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KARNAUGH MAPS



Introduction

✓Here, we will discuss the Karnaugh Map technique other than the application of
laws and theorems of Boolean algebra discussed in the preceding lectures for
minimizing a given complex Boolean expression.

✓The primary objective of all simplification procedures is to obtain an expression
that has the minimum number of terms.

✓Obtaining an expression with the minimum number of literals is usually the
secondary objective.

✓If there is more than one possible solution with the same number of terms, the
one having the minimum number of literals is the choice.

Logic circuit Analysis
✓The analysis of a logic ckts consists in writing a logic statement expressing the

overall operation performed in the operation.

✓This can be done in a straight forward manner, by starting at the input and tracing
through the circuit, noting function realized at each output.



✓The resulting expression can be simplified or written in an alternative form using
Boolean algebra. A truth table can then be constructed.

Logic Circuit Synthesis

✓One fascinating aspects of digital electronics is the construction of circuits that
can perform simple mental processes at superhuman speeds.

✓A typical digital computer can perform thousands of additions of 10-numbers per
second.

✓The logic designer starts with a logical statement or truth table, converts the
logic function into a convenient form, and then realizes the desired function by
means of standard or special logic elements.



Simplification Techniques

✓Before we move on to discuss the Karnaugh map technique, it would be relevant
briefly to describe sum-of-products and product-of-sums Boolean expressions.

✓The given Boolean expression will be in either of the two forms, and the objective
is to find a minimized expression in the same or the other form.

Sum-of-Products Boolean Expressions

✓A sum-of-products (SOP) expression contains the sum of different terms, with each
term being either a single literal or product of more than one literal.

✓It can be obtained from the truth table directly by considering those input
combinations that produce a logic ‘1’ at the output. Each such input combination
produces a term.

✓Different terms are given by the product of the corresponding literals. The sum of
all terms gives the expression.



✓ Example 1

Consider the truth table in table 4.2. Obtain the Boolean expression and show 
the circuit realization. Hence, use the Boolean laws and theorems to minimize 
this expression and show the circuit realization after simplification. 

A  B  C  Y  

0  0  0  0  

0  0  1 0  

0  1 0  0  

0  1 1 1 

1 0  0  0  

1 0  1 1 

1 1 0  1 

1 1 1 1 

 

Table 4.2     Truth table.
✓ Solution

✓ Considering the first term, the output is 

‘1’ when A = 0, B = 1 and C = 1. 

✓ This is only possible when      ,       and         

are ANDed.

✓ Also, for the second term, the output is ‘1’ 

only when A,        and C are ANDed. 

A B C

B

✓ Other terms can be explained similarly.



✓ Example 1 Solution

❑ The Boolean expression is thus, 

Y ABC ABC ABC ABC= + + +

❑ Assuming that the complement of each variable is available, as is true in most 
computers, the straight forward ckt realization is as shown in Figure 4.11 (a). 

Figure 4.11



✓ Example 1 Solution

❑ To simplify the Boolean expression, we first expand it, i.e., 

Y ABC ABC ABC ABC ABC= + + + +

since                                  , by the Idempotent theorem.

❑ By the distributive theorem, we factor the above expression to 
yield

ABC ABC ABC+ =

( ) ( )Y C AB AB AB AB C C= + + + +

❑ Recall that                    , and                                     , the function 
becomes 

1C C+ =

( )Y C A B AB= + +

AB AB AB A B+ + = +

❑ This function requires only four logic elements as shown in Figure 12 (b).

Figure 4.12



Simplification Techniques

Product-of-Sums Boolean Expressions

✓A product-of-sums (POS) expression contains the product of different terms, with
each term being either a single literal or a sum of more than one literal.

✓It can be obtained from the truth table by considering those input combinations
that produce a logic ‘0’ at the output. Each such input combination gives a term ,
and the product of all such terms gives the expression.

✓Different terms are obtained by taking the sum of the corresponding literals.

