
MR. Boyd Munkombwe

Engineering Annex Board Room

Cell: (+260)-968315273/50435239/72860920

Email: boyd.munkombwe@unza.zm

MEng in Power Electronics and Motor Control (Southeast; China, 2020)

BEng in Electrical Power System and Machines (UNZA; January, 2017)

MEC 3102 – PRODUCTION ENGINEERING I AND
ELECTRICITY & ELECTRONICS II

mailto:boyd.munkombwe@unza.zm

LECTURE 1.3

LOGIC GATES

Introduction

• To process digital information we use special electronic components that respond
to binary signals.

• To design efficient digital circuits, we also need a special numbering system and a
special type of algebra.

• Computers consist of large numbers of logic gates and memory elements
organized to process data at high speed.

• Binary data or instructions are stored temporarily in registers. Binary counters are
used in calculations and to keep track of computer operations.

• Instructions and data are stored at specified locations in memory and can be
retrieved at will.

• Thus, we will examine the binary number system and learn to apply logic
theorems to binary relations.

3

Binary numbers

• In the decimal number system a quantity is represented by the value and the
position of a digit. The number 503.14 means

• Using powers of 10, this can be rewritten as

• In other words, 10 is the base and each position to the left or right of the decimal
point corresponds to a power of 10.

• A base 12 or duodecimal system was used by the Babylonians, and we still use 12
in subdividing the foot, the year, and the clock face.

• In representing data by an ON-OFF switch position, there are two possibilities and
the corresponding numbers are 1 and 0.

• In such a binary system, the base is 2 and the decimal number 10 is written as
1010 since

4

• In electronic logic circuits the numbers 1 and 0 usually correspond to two easily
distinguished voltage levels specified by the circuit designer. For instance, in TTL
(Transistor Transistor Logic), 0 corresponds to a voltage near zero and 1 to a
voltage near +5 V.

Binary to Decimal conversion

• In a binary number, each position to the right or left of the “binary point”
corresponds to a power of 2, and each power of 2 has a decimal equivalent.

• To convert a binary number to its decimal equivalent, add the decimal
equivalents of each position occupied by a 1.

For instance

Decimal to Binary conversion
• A decimal number can be converted to its binary equivalent by the inverse

process, that is, by expressing the decimal number as a sum of powers of 2.

5

• To convert a decimal integer to its equivalent;

➢progressively divide the decimal number by 2, noting the remainders; the
remainders taken in reverse order form the binary equivalent.

• To convert a decimal fraction to its binary equivalent;

➢progressively multiply the fraction by 2, removing and noting the carries; the
carries taken in forward order form the binary equivalent.

6

Example 1

✓Convert decimal 28.375 to its binary equivalent.

Solution.

✓Using the double-dabble method on the integer,

0.375 2 0.75 with a carry of 0 =

✓ The binary equivalent is 11100.

✓ Then converting the fraction

0.75 2 1.50 with a carry of 1 =

0.5 2 1.00 with a carry of 1 =

✓ The binary equivalent is .011.

✓ Therefore, 28.375 is equivalent to binary 11100.011.

7

Binary Arithmetic

✓Since the binary system uses the same concept of value and position of the digits as
the decimal system, we expected the associated arithmetic to be similar but easier.

✓The binary multiplication table is very short. For addition in binary, we add column
by column, carrying where necessary into higher position columns.

✓In subtraction, we subtract column by column, borrowing where necessary from
higher position columns.

✓In subtracting a large number from a smaller, we can subtract the smaller from the
larger and change the sign just as we do with decimals.

8

Example 2
Convert the numbers in color to the other form and perform the indicated
operations.

14 13 1010

11 10 1101

25 3 0011

+ − −

−

+ − −

−

1110 1101 10

1011 1010 13

11001 0011 3

✓ In multiplication, we obtain partial products using the binary multiplication table,
and then add the partial products.

✓ In division, we perform repeated subtractions just as in long division of decimals,
See Example 3.

()0 0 0, 0 1 0, 1 0 0, 1 1 1 =  =  =  =

9

Example 3
✓Convert the numbers in colour to the other form and perform the indicated

operations.

