exterior 
orientation 

In Figure 6.8-10 it is assumed that the correlation has been preceded by a relative 
orientation using rotations only. In many cases, for example with direct orientation of 
the sensor using GPS and IMU (Section 4.1), this assumption does not apply. Either 
the formulae used above are re-arranged in terms of the elements of exterior orientation 
or, using a suitable transformation, the relationships of Figure 6.8-10 are established. 
Here, the second route is taken. 

Figure 6.8-12: Normalized images using the elements of exterior orientation 

Two metric images, after determination of the elements of exterior orientation, are 
illustrated in Figure 6.8-12. The camera axes (rays from the principal points through 
the perspective centres) of both normalized images should be normal to the base Β and 
parallel to each other; the principal distances are c'; these requirements determine the 
angles Ki and Φ2. The Ω direction of the camera axes (the parallel camera axes of the 

Ζ 
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normalized images) can be set more or less arbitrarily. A good choice is the mean of 
the angles ω\ and u>2 from the exterior orientation: 

(6.8-15) 

In the transition from the original images to the normalized images, the angles Κ and 
Φ are to be taken into account too; they are derived from the base components (Fig-
ure 6.8-12): 

Κ = arctan (6.8-16) 
B x 

Β, 
Φ = arctan — j = L = (6.8-17) 

\jBl + Bl 
A 3 χ 3 matrix representing a single rotation can be formed for each of the three an-
gles Ω, Φ and Κ (Appendix 2.1-1). The three rotation matrices Rn, Κφ and Rk must 
be combined with the known rotation matrices from the exterior orientation; these 
are, for the first photograph, the rotation matrix Ri(wi,v?i,ki) and, for the second, 
R2(ωό, ψ2, κι)· In so doing, the correct order of the matrices must be observed. The 
object coordinates X and the image coordinates ξ, from the original image 1 are re-
lated as follows through the rotation matrix Ri of the exterior orientation (from Equa-
tion (2.1-2-5) of Appendix 2.1-2; in the present instance the translations and the scale 
factor of Equation (2.1-2-5) have no significance): X = R i ^ . The image coordi-
nates in the normalized image 1 are found from the X coordinates after rotations 
through angles Κ (primary), Φ (secondary) and Ω (tertiary); taking note of the correct 
order of multiplication of the matrices (Appendix 2.1-1) the following result is ob-
tained: £1 = RkRxjjRaX After substitution of X = Ri£1 ? the following relationship 
between the coordinates of original image 1 and those of the normalized image 1 is 
obtained (the corresponding relationship for image 2 is added): 

£'1 = RicR<i>RnRi£i = Ri£i £2 — RicR<i>RnR2£2 = (6.8-18) 

The relationship between the ξη system of the original image and the ξ'η' system of the 
normalized image is given in detail in Equations (6.8-13) and (6.8-14). The elements 
rik appearing in these equations are to be replaced by the elements π ^ from the rota-
tion matrix Ri for image 1 and by the elements rj^k from the rotation matrix R2 for 
image 2. As is evident from Equations (6.8-18) the rotation matrices R j and R2 arise 
from multiplication of the relevant four rotation matrices. 

Exercise 6.8-9. If the angles Φ and Κ of Figure 6.8-12 are chosen as Φ = 
a r c t a n ( B z / B x ) and Κ = a r c t a n ( B y / ^ B l + BD), what is the relationship between 
the original image and the normalized image? (Answer: For image 1, for example, 

= R<j>RKRnRi£i·) 

6.8.5.5 Epipolar geometry in images which have been oriented relatively using 
projective geometry 

In Section 4.3.3 acquaintance was made with an alternative method of relative orienta-
tion with its origin in projective geometry. It is suitable, above all, for photographs of 
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which the interior orientation is unknown. With at least eight corresponding points 
in both original images the eight unknowns fa of this relative orientation can be 
found. For one-dimensional correlation in such non-metric images the corresponding 
epipolar rays are necessary. They have already been found: in connection with Equa-
tion (4.3-21) it was realized that, for a point in one image, there is a line in the other 
image on which its corresponding point must lie. Starting from Equation (4.3-22), the 
equation of the epipolar ray in the first image corresponding to a point with image 
coordinates V2 in the second image is found to be: 

/ a \ / 6 / n + mfn + f x A / 6 \ 
Μ = 6/21 + m f n + /23 from (4.3-23) hence = F % (6.8-19b) 

w V & / 3 1 + mf32 + l J \ 1 J 

In a similar way, using F T , the transpose of F, the epipolar ray in the second image 
can be found corresponding to the point £ι, η\ in the first image. 

An insight: the epipolar rays can be defined directly using the F matrix, without re-
course to the epipole. This insight can also be applied to the task of correlation in 
metric images. In Equation (4.3-20) it is stated how the fundamental matrix may be 
arrived at in terms of the elements of interior orientation (matrices Ci and C2, Equa-
tions (4.3-19)) and the elements of relative orientation (matrices R i and R2, Equa-
tions (4.3-9)). As a result the epipolar rays, which are important for correlation in met-
ric images, may be defined by means of the Equations (6.8-19). Although the epipoles 
are not needed for this, relationships should be stated from which the coordinates of 
the epipoles may be found: ξκ ι , ηκι of K\ in the first image and ξκ2; νκ2 of K2 in the 
second image: 

Finding the coordinates of three-dimensional object models using the fundamental ma-
trix can be understood from the relevant literature already given at the end of Sec-
tion 4.3.3. 

Exercise 6.8-10. In Exercise 4.3-6 the F matrix was derived from 8 corresponding 
points in two photographs. Using that F matrix and the relationships (6.8-20) find 
the epipoles. (Answer: ξΚί = 6406 mm, ηΚί = - 2 0 6 mm, ξΚι — 8456 mm, ηΚι = 
62 mm.) Compare these results with those of Exercise 6.8-7. Comment: The large 
difference between the two results stems, among other things, from the fact that the 

15This relationship fails if either or both of £2 and 772 are infinitely large, that is if the image point lies 
at infinity. This insight has already been gained at the end of Section 4.3.3. It was established there that, 
in the exact "normal case", relative orientation is not possible using Equation (4.3-22). 

αξί + bV\ + c = 0 (6.8-19a) 

where15 

(6.8-20) 
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elements of interior orientation were used in one case and not in the other. As well, 
the tilts of the photographs are very small so that in each case the coordinates of the 
epipole are very unreliable. 

6.8.5.6 Epipolar geometry in three images 

Epipolar geometry can also be used efficiently for identification of points. Assume that 
on a surface, for example the body of an automobile, many small circular object points 
are available (for example a grid of projected points, Section C 2.3.1.2, Volume 2). 
Photographs of the surface should be taken in such a way that every object point is 
captured on at least three images. These points can be successfully found in a partic-
ular photograph with a circular reference matrix, as explained in Sections 6.8.1.1 and 
6.8.1.2. The weighted centroid method has proved itself for such a task: within a win-
dow inside which the circular disk lies, the coordinates and ηΜ of the centre of the 
circle are calculated as the weighted arithmetic mean of the ξ and η pixel coordinates 
using the grey levels gij as weights: 

ξΜ = Τ^·>!Ι'ΐ ηΜ = (6.8-21) 
L,9n L· 9ij 

The summations in Equations (6.8-21) run over all pixels within the chosen window. In 
this calculation those pixels are removed for which the grey value lies below a suitably 
chosen limit (for example all pixels with a grey level smaller than 10, if the circles 
are light coloured against a dark background). The problem of positioning the window 
within the neighbourhood of a particular circular area still remains open. One solution 
consists of moving the window one pixel at a time left or right and up or down until 
the sum of the grey values g tJ reaches a maximum. This solution leads to success, 
though, only when the size of the window is chosen to be less than the separation of 
neighbouring circular areas. If the circular areas are not too small and are against a 
dark background the standard deviation of this method lies around ±0.05 pixel, thus a 
very high accuracy, comparable to that of LSM (Section 6.8.1.2). 

In the following paragraph it is assumed that the circular points in all three images 
have been found. Epipolar geometry offers an interesting solution to the problem of 
identifying corresponding points, illustrated in Figure 6.8-13. 

A point Ρ is chosen in image 1; the corresponding point is sought in image 2. The 
epipolar ray Κ\ —> 2, in image 2, cuts down the set of points to a one-dimensional 
group; when there are many points, no unambiguous solution is reached, however; 
three points which come into consideration are marked in Figure 6.8-13. Certainty can 
be restored with the help of image 3. For this purpose epipolar rays Kt2 —> 3 are 
established in image 3 corresponding to all candidate points in image 2; in the example 
of Figure 6.8-13 there are three such candidate points. Finally the epipolar ray —> 3 
is found in image 3, corresponding to the point Ρ chosen in image 1. The required point 
Ρ in image 3 lies on an intersection of the epipolar rays Ki 2 —> 3 with the epipolar 
ray Κ ι —• 3. From this the corresponding point is also found in image 2. Should the 
points lie very close to each other or if the orientation elements are not very accurately 
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Figure 6.8-13: Epipolar geometry for the identification of the point Ρ in three images 

known the inclusion of a fourth photograph in the epipolar geometry system can be 
very valuable. 

Exercise 6.8-11. How does the identification method explained in this section perform 
if the three camera stations are arranged along a straight line? (Answer: Since the 
epipoles are the images of the perspective centres of the other images, in this case two 
epipoles coincide. Therefore identification of corresponding points is not possible with 
this method.) 

Literature: Dold, J., Maas, H.-G.: IAPR 30(5), pp. 65-70, Melbourne, 1994. 

6.8.6 Automated recording of surfaces 
In cases where there is an artificial pattern of points on a surface, for example points 
marked by circles as was discussed in Section 6.8.5.6, the surface can be recorded 
fully automatically. If the surface exhibits no such texture, another strategy must be 
followed. The recording of the surface of the Earth is central to the following discus-
sion, although the same solution can also be applied to many kinds of tasks in close 
range photogrammetry. 

Characteristic of this solution is that, instead of finding homologous areas or points 
of one image directly in the other image and then performing object reconstruction 
using three-dimensional intersection, the establishment of the relationships among the 
images and the reconstruction of the object are completed in a single, unified process. 

Figure 6.8-14 illustrates the simplest procedure of this kind, known as the VLL relation 
(vertical line locus) which starts after the exterior orientation of the two photographs 
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has been completed. The X Y coordinates are set in advance, preferably over a regular 
grid (Figure 6.6-5). Beginning with one of the grid points a series of equally spaced 
Ζ coordinates is defined along the vertical line through that point. The strategy begins 
with points at particular Ζ levels being transformed into both photographs using the 
collinearity equations (2.1-19). In this way candidates for homologous windows are 
found in both photographs. Taking excerpts of equal size in both images, a measure of 
similarity, for example the correlation coefficient (6.8-1), is computed for each window 
pair. The required object point and its X Y Z coordinates have been found when the 
maximum value of this similarity measure is reached. 

This raster-driven correlation method gives only a point cloud and no break-lines on the 
ground. These have to be obtained by an operator and, together with the ground points 
obtained by correlation, brought together in a digital terrain model (DTM). Contour 
lines derived in this way have the appearance portrayed in Figure 6.6-4. 

The VLL procedure delivers satisfactory results only under the following conditions 
(Section C 2.2.1, Volume 2): 

• the image regions to be correlated must exhibit a good natural texture. 

• the ground must be open (without buildings and not forested). 
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• the slope of the terrain may not be great (the maximum rotation of the corre-
sponding area of the image is 30° and the maximum scale difference of the cor-
responding excerpts of the images is 25%). 

The VLL procedure can be refined in various respects: 

• from the different correlation coefficients r and the corresponding Ζ values, a 
continuous function r(Z) can be found; if the first derivative of this function is 
set to zero the desired Ζ value is found with sub-pixel accuracy. 

• the predetermined X Y raster points can lead to pairs of windows in the pho-
tographs in which no suitable correlation is possible (too great a slope of the 
terrain or too much vegetation); at other X Y raster points where a perfectly sat-
isfactory correlation can be made the measured point may lie above the ground, 
as for example on a house roof; at such points still more "intelligence" must be 
built into the processing so that the correlator reacts in a similar way to a human 
operator (see the end of Section 6.6.2) and bypasses the raster point or chooses a 
substitute point nearby; the elimination of points on roofs can also take place in 
post-processing (Section 8.1.2.2). 

• in place of the horizontal square element in the object (Figure 6.8-14) an inclined 
object element can be used; the slope can be estimated either from additional 
geometrical parameters in the LSM (Section 6.8.1.2(e)) or from the X Y Z coor-
dinates of neighbouring points already found through correlation. 

• instead of isolated elements at each raster point the surface can also be approx-
imated by continuously connected facets and in a computational procedure the 
correlations and all parameters of the facet structure be derived. 

The object sends out not only geometric information but also additional radiometric 
information. In the case of digital photography we must consider not only geomet-
ric rays emitted from an object point, but also their electromagnetic properties which 
produced the grey, or colour, values in the photographs. In the reconstruction of the 
object surface the homologous geometrical rays must intersect in the object point and 
the homologous grey or colour values must produce identical radiation values in object 
space. To this end radiation models which take the line of sight into account should, 
above all, be introduced into the processing. 

Literature: Grün, Α., Baltsavias, Ε.: PE&RS 54, pp. 633-641,1988. Heipke, C.: DGK, 
Reihe C, Heft 366, München, 1990 and PE&RS 58, pp. 317-323, 1992. Helava, U.: 
PE&RS 54, pp. 711-714, 1988. Wrobel, B.: IAPR 27(B3), pp. 806-821, Kyoto, 1988, 
and BuL 55, pp. 93-101, 1987. Zheng, Y.-J.: PE&RS 59, pp. 489-498, 1993. Nevatia, 
R.: IAPR 31(B3), pp. 567-574, 1996. See also Section C 2.2.4, Volume 2. 

6.8.7 Semi-automated processing for plan 

Fully automatic analysis of a scene captured on two or more photographs places the 
highest of demands on recognition and modelling processes. In computer vision such 
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complex image analyses are performed for many problems. These processing methods 
from computer vision can frequently be transferred to close range photogrammetry. For 
complete processing in plan from aerial photographs, on the other hand, there are still 
few reliable and accurate solutions. That is the reason why photogrammetric process-
ing in plan is solved semi-automatically, the recognition part of the task rendered by 
man (Section 6.6.1) and the measurement and modelling part automated. This sec-
tion is limited to determination of the boundaries of different kinds of land use, to the 
transport network and so on; the independent Section 6.8.8 is dedicated to the semi-
automated processing of buildings. 

6.8.7.1 Active contours (snakes) 

Semi-automated processing in plan can be put into practice using computed curves 
known as snakes. They are explained with reference to Figure 6.8-15: in the stere-
omodel the operator selects the forest boundary and sets the floating mark on a few 
points (Section 6.5). Then he initiates an automatic measuring process which, starting 
out from a coarse polygonal line, lays a curve along the forest boundary. This adapta-
tion can take place in both photographs independently of each other. Intersection with 
epipolar rays produces the ξη coordinates of corresponding points in both images so 
that the XYZ coordinates of points along the three-dimensional curve in the object 
model can be derived16. Other strategies are conceivable which, for example, carry out 
adaptation to the image curves in both photographs simultaneously, while also taking 
the 3D spatial curve into account. (Details are to be found in the literature given in this 
section.) 

Adaptation of the coarse polygonal line to a curved grey level edge in a photograph 
still needs closer consideration. The curved edge may be modelled for example by a 
spline function s(t); s is vector valued,i.e. there is a spline function for each of the two 
image coordinates £(£) and η(ί). The parameter t can be taken as curve length from 
the starting point. 

The spline function s(f) should, in our example, be smoothed as much as possible. This 
geometric constraint is arrived at by minimizing the first and second derivatives, that 
is by minimizing s'(t) and s"(t). The appropriate corrections for the corresponding 
observation equations in the sense of a least squares estimation17 are denoted by vS ' 
and v s». 

16Should the particular epipolar ray make only a very shallow intersection, or even meet the curve 
tangentially, the determination of the XYZ object coordinates becomes very inaccurate or, in some 
cases, indeterminate. Details of the problem are to be found in the third item in the comment list of 
Section 6.8.8. 

17 Instead of the least squares solution used in this section the optimization of snakes can be arrived at 
by calculus of variations, by dynamic programming, by level-set formulation (see, for example, Osher, 
St., Paragios, N.: Geometric Level-Set Methods in Imaging, Vision and Graphics. Springer, 2003) or by 
simulated annealing (van Laarhoven, P.J.M.: Simulated annealing—Theory and Applications. Reidel, 
1992). 
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Figure 6.8-15: Three operator-placed starting points (left); interim result (middle); and 
final position (right) of the curve as forest boundary 

The corrections vs/ and v s» are internal geometric constraints on the desired outline. 
An external constraint is that the boundary line should run as close as possible to the 
digitized polygon points. The corrections connected with this in a least squares esti-
mation are denoted by vext. (Details of the mathematical formulation are to be found 
in Sections Β 3.5.4, Volume 2.) 

The third group of corrections vpho relates the curve to the image content. The LSM 
scheme (Section 6.8.1.2) can be invoked. A reference matrix, in this case a reference 
matrix for a forest boundary, is defined along the approximate curve. To the left of 
the approximate curve a dark grey level is used and to the right of it a light grey level. 
Both grey values will be taken from the mid-range of values in the given photograph. 
A two-dimensional LSM formulation (6.8-7), which allows not only two translations 
6ξ and bri but also permits a deformation of the reference image according to the spline 
function chosen above, will improve the curve in a combined adjustment. (With longer 
curves the reference image is broken into shorter pieces.) 

Applying appropriately chosen weights P , the combined adjustment minimizes the 
following function: 

V T P v = (vJ/Ps'Vs< + v]"„Ps»vs") + vJxtPextVext + VphoPphoVpho 
(6.8-22) 

=Eint + Eext + Epho 

In the terminology of snakes, the function to be minimized is known as an energy 
function with the terms E in t for the internal energy, Eex t for the external energy and 
Epho for the photometric energy. 

The snakes strategy introduced here for semi-automatic photogrammetric processing 
follows the example of the publication by Grün and Li, which also contains instances 
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of different applications and an extension to the simultaneous determination of curves 
in several overlapping photographs. 

This section should conclude with further indication of the flexibility of the snakes 
formulation by mentioning some of the different ways in which the Eph0 terms may be 
framed. In the above formulation, different grey levels left and right of the provisional 
curve were used. Frequently, however, differences in grey levels along a forest border 
are not very meaningful, so that texture ought to be invoked in the place of grey levels. 
The interior of a forest is highly textured whereas outside the forest there is usually 
little texture. From the photographs in question a representative measure of texture 
is made to the left of the provisional curve and likewise a representative measure of 
texture is made to the right. Texture measures can be determined with the help of the 
Förstner operator or the Moravec operator (Section 6.8.1.3). 

Additional Literature: Kass, M., Witkin, Α., Terzopoulos, D.: International Journal of 
Computer Vision 1(4), pp. 321-331, 1988. Kerschner, Μ.: IAPR 32(3/1), pp. 244-249, 
Ohio, 1998. 

6.8.7.2 Sequential processing 

After the operator has chosen the particular kind of line to be used in plan and has 
digitized the starting points, the snake solution runs through smoothly in one go, so 
long as the operator does not intervene because he considers that the lines in the pho-
tographs look unsatisfactory. In the present section this closed solution described above 
is compared with another method which consists of a number of sequential steps. 

The key phases of this semi-automatic, three-dimensional processing method are as 
follows: 

• in each of the two photographs, independently of each other, the lines are ex-
tracted. 

• then corresponding lines are matched to each other; here epipolar geometry pro-
vides very valuable assistance. 

• the matching of corresponding lines is supported by means of human stereo-
observation. This gives the operator an opportunity to prescribe the meaning of 
individual lines from a catalogue of object types. 

• the image coordinates of homologous points come from epipolar geometry. If 
the particular epipolar line just grazes, or barely cuts, the particular plan line, the 
image coordinates are very unreliable; the best remedy is the inclusion of a third 
metric image. 

• with the image coordinates of the homologous points and the known elements 
of exterior orientation of both, or in some cases more, metric images the X Y Z 
coordinates of a succession of points in the 3D object model follow. 
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Operator involvement in the matching of corresponding lines can be very costly; by 
accepting a certain loss of quality, this cost can be reduced when choosing the following 
work programmes: 

• capturing and modelling of the object surface, that is for example a terrain model 
from aerial photographs (Section 6.8.6) 

• production of a digital orthophoto from one of the two metric images (Sec-
tion 7.3) 

• line extraction in the two-dimensional digital orthophoto; the result is the X Y 
coordinates for the succession of points in the two-dimensional object model 

• in cases where a three-dimensional object model is called for, the Ζ coordinates, 
heights corresponding to the X Y coordinates of the DTM points, can be ex-
tracted by means of interpolation. 

Line extraction requires still closer examination. In the section "Filtering in the spatial 
domain" (Section 3.5.2.1) readers have already become acquainted with the basic ideas 
of edge extraction which, in the case of processing in plan, is indicated as better than 
line extraction18. A typical line-extracting operator is the Laplace operator (3.5-14). 
Figure 6.8-16 is the result of a convolution of the right-hand matrix of Figure 6.8-1 
with the Laplace operator. The lines in the original image come out as zero-crossings in 
the convoluted image. Through linear interpolation between the negative and positive 
pixel values along the rows and along the columns, the lines are found with subpixel 
accuracy. (The achievable high accuracy can be diminished, however, because of the 
shift in position connected with compression of the photographs, Section 3.6.2). In 
Figure 6.8-16 the outline of a cross is obtained. 

But isolated zero lines also occur; they are caused, for example, by noise in the original 
grey values. In the original Figure 6.8-1 the grey value differences at the isolated 
points were around 1; in Figure 6.8-16, which is formed through convolution with the 
Laplace operator, they are around 5. This statement can be generalized: the Laplace 
operator and comparable operators, which are based on second differences, reinforce 
the grey value differences between neighbouring pixels (in our example the maximum 
grey value difference in the original image is 8 (= 9 — 1) and in the convoluted image 
it is 32 (= 8 + 24). 

18In the image-processing literature there is frequently a differentiation between edges and lines. At 
an edge an abrupt transition occurs from one grey level to another grey level. Along a grey level profile 
perpendicular to the edge, the position of the edge is at a maximum of the first derivative or at a zero 
of the second derivative of the profile function. At a line, coming from either side, there is a relatively 
more abrupt transition from one grey level value (possibly, indeed, from two different grey value levels) 
to one lying in the middle of a common grey value level. The band of pixels with the common grey value 
level, the actual line, is very narrow. If one imagines a grey value profile perpendicular to the line, the 
position of the line is at a zero of the first derivative of the profile function. An operator which extracts 
edges gives the envelope of a line. The thinner the line the more merged together the envelope. The edge 
extraction operator can thus be used in a similar manner for extraction of lines. 
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Figure 6.8-16: Convolution of the right-hand matrix of Figure 6.8-1 with the Laplace 
operator (3.5-14) (the convoluted matrix is smaller than the input matrix by two 
columns and two rows) 

The troublesome consequences of noise in line extraction with the Laplace operator 
can as a result be removed to a large extent if the original image is first subjected to 
a low-pass filter (for example a Gauss filter (Sections 3.5.2.1 and 3.5.2.2)) before the 
Laplace operator. 

Both of these processes are combined in the LoG operator, the Laplacian of Gaussian. 
The LoG operator filters out the noise (a low-pass filter) and simultaneously provides 
an image in which the zero crossings represent the lines. This operator is obtained 
when, in imitation of the differentiation of the Laplace operator (Section 3.5.2.1), 
the Gaussian bell curve, with which the elements of the Gauss filter are fixed, is 
twice differentiated and the second derivatives in both coordinate directions—the total 
differential—are combined in one function. 

If one chooses the determining parameter σ of the Gaussian low-pass filtering to be the 
same in both coordinate directions, that is σ — σζ = ση, and assumes independence 
between the two coordinate directions, that is σξη — 0, the two-dimensional normal 
distribution is obtained (Figure 6.8-17)19: 

r2 = ξ2 + η2 (6.8-23) 

Differentiating with respect to ξ and with respect to η: 

(6.8-24a) 

Differentiating again with respect to ξ and with respect to η: 

(6.8-24b) 
19For example: Mikhail, E.: Observation and Least Squares. IEP-A Dun-Donnelley Publisher, New 

York, 1976. 
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LoG(r) 

v J 

Figure 6.8-17: Gaussian bell 
curve for the two-dimensional 
normal distribution 

Figure 6.8-18: Two-dimensional 
LoG function 

As in the derivation (3.5-13) of the Laplace operator from the second differences 
(3.5-12), here the second derivatives are added and are designated the LoG function: 

The LoG function has the shape of an inverted sombrero (Figure 6.8-18). The one and 
only parameter that is free to be chosen is σ. A small σ results in many zero points. A 
large σ suppresses the pseudo-lines, which are caused above all by the noise; it is more 
or less the case that only the relevant lines in the original image are extracted. The LoG 
convolution operator can be derived from the LoG function (6.8-25). For σ = y/2, for 
example, the following convolution matrix is obtained; it is limited to a 9 χ 9 matrix; 
the values lying outside this 9 x 9 matrix, which are small, are not shown: 

LoG:= (V 2 H^,7?)) = 
e + ri2~2a2 

~—ζ e 2σ 
2πσ6 (6.8-25) 

/ Ο 1 2 4 4 4 2 1 0 \ 
1 3 7 10 10 10 7 3 1 
2 7 11 6 0 6 11 7 2 
4 10 6 - 2 4 - 4 6 - 2 4 6 10 4 

LoG = 10~3 χ 4 10 0 - 4 6 - 8 0 - 4 6 0 10 4 (6.8-26) 
4 10 6 - 2 4 - 4 6 - 2 4 6 10 4 
2 7 11 6 0 6 11 7 2 
1 3 7 10 10 10 7 3 1 

yO 1 2 4 4 4 2 1 0 / 

The advantage of the LoG operator over the Laplace operator for the extraction of lines 
is demonstrated with the aid of a practical example. Figure 6.8-19 shows the original 
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Figure 6.8-19: Original image 

Figure 6.8-20: With lines ex- Figure 6.8-21: With lines ex-
tracted using the Laplace operator tracted using the LoG operator 

image. Figure 6.8-20 reproduces the image after convolution with the Laplace operator 
(3.5-14); Figure 6.8-21 is the result of a convolution with the LoG operator (6.8-26). 
The advantage of the LoG operator is clearly recognized; the many pseudo-lines are 
suppressed and the relevant lines are clearly emphasized. 

