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3.5 Generation of Single-Phase

Fig. 3.8: Generated single phase e.m.f.



• The earliest application of alternating current was for heating the filaments of
electric lamps. For this purpose the single-phase system was perfectly
satisfactory.

• Some years later, a.c. motors were developed, and it was found that for this
application the single-phase system was not very satisfactory. For instance, the
single-phase induction motor – the type most commonly employed – was not
self-starting unless it was fitted with an auxiliary winding.

• By using two separate windings with currents differing in phase by a quarter of a
cycle or three windings with currents differing in phase by a third of a cycle, it
was found that the induction motor was self-starting and had better efficiency
and power factor than the corresponding single-phase machine.

• The system utilizing two windings is referred to as a two-phase system and that
utilizing three windings is referred to as a three-phase system



3.6 Generation of three-phase e.m.f.s

Fig. 3.9: Generation of three-phase 
e.m.f.s

• The letters R, Y and B are abbreviations of ‘red’,
‘yellow’ and ‘blue’, namely the colours used to
identify the three phases.

• Also, ‘red–yellow–blue’ is the sequence that is
universally adopted to denote that the e.m.f. in
the yellow phase lags that in the red phase by a
third of a cycle, and the e.m.f. in the blue phase
lags that in the yellow phase by another third of
a cycle.

• We shall refer to the slip-rings connected to
sides R, Y and B as the ‘finishes’ of the
respective phases and those connected to R1 ,
Y1 and B1 as the ‘starts’.



• Suppose the three coils are rotated
anticlockwise at a uniform speed in the
magnetic field due to poles N-S.

• The e.m.f. generated in loop RR1 is zero for
the position shown in Fig.3.9. When the loop
has moved through 90° to the position
shown in Fig.3.10., the generated e.m.f. is at
its maximum value, its direction round the
loop being from the ‘start’ slip-ring towards
the ‘finish’ slip-ring.

Fig.3.10: Loop R-R1 at instant of maximum e.m.f.

• Let us regard this direction as positive; consequently the e.m.f. induced in loop RR1

can be represented by the full-line curve of Fig.3.11.



• The e.m.f. generated in side Y of loop YY1 has exactly the same amplitude as that
generated in side R, but lags by 120° (or one-third of a cycle)

Fig.3.11: Waveforms of three-phase e.m.f.s

• Similarly, the e.m.f generated in side B of loop BB1 is equal to but lags that in side Y
by 120°

• Hence the e.m.f.s generated in loops RR1 , YY1 and BB1 are represented by the
three equally spaced curves of Fig.3.11, the e.m.fs being assumed positive when
their directions round the loops are from ‘start’ to ‘finish’ of their respective loops.



If the instantaneous value of the e.m.f.
generated in phase RR1 is represented 
by, 

𝑒 = 𝐸𝑚 sin 𝜃, 

then instantaneous e.m.f. in YY1 is

𝑒 = 𝐸𝑚 sin( 𝜃 − 120∘)

and instantaneous e.m.f. in BB1 is

𝑒 = 𝐸𝑚 sin( 𝜃 − 240∘)

Let the three phases of Fig.3.9, be 
represented as in Fig. 3.12

Fig.3.12: Three-phase windings with six line 
conductors



3.7 Delta connection of three-phase windings

• Let L1 , L2 and L3 represent loads
connected across the respective
phases in Fig.3.12.

• Let the e.m.f.s to be positive when
acting from ‘start’ to ‘finish’ and be
represented by the arrows 𝑒𝑅, 𝑒𝑌,
and 𝑒𝐵 in Fig. 3.12.

• This arrangement necessitates six
line conductors and is therefore
cumbersome and expensive, so let
us consider how it may be
simplified.

• The ‘start’ of one phase should be
connected to the ‘finish’ of another phase,
so that the arrows representing the positive
directions of the e.m.f.s point in the same
direction round the mesh formed by the
three windings.

Fig.3.13: Conventional representation of a delta or 
mesh-connected winding



• At instant P in Fig.3.11, the e.m.f. generated in phase R is positive and is
represented by PL acting from R1 to R. The e.m.f. in phase Y is negative and is
represented by PM acting from Y to Y1 , and that in phase B is also negative and is
represented by PN acting from B to B1.

• But the sum of PM and PN is exactly equal numerically to PL; consequently, the
algebraic sum of the e.m.f.s round the closed circuit formed by the three windings
is zero. Instantaneous value of the total e.m.f acting from B1 to R is

𝑒𝑅 + 𝑒𝑌 + 𝑒𝐵
= 𝐸𝑚 sin 𝜃 + sin( 𝜃 − 120∘) + sin( 𝜃 − 240∘)

= 𝐸𝑚(sin 𝜃 + sin 𝜃 ∙ cos 120∘ − cos 𝜃 ∙ sin 120∘ +

sin 𝜃 . cos 240∘ − cos 𝜃 ∙ sin 240∘)

= 0

Hence, no circulating current is present.