✓Here, ‘0’ and ‘1’ respectively mean the uncomplemented and complemented
variables, unlike sum-of-products expressions where ‘0’ and ‘1’ respectively mean
complemented and uncomplemented variables.

✓To illustrate this, consider the truth table in Table 1 of example 1.



✓ Example 2

❑ Consider the truth table in table 1. Obtain the product-of-sums Boolean 
expression. Hence, show that it equals its sum-of-products dual.

Solution

❑ Each term in this case is a sum of literals implemented using an OR operation.

❑ Now, an OR gate produces a logic ‘0’ only when all its inputs are in the logic ‘0’ 
state.

❑ Thus, the first term corresponding to the first row of the table will be 

. All the other terms are obtained in a similar manner.

❑ Therefore, the expression is ( ) ( ) ( ) ( )Y A B C A B C A B C A B C= + +  + +  + +  + +

A B C+ +



✓ Example 2 Solution

❑ Transforming the given product-of-sums expression into an equivalent sum-of-
products is a straightforward process.

❑ We simply find the dual of the expression.

❑ Dual of a Boolean Expression

❑ The dual of a Boolean expression is obtained by replacing all ‘    ’ operations with 
‘+’ operations, all ‘+’ operations with ‘    ’ operations, all 0s with 1s and all 1s with 
0s and leaving all literals unchanged.

❑ Thus, dual of                                                                              is( ) ( ) ( ) ( )Y A B C A B C A B C A B C= + +  + +  + +  + +

 

( ) ( ) ( ) ( )Y A B C A B C A B C A B C=   +   +   +  





Expanded Forms of Boolean Expressions

✓Are useful not only in analyzing Boolean expressions but in the application of
minimizing techniques such as the Karnaugh mapping method for simplifying
Boolean expressions.

✓The expanded form, sum-of-products (SOP) or product-of-sums (POS), is obtained
by including all possible combinations of missing variables.

✓To illustrate this, consider the following sum-of-products expression:

A B B C A B C A C +  +   + 

✓ It is  a three-variable expression. Expanded versions of different miniterms can be 
written as follows:

❑ .

❑ .

❑

❑

( )A B A B C C A B C A B C =   + =   +  

( )B C B C A A B C A B C A =   + =   +  

A B C 

( )A C A C B B A C B A C B =   + =   +  

is a complete term and has no missing variable .



✓The expanded sum-of-products expression is therefore given by

A B C A B C A B C A B C A B C A B C A B C

A B C A B C A B C A B C A B C A B C

  +   +   +   +   +   +  

=   +   +   +   +   +  

✓ As another illustration, consider the product-of-sums expression

( ) ( )A B A B C D+  + + +

✓ It is four-variable expression.              in this case expands toA B+

( ) ( ) ( ) ( )A B C D A B C D A B C D A B C D+ + +  + + +  + + +  + + +

✓ The expanded product-of-sums expression is therefore given by

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

A B C D A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

+ + +  + + +  + + +  + + +  + + +

= + + +  + + +  + + +  + + +



Canonical Form of Boolean Expressions

✓An expanded form of Boolean expression, where each term contains all Boolean 
variables in their true or complemented form, is also known as the canonical form of 
the expression

✓For instance,                                                           is a Boolean function of three variables 
expressed in canonical form.

✓This function after simplification reduces to                                         and loses its 
canonical form.  

and Nomenclature

✓Let us consider the Boolean function:

▪ Using the       notation it is                                  .

✓Similarly, for the function: 

✓Since the sum terms denote binary numbers, 111, 110, and 000, this yields

▪ Using the         notation it is                                     .

( ), ,f A B C A B C A B C A B C=   +   +  

( ), ,f A B C A B A B C=  +  

Σ Π
( ), ,f A B C A B C A B C A B C=   +   +  

( ), , 0,1,7f A B C =

( ), , ( ) ( ) ( )f A B C A B C A B C A B C= + +  + +  + +

( ), , 0,6,7f A B C =Π



✓A Karnaugh map is a graphical representation of the logic system. It can be drawn
directly from either minterm (sum-of-products) or maxterm (product-of-sums)
Boolean expressions.

✓Drawing a Karnaugh map from the truth table involves an additional step of writing
the minterm or maxterm expression depending upon whether it is desired to have a
minimized sum-of-products or a minimized product-of-sums expression.

Construction of a Karnaugh Map

✓An n-variable Karnaugh map has squares, and each possible input is allocated a
square.

✓In the case of a minterm Karnaugh map, ‘1’ is placed in all those squares for which
the output is ‘1’, and ‘0’ is placed in all those squares for which the output is ‘0’. 0s
are omitted for simplicity.

✓An ‘X’ is placed in squares corresponding to ‘don’t cares’ conditions.

2n

Karnaugh Map



✓In the case of a maxterm Karnaugh map, a ‘1’ is placed in all those squares for
which the output is ‘0’, and a ‘0’ is placed for input entries corresponding to a ‘1’
output. Again, 0s are omitted for simplicity, and an ‘X’ is placed in squares
corresponding to ‘don’t care’ conditions.

✓It is worth noting that, extreme rows and extreme columns are considered
adjacent.

✓The minterms are ordered according to Gray code, i.e., only one variable changes
between adjacent squares.

✓The commonly used designation styles for two-, three- and four-variable minterm
Karnaugh maps are given in Figure 4.12.

✓ Having drawn the Karnaugh map, the next step is to form groups as per the
following guidelines:

1. Each square containing a ‘1’ must be considered at least once, although it can
be considered as often as desired.

2. The objective is to account for all marked squares in the minimum number of
groups.



3. The number of squares in a group must always be a power of 2, i.e., groups can
have 1, 2, 4, 8, 16, … squares.

4. Each group should be as large as possible, which means that a square should not
be accounted for by itself if it can be accounted for by a group of two squares
and so forth.

5. ‘Don’t care’ entries can be used in accounting for all of 1-squares to make
optimum groups. Not all ‘don’t cares’ need to be accounted for though.

Figure 4.12: Karnaugh  maps.



✓ Having accounted for groups with all 1s, the minimum ‘SOP’ or ‘POS’ expressions
can be written directly from the Karnaugh map.

✓ Example 3

❑ Given in table 4.3 is the truth table of the Boolean function of a two-input OR 
gate. Write the minterm and maxterm Boolean expressions, hence create the 
minterm Karnaugh map and maxterm Karnaugh map. 

Table 4.3: Truth table
✓ Solution

( ), minterm or SOPY A B A B A B=  +  +  ( ), maxterm or POSY A B= +



Karnaugh Map Method

✓ Example 4

✓ Table 4.4 is the truth table of the three-variable Boolean function, with minterm and 
maxterm  repectively given by 

and                                                   

❑ Create the minterm Karnaugh map and maxterm Karnaugh map, 
Table 4.4: truth table.

✓ Solution

Y A B C A B C A B C A B C=   +   +   +  

( ) ( ) ( ) ( )Y A B C A B C A B C A B C= + +  + +  + +  + +

✓ Thus, the simplified SOP and  POS 
expressions are both given by            . Y C=



✓ Example 5

❑ The three-variable Boolean function                                                   was found for 
the truth table of example 1. Simplify this expression using the Karnaugh map 
method.

❑ Solution

❑ Cover all 1s with maximum grouping.

❑ The simplified Boolean equation is one that
sums all the terms corresponding to each of
the group:

Y ABC ABC ABC ABC= + + +

Y AB AC BC= + +

❑ There is no simpler expression for this function.

❑ Using DeMorgan’s law, the simplified expression can be converted to a 
NANDed product of NANDs, i.e.,

Y AB AC BC=  



❑Further Examples of grouping

Y AB CD= + Y B=

Y ABCD BD ACD= + + Y AB BC ACD= + +



✓ Example 6

❑ The respective four variable minterm and maxterm Boolean expresisons are

and 

❑ Draw the respective minterm and maxterm Karnaugh maps. Hence deduce the 
minimized expressions from the Karnaugh maps in the two cases.

❑ Solution

❑ The respective minterm and maxterm Karnaugh maps  together with their 
corresponding simplified expressions are as shown below.

Y ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD= + + + + + + +

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

= + + +  + + +  + + +  + + +

 + + +  + + +  + + +  + + +

 + + +  + + +

Y A B C D A B C D A B C D A B C D

A B C D A B C D A B C D A B C D

A B C D A B C D



✓ Solution to Example 6

❑ The respective four variable minterm and maxterm Boolean expresisons are

Y BD BD= + ( )Y D A B=  +



K-Map for Boolean Expressions with a Large Number of Variables 

❑ The construction of K-maps for a large number of variables is a complex and 
cumbersome exercise, although manageable up to six variables.

❑ Five- and six-variable representation of Karnaugh maps are shown in Figure 
4.13(a) and (b).  

Figure 4.13: Karnaugh  maps.



❑ It is worth noting that while forming groups in Karnaugh maps involving more
than four variables is that terms equidistant from the central horizontal and
central vertical lines are considered adjacent.

❑ These lines are shown thicker in Figures 3(a) and (b). Squares marked ‘X’ in the
figures above are adjacent and therefore can be grouped.

❑ In general, an n-variable Boolean expression can be represented by four-
variable maps.

❑ In such multiple maps, groups are made as before, except that, in addition to
adjacencies discussed earlier, corresponding squares in two adjacent maps are
also considered adjacent and can therefore be grouped.

42n−



Don’t Care Conditions (Optional)

❑ In certain cases some of the minterms may never occur or it may not matter what 
happens if they do.

❑ In such cases we fill in the Karnaugh map with X, meaning don’t care.

❑ When minimizing an X can be 0 or 1 – whatever helps best with the minimization.

❑ For example

❑ Simplifies to B if X is assumed 1, i.e.,

Y B=



More “Don’t Care” Examples

❑ Don’t care conditions should be changed to either 0 or 1 to produce K-map looping 
that yields the simplest expression.

Y A=Figure 4.14: Don’t care treatment.



More “Don’t Care” Examples

❑ Elevator circuit.

1 2 3OPEN MF MF MF= + +

Truth table



✓ Example 7

❑ Minimize the Boolean function

using the mapping method in both minimized sum-of-products and product-
of-sums forms. Note that d denotes the don’t cares conditions

❑ Solution

❑ .

❑ From given Boolean functions above, we can write SOP and POS Boolean 
expressions as follows:

and

( ), , 0,1,3,5 2,7
d

f A B C = + 

( ), , 0,1,3,5 2,7 4,6 2,7
d d

f A B C = + = +   

( ), ,f A B C A B C A B C A B C A B C=   +   +   +  

( ) ( ) ( ), ,f A B C A B C A B C= + +  + +



✓ Solution to Example 7

❑ The ‘don’t care’ input combinations for the SOP Boolean expression are 

❑ The ‘don’t care’ input combinations for the POS Boolean expression are

. 

❑ The Karnaugh maps are as shown below.

( ) ( )A B C A B C+ +  + +

andA B C A B C   

( ), ,f A B C C A= + ( ), ,f A B C A C= +



COMBINATIONAL LOGIC



• A combinational circuit is one where the output at any time depends only on the present
combination of inputs at that point of time with total disregard to the past state of the
inputs.

• The logic gate is the most basic building block of combinational logic.

✓The logical function performed by a combinational circuit is fully defined by a set of
Boolean expressions.

The different steps involved in the design of a combinational logic circuit are as follows:

1. Statement of the problem.

2. Identification of input and output variables.

3. Expressing the relationship between the input and output variables.

4. Construction of a truth table to meet input–output requirements.

5. Writing Boolean expressions for various output variables in terms of input variables.

6. Minimization of Boolean expressions.

7. Implementation of minimized Boolean expressions.



• There are various simplification techniques available for minimizing Boolean
expressions, which have been discussed earlier. These include the use of theorems
and identities, Karnaugh mapping e.t.c.

• The following guidelines should be followed while choosing the preferred form for
hardware implementation:

1. The implementation should have the minimum number of gates, with the
gates used having the minimum number of inputs.

2. There should be a minimum number of interconnections, and the
propagation time should be the shortest.

3. Limitation on the driving capability of the gates should not be ignored.

Arithmetic Circuits
• Lets combinational logic building blocks that can be used to perform addition and

subtraction operations on binary numbers.

• Addition and subtraction are the two most commonly used arithmetic operations,
as the other two, namely multiplication and division, are respectively the processes
of repeated addition and repeated subtraction



Binary Adder

• Recall binary addition: 

1. 0 + 0 = 0, 

2. 0 + 1 = 1,

3. 1 + 0 = 1, 

4. 1 + 1 = 10 (This should be read as “Equal to zero, carry one”) 

5. 1 + 1 + 1 = 11 (This should be read as “Equal to one, carry one”)

➢Half adder: is a logic circuit that adds two bits. From the rules of binary addition, 
there will always be a SUM and a CARRY digit. Below is a truth table obtained 
when adding two numbers A and B:

The half-adder equations are



How to implement  the half-adder circuit

✓ Look at the results in the CARRY column 
and you see A AND B. 

✓ Look at the results in the SUM column 
and you see A XOR B.

Figure 4.15: Implementation of a half-adder



Full Adder

A full adder is a circuit that adds 3 bits. It has two outputs, Sum (S) and
Carry (Co): It is possible to have variants in logic implementation but
basically it is a combination of two halfadders.

Truth table for a full adder
Figure 4.16: Implentation of a full adder

The full-adder equations are



Binary Subtractor

➢Half-subtractor: is a combinational circuit that can be used to subtract one binary 
digit from another to produce a DIFFERENCE output and a BORROW output.

✓The BORROW output here specifies whether a ‘1’ has been borrowed to 
perform the subtraction.

Truth table of a Half-subtractor

Figure 4.17: Implementation of a Half-subtractor

• The equations used for the 
half-subtractore is



• Full-subtractor: performs subtraction operation on 2 bits, a minuend and a
subtrahend, and also takes into consideration whether a ‘1’ has already been
borrowed by the previous adjacent lower minuend bit or not.

✓As a result, there are three bits to be handled at the input of a full subtractor,
namely the two bits to be subtracted and a borrow bit designated as Bin.

✓There are two outputs, namely the DIFFERENCE output D and the BORROW
output Bo.

• The equations for the full-subtractor are given as

Truth table for a full-subtractor



• Hence the implementation of a full-subtractor is as follows:

Figure 4.18: Implementation of a full-subtractor



Controlled Inverter

• A controlled inverter is needed when an adder is to be used as a subtractor. As
outlined earlier, subtraction is nothing but addition of the 2’s complement of the
subtrahend to the minuend.

• Thus, the first step towards practical implementation of a subtractor is to
determine the 2’s complement of the subtrahend.

✓A controlled inverter is used to find 1’s complement.

• A one-bit controlled inverter is nothing but a two-input EX-OR gate with one of its
inputs treated as a control input.

✓When the control input is LOW, the input bit is passed as such to the output.
(Recall the truth table of an EX-OR gate.)

✓When the control input is HIGH, the input bit gets complemented at the
output. Figure 4.20 shows an eight-bit controlled inverter of this type.



Figure 4.20: Eight-bit controlled inverter

Figure 4.19: One-bit controlled inverter



Adder–Subtractor

• Subtraction of two binary numbers can be accomplished by adding 2’s complement of the
subtrahend to the minuend and disregarding the final carry, if any.
✓ If the MSB bit in the result of addition is 0, then the result of addition is correct.
✓Otherwise, the answer is negative.

Figure 4.21: Four-bit adder-subtractor