Before leaving this section the problem of the shift in position of lines extracted with 
the LoG operator should be touched on. Since the LoG operator is an edge-extracting 
operator, the sum of its elements should be zero (Section 3.5.2.1). Checking this for 
the matrix (6.8-26) though gives a sum of —0.008. This defect leads to a shift of the 
extracted lines that must be taken into account when high accuracy is demanded. The 
shift is dependent both on the deficiency in the edge operator and on the contrast at the 
particular edge (Section C 2.2.2,Volume 2). 

Incidentally, similar shifts also appear on application of the Förstner operator to edge 
extraction (Section C 2.2.2,Volume 2). The Förstner operator was introduced in Sec-
tion 6.8.1.3 as the interest operator for finding well correlated image points. With this 
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operator points in the image are found at which a high contrast is present and a good 
distribution of grey level edges in all directions. 

For the extraction of lines the Förstner operator must be modified; patches with high 
contrast are indeed sought but they should also have a very limited distribution of edges 
in all directions, in the ideal case only a line. The Förstner operator modified in this 
way delivers points and the directions of the lines at those points. From such a sequence 
of points and associated tangents a complex curve may be produced. 

Exercise 6.8-12. Develop the LoG operator for σ = 2. Result: The central element 
is -0.0199; the element which is distant two pixels from the centre is -0.0037; the 
element a distance of 2y/2 from the central point is zero; and so on. 

Exercise 6.8-13. Establish the one-dimensional LoG operator. Take, as starting point, 
the one-dimensional normal distribution, = 1/(σ y/ϊϋ) exp ( -£ 2 / (2 σ2)). σ is the 
abscissa of the inflection point in the Gaussian bell curve and also the abscissa of the 
zero point in the LoG operator. Result: LoG = (ξ2 - σ2)/(σ5\/2π) exp(—ξ2/(2σ2)). 

Literature: Schenk, T„ Li, J.-C., Toth, C.: PE&RS 57, pp. 1057-1064, 1991. Schenk, 
Τ.: Digital Photogrammetry. TerraScience, 1999. Couloigner, I., Ranchin, T.: PE&RS 
66, pp. 867-874, 2000. Baumgartner, Α., Hinz, S., Wiedemann, C.: IAPR 34(3B), 
pp. 28-31, 2002. 

6.8.8 Semi-automatic measurement of buildings 

The semi-automatic measurement of buildings usually begins with the operator making 
topology-supported measurement, as discussed in Section 6.6.3. The corner points of 
the buildings are only roughly set; the fine measurement, which is the subject of the 
following passages, is taken over by the computer. 

The starting situation for the automatic fine measurement is portrayed in Figure 6.8-22. 
The buildings have already been reconstructed with moderate accuracy. Using the 
known elements of interior and exterior orientation, these relatively inaccurate building 
edges are transformed into the relevant metric images. Figure 6.8-22 is limited to the 
roof ridge in two photographs. 

Before this transformation as illustrated in Figure 6.8-22, line extraction was carried 
out in the photographs involved (Section 6.8.7.2). The points used in extracting the 
lines are illustrated in Figure 6.8-23, as well as the transformed straight lines of the 
roof ridge, accentuated in Figure 6.8-22. In both of the photographs an ε frame (i.e. a 
tolerance band) has been laid around the transformed (approximate) roof ridge. Subse-
quently all points used in extracting the lines inside the particular ε frame are chosen 
and an improvement of the straight-line roof ridge is brought about in the object model. 

Two linearized observation equations can be set up for each point of the extracted line 
in each of the two metric photographs (in image 1 they are the points 1, 2, 3, 4 and, in 
image 2, the points 5, 6, 7, 8, 9). These equations correspond to Equations (4.1-3) for 
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Figure 6.8-22: The approximate building model, transformed into and inserted in, two 
photographs from which line extraction is planned. The area surrounding the roof ridge 
has been highlighted (after Rottensteiner, F.: Geow. Mitt, der TU Wien, vol. 56, 2001). 

Figure 6.8-23: The approximated roof ridge in both metric images and the image 
points found during line extraction inside an ε frame 

three-dimensional intersection but, since there are no homologous points as in three-
dimensional intersection, for each image point there are three unknown object coordi-
nates Χ, Υ, Z. In the example of Figure 6.8-23 this means that, as against 18 ( = 9 χ 2) 
observation equations, there are 27 (= 9 χ 3) unknown X Y Z coordinates. 

In order to make the adjustment equations soluble and to achieve straightness in the 
roof ridge, additional condition equations must be introduced into the least squares 
estimation. In order that three points with indices i,j,k should lie on one straight line, 
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the following two conditions should be met: 
y V" y 

In the X Z coordinate plane: —!- - i = —^ - i (6.8-27) 
•̂ fc — Zi Zj — Zi 

In the Y Z coordinate plane: = ^ ~ ^ (6.8-28) 
Zk — Ζι Ζj — Zi 

A third, corresponding, equation in the X Y coordinate plane could indeed be formu-
lated but it is redundant, for it could be obtained by division of Equations (6.8-27) and 
(6.8-28). The next point, and each further point, provides two condition equations of 
the form of (6.8-27) and (6.8-28). Since 9 points occur in this example, there are in total 
14 (= (9 — 2) χ 2) condition equations, so that for the determination of the 27 unknown 
X Y Z coordinates mentioned above a total of 32 (= 18 + 14) equations is available. 
A discussion of this type of estimation problem, adjustment with indirect observations 
and condition equations, can be found in textbooks20 on least squares estimation. 

This adjustment results in a set of points, 1 - 9 , with their X Y Z coordinates, all lying 
along the straight line of the 3D roof ridge. The observed image coordinates ξ and 
η in the photographs receive "corrections", the sum of the squares of which has been 
minimized. 

This section on the refinement of the solution for the roof ridge should conclude with 
some comments: 

• the conditions corresponding to the Equations (6.8-27) and (6.8-28) should be es-
tablished for those pairs of coordinate planes in which the coordinate differences 
are greatest. 

• in order to avoid numerical problems in the least squares estimation, the separa-
tions of the points along the extracted lines should not be very small. In every 
condition equation the first and last points of a line should be included; points to 
be replaced should always be confined to interior points. 

• if the roof ridge runs parallel to the camera base the bundles of rays from both 
photographs lie in the same plane; therefore the intersection conditions for points 
along the 3D line in the object will be unsatisfactory. If the roof ridge portrayed 
in the photographs runs along the epipolar rays in both images, a similar critical 
situation can also arise. The best remedy is the inclusion of a third image. The 
use of more than two photographs also has an additional advantage; in cases 
where part of a building is hidden in one photograph that problem, too, can be 
overcome. 

• likewise, with robust estimation and data-snooping (Sections Β 7.2.1.4 and 
Β 7.2.1.5, Volume 2) wrongly matched image points can be reliably eliminated. 

• analysis of the "corrections" can also lead to the realization that the roof ridge is 
not a straight line but should be approximated by a 3D polygonal path or a 3D 

20E.g. Mikhail, E.: Observations and Least Squares. IEP-A Dun-Donnelley Publisher, New York, 
1976. 
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curve. In this case, the 3D straight line should be replaced with a 3D polygonal 
path or curve. 

• the use of image pyramids from the photographs (Section 3.6.1), which can be 
generated with low-pass filtering, is recommended for the automatic refinement 
process. The coarsest pyramid is used to start with; extraction at this level finds 
only prominent lines, so there are no disturbing points from lines of minor im-
portance. When passing to finer levels the ε frame is progressively reduced; to a 
large extent, errors in identifying corresponding points are excluded in this way. 

• other a priori knowledge besides straightness of lines is brought into the refine-
ment, for example the horizontality of roof ridges in new buildings. In this case 
the condition equation 

Zj -Zi= 0 (6.8-29) 

is additionally introduced in the least squares estimation. The second and further 
points each give one such condition equation. Thus for our example from Fig-
ure 6.8-23, eight further condition equations (6.8-29) appear; this means that 40 
equations are available for the determination of the 27 unknowns. 

• instead of the X Y Z point sequence along the adjusted 3D straight line, the para-
meters of the straight line can be used directly in the automatic refinement. Such 
an expression has few unknowns; its formulation is didactically more demand-
ing. 

• automatic refinement should not be applied for each 3D line in isolation, but 
simultaneously for all edges of a whole building (Figure 6.6-6 shows an example) 
or at least for a part of a building which is indicated as a building primitive21. The 
advantages of a simultaneous treatment are obvious; especially that extensive a 
priori knowledge can be elegantly introduced in the form of numerous kinds of 
conditions (building walls perpendicular to each other, roof planes with equal 
inclination, and so on). The example shown in Figures 6.6-7 and 6.6-8 resulted 
from this kind of complex automatic refinement. 

Additional Literature on semi-automatic processing of buildings: Gülch, E., Müller, 
Η.: in Baltsavias, E., Grün, Α., van Gool, L. (Eds.): Automatic extraction of man-
made objects from aerial and space images (III), pp. 103-114, Balkema Publishers, 
Lisse, 2001. Grün, Α., Wang, X.: ibid., pp. 93-101, 2001. Zhou, G„ Li, D.: PE&RS 
67,pp. 107-116, 2001. 

6.8.9 Accuracy and reliability of results obtained by automated or 
semi-automated means 

There is as yet no long tradition of semi-automated and automated measurement pro-
cedures in photogrammetry. It is not surprising, therefore, that there are no rules of 
thumb for their accuracy. 

21 Rottensteiner, F.: Geow. Mitt., vol. 56, 2001. 
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Certainly semi-automated and automated measurement methods are displacing human 
operators more and more. These modern methods of processing, however, will be 
accepted only if they achieve at least the same quality of the work as for that carried 
out by human operators, which was reported in Section 6.7. 

For project planning, therefore, the rules of thumb given in Section 6.7 can be used, 
independently of whether the work is done semi-automatically, automatically or by a 
human operator. But it is necessary to see to it that the prerequisites for good semi-
automated and automated measurement procedures are present, for example relatively 
high resolution in digitizing of the photographs, correlation algorithms which give sub-
pixel results and so on. 

From interim published accuracies achieved in specialist projects it can be concluded 
that semi-automated and automated procedures have a higher potential accuracy than 
that of work done by human operators. When it comes to single point measurement, 
it may indeed be the case that the work of human operators is more accurate; the 
much higher number of points and lines which are amassed in the automated proce-
dures compensate for the accuracy deficit in single-point measurement. Usually over-
compensation is made. 

The reliability of results obtained automatically can be guaranteed only for simple 
tasks. If the nature of the task is complex, as in capturing topographic information from 
aerial photographs, a visual check should always be planned, such as by superimposing 
the results on the photographs. 

6.8.10 Special features of the three-line camera 

The use of images from a three-line camera, or three-line scanner (Section 3.7.2.3), 
involves some special features which will be touched on in this section. Since a three-
line camera is always flown with GPS and IMU support, direct georeferencing (Sec-
tion 4.1.2) can be performed. It remains an unanswered question though, how auto-
matic localization of corresponding points in the three image strips takes place. 

Good conditions for automatic localization occur because the images are first normal-
ized using information from the GPS/IMU, in order to remove large distortions arising 
because of the dynamics of the flight. This step is comparable with the production of 
normalized images from arbitrarily configured images from conventional frame cam-
eras (Section 6.8.5.2). The mathematical relationships need not be repeated here. The 
procedure corresponds to an indirect transformation of the images from the three-line 
camera into an adopted horizontal plane. 

Corresponding points in images from a normalized strip have almost identical η coor-
dinates. On the contrary the ξ coordinates of corresponding points differ very greatly. 
On the one hand the differences come from the way in which the rows a and b in the 
camera are staggered (Figure 3.3-3, right) and on the other hand from the height differ-
ences of the ground. Normalized strip images have characteristics comparable to those 
of normalized images from stereophotogrammetry with conventional metric cameras 
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(Section 6.8.5.2): correlation can proceed along narrow bands which exhibit the same 
η coordinates. 

Correlation to establish corresponding points in the normalized strip image-triples for 
automated and semi-automated procedures (Section 6.8) can be carried out with three-
image correlation (Section 6.8.1.5). This three-image correlation is a significant advan-
tage of the three-line camera in comparison with the conventional aerial photographs 
with 60% forward overlap where, over large areas, correlation can be performed only 
with two-image correlation. 

After the normalization of the image-triple using the GPS/IMU information, it is un-
usual for the processing for height, plan and buildings to begin immediately; normally 
the GPS/IMU orientation will first be improved. For this purpose many tie points on 
the upper and the lower edges and in the middle of the image-triple are automatically 
located and an integrated sensor orientation (Section 5.5) carried out. 

After this improvement of the orientation there are no longer any residual η parallaxes 
between the images of the strip-triple. The images can be observed in digital work-
stations (Section 6.5) and the heighting, measurement in plan and recording of the 
buildings can be carried out by an operator, with computer assistance (Section 6.6). 
The operator has the possibility of choosing any particular pair of strips and observing 
their image-triples stereoscopically. 

This choice between normal angle, wide angle and intermediate angle (Section 3.7.2.3) 
depends on the desired accuracy and the visibility on the ground. Work-stations that are 
set up for the processing of images from a three-line camera allow a rapid switchover 
between particular pairs of images of a triple. Such workstations take advantage of the 
fact that in flight direction there are no stereomodel boundaries. 

Literature additional to that given at the end of Section 5.5: Grün, Α., Li, Ζ.: PFG 
2003(2), pp. 85-98. Sandau, R. et al.: IAPRS 33(B1), pp. 258-265, Amsterdam, 2000. 
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Orthophotos and single image analysis 

As is well known, a single image is not sufficient for reconstructing a spatial object. 
However, methods have been developed which only use one image. Such single image 
analyses are conditional on knowing the geometric shape of an object; for example that 
the situation is dealing with an object plane or that a digital surface model is available. 

Single image analysis frequently takes place in two stages. In the first stage an analogue 
or digital photograph, which is normally distorted, is converted into a geometrically 
correct photograph or orthophoto. In a second stage this orthophoto is evaluated by 
analogue, analytical or digital means. 

In many cases, by adding graphical elements, such orthophotos are converted to or-
thophoto maps, in particular those based on aerial photographs, and known simply as 
photomaps. In undeveloped regions, such photomaps are significantly more advanta-
geous than line maps. Archaeologists, soil scientists, foresters, agriculturalists, geog-
raphers, geologists, planners and ecologists often do not find, in a line map, the details 
import to them. Maps which provide the full content of analogue or digital photographs 
are a better solution in this case. Even in developed areas, however, there is a demand 
for the image content in the photos. Orthophoto maps are also attractive because they 
are significantly faster and cheaper to produce than line maps. 

Increasingly, digital orthophotos are employed as data in topographical information 
systems. To a considerable extent, orthophotos bring the real world into a Geographic 
Information System (GIS), in which the topographic information system is a subsys-
tem. The digital orthophoto is therefore an excellent orientation aid for the GIS user. 
(This opinion was expressed in Section 6.6.3 for photogrammetric vector analysis.) A 
GIS user coming from one of the related disciplines mentioned above can personally 
undertake photo interpretation on the basis of the digital orthophotos and digitize the 
results in vector mode. In this way these disciplines can build up their own thematic 
data base. 

Digital orthophotos play a large role in the visualization of both developed and unde-
veloped regions. For this purpose the orthophoto pixels are projected onto the digital 
terrain model and viewed obliquely. These three-dimensional visualizations can also 
be presented as animations (Section 7.6). 

However, the orthophoto as texture source reaches its limits with large-scale visual-
izations, especially for urban landscapes. Here the orthophotos from aerial surveys 
contain no photo texture for the vertical fagades, etc. For consistent three-dimensional 
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visualizations the orthophoto must be developed further into a photo model. This 
is obtained by transferring the texture in a photograph onto the surface of a three-
dimensional object model, often a CAD vector model (Section 7.5). 

Chapter 7 is mainly concerned with the production of digital orthophotos and their 
accuracy. It will be seen that professionally created, digital orthophotos are a very 
accurate source of data. Before describing the production process, the distortions in 
the metric image (central projection) compared with a map (orthogonal projection) are 
discussed. 

7.1 Perspective distortion in a metric image 
Distortions in mappings from one surface to another are described in differential geom-
etry by means of the Tissot indicatrix1. This also includes perspective images. This 
theory can be applied, however, only if the surface of the object can be described by 
smooth analytical functions. The surfaces of the ground and other objects can generally 
not be so described. More often the ground surface is represented in photogrammetry 
by digitizing a large set of individual points on the surface. These are then approxi-
mated by small (flat) surface elements which at their joins have no discontinuities in 
height but discontinuities in slope. (In geometry such surfaces are characterized by the 
C°-continuity.) A different method, based on the XFZ-coordinates of closely spaced, 
discrete points, is therefore required to describe the distortions in the metric photo-
graph. 

Figure 7.1-1 shows an object surface defined by the Z-coordinates of a square X Y grid. 
In the sense of a map (orthogonal projection) the square X Y grid is the distortion-
free image of the ground surface. The distortions in the photograph are derived by 
computing the points in the photograph corresponding to every corner of the grid on 
the ground by means of the collinearity equations (2.1-19). The result is sketched in 
Figure 7.1-2. 

The deformation of the grid gives a very clear impression of the deformations in an 
aerial photograph (Figure 7.1-3). 

Numerical results for the deformation at individual points (e.g. point 1 of the square 
1,2,3,4 in Figure 7.1-2) can be derived from the image coordinates ξ and η and the 
ground coordinates X and Y of the point, as follows: 

(a) length distortions in X and Y directions: 

in which 
Sik = (ξί - tk)2 + {Vi - Vk)2 

'Snyder, J.P.: Flattening the Earth: Two Thousand Years of Map Projections. Chicago University 
Press, 1993. 
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Figure 7.1-1: Relation between the square grid AX — AY in the XY plane and the 
corresponding deformed grid in the image plane 

(b) distortion ω$ο of the right angle at point 1: 

ω90 = 90° - Z2'1'3' (7.1-2) 

(c) extreme length distortions Λι and Λ2 in the directions of maximum deformation, 
from the two equations (see the theory of projection of two surfaces in any ap-
propriate textbook): 

A[ + A2 — A^ + A y 

Αΐλ2 = \ x X y COS CJ90 

(7.1-3) 

(7.1-4) 
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3 4 

1 2 

X 

Figure 7.1-2: Grid in the photograph (central projection) and in the map (orthogonal 
projection) 

ξ 

Figure 7.1-3: Deformed grid in the aerial photograph and the square grid in the or-
thophoto (courtesy of the Mapping Division of the Austrian Federal Office of Metro-
logy and Surveying (BEV)) 

(d) maximum angular deformation 2ω: 

λι — λ2 , . sin ω = (7.1-5) 
λ\ + λ2 

(e) deformation of area: 

ΔΙ '2 '3 ' 
Δ123 

Αι A2 = X x X y cos 0,190 — (7.1-6) 

Note: since every grid point is the corner not only of one grid square, but of four 
squares (in general), the deformations at each grid point according to Equations (7.1-1) 
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to (7.1-6) can be computed four times. The four values will not be exactly the same 
because, on the one hand, the ground surface is, in general, discontinuous at each 
grid point and, on the other hand, the initial Equations (7.1-1) are derived from finite 
differences and not from infinitely small differentials. The four values, which have 
only minor differences, should be averaged at each grid point. 

Exercise 7.1-1. Assume the elements of interior and exterior orientation of the exam-
ple at the end of Section 2.1.3 and compute from three neighbouring points Pi, P2 and 
P3 the various deformations from Equations (7.1-1) to (7.1-6), referred to a photo map 
at a scale of 1 : 10000. Solution: 

X[m] y[m] Ζ Μ 
1 363400 61500 575.12 
2 363410 61500 576.87 
3 363400 61510 578.04 

Photo coordinates: 

ξ [mm] η [mm] 
1' -33.694 92.706 
Τ -33.773 93.893 
3' -34.835 92.859 

Length distortions: λ χ = 1.1896 Ay = 1.1512 
Right angle distortion: ω90 = 90° - Z ( 2 T 3 ' ) = 11°27' 
Extreme length distortions: Λι = 1.2828 λ2 = 1.0463 
Maximum angular distortion: 2ω = 11°40' 
Area distortion: Λ1Λ2 = 1.3 

Exercise 7.1-2. Repeat the computations under the assumption of an exactly vertical 
camera axis. (Solution: Ai = 1.2760, λ2 = 1.0431,2ω = 11°32'.) 

If the object surface is a horizontal plane, the deformations of the grid in the photograph 
can be seen very clearly in comparison with the X Y grid in the object (Figure 7.1-4). 
In this diagram, the photograph is tilted about an axis running from its lower left to its 
upper right corner. The line of maximum slope of the photograph runs from the upper 
left to the lower right corner. 

The relation between the square grid and the deformed grid is here defined by the 
collinearity equations (2.1-19) in which Ζ is taken as the height of the object plane 
(parallel to the X Y plane). Instead of the collinearity equations, the projective trans-
formation (2.1-24) can be used. 

Numerical results for the deformations can also be derived by applying Equations 
(7.1-1) to (7.1-6) to plane object surfaces. A mathematical formulation by the Tis-
sot indicatrix is also possible in this case. Rather than formulating such a relatively 
complex solution, we give below a practical approximation from which the distor-
tions in photographs of plane objects with small angles of tilt can be derived. The 
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Figure 7.1-4: Grid in the photograph and in the object plane (map) 

development begins with Equations (4.3-3). First, the model is transformed into the 
photograph by means of Equations (4.3-24). We then set άκ — 0 (άκ produces no 
deformation) and dw — άφ — v/V2, i.e. ν is a tilt about a diagonal of the photograph. 
With ξ = η = ν I\f2 we obtain for the image displacement Ap — \J Αξ2 + Αη2 along 
the deformed image diagonal: 

P2 
Ap — —v (7.1-7) 

c 

Ap lies in the image diagonal perpendicular to the tilt axis, whereby Ap is a displace-
ment towards the tilt axis in the "higher" corner and away from it in the "lower" corner. 

The magnitude of Ap shows the extent by which a semi-diagonal p, i.e. the distance 
between a point Ν (image centre) and a point Ρ (image corner), is increased or re-
duced to ρ by the image tilt v. Figure 7.1-4 shows the upper half of a tilted photograph 
in which ρ is reduced to p. Equation (7.1-7) can also be derived from the diagram of 
Figure 7.1-5 by simple trigonometric relations and series expansion. 

Table 7.1-1 shows the image displacements Ap as a function of tilt ν for three types of 
cameras. 

V 
1 gon 2gon 5gon lOgon 
(54') (1°48') (4°30') (9°) 

Normal angle (c = 30 cm) 
Wide angle (c = 15 cm) 
Super wide angle (c = 9 cm) 

1.4 2.7 6.9 13.8 mm 
2.8 5.5 13.8 27.5 mm 
4.6 9.2 22.9 45.9 mm 

Table 7.1-1: Image displacements Ap (in [mm]) in the corners (p = 115 χ V2) as a 
function of tilt u and type of camera 
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Ο 

Figure 7.1-5: Reduction of the image length in an exactly vertical photograph to ρ in 
a photograph tilted by ν (Ν is the nadir point and υ the nadir distance.) 

The increase or reduction of a small length dp follows from differentiation of Equa-
tion (7.1-7): 

d(Ap) = 2^dp (7.1-8) 

Numerical Example. A line 10 mm in length along the diagonal in the "upper" corner 
of a wide-angle photograph (c = 15 cm) tilted by 5 gon has been reduced by: 

d(Ap) — 2(115\/2/150)(5 π/200)10 = 1.7mm 

In an exactly vertical photograph the line would therefore be 11.7 mm long. 

Exercise 7.1-3. How long would this line be in an exactly vertical photograph if it 
measured 10 mm in the "lower" corner of the tilted photograph? Take the remaining 
data from the example above. (Solution: 8.3 mm) 

Exercise 7.1-4. Calculate the reduction (increase) of length of the 10 mm length if it 
lies parallel to the ν axis in the "upper" ("lower") corner of the photograph. Take the 
remaining data from the example above. (Solution: 10.8 mm (9.2 mm) in an exactly 
vertical photograph.) 

Exercise 7.1-5. Derive Equation (7.1-7) from the diagram of Figure 7.1-5 and show 
also the neglected second-order terms. (Solution: pv1 (tan2 τ - 1), in which τ is the 
angle shown in Figure 7.1-5.) 

Exercise 7.1-6. Use Equations (7.1-1) to (7.1-6) to compute the image deformations 
of the example of Exercise 7.1-1 under the assumption that the three points 1,2 and 3 
are at a height of 500 m, i.e. the object plane lies at Ζ = 500 m. 



Section 7.2 Orthophotos of plane objects 373 

Solution: Object and image coordinates: 

Point F[m] Z[m] ξ [mm] η [mm] 
1 363400 61500 500 -32.014 88.104 
2 363410 61500 500 -32.050 89.123 
3 363400 61510 500 -33.030 88.070 

Extreme length distortions: Λι = 1.0200 λ2 = 1.0162 
Maximum angle distortion: ,βω — 0.22gon(12') 
Area distortion: Λ1Λ2 = 1.04 

Exercise 7.1-7. Repeat the computation under the assumption that AX 12 = ΔΥ13 = 
5 m and compare these results with those for AX 12 = ΔΥ13 = 50 m. Solution with 
AXxl = AYn = 5m: 

λι = 1.0208 λ2 = 1.0164 2ω = 0.28gon(15') 

Solution with AX]2 — ΔΥ13 = 50 m: 

λι = 1.0202 λ2 = 1.0169 2ω = 0 .21gon( l l ' ) 

What is the source of the differences? (Answer: In the initial Equations (7.1-1) finite 
differences are used instead of differentials.) 

7.2 Orthophotos of plane objects 

Orthophoto production is significantly dependent on whether or not the camera axis is 
perpendicular to the object plane. 

7.2.1 With vertical camera axis 

As already explained in Section 2.1.4, the photograph is the same as an orthophoto if 
the image plane and the object plane are parallel at exposure (see Figure 2.1-11 for an 
example). The square grid in the object plane is then imaged as a square grid in the 
plane of the photograph. 

If an (unavoidably) small tilt error ν occurs when pointing the camera axis perpendic-
ularly to the object plane or when arranging the image and object plane to be parallel, 
then Equations (7.1-7) and (7.1-8) can be used to estimate the effect of this error on the 
orthophoto. 

Numerical Example. In producing the orthophoto shown by Figure 2.1-11, assume 
that the orthogonal alignment of the camera axis to the plane of the fa$ade was possible 
only to an accuracy of u — 0.5 gon(27'). The orthophoto, which has a scale of 1 : 320, 
then has the following maximum error: 
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Error along the 100 mm long semi-diagonal (7.1-7): 

1002 0.5 
157^5 63^6 = 0 5 m m 

Error in a 5 mm wide window in the corner of the orthophoto (7.1-8): 

This simple procedure for creating photographs free of deformation is used mainly in 
architectural photogrammetry. Users must be aware, however, that the images of points 
outside the plane of the object will be displaced in the direction of the principal point 
H. The magnitude of this radial displacement Ap of such objects from their bases (e.g. 
houses in aerial photographs) can be derived from Figure 7.2-1: 

Ap = AR^- = AZ—— (7.2-1) 
Z0 cmB 

Table 7.2-la shows the maximum image displacements for typical scales in terrestrial 
photogrammetry for the Wild P31 camera (Table 3.8-2), while Table 7.2-lb shows 
those for typical scales and cameras in aerial photogrammetry. 

Exercise 7.2-1. Repeat the computation of the Exercise 2.1-7 with the aid of Equa-
tion (7.2-1). 

Figure 7.2-1: Radial image displacement Ap of points outside an assumed object plane 
(exactly vertical photograph) 
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AZ 

mB 1cm 5 cm 10 cm 25 cm 100 cm 
Normal angle (p — 83 mm, c = 202 mm) 

25 0.16 0.8 1.6 4.1 16.5 mm 
100 0.04 0.2 0.4 1.0 4.1 mm 
250 0.02 0.1 0.2 0.4 1.6 mm 
500 0.01 0.04 0.1 0.2 0.8mm 

Wide angle (p = 82 mm, c = 100 mm) 
25 0.3 1.6 3.3 8.2 32.5 mm 
100 0.1 0.4 0.8 2.1 8.2 mm 
250 0.03 0.2 0.3 0.8 3.3 mm 
500 0.012 0.1 0.2 0.4 1.6 mm 
Super-wide angle (ρ = 75 mm, c — 45 mm) 
25 0.7 3.3 6.7 16.6 66.5 mm 
100 0.2 0.9 1.7 4.1 16.6 mm 
250 0.1 0.4 0.7 1.6 6.6 mm 
500 0.03 0.2 0.3 0.8 3.3 mm 

(a) Typical scales for terrestrial photogram-
metry (Wild P31) 

mB 

AZ 
1 m 5m 10m 25m 100m 250m 

Normal angle (23 cm χ 23 cm, c = 30 cm) 
5000 
10000 
25000 
50000 

0.1 0.5 1.1 2.7 10.8 27.1mm 
0.05 0.3 0.5 1.4 5.4 13.6 mm 
0.02 0.1 0.2 0.5 2.2 5.4 mm 
0.01 0.1 0.1 0.3 1.1 2.7mm 

Wide angle (23 cm χ 23 cm, c = 15 cm) 
5000 
10000 
25000 
50000 

0.2 1.1 2.2 5.4 21.7 54.2 mm 
0.1 0.5 1.1 2.7 10.8 27.1mm 

0.04 0.2 0.4 1.1 4.4 10.8 mm 
0.02 0.1 0.2 0.5 2.2 5.4mm 

Super-wide angle (23 cm χ 23 cm, c — 9 cm) 
5000 
10000 
25000 
50000 

0.4 1.8 3.6 9.0 36.1 90.4mm 
0.2 0.9 1.8 4.5 18.1 45.2mm 
0.1 0.4 0.7 1.8 7.2 18.1mm 

0.03 0.2 0.3 0.9 3.6 9.0 mm 

(b) Typical scales for aerial photogrammetry 
(p = 115>/2mm) 

Table 7.2-1: Radial image displacements Ap [mm] in the corners as a function of the 
image scale 1 : TUB, the distance AZ of the points from the assumed object plane and 
the type of camera 
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7.2.2 With tilted camera axis 

The production of orthophotos from tilted photographs, where the camera axis is di-
rected obliquely onto the object plane, is widely practised. This orthophoto production 
is also known as rectification. In close range work the photographs are taken on site 
without any special precautions and in a more or less arbitrary alignment, perhaps also 
handheld. Metric cameras are now less often used. Increasingly, digital semi-metric 
cameras and digital amateur cameras are employed (Sections 3.8.4 and 3.8.7). 

Control points are necessary to rectify tilted images. Where calibrated cameras are 
in use, only three control points are strictly necessary for the spatial resection of the 
metric image (Section 4.2.1); to increase reliability and avoid extrapolation, however, 
it is advisable to have at least four control points positioned in the corners of the im-
age. Where uncalibrated cameras are used, at least four control points are required for 
every image in order to determine the eight parameters of the projective transformation 
(2.1 -24). For large blocks of images, the numerous control points required for either 
the central perspective or projective solution can be generated by means of a bundle 
block adjustment with known or unknown interior orientation (Section 5.3)2. 

The rectification of the distorted images is done either on the basis of a central perspec-
tive transformation (for metric images) or a projective transformation (for non-metric 
images) (Section 2.1.4). The technique of digital projective rectification3 has already 
been presented in Section 2.2.3. Here the indirect rectification (transformation of ob-
ject plane to image plane) is preferred to direct rectification (transformation of image 
plane to object plane). This section also explains grey level interpolation as part of the 
required resampling. Figure 2.2-8 shows a practical example. 

When rectifying tilted images of flat objects, the dominant source of error is the depar-
ture of the actual object surface from the assumed reference plane. Figure 7.2-2 shows 
the radial displacements Ap in the tilted plane of the photograph and the corresponding 
displacements Ar in the orthophoto resulting from the perspective rectification of the 
tilted photograph. The displacements Ar in the orthophoto are radial from the imaged 
nadir point4 N°, which is the pole of the zenith or the vanishing point of all verticals, 
in the case of aerial photographs. 

Thus, if we assume a horizontal ground plane, the positions of buildings, trees etc. in 
a rectified orthophoto will only be correct at ground level. Roofs, tree crowns, etc. 
are displaced from their true positions. Similarly, in rectified photographs of building 
facades details in front of or behind the plane of the fa9ade will be displaced radially 
from the "nadir point". 

2AS a-priori knowledge, parallel and/or orthogonal straight lines, as well as much other information 
about an object, can be used in place of control points to make the rectification. There are many solutions 
on this topic. See Hartley, R.I., Zisserman, Α.: Multiple View Geometry. Cambridge University Press, 
2001, and also Section Β 4.7.2, Volume 2. 

3 Analogue rectification, which has been practised for many decades and which is based on re-
photographing the original images, no longer plays a significant role. It is therefore not discussed in 
this edition; the methods and associated instrumentation are extensively presented in earlier editions. 

4In the general case, as opposed to that of aerial photographs, the term "nadir point" is used to mean 
the foot of the perpendicular from the perspective centre to the reference plane. 
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Figure 7.2-2: Radial image displacements Ar in the orthophoto of points outside the 
reference plane of the perspective rectification 

The magnitude of the displacement, by analogy with Equation (7.2-1), is: 

Ar = AZ^r (7.2-2) 
ZQ 

r ... radial distance of the point from N°, which is fixed in the orthophoto by 
the coordinates Xo and lo of the imaging station Ο 

For near vertical photographs, the most common imaging configuration in single image 
photogrammetry, both formulas can be used in the same way, i.e. Equations (7.2-1) and 
(7.2-2). In the first formula, Ap and ρ refer to the photo plane, in the second formula 
Ar and r refer to the orthophoto which is normally an enlargement. The numerical 
values in Table 7.2-1 are therefore also valid for orthophotos derived from near vertical 
images. It is necessary only to take account of the enlargement factor between image 
and orthophoto. This factor varies in practice between 3 and 6. 
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Numerical Example. An orthophoto has been generated from a normal-angle aerial 
photograph. This has a photo scale of 1 : 25000 and has been digitized at a reso-
lution of 25 μτη. The orthophoto's pixel equivalent in the ground coordinate system 
is 50 cm. Deviations from the assumed horizontal ground plane have a maximum of 
10 m. Table 7.2-1 indicates a corresponding error of 0.2 mm in the original image. In 
the 5-times enlarged orthophoto, i.e. at a scale of 1 : 5000, the corresponding deviation 
is 1 mm, which is 5 m in the ground coordinate system. This error becomes particularly 
graphic when expressed in pixel units: viewed on a computer screen this error amounts 
to 5/0.5 = 10 pixel! 

This example and Table 7.2-1, in particular, show the limits of single-image pho-
togrammetry. The upper part of the table indicates the limits for architectural surveys 
and similar applications of terrestrial photogrammetry. The lower part shows the lim-
its for exposure configurations typical in aerial surveying. The table also expresses 
the fact that normal-angle photographs are better suited to orthophoto production than 
wide-angle photographs. 

Exercise 7.2-2. A digital orthophoto is to be produced at a scale of 1 : 2500. The 
orthophoto format is 50 cm χ 50 cm and an error of 1 mm can be tolerated. What is 
the maximum permissible offset of ground points from the horizontal reference plane 
used for the rectification? Assume near vertical photography at an image scale of 
1 : 7500. There is a choice of cameras with principal distances 15 cm, 21cm and 
30cm. (Solution: AZ is 3.2 m, 4.5 m and 6.4 m respectively) 

Exercise 7.2-3. How large can the maximum offsets be if the image scale changes 
from 1 : 7500 to 1 : 15000? (Solution: ΔΖ = 6.4 m, 9.0 m and 12.8 m respectively.) 

Orthophoto production on the basis of a flat reference surface fails as soon as the 
ground has small hills and depressions. For objects with curved surfaces it is appropri-
ate to apply differential rectification, as discussed in Section 7.3. 

7.2.3 Combined projective and affine rectification 

The problem discussed in this section is illustrated by Figure 7.2-3. An xy object 
plane is tilted with respect to the XY plane of the reference coordinate system and 
an orthophoto is required in this XY plane. The xy object plane and the XY plane 
of the reference coordinate system are affine with respect to one another. The general 
affine transformation is described by Equations (2.1-8). The mathematical relationship 
between the ξη image plane and the xy object plane can be expressed as a projective 
transformation defined by Equation (2.1-24). Orthophoto production can therefore be 
achieved in the following steps: 

• projective rectification of the ξη image into the xy plane. Result: xy image. 

• affine rectification of the xy image into the XY plane. Result: required or-
thophoto. 
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Both steps can, however, be combined into a single step since the ξη image plane 
and the X Y orthophoto plane are also related by a projective transformation5. The 
transformation parameters can be determined with the aid of at least 4 control points, 
i.e. ξη and XY coordinates are known for at least 4 points. 

The combined projective and affine rectification is of considerable practical impor-
tance: in large-scale orthophotos of developed areas, the flat (tilted) roofs should be 
rectified in this way. (For completeness it is mentioned here that the principle of or-
thophoto production which takes account of buildings, as illustrated in Figure 7.3-2, 
also leads to orthophotos of roofscapes which are free of error.) 

5The theory of projective transformation states that two consecutive projective transformations can 
be replaced by a single (third) projective transformation. The affine transformation is also a projective 
transformation in which the perspective centre lies at infinity (see Exercise 2.1-8 and its solution). The 
proof of this statement is readily given: combine Equations (2.1-8) and (2.1-24), ensuring first that the 
coordinate axes are identified as in Figure 7.2-3. The result is an 8-parameter projective transformation 
between the ξη image plane and the X Y orthophoto plane. A more elegant derivation of this relationship 
is possible using homogeneous coordinates (Appendix 2.2-1). 
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7.3 Orthophotos of curved objects 

7.3.1 Production principle 

The production of orthophotos for objects with curved surfaces is based on the theory 
of perspective distortion in a metric image which was discussed in Section 7.1. To 
produce a digital orthophoto of a curved object surface, a digital model of this surface 
is required. For simplicity an object will be assumed which has a square grid in the X Y 
plane (AX = AY) and for every grid point the Ζ coordinate is known. (The acquisition 
of such models has been discussed in Sections 6.6.2 and 6.8.6.) 

Orthophoto production of curved object surfaces is implemented in an indirect way, i.e. 
an initially empty image matrix is created in the orthophoto plane and corresponding 
matrix elements found in the reference image. This indirect transformation will be 
discussed in more detail with reference to Figure 7.1-1 and under the assumption of 
standard imaging conditions appropriate to aerial photogrammetry: 

• first, an image matrix is defined in the X Y plane, the orthophoto plane. In or-
thophoto production from aerial photographs, the pixel spacing of the image ma-
trix is usually significantly finer than the grid spacing of the terrain model. 

• in the second step, the Ζ coordinate for every pixel in the orthophoto matrix must 
be determined by interpolating in the ground model. The surface of a grid square 
is commonly assumed to be a hyperbolic paraboloid (also called an HP surface). 
Section 2.1.3a explains in detail how the Ζ coordinate can be found at any X Y 
position within a grid square. The result of this interpolation process gives the Ζ 
coordinates for all X Y orthophoto pixels. 

• in the third step the image coordinates corresponding to the X Y Z locations in 
the orthophoto grid are calculated using the collinearity equations (2.1-19) and 
the known elements of interior and exterior orientation. 

• in the final step the grey value from the reference image corresponding to the ξη 
coordinate pair is assigned to the corresponding X Y position in the orthophoto 
matrix. Since the ξη coordinate pair will not, in general, lie at the centre of a 
pixel in the reference image, a grey value interpolation is required, as outlined in 
Section 2.2.3a. 

This process for producing orthophotos is relatively expensive. Approximate solutions, 
which have an acceptable loss of accuracy, are therefore in demand. The widely used 
anchor point method is a solution of this sort. The steps outlined above, which gener-
ate the ξη coordinate pairs in the reference image corresponding to the XY coordinate 
pairs in the orthophoto, are only implemented for the grid points in the ground model, 
as shown in Figure 7.1-1. The results for a square mesh are shown in Figure 7.3-1: 
the ξη coordinates and the XY coordinates for four points are known. (In Figure 7.3-1 
the origin of the object coordinate system has been shifted to the lower left corner; 
the reduced object coordinates are indicated by X and Y.) For the pixels in the or-
thophoto matrix, which are shown in the left half of Figure 7.3-1, the corresponding ξη 
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Y 
A 

- • X 

Figure 7.3-1: Bilinear transformation of a square mesh using four anchor points 

coordinates can be obtained by means of a bilinear transformation: 

ξ = δοι + bnX_ + b2iY + hiXY 
η = bw + bi2X + b22Y + 632^ (7.3-1) 

The 8 coefficients b.^ are determined from the 4 anchor points. (For each coordinate 
axis, the problem corresponds to interpolation on a hyperbolic paraboloid. This is 
discussed in detail in Section 2.2.3a. Exercise 3.2-2 provides the solution for a bilin-
ear transformation of fiducial marks.) The matching of corresponding points in the 
orthophoto and reference image by means of Equations (7.3-1) is appreciably faster 
than matching by means of collinearity equations, as described above. The economic 
advantage is even greater with larger grid spacings. However, this leads to a loss of 
accuracy which will be discussed in Section 7.3.2d. 

Digital orthophoto production of objects with curved surfaces6 can also be extended to 
ground definitions based on both grid points and break lines. This generates orthopho-
tos which are particularly accurate on the break lines. Cadastral and land use borders 
etc. often run along break lines and so such orthophotos are often in demand. Or-
thophoto production which takes account of break lines and object edges is described 
in detail in Section C 1.1.2, Volume 2. The problem of Earth curvature, which must 
be taken into account when producing small-scale orthophotos, is also discussed in 
Volume 2, Section C 1.2. 

Discussion of digital orthophoto production which can also handle buildings and other 
man-made constructions is included in Volume 2, Section C 1.1.3. Because of its 

In the past various devices have been constructed for analogue orthophoto production of curved 
surfaces. Due to their cumbersome operation, analogue orthophoto production achieved little importance. 
Before digital orthophoto production has become standard, analytical orthophoto production was widely 
applied since 1975. As in the anchor point method, the grid was transformed into the reference image 
and the image content inside individual quadrilaterals transferred by means of optical elements (zoom 
and dove prisms) onto the orthophoto plane which was a film surface wrapped on a drum. The entire 
transfer process was under computer control. The most widely used instrument was the Avioplan OR1 
from Wild. This instrument and its principle of operation are described in earlier editions. 
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practical importance, this topic will also be discussed here, with the aid of Figure 7.3-2. 
Consider using the ground model (Figure 7.3-2, left) for orthophoto production. This 
model, of course, only describes the ground and not the buildings. In the resulting 
orthophoto, for example, a point Q on a building appears at position Q0 and not at 
the required position Qo· In an accurate orthophoto ground point Ρ is expected at 
position Q0. However, if a surface model is used which also contains the buildings 
(Figure 7.3-2, right), then an orthophoto is obtained in which point Q on the building 
appears at the required location QO using image point Q'. If there is no visibility 
analysis then image point Q' appears a second time at position PQ = Q0: there is then 
double imaging in the occluded areas. 

Figure 7.3-2: Digital orthophoto production without (left) and with (right) modelling 
of buildings 

Figures 7.3-3 to 7.3-5 illustrate the various orthophoto products. Figure 7.3-3 shows 
a conventional orthophoto produced with a ground model. In the tall buildings in the 
upper half of the image it is particularly noticeable that their roofs are appreciably 
displaced and the vertical fa5ades are also, incorrectly, imaged. 

Figure 7.3-4 shows an orthophoto created using a surface model which also includes 
the man-made features. However, a visibility analysis was not undertaken and double 
imaging occurs. The double imaging can easily be seen in the buildings above the 
river; one of the two doubly imaged areas is geometrically correct for an orthophoto, 
the other is incorrect, as in Figure 7.3-3. 

Figure 7.3-5 shows an orthophoto produced with the same surface model used to pro-
duce the orthophoto in 7.3-4. Here, however, a visibility analysis was undertaken which 
eliminates the false image areas in the occlusions and replaces them with dark grey 
values. The missing pixels can be transferred from a second photographs taken from a 
different location. (The publication from which Figures 7.3-3 to 7.3-5 were taken (see 
corresponding footnote) contains such an orthophoto). 
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Figure 7.3-3: Orthophoto generated using a ground model7 

Figure 7.3-4: Orthophoto generated using a surface model which also contains build-
ings and man-made structures; double imaging occurs here due to the missing visibility 
analysis7 

7Taken from Arahar, F., Jansa, J., Ries, C.: IAPRS 1998. 



384 Chapter 7 Orthophotos and single image analysis 

When producing orthophotos from a block of original images there can be undesirable 
step changes in grey level and colour at the joins between the content of different im-
ages. These jumps are mainly the result of different viewing directions due to different 
imaging locations. These grey level and colour changes can be eliminated as part of 
the mosaicking process. 

(Further information: h t t p : / / g i . l e i c a - g e o s y s t e m s . c o m . Kerschner, Μ.: 
ISPRS-J 56, pp. 53-64, 2001. Shiren, Y„ Li, L„ Peng, G.: PE&RS 55(1), pp. 49-53, 
1989.) 

Exercise 7.3-1. Given four points with ξη and XY coordinates and the XY coordi-
nates of a fifth point: 

ξ [mm] η [mm] X[m] y[m] 
1 26.19 27.14 2325.00 4525.00 
2 28.87 26.21 2330.00 4525.00 
3 26.08 29.32 2325.00 4530.00 
4 28.96 29.01 2330.00 4530.00 
5 2327.50 4526.00 

Determine the eight coefficients of the bilinear transformation and the ξη coordinates 
of point 5. (Solution: ξ5 = 27.528 mm, η5 = 27.175 mm.) 

Exercise 7.3-2. Consider the reversal of the transformation and transform point 5 from 
the ξη system back into the X Y system. (Because this involves a quadratic equation 
there are two solutions; the correct solution lies inside the quadrilateral, the false solu-
tion outside.) 

Additional further reading on digital orthophoto production: Baltsavias, E., Käser, Ch.: 
IAPRS 32(4), pp. 42-51, 1998. Schickler, W„ Thorpe, Α.: IAPRS 32(4), pp. 527-532, 
1998. Weidner, U.: OEEPE Publication 37, pp. 307-314, 1999. 

7.3.2 Orthophoto accuracy 

The accuracy of differential rectification depends on the following sources of error: 

(a) errors in the source material (residual errors of optical distortion, film deforma-
tion, positioning errors of the film scanner, etc.) 

(b) errors in the elements of interior and exterior orientation (also control point errors 
if the elements of exterior orientation are determined by spatial resection (Sec-
tion 4.2.1)) 

(c) image displacements of objects not included in the surface model (for example, 
roof ridges, tree crowns above the digital terrain model (DTMs) or erosion chan-
nels, embankment edges, if a DTM is used which is based on a square grid) 
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(d) interpolation errors in the anchor point method, due to linear interpolation be-
tween grid points rather than using the cross ratio 

(e) height errors at the grid points used in the DTMs, which can arise during data 
acquisition and/or DTM interpolation between arbitrarily distributed points 

(f) errors in approximating curved object surfaces by a grid model in which the mesh 
elements are defined by hyperbolic paraboloids or tilted triangles (Figure 7.1-1 
shows a mesh with facets defined by hyperbolic paraboloids, Figure C 1.1-6, 
Volume 2, a mesh with additional triangular elements) 

The dominant sources of error cause positional errors in the orthophoto which are close 
to zero at the principal point of the photograph (more exactly, the nadir point N°), 
increase with distance from this point and are predominantly radial with respect to 
the principal point. (Figure 7.3-6 is a practical example from an accuracy study8.) The 
largest errors therefore lie at the edges of the orthophoto, a fact which enables the entire 
process of production to be checked by comparing neighbouring orthophotos side by 
side along their common boundary. 

Figure 7.3-6: Planimetrie errors in a differentially rectified orthophoto, derived from 
known coordinates of signalized check points 

The following detailed comments can be made on some of the sources of error men-
tioned above. 

With regard to c) Image displacements of objects not included in the surface 
model 

Details not contained in the surface model used to create the orthophoto will be incor-
rectly imaged. When using a DTM for orthophoto production, roof ridges, tree crowns, 
etc. are displaced in the orthophoto. If the DTM also does not contain break lines, then 

8Otepka, G., Duschanek, E.: Geow. Mitt., vol. 13, pp. 125-150, 1978. 
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embankment edges, etc. are incorrectly reproduced. Therefore the only correctly po-
sitioned points and lines in the orthophoto are the ones which are also defined in the 
corresponding surface model. 

Figure 7.3-7 shows the situation for a tree which is not included in the DTM. The 
displacement of the tip of the tree in the (tilted) metric image is indicated by Αρ. Fig-
ure 7.3-7 also shows the corresponding displacement Ap' in an imaginary vertical pho-
tograph. The intersection of line Ρ with the (sloping) ground defines a point PQ, given 
by the displacement AR in the XY object coordinate system or the displacement Ar in 
the orthophoto. The displacements are derived from the following ratios: 

AR _ (J_ 
AZ - AR tan ä c 

which can be re-arranged to give: 

AR = (7.3-2) 
— + tan a 
Ρ 

If the ground slopes inwards (towards the nadir), as in Figure 7.3-7, angle ά is positive; 
if the ground slopes outwards then ä is negative. 

The angle ä appearing in Equation (7.3-2) is the slope angle of the ground at point 
P° in the direction of line P°N° (Figure 7.3-7). Since it is more convenient to use 
the maximum slope angle (denoted by a), the horizontal angle β between the line of 
maximum slope and line P°N° must be taken into account in Equation (7.3-2) (lower 
diagram, Figure 7.3-7)9: 

AZ AZ 
AR = -g = —r (7.3-3) 

— + tan a cos β + t a n a c o s / 3 
Ρ rmo 

It is easy to see that the cosine of angle β is required: for β = 0, i.e. the line of > 
maximum slope is in the direction of line P°N°, the original Equation (7.3-2) is 
obtained, for β — 100 gon (90°), i.e. the contour line lies in the direction of ray P ° N ° , 
the tangent term in Equation (7.3-2) is removed by multiplication with cos β = 0. If 
angle β is taken over a full circle, then the differentiation between positive and negative 
slope angles is unnecessary. 

In the second part of the Equation (7.3-3) the ratio cjp' has been replaced by the ratio 
H/(rmo) . These quantities have the following meaning: 

h ... relative flying height above point PQ. It is obtained by subtracting the 
ground height, available from the DTM, at location P0° in the orthophoto, 
from the Z0 coordinate of the perspective centre of the metric image, 

r . . . planimetric distance of point P0° from nadir point N°, known from coor-
dinates Χο,Υο of the perspective centre of the metric image. 

mo . . . scale factor of the orthophoto 

'Similar formulae have been given by Blachut, T. and van Wijk, M.: Ph.Eng. 36, pp. 365-374, 1970. 
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Plan 
(in orthophoto) No 

Figure 7.3-7: Radial image displacement of details in an orthophoto which were ig-
nored in the data capture 
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For coarse estimations of the image displacements to be expected in the orthophoto, 
the first part of Equation (7.3-3) can be used, with the distance of the corresponding 
details (tree, etc) from the principal point of the (near vertical) metric image used as 
the value for p'. The displacement Ar in the orthophoto is derived by multiplying AR 
(Equation (7.3-3)) by the orthophoto scale 1 : mo· 

Exercise 7.3-3. A vertical photograph (c = 15 cm), taken from an absolute height of 
Zo — 2000 m, has been differentially rectified to create an orthophoto at a scale of 
1 : 2500. For two 10 m high buildings, estimate the displacement of the top of the 
gable end in both the aerial photograph and the orthophoto. Both buildings are 10 cm 
away from the principal point in the aerial photograph; one building is at a height of 
Ζ = 150 m on an outward-facing slope (a — 10 gon (9°), β — 150 gon (135°)) and the 
other at a height of Ζ = 800 m on an inward facing slope {a = 15 gon (13°30'), β = 
75 gon (67°30')). (Solution: Ap = 0.54 mm, Ar = 2.9 mm ,Ap = 0.83 mm, Ar = 
2.5 mm.) 

With regard to d) Interpolation errors in the anchor point method 

The anchor point method uses linear interpolation along the lines between grid points 
and, if there are also triangular facets in the ground model (Section C 1.1.2, Volume 2), 
along the sides of the triangles. Along the corresponding lines in image and object, 
interpolation must not be linear but must use the cross ratio (Section 2.1.5). 

The interpolation error δ in the reference image, due to the anchor point method, is 
greatest in the middle of a line on the object, with a length identified by the variable s. 
It has the following value (for derivation see the second or third edition of this book): 

s2 

δ= — tana (7.3-4) 
4c 

tan a . . . slope of this line 
s . . . grid spacing or triangle side length of the DTM, given at the scale of 

the metric image 

Numerical Example. Using the anchor point method, an orthophoto is to be derived 
from a wide-angle aerial photograph (c = 150 mm), taken from a height of 3 km above 
the ground. The available DTM has a grid spacing of AX = Ay = 50 m. The maxi-
mum slope of the ground is 50%. 

The grid spacing in the reference image, indicated by s in Equation (7.3-4), is given 
by: s = 50 χ 150/3000 = 2.5 mm. 

2 5 2 

(7.3-4) : δ = „ ' 0 . 5 = 0.005 mm = 5 μια v ' 4 χ 150 
In view of the fact that the photographs used to create the orthophotos have a pixel size 
between 10 and 30 μπι (Section 3.4.1), this error can be ignored. 

Practical note: The numerical example shows that even under extreme conditions the 
interpolation error arising in the anchor point method lies significantly within a pixel 
and is therefore of little relevance. 
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Exercise 7.3-4. Repeat the numerical example for a normal-angle camera (c = 
300 mm). The flying height is now 6 km instead of 3 km. (Solution: 2.6 μτη. Com-
ment: The interpolation error is smaller in normal-angle images than in wide-angle 
images.) 

With regard to e) Height errors at the grid points used in the DTMs 

These errors primarily have their source in accuracy losses during data acquisition 
for the DTM. According to Equation (7.3-3), the AZ errors cause positional errors 
in the X Y coordinate plane and orthophoto, which has been derived as indicated in 
Figure 7.3-7. The point Ρ shown there can also be viewed as a grid point with height 
error. Three times the average error given in Section 6.7.2.3 can be used for AZ. 

Exercise 7.3-5. Photographs for data acquisition and orthophoto production at a scale 
of 1 : 30000, principal distance c = 150 mm. At the least favourable position in the 
corner of the image, the ground has an inward slope of 10%; here the contour lines run 
parallel to the edge of the photograph. Orthophoto scale 1 : m 0 — 1 : 10000. Data 
acquisition takes place statically in a grid pattern. 

Section 6.7.2.3: AZ = 3 χ 0.00015 χ 4500m = 2.0m 

(7.3-3): Δ Λ = Ϊ 5 0 7 Ϊ 4 0 ^ Τ Τ 0 7 = 1 · 7 5 Π 1 °Γ = 1.750/10000 = 0.18 mm 

Exercise 7.3-6. The maximum error in the orthophoto must again be determined. The 
difference in this case is that normal-angle photographs (c = 300 mm) are used in 
place of the wide-angle photographs for the data acquisition and orthophoto produc-
tion. Photo scale is again 1 : 30000. Data acquisition by static raster measurement (see 
Section 6.6.2) is now better by a factor of two: 

Section 6.7.2.3: AZ = 3 χ 0.00015 χ 9000m = 4.0 m 

Orthophoto accuracy, however, changes little: 

( 7 3 ' 3 ) : ^ 300/140+^0.1 χ 0.7 = L 8 1 : m °Γ ^ = = 0.18mm 

Result: If data acquisition and orthophoto production are done using the same image 
source, then orthophoto accuracy is almost independent of the camera type. The lower 
height accuracy provided by normal-angle images is compensated for by the fact that 
in normal-angle images the height error has a smaller effect on planimetric error in the 
orthophoto than in wide-angle images. 

However, if the data acquisition is made with a wide-angle image and the orthophoto 
produced from a normal-angle image, then there is an increase in accuracy almost 
in proportion to the principal distances of the images used for data acquisition and 
orthophoto production, as the following example shows: 

Exercise 7.3-7. Data acquisition is defined by the situation described in Exercise 7.3-5; 
orthophoto production, however, is done with normal-angle imagery at a scale of 
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1 : 30000 (c = 300 mm). Planimetrie error in the orthophoto at a scale of 1 : 10000 is 
now only: 

(7.3-3): AR = 3 0 0 / 1 4 0 + ° α ι χ Q ? = 0.90 m or Ar = 900/10000 = 0.09 mm 

This large improvement in accuracy suggests that orthophotos could even be produced 
at a scale of 1 : 5000 from normal-angle photographs at 1 : 30000. It should, however, 
be noted that the enlargement factor from the reference image to the orthophoto would 
change from 1 : 3 to 1 : 6 and this would result in a loss of geometric resolution in the 
orthophoto. This deterioration can be avoided if the normal-angle images are taken at 
a very large scale (e.g. 1 : 15000 for orthophotos at 1 : 5000). The accuracy of these 
1 : 5000 orthophotos is indicated in the following numerical example: 

Exercise 7.3-8. Again data acquisition is done under the conditions described in Ex-
ercise 7.3-5: m B = 30000, c = 150mm, tana = 0.1, β = 50gon(45°), AZ = 2.0m. 
This information is used to derive orthophotos at a scale of 1 : 5000 from imagery at a 
scale of 1 : 15000 (c = 300 mm). Orthophoto accuracy is given by: 

( 7 · 3 " 3 ) : Δ Λ = 300/140+^0.1 χ 0.7 = ° - 9 ° m °Γ Δ γ = 9 0 0 / 5 0 0 ° = ° 1 8 π ™ 

It should not be ignored, however, that the accuracy in relation to the orthophoto pixel, 
normally chosen to be 50 cm in Exercise 7.3-7 and 25 cm in Exercise 7.3-8, decreases 
from 1.8 pixels (= 0.90/0.50) to 3.6 pixels (= 0.90/0.25). 

With regard to f) Errors in approximating curved object surfaces by a grid model 

The maximum errors will occur where the greatest curvature occurs in the ground. In 
order to estimate this, we must know the detail of at least one short profile, along the 
line of maximum slope, in the roughest area of the ground. Figure 7.3-8 shows such a 
profile. 

Figure 7.3-8: Ground profile with minimum radius of curvature 
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If this profile is digitized with a grid interval AT and intermediate points then interpo-
lated linearly, the maximum height error AZ can be estimated from Figure 7.3-9. The 
the maximum separation, AP, between the curve and the chord is: 

AT2 

AP = 
8-Rcos2 a 

The following is then obtained for AZ: 

AP AT2 

AZ= = — 3 - (7.3-5) 
cos α 8it cos3 a 

Figure 7.3-9: Height error AZ as a function of the radius R and grid interval AT 

Numerical Example. In Figure 7.3-8 the radius R = 15 m and the angle a = 35 gon 
(31.5°). The maximum height error AZ after digitizing and linear interpolation in a 
grid interval AT = 10 m in the orthophoto is then, from Equation (7.3-5): 

102 

AZ = -———ίτττΓττ = 1.34m 8 χ 15 χ 0.8533 

This error in height produces an error in position AR which can also be calculated 
from Equation (7.3-3). If we assume that the image of the roughest part of the ground 
is 10 cm from the centre of the wide-angle photograph and that the maximum slope is 
directed outwards (β = 200 gon (180°)), then: 

1 34 
A i ? = 300/100-0.613 = ° - 5 6 m 

This error in position of 0.56 m can be expected at the given position if the orthophoto 
is produced using the anchor point method and a grid model with 10 m grid spacing. In 
a 1 : 5000 orthophoto this error amounts to 0.11 mm; expressed in orthophoto pixels, 
which are normally set to a size of 25 cm in 1 : 5000 orthophotos, the error amounts to 
2.2 Pixel (= 0.56/0.25). 
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As can be seen from Equation (7.3-3), the error caused by approximating the ground 
with a grid model, primarily decreases linearly with increasing principal distance. Fur-
ther, as can be seen from Equation (7.3-5), this error is strongly dependent on grid spac-
ing AT. One way to reduce the error is to interpolate a very dense grid of heights from 
the acquired data. If a sophisticated interpolation method is employed, then the spacing 
of this grid can be used as the value of AT in estimating the error; however, if surface 
interpolation is done using a simple method such as triangular plane between individ-
ual measurement points, then the separation of the original measurements should be 
taken as the value for AT. If data acquisition is by digitizing contour lines, then the 
value of AT, which is here essentially independent of the interpolation method, should 
be the contour line separation. 

The problem of the accuracy of digital height models is studied further in Tempfli, K.: 
ITC-Journal 1980(3), pp. 478-510, and Frederiksen, P.: IAPRS XXIII(4), pp. 284-
293, 1980. and treated by spectral analysis (already briefly discussed in the context 
of filtering in the frequency domain, Section 3.5.2.2). The height errors predicted by 
this method serve then as data for Equation (7.3-3). Readers should also consult further 
references10, in which typical standard deviations for complete orthophotos are derived 
from empirical accuracy studies. These figures naturally include all error influences so 
that individual influences cannot be isolated. Such information is particularly useful 
in practice. The root mean square error of the complete orthophoto should not exceed 
±0.2 mm for small-scale orthophotos or ±0.4 mm for large-scale orthophotos. With 
respect to ground resolution, i.e. to the orthophoto pixel, the standard error should not 
exceed 3 pixels. (Image displacements of objects not incorporated in the ground model 
require separate consideration.) 

Exercise 7.3-9. Draw a new test profile in which ground heights in comparison with 
Figure 7.3-8 are raised by a factor of 2. (In the context of a spectral analysis, amplitudes 
increase by a factor of 2.) Repeat the accuracy estimation in this case. (Solution: 
Ä » 10m, α « 30gon (27°), AZ = 1.77m, AR = 0.74m.) 

Exercise 7.3-10. Draw a new test profile in which ground heights in comparison with 
Figure 7.3-8 are rougher by a factor of 2, i.e. the Τ axis is compressed by a factor of 2. 
(In the context of a spectral analysis the wavelengths are reduced by a factor of 2.) Re-
peat the accuracy estimation in this case. (Solution: i? « 5 m, α « 31 gon (28°), AZ = 
3.6 m , A R = 1.5 m.) 

Further reading on orthophotography: Ecker, R., Kalliany, R., Otepka, G.: in Fritsch 
and Hobbie (Eds.): Photogrammetric Week '93, pp. 143-156, Wichmann Verlag, 1993. 

l 0See the publication referenced by Figure 7.3-6 as well as Blachut, T., van Wijk, M.: IAPRS XIII 
(Commission II/4), Helsinki, 1976. Ducher, G.: Test on orthophoto and stereo-orthophoto accuracy. 
OEEPE-Publication No. 25, Frankfurt, 1991. 
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7.4 Analogue, analytical and digital single image analysis 

Single image analysis is often done on the basis of an orthophoto and this will be 
discussed in the following Section 7.4.1. In the subsequent sections methods will be 
described which go directly from an original image to a three-dimensional reconstruc-
tion of the photographed object. 

7.4.1 Analogue, analytical and digital orthophoto analysis 

In many cases an orthophoto is an appropriate medium to employ at the interface be-
tween a photogrammetrist and a partner from a neighbouring discipline. Analogue 
analysis requires little in the way of instrumentation: a transparent film is laid on top 
of the orthophoto and the feature interpretations are drawn upon it; distances and areas 
can also be obtained from the orthophoto. 

In analytical analysis the orthophoto is placed on a 2D digitizing table (2D digitizer); 
with the aid of a cursor the X Y coordinates of identified object points are measured. 
If required, post-processing enables the Ζ coordinates to be obtained from the digital 
terrain model (DTM) by interpolation using the X Y positions. 

Digital orthophoto analysis takes place in a GIS or CAD environment. The digital 
orthophoto is stored on a computer. Using the cursor on the display screen, the X Y 
coordinates of identified object points are obtained. The corresponding Ζ coordinates 
can be directly taken from the DTM which can also be accessed through the computer. 
In place of manual digitizing, the analysis of digital orthophotos also permits the appli-
cation of the automated and semi-automated methods of digital image processing (e.g. 
the semi-automatic processing for plan, Section 6.8.7). 

Planimetrie analysis of orthophotos, whether analogue, analytical or digital, can never 
be more accurate than the orthophotos themselves. Their accuracy has been described 
in detail in Section 7.3.2. It will be mentioned again here that object elements, which 
do not form part of the digital surface model, can be significantly displaced in the 
orthophoto. Typical examples are roof ridges and tree tops (see Equation (7.3-3)). 

The third dimension cannot be derived from the orthophotos alone. As already indi-
cated, the third coordinate can be obtained from the DTM. An interesting alternative is 
the preparation of stereopartners for the orthophotos (details available in Section C 1.5, 
Volume 2). This combination of orthophoto and stereopartner, known as a stereo-
orthophoto, allows the orthophoto to be viewed stereoscopically. Stereoscopic viewing 
of the orthophoto makes photo interpretation and analysis more comfortable, and also 
more exact than monoscopic viewing (Section C 1.5.3, Volume 2). 

7.4.2 Analytical and digital analysis of a tilted image of a flat object 

An analytical rectification starts either with measurement of image coordinates by at-
taching the analogue photograph to a 2D digitizer, or by locating points in an original 
digital image displayed on a computer screen. 
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Four control points are required if the photo to be rectified does not have known interior 
and exterior orientations. From the image and object coordinates, the eight parameters 
of a projective transformation can be determined by means of linear equations. All new 
points can then be transformed subsequently into the object coordinate system. This 
method has already been presented in Section 2.1.4. 

If, for a given interior orientation, the exterior orientation has been determined for 
example by a bundle block adjustment (Section 5.3), an analytical rectification can then 
be implemented using the collinearity equations (2.1-20). If the flat object is parallel 
to the X Y plane, the height of the object plane should be used as the Ζ coordinate. 
Generally, this height, and also the heights of the control points, are set to zero. 

If a second metric image is available instead of either control points or exterior orien-
tation elements, then the orientation elements necessary for the analytical rectification 
of an image can be determined (see Footnote 2 in Section 7.2.2). 

7.4.3 Analytical and digital single image analysis of curved object 
surfaces 

This method of analysis assumes that a digital model of the curved object surface is 
available. For simplicity the discussion is limited to a model consisting of Ζ coordi-
nates on a square X Y grid. The grid should be sufficiently dense that linear interpola-
tion is permissible within a grid element. It will also be assumed that the interior and 
exterior orientation of the photos to be analysed are known. Figure 7.4-1 shows the 
initial configuration. 

The collection of identified points in the metric image defines a spatial bundle of rays 
(Figure 7.4-1 shows one of these points identified as S'). The intersection points S of 
this ray bundle with the digital surface model provides the Χ, Y and Ζ coordinates in 
the object coordinate system. 
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The XYZ coordinates of such an intersection point S can be found in the following 
steps: 

(a) determination of the XYZ coordinates of the corresponding image point S' with 
the help of a spatial similarity transformation (Equation (2.1-8)) where the scale 
is set to unity: 

R . . . rotation matrix for the exterior orientation of the metric image 

Tip: It helps to visualize Equation (7.4-1) if the unit matrix is (initially) used for 

The next steps are explained with the help of Figure 7.4-2: 

(b) intersection of the line (0)(S ') in the X Y plane with the X Y grid lines 

(c) calculation of the Ζ coordinates of these intersection points using the DTM along 
the (vertical) profile containing the ray OS' 

(7.4-1) 
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Figure 7.4-2: Vertical plane through ray OS' and the corresponding plan view 
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(d) intersection of the ray OS' with the vertical profile; the result is the Ζ coordinate 
of point S. Its XY coordinates are taken from the ground plan. 

Exercise 7.4-1. In the numerical example of Section 2.1.3, image coordinates for both 
points Ρ and Q were calculated from their object coordinates. With the aid of Equa-
tion (7.4-1), calculate the XYZ coordinates of both points in the object coordinate 
system. (Solution: For Ρ : X = 362530.713 m, Y = 61215.863 m, Ζ = 2005.589 m.) 

Single image analytical analysis of curved object surfaces is known as monoplotting11. 
Monoplotting is used for the analysis of both aerial and terrestrial photographs. The 
accuracy of the analysis primarily depends on the intersection angle of the ray OS' with 
the surface profile in the vertical plane. When the intersecting rays are very oblique, 
large X Y coordinate errors are generated where there are: 

• minor height errors in the digital surface model 

• small errors in the interior and exterior orientation of the image 

• small measurement errors in the image coordinates of point S' 

In general, therefore, monoplotting cannot replace stereoanalysis. 

Exercise 7.4-2. From the opposite side of a valley, horizontal photographs are taken 
with a Wild P32 (Section 3.8.3) for the purpose of monoplotting. The side to be 
analysed has a slope of some 50%. How large are the X Y coordinate errors if the 
digital ground model has an accuracy of around ±25 cm? (Solution: 1.5 m.) 

Exercise 7.4-3. How large are the X Y Z coordinate errors if the measurement accuracy 
of image coordinates is ± 10 μηι? The photographing range is 2 km. (Solution: Δ X Y = 
1.7 m, ΔΖ = 0.8 m.) 

Further reading for Section 7.4.3: Makarovic, B.: ITC-J, pp. 583-600, 1973. 

7.5 Photo models 

Orthophoto technology from aerial photographs reaches its limits in urban landscapes 
or with individual objects which are to be recorded by close range photogrammetry. 
The orthophoto is only an orthogonal projection onto a plane, normally the X Y plane 
of the object coordinate system. The photographic texture on planes orthogonal to the 
X Y plane is therefore missing in an orthophoto; where there are several overlapping 
object surfaces only one can be covered with a photo texture. These disadvantages can 
be overcome with a photo model. This is taken to mean a three-dimensional geometric 
model (frequently a CAD vector model) whose surface is covered by a photographic 
texture. 

"The analysis of a digital orthophoto with a background DTM, as discussed in Section 7.4.1, may 
also be referred to as "monoplotting". 
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Photogrammetric recording and modelling of three-dimensional, geometric models has 
already been discussed in Sections 6.6.3 and 6.8.8 (see also Section C 1.7.1, Volume 2). 
The following discussion is limited mainly to the transfer of texture from digital im-
ages onto the surface of the three-dimensional object model. Production of a photo 
model will be explained using a practical example taken from a university lecture. The 
modelled subject is the historic Wartberg church in Lower Austria. 

Figure 7.5-1 shows the camera stations and directions of the axes. The images were 
taken at different heights and zenith angles. The camera used was a calibrated Kodak 
DCS 460c (Section Ε 3.5, Volume 2) with objective lenses / — 28 mm and / = 55 mm. 
Pixel size is 9 μπι. 510 object points were determined using a bundle adjustment (Sec-
tion 5.3) to an accuracy of ±2 cm to ±4 cm), with every object point, on average, 
located in 5 metric images. Image point measurement was done manually in the OR-
PHEUS12 multi-image, digital monocomparator. This software tool displays multiple 
images, organized in image pyramids, on a computer screen. In this system the polyg-
onal boundaries of the flat surfaces can be defined. Figure 7.5-2 shows the rendered 
geometric model with artificial, oblique illumination. 

To create the photo model, the polygonal borders of the flat surfaces are transformed 
by means of the collinearity equations into those images which are candidates for the 
transfer of photo texture. The texture is then taken from the image in which the as-
sociated flat surface is largest. The actual transfer of photo texture is done by indi-
rect transformation (Section 2.2.3), i.e. an image matrix is defined in the appropriate 
(tilted) object plane and filled with the photo texture from the corresponding section 
of the original image. A bilinear grey level interpolation (Section 2.2.3a) is used for 
the required re-sampling. Pixel size on the object surface is chosen to be 5 cm; the 
quantity of data for the entire 3D model is 485 kBytes. Figure 7.5-3 shows the 3D 
photo model. It was exported in the VRML format (virtual reality modeling language) 
to enable distribution over the WWW (world wide web). 

1 2 h t t p : / / w w w . i p f . t u w i e n . a c . a t / p r o d u c t s / p r o d u k t i n f o / o r i e n t / h t m l _ h j k / 
orpheus_e.html 

Figure 7.5-1: Camera stations and directions of camera axes 
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Figure 7.5-2: Geometric model of the church at Wartberg 

Figure 7.5-3: 3D photo model of the church at Wartberg 

The photo texture on the roofs of such 3D photo models is frequently taken from very 
large-scale aerial photographs. In this example, an amateur camera was used to take 
images from a helicopter. The images were calibrated using a bundle block adjustment 
(Section 5.7). Details of the analysis can be found in the publications mentioned in the 
footnote13. 

Comparison of Figures 7.5-2 and 7.5-3 shows the advantages and disadvantages of a 
3D photo model compared with a rendered object model using artificial surface texture: 

• the main advantage of the 3D photo model is that a rich level of detail without 
geometric modelling can be achieved with the aid of photo texture. Particularly 
valued details are the windows and structure of the walls. (It should, however, be 

13Zischinsky, T„ Dorffner, L., Rottensteiner, F.: IAPRS XXXIII, pp. 959-965, Amsterdam, 2000. 
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noted that this level of detail is only provided for visualization and is not present 
in the geometric model.) 

• because of the texture, which is an optical recording of the real object, 3D photo 
models have a very high documentation value. 

• When no photo texture is available, an artificial surface texture can be added. 

• the texture of a 3D photo model has all the deficiencies associated with a pho-
tograph; complex image processing operations are normally required to create 
uniform effects. 

7.6 Static and dynamic visualizations 
In static visualizations the object and viewing location and direction are fixed; in dy-
namic visualizations the object is fixed (the usual case here) but viewing location and/or 
direction vary. A dynamic visualization is put together from a dense sequence of static 
visualizations. 

Static visualisations have already been used several times in this textbook, with a fo-
cus at infinity and a camera direction perpendicular to the X Y plane. Orthophotos 
belong in this category. Oblique viewing directions are much more attractive, as in the 
photogrammetric analysis of a village in Figure 6.6-8. 

Dynamic visualization is becoming increasingly important, also known as animation. 
Digital models of natural and man-made landscapes (e.g. terrain models, city mod-
els, orthophotos) provide the base data for the simulation of virtual flyovers. Digital 
models of urban landscapes and historically valuable collections of buildings (e.g. city 
models, 3D photo models of historic buildings, Section 7.5) provide the base data for 
virtual walkthroughs. Here the flight path or walking route can be pre-defined or de-
fined interactively by the user by means of on-screen controls. A combination of this 
visualization (including additional linked information) with a continuous update of the 
user's location (for example with GPS) leads to the more comprehensive application of 
location based services. 



Chapter 8 

Laser scanning 

In the past ten years, laser scanning has revolutionized both topographic mapping and 
close range three-dimensional object recording. Particularly in analysis, there is much 
in common between laser scanning and photogrammetry. In this series of books based 
on photogrammetric knowledge, it is therefore natural to deal also with laser scanning. 
The sections which follow will show the parallels between photogrammetry and laser 
scanning, as well as highlight the differences between both these technologies. 

For purposes of terminology, and classification of laser scanning, it should be noted 
that in the field of remote sensing laser scanning has, for some time, been identified 
by the term Lidar (light detection and ranging). The term Laser Radar (radio detection 
and ranging) has also been used in remote sensing for the location of objects with the 
aid of a laser (light amplification by stimulated emission of radiation). Laser light is 
strongly collimated, monochromatic and coherent. Where geometric problems take 
precedence in remote sensing, it is common to speak less of remote sensing and more 
of photogrammetry (Section 1.1). From that perspective also, laser scanning can be 
classified as part of photogrammetry. 

In the following sections we will present airborne laser scanning (Section 8.1), terres-
trial laser scanning (Section 8.2) and short range laser scanning (Section 8.3). 

8.1 Airborne laser scanning 

8.1.1 Principle of operation 

Using a laser scanner, points on the ground are sampled (Figure 8.1-1). With the aid of 
a narrow laser beam, a pulse of laser light from the scanner is diffusely reflected by a 
point on the ground surface. From the elapsed time between transmission and reception 
of the pulse, the distance between scanner and ground point can be determined. (The 
elapsed time, multiplied by the group velocity of the light pulse which is about 0.03% 
less than the velocity of light, gives double the distance value.) 

The laser beam in the laser scanner is deflected at right angles to the direction of flight 
and this angle of deflection is recorded. The coordinates of the laser scanner's location 
and its orientation angles are required in order to convert the polar coordinates of the 
measured object point into X Y Z coordinates. These constantly changing values are 
determined by means of a dynamic POS (Position and Orientation System), consisting 



Section 8.1 Airborne laser scanning 401 

Ζ 

Figure 8.1-1: Scanning laser in aircraft 

of GPS and an IMU. The same technology which is based on GPS and IMUs to support 
aerial photography is equally applicable to airborne laser scanning. This is discussed 
in detail in Sections 3.7.3.2 and 3.7.3.3. GPS, IMU and scanner operation are synchro-
nized to microsecond accuracy. Of course, the relative positions, or eccentricities, of 
the sensors must be determined before the flight. Gyro-stabilized platforms are rarely 
used in laser scanning. (See Section 3.7.3.3.) 