3.8 Star connection of three-phase windings

Fig.3.14: Star connection of three-phase winding 



• This arrangement is referred to as a four-wire
star-connected system and is more conveniently
represented as in figure 3.15, and junction N is
referred to as the star or neutral point.

• Three-phase motors are connected to the line
conductors R, Y and B, whereas lamps, heaters,
etc. are usually connected between the line and
neutral conductors, as indicated by L1, L2 and L3,
the total load being distributed as equally as
possible between the three lines.

• If these three loads are exactly alike, the phase
currents have the same peak value, 𝐼𝑚, and differ
in phase by 120°.

Fig.3.15: Four-wire star-connected system 



• Hence if the instantaneous value of 
the current in load 𝐿1 is represented 
by,

𝑖1 = 𝐼𝑚 sin 𝜃

instantaneous current in 𝐿2 is

𝑖2 = 𝐼𝑚 sin(𝜃 − 120°)

and instantaneous current in 𝐿3 is

𝑖3 = 𝐼𝑚 sin(𝜃 − 240°)

• Hence instantaneous value of the 
resultant current in neutral conductor 
MN

𝑖1 + 𝑖2 + 𝑖3
= 𝐼𝑚൛

ൟ
sin 𝜃 + sin(𝜃 − 120°)

+ sin(𝜃 − 240°)
= 𝐼𝑚 × 0
= 0

i.e. with a balanced load, the resultant 
current in the neutral conductor is zero 
at every instant



3.9 Voltages and currents in a Star-connected system

• The r.m.s. values of the e.m.f.s
generated in the three phases can be
represented by 𝐸𝑁𝑅, 𝐸𝑁𝑌 and 𝐸𝑁𝐵.

• The value of the e.m.f. acting from Y 
via N to R is the phasor difference of 
𝐸𝑁𝑅 and 𝐸𝑁𝐵.

Fig.3.16: Star-connected generator

Fig.3.17: Phasor diagram

Hence, 𝐸𝑌𝑁 is drawn equal and
opposite to 𝐸𝑁𝑌 and added to 𝐸𝑁𝑅 ,
giving 𝐸𝑌𝑁𝑅 as the e.m.f. acting from Y
to R via N.



• From the symmetry of this diagram it is evident that the line voltages are equal and
are spaced 120° apart.

• Since the angle between 𝐸𝑁𝑅 and 𝐸𝑌𝑁 is 60°,

𝐸𝑌𝑁𝑅 = 2𝐸𝑁𝑅 cos 30
° = 3𝐸𝑁𝑅

i.e.

Line voltage = 1.73 × star (or phase) voltage

• From Fig.3.16 it is obvious that in a star-connected system, the current in a line
conductor is the same as that in the phase to which that line conductor is
connected. Hence, in general, if

𝑉𝐿 = p.d. between any two line conductors

= line voltage



And

𝑉𝑃 = p.d. between a line conductor and the neutral point.

= star voltage (or voltage to neutral)

and if 𝐼𝑃 and 𝐼𝐿 are line and phase currents respectively, then for a star-connected system,   

𝑉𝐿 = 3𝑉𝑃 (3.1)

and

𝐼𝐿 = 𝐼𝑃 (3.2

Note: The voltage given for a three-phase system is
always the line voltage unless it is stated otherwisee.



3.10 Voltages and currents in a delta-connected system

• Let 𝐼1 , 𝐼2 and 𝐼3 be the r.m.s. values of
the phase currents having their
positive directions as indicated by the
arrows in Fig.3.18.

• Since the load is assumed to be
balanced, these currents are equal in
magnitude and differ in phase by
120°.

Fig.3.19: Phasor diagramFig.3.18: Delta-connected system with balanced load



• From Fig. 3.18 it will be seen that 𝐼1 , when positive, flows away from line conductor
R, whereas 𝐼3 , when positive, flows towards it. Consequently, 𝐼𝑅 is obtained by
subtracting 𝐼3 from 𝐼1 , as in Fig.3.19. Hence,

𝐼𝑅 = 2𝐼1 cos 30
° = 3𝐼1

Hence, for a delta-connected system with a balanced load.

Line current = 3 phase current

𝐼𝐿 = 3𝐼𝑃 (3.3)

and in a delta-connected system, the line and the phase voltages are the same, i.e.