101.1

11.1 10011.01

111

1010

111

111

111

0

14.5

1.25

725

290

145

18.125



1110.1

× 1.01

11101

00000

11101

10010.001

5.5

3.5 19.25

175

175

175

0

(a) (b) (a) (b)

10

Bits, Bytes, and Words
✓A single binary digit is called a “bit.” All information in digital system is

represented by a sequence of bits. An 8-bit sequence is called a “byte”; a 4-bit
sequence is a “nibble.”

✓The number of bits in the data sequences processed by a given computer is a key
characteristic called the “word length”. Computers handle data in words of 4 to
64 bits.

✓An 8-bit microprocessor can receive, process, store, and transmit data or
instructions in form of bytes. Eight bits can be arranged in different
combinations.

Two’s Complement Notation
✓A better notation for computers, one that is easily implemented in hardware, is

based on the fact that adding the complement of a number is equivalent to
subtracting the number.

✓A “complement” is that which completes; the “n’s complement” of a number x is
equal to.

82 256=

n x−
11

Two’s Complement Notation

✓For example, the 10’s complement of 3 is 7. To evaluate , i.e., to subtract 3
from 9, we can “add the 10’s complement” of 3 (i.e.,) to obtain

to yield 6 after discarding the final carry.

✓In the decimal system, the 10’s complement of a multidigit number is easily found
by taking the 9’s complement of each digit (by inspection) and then adding 1.

✓In general, to subtract a two-digit number B from A we use the relationship

9 3−

10 3 7− =

9 7 16+ =

  ()100 100 99 1 100A B A B A B− = + − − = + − + −  

where is the 9’s complement.

✓ In the binary system, arithmetic is simplified if negative numbers are in signed 2’s
complement notation. In this notation, the MSB (Most Significant Bit) is the sign
bit: 0 for plus, 1 for minus. To form the 2’s complement of any number, positive
or negative:

❖ Form the 1’s complement by changing 1s to 0s and 0s to 1s. Add 1.

()99 B−

12

Example 4

a) Obtain the 10’s complement of 15 and 24.

b) Represent and in 8-bit signed 2’s complement notation.

c) Perform and directly and by complement notation.

Solution

a) Form the 9’s complement of each digit, then add 1:

b) Form the 1’s complement of each digit, then add 1.

15 84 1 85→ + = 24 75 1 76→ + =

1015− → − → − → → →1111 00001111 11110000 +1 11110001 1 1110001

1024− → − → − → → →11000 00011000 11100111+1 11101000 1 1101000

24 15− 15 24−

24−15−

✓ If the result of an arithmetic operation has a 1 sign bit, it is a negative number
in 2’s complement notation; to obtain the true magnitude, subtract 1 and form
the 1’s complement.

13

Example 4

c) Solution

14

Logic gates and Boolean algebra

✓We have seen that binary arithmetic and decimal arithmetic are similar in many
respects. To work with logic relations in digital form, we need a set of rules for
symbolic manipulation that will enable us to simplify complex expressions and solve
for unknowns.

✓Simply put, we need a digital algebra. Nearly 100 years before the first digital
computer, George Boole, an English mathematician (1815-1864), formulated a basic
set of rules governing the true-false statements of logic.

✓Eighty-five years later (1938), Claude Shannon , at that time a graduate student a
MIT, pointed out the usefulness of Boolean algebra in solving telephone switching
problems and established the analysis of such problems on a firm mathematical
basis.

✓Boolean algebra is valuable in manipulating binary variables in OR, AND, or NOT
relations and in the analysis and design of all types of digital systems.

15

Introduction

✓Logic gates are electronic circuits that can be used to implement the most
elementary logic expressions also known as Boolean expressions.

✓The logic gate is the most basic building block of combinational logic. There are
three basic logic gates, namely the OR gate, the AND gate and the NOT gate.

✓Other logic gates that are derived from these basic gates are the NAND gate, the
NOR gate, the EXCLUSIVE-OR gate and the EXCLUSIVE-NOR gate.

Truth Table

✓A truth table lists all possible combinations of input binary variables and the
corresponding outputs of a logic system.

✓When the number of input binary variables is only one, then there are only two
possible inputs, i.e., ‘0’ and ‘1’.

✓If the number of inputs is two, there can be four possible input combinations, i.e.,
00, 01, 10 and 11.

16

OR Gate

✓An OR gate performs an ORing operation on two or more logic variables. The OR
operation on two independent logic variables A and B is written as

and reads as Y equals A OR B.

✓An OR gate is a logic circuit with two or more inputs and one output. The output of
an OR gate is LOW only when all of its inputs are LOW, otherwise, it is HIGH for all
other possible input combinations.

Y A B= +

Figure 4.1: Two-input OR gate.

✓ Figure 4.1 shows the logic circuit symbol and truth table of a two-input OR gate.

17

AND Gate
✓An AND gate is a logic ckt having two or more inputs and one output. Its output is

HIGH only when all of its inputs are in the HIGH state.

✓In all other cases, the output is LOW. The logic symbol and truth table of a two
input AND gate are shown in Figure 4.2.

Y A B= 

Figure 4.2: Two-input AND gate.

✓ The AND operation on two independent logic variables A and B is
written as and reads as Y equals A AND B.

18

Not Gate

✓A NOT gate is a one-input, one-output logic ckt whose output is always the
complement of the input. That is, a LOW input produces a HIGH output, and vice
versa.

✓Figure 4.3 shows the circuit symbol and the truth table for a NOT gate.

X

Figure 4.3: Circuit symbol and truth table of a NOT ckt.

✓ The NOT operation on a logic variable X is denoted as or . That is, if X is the

input to a NOT ckt, then its Y is given by and reads as Y equals NOT X.Y X or X =

X 

19

Exclusive-OR Gate

✓Commonly written as EX-OR gate, is a two-input gate. Its output is logic ‘1’ when
the inputs are unlike and logic ‘0’ when the inputs are like.

✓The output of a multiple-input EX-OR logic function is a logic ‘1’ when the number
of 1s in the input sequence is odd and logic ‘0’ when the number of 1s in the input
sequence is even, including zero.

✓That is an all 0s input sequence also produces a logic ‘0’ at the output.

Figure 4.4: Circuit symbol and truth table of an EX-OR ckt.

✓ The output of a two-input EX-OR gate is expressed by Y A B= 

20

NAND Gate
✓NAND stands for NOT AND. An AND gate followed by a NOT circuit makes it a NAND

gate. NAND gate operation is logically expressed as .

Figure 4.5: Circuit symbol and truth table of a NAND gate.

✓ Figure 4.5 shows the circuit symbol and the truth table of a two-input NAND gate.

Y A B= 

21

NOR Gate

✓NOR stands for NOT OR. An OR gate followed by a NOT ckt makes it a NOR gate.
The output of a two-input NOR gate is logically expressed as .

Figure 4.6: Circuit symbol and truth table of a NOR gate.

✓ Figure 6 shows the circuit symbol and the truth table of a two-input NOR gate.

Y A B= +

22

Exclusive-NOR Gate

✓EX-NOR means NOT of EX-OR, i.e., the logic gate that we get by complementing the
output of an EX-OR gate. Logically the output is given by .

Figure 4.7: Circuit symbol and truth table of a EX-NOR gate.

✓ Figure 4.7 shows the circuit symbol and the truth table of a two-input EX-NOR
gate.

✓ The output of a two-input EX-NOR gate is a logic ‘1’ when the inputs are like and
logic ‘0’ when they are unlike.

Y A B= 

23

✓Boolean algebra is mathematics of logic. It is one of the most basic tools available to
the logic designer and thus can be effectively used for simplification of complex
logic.

✓Boolean algebra, quite interestingly, is simpler than ordinary algebra. It is also
composed of a set of symbols and a set of rules to manipulate these symbols.
Nevertheless, the differences between Boolean and ordinary algebra are as follows:

1. In ordinary algebra, the letter symbols can take on any number of values including
infinity. In Boolean algebra, they can take on either of two values, that is, 0 and 1.

2. The values assigned to a variable have a numerical significance in ordinary
algebra, whereas in its Boolean counterpart they have a logical significance.

3. While ‘ ’ and ‘+’ are respectively the signs of multiplication and addition in
ordinary algebra, in Boolean algebra ‘ ’ means AND operation and ‘+’ means an
OR operation.





24

Boolean algebra

4. Boolean algebra captures the essential properties of both logic operations such as
AND, OR and NOT and set operations such as intersection, union and complement.

5. Boolean algebra may also be defined to be a set A supplied with two operations of
logical AND , logical OR , a unitary operation NOT , and two elements,
namely logical FALSE and logical TRUE . This set is such that, for all elements
of this set, the postulates or axioms relating to the associative, commutative,
distributive, absorption and complementation properties of these elements hold
good.

Postulates of Boolean Algebra

❑ .

❑ .

❑ .

❑ .

() ()V ()−
()0 ()1

0 0 0, 0 0 0+ =  =

0 1 1, 1 0 1 ; 0 1 0, 1 0 0+ = + =  =  =

1 1 1, 1 1 1+ =  =

1 0, 0 1= =

25

✓ Many theorems of Boolean algebra are based on these postulates, which can be
used to simplify Boolean expressions.

Theorems of Boolean Algebra
✓ Theorem 1 (Operations with ‘0’ and ‘1’)

()a 0 0 and (b) 1 1X X = + =

Where X is not necessarily a single variable – it could be a term or even a large
expression.

Proof of theorem 1(a): we substitute all possible values of X, that is, 0 and 1, into
the give expression and check if the LHS equals the RHS.

❑ For .

❑ For .

✓ Thus , irrespective of the value of X, and hence the proof.

Proof of theorem 1(b) is similar: In general, according to theorem 1,

0, LHS 0 0 0 0 RHSX X= =  =  = =

1, LHS 0 1 0 RHSX = =  = =

0 0X =

() ()0 Boolean expression 0 and 1 Boolean expression 1 = + =
26

✓ For example, and , where A, B and C
are Boolean variables.

✓ Theorem 2 (operations with ‘0’ and ‘1’)

()0 0A B B C C D  +  +  = ()1 1A B B C C D+  +  +  =

()a 1 and (b) 0X X X X = + =

where X could be a variable, a term or even a large expression.

Proof of theorem 2(a):.

❑ For .

❑ For .

Proof of theorem 2(b) is similar: In general, according to theorem 2,

and

.

✓ For example,

0, LHS 1 0 0 RHSX = =  = =

1, LHS 1 1 1 RHSX = =  = =

()1 Boolean expression Boolean expression = ()0 Boolean expression Boolean expression+ =

() ()1 0A B B C C D A B B C C D A B B C C D  +  +  = +  +  +  =  +  + 

27

✓ Theorem 3 (Idempotent or Identity Laws)

()a and (b)X X X X X X X X X X  = + + + + =

✓ Theorem 3(a) is a direct consequence of an AND gate operation, whereas theorem
3(b) represents an OR gate operation when all inputs of the gate have been tied
together.

✓ The scope of the idempotent laws can be expanded further by considering X to be a
term or an expression.

✓ Example 1

✓ Apply idempotent laws to simplify the Boolean expression

✓ Solution
() ()A B B C C A B B A B C C  +     +  + 

() () () ()

() ()

A B B C C A B B A B C C A B C A B A B C

A B C A B C A B C

  +     +  +  =  +   +  +

=  +   + =  +

28

✓ Theorem 4 (Complementation Law)

()a 0 and (b) 1X X X X = + =

✓ By this theorem, in general, any Boolean expression when ANDed to its
complement yields a ‘0’ and when ORed to its complement yields a ‘1’,
irrespective of the complexity of the expression.

Proof of theorem 4(a):

❑ For .

❑ For .

✓ Hence, theorem 4(a) is proved. Since theorem 4(b) is the dual of theorem 4(a),
its proof is implied.

✓ To further illustrate the application of theorem 4, consider

0, 1, LHS 0 1 0 RHS= = =  =  = =X X X X

1, 0, LHS 1 0 0 RHS= = =  =  = =X X X X

()() () ()0 and 1A B C A B C A B C A B C+  +  = +  + +  =

29

✓ Example 2

Simplify the following:

Solution

❑ We know that .

❑ Also, is the complement of and is the complement of .

❑ Therefore, the given expression reduces to .

() () () ()1 L M L M L M L M L M L M L M  +  +  +   +   +   +   

()1 Boolean expression 1+ =

()L M ()L M+ ()L M ()L M+

 1 0 0 1 0 0 + =  =

✓ Theorem 5 (Commutative Laws)
()a and (b)X Y Y X X Y Y X+ = +  = 

✓ Theorem 5(a) implies that the order in which variables are add or ORed is
immaterial. Theorem 5(b) implies that the order in which variables are ANDed is
also immaterial.

30

31