Reflections can occur at different locations along the measurement beam. The upper 
diagram in Figure 8.1-2 shows the arrival of the first pulse at points on the object sur-
face. The lower diagram indicates the first echoes which return and the arrival of the 
pulse at lower lying object points along the beam, if these exist. This occurs if the 
surface scattering back the first echo is not fully extended in the beam diameter. The 
lower lying objects are then the source of the last echo. If the distance is measured 
with the first echo, the recorded laser points are on the crown of the tree (second beam 
from left), on the eaves of the roof (third beam from left), on a power line (fifth beam 
from left), etc. If the distance is measured with the last echo, then the recorded laser 
points lie, using the same order as before, on the tree trunk or ground, on the road, at 
the ground below, etc. Almost all laser scanners can measure the distance with both 
the first and last echoes, and record both with a small time separation. There are laser 
scanners which can additionally utilize any intermediate echoes for range measure-
ment and, in this way determine a whole spectrum of distances for each laser beam. 
There are limits to this recording process. Depending on the performance capabilities 
of the particular range measuring device, there must be a small minimum separation 
between individual records. The separation capability depends on the pulse length and 
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Figure 8.1-2: First echo (upper diagram) and last echo (lower diagram) from different 
objects, as well as reflection and high absorption 
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the minimum separation can, for example, amount to 1.5 m: 

300000m χ 10 ns 
1.5m = — 

half the measured path length 

2 
velocity of light χ shortest measurable time interval 

Generally, for vegetation shorter than 1.5 m high, only the top surface is recorded, even 
if there is an occasional echo from the ground (first beam from left in Figure 8.1-2). 

It is indicated in Figure 8.1-2 that a number of the transmitted laser pulses does not 
return. For example there can be highly specular reflection from very smooth surfaces 
such as a car roof. The deflected beam can later strike another surface point which 
reflects diffusely and then return an echo to the laser scanner. Ranges measured in this 
way via indirect routes (multi path) have gross errors; they are too long (long ranges). 
At other surfaces, such as a clear stretch of water (right hand beam, Figure 8.1-2), 
absorption can be so strong and reflection so little, that insufficient energy for range 
measurement is returned. The absorption also depends on the angle of incidence of 
the laser beam: it is especially strong at water surfaces, for example, when the laser 
beam meets the surface perpendicularly. For this reason, laser scanner strips over water 
surfaces often have fewer points in the middle than at the edges of the strip. 

The technical data for the ALS50-II Airborne Laser Scanner from Leica Geosystems, 
are summarized below. 

Operating Altitude 
Pulse rate 
Accuracy 

Number of returns 
Number of intensities 
Intensity digitization 

Maximum Field of View (FOV) 
Roll stabilization 
Laser divergence 
Recording media 
Waveform profiling 

200 m - 6 0 0 0 m above ground level 
max. 150000 measurements per second (150 kHz) 
(incl. 10 cm GPS error, restricted to max. 40° FOV) 
at 1000 m above ground: 
11 cm in height, 11 cm in horizontal direction 
at 4000 m above ground: 
15 cm in height, 44 cm in horizontal direction 
4 (first, second, third, last) 
3 (first, second, last) 
8 bit intensity + 8 bit automatic gain control (AGC) 
level 
75° full angle 
automatic adaptive, range = 75° - current FOV 
0.22 mrad (45") at 1/e2 

300 GB Harddisk (17 hours at maximum pulse rate) 
8 bits at 1 ns interval at 50 kHz (option) 

Table 8.1-1: Technical data for the ALS50-II Airborne Laser Scanner 
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The accuracies of the laser ranging component and the GPS height determination are 
primarily responsible for the height accuracy indicated in Table 8.1-1 for the ALS50-
II. Neither effect is strongly dependent on flying height. The dependence of height 
accuracy on flying height, which is clearly present, derives from the relatively long 
path through the atmosphere, a source of disturbance, the enlargement of the laser 
footprint with increasing altitude and the reduction in received energy due to spreading 
loss. As the footprint becomes larger, the recorded direction of the polar coordinates 
and the object point, to which the distance refers, fit less well together. The planimetric 
accuracy is influenced by the accuracy of the GPS location in plan, the accuracy of the 
IMU orientation and the accuracy to which the deflection angle of the laser beam is 
recorded. The last two mentioned error sources effect a relatively large reduction in 
accuracy with increase in flying height. 

Further reading on the laser beam and its interaction with surfaces: Wagner, W., Ull-
rich, Α., Ducic, V., Melzer, T., and Studnicka, N.: Gaussian decomposition and calibra-
tion of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS 
Journal of Photogrammetry and Remote Sensing 60(2), pp. 100-112, 2006. 

8.1.2 Analysis and processing 

8.1.2.1 Georeferencing 

The orientation functions Xo{t), Yo(t), Zo(t),u(t), <p(t), κ(ί) can be determined using 
the GPS and IMU information and related to corresponding polar coordinates a(t) and 
s(t) through the synchronization time t. The resulting XYZ coordinates of individual 
laser points are then given in the object coordinate system to which the reference station 
for the differential GPS was assigned. 

The actual object coordinate system is either a global GPS coordinate system (e.g. 
WGS84) or the ground coordinate system. In the following text we will take the ground 
coordinate system as the object coordinate system. The conversion from global coor-
dinate system to ground coordinate system, which is normally used for presentation of 
final results, can be achieved by using datum transformation formulae and the appro-
priate geoid. 

In Equation (8.1-1) the zero point of the a scale has been taken as the middle of the 
laser scanner's field of view. This zero direction must coincide with the n(t) rotation 
axis of the rotation matrix R ^ t ^ t ) ^ ) · A corresponding calibration, which takes into 
account the relative positions of GPS, IMU and laser scanner in the aircraft, will not be 
discussed here. However, note that companies undertaking laser scanner flights require 
reference heights of a number of test surfaces (often only horizontal surfaces) in order 

(8.1-1) 
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to effect a calibration for each project. These should be given in the ground coordinate 
system we have chosen as the object coordinate system1. 

To achieve rigorous control and improved accuracy, it is recommended to change from 
this direct georeferencing to an integrated sensor orientation, i.e. using control and tie 
points as is common when georeferencing images from line cameras (Section 5.5). 
In place of the type of control point used in photogrammetry, with coordinates given 
in the reference coordinate system, special control elements must be made available 
which take account of the properties of laser scanner data. As already mentioned, 
horizontal planes are suitable as height control elements. The equation of such a control 
plane should be determined by a number of points measured on the ground. It has, for 
example, the form: 

Ziel = αο + d i X + a j Y (8.1-2) 

ao, α ι, 02 · · · parameters of the plane determined from a least-squares adjustment 
of the terrestrial X Y Z coordinates. 

Using the GPS/IMU information and the datum transformation formulae, the direct 
georeferenced coordinates Xmeas , ^meas, Zmeas are obtained from Equation (8.1-1). Us-
ing coordinates Xmeas, ^meas in Equation (8.1-2), the height Ztef corresponding to height 
Zmeas is obtained. The smaller the tilt of the control plane, the less is the effect of 
^meas,^meas errors on the height difference (Zmeas - Zref), required for the integrated 
sensor orientation. 

Due to the relatively large inaccuracy in plan position of the laser points (Table 8.1-1), 
and their relatively large separation which, depending on quality requirements (Sec-
tion 8.1.3) can be selected between 0.5 m and 3 m, control points cannot be employed 
for the determination of horizontal shifts. Instead, linear or planar control elements 
must be used. Such extended control elements could be flat roof surfaces, as shown 
in Figure 8.1-3. These should be steeply sloped roofs in different orientations so that 
horizontal stability is guaranteed in any direction. As Figure 8.1-3 suggests, three such 
roofs intersect in a well-defined point and can therefore be regarded as a "virtual" full 
control point. The equations of these control planes should be determined using terres-
trial measurements. 

For the integrated sensor orientation, the -X"meas, ^meas, Zmeas coordinates of the laser 
points which define the respective control planes must be determined using Equa-
tion (8.1-1) and the datum transformation formulae. The perpendicular offsets of these 
points from the (known) control point plane are critical items of information for the 
integrated sensor orientation. (The determination of these offsets is explained in Sec-
tion Β 3.5.5.1 in Volume 2.) In the context of a least-squares adjustment, which is still 
to be discussed, these offsets have components in all 3 coordinate axes. The example 
of a height adjustment plane, discussed above with reference to Equation (8.1-2), is a 
special case within this 3D solution. 

'Further reading on calibration: Kilian, J., Haala, N„ Englich, Μ.: IAPRS 31(B3), pp. 383-388, 
Vienna, 1996. Morin, K., El-Sheimy, N.: Optical 3-D Measurement Techniques V (Eds.: Grün/Kahmen), 
pp. 88-96, Wichmann-Verlag, 2001. Burman, H.: IAPRS 34 (Part 3A, Commission III), pp. 67-72, Graz, 
2002. 
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Figure 8.1-3: Three tilted planes defined by roofs, corresponding to a "control point" 

The question remains open as to how the laser points belonging to each control plane 
can be automatically found. In general, the Xmeas, ^meas, Zmeas point cloud is 
searched for planar regions which correspond to the control planes. Once the initial 
process of direct georeferencing has been implemented, and is close to the final result, 
it is possible to extract areas in the Xmcas, Fmcas, -Zmeas point cloud which correspond 
to the points measured by ground surveys. These can be examined for planarity, for 
example using best-fitting planes, with removal of the outliers such as scanned points 
on chimneys or dormers. 

This concept of control planes can also be employed when connecting overlapping 
laser scanner strips. The difference between a tie plane and a control plane is that the 
tie plane parameters are unknown, for example the values αο, α\, az in Equation (8.1-2). 
Using the method of least squares, these parameters are introduced as unknowns within 
the solution for the integrated sensor orientation. A tie plane has its own set of parame-
ters, regardless of whether two, three or more laser scanner strips are involved. For each 
scanner strip in the solution, the perpendicular offsets of the Xmeas, imeas, •Zmeas coordi-
nates from the corresponding plane are minimized in the usual least-squares manner. 

The derivation of detailed equations for integrated sensor orientation from laser scanner 
data lies outside the scope of this book. Only a general outline is therefore given: 

• the polar coordinate equations (8.1-1) are used in place of the collinearity equa-
tions, which are central to the integrated sensor orientation of line images (Sec-
tion 5.5). These are solved with respect to the polar coordinates and must, of 
course, be linearized, etc. (Further details on the equations of polar coordinates 
can be found in Section Β 3.5.3, Volume 2.) 

• GPS and IMU models to handle the GPS and IMU information must be con-
structed according to Sections 5.4 and 5.5. Independent models for each scanner 
strip are recommended. 

• the entire concept of georeferencing using control and tie planes, presented above, 
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was proposed by Kager. Details of the refinement for height adjustment can be 
found in a published paper2. 

Very good agreement at the edges of the laser scanner strips can be achieved with the 
methods presented here. The inclusion of control planes checks the parameters of the 
data transformation formulae in those particular interest areas. An improvement in the 
parameters is possible as a result. In addition, it is not necessary to take account of the 
geoid in the processing, unless the areas are very large. (This problem is handled in 
detail in Sections Β 5.3 and Β 5.4, Volume 2.) The IMU information can be included 
without modification (Section 5.6). Only the κ heading angle must be corrected by 
the convergence of the meridian (5.6-2). In this approach with ground coordinates 
defining the object coordinate system, Earth curvature should be taken into account 
by modifying the polar coordinates (8.1-1). A simple solution is to apply an Earth 
curvature correction to the Cartesian coordinates of the scanned points in a scanner 
plane perpendicular to the flight direction, using Equation (4.5-4). Note that A must be 
measured from the middle of the strip. 

The guidelines of GPS/IMU-supported aerotriangulation (Section 5.4) govern the num-
ber of control planes and their arrangement. As a result of the high quality of GPS and 
IMU information which can now be achieved, it is sufficient to have control plane clus-
ters at both ends of the laser scanner strips in a project. Where laser scanning tasks are 
designed in blocks, there should be control plane clusters, as a minimum, in the cor-
ners of the blocks. To strengthen formations of blocks, particularly if independent GPS 
and IMU models are employed, then laser scanner cross strips are recommended at the 
beginning and end of the blocks. 

8.1.2.2 Derivation of terrain models 

The construction of object models can take place after georeferencing. This section 
deals with the derivation of digital terrain models (DTMs) from the digital surface 
models (DSMs). Figure 6.6-10 explains the difference between these two models. 
Although the scanned laser points from the last echo are used to derive the DTM, there 
will still be many scanned points above the surface of the ground, depending on the 
density of vegetation and buildings. Figure 8.1-7 (left) represents a DSM. It results 
from a resampling (Section 2.2.3) of the irregularly distributed laser scan points on 
an orthogonal 2 m grid, for example using a nearest neighbour technique. The shaded 
relief of this surface grid model was based on oblique illumination from the top left 
during rendering. 

The starting point for deriving DTMs from scanned points is shown in Figure 8.1-4 
for a single profile. In a first step an adjusting surface to the point cloud is calculated. 
The example in Figure 8.1-4 shows a best-fitting curve. Two suitable methods for 
achieving this could be linear prediction or bivariate polynomials. With respect to these 
best-fitting surfaces, the residuals υ, from the least-squares adjustment are shown. In 

2Kager, H., Kraus, Κ.: Optical 3-D Measurement Techniques V (Eds.: Grün/Kahmen), pp. 103-110, 
Wichmann Verlag, 2001. 
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a second least-squares adjustment, the Ζ coordinates of the scanned points are given 
special weights pl which depend on the residuals of the first adjustment. 

Such weights, calculated on the basis of a weighting function, are introduced to enable 
robust parameter estimation3 as well as the reliable detection of gross errors. As a 
rule, a symmetrical bell curve, centred on the zero point of the residuals v, is used 
as the weighting function. However, such a weighting function is not suited to the 
robust estimation of a DTM from laser scanned points. It would, in fact, reduce in 
equal measure the effect on the fitted surface of points with (large) positive and (large) 
negative residuals. The result of such a robust adjustment would be similar to that 
shown in Figure 8.1-4. 

For the robust estimation of DTMs from laser scanned points, a weighting function 
is applied in the second least-squares adjustment. This function takes account of the 
following properties of errors in the scanned points: 

• points with positive residuals, which are probably ground points, should be given 
a higher weight than points with negative residuals, which are probably not 
ground points. (In Figure 8.1-4, two points are shown with positive and nega-
tive residuals Vi.) 

• the terrain probably lies below the curve or surface fitted during the first least-
squares adjustment (Figure 8.1-4), and a datum shift of the weighting function is 
appropriate. 

A weighting function, which takes account of these requirements, has the form (Fig-
ure 8.1-5): 

for Vi < g Pi = . ΓΓΓ a,b> 0 
1 + (a|ui -g\)b (8.1-3) 

for Vi > g pi = 1 

Vi . . . residuals from the first least-squares adjustment 
a, b . . . parameters which control the decreasing effect of the weighting func-

tion from right to left 
g ... datum shift which also reduces the effect of points with small positive 

residuals vt on the second adjustment 

Figure 8.1-6 shows the result of the second least-squares adjustment using the weight-
ing function shown in Figure 8.1-5. It meets our expectations: the DTM is fitted 
through the low lying laser scanned points. In this combined interpolation and filtering 
process, points above the model have little influence. In practice, several iterations are 
needed to reach a final solution. 

By selecting an adequate threshold value for the residuals ν in the second least-squares 
adjustment, the original scanned points can be classified into points either on the 

3For example, Section Β 7.2.1.5, Volume 2, and Koch, K.R.: Parameter Estimation and Hypothesis 
Testing in Linear Models. 2nd edition, Springer 1999. 
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Figure 8.1-4: Best-fitting curve through the laser scanned points and residuals of the 
first least-squares adjustment 
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Figure 8.1-5: Weighting function for a robust least-squares adjustment which derives 
a DTM from laser scanned points 

Figure 8.1-6: Results of the second least-squares adjustment using the weighting 
function of Figure 8.1-5 and the residuals v̂  from the first least-squares adjustment 
in Figure 8.1-4 
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ground or off the ground. Strictly speaking there should be a final least-squares ad-
justment using only ground points without application of variable weights. 

For widespread areas of dense forest and extensive building, the process of interpola-
tion and filtering must be expanded into a hierarchical strategy, described in a number 
of publications4. 

Figure 8.1-7 shows the result from part of an international test5. Despite the relatively 
low point density of 0.25 points/m2, i.e. with an average point separation of 2 m along 
and across the direction of flight, vegetation and buildings have been successfully elim-
inated, as can be seen in Figure 8.1-7. A small building on the railway embankment 
remains: its height is too low. 

Figure 8.1-7: DSM (left) and fully automatically derived DTM (right) from a small 
part of the OEEPE test at Vaihingen 

Figure 8.1-8 shows the DSM from a scanning flight over Vienna. It has a grid spacing 
of 0.5 m which is approximately the point separation in the original data. In so far as it 
can be defined in urban areas, the DTM can be derived from this model (Figure 8.1-9). 
The accuracy of this DTM, which depends on an individual area's land use, has been 
determined by the City Council's survey department (Magistratsabteilung 41) with the 
help of a large number of ground check points. Table 8.1-2 shows the results. Note that 
there is a distinction between standard deviation σ (see also Appendix 4.6-1) and r.m.s. 
(root mean square error). The r.m.s. is calculated from the actual errors ε, and these 
also contain systematic effects. Laser scanned DTMs, depending on surface roughness 
and ground cover, are generally too high. 

The standard deviation of ± 1.0 cm on open streets is remarkable at first glance, partic-
ularly in respect of the fact that individual laser points have a height accuracy of only 
around ± 6 cm. (This accuracy corresponds to the manufacturer's specifications for the 
TopoSys laser scanner which was used for data acquisition.) This large improvement 
in accuracy can be simply explained: on surfaces with very limited curvature, the least-
squares adjustment leads to an averaging of the scanned points within a limited area. It 

4E.g. Briese, C., Pfeifer, Ν.: in Optical 3-D Measurement Techniques V (Eds.: Griin/Kahmen), 
pp. 80-87, Wichmann Verlag, 2001. 

5Torlegard, K„ Jonas, Ν.: OEEPE-Publication No. 40, 2001. 
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Figure 8.1-8: Surface model (DSM) 
from laser scanner data (0.5 m grid 
spacing) 

Figure 8.1-9: DTM derived using ro-
bust, hierarchical estimation 

r.m.s. σ 
[cm] [cm] 

Park, dense vegetation ±14.5 ±11.1 
Park, sparse vegetation ±11.4 ±7.8 
Park, open ground ±8.6 ±4.5 
Streets with parked cars ±9.2 ±3.7 
Streets without cars ±2.4 ±1.0 
All points ±10.5 ±7.1 

Table 8.1-2: Accuracies of the DTM in Figure 8.1-9 for various types of land use 

is well known that the arithmetic mean has an accuracy of: 

c"m = ~~F= (8.1-4) \Jn 

OE ••• standard deviation of a single observation 
σΜ .. . standard deviation of the arithmetic mean 
η . . . number of contributing observations 

The accuracy increase from ±6 cm to ±1 cm is reached when 36 points are included in 
the averaging, which is readily achieved at a point separation of 0.5 m, i.e. a 3 m χ 3 m 
area on the road. 

8.1.2.3 Generation of building models 

The automatic generation of building models from laser scanner data is currently a sub-
ject of intensive research. Only the results of two different methods will be presented 
here. 



412 Chapter 8 Laser scanning 

The first method starts by forming the difference between a DSM and a DTM. The dif-
ference model contains not only the buildings but also the vegetation and many other 
objects lying above the DTM. Building points are extracted from the difference model 
using special filter techniques. Within these filtered point clouds, planar areas are sub-
sequently detected and individual planes joined together to form roofs. Figure 8.1-10 
shows the results for a building block in Vienna. The data originate from the same 
scanning flight which provided the data for the derivation of the DTM in Figure 8.1-9. 
The difference model formed at the beginning of this procedure is therefore a subtrac-
tion of the data in Figure 8.1-9 from the data in Figure 8.1-8. In order not to lose the 
eaves of the roofs, the extraction of building models uses range measurements based 
on the first echo (the third ray from the left in Figure 8.1-2 illustrates this procedure). 

Figure 8.1-10: Building model extracted from laser scanner data 

The second method was developed under contract to engineering consultancy Schmid, 
Vienna, by the "Advanced Computer Vision" technology centre. It has some similar-
ities with the previous method discussed above. However, it makes use of the ground 
plans of buildings which are often available in two-dimensional GIS databases. Fig-
ure 8.1-11 shows the result and indicates the laser spots used. This result is a CAD 
model. 

Further reading: Brenner, C.: DGK 530, 2000. Maas, H.-G.: IAPRS 32 (Commission 
3-2 W5), pp. 193-199, Munich, 1999. Vosselman, G., Dijkman, S.: IAPRS 34 (Com-
mission 3/W4), pp. 37^-3, Annapolis, 2001. Peterneil, M., Steiner, Τ.: Computer-
Aided Design 36, pp. 333-342, 2004. 
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Figure 8.1-11: Building model derived from laser scanner data and a two-dimensional 
building ground plan 

8.1.3 Comparison of two paradigms and further performance 
parameters of laser scanners 

The term paradigm implies the pattern of approach and thought which lies at the heart 
of a scientific or technical field. In the following section the paradigms behind airborne 
laser scanning and (stereo-) photogrammetry will be compared. 

The essence of (stereo-) photogrammetry is explained by the simple diagram of Fig-
ure 8.1-12. Here the geometrical reconstruction of an object in three-dimensional 
space, from at least two photographic images, is central to the process. One photo-
graph defines a bundle of rays or directions. A point on the object can be reconstructed 
in three-dimensional space when it is intersected from at least two directions. The 
directions, or rays, generated by the natural light of the sun, are recorded by sensors 
known as "passive sensors". Within the context of a paradigm, it is irrelevant if: 

• the record is made on film or an electronic imaging device. 

• electronic recording is done using a two-dimensional array of detectors or a linear 
array in a 3-line camera. 

• image points are measured stereoscopically by a human operator or digitally, 
using a correlation algorithm. 

• a third image, or further images of the same object, or a set of images of an 
extended object are available. 

• a calibrated metric camera or uncalibrated amateur camera are used. 

• the position and orientation of the images are determined from control and tie 
points or elements, or from GPS and IMU measurements. (In Figure 8.1-12 
"GPS/IMU" is placed in brackets to imply an option.) 
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The question now presents itself as to which paradigm lies at the heart of laser scanning. 
As in (stereo-) photogrammetry, the geometrical reconstruction of objects in three-
dimensional space is foremost, although not from at least two measuring locations but 
from only a single location (Figure 8.1-13). In place of a bundle of rays there is a 
field of directions and distances, i.e. a vector field. In place of passive sensors there 
are active sensors. GPS/IMU information is essential; the connection of two or more 
scans in a spatial network can only be achieved using common surface elements and 
not points. 

(GPSMMU) 

Scan 1 
passive sensor 

Scan 2 
passive sensor 

Object point 

Figure 8.1-12: 
paradigm 

(Stereo-) photogrammetry 

Scan 
GPSMMU 

Object point 

Figure 8.1-13: Airborne laser 
scanning paradigm 

The remainder of this section will evaluate the contrasts between airborne laser scan-
ning and (stereo-) photogrammetry from an application perspective and then present 
performance parameters for airborne laser scanning. 

(a) in forested and built-up areas, laser scanning is superior to photogrammetry for 
the derivation of terrain models. In photogrammetry, a relevant ground point 
must be visible from at least two imaging positions but in laser scanning the 
view from a single recording position is sufficient. 

(b) active sensing makes laser scanning independent of (natural) sunlight. Laser 
scanning flights can, in principle, take place at any time of day or night. Admit-
tedly, clouds are as much of a hindrance to the near infra-red emissions used for 
laser scanning as they are to photogrammetric flight operations. 

(c) laser scanning requires no texture on the object surface. In contrast to photogram-
metry, laser scanning can be employed for areas of sand devoid of vegetation 
(dunes), smooth and dry cultivated fields, bright stretches of concrete, forested 
ground in shadow, etc. However, on very flat surfaces which give specular re-
flection, and surfaces with a low reflectance (clear water), there is no laser beam 
echo returned to the receiver. 
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(d) the accuracy of a DTM obtained photogrammetrically is critically dependent on 
the flying height and camera type (Section 6.7.2c). The accuracy of a DTM deter-
mined by laser scanning is less dependent on the flying height (Table 8.1-1). In-
stead, the accuracy of a laser scanned DTM is highly dependent on the point den-
sity. The point density during laser scanning is influenced by the flying height, 
the flying speed, the scanner's field of view and the scanner's data rate. The 
following rule of thumb, from empirically derived accuracies, can be used to 
estimate height accuracies: 

aH[cm] = ± + 120tano) (8.1-5) 

tan α . . . ground slope 
η . . . point density per square metre 

The figures of 6 cm and 120 cm in Equation (8.1-5) remain somewhat uncertain 
and should be further verified in the near future. 

Numerical Example. To obtain country-wide DTMs, laser scans are currently flown 
with point separations along and across the direction of flight of around 2 m, i.e. the 
point density is 0.25 points m~2. 

(8.1-5) : aH[cm] = ± + 120 tan c ^ = ±(12 + 120 tan a), 

i.e. for a ground slope of 10%: on = ±24 cm 

Roughly the same accuracy can be achieved with a wide-angle camera at a flying height 
of 1 km ( m B = 6700): 

(6.7-5): σΗ [cm] = ±(15 + 100 tan a), 
i.e. for a ground slope of 10% : = ±25 cm 

In forested areas, a greater photogrammetric standard deviation has to be expected 
(compare Section 6.7.2b). Under the assumption that only 25% of scanned forest points 
reach the ground (i.e. the average separation of points along and across the direction of 
flight is 4 m), a considerable accuracy can still be achieved in a forested area: 

(8.1-5): F o r e s t fem] = ± | , 6 + 120 tana ) = ±(24 + 120 tan a) 
' V\/0O625 J 

Numerical Example. Particularly for the sake of geomorphological fidelity of the 
DTMs, which will be examined in more detail in Section (e), laser scanning operations 
are flown with an average point separation of 0.5 m along and across the direction of 
flight. This leads to the following standard deviation σ of DTMs derived from these 
data: 

ΖΓ 

(8.1-5): σΗ [cm] = ± ( - p + 120tana) = ±(3 + 120tana) 
v 4 

An area with ground slopes of 5%, for example, has an accuracy of ση — ±9 cm. 
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(e) the geomorphological quality of DTMs derived from laser scanned data is, like 
accuracy, crucially dependent on point density. Provided that undulating terrain 
is being recorded, the sampling theorem (supported illustratively by Figure 3.3-6) 
provides the following connection between the minimum wavelength Lmm and 
the point separation Δ. (Note that in laser scanning the object is directly "digi-
tized". In terrain scans the point separation Δ is therefore often called the Ground 
Sampling Distance, GSD.) 

Lmin » 3Δ (8.1-6) 

Figure 8.1-14 shows a ground profile with minimum wavelength Lmm and two 
different sets of point records with point separation Δ. It is obvious that the curve 
can be reconstructed from either configuration of points. 
Note: with Lmm = 2Δ, an unfavourable distribution of laser points can deliver 3 
identical Ζ values. For this reason, and in particular because of the planimetric 
error in the laser points, the factor 2 should be significantly increased. The factor 
3 has been chosen here, 2.8 is often used. 

Figure 8.1-14: Minimum wavelength of a ground profile and two different arrange-
ments of points to determine it (Δ = point separation) 

Laser scanning delivers point clouds in which no structural elements (edges on 
the ground, etc.) are emphasized. With photogrammetric data capture, and often 
as an extension to automated data capture (Section 6.8.6), considerable value is 
placed on the structural elements. In order to ensure the prerequisites for deriv-
ing structural elements from laser point clouds, a high point density is required 
during data capture. The spatial relationships for the cross-section of the em-
bankment of a dam are sketched in Figure 8.1-15. In order to determine the 
edges (for which there is a publication6 describing this technique), the top and 
side surfaces, assumed planar, must be recorded with at least two points. The 
relationship between the minimum width Bm\n and the point separation Δ is: 

(8.1-7) 

Figure 8.1-15 shows two different configurations of points with separation Δ 
when the minimum width of the crown of the embankment is £ ? m j n . In both cases 
there is a minimum of two points on the top surface. 

6Briese, C.: IAPRS 35(B3), pp. 1097-1102, 2004. 
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Figure 8.1-15: Minimum width of a dam profile and two different arrangements of 
points to determine it (Δ = point separation) 

Exercise 8.1-1. An area of interest contains wavelike deformations in the ground with 
a minimum wavelength of 4 m and dam walls with a minimum top width of 2 m. What 
laser point separation should be chosen for data recording? (Solution: A W a v e = 1.3 m. 
Aüam = Im, therefore use a point separation of 1 m.) 

(f) compared with photogrammetry, laser scanning has two disadvantages. Firstly, 
planimetric resolution is appreciably worse. Laser scanning currently has a reso-
lution in the half metre range. In contrast, photogrammetry can provide resolu-
tion in the decimetre range and occasionally better (Section 3.1.5.2). Secondly, 
laser scanning only provides a "range image", in contrast to photogrammetry 
with its multispectral information in the visible and infra-red region of the elec-
tromagnetic spectrum which facilitates delineation of land usage and object iden-
tification. It should also be mentioned that currently photogrammetry provides 
the better planimetric accuracy and airborne laser scanning the better height ac-
curacy. It is therefore not surprising that, from the separate paradigms of (stereo-) 
photogrammetry (Figure 8.1-12) and laser scanning (Figure 8.1-13), a common 
paradigm can be created. This common paradigm is illustrated in Figure 8.1-16. 

The (straight-line) directions of the imaging rays (Figure 8.1-12) and the 
(straight-line) vectors (Figure 8.1-13) have been replaced in the common par-
adigm (Figure 8.1-16) by symbolic (electromagnetic) waves. This serves to em-
phasize the physical line of sight in the common paradigm. The common para-
digm can be characterized as follows: 

• for every photogrammetric pixel there is also a "spectrum" of distances 
which consists of at least the first and last echoes. 

• for every laser scanning pixel there is also a spectrum of electromagnetic 
radiation which, depending on sensor, is typified by natural and/or artificial 
radiation. 

• for every pixel there is, in general, a second pixel with the identical infor-
mation content but recorded from a different direction. 
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GPSMMU 

Scan 1 
passive sensor 

Scan 2 
passive sensor 

Object point 

Figure 8.1-16: Common paradigm based on (stereo-) photogrammetry and laser scan-
ning 

A possible restriction to single components of the common paradigm is of con-
siderable importance in practice (object recording using only a single measure-
ment beam, etc). 

The realization of the common paradigm can be achieved in different ways. Var-
ious alternatives, starting with simple solutions, are as follows: 

• a digital orthophoto is superimposed on the DTM derived from laser data. 

• the laser-based DTM is used for digital single image analysis (monoplot-
ting, Section 7.4.3). 

• the laser scanner also records the intensity of the reflected laser beam. The 
result is a black-and-white infra-red image (Figure 3.2-10), although one 
which has the poor resolution of laser scanning. 

• a digital photographic camera, either a CCD array camera or a 3-line cam-
era, is built into the aircraft, together with the laser scanner, but without 
synchronization between them. 

• laser scanner and digital linear array camera are mounted on the same gyro-
stabilized platform (Section 3.7.3.3) and are synchronized with one another. 
With this configuration it is particularly important that the separation be-
tween the sensors is kept as small as possible. 
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Further reading: Baltsavias, E.: ISPRS Journal 54, pp. 138-147, 1999. Jelalian, Α.: 
Laser radar systems. Artech House, Boston, London, 1992. Rees, W.: Physical princi-
ples of remote sensing. Cambridge University Press, 2001. Wehr, Α., Lohr, U.: ISPRS 
Journal 54, pp. 68-82, 1999. 

8.2 Terrestrial laser scanning 

8.2.1 Principle of operation 

Terrestrial laser scanning differs from airborne laser scanning principally in that, dur-
ing the scanning process, the scanner is not moved7. The stationary terrestrial laser 
scanner therefore requires deflection mechanisms for pointing in two directions. (In 
airborne laser scanners the laser beam must only be deflected in a plane perpendicu-
lar to the direction of flight, Section 8.1.1.) Both deflection mechanisms are shown in 
Figure 8.2-1. The pulsed laser beam is sent from the range finder electronics unit (1) 
and meets the polygonal mirror element (3) which rotates at relatively high speed. The 
laser beam (2) is reflected off the mirror surfaces such that it is scanned through the 
vertical angle ζ. After a ζ profile has been recorded, the upper part of the instrument 
rotates through a small angle Aa in order to sample the neighbouring ζ profile, and so 
on until a full horizontal circle has been covered. 

Figure 8.2-1: Principle of the Riegl terrestrial laser scanner 

7However, mobile mapping (Figure 3.8-12), also uses laser scanners whose operation corresponds, in 
principle, to the airborne laser scanning concept. 
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In terrestrial laser scanning, the object is scanned from several measurement stations 
such that there is only a small overlap between the point clouds generated at each 
station. GPS can well serve the purpose of locating these stations and this will be 
discussed in Section 8.2.2. From one station one obtains the polar coordinates α, ζ and 
s. The data recorded from one station is, in terrestrial laser scanning, normally called 
a scan. 

The technical data for the Riegl LMS-Z420i scanner are summarized in the following 
table: 

Wavelength/Intensity 

Maximum frequency of vertical line 
scan (ζ profile) 
Data rate 

detectable echos 
maximum range 

minimum range 
FOV, field of view, for a ζ profile 
IFOV, instantaneous FOV 

Range accuracy 
minimum increment in both angular 
directions 

1550 nm (near infrared), the intensity of 
the echo can be recorded 
20 Hz 

24 kHz normal scanning, 8 kHz fine 
scanning 
first or last echo 
200 m for a surface reflectance ρ > 80%, 
60 m for ρ > 10% (see Section 3.7.5) 
2m 
80° 
0.25 mrad(52"), i.e. the footprint has a di-
ameter of 2.5 cm at a range of 100 m and 
1.25 cm at a range of 50 m 
±10mm 
0.07 mrad(14"), i.e. the sampling interval 
for an object at 100 m range is 7 mm and 
at 50 m range it is 3.5 mm 

Table 8.2-1: Technical data for the Riegl LMS-Z420i terrestrial laser scanner 

8.2.2 Georeferencing 

This section will first discuss direct georeferencing. This assumes that the laser scan-
ner's position (Xq, Vq, ZQ), for example with the help of GPS in static mode, and an-
gular orientation (ω, ψ, κ) have been determined. From these parameters, and the polar 
coordinates a, C, s, the X Y Z coordinates in a global coordinate system can be derived: 

Χ \ ί Χο \ ( s sin ζ cos a \ 
Y = r 0 + I W ss inCs ina (8.2-1) 
Ζ J \Z0J \ s cos £ / 

ζ ... zenith angle with zero direction along the κ axis 
a . . . horizontal angle, with zero direction defined by the zero direction for 

κ rotation 
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Comment: It is interesting to make a comparison with the similar relationship (8.1-1) 
for airborne laser scanning. It is particularly noticeable that no synchronization of the 
transformation parameters is required in terrestrial laser scanning and that the polar 
coordinates are derived from two deflection angles. 

If the location coordinates and orientation angles are unknown (a technique known also 
as free stationing), then these parameters must be determined indirectly from control 
points (indirect sensor orientation). In this we initially assume that, in every station 
scan, a number of control points can be located and identified. With the Riegl LMS 
Z420i (Table 8.2-1) this is an automated measurement procedure provided that control 
points have been marked by small retro-reflecting targets. Due to the high contrast be-
tween these targets and their environment, the signals can be automatically identified 
in the intensity image (Table 8.2-1). After normal scanning and preliminary location 
of the control points, areas around the individual signals are re-scanned at a very high 
resolution. In the re-scanned intensity images, the Ca coordinates of the control points 
can be determined to sub-pixel accuracy, for example using a weighted centroid calcu-
lation (Section 6.8.5 ff.). Using the 4 nearest scanned points, the s coordinate can be 
determined by means of a bilinear transformation (Section 2.2.3a). 

The transformation parameters Xo, Yq, Zo and ω, φ, κ for one measurement station can 
be determined from at least 3 well distributed control points. A simple solution8, 
which corresponds to the absolute orientation of the photogrammetric stereomodel 
(Section 4.4), starts with the conversion of polar coordinates into a local Cartesian 
coordinate system as follows: 

The continuation of this "absolute orientation" is described in detail in Section 4.1.1. 
The scale factor can be assigned the value of 1. 

The economic advantage of indirect sensor orientation can be appreciably increased by 
simultaneously connecting all scans in a measurement project. For the full set of scans 
only a few more control points need be determined in the object coordinate system. 
To connect scans, retro-reflecting targets are again required which can, however, be 
automatically found and identified in their overlapping areas. Figure 8.2-2 illustrates 
three scanner stations connected through common measured points. After converting 
polar coordinates to Cartesian coordinates (Equation (8.2-2)), each scan has its own 
local Cartesian coordinate system (Figure 8.2-2 shows this only for the middle station). 
In addition, Figure 8.2-2 shows the global X Y Z object coordinate in which a number 
of retro-reflecting control point targets must be measured. 

The indirect sensor orientation for a complete set of scans, each with local Cartesian co-
ordinates derived from the original polar coordinates, corresponds to the spatial block 
adjustment with independent models described in detail in Section 5.2. The scale fac-
tors m in the individual scans can again be assigned the value of unity. Accuracies and 

8 A more rigorous solution, which minimizes the least-squares sum of the original observations α, ζ, s, 
can be found in Section Β 3.5.3, Volume 2. 

(8.2-2) 
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Figure 8.2-2: Connection of multiple laser scanning stations (scans) 

distributions of control points can also be found in Section 5.2.3. Since terrestrial laser 
scanning is often used to record facades on both sides of a street, then the accuracies 
and control point configurations of strip triangulation are appropriate for such linear 
measurement tasks (Section 5.2.3.4). 

In a practical example9 with five scans, the following accuracies were achieved: 
±3.5 mm for individual coordinates of a measurement station and ±7.5 mm for the 
individual coordinates of a tie point. 

8.2.3 Connecting point clouds 

Laser point clouds have no sharply defined points which could be identified in several 
point clouds and then used to connect them. Retro-reflecting targets, introduced in the 
previous section for the simultaneous connection of all scans in a measurement project, 
represent a relatively expensive solution. 

In Section 8.2.5 we will learn a technique for locating and identifing tie points manually 
within the intensity images of the laser scans. To support this, an automatic fine scan 
can run in the background, comparable with related methods to determine tie points au-
tomatically in aerotriangulation (Section 6.8.3.5). Laser scanner images are, however, 
three-dimensional: the intensity image provides two dimensions, the third dimension 
is provided by the distances s. In this context, interest operators (Section 6.8.1.3) can 
also provide good service. 

Single points have already been rejected for connecting the point clouds of individual 
airborne laser-scanned strips. Planes in corresponding regions have been used instead 
(Section 8.1.2.1). 

9Pfeifer, N., Kraus, Κ., Schwarz, R., Ullrich, Α.: Ingenieurvermessung 2000 (Eds. Schnädel-
bach/Schilcher), pp. 114-121, Wittwer Publishing, 2000. 
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The well-known ICP (iterative closest point) algorithm can connect point clouds with-
out using individual tie points. This assumes approximately positioned and oriented 
point clouds. In the overlapping region between two point clouds, two subsets of points 
are chosen. Subsequently, for every point in one subset a corresponding point, at the 
shortest Euclidean distance in the other subset, is sought. In this way, many corre-
sponding point pairs are generated which can be used to transform one point cloud onto 
the other, for example using a highly over-determined spatial similarity transform. The 
point clouds then move "closer" to one another. In a second iteration, corresponding 
point pairs with shortest separations are again determined and through them a second 
transformation is carried out. Iterations are continued until the squared sum of point 
pair separations is below a given threshold value. Due to the relatively large number 
of incorrect matches which can occur, the transformations, which are normally highly 
over-determined, should make use of robust parameter estimation. It is conceivable to 
extend the method from two point clouds to the simultaneous connection of all point 
clouds, comparable with block adjustment using independent models (Section 5.2). 

Further reading on ICP: Besl, P., McKay, N.: IEEE Transactions on Pattern Analy-
sis and Machine Intelligence (PAMI) 14(2), pp. 239-256, 1992. Chen, C., Hung, Y„ 
Cheng, J.: Transactions PAMI 21(11), 1999. Pottmann, H„ Leopoldseder, S., Hofer, 
M.: IAPRS34(3A), pp. 265-270, Graz, 2002. 

8.2.4 Strategies for object modelling 

The result of measurement by laser scanner is a point cloud. In the following explana-
tion it will be assumed that the primary axis of the instrument (Figure 8.2-1) is approx-
imately aligned to the direction of gravity. For one station or scan, the recorded point 
cloud is shown projected onto the ζα coordinate plane in Figure 8.2-3. The various 
range values s are the functional values of this "image". 

By storing the measurement values as a matrix, neighbouring measurements can be 
quickly accessed via the matrix subscripts. The measured points have no "meaning", in 
contrast to a manual photogrammetric analysis or a tacheometer (total station) survey. 
These last named, conventional methods assign to every measured point an attribute 
(house corner, linking data to neighbouring point, etc.). From the laser scanner's point 
cloud this information must be determined after data acquisition. As an aside it is 
worth noting that laser scanning generates a large amount of data without attributes 
and, in contrast, conventional methods generate a small amount of data with manually 
assigned attributes. 

Before we investigate further the determination of line and point information from 
laser scanner point clouds, we will briefly discuss the geometry implicitly contained in 
Figure 8.2-3. The columns contain object points which result from the intersection of 
a (vertical) plane with the object surface. The particular (vertical) plane contains the 
recording location and is defined by horizontal angle a. The line of intersection is a 
(vertical) profile. The distances from the measurement station to the profile points are 
known; the separations between profile points are defined by the Αζ increments. 
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α —*• 

ζ | 

Figure 8.2-3: Laser points viewed in the ζ a reference plane 

A row of the matrix in Figure 8.2-3 contains object points which result from the in-
tersection of a conical surface with the object's surface, where the cone has its apex 
at the recording location and opening angle 2ζ (Figure 8.2-1). The distances from the 
measurement station to these intersection points are known; the separations between 
columns of the matrix in Figure 8.2-3 is defined by the Aa increments. If the object 
surface is a plane then the intersection line between the current cone and the object 
surface is a conic section, i.e. an ellipse, parabola or hyperbola. In the ζα coordi-
nate plane, these conic sections are drawn as straight lines along the corresponding a 
coordinate line. Figure 8.2-4 illustrates the laser points after transformation into the 
xyz coordinate system according to Equation (8.2-2). The constant interval between 
points has disappeared. The simple neighbourhood connections (topology) between 
laser points is, however, unchanged by this transformation. Transformation into the 
xyz system has the major advantage that planar regions can be found, for example by 
detecting common normal vectors to triangles created from neighbouring points. (In 
contrast, planar regions cannot be found in the ( a s coordinate system of Figure 8.2-3; 
object planes and lines are bent.) In the example here 4 planar regions can be found 
and their laser points are marked with different symbols in Figure 8.2-4. 

After segmentation, planes bordering on one another can be intersected. This results 
in straight lines and points (Figure 8.2-5). The following strategy for object modelling 
therefore lies at the heart of laser scanning: sets of points belonging to individual, 
smooth surface elements (in our example these are planes) are extracted from the point 
cloud. By intersecting the smooth surfaces, curved edges are obtained (in our example 
these are straight lines) and the intersection of the edges provides the required indi-
vidual object points. Conventional methods have a reversed strategy: single points are 
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Figure 8.2-4: Laser points in Cartesian coordinate system and the result of segmenta-
tion in 4 planar regions. 
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Figure 8.2-5: Intersection of surfaces and edges 

measured which create lines defining the object's topology and the lines, together with 
individual points on smooth surfaces, define the surface elements. 

The accuracy of lines and points indirectly derived from laser scans is very high be-
cause the highly redundant set of laser points leads to a significant increase in sur-
face measurement accuracy compared with a single laser point measurement (Sec-
tion 8.1.2.2). In an analogous way to robust least-squares interpolation of surfaces 
(Section 8.1.2.2), this reduction, or filtering, of random measurement error should be 
undertaken on smooth object surface elements. For the assignment of laser points to 
the smooth surface elements it would be advantageous if the random errors were al-
ready filtered out. In practice, therefore, segmentation and filtering are alternately used 
in an object reconstruction procedure. 
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Figure 8.2-6: Results of a laser scanning measurement of the statue of Marcus 
Antonius 

Figure 8.2-6 shows the result of a measurement with a Riegl LMS-Z360 laser scanner. 
The statue of Marcus Antonius on a carriage being drawn by three lions, was scanned 
from several locations. Using a small number of retro-reflecting targets fixed near and 
around the statue, all scans were connected together and transformed into a common, 
global coordinate system. The surface was modelled using the software package Geo-
magic Studio10. Data can be smoothed with this software, i.e. measurement noise is 
filtered out, and NURBS elements formed (Non-Uniform Rational B-Splines). Details 
are published in: Briese, C., Pfeifer, Ν., Haring, Α.: CIPA conference proceedings, 
Antalya, Turkey, 2003. 

8.2.5 Integration of laser data and photographic data 

The combination of laser data and photographic data is just as appropriate to terrestrial 
laser scanning as it is to airborne laser scanning (Section 8.1.3). For some time terres-
trial laser scanners have been able to record the intensity of the reflected laser impulse, 
as well as its range. Figure 8.2-7 contrasts a laser scan made with a Riegl LMS-Z360 
and a digital photographic image of the same scene, taken with a Kodak DCS 460c 
(Section Ε 3.5, Volume 2). 

The resolution of both images is very different. The terrestrial laser scanner, like the 
airborne laser scanner (Section 8.1.3ff.), has a worse resolution than the camera by 
an order of magnitude. The laser scanner image is deceptive: it is a black-and-white 

'"www.geomagic.com/en/products/studio/ 
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Digital Images (Kodak DCS460C) 

Figure 8.2-7: Laser scanner intensity image and photographic image 

infra-red image (Figure 3.2-10). In this region of the spectrum there are certainly large 
contrasts between different types of vegetation but only small contrasts between build-
ing walls (Figure 3.7-18). In addition, the laser scanner image has no three-dimensional 
quality: instead of the oblique illumination by sunlight which gives the photographic 
image a three-dimensional look, the laser scanner image is generated by an artificial, 
near infra-red illumination with the same direction as the recording rays. Compared 
with the photographic image, however, the laser scanner image has the significant ad-
vantage that, concealed behind each pixel, is the distance to that particular pixel. 

To combine laser scanner and photographic data, the same solutions are possible for 
terrestrial laser scanners as are given for airborne laser scanners in Section 8.1.3ff. 
However, the connection of different image types into the same georeferenced network 
should be briefly discussed. If the different images appear on the same display, as 
in Figure 8.2-7, then corresponding points in each can be manually (monoscopically) 
identified and, preferably using feature-based correlation (Section 6.8.1.4) located to 
sub-pixel resolution. Following this, a common, least-squares adjustment of the terres-
trial laser scanning stations and the photographic image stations can be executed. 

Three-dimensional photo models (Section 7.5), arising from both data sources, are par-
ticularly attractive. The geometry of the object surfaces is mainly derived from the laser 
data; texture is taken from the digital photographic data and transferred to the surfaces 
of the geometric model. A very simple type of photo model can be obtained without 
the need for the full effort normally required for photo models. This variant requires 
that a digital camera be rigidly mounted on top of the terrestrial laser scanner and its 
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orientation, with respect to the scanner, known by calibration. The following procedure 
is then possible. Directly after recording, the 3D points from a laser scanning station 
are transformed (back projected) into the digital photographs where the correspond-
ing colour values are extracted. The colour values are subsequently applied to small 
spheres and, in 3D space, placed at the positions of the scan points. This results in a 
3D "sphere cloud" which gives an observer the familiar colours of a photograph. This 
3D "sphere cloud" can be generated immediately after recording and then visualized 
in a very pleasing way. 

8.3 Short range laser scanning 

At very close scanning ranges, from a few decimetres up to around 2 m, a completely 
different scanning principle is adopted. In general terms this principle can be iden-
tified as a light-sectioning technique: a light source projects a plane of light onto an 
object surface, thereby generating a profile which is recorded by a digital camera with 
a known offset from the light source. In this technique the laser is not used for range 
measurement; it is simply used to create a plane of light which "draws" the above 
mentioned profile on the object. The various solutions for implementing the light-
sectioning method are described in detail in Section C 2.3.3, Volume 2. In the follow-
ing text, a very specific and efficient solution will be presented which has matured in 
recent years to a high level of perfection. 

The principle can be very clearly explained on the basis of the horizontal "normal case" 
of photogrammetry. Figure 8.3-1 illustrates light sectioning with a laser scanner. This 
figure has close similarities with Figure 3.8-1 showing the "normal case" of terres-

Figure 8.3-1: "Normal case" of light sectioning by a laser scanner 
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trial photogrammetry. It is therefore also possible to describe the method shown in 
Figure 8.3-1 as the "normal case" of light sectioning by laser scanning. 

The metric camera at recording position Οχ in Figure 8.3-1 is here replaced by a laser 
scanner which generates a plane of light. This, in turn, creates a profile of light on the 
object. This plane of light can be rotated by an angle αϊ about the ζ axis of the model 
coordinate system (= the scanner's internal ζ axis). The laser scanner transmits the 
angle αϊ for the different light profiles to the data processing unit of the measurement 
system. The digital (CCD) metric camera is positioned at a distance B , which is the 
base length in the "normal case", along the χ model coordinate axis and with its opti-
cal axis (viewing direction) parallel to the y model coordinate axis. The CCD camera 
makes a photographic recording of the light profile, synchronized with the transmis-
sions of the laser light planes (at varying angles a\) . Each profile is separately recorded 
on a full digital image. The CCD camera must therefore be capable of a high image 
recording frequency. 

At a particular time of recording, the digital image of the profile corresponding to the 
light plane transmitted at rotation angle αϊ is shown in Figure 8.3-1. The image plane, 
shown projecting from the negative position in Figure 2.1-6, has been rotated about the 
ξ2 axis for display purposes. (Although these are digital images, the definition of image 
coordinate system used in Figure 3.8-1 has been used instead of the normal definition 
presented in Figure 2.2-3.) 

The coordinates xp, yp, zp, in the model coordinate system, of a point Ρ on the imaged 
profile, can be determined from its image coordinates £2, the principal distance c of 
the camera, base length Β and angle αϊ of the laser light plane as follows: 

— = tan αϊ (8.3-1) 
yp 

^ ^ = (8.3-2) 
yp c 

The coordinate yp is then given by Equation (8.3-3a), obtained after elimination of the 
XP coordinate in Equations (8.3-1) and (8.3-2). The coordinate xP can subsequently 
be derived by substituting yp in Equation (8.3-2) to obtain Equation (8.3-3b). The third 
object coordinate, zp, is calculated from the ratios in Equation (8.3-3c): 

yp = ^—E- (8.3-3a) 
tan αϊ 

c 

X p = y p b + B (8.3-3b) 
c 

Zp = yp— ( 8 . 3 - 3 C ) c 
The processing of the images can be fully automated. The point sequences in images 
of individual profiles can be located using simple image processing algorithms. Equa-
tions (8.3-3) are then subsequently evaluated for each located point using its image 



430 Chapter 8 Laser scanning 

coordinates £2 and 7/2 - Although the processing strategy is not very susceptible to er-
ror it should, however, be noted that there is no check with respect to individual object 
points. In Equations (8.3-3) there are 3 measurement values ξ2, % a r |d a\ for determin-
ing the 3 coordinates xP, yp, zp. In contrast, in the "normal case" of photogrammetry 
there are 4 measurement values ξι, ηι, ξι, r/2 in Equations (3.8-1) for the determina-
tion of the 3 coordinates x, y, z. In photogrammetry there is therefore one redundant 
measurement present. 

The combination of geometric data with photographic data is readily possible with this 
construction principle, illustrated in Figure 8.3-1. After the CCD camera has taken 
the sequence of individually imaged profiles, a digital photograph, generally an RGB 
image, can then be taken. Three coordinates xP, yP, zP can then be assigned to each 
RGB pixel of the digital image. With little effort, it is equally possible to implement 
the reverse process in which pixels from the digital image are assigned to the xP, yp, 
zP coordinates to create coloured spheres (see end of Section 8.2). The best fusion 
results when an object surface is modelled from the laser point cloud and the complete 
RGB image draped over this. 

A few technical details will be given below for the relatively widely used Minolta 
VIVID 9i scanner ( w w w , m i n o l t a 3 d . com): 

Scan range: 0.5 - 2.5 m 
Laser wavelength: 690 nm 
Number of 3D pixels: 640 χ 480 
Range accuracy: ±0.008 mm 
Colour image array size (RGB): 640 χ 480 
Data file size for 3D information and colour values: 3.6 MByte 
Recording time for 3D data scan: 2.5 s 

Table 8.3-1: Technical data for the Minolta VIVID 9i close-range laser scanner 

Figure 8.3-2 shows the instrument. As indicated in Figure 8.3-1, the CCD camera is 
mounted in the upper part of the housing. A laser light plane, which can be deflected 
about a horizontal axis, is located behind the lower opening. 

Figure 8.3-3 shows a three-dimensional object model, which has been recorded by a 
Minolta VI-900. The CCD image has been transferred onto the object surface, derived 
from the point cloud. Since the doll's head was recorded with only a single scan, the 
unmeasured area in shadow at the back of the head can clearly be seen. 
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Figure 8.3-2: VIVID 9i 3D laser scanner from the Minolta company 

Figure 8.3-3: Doll's head measured by the Minolta VI-900 laser scanner 
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Appendix to Section 2.1 

2.1-1 Three-dimensional rotation matrix 

For the three independent parameters of a rotation matrix in three dimensions we may 
use three rotation angles ω, φ and κ about the coordinate axes. Initially the xyz system 
is coincident with the fixed (higher order, global) coordinate system XYZ. The xyz 
system is then rotated in three steps. In each case an counterclockwise rotation as seen 
looking along the axis towards the origin is regarded as positive. 

the primary rotation ω of the xyz system about the X axis. 

Note: the primary rotation takes place about one of the coordinate axes of the 
fixed coordinate system. 

Question: What equation is used to transform the χωι/ωζω coordinates of a point 
into the fixed system? 

It follows from Equations (2.1-1) and 
(2.1-2) as well as Figure 2.1-1 that: 

X = χω 

Y = yω cos ω — ζω sin ω 

Ζ = yLÜ sin ω + ζω cos ω 

or 
/ Ι Ο 0 \ ί χ ω \ 

Χ = Ι 0 cos ω - s i n w Ι Ι y u I = Η ω χ ω (2.1-1-1) 
\ 0 sin ω cos ω J \ζω ) 

• secondary rotation φ of the xyz system about the axis. 

Note: the secondary rotation takes place about the yu> axis which has been previ-
ously rotated about the primary axis. 

Question: What equation is used to transform the χωφνωφζωφ coordinates of a 
point through the xuyu,ζω system into the fixed system? 
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<̂0 ^ωφ 

Note that in the application of Equations (2.1-1) 
and (2.1-2) as well as in Figure 2.1-1 a positive 
φ rotation in the χωζω plane is a rotation in the 
direction from the ζω axis towards the χω axis. 
Positive rotations are to be taken in cyclical or-
der from the χ axis to the y axis, from the y 
axis to the 2 and from the ζ axis to the χ axis. 
This conforms with the definition that an coun-
terclockwise rotation as seen looking along the 
axis towards the origin is positive. 

or 

Xti) — 

Χω = Χωφ COS ψ + Ζωφ Sin ψ 

Vu) = y ωφ 

ζω = -χωψ sin φ + ζωψ cos ψ 

cos φ 0 sin ψ 
0 1 0 

- sin φ 0 cos φ 
— R'φ^-ωφ 

Substituting from (2.1-1-1) in (2.1-1-2) gives: 

(2.1-1-2) 

(2.1-1-3) 

tertiary rotation κ of the xyz system about the ζωφ axis. 

Note: the tertiary rotation takes place about that axis which has previously been 
rotated about both the primary and the secondary axes. 

Question: What equation is used to transform the χωφκ,νωφκ.ζωφκ coordinates 
(writing χωψκ = χ, νωφκ = y, ζωφκ = ζ) of a point through the χωφνωφζωψ and 
through the χ ^ ω ζ ω system into the fixed system? 

ζ ω φ ζ ωφκ z 

Using Equations (2.1-1) and (2.1-2) and 
Figure 2.1-1 it follows that: 

ΙΙωφ 

Ζ^ιρ 

ϋωφκ sin κ + y ^ n cos κ 

^ωφκ 

or 
cos κ - sin κ 0 

= | sin κ cos κ 0 
0 0 1 

ωφκ 
'ωφκ 
ωφκ 

= R-rX (2.1-1-4) 
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Substituting from (2.1-1-4) in (2.1-1-3) gives: 

X = R w R v R , t x (2.1-1-5) 

Multiplication of the three matrices R v and R r e to derive the single matrix 
R is performed in two steps. First R ^ = R P R K is found and finally Έίω φ κ = 
ΈΙωΈίφκ. 

c v 0 
0 1 0 
S ψ 0 

1 0 0 
0 c w -So, 
0 s w Co, 

/ CK - S « 0 ' \ 
SK CK 0 

\o 0 1 1 
S ψ 

SK Ck 0 
S ĵS K C^ 

— R V k 

(2.1-1-6) 
If the order of rotations is changed the sequence of multiplications of the matrices 
must be changed accordingly. For example, if ψ is taken as the primary rotation, 
ω as the secondary rotation and κ as the tertiary rotation, we derive the following 
matrix: 

(c<^cK -f- swsK 

Cu;SK cwCk —Sw I (2.1-1-7) 
SypCK C(pS^jS^ s^s« 

Exercise 2.1-14. Derive the matrix representing the resultant rotation in three dimen-
sions if κ, ψ and ω are the primary, secondary and tertiary rotations respectively, all in 
the positive sense. 
We sometimes wish to derive the rotation angles from the elements r ^ of the rotation 
matrix. From the matrix we wish to find the three angles ω, φ and κ as specified 
in Figure 2.1-5. It follows from Equation (2.1-1-6) that: 

— Γ23 — ri2 
t a n a ; = , sin<^ = ri3, t an« = (2.1-1-8) 

T33 m 
Note: if η 3 > 0 then φ could lie in either the first or the second quadrant while, if 
ri3 < 0, ψ could take a value in the third or fourth quadrants. There is, however, no 
ambiguity for the angles ω and κ as may be seen when one considers the following 
relationships from the matrix (2.1-1-6):1 

ω : T23 — — sin ω cos ψ r33 = cos ω cos ψ 
κ: r\2 = — cos yj sin κ r\\ = cos ψ cos κ 

'The unambiguous determination of the angles ω and κ is performed in many computers with the 
ARCTAN2 function: omega = ARCTAN2 ( — Γ 2 3 , Γ 3 3 ) = [ ARCTAN2 (opposite, adjacent)] 
The angle is given in radians with a value between —π and π (excluding —π), counting from the χ axis 
in a counterclockwise sense (positive count) or in a clockwise sense (negative count). Example: The 
function ARCTAN2 ( - 1 , - 1 ) produces (-2.35619); that is - 1 5 0 g o n or - 1 3 5 ° . 
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Numerical Example. From the following rotation matrix which relates to rotations 
about the axes in the order specified in Figure 2.1-5 

-0.340110 0.999407 0.004822 \ 
-0.999419 -0.034096 0.000621 

0.000784 -0.004798 0.999988 J 

find the two sets of rotation angles ω, ψ and κ: 

sin</?i = 0.004822 => φχ = 0.3070 gon (16'35") φ2 = 199.6930 gon (179°43'25") 

0.000621/cost^i = - s i n w i = 0.0006210 
0.999988/ cos φχ = cos^i = 0.9999996 

0.000621/ cos ψ2 = — sin ω2 = -0.0006210 
0.999988/ cos ψ2 = cosw2 = -0.9999996 

0.999407/ cos φχ = - s i n / i j = 0.9994186 
-0.034091/cost^i = cos μ = -0.0340914 

0.999407/ cos φ2 = - s i n / i 2 = -0.9994186 
-0 .034091/cos ψ2 = cos/i2 = 0.0340914 

ω1 = 399.9605 gon 
(359°57'52") 

ω2 = 199.9605 gon 
(179°57'52") 

κι = 297.8292 gon 
(267°18'00") 

^ K2 — 97.8292gon 
(87°18'00") 

Exercise 2.1-15. Repeat the above numerical example under the assumption that ψ 
is the primary, ω the secondary and κ the tertiary rotation. Hint: The corresponding 
rotation matrix is shown above as Equation (2.1-1-7). (Solution: ψ = 0.3070 gon = 
16'35" OR φ — 200.3070 gon (180°16'35"); ω = 399.9605 gon (359057'52") ORu; = 
200.0395 gon (180°57'52"); κ = 297.8290 gon (268°02'46") OR κ — 97.8290 gon 
(88o02'46").) 

Exercise 2.1-16. The following rotations take place in the order ωφκ: ω = 2 gon 
(1°48'), ψ = lOgon (9°), κ = 50gon (45°). In order to achieve the same resul-
tant rotation by means of three sequential rotations in the order φωκ, what would the 
individual rotations be? (Solution: ω = 1.9754gon (1°46'40") OR 198.0246gon 
(178°13'20"), ψ = 10.0049gon (9°00'16") OR 210.0049gon (189°00Ί6"), κ = 
50.3130gon (45°16'54") OR 250.3130gon (225°16'54")·) 

The above examples show that numerical problems can occur in the derivation of the 
rotation angles from the elements rik of the rotation matrix. These numerical problems 
occur when cos φ = 0, that is when φ = 100 gon = 90° or when φ = 300 gon = 270°. 
Fortunately such angles do not arise in aerial photogrammetry, although they are quite 
possible in close range applications. Similarly, numerical problems arise in the case 
of the Ηγ,ωκ rotation matrix (Equation (2.1-1-7)) when cos ω = 0, that is when ω — 
100 gon = 90° or when ω = 300 gon = 270°. 

The following are some sources of information concerning rotation matrices: ASPRS 
Manual of Photogrammetry, 5th ed., 2004. Shih, T.-Y.: PE&RS 56, pp. 1173-1179, 
1990. Sections Β 3.4.1 and Β 3.4.2 in Volume 2. 
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2.1-2 Mathematical relationship between image and object 
coordinates (collinearity condition) 

point Ρ 

When the photograph is taken, the object point P , the image point P ' and the cam-
era station Ο lie on a straight line. The above illustrated collinearity condition, as it 
is called in photogrammetry, can be expressed in the X'Y'Z' coordinate system in 
Equations (2.1-2-1)2; the X'Y'Z' coordinate system is parallel to the ξηζ image coor-
dinate system, both equally tilted with respect to the X Y Z object system. In the image 
coordinate system ζ = 0 for all image points and ζ = c for the perspective centre. 

ξ - ξ ο = X'-X'0 

c Z'-Z' 
(2.1-2-1) 

η-ηο = V'-Y0' 

c Z'0-Z' 
2Zavoti (Geodetic and Geophysical Research Institute of HAS (GGKI), Sopron, Hungary) provided 

the idea for this derivation. 
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y — Υ' 

ν - γ < 2 - 1 ' 2 - 2 ) 

If the rotation matrix for the image, and therefore also for the X'Y'Z' system, is R 
with respect to the X Y Z object coordinate system, it follows from the collinearity of 
Ο, P' and Ρ and from Equation (2.1-11) that: 

Πι Π2 Π3 
T-2ir2 2r2 3 Y ' - Y 0 ' I (2.1-2-3) 

. Γ31 Γ32 Γ33 Z' 

Premultiplying Equation (2.1-2-3) by R _ I = R T and substituting in Equation (2.1-2-2) 
from Equation (2.1-2-3) one obtains: 

c t rn(X-Xo)+r2i(Y-Yo)+MZ-Zo) 
ξ = ςο - c-

Ζχ 

η = ηο - c 

rl3(X - Χο) + r23(Y ~ Υο) + r33(Z - Ζ0) 

Ζ χ 

~Ν 

ry2{X - Χ0) + r22(Y - Υρ) + r32{Z - Ζ0) 

rl3{X - Χ0) + r23(Y - Υ0) + r33(Z - Ζ0) 

(2.1-2-4) 

Since the X'Y'Z' system is parallel to the ξηζ image system, the elements rlk are 

• the cosines of the angles between the axes of the image and the mapping coordi-
nate systems (see Equation (2.1-10)) 

• functions of the angles ω, φ and κ through which the camera was tilted with 
respect to the object system at the moment of exposure (see Equation (2.1-13) or 
Appendix 2.1-1) 

For the sake of compact notation in the partial differential coefficients given in Appen-
dix 2.1-3, in Equations (2.1-2-4), above, we write Zx and Zy for the numerators and Ν 
for the denominator. 

The collinearity equations are sometimes required in another form, a similarity trans-
formation which can be taken directly from Figure 2.1-2-1 (for details see Section 
Β 3.5.1 in Volume 2): 

'X-Xo 
X - X o = | Y - Y o I = m R = m R ( £ - £ 0 ) (2.1-2-5) 

Z - Z 0 

m ... a scale factor, the ratio of the length OP in object space to the length 
OP' in image space 



438 Appendices 

2.1-3 Differential coefficients of the collinearity equations 

For a solution of the non-linear equations (2.1-2-4), using Newton's (iterative) Method, 
almost invariably together with the method of least squares, one requires the following 
partial differential coefficients in which the dependence of the elements r ^ on the 
angles ω, ψ and κ (shown in Equation (2.1-13)) is introduced: 

δξ 
de 

ΖΧ δη 
de 

Οξ 
dXo 

= ~^{rl3Zx - r u N ) = a2 
δη 

dXo 
zy - rl2N) = b2 

dt 
dYo = a3 25

1 
^ 

II --^{ri-IZY - r22N) = b3 

δξ 
dZ0 

= ~^{r33Zx -r3lN) = <14 II - rnN) = 64 

- (Y - Y0)r3l + (Z- Z0)r2l) = a5 

- (Y - Y0)r32 + (Z- Zo)r22) = b5 

δξ c Λ „ • \ZX »τ ι 
= — \ZX cos κ — Zy sin κ) — + Ν cos κ I = ae 

οψ Ν y Ν 
δη c ( Ζ 
-— = — ( (Zx cos κ — Zv sin κ) —~ - Ν sin κ ] = be 
αφ Ν \ Ν 1 

δξ _ __c _ δη _ c_ 
δκ ~ Ν ~ 7 δκ ~ Ν 
θζ c θτι C 
Οχ = - Jp(Nr" ~ =a« = -7^2(^12 - V13) = h 
θ£ c ΘΤΊ C 

ÄR = 1(NR21 - ZXT2I) = 09 OY = ~N2{NR22 ~ ZYR23) = 69 

θ£ C θτι C 
d z = ' N 2 ^ N r 3 1 ~ Ζ χ Τ 3 3^ = a i ° d Z = ~ Ν 2 ^ Ν Τ 3 2 ~ Z y T 3 3 ^ = 610 

Exercise 2.1-17. Consider in what way the derivations of the differential coefficients 
will change if the primary and secondary rotations are interchanged. The primary 
rotation will therefore become φ and the secondary rotation ω. (Solution: They change 
as follows: (Y — YQ) =>· —(X — Xo), r23 =>• —Γ13, r2\ =>· —rn, sin κ => — cos κ, cos κ 
=>• sin«;.) 
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Exercise 2.1-18. Give the differential coefficients for the case of an exactly verti-
cal, unrotated, image. (Solution (examples of the changes): θξ/dX = Βη/dY = 
-c/(Z - Z0), θξ/dY = δη/ΘΧ = 0, Θξ/dZ = c(X - X0)/(Z - Z0)2, δη/θΖ = 
c(Y - Y0)/(Z - Z0)2.) 
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Appendix to Section 2.2 

2.2-1 Derivation of Formula (2.2-5) using homogeneous coordinates 

The projective relationship (2.1-24) between the image plane and an object plane can 
be given as follows using homogeneous coordinates: 

(αϊ a2 a3 \ / ξ \ _ 

bi b2 63 U X = A £ (2.2-1-1) 
Ci C 2 c3 / \ 1 / 

One derives the original coordinates from the homogeneous coordinates as follows: 

χ = x/w Y = Y/W (2.2-1-2) 

The solution for the image coordinates from equations (2.2-1-1) is: 
(2.2-1-3) 

Hence 

The inverse of matrix A is: 

ξ = ί η = 2 (2.2-1-4) 

j / 62C3 - &3C2 <23C2 - 0-2C3 a j b j - 0362 \ 
A - 1 = ——— b^Ci-biCi a i c 3 - a 3 c i 0361-0163 (2.2-1-5) 

\b1c2 — biC\ a,2C\ — a\C2 a 162 — «2^1 / 

Note: since (X, Y) and (ξ, η) in (2.2-1-2) and (2.2-1-4), respectively, are derived by 
fractions which cancel out the scale information in A, scale must be fixed in some way. 
By setting C3 = 1 and taking Equations (2.2-1-3), (2.2-1-4) and (2.2-1-5) together one 
arrives directly at the relationship (2.2-5). 

Note, however, that fixing the scale by setting C3 = 1 is only appropriate as long as 
C3 φ 0. This will happen in the case where the line at infinity of the object plane is 
mapped to an image line passing through the origin of the image coordinate system. 
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Appendix to Section 4.1 

4.1-1 Estimation by the method of least squares 

We are given a set of linear equations of which the first is: 

l\ = anx\ + anx2 Η Va\uxu (4.1-1-1) 

aik • · known coefficients 
li . . . known absolute terms described below as "observations" 
Xfc . . . the unknowns, u in number, of the system of equations 

If there are exactly u observations, li, then we have a consistent system of linear equa-
tions which may be solved directly for the u unknowns Xk- If the set of equations is 
expressed in matrix form as 1 = A x then the solution is χ = A _ 1 l . In order both 
to provide a check on errors in the observations and to increase the accuracy of the 
results, it is advisable that we take η observations where η > u. We then have a set 
of inconsistent equations which implies an estimation problem; this can be solved, for 
example, by introducing the condition that the sum of the squares of the residuals υ of 
the observations should be a minimum. We may then write a system of observation 
equations: 

ν = A x — 1 (4.1-1-2) 

The u unknowns Xk are then found by applying the following minimum condition: 

v T v = min. (4Λ4'2) (Ax - l ) T ( A x - 1) = x T A T A x - 21TAx + 1T1 

Consequently the solution is3: 

= 2 x T A T A - 21TA = 0 
dx (4.1-1-3) 
χ = ( A T A ) - ' A T 1 

The matrix (A T A) is known as the matrix of the normal equations; the matrix A is the 
matrix of the observation equations or, in modern terminology, the design matrix. 

The solution shown above is described in the literature as "adjustment by indirect ob-
servations". This algorithm is all that is needed for almost all of the estimation prob-
lems4 dealt with in this book. Consequently, other approaches to adjustment are not 
discussed. Just two extensions to the method of "adjustment by indirect observations" 
are required, one to deal with the case when the initial equations (4.1-1-1) are non-
linear and the other when the observations are made with differing accuracies. 

3The observations 1 are stochastic variables (they therefore contain random errors) the calculated 
unknowns are simply estimates. The customary notation for an estimated result, with the "hat", χ , is not 
uniformly used in this book; it is frequently written just as x. 

4It is also common in surveying and photogrammetry to refer to "adjustment" when errors are itera-
tively "adjusted" to some minimum condition in order to achieve an optimal estimation of the unknowns. 
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Let the first equation of a system of non-linear equations be expressed as: 

h = f ( x h x 2 , . . . , X u ) (4.1-1-4) 

A set of non-linear equations is commonly solved by Newton's method in which im-
proved approximations to the unknowns are found, in an iterative process, by deriving a 
set of linear equations as follows. This lends itself to the method of adjustment by indi-
rect observations which deals only with linear equations. The right hand side of Equa-
tion (4.1-1-4) is expanded in a Taylor's series around initial estimates χ®, x®, • • •, x°u ; 
we limit the expansion to linear terms: 

Z, = / ( * ? , + + (4.1-1-5) 

A comparison with Equation (4.1-1-1) leads to the following parallels: 

a-ik — ( j ,— ) in which these coefficients are formed by partial 
^ Xk ' differentiation and then evaluated numerically 

using the current estimates of the unknowns, 
". The result is simply a number 

which corresponds to the coefficient a ^ of the 
linear case. (Why?) 

li — li ι ' ' ' ' X u ) 

— Ii — I® in which the value of the function 
/ ( i p j j , · · · , ^ ) ' computed using the cur-
rent estimates of the unknowns, is denoted by 
Z,; the actual observations are denoted by It. 

Xk == dxk in which dxu is a small correction to the current 
estimate x(l of the unknown Xk-

Given these correspondences, it may be seen that Equation (4.1 -1 -5) is of the same form 
as the linear Equation (4.1-1-1) and may be solved in the same manner by forming the 
normal Equations (4.1-1-3). 

In the second of the extensions to the method of "adjustment by indirect observations" 
we consider the case in which we have differing accuracies in the observations li. The 
accuracy is expressed in terms of the standard deviation σι of an observation or by 
its variance σ\. In the surveying literature the term "root mean square error" is often 
preferred to standard deviation. These different accuracies are taken into account in an 
adjustment by indirect observations by means of weights, as they are called, pi, which 
are summarized in a weight matrix P«. 

/ 1 / c \ 

P// = 
\/σ\ 

(4.1-1-6) 
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The minimum condition then becomes: v TP » v = min., which leads to the solution: 

χ = ( A T P „ A ) - ' A T P , ; 1 (4.1-1-7) 

The (estimated) unknowns x, which can be derived from either of the Equations 
(4.1-1-3) or (4.1-1-7), may be substituted in Equation (4.1-1-2) in order arrive at the 
estimated residuals ν for all the observations 1. 

From all the residuals ν we can derive an estimate for the standard deviation of unit 
weight, also called root of the reference variance of an observation which has weight 1 
in the weight matrix, (4.1-1-6): 

= (4.1-1-8) 
V η — u 

With this standard deviation of unit weight σ0 and the weight coefficients qkk the stan-
dard error aXk of the individual unknowns Xk may be estimated: 

Vxk=&0y/qkk (4.1-1-9) 

The weight coefficients qkk are simply the corresponding elements from the main di-
agonal of the inverse of the normal-equation matrix: 

Qxx = ( Α Τ Ρ „ Α ) - ' (4.1-1-10) 

The special case in which there is no redundancy, that is when η = u, is also of interest. 
In this case the result is the solution of the following linear equation system: 

A x = 1 x = A " ' l (4.1-1-11) 

The rule of propagation of errors may be applied to the last equation: 

Q x x = Α - ^ Α - ' Γ = A " 1 ( A T ) " 1 = ( A T A ) - ' (4.1-1-12) 

Comparison of this equation with Equation (4.1-1-10) means that one gets the accuracy 
of the unknowns from a system of linear equations in a roundabout way from a least 
squares adjustment. It is necessary to adopt a predetermined a priori accuracy for σο-

Literature: Mikhail, E.: Observations and Least Squares. IEP-A Dun-Donnelly Pub-
lisher, New York, 1976. Koch, K.R.: Parameter Estimation and Hypothesis Testing in 
Linear Models. 2nd ed., Springer 2006. 
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Appendix to Section 4.2 

4.2-1 Direct Linear Transformation (DLT) with homogeneous 
coordinates 

The relationship (4.2-3) between an image plane and a three-dimensional object can be 
written as follows using homogeneous coordinates: 

Relationship (4.2-3) is then obtained from the homogeneous coordinates ξ, ή and ζ as 
follows: 

Note: as has already been mentioned in Section 2.1.3, since the 3 χ 4 matrix of Equation 
(4.2-1-1) cannot be inverted, a single picture is insufficient for the reconstruction of a 
three-dimensional object with its X Y Z coordinates. 

(4.2-1-1) 

ξ = ξ/ξ η = η/ζ (4.2-1-2) 



Appendices 445 

Appendix to Section 4.3 

4.3-1 Differential coefficients for the coplanarity equations 

The coplanarity condition for the relative orientation using independent rotations re-
sults in Equation (4.3-11). One obtains the differential coefficients, which are neces-
sary, for example, for Equation (4.3-12), through differentiation of Equation (4.3-11) 
with respect to the individual angles. Let us begin with dui^. 

dD dp2,z dp2,y . . . . 
= Pi,y ~ö - Pi,ζ-^- (4.3-1-1) 

0u>2 σω 2 olü2 

As an illustration the derivative dp2,z/dw2 will be developed in full. The Equations 
(2.1-13) and (4.3-9) give: 

' sin u>2 sin K2 — cos u)2 sin ψ2 cos «2 
Ρ2,ζ = (ζι V2 ~c) I sin u>2 cos K2 + cos u>2 sin ψ2 cos K2 I (4.3-1-2) 

COS W2 COS Ψ2 

Differentiation with respect to du>2 leads to: 

Q / cos uj2 sin K2 + sin ω2 sin ψ2 cos κ 2 
, z — (^2 V2 —c) I cos l)2 cos K2 — sin u>2 sin ψ2 sin K2 ) (4.3-1-3) 

ω 2 y — sin UJ2 cos ψ2 
Since the column vector of Equation (4.3-1-3) corresponds to the second row of the 
rotation matrix (2.1-13), the relationship (4.3-1-3) simplifies to the y component of 
the p2 vector (4.3-9), that is, P2,y- The derivative dp2,y/d^2 from Equation (4.3-1-1) 
simplifies, after similar considerations, to the negative 2 component of the P2 vector 
(4.3-9), that is, -p2 , z · As a result the complete derivative from (4.3-1-1) is found: 

ÖD 
= P2,yPl,y+P2,zPl,z 

The following derivative is obtained after comparable considerations: 

dD 
= COS U)2 P2,x Pl,y ~ Sin U)2 P2,x Pi,ζ 

θψ2 

We obtain the following derivative in a similar way: 

dD = (&r2,32 - %i"2,3l)pi,y ~ (6^2,22 ~ mr2,2l)Pl,z 

It should first be noted, when it comes to differentiation of D with respect to ψ\ and κι , 
that, using ω — 0, the rotation matrix (2.1-13) can be simplified. The two remaining 
derivatives are: 

dD 

dD . . . , 
-Q^- = {ξΐη,22 - mri,2l)P2,z - (ξΐΠ,32 ~ 7*1,31 )P2,y 
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Exercise 4.3-3. If both rotation matrices, R i and R2, are replaced by the unit matrix, 
these derivatives are considerably simplified. Equation (4.3-12), which applies to the 
relative orientation of highly tilted photographs, then becomes Equation (4.3-6), the 
equation for near-vertical photographs. Verify this conversion. 
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Appendix to Section 4.6 

4.6-1 The empirical determination of standard deviations and 
tolerances 

The standard deviation σ is soundly based in statistics. Sixty-eight percent of the actual 
errors lie within the range ±σ. In the related disciplines of civil engineering, mechan-
ical engineering and so on, tolerances are preferred. The definition of tolerance is, 
however, relatively arbitrary. A widely used tolerance t is the 2σ tolerance: 

ί95 = ±1.97σ « ±2σ (4.6-1-1) 

As one can deduce from the Gaussian error distribution (normal distribution), about 
95% of the true errors lie within this 2σ range. A somewhat more conservative toler-
ance is: 

t99 = ±2.58σ « ±2.5σ (4.6-1-2) 

But there are always real errors even outside this 2.5σ tolerance. We can tell from the 
Gaussian error distribution that there are about 1 % more. Nevertheless, the tolerance 
f9 9 is used in such a way that all real errors are presumed to lie within these bounds. 

Not infrequently, when photogrammetric services are called for, an accuracy is re-
quested without defining the measure of accuracy. Associated professions prefer toler-
ances. If tolerance is adopted as a measure of quality in calling for services it must be 
stated whether it is a question of i95 (4.6-1-1) or i99 (4.6-1-2) or some other tolerance. 

Assessment of the extent to which the specified tolerance tref has been met is carried 
out with the help of check measurements of superior accuracy. To start with, an r.m.s. 
value (root mean square error) (4.6-1-3) can be calculated from the differences which 
arise: 

^ (4.6-1-3) 
τι 

r.m.s. 

η . . . number of check measurements 

Frequently the r.m.s. is referred to as the absolute accuracy since it reflects all error 
influences. If, from the disparities ε, one removes a possible systematic contribution 
by averaging, the differences are diminished; from the differences reduced in this way, 
which we denote by v, one obtains the standard deviation as follows: 

^ (4.6-1-4) 
71 — 1 

The standard deviation a.m is also frequently called the relative accuracy. Continuing 
the analysis, the tolerance tm can be calculated with Equation (4.6-1-1) or (4.6-1-2) 
and compared with the specified tolerance iref. One can also check directly whether 
95% of the differences v, found after removal of a possible systematic part from the 
differences ε, lie within the specified tolerance i95jref· 
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Check measurements of a superior accuracy are very costly. In many cases one is satis-
fied with a second set of measurements of the same accuracy as the first measurements. 
The agreed tolerance iref can be checked from the differences d which arise. In this case 
one first computes the standard deviation ad,m of the differences (in the same way as 
explained above, one can also separate out the systematic part); 

Since two measurements of approximately equal accuracy contribute to the differences 
d, the standard error of a single measurement, the actual standard error, comes to: 

The tolerance tm can then be found from Equation (4.6-1-1) or (4.6-1-2) and compared 
with the stipulated tolerance iref. 

In conclusion, it should be emphasized that a great deal of attention should be paid to 
systematic errors when evaluating standard errors and tolerances empirically. 

Numerical Example. When calling for photogrammetric point determination a toler-
ance of i95,ref = ±10cm is demanded. A value of ad > m = ±8.5 cm arises from the 
differences d of repeated measurements (no systematic component contributed to the 
differences d). Is the specified tolerance i95)ref = ±10 cm met? 

(4.6-1-5) 

η . . . number of repeated measurements 

(4.6-1-6) 

(4.6-1-6): a m = 8 .5cm/ \ /2 = 6.0cm 

(4.6-1-1): £95,m = ±12 cm 

m 

The specified tolerance i95jref is therefore not met. The photogrammetric point deter-
mination has to be repeated, possibly with a larger photo scale. 
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0 , 1 , . . . 
12-parameter transformation, 228 
3-line cameras, 55, 95, 146 

georeferencing, 277, 279 
gyro-stabilized, 154 
intersection, 183 
usage, 364 

3D digitizer, 296 
3D digitizing, 316 

A 
Abbe comparator, 303 
Aberration, 65 
Absolute orientation, 191, 219 

approximate values, 228 
error theory, 226 
terrestrial laser scanning stations, 422 

Absorption, 403 
Absorption filters, 78, 80 
Accommodation, 286 
Accuracy 

absolute orientation, 226 
automated relative orientation, 337 
block adjustment with independent mod-

els, 258 
bundle block adjustment, 274 
bundles in close range photogramme-

try, 284 
contours obtained indirectly from a 

DTM, 321 
distance, 244 
DTM model, 411, 415 
GPS-positioning, 152 
IMU-orientation, 152 
inertial navigation system, 152 
least square matching (LSM), 326 
location of the fiducial marks, 334 
monocomparator, 304 
of directly drawn contours, 320 
orthophoto, 384 
photogrammetry (in general), 34 
point determination in a stereopair, 238, 

317 
processing of lines, 318 

recording of buildings, 322 
relative, 244 
relative orientation, 214 
stereometric cameras, 166 
strip triangulation, 267 
terrestrial laser scanning, 425 

Active stereoviewing, 292 
Adjustment by indirect observations, 441 
Adjustment by the method of least squares, 

441 
ADS from Leica Geosystems, 146 
Aerial photo interpretation, 93 
Aerial photographs 

cameras, 137 
constraints, 77 
films, 91 
flight planning, 131 
overlap control, 138 
survey aircraft, 161 

Aerotriangulation, 246 
automated, 339 
GPS- and IMU-assisted, 276 

Affine rectification, 378 
Affine transformation 

three-dimensional, 20 
two-dimensional, 13 

Air photo-interpretation, 292 
Aliasing, 101 
All-round imaging, 177 
Amateur cameras, 170 
Amateur pictures, 28, 187, 201 
Amplitude spectrum, 126 
Anaglyph system, 290 
Analogue photogrammetry, 297, 376, 381, 393 
Analytical photogrammetry, 300, 381, 394 
Anchor point method (orthophoto), 380 
Animation, 399 
Aperture (critical), 66 
Aperture stop, 59 
Automated recording of surfaces, 350 
Automatic fine measurement, 360 

critical situation, 362 
Auxiliary image, 140 
Aviograph AG1, 299 
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Β 
Base, 31 
Base/distance ratio, 33, 295 
Baselength (terrestrial), 174 
Basic lens equation, 58 
Beam splitter, 104 
Best-fitting surface to a point cloud, 407 
Bilinear interpolation 

grey values, 42 
Bilinear transformation 

anchor point method, 381 
fiducial marks, 74 
in a reseau, 169 

Binary images, 38 
Binomial filter, 123 
Black and white 

digital images, 38 
infra-red image, 88 
photography, 79 

Block adjustment 
by independent models, 248 
terrestrial laser scanning stations, 421 

Blooming, 104 
Blunder detection 

bundle block adjustment, 264 
Body coordinate axes, 151 
Breaklines, 311 
Brightness enhancement 

in digital images, 111 
Building model, 316 
Bundle block adjustment, 247, 269 

in close range photogrammetry, 282 
with additional parameters, 274 
with self-calibration, 274 
with unknown interior orientation, 274 

c 
CAD model, 314, 367, 396 
Calibration 

certificate, 54, 142 
of a film scanner, 110 
of photogrammetric cameras, 50 
on-the-job, 56, 284 
with a test field, 55 

Camera configurations (terrestrial), 176 
Camera constant, see Principal distance 
Camera shutter, 139 
Cardan axes, 15 
CCD area array sensor, 96 
CCD cameras, 95, 145, 172 
CCD linear arrays, 95 

CCD metric camera, 429 
CCIR/PAL, 172 
Central projection 

in three-dimensional space, 21 
of a plane, 24 
of the straight line, 29 

Central shutter, 139 
Centre of perspective, 21 
Chain code, 37 
Chained plane similarity transformation, 250 
Chained spatial similarity transformation, 258 
Characteristic curve (films), 82 
Circle of confusion, 58 
Circular graduated filter, 71 
Close range photogrammetry, 163, 173, 197, 

282,315 
CMOS technology, 104 
Collinearity condition, 21 

derivation, 436 
differential, 438 
normalized image, 344 
similarity transformation, 437 

Colour films, 87 
Colour imaging 

CCD camera, 104 
Colour infra-red films, 87 
Colour infra-red photography, 84 
Colour photography, 84 
Colour reversal process, 85 
Colour values (film scanning), 107 
Complementary colour, 78 
Computer vision 

disparity map, 343 
processing for plan, 353 
relative orientation, 201 

Connectivity relationships (in pixel images), 
37 

Contour interval, 320 
Contour lines 

flat land, 311 
forested areas, 310 

Contrast 
definition, 68 

Contrast transfer function, 68, 90, 98 
Control points, 23 

automated location, 339 
block adjustment, 259 
groups of, 264 
in high mountains, 228, 267 
ofaGIS, 341 
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retro-reflecting targets, 421 
Convergence of the meridian, 281, 407 
Convolution operator, 123 
Coplanarity condition, 192, 198, 202 

differential, 445 
Copying with contrast control, 91 
Correlation 

3-line camera, 365 
among model coordinates, 219 
area based matching, 332 
feature based matching, 331, 337 
in the subpixel region, 326 
of more than two images, 332 
radiometric information, 352 
two-dimensional, 329 

Correlation algorithms, 323 
Correlation coefficient, 324 
Corresponding points 

identifying, 349 
Critical cylinder, 211,213 
Cross-ratio, 29 
Cycle slips, 148 

D 
Datum transformation, 404 
Deformation 

metric image, 367 
plane objects, 370 

Deformation of the photogrammetric model, 
215 

Density (Film), 81 
Depth of field, 58, 174 
Design matrix, 441 
Detector spacing, 100 
Determination of heights 

automatic, 350 
computer assisted, 310 
direct, 310 
indirect, 311 

Differential GPS (DGPS), 148 
Diffraction blurring, 62, 63, 66 
Diffraction disc, 63 
Digital camera, see CCD camera 
Digital image, 36 

colour image, 38 
Digital image processing, 35, 110, 323 
Digital object models, 316 
Digital semi-metric cameras, 172 
Digital terrain model (DTM), 311, 316 

from airborne laser scanning, 407 

Digital topographic models, 316 
Digitizing analogue images, 106 
Direct Linear Transformation (DLT), 187, 

444 
Disparity map, 343 
DMC from Intergraph, 144 
Double images 

aerial photograph, 155 
orthophoto, 382, 383 

Drift correction, 140 
Dynamic range 

CCD cameras, 105 
film, 81 
filmscanner, 109 
image processing, 111 

Ε 
Earth curvature correction 

airborne laser scanning, 407 
dependent on the type of objective, 237 
for near-vertical photographs, 235 
horizontal photographs, 233 
image coordinates, 236, 280 
with tangential coordinate system, 281 

Edge extraction, 125, 356 
Emulsion carrier, 72 
Energy function (snakes), 354 
Entrance pupil, 49 
Epipolar geometry, 337, 341 

in normalized images, 343 
in three images, 349 
in tilted metric photographs, 345 
using projective geometry, 348 

Epipolar plane, 342 
Epipole, 342 
Estimation, see Adjustment 
Euclidean metric, 37 
Exit pupil, 49 
Expansion 

grey values, 118 
Exposure measurement, 82 
Exterior orientation, 23 

F 
Förstner operator, 331 

horizontal shifts, 359 
Fa9ade evaluation, 315 
False colour film, 84 
Far limit, 58 
Fiducial centre, 21 
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Fiducial marks, 21, 140 
automated location, 334 
number and arrangement, 74 

Fiducial-mark cameras, 171 
Field completion, 309 
Field of view, 135, 174 
Film camera, 54 
Film deformations, 72 
Film developing machines, 93 
Film scanner, 107 
Film sensitivity, 82, 106 
Films for aerial photography, 91 
Filter, 77 

"cut-off" or edge, 79 
Filtering 

elimination of noise, 124, 128, 408 
frequency domain, 125 
high-pass, 128 
low-pass, 128 
spatial domain, 122 

Five parameter transformation, 76 
Fixed base stereometric cameras, 174 
Fixed-focus cameras, 61 
Flat-bed scanners, 109 
Flight planning, 131 

digital line cameras, 136 
Flying height 

flight planning, 134 
influence on accuracy, 240, 275, 319 

FMC (forward motion compensation), 157 
Focussing, 58 

aerial metric cameras, 135 
terrestrial, 174 

Forward overlap, 134 
Fourier series, 97 
Frame cameras, 171 
Frame grabber, 103, 172 
Free net adjustment, 225 

terrestrial photogrammetry, 283 
Full control point, 191, 220 
Fundamental matrix, 203 

epipolar rays, 348 

G 
GALILEO, 147 
Gaussian filter, 123 
Geo-information system, 316 

orthophoto, 366 
Geometric models, 315, see Topographic 

models 

Geometrical resolution (laser scannig and 
photogrammetry), 417 

Geomorphological quality 
DTMs derived from laser scanned data, 

416 
Georeferencing, 192 

airborne laser scanning, 404 
direct, 181, 276 
direct (3-line camera), 364 
indirect, 181 
terrestrial laser scanning, 420 

Gimbal axes, 15 
Glass plates, 72 
Global radiation, 159 
GLONASS, 147 
GPS (Global Positioning System), 147 
GPS time, 149 
GPS- and IMU-assisted aerotriangulation, 276 
Gradation, 81 
Granularity, 89, 106 
Grey values 

bilinear interpolation, 42 
Grey values (film scanning), 107 
Grey wedge, 81, 142 
Grid model (errors in approximating), 385 
Gruber points, 209 
Gyro-stabilized platforms, 153 
Gyros (gyroscopes), 150 

Η 
Haze light, 160 
Height accuracy, see Accuracy 
Height control elements (airborne laser scan-

ning), 405 
Height control point, 191, 220, see Control 

point 
chains of, 265, 277 

Height exaggeration, 295 
Hierarchy of axes, 15, 278, 432 
High-pass filter, 128 
Histogram equalization, 114 
Histogram normalization, 114 

with additional contrast enhancement, 
120 

Homogeneous coordinates, 44 
between two planes, 440 
Direct Linear Transformation (DLT), 444 

Horizontal (or plan) control point, 191, 220 
Horizontal parallax, 287 
Human vision, 296 
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Hyperbolic paraboloid, 42 
Hyperfocal distance, 60 

I 
ICP (iterative closest point), 423 
Illuminance, 81 
Illumination (aerial photogrammetry), 159 
Image compression, 129 

based on wavelets, 130 
Image contrast, 69 
Image coordinate refinement, 230 
Image coordinate system, 21, 39, 53 
Image data management, 306 
Image distance, 48, 58 
Image edge (definition), 356 
Image line (definition), 356 
Image motion, 155 
Image motion compensation 

aerial film cameras, 157 
CCD area arrays, 158 
line cameras, 159 

Image pyramids, 128 
Image repetition frequency, 306 
Image scale, 27, 34, 134 

influence on accuracy, 274 
orthophoto, 375, 389 
relationship between map scale and photo 

scale, 319 
IMU (inertial measurement unit), 148 
IMU information 

tangential coordinate system, 281 
Independent metric cameras, 166 
Inertial navigation system 

accuracy, 152 
Information on object form, 283 
INS (inertial navigation system), 149 
Intensity image 

terrestrial laser scanner, 427 
Interest operators, 330 
Interference filter, 105 
Interior orientation, 23, 39, 47, 50 

automated, 334 
calibration certificate, 54 
CCD cameras, 102 
semi-metric camera, 169 

Intersection of rays in three dimensions, 181 

J 
JPEG compression, 130 

Κ 
Knots (nautical miles per hour), 162 

L 
Laplace operator, 124, 356, 358 
Laser data and photographic data, 426 
Laser Radar, 400 
Laser scanner 

on gyro-stabilized platforms, 153 
Laser scanning, 400 

airborne, 400 
first pulse, 401 
last pulse, 401 
short range, 428 
terrestrial, 419 

Least square matching (LSM), 326 
Least squares estimation method, 326 
Lens stereoscope, 289 
Level of Detail (recording of buildings), 314 
Lidar, 400 
Light fall-off from centre to edge of image, 

70 
correction, 119 

Light sectioning, 429 
Line camera, 95 

gyro-stabilized, 154 
Line extraction, 356 
Line jitter, 103 
Line maps, 366 
Line photogrammetry, 338 
Location based services, 399 
LoG operator (Laplacian of Gaussian), 357 

extraction of lines, 358 
shift in position, 359 

Look-up table (LUT), 111 
Low-pass filter, 128 

Μ 
Machine vision, 296 
Map and image scale, 319 
Map sheet preparation, 309 
Medium format cameras, 170 
Metric 

of raster data, 37 
Metric aerial cameras, 137 

resolution, 66 
Metric cameras, 47, 170 

digital, 38 
Metric film cameras 

aerial, 137 
terrestrial, 165, 169 
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Metric image, 367 
analogue, 71 
digital, 38 

Mirror stereoscope, 289 
Misalignments, 153 
Mixed pixels, 324 
Mobile mapping system, 178, 284 
Model coordinate, 21 
Model deformations, 217 
Model formation (after relative orientation), 

199 
Modulation transfer function, 70, 98 

filtering, 126 
Moment of exposure (synchronization), 140 
Monochromatic spectral colours, 77 
Monocomparator, 302 
Monoplotting, 396 

laser scanning, 418 
Moravec operator, 331 
Mosaicking of orthophotos, 384 
Moving average, 122 
Multi-image correlation, 333 
Multipath effect, 148 

Ν 
Nadir point, 372, 376 
Navigation plan, 136 
Near limit, 58 
Near vertical images, 133, 180 
Negative position of a metric image, 21 
Neighbour relationships (in pixel images), 37 
Nodal points (optical), 47 
Normal atmosphere, 231 
Normal case 

light sectioning, 429 
of aerial photogrammetry, 31 
of terrestrial photogrammetry, 164 

Normal equations, 255, 273, 441 
Normalized images, 342, 344 

derivation, 346 

Ο 
Object colours (reflected light), 160 
Object contrast, 68 
Object distance, 58 
Object model, 316 
Object modelling 

terrestrial laser scanning, 423 
Objective, 48 

with variable principal distance, 61 

Objective lens distortion, 52 
correction, 56 

Objective lenses (for aerial photogrammetry), 
135 

Observation equations, 441 
Opacity, 81 
Optical axis, 48 
Optical gyroscope, 151 
Optical principal points, 47 
Orientation functions, 277 
Orientation procedures, 180 

single-stage, 188 
two-step, 189 
with known exterior orientation, 181 
with unknown exterior orientation, 184 

Orthochromatic black-and-white-film, 88 
Orthogonal matrix, 11 
Orthogonality conditions 

three-dimensional, 15 
two-dimensional, 11 

Orthophoto, 366 
Orthophoto analysis 

analogue and analytical, 393 
Orthophoto production 

analogue, 381 
analytical, 381 
curved objects, 380 
tilted plane, 378 

Orthoscopic effect, 292 
Overlap control, 138 

Ρ 
Panchromatic black-and-white-film, 88 
Parallaxes, 32 

accuracy, 287 
Passive stereoviewing, 292 
Pattern recognition, 323 
Perspective centre, 50 
Perspective centres 

in a spatial block adjustment, 256 
Photo models, 367, 396, 427 
Photo scale, see Image scale 
Photo texture, 397 
Photo-electric effect, 93 
Photogrammetric processing 

analogue, 308 
automatic, 323 
computer assisted, 309 
computer vision based, 323 

Photogrammetry 
point measurement, 246 
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Photographic emulsion, 71 
resolution, 89 

Photographic infra-red, 77 
Photomaps, 366 
Pixel, 36 
Pixel geometry, 36 
Planar accuracy, see Accuracy 
Planar control elements, 405 
Planar regions, 406 

terrestrial laser scanning, 424 
Planarity (film) 

departures from, 76 
Planimetrie adjustment of a block, 248 
Planning 

terrestrial photogrammetry, 173 
Pneumatic flattening, 138 
Point clouds, 422 
Polar coordinates 

airborne laser scanning, 404 
laser scanner strip, 406 
terrestrial laser scanning, 421 

Polarization, 291 
Primary colours 

additive, 78 
subtractive, 78 

Principal distance, 21, 142 
Principal planes, 47 
Principal point, 21 

of autocollimation, 49, 54 
of best symmetry, 52, 54 
offset, 167 

Projective photogrammetry, 28, 29, 40, 201 
three-dimensional, 187 

Projective rectification, 40, 376, 378 
Proper orthogonal matrix, 11 
Pseudo ranges, 147 
Pseudoscopic effect, 292 

Q 
Quality management 

absolute orientation, 228 
relative orientation, 215 

R 
Reseau cameras, 76, 169, 171 
Reseau scanning, 110 
Radial displacement, 374 

orthophoto, 376 
Range image, 417 
Range measurement, 401 
Raster measurement, 311, 351 

Raypath, 160 
Real-time photogrammetry, 172 
Recording in plan 

computer assisted, 308 
semi-automated, 353 

Recording of buildings 
computer assisted, 312 
from laser scanner data, 411 
semi-automatic, 360 
topology assisted, 312 

Reference matrix (correlation), 323 
Reflection 

laser beam, 403 
Refraction correction 

for horizontal photographs, 233 
for near-vertical photographs, 230 

Relative orientation, 193 
y-parallaxes, 205 
alternative formulation, 201 
automated, 335 
critical surfaces, 210 
error theory, 213 
flat ground, 209 
Gauss-Helmert, 200 
highly tilted photographs, 197 
line-based, 338 
mountainous country, 206 
of near-vertical photographs, 193 
using rotations only, 195 

Remote sensing, 400 
Rendering, 314 

laser scanner data, 407 
Resampling, 40 

correction of distortion, 57 
correlation, 329 
two normalized images, 344 
virtual correction image, 237 

Resection in three dimensions, 185 
Resolution (CCD camera) 

geometric, 106 
radiometric, 106 

Resolving power, 63 
actual, 99 
optical, 64,67, 89 
photographic emulsions, 89 
theoretical, 99 
total, 89 

RGB image, 38, 292 
Roaming, 307 
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Robust parameter estimation 
of a DTM, 408 

Root mean square error, 442 
Rotation matrix, see Spatial rotation matrix 

inversion, 12 
terrestrial photogrammetry, 164 
three-dimensional, 15 
two-dimensional, 10 

Rotations 
successive, 17, 432 

Rule of propagation of errors, 443 
Run-length encoding, 130 

s 
Sampling theorem, 100, 107 
Search image, 324 
Self-calibration, 56 
Semi-metric cameras, 169, 170 
Sensor 

chemical, 47 
electronic, 47 
opto-electronic, 93 

Sensor orientation, 280 
direct, 276 
indirect, 421 
integrated, 276 
integrated (3-line camera), 365 
integrated (laser scanning), 405 

Serial metric cameras, 138 
Short range laser scanner, 428 
Side overlap, 134 
Signal-to-noise ratio, 105 
Similarity transformation 

chained plane, 250 
chained spatial, 258 
three-dimensional, 20 
two-dimensional, 14 

Single image photogrammetry 
digital line camera, 136 
flight planning, 134 

Single image processing 
of a flat object, 393 
of curved object surfaces, 394 

Skylight, 159 
Snakes, 353 

Spatial block adjustment, 256 
Spatial bundle of rays, 269 
Spatial frequency, 69 
Spatial rotation matrix, 14, 432 

in the body coordinate system, 278 
linearized, 220 

numerical problems, 435 
two sets of rotation angles, 435 

Spatially related information system, 316 
Spectral reflectance, 160 
Spectral sensitivity 

CCD cameras, 103 
films, 87 

Spline function, 353 
Standard deviation 

estimation, 442 
Stereo-orthophoto, 393 
Stereocomparators, 300 
Stereographic images 

height exaggeration, 295 
Stereometer, 293 
Stereometric cameras, 165 
Stereophotogrammetry 

3-line camera, 136 
flight planning, 131 

Stereoprocessing, 180, 286 
analogue, 297 
analytical, 300 
digital, 290, 306 
topology assisted, 312 
universal analytical, 304 

Stereoscopic acuity, 287 
Stereoscopic images, 288 

analogue, 289 
digital, 290 

Stereoscopic measurement, 297 
Stereoscopic model, 180 

deformation, 215 
Stereoscopic observation systems, 286 
Stereoscopy, 287 

significance, 292 
Still video cameras, 173 
Storage space 

for a metric image, 107 
image pyramids, 128 

Strapdown inertial system, 151, 152 
Street model, 316 
Superimposed stereoscopic images, 290 
Superposition system, 312 
Surface model, 316 
Survey aircraft, 161 
Systematic errors, 448 

compensation, 274 

Τ 
TDI (time delay integration), 158 
Temporal frequency, 69 
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Terrestrial laser scanner 
technical data, 420 

Three-dimensional image, 288 
Three-line camera, see 3-line camera 
Tie points, 249 

automated determination, 335 
number, 264 

Tolerance, 244 
Topographic information system, 316 
Topographic models, 453 
Topology 

buildings, 312 
roof surfaces, 314 

Transform function 
linear, 111 
logarithmic, 111 

Transmission of filters, 80 
Transparency, 81 
Types of film, 88 

u 
Uncertainties of definition 

related to the image, 242 
related to the object, 243 

Undersampling, 101 

V 
Vertical parallaxes, 288 
Videocameras, 103 
Virtual correction image, 237 
Virtual flyovers, 399 
Virtual spatial image, 288, 293 
Virtual walkthroughs, 399 
Visibility analysis 

orthophoto production, 382 
Visible light, 77 
Visualization 

digital orthophotos, 366 
dynamic, 399 
photo models, 396 
static, 399 

VLL (vertical line locus), 351 

w 
Weber-Fechner law, 81 
Weighted centroid method, 349 
Weighting function for filtering of airborne 

laser scanner data, 408 
WGS84 (World Geodetic System 1984), 147 

Ζ 
Zero crossings, 357 
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