𝑉𝐿 = 𝑉𝑃 (3.4)



3.11 Power in a three-phase system with a balanced load

• If 𝐼𝑃 is the r.m.s. value of the current in 
each phase and 𝑉𝑃 the r.m.s. value of 
the p.d. across each phase,

Active power per phase 

= 𝐼𝑃𝑉𝑃 × power factor

and 

Total active power

= 3𝐼𝑃𝑉𝑃 × power factor

𝑃 = 3𝐼𝑃𝑉𝑃 cos ∅ (3.5)

If 𝐼𝐿 and 𝑉𝐿 are the r.m.s. values of the 
line current and voltage respectively, 
then for a star-connected system,

𝑉𝑃 =
𝑉𝐿

3
and 𝐼𝑃 = 𝐼𝐿

Substituting for 𝐼𝑃 and 𝑉𝑃 in equation
(3.5), we have



Total active power in watts

= 3𝐼𝐿𝑉𝐿 × power factor

For a delta-connected system

𝑉𝑃 = 𝑉𝐿 and 𝐼𝑃 =
𝐼𝐿

3

Again, substituting for IP and VP in
equation (3.5), we have

Total active power in watts
= 3𝐼𝐿𝑉𝐿 × power factor

Hence, it follows that, for any balanced 
load,

Active power in watts

= 3 × line current × line voltage ×
power factor

(3.6)



Example:
A three-phase motor operating off a 400 V system is developing 20 kW at an efficiency of 
0.87 p.u. and a power factor of 0.82. Calculate: 
(a) The line current; 
(b) The phase current if the windings are delta-connected.

Solution:



3.12 Measurement of active power in a three-phase, three-wire system

a) Star-connected balanced load, with neutral
point accessible

➢If a wattmeter W is connected with its current
coil in one line and the voltage circuit between
that line and the neutral point, as shown in
Fig.3.20, the reading on the wattmeter gives the
power per phase:

Total active power

= 3 × wattmeter reading

Fig.3.20: Measurement of active power 
in a star-connected balanced load



Instantaneous power in load
𝐿1 = 𝑖𝑅𝑉𝑅𝑁
𝐿2 = 𝑖𝑅𝑉𝑅𝑁
𝐿3 = 𝑖𝐵𝑉𝐵𝑁

sum of instantaneous powers measured 
by W1 and W2 is,

Total instantaneous power
= 𝑖𝑅𝑉𝑅𝑁 + 𝑖𝑌𝑉𝑌𝑁 + 𝑖𝐵𝑉𝐵𝑁

Fig.3.21: Measurement of power by two 
wattmeters

b) Balanced or unbalanced load, star- or delta-connected: 
The two-wattmeter method



3.13 Power factor measurement by means of two wattmeters

Fig.3.22: Measurement of active power and 
power factor by two wattmeters 

• Let L represent three similar loads
connected in star,

Phase difference between 𝐼𝑅 and
𝑉𝑅𝑁𝑌 = 30° + ∅.

Therefore reading on W1 is

𝑃1 = 𝐼𝑅𝑉𝑅𝑁𝑌 cos 30° + ∅

Phase difference between 𝐼𝐵 and
𝑉𝐵𝑁𝑌 = 30° − ∅.



Therefore reading on W2 is

𝑃2 = 𝐼𝐵𝑉𝐵𝑁𝑌 cos 30° − ∅

Since the load is balanced,

𝐼𝑅 = 𝐼𝑌 = 𝐼𝐵 = say 𝐼𝐿 , numerically

𝑉𝑅𝑁𝑌 = 𝑉𝐵𝑁𝑌 = say 𝑉𝐿, numerically

Hence,
𝑃1 = 𝐼𝐿𝑉𝐿 cos 30° + ∅ (3.7)



𝑃2 = 𝐼𝐿𝑉𝐿 cos 30° − ∅ (3.8)

𝑃1 + 𝑃2 = 3𝐼𝐿𝑉𝐿 cos ∅ (3.9)

This is an alternative method of proving that the sum of the two wattmeter
readings gives the total active power, but it should be noted that this proof
assumed a balanced load and sinusoidal voltages and currents.



Dividing equation (3.7) by equation (3.8), we have

𝑃1
𝑃2

=
cos 30° + ∅

cos 30° − ∅
= say 𝑦

𝑦 =
Τ3 2 cos ∅ − Τ1 2 sin ∅

Τ3 2 cos ∅ + Τ1 2 sin ∅

so that

3𝑦 cos ∅ + 𝑦 sin∅ = 3 cos ∅ − sin∅



from which

3 1 − 𝑦 cos ∅ = (1 + 𝑦) sin ∅

Therefore, 

3
1 − 𝑦

1 + 𝑦

2

cos2 ∅ = sin2 ∅ = 1 − cos2 ∅

and

1 = 1 + 3
1 − 𝑦

1 + 𝑦

2

cos2 ∅



Power factor = cos ∅ =
1

1 + 3
1 − 𝑦
1 + 𝑦

2

(3.10)

An alternative method of deriving the power factor is as follows: From equations
(3.7), (3.8) and (3.9)

𝑃1 − 𝑃2 = 𝐼𝐿𝑉𝐿 sin ∅

and

tan∅ =
sin ∅

cos ∅
= 3

𝑃1 − 𝑃2
𝑃1 + 𝑃2

(3.11)



Example:

• The input power to a three-phase motor
was measured by the two wattmeter
method. The readings were 5.2 kW and
−1.7 kW, and the line voltage was 400 V.
Calculate:

(a) The  total active power; 

(b) The  power factor; 

(c) The  line current.

Solution:




