The University of Zambia

School of Natural Sciences

Department of Mathematics & Statistics

MAT 4119 - Engineering Mathematics III

Tutorial Sheet 8

1. Evaluate each of the following, giving your answer in the form a + ib, $a, b \in \mathbb{R}$. Where applicable, use the principal argument or principal branch of the logarithm.

(a)
$$(-i)^i$$
 (b) $(1+i\sqrt{3})^{3+i}$ (c) $\log(1-i)^{11}$ (d) $Log\left(\frac{1}{(1+i)^4}\right)^{4}$

(a)
$$(-i)^i$$
 (b) $(1+i\sqrt{3})^{3+i}$ (c) $\log(1-i)^{11}$ (d) $Log\left(\frac{1}{(1+i)^4}\right)$ (e) $\frac{e^{\ln 3 + \frac{201}{2}\pi i}}{3}$ (f) $\cos(\frac{3\pi}{2} + i)$ (g) $\tan(\frac{\pi}{6} - i)$ (h) $\sec(1-i)$

(i)
$$\cosh^{-1}(i)$$
 (j) $(i+1)\sinh(2\pi i)$

2. Find the complex number(s), z such that

(a)
$$z^3 = -1 + i$$
 (b) $\overline{iz + 2i} = 4$ (c) $z^4 + 6iz^2 + 16 = 0$

(d)
$$e^z = 1 + i$$
 (e) $Log z + Log(2z) = \frac{3\pi}{2}$

3. Find the image under the mapping $f(z) = \sin z$ of the semi-infinite strip $S = \{ z = x + iy : -\frac{\pi}{2} \le x \le \frac{\pi}{2}, y \ge 0 \}.$

4. Evaluate the following limits:

(a)
$$\lim_{z \to 0} \left(\frac{\operatorname{Re} z}{z} \right)$$
 (b) $\lim_{z \to -\pi i} e^{\frac{z^2 + \pi^2}{z + \pi i}}$

(c)
$$\lim_{z \to 2+i} (z + \frac{1}{z})$$
 (d) $\lim_{z \to 0} (\sin \overline{z})$

(c)
$$\lim_{z \to 2+i} (z + \frac{1}{z})$$
 (d) $\lim_{z \to 0} (\sin \overline{z})$
(e) $\lim_{z \to \infty} \left(\frac{z^3+i}{z^3-i}\right)^2$ (f) $\lim_{z \to \infty} \left(\frac{z^2+i}{z^3+3z^2+z+1}\right)$

5. Determine whether the following functions are continuous at the indicated point(s):

1

(a)
$$f(z) = \frac{z-i}{z-1+3i}$$
 on \mathbb{C}

(b)
$$f(z) = \begin{cases} \frac{z-i}{z^2+1} & z \neq i \\ -\frac{i}{2} & z = i \end{cases}$$
 at $z = i$

6. Determine the set where the following functions are analytic and find their derivative:

(a)
$$f(x+iy) = x^3 - 3xy^2 + i(3x^2y - y^3)$$

(b)
$$f(z) = (1+z^2)^{\frac{3}{2}}$$

(c)
$$f(x+iy) = e^{-y}\cos x + ie^{-y}\sin x$$

(d)
$$f(z) = \frac{2z - i}{z + 2i}$$

- 7. Evaluate $\int_C (2z+1) dz$, where C is
 - (i) the simple line segment from z = -i to z = 0
 - (ii) two simple line segments c_1 and c_2 from z = -i to z = 0 and from z = 0 to z = 1, respectively
 - (iii) the circular arc $z = e^{i\theta}, -\frac{\pi}{2} \le \theta \le 0$.
- 8. Evaluate $\int_C e^z dz$ along the line y = x from (-1, -1) to (1, 1).
- 9. Evaluate each of the following:

(a)
$$\int_0^{\pi i} z \sin(z^2) dz$$
 (b) $\int_{-i}^{2i} (z+1) dz$ (c) $\int_0^{\pi} \sin^2 z dz$

10. Evaluate the following around a given positively oriented contour C:

(a)
$$\oint_C \frac{1}{z^2 - 3z + 2} dz$$
 $C : \left\{ z \in \mathbb{C} : |z - 1 - i| = \frac{1}{2} \right\}$

(b)
$$\oint_C \frac{1}{z^3 + 4z} dz$$
 $C : \{ z \in \mathbb{C} : |z| = 1 \}$

(c)
$$\oint_C \frac{\sin^6 z}{z - \frac{\pi}{6}} dz$$
 $C : \{z \in \mathbb{C} : |z| = 1\}$

(d)
$$\oint_C \frac{e^{z^2}}{z^3} dz \qquad C : \{z \in \mathbb{C} : |z| = 5\}$$